
TECHNISCHEUNIVERSIT�ATM �UNCHENINSTITUT F�UR INFORMATIKSonderforschungsbereich 342:Methoden und Werkzeuge f�ur die Nutzungparalleler RechnerarchitekturenWorkshop on PVM, MPI,Tools, and ApplicationsArndt Bode, Thomas LudwigVaidy Sunderam, Roland Wism�uller(Herausgeber)
TUM-I9535SFB-Bericht Nr.342/18/95 ANovember 1995

TUM{INFO{11-95-I35-100/1.{FIAlle Rechte vorbehaltenNachdruck auch auszugsweise verbotenc1995 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler ArchitekturenAnforderungen an: Prof. Dr. A. BodeSprecher SFB 342Institut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, GermanyDruck: Fakult�at f�ur Informatik derTechnischen Universit�at M�unchen

Workshop on PVM, MPI,Tools, and ApplicationsArndt Bode, Thomas LudwigVaidy Sunderam, Roland Wism�uller(Herausgeber)

ContentsHeterogeneous Concurrent Computing with PVM: Recent Developmentsand Future Trends 3Vaidy S. SunderamThe Tool-set for PVM 28Thomas Ludwig, Roland Wism�ullerVisualization of Parallel Program Execution 33Peter Braun, Roland Wism�ullerCheckpointing and Process Migration for PVM 44Georg StellnerNXLib { NX Message Passing on Workstations 49Stefan LambertsPerforming Parallel I/O in PVM Applications 53Christian R�oderSPTHEO { a PVM-based Parallel Theorem Prover 58Christian SuttnerThe Requirements of a Database System for a Parallel ProgrammingEnvironment 70Giannis Bozas, Richard Lehn, Andreas Listl, Markus Pawlowski, Angelika ReiserSEMPA: Software Engineering Methods for Parallel Scienti�c Applications 75Peter Luksch, Ursula Maier, Sabine Rathmayer, Matthias WeidmannParallel Communication on Workstation Networks with Complex Topologies 83Alexander Pfa�nger

Heterogeneous Concurrent Computing with PVM: RecentDevelopments and Future Trends �V. S. SunderamDepartment of Math and Computer Science,Emory University, Atlanta, GA 30322, U. S. A.AbstractHeterogeneous network-based distributed and parallel computing is gaining increasing ac-ceptance as an alternative or complementary paradigm to multiprocessor-based parallel pro-cessing as well as to conventional supercomputing. While algorithmic and programmingaspects of heterogeneous concurrent computing are similar to their parallel processing coun-terparts, system issues, partitioning and scheduling, and performance aspects are signi�cantlydi�erent. In this paper, we discuss design and implementation issues in heterogeneous con-current computing, in the context of the PVM system, a widely adopted software systemfor network computing. In particular, we highlight the system level infrastructures that arerequired, aspects of parallel algorithm development that most a�ect performance, systemcapabilities and limitations, and tools and methodologies for e�ective computing in heteroge-neous networked environments. We present recent developments and experiences in the PVMproject, and comment on ongoing and future work.1 IntroductionWe discuss parallel and distributed computing on networked heterogeneous environments. As usedin this paper, these terms, as well as \concurrent" computing, refer to the simultaneous executionof the components of a single application on multiple processing elements. While this de�nitionmight also apply to most other notions of parallel processing, we make a deliberate distinction,to highlight certain attributes of the methodologies and systems discussed herein | namely loosecoupling, physical and logical independence of the processing elements, and heterogeneity. Thesecharacteristics distinguish heterogeneous concurrent computing from traditional parallel process-ing, normally performed on homogeneous, tightly coupled platforms which possess some degree ofphysical independence but are logically coherent.Concurrent computing, in various forms, is becoming increasingly popular as a methodologyfor many classes of applications, particularly those in the high-performance and scienti�c com-puting arenas. This is due to numerous bene�ts that accrue, both from the applications as wellas the systems perspectives. However, in order to fully exploit these advantages, a substantialinfrastructural framework is required | in the form of novel programming paradigms and models,systems support, toolkits, and performance analysis and enhancement mechanisms. In this paper,we focus on the latter aspects, namely the systems infrastructures, functionality, and performanceissues in concurrent computing.�Supportedby NASA grant NAG 2-828, DoE grantDE-FG05-91ER25105,NSF grant ASC-9214149, andGermanScience Foundation grant SFB 342. 3

1.1 Heterogeneous, Networked, and Cluster ComputingOne of the major goals of concurrent computing systems is to support heterogeneity. Hetero-geneous computing refers to architectures, models, systems, and applications that comprise sub-stantively di�erent components, as well as to techniques and methodologies that address issuesthat arise when computing in heterogeneous environments. While this de�nition encompasses nu-merous systems, including recon�gurable architectures, mixed-mode arithmetic, special purposehardware, and even vector and input-output units, we restrict ourselves to systems that are com-prised of networked, independent, general-purpose computers that may be used in a coherent anduni�ed manner. Thus, heterogeneous systems may consist of scalar, vector, parallel, and graph-ics machines that are interconnected by one or more (types of) networks, and support one ormore programming environment/ operating system. In such environments, heterogeneity occursin several forms:� System architecture - heterogeneous systems may consist of SIMD, MIMD, scalar, and vectorcomputers.� Machine architecture - individual processing elements may di�er in their instruction setsand/or data representation.� Machine con�gurations - even when processing elements are architecturally identical, di�er-ences such as clock speeds and memory contribute to heterogeneity.� External inuences - as heterogeneous systems are normally built in general purpose environ-ments, external resource demands can (and often do) induce heterogeneity into processingelements that are identical in architecture and con�guration, and further, cause dynamicvariations in interconnection network capacity.� Interconnection networks - may be optical or electrical, local or wide-area, high or low speed,and may employ several di�erent protocols.� Software - from the infrastructure point of view, the underlying operating systems are oftendi�erent in heterogeneous systems; from the applications point of view, in addition to oper-ating systems aspects, di�erent programming models, languages, and support libraries areavailable in heterogeneous systems.Research in heterogeneous systems is in progress in several areas [1, 2] including applications,paradigm development, mapping, scheduling, recon�guration, etc., but the primary thrust has thusfar been in systems, methodologies, and toolkits. This latter thrust has been highly productiveand successful, with several systems in production-level use at hundreds of installations worldwide.The body of this paper will discuss the PVM (Parallel Virtual Machine) system that has evolvedinto a popular and e�ective methodology for heterogeneous concurrent computing.It is worthwhile to note at this juncture, that heterogeneous processing is a superset of similarmethodologies referred to as network computing and cluster computing. While the nomenclatureis as yet informal, network computing may be considered equivalent to heterogeneous computing,but with rather less emphasis on application heterogeneity, mapping, and task partitioning as-pects. Cluster computing is even more restrictive, in that it generally refers to usually identicalworkstation clusters that are used as a substitute for hardware multiprocessors. These classes offrameworks are distinct from distributed systems, although several features and technologies arecommon to both. Distributed systems are distinguished by their goal of maximal transparency, aswell as their emphasis on traditional operating systems issues such as �lesystems, process manage-ment, kernel services, etc. Figure 1 depicts the relationship between various concurrent computingparadigms. 4

Heterogeneous Concurrent Computing:

Network-based concurrent

Batch systems:

Cluster Computing: little
heterogeneity, substitute

 for hardware
 multiprocessor

computing: machine
heterogeneity, SPMD
computation

utilization of clusters
as batch/queue based
concurrent computing
system

SIMD/MIMD/Vector/etc;
Emphasis on application heterogeneity, maping, scheduling

Figure 1: Heterogeneous, Network, and Cluster Computing1.2 Applications PerspectiveFrom the point of view of application development, heterogeneous computing is attractive, sinceit inherently supports function parallelism, with the added potential of executing subtasks onbest-suited architectures. It is well known that di�erent types of algorithms are well matched todi�erent machine architectures and con�gurations, and at least in the abstract sense, heterogeneouscomputing permits this matching to be realized, resulting in optimality in application executionas well as in resource utilization. However, in practice, this scenario may be di�cult to achievefor reasons of availability, applicability, and the existence of appropriate mapping and schedulingtools. Nevertheless, the concept is an attractive one and several research e�orts are in progress inthis area [3, 4].In this respect, many classes of applications that would bene�t substantively from heteroge-neous computing have been identi�ed. For example, a critically important problem which is ideallysuited to heterogeneous computing is is global climate modeling. Simulation of the global climateis a particularly di�cult challenge because of the wide range of time and space scales governingthe behavior of the atmosphere, the oceans, and the surface. Parallel GCM codes require dis-tinct component modules representing the atmosphere, ocean and surface and process modulesrepresenting phenomena like radiation and convection. Sampling, updating and manipulating thisdata requires scalar, vector, MIMD and SIMD paradigms, many of which can be performed con-currently. Another application domain that could exploit heterogeneous computing is computervision. Vision problems generally require processing at 3 levels: high, medium and low. Low-leveland some medium-level vision tasks often involve regular data ow and iconic operations. Thistype of computation is well-matched to mesh-connected SIMD machines. Medium-grained MIMDmachines are more suitable for various high level and some medium level vision tasks which arecommunication-intensive and in which the ow of data is not regular. Coarse-grained MIMD ma-chines are best matched for high-level vision tasks such as Image understanding/recognition andsymbolic processing.As previously mentioned however, the above aspect of heterogeneous concurrent computingis still in its infancy. Proof-of-concept research and experiments have demonstrated the viabilityof exploiting application heterogeneity, and many others are evolving. On the other hand, thesystems aspect has matured signi�cantly; to the extent that robust environments are now availablefor production execution of traditional parallel applications while providing stable testbeds forthe evolving, truly heterogeneous, applications. We discuss the systems facet of heterogeneous5

concurrent computing in the remainder of the paper, with particular reference to the ParallelVirtual Machine (PVM) software infrastructure.2 The PVM System2.1 PVM OverviewPVM (Parallel Virtual Machine) is a software system that permits the utilization of a hetero-geneous network of parallel and serial computers as a uni�ed general and exible concurrentcomputational resource. The PVM system [8] initially supported the message passing, sharedmemory, and hybrid paradigms, thus allowing applications to use the most appropriate computingmodel, for the entire application or for individual sub-algorithms. However, support for emulatedshared-memory was omitted as the system evolved, since the message-passing paradigm was themodel of choice for most scienti�c parallel processing applications. Processing elements in PVMmay be scalar machines, distributed- and shared-memory multiprocessors, vector supercomputersand special purpose graphics engines, thereby permitting the use of the best suited computingresource for each component of an application.The PVM system is composed of a suite of user-interface primitives supporting software thattogether enable concurrent computing on loosely coupled networks of processing elements. PVMmay be implemented on a hardware base consisting of di�erent machine architectures, includingsingle CPU systems, vector machines, and multiprocessors. These computing elements may beinterconnected by one or more networks, which may themselves be di�erent (e.g. one implemen-tation of PVM operates on Ethernet, the Internet, and a �ber optic network). These computingelements are accessed by applications via a standard interface that supports common concurrentprocessing paradigms in the form of well-de�ned primitives that are embedded in procedural hostlanguages. Application programs are composed of components that are subtasks at a moderatelylarge level of granularity. During execution, multiple instances of each component may be initi-ated. Figure 2 depicts a simpli�ed architectural overview of the PVM computing model as well asthe system.Application programs view the PVM system as a general and exible parallel computing re-source. A translucent layering permits exibility while retaining the ability to exploit particularstrengths of individual machines on the network. The PVM user interface is strongly typed; sup-port for operating in a heterogeneous environment is provided in the form of special constructs thatselectively perform machine-dependent data conversions where necessary. Inter-instance commu-nication constructs include those for the exchange of data structures as well as high-level primitivessuch as broadcast, barrier synchronization, mutual exclusion, and rendezvous. Application pro-grams under PVM may possess arbitrary control and dependency structures. In other words,at any point in the execution of a concurrent application, the processes in existence may havearbitrary relationships between each other and, further, any process may communicate and/orsynchronize with any other.The PVM system is composed of two parts. The �rst part is a daemon, called pvmd, thatexecutes on all the computers comprising the virtual machine. PVM is designed so that any usernormal access rights to each host in the pool may install and operate the system. daemon on amachine. To run a PVM application, the user executes the daemons on a selected host pool, andthe set of daemons cooperate via distributed algorithms to initialize the virtual machine. ThePVM application can then be started by executing a program on any of these machine; the usualmethod is for this manually started program to spawn other application processes, using PVMfacilities. Multiple users may con�gure overlapping virtual machines, and each user can executeseveral PVM applications simultaneously. The second part of the system is a library of PVM6

Cluster 1

Cluster 2

MPP

Bridge/
Router

Cluster 3

Vector SC

PVM:
Uniform
View of
Multiprogrammed
Virtual Machine

Input &

Partitioning

Comp 2Comp 1

Output &
Display

SPMD

Inter-component comm & sync
Inter-instance comm & sync

SPMD

(a) PVM Computation Model (b) PVM Architectural OverviewFigure 2: PVM System Overviewinterface routines (libpvm.a). This library contains user callable routines for message passing,spawning processes, coordinating tasks, and modifying the virtual machine.2.2 Installing PVMThe installation process for PVM is straightforward. PVM does not require special privileges to beinstalled. Anyone with a valid login on the hosts that make up a virtual machine can do so. PVMuses two environment variables when starting and running. Each PVM user needs to set thesetwo variables to use PVM. The �rst variable is PVM ROOT, which is set to the location of theinstalled pvm3 directory. The second variable is PVM ARCH, which tells PVM the architectureof this host and thus what executables to select from the PVM ROOT directory. The followingsimple steps complete the basic setup of PVM:� Set PVM ROOT and PVM ARCH in the user's .cshrc �le� Build PVM for each architecture type� Create .rhosts �le on each host listing all the hosts� Create $HOME/.xpvm hosts �le listing all the hosts prepended by an \&".Con�guring and testing the PVM system is the next logical step. On any host on which PVMhas been installed the following command:% pvmshould result in a PVM console prompt signifying that PVM is now running on this host. Hostsmay then be added to this virtual machine by typing at the console prompt:7

pvm> add hostnameOne may also delete hosts (except the one logged into) from the virtual machine by typing:pvm> delete hostnameThe PVM console supports several interactive commands such as: conf that lists the VMcon�guration, ps -a to show the status of all executing tasks, spawn to start applications andhalt to dismantle the virtual machine.For situations where interactive con�guration is not desired, there is a host�le option. Theuser can list the hostnames in a �le one per line and then type:% pvm hostfilePVM will then add all the listed hosts simultaneously before the console prompt appears. Thereare several options that can be speci�ed on a per host basis in the host�le. These are described atthe end of this chapter for the user who wants to customize his virtual machine for a particularapplication or environment. There are also other ways to start up PVM. The functions of theconsole and a performance monitor have been combined in a graphical user interface called XPVM,which is also available as part of the distribution.2.3 Fundamentals of PVM ProgrammingDeveloping applications for the PVM system follows, in a general sense at least, the traditionalparadigm for programming distributed memory multiprocessors such as the nCUBE or the Intelfamily of hypercubes. This is true for both the logistical aspects of programming as well as foralgorithmdevelopment. However, there are signi�cant di�erences in terms of (a) task management,especially issues concerning dynamic process creation, naming and addressing; (b) initializationphases prior to actual computation; (c) granularity choices; and (d) heterogeneity. In this chapter,we present a discussion of the general programming process for PVM and identify factors thatimpact functionality and performance.Parallel computing, using a system such as PVM, may be approached from three fundamentalviewpoints, based upon the organization of the computing entities, i.e. the processes. Within each,di�erent workload allocation strategies are possible, and will be discussed later in this chapter. The�rst, and most commonmodel for PVM applications can be termed \crowd" computing| where acollection of closely related processes, typically executing the same code, perform computations ondi�erent portions of the workload, usually involving the periodic exchange of intermediate results.This paradigm can be further subdivided into two categories� The master-slave (or host-node) model in which a separate \control" program termed themaster is responsible for process spawning, initialization, collection and display of results,and perhaps timing functions. The slave programs perform the actual computation involved;they are either allocated their workloads by the master (statically or dynamically) or performthe allocations themselves.� The node-only model where multiple instances of a single program execute, with one process(typically the one initiated manually) takes over the above non-computational responsibilitiesin addition to contributing to the computation itself.The second model supported by PVM is termed a \tree" computation. In this scenario,processes are spawned (usually dynamically as the computation progresses) in a tree-like manner,thereby establishing a tree-like, parent-child relationship (as opposed to crowd computations wherea star-like relationship exists). This paradigm, although less commonly used, is an extremelynatural �t to applications where the total workload is not known a priori, e.g. in branch-and-bound algorithms, alpha-beta search, etc. as well as to recursive \divide-and-conquer" algorithms.8

The third model, which we term \hybrid" can be thought of as a combination of the tree- andcrowd- models. Essentially, this paradigm possesses an arbitrary spawning structure, i.e. at anypoint in time during application execution, the process relationship structure may resemble anarbitrary and changing graph. It should be noted that these classi�cations are made on the basisof process relationships though they frequently also correspond to communication topologies |nevertheless, in all three it is possible for any process to interact and synchronize with any other.Further, as may be expected, the choice of model is application dependent, and should be selectedto best match the natural structure of the parallelized program.2.4 Crowd computationsIn crowd computations, there are typically three phases. The �rst is the initialization of the processgroup; in the case of node-only computations, dissemination of group information and problemparameters, as well as workload allocation is typically done within this phase. The second phaseis computation. Finally, results are collected and displayed or output, and the process group isdisbanded or terminated.The master-slave model is illustrated below, using the well-known Mandelbrot set computationwhich is representative of the class of problems termed \embarrassingly" parallel. The computationitself involves applying a recursive function to a collection of points in the complex plane, until thefunction values either reach a speci�c value or begin to diverge. Depending upon this condition, agraphical representation of each point in the plane is constructed. Essentially, since the functionoutcome depends only on the starting value of the point (and is independent of other points), theproblem can be partitioned into completely independent portions, the algorithm applied to each,and partial results combined using simple combination schemes. However, this model permitsdynamic load balancing, thereby permitting processing elements to share the workload unevenly.In this and subsequent examples within this chapter, we only show a skeletal formof the algorithms,and also take syntactic liberties with the PVM routines in the interest of clarity. The controlstructure of the master-slave class of applications is shown in Figure 1.
Mandelbrot

Tasks
Master

Slave

Slave

Slave

SlaveFigure 1: Master-Slave Paradigm{Master Mandelbrot algorithm.}{Initial placement} 9

for i := 0 to NumWorkers - 1pvm_spawn(<worker name>) {Start up worker i}pvm_send(<worker tid>,999) {Send task to worker i}endfor{Receive-send}while (WorkToDo)pvm_recv(888) {Receive result}pvm_send(<available worker tid>,999){Send next task to available worker}display resultendwhile{Gather remaining results.}for i := 0 to NumWorkers - 1pvm_recv(888) {Receive result}pvm_kill(<worker tid i>) {Terminate worker i}display resultendfor---{Worker Mandelbrot algorithm.}while (true)pvm_recv(999) {Receive task}result := MandelbrotCalculations(task) {Compute result}pvm_send(<master tid>,888) {Send result to master}endwhileThe master-slave example described above involves no communication among the slaves. Mostcrowd computations of any complexity do need to communicate among the computational pro-cesses; we illustrate the structure of such applications using a node-only example for matrix mul-tiply using Cannon's algorithm (programming details for a similar algorithm are given in a futurechapter). The matrix multiply example, shown pictorially in Figure 2, multiplies matrix subblockslocally, and uses row-wise multicast of matrix A subblocks in conjunction with column-wise shiftsof matrix B subblocks.{Matrix Multiplication using Pipe-Multiply-Roll algorithm.}{Processor 0 starts up other processes}if (<my processor number> = 0) thenfor i := 1 to MeshDimension*MeshDimensionpvm_spawn(<component name>, . .)endforendifforall processors Pij, 0 <= i,j < MeshDimensionfor k := 0 to MeshDimension-1 10

C00 C01 C02

C12C11C10

C20 C21 C22

C00 C01 C02

C12C11C10

C20 C21 C22

01B00B 02B

10B B11 12B

20B 21B 22B

00A

11A

22A

C

= +

C A B

C00 C01 C02

C12C11C10

C20 C21 C22

C00 C01 C02

C12C11C10

C20 C21 C22

01B00B 02B

10B B11 12B

20B 21B 22B

00A

11A

22A

00A
00A

11A 11A

22A22A

C

= +

C BT

C00 C01 C02

C12C11C10

C20 C21 C22

C00 C01 C02

C12C11C10

C20 C21 C22

01B00B 02B

10B B11 12B

20B 21B 22B

00A 01A 02A

10A 11A 12A

20A 21A 22A

C

= +

C A B

C00 C01 C02

C12C11C10

C20 C21 C22

C00 C01 C02

C12C11C10

C20 C21 C22

10B B11 12B

20B 21B 22B

01B00B 02B

01A

12A

20A

C

= +

C A B

Step 1: First "pipe"

