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From Inheritance to Feature InteractionorComposing MonadsChristian Prehofer,Institut f�ur Informatik,Technische Universit�at M�unchen,80290 M�unchen, Germany,www4.informatik.tu-muenchen.de/~prehoferJune 3, 1997AbstractWe show that techniques for monad composition can be used nicelyfor modeling object-oriented programming concepts. In this functionalsetting, we develop a new model for composing objects from individualfeatures in a modular way. Features are similar to abstract subclasses,but separate the core functionality of a subclass from overwriting meth-ods. We view method overwriting more generally as resolving interactionsbetween two features. The interaction handling is speci�ed separately andadded when features are composed. This generalizes inheritance as foundin object-oriented languages and leads to a new view of objects in a func-tional setting. Our concepts are implemented in Gofer and generalize somemonadic programming techniques, where objects correspond to monads,features to monad transformers, and feature interactions are resolved bylifting functions through monad transformers.1 IntroductionIn this paper we model object-oriented programming concepts in a functional lan-guage and present generalizations of conventional object-oriented programming.Whereas the latter allows to develop classes of objects in an incremental man-ner, we just compose objects from a set of features, which replace classes. Thisapproach was motivated by the recent interest in feature interactions in telecom-munications, where service unit provides for of a set of (telephone) features. The1



crucial point is that some features may interact and have to be adapted in thepresence of each other. This idea will be used for a novel approach to object-oriented programming. We consider such interaction handling for two features ata time and compose features with the appropriate interaction handling in a waywhich generalizes inheritance and method overwriting as in object-oriented pro-gramming. The exible composition of features is achieved by advanced conceptsof functional programming, in particular the monads and monad compositiontechniques. Our techniques allow to use object-oriented techniques while pre-serving the bene�ts of a higher-order lazy functional language, and also advanceobject-oriented programming concepts.The feature model allows to compose objects from individual features (orabstract subclasses) in a fully exible and modular way. Its main advantage isthat objects with individual services can be created just by selecting the desiredfeatures, unlike object-oriented programming. A feature is similar to an abstractsubclass and consists of a base implementation which� adds functionality to an object� may assume that the extended object provides other features.� may add local state to the object (or may extend the used domains, e.g. byerror cases)Features are similar to abstract subclasses or mixins [5, 4]. The main di�erenceis that we separate the core functionality of a subclass from overwriting methodsof the superclass. We view overwriting more generally as a mechanism to resolvedependencies or interactions between features, i.e. some feature must behavedi�erently in the presence of another one. For this purpose, we need to providelifters, which adapt a feature to the context of another feature by overwritingmethods. This leads to a new view of inheritance, as feature interactions areresolved between two features on a mutual basis. In contrast, inheritance justoverwrites the method of the superclass.The base functionality of a new feature is based on the functionality of therequired ones and on the newly added state. This idea of assuming other featuresis a further di�erence to usual abstract subclass concepts. Note that the extendedobject can obviously have more than just the required features.We use a modular architecture for composing features and the required in-teraction handling to a full object. As we only compose objects, there is no realnotion of a class, which is hence often confused with the (type of) objects. Thetechniques we use for composing features have been developed for composingmonads [20, 15] and have been used for handling interactions in interpreters forprogramming languages with several features [18, 9]. We program such featureinteractions by lifting functions of one feature to the context of the other. Thisgives an architecture for composing features and interactions.2