Step 2: Multiply temp matrix and matrix B

Step 3: First "roll"

Step 4: Second "pipe"

First 4 Steps of Pipe-Multiply-Roll on a 3x3 Mesh-Connected Machine

Figure 2: General Crowd Computation{Pipe.}if myrow = (mycolumn+k) mod MeshDimension{Send A to all Pxy, x = myrow, y <> mycolumn}pvm_mcast((Pxy, x = myrow, y <> mycolumn),999)elsepvm_recv(999) {Receive A}endif{Multiply. Running totals maintained in C.}Multiply(A,B,C){Roll.}{Send B to Pxy, x = myrow-1, y = mycolumn}pvm_send((Pxy, x = myrow-1, y = mycolumn),888)pvm_recv(888) {Receive B}endforendfor2.5 Tree computationsAs mentioned earlier, tree computations typically exhibit a tree-like process control structure thatalso conforms to the communication pattern in many instances. To illustrate this model, considera parallel sorting algorithm that works as follows. One process (the manually started process inPVM) possesses (inputs or generates) the list to be sorted. It then spawns a second process andsends it half the list. At this point, there are two processes each of which spawns a process andsends them one-half of their already halved lists. This continues until a tree of appropriate depthis constructed. Each process then independently sorts its portion of the list, and a merge phasefollows where sorted sublists are transmitted upwards along the tree edges, with intermediatemerges being done at each node. This algorithm is illustrative of a tree computation in which theworkload is known in advance; a diagram depicting the process and an algorithmic outline aregiven below. 11

3 0 1 6 5742
1

3 0 1 4 5 6 7 Stage 32

30 1 2 3 Stage 3

14 5 6 73210

1113141215910071463 2 85

071463 2 10 9 11 1513145 8 12
0

10 9 118 12131415071463 25 Stage 3

0

9 1110 2Stage 3

071463 2 131415

4 5 6 73210 131415

1011

9 10

Time
Stage 2

Stage 4

Stage 1

Stage 2

Stage 5

5 Stage 4128

12118

9

Split-Sort-Merge Algorithm on Four-Node HypercubeFigure 3: Tree-computation example{ Spawn and partition list based on a broadcast tree pattern. }for i := 1 to N, such that 2^N = NumProcsforall processors P such that P < 2^ipvm_spawn(...) {process id P XOR 2^i}if P < 2^(i-1) thenmidpt: = PartitionList(list);{Send list[0..midpt] to P XOR 2^i}pvm_send((P XOR 2^i),999)list := list[midpt+1..MAXSIZE]elsepvm_recv(999) {receive the list}endifendforendfor{ Sort remaining list. }Quicksort(list[midpt+1..MAXSIZE]){ Gather/merge sorted sub-lists. }for i := N downto 1, such that 2^N = NumProcsforall processors P such that P < 2^iif P > 2^(i-1) thenpvm_send((P XOR 2^i),888){Send list to P XOR 2^i}elsepvm_recv(888) {receive temp list}merge templist into listendifendforendfor 12

3 Workload AllocationIn the previous section, we discussed the common parallel programming paradigms with respectto process structure, and outlined representative examples in the context of the PVM system.In this section we address the issue of workload allocation, subsequent to establishing processstructure, and describe some common paradigms that are used in distributed memory parallelcomputing. Two general methodologies are commonly used. The �rst, termed data decompositionor partitioning, assumes that the overall problem involves applying computational operations ortransformations on one or more data structures, and further, that these data structures may bedivided and operated upon. The second, called function decomposition, divides the work basedon di�erent operations or functions. In a sense, the PVM computing model supports functiondecomposition at the component level (components are fundamentally di�erent programs thatperform di�erent operations) and data decomposition at the instance level i.e., within a component,the same program operates on di�erent portions of the data.3.1 Data DecompositionAs a simple example of data decomposition, consider the addition of two vectors, A[1..N] andB[1..N], to produce the result vector C[1..N]. Assuming P processes working on this problem, datapartitioning involves the allocation of N/P elements of each vector to each process, that computesthe corresponding N/P elements of the resulting vector. This data partitioning may be done either\statically" i.e. where each process knows a priori (at least in terms of the variables N and P)its share of the workload. It may also be done \dynamically", where a control process (e.g. themaster process) allocates subunits of the workload to processes as and when they become free.The principal di�erence between these two approaches is with regard to a related concept, thatof \scheduling". With static scheduling, individual process workloads are �xed; with dynamicscheduling, they vary as the computation progresses. In most multiprocessor environments, staticscheduling is e�ective for problems such as the above vector addition example; however, in thegeneral PVM environment, this is not necessarily true. The reason is that PVM environmentsbased on networked clusters are susceptible to external inuences; therefore, a statically scheduled,data partitioned problem might encounter one or more processes that complete their portion ofthe workload much faster or much slower than the others. This situation could also arise whenthe machines in a PVM system are heterogeneous, possessing varying CPU speeds and di�erentmemory and other system attributes.In a real execution of even this trivial vector addition problem, an issue that cannot be ignoredis input and output. In other words, how do the processes described above receive their workloads,and what do they do with the result vectors? The answer to these questions is dependent on theapplication and the circumstances of a particular run, but in general:1 Individual processes generate their own data internally e.g. using random numbers or stat-ically known values. This is only possible in very special situations or for program testingpurposes.2 Individual processes independently input their data subsets from external devices. Thismethod is meaningful in many cases, but only possible when parallel I/O facilities are sup-ported.3 A controlling process sends individual data subsets to each process. This is the most commonscenario, especially when parallel I/O facilities do not exist. Further, this method is alsoappropriate when input data subsets are derived from a previous computation within thesame applicationThe third method of allocating individual workloads is also consistent with dynamic schedulingin applications where interprocess interactions during computations are rare or nonexistent. How-13

ever, non-trivial algorithms generally require intermediate exchanges of data values, and therefore,it is only the initial assignment of data partitions that can be accomplished via these schemes.For example, consider the data partitioning method depicted in Figure 4.2. In order to multiplytwo matrices A and B, a group of processes is �rst spawned, using the master-slave or node-onlyparadigm. This set of processes is considered to form a mesh; the matrices to be multiplied aredivided into subblocks, also forming a mesh. Each subblock of the A and B matrices is placedon the corresponding process, by utilizing one of the data decomposition and workload allocationstrategies listed above. During computation, subblocks need to be forwarded or exchanged be-tween processes, thereby transforming the original allocation map, as shown in the �gure. At theend of the computation however, result matrix subblocks are situated on the individual processes,in conformance with their respective positions on the process grid, and consistent with a datapartitioned map of the resulting matrix C. The foregoing discussion illustrates the basics of datadecomposition. In a later chapter, example programs highlighting details of this approach will bepresented.3.2 Function DecompositionParallelism in distributed memory environments such as PVM may also be achieved by partition-ing the overall workload in terms of di�erent operations. The most obvious example of this formof decomposition is with respect to the three stages of typical program execution, namely input,processing, and result output. In function decomposition, such an application may consist of threeseparate and distinct programs, each one dedicated to one of the three phases. Parallelism is ob-tained by concurrently executing the three programs and by establishing a \pipeline" (continuousor quantized) between them. Note however, that in such a scenario, data parallelism may alsoexist within each phase. An example is shown in Figure 2.1 where distinct functions are realizedas PVM components, with multiple instances within each component implementing portions ofdi�erent data partitioned algorithms.Although the concept of function decomposition is illustrated by the trivial example above,the term is generally used to signify partitioning and workload allocation by function within thecomputational phase. Typically, application computations contain several di�erent subalgorithms| sometimes on the same data (the MPSD or multiple program/single data scenario), sometimesin a pipelined sequence of transformations, and sometimes exhibiting an unstructured pattern ofexchanges. We illustrate the general functional decomposition paradigm by considering the hypo-thetical simulation of an aircraft consisting of multiple interrelated and interacting, functionallydecomposed, subalgorithms. A diagram providing an overview of this example is shown in Figure4, and will also be used in a later chapter dealing with graphical PVM programming.In the �gure, each node or circle in the \graph" represents a functionally decomposed piece ofthe application. The input function distributes the particular problem parameters to the di�erentfunctions 2 through 6, after spawning processes corresponding to distinct programs implementingeach of the application subalgorithms. The same data may be sent to multiple functions (e.g. as inthe case of the two wing functions, or data appropriate for the given function alone may be deliv-ered. After performing some amount of computations these functions deliver intermediate or �nalresults to functions 7, 8, 9 that may have been spawned at the beginning of the computation or asresults become available. The diagram indicates the primary concept of decomposing applicationsby function, as well as control and data dependency relationships. Parallelism is achieved in tworespects | by the concurrent and independent execution of modules as in functions 2 through 6,and by the simultaneous, pipelined, execution of modules in a dependency chain, as for example,in functions 1, 6, 8, 9. 14

9

8

7

65432

1

flight_dynamics

control

stmosphere

tail body wing wing rudder

input_dataFigure 4: Function decomposition example4 Porting Existing Applications to PVMIn order to utilize the PVM system, applications must evolve through two stages. The �rstconcerns development of the distributed memory parallel version of the application algorithm(s);this phase is common to the PVM system as well as to other distributed memory multiprocessors.The actual parallelization decisions fall into two major categories | those related to structure,and those related to e�ciency. For structural decisions in parallelizing applications, the majordecisions to be made include the choice of model to be used i.e. crowd computation vs. treecomputation and data decomposition vs. function decomposition. Decisions with respect toe�ciency when parallelizing for distributed memory environments are generally oriented towardsminimizing the frequency and volume of communications. It is typically in this latter respect thatthe parallelization process di�ers for PVM and hardware multiprocessors; for PVM environmentsbased on networks, large granularity generally leads to better performance. With this quali�cation,the parallelization process is very similar for PVM and for other distributed memory environments,including hardware multiprocessors.The parallelization of applications may be done either ab initio or from existing sequentialversions or from existing parallel versions. In the �rst two cases, the stages involved are toselect an appropriate algorithm for each of the subtasks in the application, usually from publisheddescriptions | or by inventing a parallel algorithm. These algorithms are then coded in thelanguage of choice (C, C++, or Fortran77 for PVM) and interfaced with each other as well as withprocess management and other constructs. Parallelization from existing sequential programs alsofollows certain general guidelines, primary among which are to decompose loops, beginning withoutermost loops and working inward. In this process, the main concern is to detect dependenciesand partition loops such that dependencies are preserved while allowing for concurrency. Thisparallelization process is described in numerous textbooks and papers on parallel computing,although few textbooks discuss the practical and speci�c aspects of transforming a sequentialprogram to a parallel one.Existing parallel programs may be based upon either the shared memory or distributed memoryparadigms. Converting existing shared memory programs to PVM is similar to converting fromsequential code, when the shared memory versions are based upon vector or loop-level parallelism.In the case of explicit shared memory programs, the primary task is to locate synchronizationpoints and replace these with message passing. In order to convert existing distributed memoryparallel code to PVM, the main task is to convert from one set of concurrency constructs toanother. Typically, existing distributed memory parallel programs are written either for hardwaremultiprocessors or other networked environments such as P4 or Express. In both cases, the major15

changes required are with regard to process management. For example, in the Intel family ofDMMP's, it is common for processes to be started from an interactive shell command line. Such aparadigm should be replaced for PVM by either a master program or a node program that takesresponsibility for process spawning. With regard to interaction, there is, fortunately, a great dealof commonality between the message passing calls in various programming environments. Themajor di�erences between PVM and other systems in this context are with regard to (a) processmanagement and process addressing schemes; (b) virtual machine con�guration/recon�gurationand its impact on executing applications; (c) heterogeneity in messages as well as the aspect ofheterogeneity that deals with di�erent architectures and data representations; and (d) certainunique and specialized features such as signaling, task scheduling methods, etc.5 PVM Performance in Cluster EnvironmentsWith the ever-increasing adoption of PVM (and systems like it) for high performance concur-rent computing, the issue of performance assumes great signi�cance. In order to experimentallyevaluate the e�cacy and viability of PVM, on typical networked environments i.e. clusters ofworkstations, we have undertaken a performance measurement and system enhancement exercise,which is described in this section. This involves the implementation and execution of a set ofCFD benchmark applications on virtual parallel machines using the PVM software system. Theseapplications are the �ve \kernel" benchmarks from the NAS Parallel Benchmark suite [25], analgorithmically speci�ed collection of programs that are representative of real codes (or portionsthereof) that are in production use in the aerospace community. Despite being termed kernels, the�ve applications rigorously exercise the processor, memory and, in the case of distributed-memoryparallel machines, the communications capacity of any given system.5.1 The NAS Parallel BenchmarksThe NAS Parallel Benchmarks refer to a suite of applications devised by the Numerical Aerody-namic Simulation (NAS) Program of the National Air and Space Administration (NASA) for theperformance analysis of highly parallel computers. While the NPB suite is rooted in the prob-lems of computational uid dynamics and computational aerosciences, they are valuable in theevolution of parallel computing, since they are rigorous and as close to \real" applications as maybe reasonably expected from a benchmarking suite. The NPB consist of �ve \kernels" and threesimulated applications which \mimic the computation and data movement characteristics of largescale computational uid dynamics (CFD) applications" [24]. These benchmarks are speci�edonly algorithmically, thereby encouraging optimization and re�nement, at the cost of necessitat-ing substantial expertise and e�ort in porting to a new platform. Complete details of the NPBsuite may be found in [24, 25]; for the sake of completeness, we outline the �ve kernels that wereported to PVM and used in the experiments reported in this paper.� Kernel EP is to execute 228 iterations of a loop in which a pair of random numbers are gener-ated and tested for whether Gaussian random deviates can be made from them according toa speci�c scheme. This kernel falls into the category of applications termed \embarrassinglyparallel".� Kernel MG is to execute four iterations of the V-cycle multigrid algorithm to obtain anapproximate solution to the discrete Poisson problem r2u = v on a 256 � 256 � 256 gridwith periodic boundary conditions. This application rigorously exercises both short- andlong-distance communication.� Kernel CG is to use the power and conjugate gradient methods to approximate the smallesteigenvalue of a symmetric, positive de�nite, sparse matrix of order 14000 with a random16

pattern of nonzeros. The communication patterns in this kernel are long-distance and un-structured.� Kernel FT uses FFT's on a 256 � 256 � 128 complex array to solve a 3-dimensional par-tial di�erential equation. Communication patterns in this kernel are structured and longdistance.� Kernel IS is to perform 10 rankings of 223 (8388608) integer keys in the range [0, 219(524288)). Communication in this benchmark is frequent and relatively low-volume.5.2 PVM Implementation of the NPB KernelsThe parallelization of the �ve NPB kernels for the PVM system was based on a set of codesoriginally written for the Intel iPSC hypercube. These codes provided the basic partitioning andparallelization algorithms; substantial modi�cations to these code were required to convert themfor the PVM system. Details of the parallelization as well as algorithm speci�cs pertaining to theapplications may be found in [26]. In this section we present preliminary results of our performanceexperiments with these �ve kernels in three di�erent PVM environments. The release version(3.2) of the PVM software, was used, and the default \daemon-based" communication schemewas selected. In the next section we describe a signi�cant performance enhancement to the PVMcommunications scheme1, and present updated results. In order to obtain an understanding ofthe e�ect of di�erent hardware platforms while utilizing the same software system, we conductedour benchmark experiments on three environments, each with its unique characteristics.Low-end workstations on low-speed shared medium networks: This platform is made up of 16 disk-less Sun SS1+ workstations, each with 16 MB of memory and 32 MB of virtual memory(swapspace), at the Emory University Parallel Processing Lab.Medium-power workstations on high-speed shared networks: This environment is made up of sevenIBM RS/6000 model 560 computers, and one RS/6000 model 320 computer, each with 32 MB ofmemory, and 64 MB of swap space, connected by FDDI.Medium-power workstations on high-speed switched medium networks: This platform consisted ofSGI R4000 workstations interconnected by FDDI Gigaswitch.5.3 Preliminary Performance ResultsIn this subsection we present consolidated performance results for the �ve kernel benchmarks.Table 1 shows the the total elapsed time in seconds for each platform, the total communicationvolume, and the time for communication related activities alone for each benchmark on the threetestbed platforms, using an unmodi�ed version of PVM version 3.2.A few observations are in order, regarding the measurements in table 1. The �rst is thatgenerally, clusters of about ten workstations perform within an order of magnitude of a Cray YMP-1. The second is that communication times account for a large fraction of the overall executiontime in many cases. Finally, communication e�ciency, i.e. the ratio of obtained throughput tothat theoretically possible in each network, appears low.5.4 Enhanced Performance in PVMTo address some of the performance shortcomings described above, we devised an alternative com-munication scheme for PVM, and re-implemented the NAS benchmarks. The enhanced messagepassing scheme, accessible via the pvm fsend() and pvm frecv() calls, permit the direct transfer1Since the time of this exercise, the release version of PVM (3.3.3) has incorporated the fast communicationscheme. 17

Bench- 16 SS1+ Enet 8 RS6000 FDDI 8 SGI Gswitch Cray i860mark Y/MP-1 128Time Com. Vol. Time Vol. Com. Time Vol. Com. Time Time(secs) (MB) time (secs) (MB) time (secs) (MB) time (secs) (secs)EP 1603 NA NA 342 NA NA 446 NA NA 126 26MG 1981 96 154 229 192 162 264 192 112 22 8.6CG 701 370 480 285� 130 192 130+ 250 101 12 8.6IS 6072 150 595 674 560 610 770 560 720 17 14FT 7171 420 502 645 1500 395 1070 1500 516 29 101 Reduced problem size (128� 128� 128); 2 Reduced problem size (221 keys, range 0 to 219)� 4 RS 6000 processors; + 9 SGI R4000 processorsTable 1: NPB Kernels on unmodi�ed PVMof user program data without requiring bu�er initialization and packing. The pvm fsend() andpvm frecv() mechanisms are built on standard TCP internet protocols and are manifested as aseparate and non-intrusive library in the PVM system. The pvm fsend() and pvm frecv() librarywas implemented and tested on a variety of environments and networks. Table 2 indicates theperformance of this communication scheme for simple point-to-point data transfer, for a varietyof message sizes, for each environment discussed in this paper. Also shown for reference, are thecorresponding values for daemon-based PVM communication, and for a standalone benchmarkingprogram, viz. TTCP. Platform Throughput (kB/sec)Msg. size! 1 byte 100 bytes 10kB 1MBSS1+ EthernetDaemon 0.06 12.88 263.41 358.48Fsend 0.49 81.79 902.42 1003.87TTCP 0.65 130.45 965.04 1125.24RS6000 FDDIDaemon 0.09 20.67 374.04 711.58Fsend 0.82 112.79 1568.40 2285.89TTCP 1.85 325.40 2573.00 2918.20SGI GigaswitchDaemon 0.21 38.92 406.04 483.58Fsend 1.11 102.79 3400.42 9550.87TTCP 2.15 500.40 9203.00 9624.20Table 2: Point-to-point communication bandwidth in PVMThese improvements were also carried over to the applications, as indicated by the representa-tive tables shown below | 3 and 4. In the tables, we also include the total time and communicationtime for the previous experiments (in parentheses) for convenient comparison. We also includethe number of messages, and an additional measure, viz the \maximum idle time".These revised results demonstrate that performance levels close to theoretical capacities canbe obtained in cluster environments while using PVM. However, certain factors in the resultsalso indicate that dynamic load balancing schemes and better partitioning methods are probablyrequired to exploit the full potential of network computing.18

Platform Time Comm. Comm. Number Idle(secs) Volume Time(secs) of msgs Time(secs)16 SS1+ Enet 138� (198�) 96 MB 85 (154) 2704 488 RS6000 FDDI 110 (229) 192 MB 52 (162) 1808 308 SGI Gswitch 168 (264) 192 MB 81 (112) 1808 50Cray Y-MP/1: 22 secs; i860/128 : 8.6 secs� Reduced problem size (128 � 128� 128)Table 3: Kernel MG on enhanced PVMPlatform Time Comm. Comm. Number Idle(secs) Volume Time(secs) of msgs Time(secs)16 SS1+ Enet 605 (701) 370 MB 404 (480) 37920 3904 RS6000 FDDI 203 (285) 130 MB 101 (192) 7116 889 SGI Gswitch 108 (130) 250 MB 46 (101) 19756 42Cray Y-MP/1: 12 secs; i860/128: 8.6 secsTable 4: Kernel CG on enhanced PVM6 Generalized Distributed Computing and Parallel I/O withPVMIn the evolution of the PVM system for heterogeneous distributed computing, high-performancescienti�c applications have thus far been the main technical drivers. The computing model, aswell as speci�c software features have been inuenced by the requirements of scienti�c algorithmsand their parallel implementations. We believe that by extending this infrastructure along cer-tain important dimensions, systems such as PVM will be able to cater to a much larger class ofapplication categories. The goal therefore is to enable generalized distributed computing withindistributed and networked environments, i.e. to evolve both a conceptual model and a software in-frastructure that integrally support high performance applications as well as other general purposeapplications, including, but not limited to, distributed teleconferencing and groupware systems,heterogeneous and multi-databases, high speed on-line transaction processing and geographicallydistributed information systems.The basic infrastructural requirements for supporting general purpose distributed computingin cluster environments include:� facilities for parallel input and output, including the ability for multiple processes to simul-taneously access �les as well as for individual �les to be distributed.� concurrency control mechanisms at various levels, including the ability for multiple processesto synchronize and perform distributed mutual exclusion, for atomic broadcast and multicast,and preservation of delivery order.� fault tolerance and data replication facilities that permit continued (but degraded) executionand protect against computation or data loss.� support for a client/server model of computing, including mechanisms for service namingand lookup.� transaction processing support. 19

6.1 The GDC ArchitectureThe proposed model for generalized distributed computing in PVM (termed the GDC layer) is anextension of, and consistent with, the existing model. The concept of "sessions" is central to thisarchitecture | the basic notion being that processes from inter-related computations are dynam-ically created and destroyed as necessary, join sessions in order to contribute their portion of thecomputation, and primarily interact with other session members although cross-session interactionis also possible. Sessions are also the computational units in which computation and interactionsemantics are established; e.g. a parallel program session might require process placement on thefastest CPU's and reliable communication, whereas a database access session must locate serverson speci�c machines and provide transaction oriented data exchange semantics. In the PVM GDClayer, library primitives are provided for "checking-into" (and "out of") sessions, at which timeaccess control functions are also established. Processes enrolled in speci�c sessions may cooperatevia normal PVM message passing mechanisms, but in addition, may achieve concurrency controlby invoking special primitives for locking resources, entering transaction modes of operation, andcan avail of failure resilience facilities based either on shadowing or on checkpoints. The GDCarchitecture also supports a parallel input-output framework as well as the client-server mode ofdistributed computing, details of which are presented in the next subsection. This enhancementlayer to PVM is currently under alpha test and will be incorporated into the release version of thesoftware in the near future. An overview of the proposed GDC architectural model is shown in�gure 5.
PVM

Sub-

System

PVM
Sub-
System

Sub-
System

PVM

(R/D)

DB

(R/D)

DB

X1

X2

X3

X4

S1

S2

Y1

Y2

Y3

X*

Local and/or

Wide Area

Network

Architectural Overview of GDC Layer

Y*

S*

"X" Session participants (e.g. CFD Computation)

"Y" Session participants (e.g. Graphics filters/Visualization)

Distributed data management and I/OFigure 5: GDC Architectural Overview6.2 The PIOUS Parallel I/O SubsystemCentral to the GDC layer of PVM is the parallel I/O subsystem, termed PIOUS. The PIOUSmodule or layer is motivated by the fact that most production level applications require infras-tructural support for high performance input output, with mechanisms for concurrency controland failure resilience. PIOUS is an input/output system that provides process groups access topermanent storage within a heterogeneous network computing environment. PIOUS is a paralleldistributed �le server that achieves a high-level of performance by exploiting the combined �le I/O20

and bu�er cache capacities of multiple PVM-interconnected computer systems. Fault tolerance isachieved by exploiting the redundancy of storage media.To better support parallel applications, PIOUS implements a parallel access �le object called apara�le and provides varying levels of concurrency control for process group members. For porta-bility, PIOUS allows para�le objects to be accessed with standard Unix semantics i.e. processesopen, close, read and write para�les as with sequential �les. PIOUS is itself implemented as agroup of cooperating processes within the GDC distributed computing framework. Para�les arelogically single �les composed of one or more disjoint segments. Each segment is composed of zeroor more records; a record is the base unit of information stored in a para�le. The PIOUS interfaceprovides a process group with three views of a para�le object: global, independent, and segmented.Para�les are two-dimensional �le objects. Thus mapping arrays of data is simpli�ed. A parallelcomputation can easily access rows or columns of a matrix by accessing individual segments ofthe para�le or by accessing the para�le as a linear sequence, as appropriate; block access is alsopossible via higher-level libraries. A schematic of the PIOUS subsystem is shown in Figure 6.
Process Group 1

Process Group 2

PDS

PDS

PDS

GS

.

.

Disk

Disk

Local

NFS

Parallel I/O subsys.

PVM

Views:

Global,

Independent

Segmented

open,

close,

read,

writeFigure 6: PIOUS Architectural OverviewPIOUS consists of a set of data servers, a service coordinator, and library routines linked withclient processes. An underlying transport mechanism (i.e. PVM) is assumed to carry messagesbetween client processes and components of the PIOUS architecture. PIOUS data servers areassumed to access permanent storage via a native �le system, and reside on on each machine overwhich a �le to be accessed is declustered. A preliminary prototype of the PIOUS system has beenimplemented, and has undergone initial performance and functionality testing. Our experiencesindicate that the facilities provided by PIOUS are extremely valuable for concurrent applicationsrequiring high performance parallel �le access and a distributed database system is presently beingbuilt to verify the usefulness of the parallel I/O system for real applications. Performance resultsfrom the prototype implementation indicate that, for modest size data transfers, the overheadintroduced by the PIOUS software is minimal, and is comparable to levels attained by other (nonparallel) network �le systems. A more detailed description of the PIOUS parallel I/O system maybe found in [27]. 21

7 A Threads-Based Concurrent Computing ModelIn this research initiative, an alternative concurrent computing paradigm, based on \services",supporting data driven computation, and built on a lightweight process infrastructure, is proposedto enhance the functional capabilities and the operational e�ciency of heterogeneous network-based concurrent computing. This approach, which is derived by combining variants of principlesfrom multithreading systems, data ow computing, and remote procedure call, is believed to havethe potential to enhance performance and functionality in heterogeneous systems, without toodrastic a departure from the prevalent parallel programming methodologies.7.1 The TPVM FrameworkTPVM is a collection of extensions and enhancements to the PVM computing model and system.In TPVM, computational entities are threads. TPVM threads are runtime manifestations ofimperative subroutines or collections thereof that cooperate via a few simple extensions to thePVM programming interface. In the interest of straightforward transition and to avoid a largeparadigm shift, one of the modes of use in TPVM is identical to the process-based model inPVM, except that threads are the computational units. TPVM also o�ers two other programmingmodels | one based on data driven execution, and the other supporting remote memory access.The individual models supported by TPVM are discussed in later sections; a general architecturaloverview of TPVM is depicted in Figure 7, and a brief description follows.
4-CPU
Server

PVM System Subsystem

Threads
Message passing

Shared Address

 Space Comm

PVM Process PVM Process PVM Process

Latent

thread

Hi-perf
WS

2-CPU
Desktop

Interconnection NetworkFigure 7: TPVM Architectural OverviewArchitecturally, TPVM is a natural extension of the PVM model. In terms of the resourceplatform, TPVM also emulates a general-purpose heterogeneous concurrent computer on an inter-connected collection of independent machines. However, since TPVM supports a threads-basedmodel, it is potentially capable of exploiting the bene�ts of multithreaded operating systems as wellas small-scale SMMP's | both of which are becoming increasingly prevalent in general purposecomputing environments. Further, multiple computational entities may now be manifested withina single process. In combination, these aspects enable increased potential for optimizing interac-tion between computational units in a user-transparent manner. In other words, inter-machinecommunication may continue to use message passing, while intra-machine communication, in-cluding that within SMMP's, may be implemented using the available global address space. In22

addition, \latent" computational entities in the form of dormant threads may be instantiated ei-ther asynchronously or during initialization, at negligible or low cost. In many cases, this helpsreduce the overhead of spawning new computational entities during application execution. Fur-ther, the concept of latent threads extends naturally to service-based computing paradigms thatare more appropriate in general purpose, non-scienti�c, distributed and concurrent processing.TPVM is designed to be layered over the PVM system, and does not require any modi�cationsor changes to PVM. User level primitives are supplied as a library against which applicationprograms link; operational mechanisms are provided in the form of standalone PVM programs.Central to the TPVM implementation is the concept of a scheduling interface that is responsible forcontrolling thread spawning as well as other facilities that are available in TPVM. Thus interfaceis de�ned in functional terms, thereby enabling implementations to evolve from a centralizedmechanism in preliminary implementations to one based on distributed algorithms. A schematicof this the scheduling interface and the principal facets of a TPVM implementation are shown inFigure 8.
* Exports

* Active LWPs

* Latent LWPs

* HW status

Scheduling

Interface

(local/

centralized/

distributed)

Exported

typed memory

Read/

Write

invoke(dep1)

invoke(dep2)

spawn

schedule

export

info

invoke

hold

scheduleFigure 8: Schematic of TPVM ImplementationA thread in TPVM is essentially a subroutine/procedure (or a code segment, including nestedprocedure invocations, identi�ed by one entry point). TPVM requires \strong encapsulation"of threads, i.e. shared variables are not permitted, although the system cannot enforce thisrestriction. Thus, a TPVM thread is a (sequence or collection of) subroutine(s) that, wheninitiated, possesses a thread of control and executes on its own stack, with its own data segment.Threads in TPVM exist within the context of PVM processes. However, processes in TPVM donot indulge in computation and/or communication; they only serve as "shells" or environmentsfor threads to exist in, and play active roles only at certain points during execution e.g. for threadcreation. A process may play host to (be the \pod" of) one or more threads, each of which may bean instantiation of the same or of di�erent entry points. Application programmers access facilitiesin TPVM by invoking model-dependent functions; a detailed description may be found in [28].7.2 Implementation and ExperiencesTwo di�erent models are provided in the TPVM system and a preliminary version of each hasbeen implemented and tested. The �rst is a process based model | TPVM supports a \tradi-tional" concurrent computing model based on multiple interacting threads cooperating via explicit23

message passing. In this model, multiple threads, each with its unique thread id, are spawnedand subsequently exchange messages using send and receive calls in a manner analogous to pro-cess spawning and interaction in PVM. However, to de�ne threads that may be spawned, PVMpod (host) processes utilize functions such as tpvm export(. . .) which declares a potentialthread identi�ed by a symbolic string valued name, and associated with a function entry point;additional parameters specify options, and limits to the number of threads allowed within this pod.An already existing thread or a pod process may subsequently spawn one or more instantiationsof an exported thread which then communicate and synchronize via TPVM variants of the usualPVM routines.Our experiences with a preliminary implementation of this process-oriented model for TPVMhave been encouraging, both from the viewpoints of functionality as well as performance. Twotextbook applications, namely matrix multiplication and sorting, were written to conform to thismodel and tested on our experimental implementation; results are shown in Table 5. As can beseen from this table, the TPVM versions perform better, by a factor of upto 24% | with thelargest gains occurring when the granularity and the number of threads are \ideal". As someentries show, TPVM performance is worse when the overheads of thread management o�set anygains due to the increased asynchrony.Problem PVM: CPUs/Processes TPVM: CPU's/Threads(size) 4/4 16/16 4/16 16/64 16/36Matmul (500x500) 201 78 182 94 60Matmul (1000x1000) 1618 756 1610 710 663Sort (2M integers) 1423 366 1201 351 309Table 5: PVM vs. TPVM times in seconds (SS1+ workstations on Ethernet)Motivated by the well known advantages of data driven computing, as well as by observationsthat scheduling is of critical importance for high performance, the TPVM system also supports acomputing model that is di�erent from the process-based paradigm. In this scheme, thread entrypoints are exported as before, but contain a list of \�ring rules" that are required to be satis�edbefore a thread can be instantiated. The last two arguments of tpvm export contain the size of,and a pointer to, an array containing a list of message tags | implying that the speci�ed threadmay be instantiated when one message of each tag type is available. Typically, as threads completesome portion of their allocated work, they are able to (partially) satisfy such a dependency. Inorder to indicate that a thread is able to satisfy a �ring rule of an exported service, and to deliver amessage containing the required data, special invocation functions are provided. Table 6 indicatesthe measured performance for the matrix multiplication and sorting examples mentioned earlier;results from the process-based model are also included for convenient comparison. As can be seen,the data driven model performs at approximately the same levels in some cases, and signi�cantlybetter in others.Problem ProcModel: CPU's/Threads DowModel: CPUs/Threads(size) 4/16 16/64 16/36 4/? 16/?Matmul (500x500) 182 94 60 194 62Matmul (1000x1000) 1610 710 663 1582 640Sort (2M integers) 1201 351 309 1167 309Table 6: TPVM ProcModel vs. DowModel times in seconds (SS1+ workstations on Ethernet)24

8 DiscussionIn this paper, we have presented the paradigm of concurrent computing on heterogeneous clustersusing PVM, both from the operational perspective and in terms of future trends and researchinitiatives. As is evident from the material presented, PVM is both a robust heterogeneous com-puting system and an ongoing experimental research project, and continually evolving new ideasare investigated both by the project team and at external institutions; successful experimentalenhancements or subsystems eventually become part of the software distribution. One example ofa relatively concise enhancement that is undergoing investigation concerns system level optimiza-tions for operating in shared memory environments. Small-scale SMM's are re-emerging, and aversion of PVM that utilizes physical shared memory for interaction between the daemon and alluser processes on such machines is being developed. Another project is aimed at providing fail-safe capabilities in PVM [20]. This enhanced version uses checkpointing and rollback to recoverfrom single-node failures in an application-transparent manner, provided the application is notdependent on real-time events. Several other enhancements are also in progress, including loadbalancing extensions, integrating debugging support, and task queue management [21].Apart from the experimental and research-oriented work described above, a number of otherprojects related to PVM are in various stages of progress; a few representative ones are:� HeNCE [23] is a graphical programming system for PVM; this toolkit generates PVM pro-grams, from depictions of parallelism dependencies as directed graphs, and provides aninteractive administrative interface for virtual machine con�guration, application execution,and animated visualization.� XPVM is a graphical tool for PVM administration and pro�ling of PVM programs. Itgathers monitoring events from applications, and displays this information, which can beuseful for pro�ling, error detection, and optimization. This system is complemented by abu�ered tracing scheme that permits monitoring data to be gathered without perturbing theapplication or overloading the network.� The notion of \groups" and \contexts" are being introduced into the PVM system. Commu-nications contexts are needed in situations where embedded applications exchange messagesand message tags intended for an embedded library can potentially conict with another, orwith the host application. Such situations are avoided by specifying that message exchangesoccur in identi�able sessions or contexts; grouping of processes to de�ne process boundariesand establish contexts complements this methodology.� The next version of the system, PVM 3.4, is scheduled to use a Receiver makes Right (RMR)data encoding instead than the XDR and RAW encodings now available. While some dataconversion is needed to ensure that machines with di�ering data representations inter-operatecorrectly, the traditional methods of unconditionally converting to a standard form at thesender and reconverting at the receiver is probably wasteful. With fewer di�erent datarepresentations in emerging computer architectures, an optimistic scheme where the receivingend converts the data when necessary, is possible and more e�cient.� The DoPVM subsystem [22] is aimed at supporting the \shared object" paradigm in PVM.By writing C++ programs in which objects derived from built-in classes can be declared,this PVM extension permits a shared address space concurrent computing model, therebyalleviating the inherent complexity of explicit message passing programming.25

References[1] R. F. Freund and H. J. Siegel (eds.), IEEE Computer Special Issue on Heterogeneous Process-ing, 26(6), June 1993.[2] V. S. Sunderam and R. F. Freund, J. Parallel and Distributed Computing, Special Issue onHeterogeneous Processing, (to appear) January 1994.[3] R. F. Freund, SuperC or Distributed Heterogeneous HPC, 2(4):349-355, 1991.[4] J. Potter, Associative Computing, Plenum Publishing, New York, 1992.[5] L. H. Turcotte, A Survey of Software Environments for Exploiting Networked ComputingResources, Technical Report, ERCCFS, Mississippi State University, June 1993.[6] D. Y. Cheng, A Survey of Parallel Programming Languages and Tools, NAS Systems DivisionTechnical Report RND-93-005, NASA Ames Research Center, March 1993.[7] L. Patterson, et. al., Construction of a Fault-Tolerant Distributed Tuple-Space, Proc. 1993Symposium on Applied Computing, Indianapolis, February 1993.[8] D. Gelernter, Domesticating Parallelism, IEEE Computer, 19(8):12-16, August 1986.[9] J. Boyle, et. al., Portable Programs for Parallel Processors, Holt, Rinehart, and Winston, 1987.[10] R. Hempel, The ANL/GMDMAcros (Parmacs) in Fortran for Portable Parallel ProgrammingUsing Message Passing, GMD Technical Report, November 1991.[11] V. S. Sunderam, PVM : A Framework for Parallel Distributed Computing, Journal of Con-currency: Practice and Experience, 2(4):315-339, December 1990.[12] V. Rego and V. S. Sunderam, Experiments in Concurrent Stochastic Simulation: TheECLIPSE Paradigm, Journal of Parallel and Distributed Computing, 14(1):66-84, January1992.[13] H. Nakanishi, V. Rego, and V. S. Sunderam, Superconcurrent Simulation of Polymer Chainson Heterogeneous Networks, Proceedings { Fifth IEEE Supercomputing Conference, Min-neapolis, November 1992.[14] D. H. Bailey, et. al., The NAS Parallel Benchmarks, International Journal of SupercomputerApplications, 5(3):63-73, Fall 1991.[15] S. M. White, Implementing the NAS Benchmarks on Virtual Parallel Machines, Emory Uni-versity M. S. Thesis, April 1993.[16] S. M. White, A. Anders, and V. S. Sunderam, Performance Optimization of the NAS NPBKernels under PVM, Proc. Distributed Computing for Aeroscience Applications, Mo�ett Field,October 1993.[17] Flory, P. J., Statistical Mechanics of Chain Molecules, Interscience, New York, 1969.[18] Stau�er, D., Introduction to Percolation Theory, Taylor and Francis, London, 1985.[19] S. Moyer and V. S. Sunderam, \Parallel I/O as a Parallel Application", International Journalof Supercomputer Applications, Vol. 9, No. 2, summer 1995.[20] J. Leon, et. al., \Fail Safe PVM: A Portable Package for Distributed Programmingwith Trans-parent Recovery", School of Computer Science Technical Report, Carnegie-Mellon University,CMU-CS-93-124, February 1993. 26

[21] J. Dongarra, et. al., Abstracts: PVM User's Group Meeting, University of Tennessee,Knoxville, May 1993.[22] C. Hartley and V. S. Sunderam, \Concurrent Programming with Shared Objects in Net-worked Environments", Proceedings { 7th Intl. Parallel Processing Symposium, pp. 471-478,Los Angeles, April 1993.[23] A. Beguelin, et. al., \HeNCE Users Guide", University of Tennessee Technical Report, May1992.[24] D. Bailey, J. Barton, T. Lasinski, and H. Simon, eds. \The NAS Parallel Benchmarks". ReportRNR-91-002, Mo�ett Field, CA: NASA Ames Research Center, 1991.[25] D. Bailey, E. Barszcz, et al. \The NAS Parallel Benchmarks." International Journal of Su-percomputer Applications, Vol. 5, No. 3, pp.63-73, Fall 1991.[26] A. Alund, S. White, and V. S. Sunderam, \Performance of the NAS Parallel Benchmarks onPVM Based Networks", Journal of Parallel and Distributed Computing, Vol. 26, No. 1, pp.61-71, April 1995.[27] S. Moyer and V. S. Sunderam, \PIOUS: A Scalable Parallel I/O System for Distributed Com-puting Environments", Proceedings | 1994 Scalable High Performance Computing Conference,May 1994.[28] V. S. Sunderam, \Heterogeneous Concurrent Computing with Exportable Services", Pro-ceedings | Workshop on Environments and Tools for Parallel Processing, SIAM Press, May1994.