Whereas inheritance is used to extend a class with local state and functional-ity, we generalize this process and compose objects with individual services froma set of features. Although inheritance can be used for such feature combinations,all needed combinations, including feature interactions, have to be programmedexplicitly. In contrast, we can (re)use features by simply selecting the desiredones when creating an object.We claim that feature-oriented programming is advantageous for the followingreasons:� It yields more exibility, as objects with individual services can be composedfrom a set of features. This is clearly desirable, if many di�erent variationsof one software component are needed or if new functionality has to beincorporated frequently.� As the core functionality is separated from interaction handling, it providesmore structure and clari�es dependencies between features. Hence it en-courages to write independent, reusable code, as in many cases subclassesshould be an independent entity, and not a subclass.Our main technical contributions towards object- or feature-oriented program-ming are as follows.� Using concepts for monad composition, we introduce a novel model forprogramming features in a modular and composable way which generalizesinheritance or subclassing.� We show that some functionality (an undo function) which depends onseveral features can be implemented abstractly for any feature combinationusing type computations via type classes.� We generalize some programming techniques used in [18] to generic classesof stateful and error monads.An exposition of feature-oriented programming as an extension of an imperativelanguage, namely Java, appears in [24]. This paper also includes a detailed com-parison to object-oriented programming. Here, we focus the functional essenceof this approach and on more advanced concepts, such as exception handling.This can also be viewed as semantical model of the core of the imperative versionin [24].We demonstrate our concepts by two examples, including some telecommu-nication features, where feature interactions have recently attracted great at-tention [27, 8]. For more examples in this area of telecommunications we referto [25].For implementing our concepts with monads we generalize techniques devel-oped in [18]. In our model, classes correspond to monads, which can be viewed3



as particular abstract data types. The interesting point is that (some classes of)monads compose nicely and that we can build monad transformers, which trans-form an abstract data type to another. This is used to add features to objects.For instance, the mainly used monad transformers add (local) state (and extrafunctionality), from which we draw the comparison to inheritance. We show thatimplicit state via monads is essential for our abstract programming techniques.Similarly, overloading via type classes is important, as the type of polymorphicfunctions in feature implementations can only be determined after an object iscomposed from a set of features.To compare this work with earlier results on monads, note that Moggi [20]aimed at lifting monads just by their types. This was extended to liftings forparticular types of monads in [18], using their speci�c properties. Our techniqueis to name concrete instances of monad classes (e.g. state monads) and to programliftings depending on the names, but using generic liftings for the class of monads.As the names are identi�ed with features, this clearly goes along the ideas ofinheritance. Furthermore, we mostly use just state monads, which compose easily.In the following, we present our concepts for writing features by an example,which will be the running example. Although we only use functions to accesslocal variables of an object, the relation to object-oriented programming and toother concepts of inheritance should be clear. It is examined in detail in [24].After a brief introduction to the technical concepts in Section 2, we showthe concepts of stateful features in Section 3 and of error features in Section 4.The problems of multi-feature interaction are discussed in Section 5, followed byexamples for stack features in Section 6. Another example for feature interactionsin telecommunications is presented in Section 7.1.1 A First ExampleIn the following, we show a small example modeling stacks with the followingfeatures:(Basic) Stack, providing push and pop operations on a stack implemented bya list.Counter, which adds a local counter (used for the size of the stack).Undo, adding an undo function, which restores the state as it was before thelast access to the object.In an object-oriented language, one would extend a class of stacks by a counterand then extend this by undo. In general, a concrete class is added onto anotherconcrete class. We will extend this to independent features which can be addedto any object. For instance, we can run a counter object independently, or withundo. 4



The full implementation of the stack example contains six features which canbe used modularly in many combinations.1 It includes variations of the counterand the undo function. For instance, there is a version with a one-step undo andone with many-step undo. Another feature for handling stack underow, basedon a class of error features, is shown later in Section 4. We show in Figure 1
Undo: undo

Stack: 

Counter: size, inc, dec

Environment

push, popFigure 1: Composing features (rounded boxes) by lifters (boxes with arrows)an example for feature composition with liftings, many more combinations areshown in Section 6. In this example we �rst add the counter to the basic stack.For this new object to support the stack feature, we have to lift the functionspush and pop, indicated by arrows in the box denoting the lifting. This gives,like inheritance, a new object with two features, consisting of the inner twoboxes. Since there are interactions between the two features, we must provideindividual lifters for push and pop. Otherwise, one can use the default onesfor composing orthogonal, independent features. With the undo component, weproceed similarly. Note that the functions push and pop are lifted again to undo,now with the lifter from stack to undo.Clearly, these features are not independent. For instance, when adding thecounter, the functions push and pop must, in addition, increment or decrementthe counter. With traditional inheritance, this is achieved by overwriting ofmethods and by possibly calling the method of the superclass. In our setting,such dependencies are described by a lifting from one feature to a new context.Thus, liftings depend on two features.To compose several features, liftings have to be more general: For any objecthaving the set of features A, we can add feature b and lift the functions of each1Code available via the autor's home page.5