27

The Tool-set for PVM yThomas Ludwig, Roland Wism�ullerLehrstuhl f�ur Rechnertechnik und RechnerorganisationInstitut f�ur Informatik der Technischen Universit�at M�unchenD-80290 M�unchen, GermanyTel.: +49-89-2105-2042 or -8164 or -8240, Fax: +49-89-2105-8232E-mail: fludwig,wismuell,bodeg@informatik.tu-muenchen.deAbstractThe Tool-set for PVM will comprise a set of integrated tools which can either be usedindividually or in concert. Tools will be subdivided into interactive tools for investigation andmanipulation of the program state and automatic tools. Both types of tools will use onlinedata, trace data, and checkpoint information to perform their task. The Tool-set willbe composed of a debugger, a performance analyzer, a visualizer, a deterministic executioncontroller, a load balancer including a checkpoint generator, and a parallel �le system. Alltools will be available under the GNU General Public License Agreement. First versions ofthe tool environment will be released in spring 1996; some of its components will be availableearlier.1 IntroductionThe PVM programming library has become an increasingly popular de-facto standard for writingexplicitly parallel programs based on the message passing paradigm. A large variety of parallelapplications, e.g. multigrid solvers, image processing or gene sequence analysis has been imple-mented on top of PVM. PVM is also being used as a platform for developing tools for parallelprogramming. Although some of them are rather sophisticated, currently only few tools are avail-able and usable for the application programmers' community. One reason for this fact is thatmany tools are pure research prototypes providing only rudimentary, clumsy interfaces di�cultto use for non-experts. A second reason is that existing tools are not integrated and cover onlya single aspect of parallel program development. Here the term \integrated" does not primarilymean an integrated implementation of these tools, but the more important aspect of integratedusage, that is whether or not the tools can be used in combination and also provide support foreach other. Currently, di�erent tools can usually not be used for the same program, since theyrequire the program to be compiled in di�erent ways or to be linked with instrumented librariesnot compatible with each other.A new project of the Lehrstuhl f�ur Rechnertechnik und Rechnerorganisation, Technische Uni-versit�at M�unchen (LRR-TUM) will change this situation by providing an integrated tool-set forPVM including both run-time support and programming tools. The project is based on the pre-vious work of our group that is performing research in the �eld of parallel processing tools formore than eight years1. It will integrate and adapt our existing tools and experience to forma PVM tool environment supporting parallel I/O [8], load balancing [5], resource managementand checkpointing [9], performance analysis [4, 3], debugging [7], deterministic execution [6], andvisualization [2] (the citations refer to already existing work). Since we can rely on considerableyThis work is partly funded by the German Science Foundation, Contract: SFB 342, TP A11If you are interested in the ancestors of The Tool-set, please refer to [1].28

preparatory work that always aimed towards industrial quality, easy-to-use interfaces, and inte-gration of programming tools, we expect a �rst version of The Tool-set to be available for theuser community in spring 1996.2 The Tool-setThis section will give an overview over the concepts of The Tool-set. Many of them are already�xed and are waiting just to be implemented, others are still research topics and require moreconceptual work. As the complete tool-set has a high internal complexity, not all features will beavailable at the same time with full functionality. The end of this paper will present a preliminarytime schedule and some �rst deadlines.The tools can be divided into classes according to the following criteria. First, we will of-fer interactive tools and automatic tools. Interactive tools (like The Debugger, The LoadBalancer) will support implementation and maintenance phases whereas automatic tools (TheLoad Balancer) mainly concentrate on the production phase of the software. Tools will use dif-ferent sources of information. A monitoring system will give direct access to the running programon the workstation cluster, thus supporting online debugging and performance measurement. Allmeasured characteristics can be recorded in traces which describe the individual behavior of asingle program execution. Traces can be used e.g. for statistical program analysis. In addition,checkpoints will be generated which represent the state of a program at a given point of time.Checkpoint data is mainly used for load balancing purposes. Traces and checkpoints can be en-tered in a database system for comparison, version management etc. All tools are based uponthese few information types, however, none of them uses the complete set. Interactive tools willbe integrated considering their graphical user interface. Implementation of the GUIs will be basedon OSF/Motif and therefore give the users a standardized look and feel.Finally everything is grouped around PVM version 3.3.x. We expect The Tool-set to beeasily adaptable to future versions of PVM as only the monitoring system is closely interconnectedwith internal PVM mechanisms. However, any change of programming model (e.g. new commu-nication types) would also require an adaption of those interactive tools which should be able tohandle the new constructs.Figure 1 shows the module structure of The Tool-set. Due to the limited space of this paperwe can only give a list of some selected highlights and a short description of two of the tools: ofThe Debugger and of The Performance Analyzer.� The Debugger can use checkpoint information to resume execution of a program startingfrom a speci�c point during the program run. Debugging cycles will become shorter as the programhas not to be restarted from the beginning.� The Performance Analyzer will have extended functionality to try to automaticallydetect a focus of interest, e.g. workstations with high idle-time or communication frequency. Itwill also o�er statistical data and comparison of di�erent program runs by using traces.� The Visualizer will show the behavior of PVM programs at the level of tasks and com-munications thus unveiling e.g. deadlock situations.� The Deterministic Execution Controller (also called The Determinizer) supportsdeterministic runtime behavior of a parallel program thus ensuring reproducible program runs andresults during test phases.� The Load Balancer can migrate running processes from loaded workstations (e.g. ownerwants to work at his console) to free workstations, using the mechanisms of the checkpoint gen-erator CoCheck. Furthermore, the heuristics for controlling migration decisions can be improvedby learning from trace material from previous program runs.� The Parallel File System will support various modes for accessing data �les. Moreover,all activities can be monitored and evaluated by The Performance Analyzer.29

ANALYZER

System

Monitoring

Trace
Database System Check-

point

THE THE

LOAD

BALANCER

THE

VISUALIZER

THE

DEBUGGER

THE

DETERMINIZER
PERFORMANCE

THE
CHECKPOINT
GENERATOR

(CoCheck)

FILE SYSTEM

PARALLEL

THE

PVM

Figure 1: Module structure of the complete tool environment2.1 The DebuggerThe Debugger will provide support for the e�cient source level debugging of distributed pro-grams written in C or Fortran 77. In contrast to other projects it is not a simple interface builtaround a sequential debugger, but a real parallel debugger with special support for PVM. TheDebugger o�ers a comfortable graphical interface which is based on a debugger window showingthe source code and command output. In addition, visualizers for regular and also irregular datastructures will be provided. The debugger window can be associated with an arbitrary set of tasksthat is displayed in a list. All debugger commands, e.g. single-step, set breakpoint or print, areapplied to all these tasks or a selectable subset. So data parallel programs where all tasks executeroughly the same code can be examined using a single window. Multiple windows can be used todebug groups of tasks executing di�erent codes.Besides the exible user interface, The Debugger provides a variety of other features essentialfor parallel programming. We will discuss only the most important ones here. First of all, PVMis fully supported. The Debugger can be used for heterogeneous environments and allows toinspect PVM objects like a task's incoming message queue or a barrier's task queue. Tasks canbe identi�ed not only by their ID, but also by additional information, such as host, �le and groupnames or parent task. Based on patterns using this information, dynamically spawned tasks canbe automatically stopped at the beginning and may be added to any debugger window.Second, The Debugger uses the event-action paradigm instead of a simple breakpoint scheme.Events which may be parameterized, represent special conditions in the program, e.g. 'task reaches30

a source line' or 'message is received'. Each event de�ned can be associated with a list of actionsthat are executed when the event occurs. Actions include stopping any set of tasks, tracing theevent, printing variables or de�ning new events and actions. Since actions are evaluated au-tonomously by the distributed monitoring system without interaction with the debugger's frontend or the user, intrusion is kept very low. Furthermore, actions may also be triggered by eventson remote hosts, so global halting and distributed breakpoints are possible. We will also providespecial breakpoints allowing to follow message transfers: when a task sends a message, the break-point will stop the receiver immediately after it has received that message, so data processing canbe watched across task boundaries.Finally, The Debugger will be integrated with The Determinizer and CoCheck, makingcyclic debugging practical. Parallel programs usually run for a very long time, so re-runningthem becomes a tedious job. In addition, program behavior may not be reproducible due to raceconditions. Therefore, a form of backtracking will be provided by generating a checkpoint andsaving the debugger's con�guration upon user request. The user may then return relatively quicklyto that point and re-execute the last part of the program. The Determinizer will then eitherensure reproducible behavior or may enforce a di�erent message ordering, so the e�ects of raceconditions can be examined.2.2 The Performance AnalyzerThe Performance Analyzer will we able to handle two di�erent kinds of measurements types:online analysis and trace evaluation. Both types o�er slightly di�erent functionality and aredistinguished by the fact that a trace reects a �xed program run of the past which includes onlya limited amount of measured data. Measures which have not been evaluated during runtime arelost for trace analysis.Let us have a closer look at the functionality of The Performance Analyzer. It providesanalysis on four levels of abstraction: at the level of the virtual machine, the node level, the tasklevel, and the function level. Three types of load characteristics can be evaluated: the amount ofcomputation (CPU-time etc.), communication characteristics like number of bytes sent/received,and I/O characteristics (also volume and time based). An investigation of these measures shouldgive the programmer some idea on possibly ine�cient constructs in his program. However, withan increasing number of tasks it becomes di�cult to detect the nodes of interest. Therefore,The Performance Analyzer o�ers special attributed measurements. The nodes which shallcontribute to a value are speci�ed via a predicate. If the predicate is not true, their current valueis disregarded. Currently, speci�cation of predicates has to be done manually. In future, we willthink about methods of how to add some automatism, e.g. by stepwise strengthening user-de�nedpredicates in order to minimize the set of interesting nodes. By having identi�ed nodes withunusual behavior it would be possible to automatically start a re�nement of performance analysis.Attributed measurements not only make it easier to �nd bottlenecks but also improve thescalability of the tool. Especially with a higher number of nodes or tasks this feature can reducethe amount of information that has to be displayed on the screen.Apart from o�ering current values, mean values, and a graphical representation of values chang-ing during runtime The Performance Analyzer will support enhanced statistical functionalitylike minimumand maximumvalues, statistical distributions of values over the time-axis, and may-be user de�nable combinations of primitive performance measures. Finally, The PerformanceAnalyzer will support the program dynamics of PVM. Not only will it be possible to handlea dynamically changing set of active workstations, but also to evaluate the positive or negativeinuence of load balancing. This will be achieved by a monitoring system which informs the toolabout every change of the current process graph and its mapping.31

3 Project Status and AvailabilityCurrently we are implementing The Visualizer, The Parallel File System, and CoCheck.The latter will be available in 9/95. As the monitoring system is not yet implemented, TheVisualizer will preliminaryly be based upon traces generated by PVM and XPVM. We have notyet decided whether we will also provide a version of The Performance Analyzer for thistrace type.The next important step to be made is the implementation of the monitoring system whichis a prerequisite to all interactive tools and to The Load Balancer. With the monitor being�nished we will adapt our existing tools to the instrumented PVM environment. First productsshould be available for the users in spring 1996. They will be fully functional but will not yet haveintegrated enhanced features which are current research topics of our group.References[1] H. Beier, T. Bemmerl, A. Bode, et al. TOPSYS - Tools for Parallel Systems. Research report SFB342/9/90 A, Technische Universit�at M�unchen, Jan. 1990.[2] A. Bode and P. Braun. Monitoring and Visualization in TOPSYS. In G. Kotsis and G. Haring,editors, Proc. Workshop on Monitoring and Visualization of Parallel Processing Systems, pages 97 {118, Moravany nad V�ahom, CSFR, Oct. 1992. Elsevier, Amsterdam, 1993.[3] R. Borgeest. Cyclic Performance Debugging. Submitted for the 2nd European PVM Users' GroupMeeting, Lyon, France, Sept. 1995.[4] O. Hansen. A Tool for Optimizing Programs on Massively Parallel Computer Architectures. InHigh-Performance Computing and Networking, Volume II, volume 797 of Lecture Notes in ComputerScience, pages 350 { 356, M�unchen, Apr. 1994. Springer, Berlin.[5] T. Ludwig. Aspects of Load Management on Parallel Computers. In V. Malyshkin, editor, Proc.International Conference Parallel Computing Technologies, PaCT-93, Obninsk, Russia, pages 301{313, Vol. II, Moscow, Russia, Sept. 1993. Recursive Super Computers (ReSCo).[6] M. Oberhuber. Elimination of Nondeterminacy for Testing and Debugging Parallel Programs. InProc. of the 2nd Int. Workshop on Automated and Algorithmic Debugging (AADEBUG'95), St. Malo,France, May 1995.[7] M. Oberhuber and R. Wism�uller. DETOP - An Interactive Debugger for PowerPC Based Multicom-puters. In P. Fritzson and L. Finmo, editors, Parallel Programming and Applications, pages 170{183.IOS Press, May 1995.[8] C. R�oder, S. Lamberts, and T. Ludwig. PFSLib - An I/O Interface for Parallel Programming Envi-ronments on Coupled Workstations. Submitted for the 2nd European PVM Users' Group Meeting,Lyon, France, Sept. 1995.[9] G. Stellner and J. Pruyne. Resource Management and Checkpointing for PVM. Submitted for the2nd European PVM Users' Group Meeting, Lyon, France, Sept. 1995.
32

Visualization of Parallel Program Execution yPeter Braun1 and Roland Wism�uller21 Siemens AG, ZFE T SN6,Otto-Hahn-Ring 6, 81739 M�unchen2 Lehrstuhl f�ur Rechnertechnik und Rechnerorganisation (LRR-TUM)Institut f�ur Informatik, TU M�unchen, 80290 M�unchenAbstractThe paper describes a tool for debugging parallel programs by visualization and animationof their execution behavior. The visualization and animation tool VISTOP (VISualizationTOol for Parallel Systems) has originally been developed for a programming library calledMMK in a PhD-thesis [Bra94] as part of a tool environment for programming distributedmemory multiprocessors. VISTOP supports the interactive on-line visualization of messagepassing programs based on various views, in particular, a process graph based concurrencyview for detecting synchronization and communication bugs.The paper presents the features of this original version of VISTOP, the process of portingthe tool to the PVM programming model, the new features of the PVM version and some ofthe problems that occurred during the port.1 IntroductionWhile the development of parallel hardware advances very rapidly with systems consisting ofhundreds or thousands of processing elements, the development and improvement of techniquesand tools for debugging and performance analysis are lagging behind modern hardware technology.This is one of the main obstacles of a widespread usage of these systems.New methods to program high performance computer systems such as HPF (High Perfor-mance Fortran) try to facilitate their use, however, the majority of parallel systems with fullydistributed resources are still programmed with an explicit parallel programming model. Pro-gramming libraries such as PVM provide a model of communicating sequential processes whichexchange information solely by messages. The interaction of many independent processes causesadditional di�culties and bugs in parallel programs such as communication errors or performancebottlenecks which occur in addition to problems within the sequential parts of the program. Theunderstanding of the execution behavior of many concurrent processes is very di�cult and re-quires adequate software tools for debugging and performance analysis. However, current paralleldebuggers operate at a very low level of abstraction and cannot provide enough insight into theoverall execution of parallel programs. This is one of the main reasons why current tools are veryoften not accepted by the programmers of parallel systems [Pan93].The following section gives a brief description of the visualization tool VISTOP for the MMKprogrammingmodel. This version is currently being ported in order to support PVM applications.The changes to be made and the problems that arise are described in Section 3.yThis work is partly funded by the German Science Foundation, Contract: SFB 342, TP A133

2 The Visualizer VISTOP for the MMKProgramming ModelThe current version of the visualization tool VISTOP (VISualization TOol for Parallel Pro-grams) animatesmessage passing programs developed with the parallel programming library MMK[BL90], which is similar to PVM or MPI. The basic idea of VISTOP is analogous to the classicalapproach to debugging sequential programs, which involves repeatedly stopping the program dur-ing execution, examining the state, and then continuing the execution. This is also the approachused in most commercially available debuggers for parallel and distributed systems.VISTOP tries to overcome the limitations of these extensions of traditional low-level break-point debuggers for sequential programs by providing a global view of the program state at thelevel of abstraction of the programmer. A global perspective makes it much easier to detect thereason for communication errors such as deadlocks or races. Main features of VISTOP comparedto other approaches are [Bra94]:� Most visualization systems are post mortem systems which analyze the program executiono�-line after the program has terminated. However, debugging is an interactive processwhere the user examines the state of the system in order to decide which information isneeded next. This approach can only be supported e�ectively by on-line tools. For instance,VISTOP can be used in conjunction with our parallel debugger DETOP [BW94] in orderto inspect values of variables or to de�ne break-points. On-line use reduces the amount ofinformation that has to be gathered from the application as only the information that isrequested by the user must be collected.� Many distributed systems are missing a global time base. Thus, most visualization toolsthat rely on time stamped trace events cannot guarantee to show a \correct" representationof the program execution. This is not acceptable for a tool that should serve to increase theunderstanding of the program execution. VISTOP is based on a formal time model whichuses causal relationships to enforce that the visualization is consistent with causality [SM92].� The presentation is based on the semantics of the programmingmodel. It shows the commu-nication protocols and communication errors, i.e. the tool can be used during the debuggingphase of a program and does not require that the program must terminate correctly.� VISTOP supports a dynamic process model which makes the tool applicable to a wide rangeof applications such as distributed database or tra�c control systems.The system provides three views that show di�erent aspects of a parallel computation. Theconcurrency view is based on a hierarchical process graph and shows communication and synchro-nization events. The object creation graph presents dynamic object creation. The system viewshows the distribution of the program objects on a parallel system.2.1 Concurrency ViewIn the concurrency view, the program objects are arranged in a two-dimensional area. The basicpresentation metaphor of the view is a dynamic, hierarchical object graph. The nodes of the graphform little icons which can represent either objects of the programming model or subgraphs of theprogram (see �gure 1).The MMK programming model provides three prede�ned object types. Tasks are the activecomponents which perform the calculations of the program. They communicate via mailboxes andsynchronize via semaphores. The communication protocol can be adjusted by specifying the bu�ersize of the mailboxes and by the selection of timeout intervals of the communication functions. Forexample, a synchronous communication between two task objects similar to the ADA rendezvoussemantics can be speci�ed by setting the bu�er size to 0 and the timeout interval to unlimited.34

Figure 1: VISTOP Concurrency View.Usually, programmingobjects are displayed by a small icon which shows a characteristic symbolfor the object type and the identi�er of the object. The size of the icon can be adjusted by zooming.In addition, the icons change their shape to show the current state of the object. This feature isused to visualize the communication protocol and error conditions. Additional information aboutobjects can be displayed in a so-called \detail view" which can be obtained by selecting an objectwith the left mouse button. For instance, the detail view of a mailbox object shows the messagebu�er and the task objects which were sending the messages which allows to detect communicationerrors that are caused by messages from wrong senders.The layout of the object graph should ideally reect the communication structure of the parallelapplication in order to make the display most e�ective. The arrangement of the program objectcan be assigned by the user accordingly by selecting and moving the objects. Communicationand synchronization events are indicated by arrows. A thin arrow characterizes a non-blockingcommunication or synchronization. Blocking library calls are visualized by thick arrows (see �gure1).2.2 Hierarchical AbstractionHierarchical abstraction can be used at every level of computation to control complexity andmake the construction of larger systems more manageable. While the method is widely appliedin textual programming (e.g. functions, procedures, modules) and in design tools such as CASEtools, currently no existing visualization tool exploits this technique.In VISTOP hierarchical abstraction is realized by \container objects". Each container consistsof two parts, an icon and an associated concurrency window. The icon represents the groupof program objects located in its concurrency window or one of its descendants. Program and35

container objects can be moved between di�erent windows by drag and drop. Thus, container canbe used to form a hierarchical program graph by distributing the program objects in an appropriateway.In order to control presentation complexity of the display during visualization all concurrencywindows can be closed and opened by selecting the respective container. Figure 1 shows the mainwindow of the concurrency view that contains two container objects Container0 and Container1.Only the concurrency window of Container1 is visible whereas Container0 is closed.Communications between objects outside and objects inside a container are displayed by anarrow from the outside object to the container (see communication between Container0 andmailbox mb3). Communication events within a container are only displayed in the concurrencywindow associated with the container, i.e. if the window is closed, the event is invisible (seecommunication between task H and mb7). Communication between members of a container withcommunication partners outside are displayed by an arrow head (see task G). The window thatcontains representations of both communicating objects shows the communication partner whichis mb6 in the example.2.3 Object Creation ViewThis view displays the dynamic object creation chain of programming objects created and/ordeleted frequently as it happens for example in database systems or tree search algorithms. Theobjects are represented in form of a graph consisting of at least one tree. An example for anobject tree can be seen in �gure 2. Each of the tasks that are declared statically form the root ofa separate tree. The parent entry shows the task that created the child object dynamically. Byselecting a node of the graph, additional information about the object is displayed (state of theobject, module where the object was created, : : :).When a new object is created, this is animated in the object creation view as follows. First,the position of the object in the tree is determined. All objects below this position move downone line. A \turtle" appears below the task which creates the new task and draws a line from theparent to the new object. Now the turtle grows and �nally the icon for the new object appears.The deletion of an object is animated in a way analogously to the creation.2.4 System ViewThis visualization component shows the distribution of the objects of an application onto di�er-ent processing nodes. Di�erent processing nodes may be located on di�erent machines, when aprogram is distributed in a network of UNIX workstations. The display is organized as a ma-trix. Each column contains all objects of one node. An object may be displayed as an icon thatshows its type, its name or its object identi�er. By selecting an object with the mouse, additionalinformation about the object can be obtained. The VISTOP system view is displayed in �gure 3.This view can visualize migration of objects in applications which perform migration with theautomatic load balancing facility of the MMK. When objects are created or deleted dynamically,this view shows the location of the objects and their overall distribution in the system. Again,the events displayed in this view are animated to show the dynamic behavior of the underlyingapplication.3 Porting VISTOP to PVMThe application of the MMK version of VISTOP proved that the visualizer is a valuable toolfor understanding and debugging parallel programs. For PVM, however, no tool of comparablefunctionality existed. Therefore, we decided to port VISTOP to the PVM programming model.36

Figure 2: VISTOP Object Creation View
Figure 3: VISTOP System View37

This port is one part of a much larger project called \The Tool-set for PVM" [LWB+95], wherea set of integrated tools for the development and execution of PVM programs is being developed.3.1 Structure of VISTOPIn order to show, which parts of the visualizer are a�ected by the port to another programmingmodel, we will now briey present the structure of VISTOP. It consists of three major parts (seeFig. 4):1. The data acquisition is responsible for detecting relevant events in the execution of aprogram and for feeding the events to the modeling layer in a correct order. Events areeither read on-line from a monitoring system, or o�-line from a pre-recorded trace �le. Inany case, since the target systems usually don't provide an accurate global time, events fromdi�erent processes must be sorted according to the causality (\happened before") relation[Lam78].2. The modeling layer computes consistent global states from the event stream generatedby the acquisition layer. This computation also takes into account the semantics of theprogramming model, so the computed state can provide information that is not directlycontained in the events. For instance, the model can decide whether or not a receive callblocks its caller, since it computes the queue of receivable messages from the event stream.If the queue is empty, the task must be blocked. In the same manner, error conditions, e.g.receiving a message with wrong data type or length can be detected by the model.3. The visualization layer �nally visualizes di�erent views of the global state computed bythe model. It also controls the two other layers.From this description, it is clear that most of the work has to be done in the two lower lay-ers. Since we have a new programming library and also new target hardware, we need a di�erentmonitoring system. Also the event processing has to be adapted, since events and parametershave changed, and there are new interactions (e.g. barrier synchronization) that inuence thecomputation of a causal event ordering. The modeling layer requires major modi�cations, sincethe semantics of PVM is very di�erent from the semantics of the MMK programming model.Therefore, the way how global states are computed from events is also di�erent. Finally, visual-ization patterns for the new object and interaction types in PVM have to be incorporated intothe visualization layer. However, most of its features can be reused.3.2 Visualization PatternsIn contrast to the MMK, there are no mailboxes and no semaphores in PVM; communicationis performed directly between tasks. For synchronization, there is a new object, the barrier. Inaddition, PVM o�ers process groups and new communication patterns: broadcast in a group,multicast to a list of tasks and receiving messages without specifying the sender.These di�erences must be reected in the patterns that are used to visualize communicationand synchronization in the concurrency view. The new patterns are depicted in Fig. 5: The taskicons are identical to that of the MMK version. In addition, there is a new symbol for barriers. Itis created when the �rst task in a group calls pvm barrier() and is destroyed when the last taskleaves the synchronization call.There are no explicit objects visualizing groups in the concurrency view. A �rst idea has beento visualize each group by a container object that contains all the tasks in that group. However,containers in VISTOP form a strict hierarchy of tasks, i.e. a task can only be in one container,while in PVM, a task can belong to more than one group. Thus we decided to provide an additionalview, called group manager. It displays the list of all groups that exist at the current point in the38

data flow

start program
stop program

data flow

visualization

modeling

data acquisition

program
and animation
control

computing
of states

interaction
user Figure 4: Structure of VISTOP

timeout error
with

Task
with

Barrier

Task4 waits to receive from Task3:

Task1 is sending to Task0:

group object

Hierarchical Objects
(Container)

No explicit

Figure 5: New visualization patterns39

animation, and allows to select a single group, a union, or an intersection of groups. When this isdone, all visualized objects that do not belong to the speci�ed group (or union/intersection) looseparts of their coloring, as shown in Fig. 6. In this way, users can quickly determine the groupmembership of visualized objects.Since PVM uses direct communication between tasks and o�ers some new communicationstructures, also the way of visualizing interaction between objects has been modi�ed, as shownin Fig. 5. Instead of drawing thin or thick arrows between objects, now a simple line is drawn,denoting that there is some interaction. Additional arrow heads in di�erent colors on either side ofthe line specify the kind of interaction: A green (�lled) arrow head denotes an interaction that doesnot block the active partner, while a red (hollow) arrow head denotes a blocking interaction. Thedirection of the arrow head indicates the direction of the (requested) information transfer, whileits position marks the active partner of an interaction. For example, in the middle left of Fig. 5,task1 is sending to task0, since there is a �lled arrow head attached to task1 that is directedtowards task0. The lower left of the �gure shows the visualization pattern when task4 waits fora message from task3. The new visualization strategy can also show multiple interactions, e.g.between a task and a container object. In the lower right of Fig. 5, task0 sends a broadcast totask1 and task2, both in the container, while task1 receives a message from task0. task2 didn'tstart receiving yet and is still waiting for a message from task0. Broadcasts and multicasts arevisualized in an intuitive way by showing that a task sends to multiple tasks at the same time (seetask0B in Fig. 6).In addition to these changes in the concurrency view, the detail view of task objects has beenadapted to the task information available with the PVM programming model (see Fig. 7).3.3 Data Acquisition and ModelingAlthough the long term goal for our work is to provide the visualizer VISTOP for PVM based onan on-line monitoring system, the �rst version uses XPVM for data acquisition. XPVM recordsa trace of events in a PVM application and is able to store this trace in an SDDF �le [GKP94,BDG+95]. Using XPVM for data acquisition allows VISTOP can be used for PVM before ourown monitoring system is ported. However, we currently loose the interactive control over theapplication's execution. Therefore in a next step, the visualizer will make use of the monitoringsystem developed in the OMIS project [LWSB95] and will then also become part of The Tool-set.The modeling of global states from a sequence of events turned out to be much more com-plicated for PVM than it was for the MMK programming model. The main reason for this factis the absence of an event that indicates the insertion of a message into a task's message queue.Such an event is not provided by the built-in trace facility of XPVM. For the modeling of globalstates, this has three consequences:1. The message queue of a task cannot be computed accurately. All the model can provide isa set of receivable messages. It cannot determine the order in which messages are stored inthe queue.2. The VISTOP animation is designed to show when a task blocks in a receive call due to anempty message queue. Since the point in time, when a message is put into the messagequeue of a task is unknown, it is not possible to decide whether the task blocks in a receivecall or not. As the current solution, we assume that a message is inserted into the receiver'squeue when the sender �nishes its send operation.3. It is impossible to easily visualize receive operations in the usual way, if no sender is speci�edin the receive call, i.e. a wild-card is used. Since the order of messages in the task's messagequeue cannot be modeled properly, it is not known in this situation, which task is the senderof the message that is being received. 40

Figure 6: New concurrency view

Figure 7: Detail view of a task41

task1
s0(3)

task2
s0(3) s1s1

task1 task2
r0(-1)
task3 task3

r1(2)Events:

s0(3)

s0(3)

s1

r1(2)
sending

sending

receiving

r0(-1)

task1

task3

task2
s1

. . .

Figure 8: Processing of communication operationsFig. 8 illustrates the modeling process and the last problem just mentioned. The �rst lineshows a simpli�ed event stream that is the input for the model. s0/s1 denote the start/end ofa send call, r0/r1 the start/end of a receive operation. The numbers in parentheses indicate thedestination or source task, -1 denotes a wild-card. The space-time diagram below shall indicatethe result of the modeling process: a sequence of global states is computed. Finally, as shown inthe bottom half of the �gure, each global state is visualized by a graphical pattern.For the �rst four states, the modeling and visualization process is quite straightforward. How-ever, a problem arises when event r0(-1) is bee�ng processed. The global state after this event isthe following: \task3 is receiving a message from task2"1 However, according to the descriptionabove, the model cannot determine the sender of the message being received until it sees the eventr1(2) that always contains the actual sender. So in order to visualize correct global states, thereceive operation is shown not before the modeling layer has processed the end-of-receipt event.Then an arti�cial event is introduced that causes the model and the visualization to return to astate where the task �nished receiving. So in e�ect, receive operations are shown one step toolate, but a simple analysis shown that at least the causality relation cannot be violated by thisdelay.As a longer term solution, we will try to provide the crucial event \a message is insertedinto a tasks message queue" with the PVM on-line monitoring system developed in the OMISproject. However, this will most probably require some modi�cations in the PVM daemons. Wewill therefore try to further cooperate with the PVM development team in order to avoid thenecessity of a special PVM version for the usage of our tools.4 ConclusionThe application of VISTOP for the MMK programming model has shown that visualization canincrease the understanding of parallel programs. Hierarchical abstraction is quite helpful to in-1Even if the messages have the same tag and arrive at task3 in the order suggested by the dashed arrows, thetask can still receive task2's message �rst, if there is a direct connection between task1 and task3. In this case,PVM will always �rst ask the daemon for a receivable message before it checks the direct connections.42

crease the scalability of visualization tools for functional debugging of parallel programs. Theconcept is easy to understand and can be applied to any parallel program.The visualizer is now also available for the PVM programming environment in a �rst version.It currently animates SDDF traces generated by the XPVM tool. Future work includes thedevelopment of a PVM on-line monitor that will acquire the data needed for VISTOP, and anintegration of the visualizer into The Tool-set.References[BDG+95] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. Recent En-hancements to PVM. International Journal of Supercomputing Applications and HighPerformance Computing, 1995.[BL90] T. Bemmerl and T. Ludwig. MMK - A Distributed Operating System Kernel withIntegrated Dynamic Loadbalancing. In H. Burkhart, editor, Proc. of CONPAR90VAPP IV, pages 744{755, Z�urich, Schweiz, 1990. Springer-Verlag.[Bra94] Peter Braun. Visualisierung des Ablaufverhaltens paralleler Programme. PhD thesis,Technische Universit�at M�unchen, 1994.[BW94] T. Bemmerl and R. Wism�uller. On-line Distributed Debugging on Scalable Multipro-cess or Architectures. In High-Performance Computing and Networking, volume II,pages 394{400, M�unchen, April 1994. Springer.[GKP94] A. Geist, J. Kohl, and P. Papadopoulos. Visualization, Debugging, and Performancein PVM. In Proc. Visualization and Debugging Workshop, October 1994.[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-munications of the ACM, 21(7):558{565, July 1978.[LWB+95] T. Ludwig, R. Wism�uller, R. Borgeest, S. Lamberts, C. R�oder, G. Stellner, andA. Bode. The Tool-set { An Integrated Tool Environment for PVM. In Pro-ceedings of EuorPVM'95 Short Papers, Lyon, France, September 1995. Ecole NormaleSup�erieure de Lyon. Technical Report 95-02.[LWSB95] T. Ludwig, R. Wism�uller, V. Sunderam, and A. Bode. OMIS { On-line MonitoringInterface Speci�cation. Internal report, Technische Universit�at M�unchen, 1995.[Pan93] Cherri M. Pancake. Customizable portrayals of program structure. In ACM/ONRWorkshop on Parallel and Distributed Debugging, pages 64 { 74, San Diego, Ca, 16. {18. Mai 1993.[SM92] Reinhard Schwarz and Friedemann Mattern. Detecting Causal Relationships in Dis-tributed Computations: In Search of the Holy Grail. Technical Report SFB124-15/92,Universit�at Kaiserslautern, 1992.
43

Checkpointing and Process Migration for PVMGeorg StellnerInstitut f�ur Informatik der Technischen Universit�at M�unchenLehrstuhl f�ur Rechnertechnik und RechnerorganisationD-80290 M�unchenstellner@informatik.tu-muenchen.deAbstractCheckpoints cannot only be used to increase fault tolerance, but also to migrate processes.The migration is particularly useful in workstation environments where machines becomedynamically available and unavailable. We introduce the CoCheck environment which allowsthe creation of checkpoints. Particularly, we focus on the basic protocol and the improvementsmade to e�ciently support process migration.1 IntroductionResearchers from many di�erent areas have needs for computational power to solve their speci�cproblems. Today, many are successfully using PVM[4] on Networks of Workstations (NOW) [1] tosatisfy their requirements. A PVM application uses the aggregate computational power of severalworkstations to speed-up the computation of a single problem. PVM has been used to parallelize agreat variety of applications like genetic sequence analysis, semiconductor simulation or air qualitymodeling.Usually, in a NOW a single workstation is assigned to a single primary user (owner): theworkstation can typically be found on this user's desk. Other users (secondary users (guests))may access this machine via the network. Psychologically, the owner of the workstation expectsthat his workstation is at his disposal all the time. Whenever he wants to work interactively, heexpects quick and immediate responses of his machine.Running a PVM application on a NOW requires executing processes on many machines as asecondary user. Hence, a PVM application borrows resources such as computational power or mainmemory from other primary users. A single process of a PVM application is typically bound to themachine where it has been started for its lifetime, primary users may �nd their system in a statewhere interactive work is slowed by secondary users. As a consequence, they refrain from makingthe resources of their machines available to other users. For users, it becomes more and moredi�cult to �nd workstations on which to run their PVM applications. The situation becomesworse with an increasing number of users parallelizing their application using PVM. Hence, afacility is needed that maintains the ownership of the machines: as soon as interactive workbegins on a machine, all processes which are borrowing resources must vacate. The mechanismfor doing this are consistent checkpoints and process migration.2 CoCheck: Checkpoints and Process MigrationOur protocol to create consistent checkpoints described in [3] proved to be viable and stable butwas lacking good performance. This was due to several reasons. First, the checkpoint �les which44

Synchronisation phase Checkpoint phaseInterrupt phase

P2

P3

P1

RM

Signal

Signal

messages
Send ready

Signal

messages
Send ready

Broadcast
task list

messages
Send readyFigure 1: Steps to create a consistent checkpoint in CoCheckwere produced by the single process checkpointer were too large. Then the migration of a singleprocess required that all processes had to write a checkpoint �le. Finally, all checkpoints werewritten to a network �le system producing burst network tra�c.Hence, in the latest version of the CoCheck checkpointer for PVM applications we have ad-dressed those problems to improve the performance. First, we have incorporated the latest versionof the Condor single process checkpointer. It reduces the size of the checkpoint �le of each process[5]. Then, the protocol has been enhanced to allow that checkpoint �les can also be written to localdiscs and that only migrating processes write a checkpoint �le. Finally, we now use the resourcemanager interface of PVM 3.3.x to register an additional system task: the resource manager (RM).The RM task intercepts certain PVM calls such as adding or removing hosts or spawning tasks.It is responsible to carry out the requested services instead of the PVM daemons. Hence, it ispossible to introduce a modi�ed behavior of the intercepted PVM calls.Both the creation of a consistent checkpoint of an application and the migration of a set ofprocesses is initiated by the RM of the virtual machine by delivering a combination of a signaland a message to each process of the PVM application (cf. Figure 1). As the wrappers for thePVM functions guarantee that the PVM calls cannot be interrupted by a signal, it is possible touse PVM functions within the signal handler. PVM calls such as pvm recv present a problembecause they cannot safely be interrupted by a signal. Here, the message which is sent togetherwith the signal can be used to force the interception of the signal. The wrapper functions forthe blocking PVM calls have been implemented in that way. In addition this message containsinformation about all tasks of the application, which tasks need to create a checkpoint �le, thelocation of the checkpoint �le and if the process should exit. The location can either be a �le ona local or network �le system or a network address. The network address can be used in case ofprocess migration, where the checkpoint can be directly transfered to the new process on anotherhost. Exiting is only necessary if a process must vacate a machine.After the signal and the task list have been intercepted all the tasks send specially tagged\ready" messages to each other. As PVM guarantees the delivery of the messages in sendingsequence each task can draw the following conclusion: after all ready messages from all othertasks have been received there are no more outstanding messages on the network for this task.Hence, it can be seen as a normal stand alone process without any network state. While eachprocess waits for the reception of the ready messages, it collects all other incoming messages inits address space, so that they become part of the checkpoint �le when it is produced and can beretrieved after restart from the wrapper functions.After each process has collected all the ready messages it disconnects itself from the PVM45

Reconstruction phase

P3

RM

P1

P2
execution

Reregister and
send identifier

Broadcast identifier

Continue

execution

execution

Continue

mapping tableDispatch processes

Reregister and
send identifier

Reregister and
send identifier

ContinueFigure 2: Restarting from a checkpoint.system and uses the Condor single process checkpoint library to create a checkpoint. Dependingon what was speci�ed in the task list message the �le is either written to disk (local or via a remote�le system) or its state is transferred directly to a remote process which will become the migratedprocess. If the checkpoint has to vacate the machine it exits after the creation of the checkpointis complete. Otherwise it directly begins the restart protocol (cf. Figure 2).At the beginning of the restart phase all processes are stand alone processes. As the �rst stepto continue the parallel PVM application, each process rejoins PVM and gets a new task identi�er(tid). This tid is then sent to the RM which can set up a tid mapping table from original tids tocurrent tids. As the application should not be aware of the fact that a process has migrated or acheckpoint was taken and the application has been restarted from that checkpoint, the tids whicheach task got, when it enrolled for the �rst time, are used throughout the lifetime of the wholeapplication. To achieve this transparency of the tids the wrappers use a mapping table each timea tid is referenced in a PVM call. This mapping table is set up and distributed to all tasks by theRM. After each task has received its copy of the mapping table it can continue normal execution.The wrapper functions take care of retrieving messages that have been stored in the restored useraddress space before other incoming messages.As already mentioned one requirement is to have a signal safe extension of PVM. CoCheckachieves this by providing wrapper functions for all PVM calls which block signals. This introducesan additional overhead of about 2 percent during normal operation for sends and receives as shownin �gure 3. The ping-pong measurements were done on two Sparc 10 machines connected by anearly unloaded Ethernet during nighttime.3 Conclusion and Future WorkThe latest version of CoCheck allows for creating checkpoints of PVM applications. Due to theenhancements discussed in this paper CoCheck now also provides a means to e�ciently migratesingle processes. This has been achieved by restricting the creation of checkpoint �les to themigrating processes. Local discs can now be used to store those �les or the checkpoint can bedirectly transfered over a TCP connection to the new host of the process.The CoCheck environment comprises a set of libraries, a simple RM for PVM and a programto use CoCheck's functionality. Applications which should bene�t from CoCheck's features simplyneed to be relinked against the CoCheck libraries. The user can then use the supplied commandto either create a checkpoint, restart an application or migrate certain processes. The CoCheck46

0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1e+06

T
im

e
[s

]

Message length [Bytes]

01:30:01

PVM
CoCheck

Figure 3: Performance of the CoCheck wrappers compared to PVM 3.3.7system is publicly available under the terms of the GNU public license. To obtain the software referto the CoCheck homepage: http://wwwbode.informatik.tu-muenchen.de/~stellner/CoCheck/.In addition to the supplied control command CoCheck o�ers an API with which the users canrequest CoCheck functionality within their applications. This includes the creation of checkpointsor the migration of processes. Hence, the user is capable of integrating dynamic load balancinginto his applications, where the application can request to migrate a set of processes to new hosts,which are more powerful or less loaded. Together with the PVM feature of noti�cations, CoCheckcan be used to detect failures of machines and restart the application from a formerly createdcheckpoint.CoCheck provides a preemptive global scheduler to RM processes. Hence, in the future we willfocus on using this service in the RM. In addition to the use for RM, CoCheck will be incorporatedin The Tool-set[2]. Apart from providing basic checkpointing, CoCheck will be used withinTheTool-set to provide the core migration facility for system integrated dynamic load balancing.The debugger of The Tool-set will use CoCheck's checkpointer to provide cyclic debugging, i.e.during a debugger session the user can create a checkpoint and restart the program from thatstate all over again to examine it.References[1] Thomas E. Anderson, David E. Culler, and David A. Patterson. A case for NOW (networksof workstations). IEEE Micro, 15(1):54{64, February 1995.[2] Thomas Ludwig, Roland Wism�uller, Rolf Borgeest, Stefan Lamberts, Christian R�oder, GeorgStellner, and Arndt Bode. The Tool-set | an integrated tool environemnt for PVM. In47

Proceedings of the 2nd European PVM Users' Group Meeting (Short Papers), Lyon, September1995.[3] Georg Stellner. Consistent Checkpoints of PVM Applications. In Proceedings of the 1stEuropean PVM Users Group Meeting,http://www.labri.u-bordeaux.fr/~desprez/CONFS/PAPERS/abs010.ps.gz, 1994.[4] V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek. The PVM concurrent computingsystem: Evolution, experiences and trends. Parallel Computing, 20(4):531{545, April 1994.[5] Todd Tannenbaum and Michael Litzkow. The Condor Distributed Processing System. Dr.Dobb's Journal, (2):40{48, February 1995.