feature in A individually to the new context. Then we have an object whichprovides b as well. Using the structure of liftings, it is easy to model classicalinheritance. Consider adding a feature b to an object with features A. To obtaina concrete subclass, one just has to merge the code of the feature a with allthe lifters from a 2 A to b. Repeating this for all features, we can create aconcrete class hierarchy for a particular object composed from some features.This amounts to the main di�erence to inheritance.In the example, there are two lifters needed (two boxes) for adding undo tothe object with counter and basic stack features. This is the main di�erence toinheritance, where a concrete class undo would extend a class with counter andstack and would rede�ne some of their functions. Whereas all this happens in onesubclass, it is separated (and much more reusable) in three entities: one featureand two lifters.Note further that lifting push and pop to undo does not depend on the counter;only the lifted versions of push and pop are lifted again by a lifter which dependson undo and basic stack.We argue that liftings can nicely resolve many typical interactions betweenfeatures, such as handling an extended local state. For instance, there is anotherinteresting interaction between undo and counter. If a size request is followed byundo, shall the state before size or the one before the last push/pop request berestored? Such choices motivate a modular design, where not only the compo-nents are decoupled, but also their interaction. For instance, if the counter is notused, we do not want to bother with this complication.1.2 Programming FeaturesTo give a �rst idea of how to program features, we show (some of) the code for thestack and the counter features. Our concepts are provided by Gofer functions [13]and type constructions. We use the constructor classes of Gofer [14], which extendHaskell's type classes [21] and have been partly adopted in Haskell 1.3 [22].We use monadic state transformers modeling implicit state as in imperativelanguages, which is essential for the desired exibility and modularity. Composingfeatures is done by the type system of Gofer with type constructions and typeclasses. A type class declares certain functions for its member types. Observethat type classes do not correspond to classes in object-oriented programming,but determine if a type has some feature. Thus a type can be in several typeclasses, vaguely reminiscent of multiple inheritance. Compared to object-orientedprogramming, type classes resemble the idea of interfaces, as e.g. in Java [10].A type is in a type class (e.g. StackMonad or CountMonad) if the correspondingfunctions are provided in an instance declaration, as shown below. We use thetype constructors StackT; CountT to add features to a type. For instance, if mis the type of an object (a monad), then StackT s m is a new type which alsosupports the stack feature with a local state of type s.6



In the following code, the �rst type declaration for StackT declares thatStackT is a state transformer, adding implicit state to the object of type m.2The second statement declares that StackT [Int] m is in the class StackMonadof stacks of integers.3 (Note that [Int] is the type of lists over Int.) Furthermore,we have to give implementations for the functions which the feature provides, herepush and pop. Note that we write types, type constructors and type declarationsin italics.-- add implicit state of type s-- to m (simplified here)type StackT s m = StateTrans s minstance StackMonad (StackT [Int] m)wherepush a = dof s <- get;put (a:s) gpop = dof s <- get;put (tail s);result (head s)gis_empty = dof s <- get;result (s==[]) gIn the above implementation, the do-notation for sequential computations inmonads is used. Each statement in the do construct may compute a value andassign it to a local variable, e.g. s <- get assigns the result of get to s. In sucha monad computation the added, implicit state can be modi�ed via the functionsput and get. Note that these access functions always refer to the implicit stateof the \current" feature.Next we show the counter feature, whose functions are also implemented viastate transformers.type CountT Int m = StateTrans Int minstance CountMonad (CountT Int m)wheresize = getinc = dof i <- get;put (i+1) gdec = dof i <- get;put (i-1) g2State transformers will be explained in detail later. Also, the following type declaration isshortened. The full code and the class declarations are shown later.3Polymorphic stacks are possible via a binary class StackMonad, using the extra argumentfor the type of the stack. However, this leads to ambiguous types later.7



It remains to lift the functionality of stack to the context of a counter. Thefollowing instance declaration states that (CountT Int m) has the stack feature,under the preconditions (stated before the =>) that m has the stack feature, i.e.StackMonad m, and that (CountT Int m) is a CountMonad.instance (StackMonad m,CountMonad (CountT Int m)) =>StackMonad (CountT Int m)wherepush a = dof inc ;lift (push a)gpop = dof dec ;lift popgThe code for push �rst calls the increment function of the counter and thenvia lift (push a) the push function of the inner object (\superclass") of typem. Roughly speaking, lift corresponds to the function super as e.g. in Smalltalkand is, like get and put, de�ned later. Alternatively, if there is no interaction,one would just writepop = lift popwhich could also be made a default (as implicit in object-oriented programming).With the above code, an object of typeCountT Int (StackT [Int] m)provides both features and behaves as expected. In general, liftings should pre-serve the functionality of the lifted features, i.e. an individual feature alwaysbehaves identically (if no others are used in between). For the standard lifting,this can be shown similar to [18].The implementation of the undo feature is more involved and is presented inSection 5. The idea of the simple undo implementation is to save the local stateof the object each time a function of the other features is applied (e.g. push, pop).The undo feature raises several new issues:� The lifting of functions of the other used features is schematic: Always savethe state �rst and then call the function to be lifted. In contrast to object-oriented programming, this can be done once and for all by a particularfunctionlift_undo f =dof local_s <- lift gets ;put (Some local_s) ;(lift f) g 8



which lifts any function f to the undo feature. Note that lift gets refersto the state of the inner object.� undo depends essentially on all \inner" features, since it has to know theinternal state of the composed object. Since we work in a typed environ-ment, the type of the state to be saved has to be known. This multi-featureinteraction is solved by an extra feature, which allows to read and write thelocal state.2 Monads, Type Classes and FeaturesIn the following, we explain the technical background needed for our featuremodel. The ideas are based on investigations on features in programming lan-guages [18]. The concept of monads has been introduced to programming formodeling state in functional languages [16] and for writing code which is easy tomodify [26]. Both aspects will be essential in our context.2.1 Type ClassesA type class in Haskell is essentially a set of types (which all happen to providea certain set of functions). Each class declaration introduces a new class and aset of new function names, which are overloaded for each member of a class. Forinstanceclass Eq a whereeq :: a ! a ! Boolintroduces the class Eq of all those types a which provide a function eq :: a !a! Bool. A class declaration is like a module interface: it separates declarationsfrom implementations. Instance declarations provide the members of classes andconcrete implementations for the member functions, e.g.instance Eq Int whereeq = eq_intIn general we can instantiate classes not just by base types but also by typeterms. For example, we may wish to express that a type [a] admits equalityprovided a does. This is achieved by the following instance declaration, wherethe Haskell notation => allows to add a list of type assumptions (here Eq a) forthe new instance Eq [a].instance Eq a => Eq [a] whereeq [] [] = Trueeq (a:as) (b:bs) =and [eq a b, eq as bs] 9



Note that the last two eq expressions refer to two di�erent instances of Eq, onefor a and one for [a].2.2 Constructor Type ClassesThe extension to constructor classes of Gofer [14, 22] allows n-ary type classes.Furthermore, these arguments may not just be types, but can be type construc-tors. Let � be the kind of types [3]. Then, for instance, the type constructor [ ](in mix�x notation) is of \kind" � ! �, as it maps types to types. Constructorclasses are often used when standard type classes are too coarse to describe thetypes of the member functions. The standard example is the binary containerclass, whose instances typically are lists and trees:class Container c a wheremember :: a ! (c a) ! BoolHere we can express that the type c a depends on a. If c a is replaced by a types, in a class Container' s, then the type of member :: a ! s ! Bool wouldbe too general: we cannot write a sensible function which for any type a checksmembership in a type s. Typical instance declarations are:instance Container List a wheremember e [] = Falsemember e a:s = or [eq e a,member e s]data Tree a = Leaf a| Node (Tree a )(Tree a )instance Container Tree a wheremember e (Leaf a) = eq e amember e (Node a b) =or [member e a, member e b]2.3 MonadsProgramming with monads provides a compromise between imperative languages,where statements a�ect an implicit, global state, and stateless functional lan-guages, where all information ow is | sometimes tediously | explicit. Monadsalso separate building computation (e.g. composing state transformers) and run-ning a computation.A monad is a type constructor m with some operations and laws. If a is atype, then m a is the type of a larger object which \wraps" a, often a function10