48

NXLib { NX Message Passing on Workstations�Stefan LambertsLRR-TUMLehrstuhl f�ur Rechnertechnik und RechnerorganisationInstitut f�ur InformatikTechnische Universit�at M�unchenAbstractNXLib is a library and programming environment for workstations which resembles theparallel programming environment of Intel's Paragon Supercomputer. This article will give ashort overview of our motivation for NXLib, its implementation, and show some performance�gures.1 MotivationState-of-the-art multicomputers like the Paragon o�er a proprietary message passing environment.An implementation of that on coupled workstations allows the use of interconnected workstationsas a development platform for applications. In addition to that, it is also attractive to use intercon-nected workstations as additional computational resource. The performance constraints of coupledworkstations restricts this to applications with limited demands concerning message latency andbandwidth, which usually are applications with coarse grain or medium grain parallelism.In contrast to other parallel programming environments like PVM [5] and P4 [1], NXLib resem-bles a native message passing environment of a real supercomputer, the Paragon [2]. Thus, NXLibapplications running on Intel's Paragon will take advantage of better communication performanceof the native message passing calls. NXLib applications on workstation clusters will achieve aboutthe same performance as applications which use other parallel programming environments [4, 3].2 Implementation2.1 Virtual Paragon NodeIn the following discussion the term Paragon Node will be referred to as the collection of a hardwareParagon node, the operating system kernel and a set of application processes running on top ofthat.The basic means to model Paragon nodes on coupled workstations is virtualization. Conse-quently, a virtual Paragon node (VPN) resembles a Paragon node on a workstation. The hardwareand software properties of a Paragon node which are not available on a workstation are o�ered inthe following way. We introduce a daemon process which takes over part of the functionality of theParagon hardware and operating system. The calls of the application processes to NX routinesare transformed into requests to the daemon.�This project was partially funded by a research grant from Intel Corporation49

DP

AP

VPN

AP
Application ProcessAP
Daemon ProcessDP
Paragon OSF/1
User ProgramFigure 1: NXLIb's Virtual Paragon NodeIn such an implementation every system call would require an interprocess communicationbetween daemon and application process. To reduce the amount of interprocess communication,parts of the operating system's tasks have been moved into the application processes and will belinked to the application process. Figure 1 illustrates the structure of a virtual Paragon node.2.2 Communication LayersAn important issue for a message passing library for coupled workstations is portability andexibility. A layering of the message passing library has been designed to cover both aspects.Figure 2 shows the layers of the NXLib environment.

Remote UNIX CallsLocal UNIX Calls

Address Conversion

Remote CommunicationLocal Communication S
IG

N
A

L

Call Buffer Message Buffer

Reliable Communication Interface

Paragon OSF/1 AD Interface

Figure 2: Communication Layers of NXLibThe basis consists of standard UNIX system calls. To achieve a great exibility concerningthe communication protocol which is used for the implementation, NXLib distinguishes betweenlocal and remote communication. Within the local and remote communication layer a protocolspeci�c addressing scheme is used. The reliable communication layer provides reliable point-to-point communication calls disregarding the location of the communication partners. The reliablecommunication interface still uses the Paragon addressing scheme. The address conversion layerhas been introduced to map Paragon addresses to corresponding protocol speci�c addresses. Inaddition to its address conversion task, this layer also distinguishes whether a communication islocal or remote. Provided with that information, the reliable communication layer can invoke theappropriate local or remote communication calls.We introduced a bu�er layer which consists of the call bu�er for pending send and receive callsand the message bu�er for incoming messages. The latter is based on the simplifying assumptionthat on each machine unlimited bu�er space is available. Unlike the Paragon, where incomingmessages are placed in a reserved memory area, in NXLib the memory is dynamically allocatedwhen a message arrives on a node. 50

The Paragon OSF/1 communication interface �nally provides the user calls which are availableon a Paragon system. Send and receive calls access the bu�er layer by inserting the call in the callbu�er or checking the message bu�er for matching messages. NX calls which imply interprocesscommunication (e.g. global operations), access the reliable communication layer directly. Somecalls of the Paragon interface, e.g. dclock(), will be handled immediately by the interface layer.In order to provide Paragon's interrupt driven message passing, on arrival of an incomingmessage a signal is delivered to the receiving process. Within the signal handler NXLib receivesand handles the message. Currently, local and remote communication uses the TCP/IP socketinterface.3 PerformanceFigure 3 shows the message latencies for local communication (both application processes on thesame workstation) and remote communication (application processes on di�erent workstations)in a log-log-scale. The results were obtained by dividing the time of synchronous ping-pongoperations between two processes using csend() and crecv() calls by two. The plots showmaximum, average and minimum values obtained in 1000 iterations during normal working time.The values for remote communication with message sizes above 100 K-bytes were measured withonly 100 iterations due to the very long execution times. We used an IBM RS/6000 3BT and anIBM RS/6000 390 both with 64 Mbytes of memory coupled via our local Ethernet.
1

2

5

10

20

50

100

200

500

1000

0.001 0.01 0.1 1 10 100 1000

T
im

e
[m

se
c]

Message Length [KBytes]

Remote Latency

Maximum
Average

Minimum

1

2

5

10

20

50

100

200

500

1000

0.001 0.01 0.1 1 10 100 1000

T
im

e
[m

se
c]

Message Length [KBytes]

Local Latency

Maximum
Average

Minimum Figure 3: Local and Remote Message Latency of NXLibThe average 1 byte message latency is 1.95 m-sec for local communication and 4 m-sec forremote communication. Best 1 byte message latency is 1.3 m-sec and 1.4 m-sec respectively. Thehighest average bandwidth is achieved with the largest messages. In this measurement this was 6.9M-bytes/sec locally and 1.06 M-bytes/sec remotely with a message size of 1 M-byte. For remotecommunication the best bandwidth value of all iterations increases only slightly if the messagesize is above 16 K-bytes where 1 M-bytes/sec is reached.4 ConclusionsThe NXLib environment allows the use of a network of workstations for mainly two purposes.First, the network of workstations can be used to develop software which should �nally run on aParagon system. Workload can therefore be withdrawn from the multicomputer system. The CPUtime which is gained by shifting the development of applications to workstations can be used for51

production runs of computational intensive problems. Second, instead of using the workstationsmerely as a development platform they can also be used as a production environment for certainapplications. Especially coarse grain applications can achieve good speed-ups in a workstationenvironment.NXLib was made available to the public under the Gnu library license and the Gnu generalpublic license end of 1993 for SunOS 4.1.x. In the course of 1994, NXLib was ported for HP 9000HP UX 09.01, SGI IRIX 5.1.1.1, IBM RS 6000 AIX 2.3, DEC Alpha AXP OSF 1.2, and SunSolaris 2.3. Thus, NXLib is now available for all major workstation platforms via anonymous ftpfrom ftp://ftpbode.informatik.tu-muenchen.de/NXLIB/ and other ftp servers. We releasedfour new versions of NXLib up to the current release V1 1 4 which included several bug �xes andports to other platforms.Work on an implementation which uses System V IPC shared memory facilities for local com-munication is almost �nished. Additionally, we are developing an environment which o�ers thefunctionality of Paragon's parallel �le system PFS on workstations.References[1] Ralph M. Butler and Ewing L. Lusk. Monitors, messages, and clusters: The p4 parallelprogramming system. Parallel Computing, 20(4):547{564, April 1994.[2] Intel Corporation, Supercomputer Systems Division, Beaverton, Oregon. Paragon User'sGuide, 312 489-003 edition, June 1994.[3] Stefan Lamberts, Georg Stellner, and Thomas Ludwig. NXLib Users' Guide. TechnischeUniversit�at M�unchen, D-80290 M�unchen, v1 1 4 edition, February 1995.[4] Georg Stellner, Arndt Bode, Stefan Lamberts, and Thomas Ludwig. Developing application formulticomputer systems on workstations. In Wolfgang Gentzsch and Uwe Harms, editors, High-Performance Computing and Networking, Vol. II, number 797 in Lecture Notes in ComputerScience, pages 286{292. Springer-Verlag, April 1994.[5] V. S. Sunderam, G.A Geist, J. Dongarra, and R. Manchek. The PVM concurrent computingsystem: Evolution, experiences and trends. Parallel Computing, 20(4):531{545, April 1994.
52

PFSLib { Performing Parallel I/O in PVM Applications�Christian R�oderTechnischen Universit�at M�unchenInstitut f�ur InformatikLehrstuhl f�ur Rechnertechnik und Rechnerorganisation (LRR-TUM)D{80290 M�unchene{mail: froederjlambertsjludwigg@informatik.tu-muenchen.deAbstractIn this paper we discuss the design and implementation of an I/O interface for parallelprogramming environments on clusters of workstations. The PFSLib library o�ers the func-tionality of Intel's parallel �le system PFS and is intended to be used for parallel applicationsusing PVM or other message passing libraries for workstation clusters. An example of a sim-ple parallel matrix-vector-multiplication shows how PFSLib function calls are used togetherwith PVM.1 IntroductionDuring the last years parallel programming environments (PPEs) like PVM [8], P4 [1] or NXLib [7]became more and more popular in the parallel computing community. Those PPEs o�er sophisti-cated mechanisms for managing processes of parallel applications and communication via messagepassing. If the interdependency of the processes and thus their need of synchronization and com-munication is low compared to the applications overall runtime a workstation cluster is a goodalternative to supercomputers. But the development of an appropriate I/O interface follows a sim-ilar history as it was for real supercomputers where the primary design goals focused on increasingprocessor speed and fast interconnection networks. The I/O tra�c was handled by a host com-puter producing a severe I/O bottleneck. Increasing the speed of I/O tra�c to the attached harddisks was neglected for a long time. To solve the I/O requirements of scienti�c applications vendorslike Intel and nCUBE o�ered dedicated I/O subsystems for their parallel computers, which areable to perform parallel I/O operations concurrently on a set of disks. A similar situation arisedwhen PPEs for coupled workstations were under development. There, two major paradigmas wereused for I/O in parallel applications. Firstly, one dedicated process is responsible for all read andwrite accesses to �les, thus distributing and gathering all data to or from the other processes viamessages. Secondly, every process within in the application accesses local �les con�rming its data.Those �les have to be post-processed for further usage. Current research activities in the �eld ofparallel computing show that scalable I/O and parallel �le systems are one of the major topics ofinterest.In 1993 the parallel processing group at the LRR-TUM developed an emulation of the IntelParagon Supercomputer. The latest release of this parallel programming model for coupled work-stations called NXLib1 is available since February 1995. The NXLib library comprises messagepassing and process management routines. It allows to run early software development phases on�This project was partially funded by a research grant from Intel Corporation1Release V 1 1 4 can be accessed via URL: ftp://ftpbode.informatik.tu-muenchen.de/NXLIB53

a workstation cluster and to switch to the Paragon for �nal production runs only. Like in mostothers PPEs the lack of a sophisticated I/O facility restricts programmers in writing applicationswhich operate on large amounts of data. The new library PFSLib adds the functionality of Intel'sparallel �le system. One of the main goals in designing and implementing PFSLib was to beindependend from the native message passing library and thus having a universal I/O interfacefor all PPEs.2 Related WorkAvailable results taken under consideration when designing and implementing the PFSLib can begrouped into three di�erent categories:� Operating system integrated approaches for remote handling of I/O on clusters of coupledworkstations (e. g. NFS, AFS, DFS).� Existing approaches for parallel I/O for workstation clusters (e. g. PIOUS [6]).� De�nitions of user interfaces for parallel I/O (e. g. MPI-I/O [2], Intel PFS [4], IBM Vesta [3])PIOUS (Parallel Input OUtput System) is an existing approach for workstation clusters andwas presented in 1993 by Moyer and Sunderam. In PIOUS process groups on heterogenous clustersaccess common data on peripheral storage devices. The following issues are covered in the �rstversion of PIOUS:� Portability to other systems is achieved by the independence of the underlying transportmechanism. PIOUS only requires reliable data transfer mechanisms between cooperatingworkstations.� Parallelism of the system results from asynchronous execution of the operations.� Scalability is guaranteed by storing �les in a distributed manner.� Integrated control of parallelism and mechanisms for fault tolerance through the replicationof data.� An optimal structure of a parallel �le system is currently unknown. Therefore, PIOUS has aexible design that allows modi�cation to the user interface and the internal data structures.For a more detailed description of the implementation and a performance analysis of PIOUSsee [6].Although it is still not yet clear which concepts have to be integrated, available interfaces o�erdi�erent I/O modes, such as how processes participating in parallel I/O access parts of a �le. WithMPI-I/O it was suggested to treat I/O as a special kind of message passing. However, by adheringto the syntax of message passing calls an I/O library can only be used with one individual messagepassing library. PFSLib provides much more exibility in that point.3 The User Interface of PFSLibThe main concepts of parallel I/O concern �le access patterns and the semantics of read and writecalls. As mentioned above the user interface of PFSLib is in most parts identical to that of Intel'sparallel �le system PFS. Due to the di�erent architectural concepts of clusters a few restrictionshave to be made. 54

File access patterns are selected by specifying one of �ve I/O modes, which can be set, queried,and changed by using library calls. To gurantee correct semantics obviously all processes involvedin accesses to a speci�c �le must use identical I/O modes. The modes are just attributes indicatinghow the �le accesses are ordered but they are not stored within the �le. Every new open() call isindependent from previous operations on the �le.M UNIX provides each process with its own �le pointer and it is the programmer's responsibilityto perform reasonable read and write calls. This mode is best used when processes operateon large disjoint segments of the �le. All read/write requests are served immediately.M LOG provides a single �le pointer for all processes. Each I/O operation modi�es the �le pointerof all processes. This mode is preferable to write log-�les.M SYNC provides a single �le pointer for all processes. The operations are ordered by the logicalnumber of the calling process. Thus, all processes have to perform the same sequence ofcalls. This mode is especialy useful when writing ordered lists or checkpoint information todisk.M RECORD is similar to M SYNC but gives each process its own virtual �le pointer. The datais read or written in records of equal size. Still the processes stick to the same sequenceof calls but in contrast to the above mode they are no longer synchronized when actuallyperforming them.M GLOBAL provides read access in a broadcast manner where all processes read the same data,e.g. in the startup phase of the application. Write access will write the data of only onearbitrary process to the �le. If the contents of written data is validated by some othermeans this gives a much higher performance than every process writing the same data.The concepts of reading and writing to parallel �les follow the principle of message passingbetween processes. However, there is no syntactical or semantical dependency with the NX messagepassing calls. This is a prerequisite for PFSLib to be usable with other programming environments.Two exisiting variations for read and write calls are blocking and nonblocking calls. Withblocking calls the data is already read or written when the call returns whereas with nonblockingcalls the user has to check for completion of the call. In addition to reading and writing sequencesof bytes the user interface supports operations for scattered data structures.Additionally, the user interface comprises various calls for opening, closing and advanced man-agement of �les.4 Design and Implementation AspectsFollowing one of our main design goals PFSLib works together with major environments like PVM,MPI [9], and NXLib. Neither do we rely on any semantical information from the environmentnor is PFSLib based on a speci�c message passing subsystem. To achieve this we consider thatprocesses within the application implicitely form a group. This is neccessary to ensure correctsemantics for M SYNC and M RECORD mode where access to the same �le is ordered by theidenti�ers of the processes within the application. Additionally the independence from the messagepassing system is achieved by using the remote procedure call mechanisms provided by the UNIXoperating system. Finally, the complete functionality can be accessed via C and Fortran userinterfaces.The current implementation of PFSLib has a centralized server for managing �le access anddoes not yet incorporate mechanisms to distribute single �les to several disks. However, for largeamounts of data being accessed the data transfer is executed by an extra server. This concept isexible enough to be extended to mechanisms for data distribution. The design aspects of thisversion cover the following issues: 55

Internal states of server and clients: As opposed to NFS the PFSLib server is not stateless. Itsactivities depend for several modes on the sequence of read and write requests transferredby the processes (clients) to the server. In the current implementation the server keepsinformation on both connected clients as well as open �les.File access strategy: All read and write operations are currently managed by the server. Hence,�lesystems with and without NFS can be treated identically. If the amount of data exceedsa con�gurable threshold the �le access is handled by a so-called IO-Server. In case of anasynchronous operation the client process forks and the child process carries out the �leaccess. Unix IPC shared memory is used for the data transfer between client and its childprocess.Course of an operation: 1.) The client checks whether the operation accesses a �le controlled bythe PFS-Server or a Unix �le. If the �le is a Unix �le the appropriate standard library callwill be executed and the call returns. 2.) In case of a PFSLib �le the client increases theRPC timeout if the operation is synchronizing. This is necessary because the answer of theserver might be delayed until all other processes issued the same operation. 3.) The clientsends a RPC request to the server. 4.) The server carries out several security and parameterchecks. 5.) The server handles the request and sends the result back to the client. 6.) Theclient analyzes the response and the call returns.Client synchronization: In the case of synchronizing calls (e. g. in I/O-mode M SYNC) the callcan not be completed unless all participating processes have performed that call. Hence, theserver delays the completion of the corresponding RPCs.5 Using PFSLib for PVM ApplicationsIn this section we want to show the ease of using PFSLib in a parallel application based on PVMperforming a matrix-vector-multiplicationM � ~x = ~y.
P0 P1

outfile

y(1)

y(3)

y(0)

y(2)

infile

m(3)
m(2)
m(1)
m(0)
x

M_GLOBAL M_RECORD client()
{
int fd, cnt;
int mynum = pvm_mytid();
int total = pvm_numtids();
pfs_init("pfsdhost", total, mynum);

cread(fd, x, n);
fd = gopen("infile",O_RDONLY,M_GLOBAL);

setiomode(fd, M_RECORD);
for (cnt=0; cnt <(n/total); cnt++) {
cread(fd, m[cnt*total+mynum], n);
/* calculate and store results */

}
close(fd);

}Figure 1: Two processes reading parallel from a �le and the corresponding codeLet k be the number of processes participating in that application and let n be the dimensionof the components with n mod k = 0. The input �le contains a vector ~x as the �rst entry and thematrix M row by row as the second entry. Setting the M GLOBAL mode and reading the �rst56

n numbers from the �le every process will get the vector ~x as the result. Now the mode changesto M RECORD. Subsequent read calls will access row (i � 1) � k + j where i is the number ofcalls and j is the identi�er of the process within the application. Thus every process calculatesthe component (i � 1) � k + j of the output vector ~y with each step. The vector may be writtento another �le also using the mode M RECORD. No synchranization of clients or their performedcalls is needed. Figure 1 shows this scenario for two processes.6 Future WorkIn the future we will improve the e�ciency of PFSLib by modifying some of the internal conceptsof implementation. Our main goal is to achieve scalability. Hence, we will introduce a conceptof distributed servers which will access �les distributed over several workstations in parallel. Fur-thermore, we will enhance the user interface in order to study the usefulness of di�erent accessmodes. In addition PFSLib will be incorporated within The Tool-Set [10].References[1] R.M. Butler and E.L. Lusk. Monitors, messages, and clusters: The p4 parallel programmingsystem. Parallel Computing, 20(4):547{564, April 1994.[2] P. Corbett, D. Feitelson, Y. Hsu, et al. MPI-IO: A parallel i/o interface for MPI version0.3. NAS Technical Report NAS-95-002, NASA Ames Research Center, Mo�ett Field, CA94035-1000, USA, January 1995.[3] P. Corbett, D. Feitelson, J.-P. Prost, and S. Johnson Baylor. Parallel access to �les in theVesta �le system. In Proc. Supercomputing '93, pages 472{481. IEEE Computer Society Press,November 1993.[4] Intel Corporation, Supercomputer Systems Division, Beaverton, Oregon. Paragon User'sGuide, 312 489-003 edition, June 1994.[5] S. Lamberts, T. Ludwig, C. R�oder, and A. Bode. PFSLib | A �le system for parallelprogramming environments. SFB-Bericht, SFB 0342, Technische Universit�at M�unchen, 80290M�unchen, Germany, 1995. To be published in summer.[6] S.A. Moyer and V.S. Sunderam. PIOUS: An architecture for parallel i/o in distributed com-puting environments. In Workshop on Cluster Computing, Tallahassee, FL, USA, December1993. Florida State University.[7] G. Stellner, A. Bode, S. Lamberts, and T. Ludwig. Developing application for multicomputersystems on workstations. In W. Gentzsch and U. Harms, editors, High-Performance Comput-ing and Networking, International Conference and Exhibition, Volume II, no. 797 in LNCS,pp. 286{292. Springer, April 1994.[8] V.S. Sunderam, G.A. Geist, J. Dongarra, and R. Manchek. The PVM concurrent computingsystem: Evolution, experiences and trends. Parallel Computing, 20(4):531{545, April 1994.[9] D.W. Walker. The design of a standard message passing interface for distributed memoryconcurrent computers. Parallel Computing, 20(4):657{673, April 1994.[10] T. Ludwig, R. Wism�uller, R. Borgeest, S. Lamberts, C. R�oder, G. Stellner and A. Bode. TheTool-Set { an integrated tool environment for PVM. Submitted for the 2nd European PVMUsers' Group Meeting, 1995 57