type (e.g. a state transformer) as shown later. In monadic style, a function froma to b is assigned the type a ! m b. There are standard functions to work withmonads, de�ned in the type class for monads, which builds upon the functorclass:class Functor m wheremap :: (a ! b) ! (m a ! m b)class Functor m => Monad m whereresult :: a ! m abind :: m a ! (a ! m b) ! m bFunction result inserts a value into the \empty" monad and bind applies amonadic function to a value of type m a. Note that we use the do-notation forbind, de�ned asdo f x <- m ; tg =def m bind �x.tThis notation extends canonically to sequences of bind applications. The monadlaws for result illustrate the \empty" monad:(result a) bind �b. t = [a/b] tm bind �b. result b = mwhere [a/b] is a substitution mapping b to a. (See [26] for more details on monadlaws.)2.4 Features: Monads with OperationsFeatures are de�ned as monads with additional operations. These can be viewedas predicates over types which characterize the features. For instance, for thebasic stack and counter features we de�ne:-- type of stack elementstype St = Intclass Monad m =>StackMonad m wherepush :: St ! m ()pop :: m Stis_empty :: m Booltype Ct = Int -- type of counterclass Monad m => 11



CountMonad m wheresize :: m Ctinc :: m ()dec :: m ()This declares the two classes used in the introduction, StackMonad and CountMonad,with their corresponding functions. It assumes that m is a monad. (Note that ()is the empty type.)3 A Class of Stateful MonadsWe show in the following the underlying machinery for features which add stateto some object. The basis of state monads is a typetype StateTrans s m a = s! m(s; a)which extends any monad m to a type of a state transformer for a state of types. This transformer can be applied repeatedly, i.e. StateTrans s m is again amonad, as shown below. For the following general model, we generalize over thistype and just assume the functions closeS and openS. These access the internalstructure of state monads and are only used internally.The ternary class StateMonadT c s m, where s is the type of the added state,m a monad and c an appropriate type constructor, declares that (c s m) is astateful monad with the following functions (for some of which de�nitions areincluded):class Monad m =>StateMonadT c s m wherecloseS ::(s ! m(s; a)) ! c s m aopenS ::c s m a ! s ! m(s; a)get :: c s m sget = closeS(�s.result(s,s))put :: s ! c s m ()put a = closeS(�s.result(a,()))lift :: m a ! c s m alift m = closeS(�s. dofx <- m; result(s ,x)g)For the functions get, put and lift, also de�nitions are provided in the classdeclarations. The functions closeS and openS are used to show that any statemonad is a monad: 12



instance StateMonadT c s m =>Functor (c s m) wheremap f xs = closeS (�s. (openS xs) s bind�(s',x). result(s', f x))instance StateMonadT c s m =>Monad (c s m) whereresult x = closeS(�s.result(s,x))m bind k = closeS(�s0. (openS m) s0 bind�(s1, a). openS (k a) s1)This generic class generalizes the various stateful monads in [18], where the abovede�nition of monads is repeated for stateful monads.3.1 De�ning a Stateful FeatureWith the above concepts, we can show in detail the de�nition of basic stackfeatures. Only the following data type declaration is needed,4 as well as declaringit to be a stateful monad.data StackT s m a =STM(StateTrans s m a)instance StateMonadT StackT s m wherecloseS x = STM xopenS (STM x) = xSimilar declarations are needed for the counter feature. The instance declarationsfor StackT and CountT can be found in Section 1.2.4 A Class of Error MonadsAs for stateful monads, we can similarly de�ne a generic monad which adds extravalues to the computation. For instance, with the above de�nition of stacks, stackunderow results in a program error. Using error monads, we can cope nicelywith such cases. In applications it is then possible to use stacks with or withouterror handling as needed.Whereas stateful monads build upon a particular function type (StateTrans),we use a sum type here:4Note that we use an extra constructor STM to de�ne StackT via a data type de�nition.This is needed for type checking. 13



data Err e a = Data a j Error etype ErrT e m a = m(Err e a)Thus ErrT adds error elements of type e to a monad m. Note that this composeswith state monads. For instance, we obtain the type(ErrT e (StackT s Id)) a =STM( s ! Id(s; Err e a))The class of error monads supports open and close functions as for state monads,plus generic functions to inject and check errors (put_err, read_err), and thecanonic lifting function lifterr.5class Monad m =>ErrMonadT c s m whereopenE :: c s m a ! m(Err s a)closeE :: m(Err s a) ! c s m aput_err :: s ! c s m aread_err :: c s m a ! c s m Boollifterr :: m a ! c s m alifterr c = closeE (map Data c)put_err s =closeE(result(Error s))read_err m =closeE(map isError (openE m))whereisError (Error s) = Data TrueisError (Data x) = Data FalseShowing that ErrMonadT c s m is a monad is more complicated. It can forinstance be shown if we assume that m is any StateMonad. For this we use theconcepts of [15], which can be generalized to classes of monad transformers.For instance, an error handler for stack underow is written by lifting stackover Err, using Int for error values. Since we only use the base functions ofErrMonadT, we don't need to introduce an extra class and a type constructor forthis. (An example with an explicit class is shown in Section 7.2.)instance (StackMonad m ,5Due to the type system, the function cannot be overloaded to work under the same nameas in stateful monads. Adding an extra class for monad transformer is no solution, as typingdoes not permit to declare instances for both classes of monads.14



ErrMonadT ErrT Er m)=>StackMonad (ErrT Er m)wherepop = dofb <- is_empty ;if b then (put_err 0)else (lifterr pop)gpush a = lifterr (push a)is_empty = lifterr is_emptyLifting other, independent features is canonical:instance (CountMonad m,ErrMonadT ErrT s m) =>CountMonad (ErrT s m) wheresize = lifterr sizeinc = lifterr incdec = lifterr decThis lifting can even be generalized to any state monad, if CountMonad is inde-pendent of all other stateful features.In the current model for features, we have just provided generic monad compo-sition for a set of stateful features with one error feature. Although it is possibleto use several error features, it is easier to use one error monad transformer andto build other features on top of it. For instance, we only use the integer 0 aserror message here and leave others open for other error cases. (In case severalfeatures use the same error message, we can treat this as an interaction.)5 The Undo Feature: Multi-Feature InteractionWe continue the stack example by introducing the undo feature, which has in-teresting interactions with several other features. The problem is that the undofeature must access the local states of all (stateful) features the object alreadyhas. Since we work in a typed setting, we also need the type of all local states.Hence undo depends on several features. As we work with standardized monads,it is possible to add an auxiliary feature,6 which determines the state of an objectand provides access to it. Thus undo can be added to any feature combination.The additional class SMonad for stateful monads is declared viaclass Monad m => SMonad s m wheregets :: m sputs :: s ! m s6Not shown in Figure 1. 15



This binary class declares that monadm has state s and provides access functions.Instances can be de�ned schematically for both classes of monads, e.g.:instance (SMonad s0 m,StateMonadT c s m) =>SMonad (s; s0) (c s m)wheregets = dofs <- lift gets ;s' <- get ;result (s',s) gputs (a,b) = dofs <- lift (puts b);put a gThis expresses that c s m has state (s; s0), if m has state s0. Now we can de�nethe undo feature via SMonad as follows. Since there may be no saved state forundo, we use the data type Option for the copy of the local state in the followingcode:data Option a = Some a j Nonedata UndoT s m a =UTM(StateTrans s m a)instance StateMonadT UndoT s m wherecloseS x = UTM xopenS (UTM x) = xclass Monad m => UndoMonad m whereundo :: m ()instance SMonad s m =>UndoMonad (UndoT (Option s) m)whereundo = dofu <- get ;case u ofNone -> result ()Some u1 ->lift (puts u1)gThe other interesting point about undo is lifting of functions of other features.The advantage is that lifting proceeds via the following generic scheme, which�rst extracts the local state of the object, updates the saved state and then callsthe lifted function: 16