SPTHEO {a PVM-based Parallel Theorem ProverChristian B. SuttnerInstitut f�ur InformatikTU M�unchen, GermanyEmail: suttner@informatik.tu-muenchen.deAbstractSPTHEO is a parallelization of the sequential theorem proving system SETHEO, basedon the SPS model for parallel search. The SPS model has been designed to allow e�cientparallel search even in comparatively low bandwidth and high latency environments, such ascommon workstation networks. In order to obtain a portable and e�cient implementation,the PVM message passing system has been used for implementing the communication partof the system. This report describes the basic outline of the system, and presents evaluationresults for the communication aspects as well as the performance as a proof system.1 IntroductionThe goal in automated theorem proving (ATP) is, given a set of axioms and a sentence to be proven,to show that the sentence is a logical consequence of the axioms. This general paradigm can beused in many applications, such as circuit veri�cation [BCMD90], program synthesis [SWL+94],and software and protocol veri�cation [CGH+93, Sch95].ATP is based on search: the solution to a problem is found by a systematical trial-and-error ofpossible combinations between inference rules, axioms, and deduced formulas. A common way todescribe a search space is the OR-search tree. Figure 1 gives an example for an OR-search tree.The top node denotes the original problem (start situation), from which alternative search pathsextend. In theorem proving, the OR-branches result from di�erent clauses that can be used tosolve a particular subgoal.
qqq qqq qqq qqq qqq qqq qqq qqqss s s s s sss s s s s s s s s s s!!!!!!! aaaaaaa������ HHHHHH ����� QQQQQ��� @@@ ��� @@@ ���........ @@@HHHHHH������oro r oro r or o rSol. Sol.Figure 1: OR-search-tree.The predominant problem in theorem proving (and search in general) is the performance lim-itation that arises due due to a combinatorial explosion of the search space: if a proof consists ofmany individual steps, the number of possible paths becomes intractable for exhaustive search.Even though advanced systems use various search pruning and shortcut techniques, many inter-esting problems require enormous computing time or are well beyond tractability.In order to improve the usefulness of ATP systems in practical applications, a signi�cantperformance increase, esp. with respect to solving harder problems, is required. An approach to58

achieve such an improvement is the use of parallel instead of sequential search. Parallelism o�erstwo advantages in that respect. First, the use of hundreds of processors signi�cantly increases thehardware resources, both in computational power and in main memory capacity. This allows upto a linear reduction in the runtime of problems and makes problems tractable which previouslywere out of reach due to memory requirements. Second, and even more importantly, parallelsearch allows the avoidance of early bad search decisions. The exploration of several paths inparallel ensures that (viewed from the top of the search tree) at least one process is guaranteed tofollow the best search path initially. This can lead to an exponential reduction in the amount ofsearch required, compared to sequential depth-�rst exploration of the search tree. In sequentialsearch, a similar reduction can only be achieved with breadth-�rst search, a technique that provedundesirable in practice due to memory requirements that are usually too large for a single processorand also the associated system complexity.A thorough examination of previous work in parallel automated theorem proving [SS94] haslead to the establishment of guidelines which seem necessary to ensure the construction of a parallelsearch system which lasts for more than one hardware generation and can adopt improvements insequential search technology adequately. These guidelines are:� coarse-grain parallelization! minimize the synchronization overhead� start with good sequential systems! employ their sophistication and functionality� use powerful processors! to compare well against sequential system on the best workstation� avoid specialized hardware! increases lifetime! increases portability� simple model for parallelization (esp. wrt. communication)! good for implementation/maintenance! sequential search improvements easier to incorporateThe SPS (Static Partitioning with Slackness) model [Sut95] provides a parallelization modelwhich follows these guidelines.2 The SPTHEO SystemThe Underlying Sequential System. SPTHEO (Static Partitioning THEOrem prover) isbased on the SETHEO (SEquential THEOrem prover) system [LSBB92, LMG94, GLMS94].SETHEO is a sound and complete for �rst order predicate logic. It is based on the model elimi-nation calculus (similar to PROLOG) and implemented as an extended Warren Abstract Machine[War83, Sch91].The Computational Model of SPTHEO. The execution of SPTHEO is based on the SPS-model [Sut95, Sut96], and can be separated into three phases as shown in Figure 2. Briey, tasksare generated in an initial, sequential search phase. These tasks are then distributed and executedin parallel. The motivation for this is to minimize the communication overhead, while avoidingload imbalance by proper task generation and by supplying more than one task to each processor.Below the individual phases are described in more detail.59

??
Phase 1Phase 2Phase 3

Task GenerationTask DistributionParallel ExecutionFigure 2: The computational phases of SPTHEO.The Task Generation Phase. In the �rst phase (task generation), an initial, �nite segment ofthe search space is explored. During this phase, tasks for parallel execution are generated. Taskgeneration occurs only during this phase and independently of the processing of the tasks later(static partitioning). The number of generated tasks (denoted by the letter m) is equal to or largerthan the number of processors (denoted by the letter n). The term slackness is used to expressthe relation between the number of tasks and the number of processors.The task generation phase is de�ned by the rules used for partitioning the search spaceinto tasks, a generation strategy, and the desired number of tasks. SPTHEO allows OR- andindependent-AND partitioning (iAND-partitioning for short). With OR-partitioning, a separatetask is created for each alternative clause that can be used to solve the current subgoal. WithiAND-partitioning, a separate task is created for each group of independent subgoals that remainsto be solved. The generation strategy used is iterative-deepening search over the depth of theproof tree. That means that for each particular deepening level, the search is pruned as soon asthe resulting proofs would exceed a certain depth. The task generation thus operates as follows.The levels de�ned by iterative-deepening are successively explored, counting the number of searchcut-o�s due to reaching the depth limit. Each such point where the search has been arti�ciallystopped can be used as a task for parallel search. As soon as a level is reached which allows tocreate enough tasks (m is speci�ed by the user), task generation is enabled and the desired num-ber of tasks is approximated by appropriately switching to a previous deepening level (where thenumber of tasks that remain to be produced is already known). For details about the generationcontrol see [Sut95].The Task Distribution Phase. In the second phase (task distribution), the tasks generatedin phase one are distributed among the available processors. SPTHEO makes bene�cial use ofthe availability of all tasks prior to their distribution: in the iAND-processing option, redundanttasks may occur, which are detected and eliminated. The task distribution a�ects the potential forload imbalance: if tasks with very long run time accumulate at one processor, while small tasksaccumulate on another, imbalance results. Experiments showed that the cumulation of similarsized tasks is heuristically minimized, if the distance in the OR-search tree between the tasks60

mapped to the same processor is as large as possible. Further experiments [Hub93] showed thata very good approximation of the optimal solution is obtained by employing a simple modulomapping: Taski ! Prozessorimodn, where Taski is the i-th task generated.In order to keep the communication overhead low, an e�cient task encoding is used. Since eachtask represents a location in the OR-search tree, simply the choices made during the search thatlead to the task-de�ning position in the search tree are stored. This is simply a list of numbers,for example 3 1 : : : for saying: take the third choice among the �rst set of alternatives, takethe �rst choice among the second set, etc. From these numbers, each processor then recomputesdeterministically the state that has been saved by the task, and proceeds searching for a solutionfrom there. For iAND-partitioning, the tasks do not comprise full OR-search tree nodes, but arefurther restricted to solving a particular set of open subgoals within such an OR-search tree node.Therefore, the task encoding for an iAND-task consists of the previously described list of numbersplus a list of numbers that denotes which subgoals (e.g., the second and the �fth) have to beprocessed.The Parallel Task Execution Phase. Finally, in the third phase (task execution), the tasksare executed independently on their assigned processors. Note that no interaction with other tasksis necessary in order to carry out a task. Since possibly more than one task has to be processedper processor, a service strategy is required. For this, quasi-parallel processing is preferable overserial processing. The reason for this is that a task may not terminate within a given runtimelimit. With serial processing, this would lead to an in�nite delay of all tasks remaining on thatprocessor, which causes search incompleteness. Timesharing of tasks at a processor is realizedby starting for each task a modi�ed version of the SETHEO system (extended by the ability toreceive and process a task) as a PVM process.The Process Structure of SPTHEO. SPTHEO employs a simple master/slave process struc-ture. A modi�ed SETHEO process (master) performs the initial sequential task generation, in-cluding redundancy elimination for iAND-partitioning. The generated tasks are then one afterthe other spawned on the available processors. For this, a load-dependent performance index forall processors is established at the time the virtual machine is built. Tasks are then distributed ina round-robin manner, with processors ordered according to their performance index.Each terminating task returns a result status to the master. For OR-partitioning, each tasksimply returns a status ag denoting success (a proof has been found) or failure (the search spacehas been completely exhausted with no proof found). As soon as the �rst success message isreceived, the master terminates all still active processes. Each task process terminates itself afterits runtime limit is exhausted, and so does the master.For iAND-partitioning, the same basic structure is used. However, for each success messagereceived, the master checks if the solution of the respective task already provides a solution tothe full problem, or if further open subgoals remain. In case further work remains, a message isprinted summarizing the current proof advance. Regarding control, iAND-partitioning allows twooptions. Either all iAND-tasks are distributed in the beginning, or only a selected subset. Basedon the membership of particular iAND-subgoals in di�erent OR-nodes (the same iAND-subgoalcan be part of several OR-nodes), partial orderings can be constructed which enforce as muchparallelism as necessary, but as little as possible. This has been shown to be able to improve thee�ciency of parallel search [Sut95]. Therefore, initially only a small set of tasks are started, andfurther tasks are spawned by the master whenever a success message is received and work remainsto be done, depending on the partial task ordering.3 Evaluation of SPTHEOThe SPTHEO system has been extensively evaluated using the TPTP library [SSY94, SS95].Altogether, 2571 TPTP v1.1.3 problems were evaluated, thereby covering a broad application61

spectrum of 25 scienti�c domains, with problem di�culties ranging from very easy to very di�cult(including open) problems.In order to determine the performance improvement compared to the underlying SETHEOsystem and a previous parallelization, called RCTHEO (for Random Competition parallelizationof SETHEO [Ert93]), both these systems have been tested as well. Since all three systems sharemost of their code (all are versions of the same program), the comparison is highly accurate in thesense that di�erences are mainly due to di�erences in the computational models, and not due toimplementation di�erences.All experiments have been performed on a network of 121 HP workstations connected by Eth-ernet. The network consists of 110 HP-720 workstations (58 Drystone MIPS, 38.5 SpecInt'92)with 32 MByte main memory each (200 MByte disk for swap space), and 11 HP-715/50 work-stations (62 Drystone MIPS, 36 SpecInt'92) with 80 MByte main memory each (2GByte storagedisk and two 500MByte disks for system and NFS data). Each HP-715/50 workstation operatesas �le server for 10 HP-720 clients. The network is partitioned with bridges into 5 segments withtwo servers each, and one segment with one server. In order to ensure that equivalent hardwareis used in all experiments, no processes were run on server machines.Runtime Assessment in a Distributed Environment. A major di�culty for the evaluationof a network-based parallel system is the inuence of other users on the available processingcapacity, both in terms of processor load and available communication bandwidth. As a result,the wall-clock runtime of a parallel job can vary signi�cantly. Since an important purpose ofthe SPTHEO evaluation is an analysis of the performance of the SPS-model, such variations areundesirable. Ideally, exclusive usage of the network would be possible, allowing to obtain the trueruntimes on such a network. However, measurements show that the employed network is highlyutilized, even during the night and on weekends. Therefore, extensive experiments based onexclusive usage are not possible. Fortunately, both the SPS-model and the random competitionmodel (RCTHEO) nevertheless allow an analysis which reliably approximates the results thatwould be obtained under exclusive usage. For SPTHEO, this is achieved by the following.Instead of the standard SPTHEO operation where termination occurs as soon as a proof hasbeen found, each task is independently processed until it fails, succeeds, or is terminated due tothe runtime limit. The performance statistics for all tasks are then collected in a �le. Also, at thebeginning of this �le the performance statistics for the task generation phase are included. Thesedata provide a precise assessment of the number of search steps and runtime for each task and forthe task generation.Given these data, the runtime on some hardware platform can be estimated. Assume a par-ticular task � is the �rst task that leads to a proof in a standard SPTHEO run under exclusivehardware usage. The runtime of SPTHEO using OR-partitioning then consists of the runtimeTgen for task generation, the time Tdist(�) until � is distributed, the runtime T� for process-ing task �, the time Tspp delay for the processing delay of � due to time sharing, and the timeTtermination until the success message from � is received and processed by the master2 (runtime= Tgen + Tdist(�) + T� + Tspp delay + Ttermination). Tgen and T� are already contained explicitlyin the logging �le. Tdist can be upper bounded by the worst-case assumption that � is alwaysthe last task distributed. In practice, for many problems a proof is reported to the master evenbefore all tasks have been distributed. An assessment of the \location" of the successful taskwith the shortest runtime is shown in Table 7. It shows that in the case of many generated tasks(mdesired = 256), � in (geometric) average appears after approximately 14 of all tasks have beendistributed. Tspp delay depends on the number of tasks, the times of processing start, and runtimesof the tasks that are processed on the same processor as �. Given a particular distribution schemefor tasks, the number and runtimes of these tasks can be extracted from the logging �le. For anupper bound on Tspp delay , it can be assumed that all these tasks start at the same time as �. Incase the task switching overhead due to quasi-parallelism is not negligible, measurements need tobe performed. It is then straightforward to compute Tspp delay from the logging data and measure-2One may also add the time until the master terminated all tasks still being processed.62

ments. Finally, Ttermination can be obtained by appropriate communication time measurements.In case no proof is found within the runtime limit, the runtime can be computed as above, basedon the particular task � which terminates last. mdesired =Averages 16 256Harmonic 0.17 0.04Geometric 0.35 0.26Arithmetic 0.53 0.50Table 7: Average location of the task with the shortest runtime, given in terms of a fraction ofthe number of tasks. mdesired speci�es the number of tasks for task generation (speci�ed by theuser).Figure 3 shows the wall-clock time required for distributing a single task (including processstartup) using the PVM message passing library on the HP network under non-exclusive usage.The measurements have been obtained for SPTHEO, but equivalent values can be assumed forRCTHEO. It shows arithmetical average values for the average and maximal distribution time over20 repetitions, for 20 di�erent problems with di�erent numbers of tasks to distribute. The averagetime for up to 20 tasks is approximately 0.1 seconds, with maximal values from 0.2 to 0.7 seconds.The �gure shows a slight increase of the average value as the number of tasks increases, and asigni�cant increase of the maximal value that is observed (here up to 2.1 seconds). The reasonfor this is that as the number of tasks increases, the probability increases that a processor witha high load is used. Such a processor responds slowly, leading to signi�cantly increased maximalvalues for some tasks, which in turn leads to an increase in the average distribution time. The�gure suggests that for exclusive network usage an average distribution time of approximately 0.1wall-clock seconds can be expected, for at least up to 60 tasks.Below the output regarding task distribution of an actual SPTHEO run is shown. The runhas been performed during daytime with a high load on the network.Entering PVM! Start Parallel Processing...Spawned tasks: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22Spawned tasks: 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44Spawned tasks: 45 46 47 48 49 50 51 52 53 54 55Task 37 (iand-task) successful ... solves part of OR-node 31 (1 tasks left)Spawned tasks: 56 57 58 59 60Task 39 (iand-task) successful ... solves part of OR-node 32 (1 tasks left)Spawned tasks: 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81Spawned tasks: 82 83 84Now waiting for a proof ...Task distribution time (wall-clock): 67.40 secondsTask spawning times (wall-clock): min= 0.04 max= 5.27 average= 0.79 secondsThe example shows that two iAND-tasks (37 and 39) are solved before the task distribution is�nished. The time required to distribute all tasks is quite high: 67 seconds. The reason for thisis that some processors respond slowly (the maximal time required for a single spawn has beenover 5 seconds) due to other load. The maximal time for a spawn observed in a run has been 191seconds. High spawning times can signi�cantly decrease the performance: while the particularslow-spawning task may not even be necessary for a proof, the processing of all tasks remainingto be spawned is blocked. This can be counteracted either by a modi�ed (but more complicated)system design using hierarchical task distribution scheme, or preferably by a di�erent spawningprimitive which is non-blocking.Proof-�nding Performance of SPTHEO. The most relevant criteria in automated theoremproving is the number of problems that can be solved with given resources. For the comparison,63

0

0.5

1

1.5

2

2.5

15 20 25 30 35 40 45 50 55 60

W
al

l-c
lo

ck
 s

ec
on

ds

Number of distributed tasks

Distribution + process startup time per task

Figure 3: Distribution and process startup time per task, averaged over 20 repetitions for 20di�erent problems (one vertical pair of �� , + for each problem).\��" denotes the arithmetical average, \+" denotes the maximal value observed.
64

a runtime limit of 1000 seconds (� 17 min) for each problem has been used for SETHEO. ForSPTHEO and RCTHEO, a runtime limit of 20 seconds per task has been used.It is found that SPTHEO achieves a substantial performance improvement compared to bothsystems. As an indication of the achieved advance in ATP, with 256 processors (simulated)SPTHEO solves 167 more problems than SETHEO, and 150 more problems than RCTHEO.Neglecting all trivial problems in the TPTP (i.e., problems solved by the sequential system in lessthan one second), this represents an increase of 83% of solved problems. Even compared to theparallel RCTHEO systems (with the same number of processors), 69% more non-trivial problemsare solved.Speedup Performance of SPTHEO. Figure 4 shows the relative speedup for SPTHEO basedon the number of search steps, formdesired = 16 andmdesired = 256. It shows nearly linear speedupup to 16 processors, and an increasing deviation from linear speedup for larger n. It should benoted that the plots display the geometric averages; the arithmetic averages are much closer tobeing linear for large numbers of processors. There are several reasons why the relative speedupdoes not remain linear for large n. First, for n = mdesired, the slackness is close to one. In thiscase, the largest load imbalance is encountered, and some processors may become idle due tofailing tasks. However, since failures occur rare in average, this has comparatively little inuenceon the average speedup. Second, since usually slightly more tasks are generated than speci�edby mdesired, there are cases where the number of tasks at the processor which �rst terminatessuccessfully for some n is not decreased by using twice as many processors, due to an unfortunatetask distribution. Inspection of some individual problems with low relative speedup indeed showedthat adjusting the number of processors such that spp = mn are whole numbers (or as close aspossible), better speedup is obtained. Third, and most importantly, the inuence of the serialfraction given by the task generation overhead increases with decreasing spp. For large n, thenumber of search steps required to solve a task is frequently smaller than the number of searchsteps required for task generation, which limits the achievable speedup considerably. As discussedbefore, the relative speedup metric does not provide a useful judgment in these cases, because itignores the absolute values. Reducing the task generation overhead would improve the relativespeedup for large n signi�cantly. However, since the task generation overhead is typically quitesmall in absolute terms, the actual performance of the system in terms of theorems provable undertypical constraints or in terms of runtime (in the order of seconds) would not improve noticeably.This shows the danger of using a relative speedup for the evaluation of parallel systems: animprovement of the relative speedup for large n would be possible, but ine�ective for the absolutesystem performance.More interesting, in particular for potential users of the system, is a comparison of the actualruntime improvement that is achieved by SPTHEO. Figure 5 shows lower bounds for the geometricaverage of the absolute speedup of SPTHEO compared to SETHEO. The runtime measurementsfor this include the input overhead. Furthermore, the task distribution overhead is included basedon the assumption that the task which terminates the computation is the m=2-th task distributed(where m is the number of generated tasks), and assuming a distribution time of 0.1 seconds pertask. According to Table 7, the use of m=2 in this calculation provides a pessimistic average caseassumption.Figure 5 gives lower bounds on the average speedup because there is a large number of problemsfor which SETHEO did not �nd a solution (28%). The true speedup for these problems is thereforeunknown, and the runtime limit of 1000 seconds is used as a lower bound of the SETHEO runtime.Therefore, the decreasing speedup slope noticeable for large n is not necessarily an indication ofa performance saturation, but is signi�cantly inuenced by the runtime limit. Again, it may benoted that the arithmetic average speedup values are signi�cantly larger in all cases. Movingfrom the left to the middle to the right plot shows a strong dependency of the speedup on theproblem di�culty for SETHEO. Including many of the simple problems, low absolute speedup isachieved. This is little surprising, since the overhead of generating and distributing tasks cannotpay o� for problems which require only a few seconds sequentially (the estimate of the distribution65