liftundo f =doflocal_s <- lift gets ;put (Some local_s) ;(lift f) gLifting for the basic stack features proceeds canonically:instance (SMonad s0 m,StackMonad m ) =>StackMonad (UndoT (Option s0) m)wherepush a = liftundo (push a)pop = liftundo popThere is an interesting interaction when the counter is used. For lifting size,which does not a�ect the state, we can either overwrite the saved state or leaveit unchanged (as shown in the comment in the code below). In the former case,undo after size will have no e�ect. With our model of feature interaction, wejust have to use the appropriate lifting function for interaction resolution.instance (SMonad s m,CountMonad m ) =>CountMonad (UndoT (Option s) m)wheresize = liftundo size-- alternative: = lift sizeinc = liftundo incdec = liftundo decCurrently, just one lifting between two features is possible due to the type system.A further step would be to allow more liftings and to parameterize over liftings.6 Using the Stack FeaturesA simple example for an object (monad) with two features is the following, whichuses the identity monad Id with no features as base monad. By the following typedeclarations features are selected.7 Running the above state transformers requiresextra machinery for injecting an initial state and for extracting the computedvalue.-- stack with counter7Gofer can infer the types without these declarations, but the inferred type is too general,as Gofer allows several (base) implementations for a type class.17



test1 :: (CountT Ct (StackT [St] Id)) Sttest1 = dofpush 1 ;push 2 ;size g -- computes 2-- stack with undotest2 :: (UndoT (Option ([St]; ()))(StackT [St] Id)) [St]test2 = dofpush 1 ;push 2 ;push 3 ;undo ;p2 <- pop ;undo ;p1 <- pop ;result [p1,p2]g -- computes [2, 2]-- stack with counter + undotest3 :: (UndoT (Option (Ct; ([St]; ())))(CountT Ct (StackT [St] Id))) [St]test3 = dofpush 1 ;push 2 ;push 3 ;undo ;p2 <- pop ;s <- size ;p1 <- pop ;result [p1,p2,s]g-- computes [1, 2, 1]-- counter with undotest4 :: (UndoT (Option (Ct; ()))(CountT Ct Id)) Sttest4 = dofinc;inc;undo;size g -- computes 118



7 Feature Interaction in TelecommunicationsIn telecommunications, feature interaction problems have led to a new researchbranch [27, 8] focusing on such interaction problems which hinder the rapid cre-ation of new services. The problem in feature interaction stems from the abun-dance of features telephones (will) have. For instance, consider the followingconict occurring in telephone connections: B forwards calls to his phone to C. Cscreens calls from A (ICS, incoming call screening). Should a call from A to B beconnected to C? In this example, there is a clear interaction between forwarding(FD) and ICS, which can be resolved in several ways. For many other exampleswe refer to [7].We demonstrate our techniques, including an example for virtual functions,with the following set of features for this domain of connecting calls:� ICS (incoming call screening)� Forwarding of calls� Error handling for busy phones (also used for disallowed calls)The �rst two of these features add local state, i.e. the origin of the call, which isnot needed for the other features.In this application, there are similar feature interactions as in the last section.The interactions mostly stem from extending the environment or from resourceconicts. The �rst can be handled by liftings, the second by the order on features.Our full implementation contains another feature, called OCS (outgoing callscreening), which is similar to ICS. Already with four features and several reso-lutions to the interactions, there are many di�erent feature combinations.7.1 ForwardingThe goal in the following is to provide functionality for connecting calls.-- type for phone numberstype Dn = Intclass PMonad m =>FWDMonad m whereforward :: Dn ! m DnForwarding only uses two (constant) lookup functions fd_check and fd withforwarding information and adds no local state. For simplicity, we use a statetransformer which adds no state. 19



data FwdT s m a =FTM (StateTrans () m a)instance StateMonadT FwdT () m wherecloseS x = FTM xopenS (FTM x) = xinstance FWDMonad (FwdT () m) whereforward nr =if (fd_check nr)then result (fd nr)else result nr7.2 The Busy MonadThe Busy monad provides a function for raising a busy signal and is based onthe error monad.class Monad m => PMonad m whereraise_busy :: m atype PhoneT = ErrT ()instance ErrMonadT ErrT () m =>PMonad (PhoneT m) whereraise_busy = put_err ()7.3 Incoming Call ScreeningFor ICS we use a state monad with the origin of the call as local state:data IcsT m a =ITM (StateTrans Dn m a)instance StateMonadT IcsT Dn m wherecloseS x = ITM xopenS (ITM x) = xclass IcsMonad m wherecheck_ics :: Dn ! m DnThe corresponding implementation uses a function check_ics1, which checksdisallowed callers: 20



instance IcsMonad (IcsT Dn m) wherecheck_ics dest = doforig <- get;if (check_ics1 orig dest)then result destelse raise_busy g7.4 Resolving the ICS/Forward-InteractionTo resolve the interaction between forwarding and ICS, we lift the forward func-tion to ICS. If we choose the standard lifting byinstance (FWDMonad m,StateMonadT IcsT a m) =>FWDMonad (IcsT a m) whereforward a = lift (forward a)then the local state added by ICS is not a�ected by forwarding. Hence, the ICScheck uses the origin of the call. If the intermediate hop is to be used, we wouldwriteforward a = dofput a;lift (forward a)ginstead. Note that get and put refer to the ICS feature here. Again, liftingallows a modular resolution of the interaction between two features.8 Conclusions and Related WorkWe have presented a novel model for feature-based programming where featurescan be de�ned individually and are separated from interactions with other fea-tures. This is the main di�erence to other concepts of abstract subclasses orinheritance. Thus it is much more exible and has a larger potential for reuse.We have shown that the architecture of monad compositions is suitable fortypical feature and interaction handling. It should be noted that we use monadsmostly to provide an abstract interface to implicit state. Apart from this, ourcomposition techniques are essentially just composition of abstract data types,for which we use type classes. This, however, does not hold anymore if other\programming features", e.g. error handling, are involved.Note that we only construct one object from some set of features. Usingseveral objects can be done by some model of object identi�ers (as for instancein [17]). This, however, is orthogonal to the feature model. Modeling a globalobject store with monads is possible, but the type system of Gofer cannot expressall the needed construction nicely.8 For this extension, dependent types would8A Gofer program is available from the author.21



be useful, as an object should have information about the type of its instancevariables, which are maintained in a global store. Hence, we currently work onformalizing this using LEGO [19].9Another extension to our presentation are virtual methods with late binding.Using virtual methods in a feature can just be seen as an assumption on thefull object, which is composed of several features. When creating an object, thisassumption can be discharged. As this requires to have a notion of objects, it ispractical to model this with a global object store, as discussed above.Type classes provide for a nice implementation, but do not fully match ourprogramming concepts. First, we generally assume an interface (or class) de�ni-tion for a feature with just one concrete base implementation plus several liftings,whereas type classes would allow for more implementations.10 Furthermore, somefeatures cannot be made polymorphic, as the Gofer type class system requires alltype variables in the parameters of a class to appear in the type declarations ofmember functions.Another approach to model subclassing and inheritance with type classes waspresented in [12]. In this extension of Haskell, classes can be de�ned by extending(or reusing) other classes, but the work does not go beyond the concepts of object-oriented languages.Compared to the modular interpreter in [18], we develop a concept of featureson the language level, instead of describing semantics of a programming language.Furthermore, we generalize the programming techniques used in [18] and alsoaddress the problem of dependencies between several features. For the modelof features, we also need the idea of assuming certain other features, as shownabove. In earlier works [16, 26], monads are used to write easy to modify code withstateful features. We go the step beyond and write easy to con�gure components.In other words, we make the possible modi�cations explicit.Type theoretic approaches, e.g. [2, 1, 23], aim at modeling object-orientedphenomena, but not at features. The essential di�erence is that features aredesigned such that we can add a feature to any object which supports the requiredother features.Acknowledgments. The author is grateful to W. Naraschewski and to M. Broyfor discussions and to the latter for suggesting the undo example.References[1] Mart��n Abadi and Luca Cardelli. A theory of primitive objects: Second-order systems. In European Symposium on Programming (ESOP), Edin-burgh, Scotland, 1994.9Jointly with W. Naraschewski10Clearly, liftings are also an implementation using overloading. But these are usually usedin a restricted fashion and assume an underlying implementation.22
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