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256

G
e

o
m

e
tr

ic
 m

e
a

n
 o

f
re

l.
 S

p
e

e
d

u
p

n

Number of search steps for n = 1 is > 10000

m_desired = 16
m_desired = 256

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256

G
e

o
m

e
tr

ic
 m

e
a

n
 o

f
re

l.
 S

p
e

e
d

u
p

n

Number of search steps for n = 1 is > 100000

m_desired = 16
m_desired = 256

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256

G
e

o
m

e
tr

ic
 m

e
a

n
 o

f
re

l.
 S

p
e

e
d

u
p

n

Number of search steps for n = 1 is > 1000000

m_desired = 16
m_desired = 256

Figure 4: Geometric average of relative speedup of SPTHEO based on the number of search stepsperformed for di�erent numbers of processors, for three problem collections based on the numberof search steps required by one processor. 66

0.5

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256

G
e

o
m

e
tr

ic
 m

e
a

n
 o

f
a

b
s
.
S

p
e

e
d

u
p

n

Runtime for SETHEO > 1 seconds

m_desired = 16
m_desired = 256

0.5

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256

G
e

o
m

e
tr

ic
 m

e
a

n
 o

f
a

b
s
.
S

p
e

e
d

u
p

n

Runtime for SETHEO > 10 seconds

m_desired = 16
m_desired = 256

0.5

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256

G
e

o
m

e
tr

ic
 m

e
a

n
 o

f
a

b
s
.
S

p
e

e
d

u
p

n

Runtime for SETHEO > 100 seconds

m_desired = 16
m_desired = 256

Figure 5: Lower bounds on the geometric average of the runtime speedup of SPTHEO comparedto SETHEO including input and task distribution times, for three problem collections based onthe runtime required by SETHEO. 67

overhead alone leads to a runtime of 128�0:1 = 12:8 seconds for 256 processors). For increasinglydi�cult problems (middle and right plots), the absolute speedup becomes superlinear in average(up to some n for mdesired = 256). The plots also reveal a signi�cantly better performance formdesired = 16 than for mdesired = 256 for an equivalent number of processors. This is mainly dueto the task distribution overhead. For the applied estimate, the geometric averages are Tdist = 1:1seconds for mdesired = 16 and Tdist = 13:3 seconds formdesired = 256, regardless of n. These timesare part of the serial fraction of the computation, and therefore reduce the speedup noticeably.Assuming faster communication hardware would therefore lead to a signi�cant shift upwards ofthe curves for mdesired = 256, and a small shift upwards for mdesired = 16. This shows how thenet improvement for some number of processors depends on the communication performance ofthe hardware. For good absolute speedup on systems with low communication performance, itis su�cient to use a comparatively small number of processors. But even for low communicationperformance large numbers of processors can be used successfully if su�ciently hard problems aretreated.4 ConclusionIn this paper, the SPTHEO system has been presented. SPTHEO is the �rst ATP system utilizingOR{ and independent-AND search space partitioning. It is implemented in C and PVM andthereby provides a portable system running on most parallel hardware as well as networks ofworkstations. An evaluation has been presented which is based on extensive experiments performedon a network of 121 HP-Workstations. At the time of its construction, this represented the largestPVM application (in terms of workstation nodes) in operation.The availability of a message-passing library signi�cantly simpli�ed the implementation of theparallel system. With respect to the further development of such libraries, three issues were noticedthat would improve their use in SPTHEO-like systems:� best processor spawnSpawn the next process on the most powerful processor available (this issue is also mentionedin the PVM FAQ 2.19).� non-blocking spawnDo not wait for a process spawn to �nish, but continue working immediately. For SPTHEO,the blocking of individual spawns provides a signi�cant performance limitation, as it delaysthe start of all following tasks.� environment evaluation suiteA program which produces a table of performance statistics for the current virtual machine,e.g.- min/max/average time to spawn a process- min/max/average time to send messages of various sizesSuch a tool would be very helpful for developers whenever tradeo�s depending on the commu-nication performance have to be made as well as for everyday use for obtaining informationon the currently available performance.References[BCMD90] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Veri-�cation Using Symbolic Model Checking. In Proc. 27th ACM/IEEE Design Autom.Conf. IEEE Comp. Soc. Press, 1990.[CGH+93] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, and K. L. McMillad L.A. Nessn an. Veri�cation of the Futurebus+ Cache Coherence Protocol. In Proc. 11thIntl. Symp. on Comp. Hardware Description Lang. and their Applications, 1993.68

[Ert93] W. Ertel. Parallele Suche mit randomisiertem Wettbewerb in Inferenzsystemen, vol-ume 25 of DISKI. In�x-Verlag, 1993.[GLMS94] C. Goller, R. Letz, K. Mayr, and J. Schumann. SETHEO V3.2: Recent Developments(System Abstract) . In Proceedings of CADE-12, pages 778{782. Springer LNAI 814,1994.[Hub93] M. Huber. Parallele Simulation des Theorembeweiser SETHEO unter Verwendungdes Static Partitioning Konzepts. Diplomarbeit, Institut f�ur Informatik, TechnischeUniversit�at M�unchen, 1993.[LMG94] R. Letz, K. Mayr, and C. Goller. Controlled Integrations of the Cut Rule into Connec-tion Tableau Calculi. Technical Report AR-94-02, Technische Universit�at M�unchen,1994. submitted to JAR.[LSBB92] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-PerformanceTheorem Prover. Journal of Automated Reasoning, 8(2):183{212, 1992.[Sch91] J. Schumann. E�cient Theorem Provers based on an Abstract Machine. Dissertation,Institut f�ur Informatik, Technische Universit�at M�unchen, Germany, 1991.[Sch95] J. Schumann. Using SETHEO for Verifying the Development of a Communication Protocol in Focus { A Case Study {. In P. Baumgartner, R. H�ahnle, and J. Posegga,editors, Proc. of Workshop Analytic Tableaux and Related Methods, Koblenz, volume918 of LNAI, pages 338{352. Springer, 1995.[SS94] C.B. Suttner and J. Schumann. Parallel Automated Theorem Proving. In ParallelProcessing for Arti�cial Intelligence 1, Machine Intelligence and Pattern Recognition14, pages 209{257. Elsevier, 1994.[SS95] C.B. Suttner and G. Sutcli�e. The TPTP Problem Library (TPTP v1.2.0 - TR Date19.5.95), 1995. Technical Report AR-95-03, Institut f�ur Informatik, Technische Univer-sit�at M�unchen, Munich, Germany; Technical Report 95/6, Department of ComputerScience, James Cook University, Townsville, Australia.[SSY94] G. Sutcli�e, C.B. Suttner, and T. Yemenis. The TPTP Problem Library. In Pro-ceedings of the 12. International Conference on Automated Deduction (CADE), pages252{266. Springer LNAI 814, 1994.[Sut95] C.B. Suttner. Parallelization of Search-based Systems by Static Partitioning with Slack-ness, 1995. Dissertation, Institut f�ur Informatik, Technische Universit�at M�unchen.Published as volume 101 of DISKI, In�x-Verlag, Germany.[Sut96] C.B. Suttner. Static Partitioning with Slackness. In Parallel Processing for Arti�cialIntelligence 3. Elsevier, 1996. to appear.[SWL+94] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood. DeductiveComposition of Astronomical Software from Subroutine Libraries. In CADE 12, pages341{355, 1994.[War83] D.H.D Warren. An Abstract PROLOG Instruction Set. Technical report, SRI, AICenter, Menlo Park, CA, USA, 1983.69

The Requirements of a Database System for a ParallelProgramming EnvironmentzGiannis Bozas, Richard Lehn, Andreas Listl, Markus Pawlowski, Angelika ReiserInstitut fur Informatik, Technische Universit�at M�unchenArcisstr. 21, D-80290 M�unchen, Germanye-mail: fbozas, lehn, listl, pawlowsk, reiserg@informatik.tu-muenchen.deAbstractMIDAS (MunIch Parallel DAtabase System) is a parallel relational database system [4].It is well suited to serve as a platform for the exploration of various strategies in order toparallelize a relational database system. This paper depicts how the abstract architecture ofMIDAS looks like. A detailed description shows the implementation of a MIDAS prototypeon a network of UNIX workstations. The core of the MIDAS prototype is implemented usingPVM. But pure PVM does not ful�l all demands in order to implement a parallel databasesystem. We demonstrate how our implementation combines the PVM programming modelwith standard UNIX mechanisms. We use UNIX shared memory to enhance the e�ciency ofour implementation and we use access privileges to UNIX �les to secure the database againstunauthorized access. Furthermore, we describe the requirements of MIDAS for a parallelprogramming environment like PVM.1 The MIDAS ArchitectureMIDAS has a client/server architecture (see �gure 1). The MIDAS server provides a high levelinterface (SQL) to retrieve and manipulate e�ciently the contents of a relational database. Thedatabase itself is stored in the �le system provided by the implementation platform. MIDAS clientsare database applications. They are sequential programs issuing transactions to the MIDAS server.Each transaction consists of retrieval and update queries. A MIDAS client can run on any computerhaving access to the MIDAS server over anetwork.The MIDAS server is composed of two layers: The MIDAS access system and the MIDASexecution system .� The MIDAS access system supports parallelism between di�erent MIDAS clients. This kindof parallelism is usually called inter-transaction parallelism . For that purpose, the accesssysteem provides a mechanism so that an arbitrary and varying number of clients can issuetheir queries to the MIDAS server in parallel.The second task of the access system is to compile, optimize and parallelize the queriesissued by the clients. The queries are purely descriptive (SQL). They do not contain anyparallel constructs. The access system generates query execution plans (QuEP) which canbe performed by the execution system in parallel in order to answer the queries of the clients.� The MIDAS execution system is responsible for the parallel execution of queries in accor-dance with their query execution plans. This kind of parallelism is usually called intra-queryparallelism . It is achieved by the capability of the execution server to work on di�erentparts of one QuEP simultaneously. Interim results can be exchanged between the workersinvolved in one QuEP.zThis research is directed by Prof. R. Bayer Ph.D. and is part of the more extensive project "Tools and Methodsfor Using Parallel Computer Architectures" executed at the dept. of computer science of the Technische Universit�atM�unchen since 1990 (sponsored by DFG contract SFB 342).70

T1 T2 Tn

database database database

MIDAS access system

MIDAS execution system

M
ID

A
S

cl
ie

nt
s

M
ID

A
S

 s
er

ve
r

fil
e

sy
st

emFigure 1: The MIDAS architectureFurthermore, the MIDAS execution system has to provide an e�cient access to the physicaldatabase stored on non volatile memory like magnetic disks.2 The MIDAS PrototypeFlexibility and scalability are the two main goals which must be accomplished by the implementa-tion of the MIDAS server. PVM seems to be well suited because it provides much exibility. Thepossibility to start dynamically new PVM tasks helps to implement a scalable system. Whenevera new MIDAS client arrives, the MIDAS server can increase its degree of parallelism by startingnew PVM tasks within the MIDAS server. These new PVM tasks are dedicated to the additionalwork caused by new MIDAS clients.All components of the MIDAS server are implemented as a set of PVM tasks. All MIDASclients are conventional UNIX processes. It is not possible to implement the clients as PVM tasks,because we must protect the database against unauthorized access and PVM is not capable ofdealing with di�erent user-IDs in one PVM program (see section 3).The detailed description of the MIDAS prototype follows �gure 2. A set of UNIX workstationsbuilds the set of hosts composing the virtual machine on top of which the MIDAS server is running.The MIDAS server consists of a static and a dynamic part . Its static part is made of a �xednumber of PVM tasks which does not change during the lifetime of the MIDAS server. Its dynamicpart grows and shrinks during the lifetime of the MIDAS server.2.1 MIDAS access systemThe implementation of the MIDAS access system consists of one connection server and a varyingnumber of application servers. The numbers within the following description refer to �gure.The connection server is a PVM task belonging to the static part of MIDAS. It builds theentry point to the MIDAS server for the MIDAS clients. The connection server can be accessed71

by remote procedure calls (RPC) and is globally known to all clients (1). Whenever a new clientwants to connect to a database maintained by the MIDAS server, it applies for an applicationserver. This is done by calling the appropriate remote procedure of the connection server (2).Due to that call the connection server starts a new application server for this client (3). Thisapplication server is a PVM task belonging to the dynamic part of MIDAS. The connection servertakes the actual load of the virtual machine into account in order to choose the host where theapplication server will be started. By that means, the connection server is able to distribute theload among the hosts of the virtual machine evenly. Once that the application server is started, itis exclusively at the MIDAS client's disposal. The client and its application server are fellows andbelong together until the client disappears. Furthermore, the application server provides a privateRPC interface to its client. The client uses this interface to communicate with the applicationserver by remote procedure calls (4). In this manner, we achieve a scalable system. The numberof application servers grows with the number of clients actually connected to the MIDAS server.No single component of MIDAS becomes a bottleneck.The application server receives queries from its client. The queries are transformed intoQuEPs by compilation, optimization and parallelization. The application server initiates andcontrols the parallel execution of these QuEPs by scheduling. For that purpose, it starts andremoves dynamically so-called interpreters (5). They belong to the MIDAS execution system (seebelow). Finally, the application server sends back the results produced by the execution of theQuEPs.The application server disappears as soon as its client disconnects from the MIDAS server.2.2 MIDAS execution systemThe MIDAS execution system is designed as a set of cache/lock servers and a set of interpreters. The cache/lock servers belong to the static part of MIDAS. Exactly one cache/lock serveris running on each host of the virtual machine. The interpreters belong to the dynamic part ofMIDAS. Their actual number depends on the number of QuEPs actually performed by the MIDASexecution system and the chosen degree of parallelism for each QuEP.The cache/lock server is a PVM task. It provides an e�cient and transparent mechanismso that all interpreters can access all database pages. For that purpose, caching techniques areused [2]. Each cache/lock server installs a UNIX shared memory on its host. This UNIX sharedmemorymakes up the local database cache (LDBC). It is divided into frames. Each frame can holdone database page. If an interpreter requires an access to a database page during the executionof a QuEP, it sends a request (6) to the cache/lock server running on its host. The cache/lockserver puts the required page into a frame of the local database cache. The requesting interpreteris informed (6) about the address of the frame holding the required page. E�ciency is the reasonwhy we use UNIX shared memory in order to implement the LDBC. Pages can be accessed byseveral interpreters sequentially or even simultaneously without copying them from one addressspace to another. Our MIDAS prototype uses UNIX shared memory, because PVM does notprovide a mechanism to share parts of the address space of di�erent PVM tasks running on thesame host. But at least, PVM is exible enough to combine the UNIX shared memory mechanismwith the message passing library of PVM.The usage of an own LDBC on each host of the virtual machine causes a cache coherencyproblem. It is solved by using a variation of the invalidation approach combined with dynamicpage ownership to guarantee weak cache coherency [2, 3]. Two phase locking is used in order tosynchronize di�erent transactions. The communication between the cache/lock servers which isnecessary to realize cache coherency and concurrency control is done by PVM messages (7). Inthis case, a thread mechanism would be very helpful to avoid the implementation of a complicatedscheduling strategy in order to prevent deadlock situations.The interpreters are PVM tasks as well. They are started and removed by the applicationservers (5). Their job is to execute one QuEP in parallel. Each interpreter works on one part ofa QuEP which is sent to it by the application server (8). The lifetime of an interpreter coincideswith the time necessary to execute its part of the QuEP assigned to it. The access to database72

DBDB

connection
server

MIDAS
client

cache/lock
server

cache/lock
server

cache/lock
server

preter
inter-

preter
inter-

application
server

preter
inter-

LD
B

C

LD
B

C

LD
B

C

PVM task (dynamic component of MIDAS server)

DB

➀

➁ ➃

➂

➄
➄

➄

➅ ➅ ➅

➆➆

➇➇➇

PVM task (static component of MIDAS server)

pure UNIX process

PVM spawn/kill
PVM messages
I/O via file system
socket communication

UNIX
work-
station

UNIX
work-
station

UNIX
work-
station

M
I

D
A

S
 s

e
r

v
e

r

Figure 2: The MIDIAS Prototypepages is performed locally by the mechanism described above. For that purpose, each interpretermust be attached to the UNIX shared memory building the LDBC.3 RequirementsIn order to achieve an e�cient and robust implementation of the MIDAS prototype using a parallelprogramming environment like PVM we have the following mandatory requirements to PVM:� Protection and Authentication. The physical database is stored in �les of the UNIX�le system. Protection bits grant access rights based on user-IDs. The PVM tasks makingup the MIDAS server must be allowed to access the database �les directly, whereas theMIDAS clients must be prevented from direct access because of security reasons. Thereforethe clients and the MIDAS server must have di�erent user-IDs. This is not possible withinone PVM program [1].� Fault tolerance. Typically database systems have to provide a high degree of faulttolerance. Especially in a parallel environment the failure of one computation node or diskshould not break down the whole database system. Using PVM as parallel environment it ispossible to design a highly fault tolerant database system. Because of its robustness PVMcan easily be expanded to support fault tolerance [5].73

� Shared memory. As mentioned in section 2.2 MIDAS uses shared memory to e�cientlyimplement the local database cache on each node. Due to the lack of shared memory con-cepts in PVM MIDAS has to use UNIX shared memory, which makes it system dependent.Therefore our requirement to PVM is to provide a system independent mechanism to shareparts of the address space of di�erent PVM task running at least on the same host.� Threads. The communication between the cache/lock servers is done by PVM messages.In this case, a thread mechanismwould be very helpful to avoid the implementation of a com-plicated scheduling strategy in order to prevent deadlock situations. Furthermore threadswould increase the performance of MIDAS: In the actual implementation the dynamicallystarted PVM tasks (interpreter, application server) are realized as UNIX processes. ButUNIX processes have high start-up costs. Using threads instead of processes would decreasethese start-up costs dramatically, which leads to higher performance.� Dynamic behavior. One main requirement of MIDAS to a parallel programming environ-ment is the ability to dynamically start and stop tasks and to dynamically add and removecomputing nodes to an from the set of nodes (virtual machine). Since PVM provides theseabilities it is well suited to implement a parallel database system.Additionally to these mandatory requirements a parallel programming environment should alsobe exible and scalable, in order to implement a parallel database system. Furthermore it shouldprovide a common �le system and it should be available on many di�erent platforms. Last but notleast a parallel programming environment should be easy to use, since making parallel programsis di�cult enough and the programer should not mess around with the di�culties of a not wellimplemented parallel programming environment.4 ConclusionPVM is well suited to implement a parallel database system. We have chosen PVM because itis convenient to use and exible to scale the database system dynamically. Furthermore, PVMprovides a high degree of fault tolerance which is important to database systems, also. Onedrawback of PVM is the absence of di�erent access rights to the database stored in the UNIX �lesystem within one PVM program. Another drawback is the lack of shared memory to implementan e�cient database cache. Threads within PVM are desired to make the MIDAS implementationeasier and more e�cient.References[1] A. Geist et al.: PVM 3 User's Guide and Reference Manual. Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, May 1994[2] A. Listl, M. Pawlowski: Parallel Cache Management of a RDBMS. Technical Report SFB342/18/92, Technische Universitat Munchen, August 1992[3] A. Listl: Using Subpages for Coherency Control in Parallel Database Systems. In Proceedingsof PARLE'94, Athens, Greece, July 1994[4] G. Bozas et al.: Using PVM to implement a Parallel Database System. In Proc. of the 1stEuropean PVM Users Group Meeting, October 1994.[5] J. Leon, A.L. Fisher, P. Steenkiste: Fail-safe PVM: A portable package for distributed pro-gramming with transparent recovery. Technical report CMU-CS-93-124, School of ComputerScience, Carnegie Mellon University, 1993. 74

SEMPA:Software Engineering Methods for Parallel Scienti�c ApplicationsPeter Luksch, Ursula Maier, S. Rathmayer, Matthias WeidmannLehrstuhl fr Rechnertechnik und Rechnerorganisation / Parallelrechnerarchitektur(LRR-TUM)Institut fr InformatikTechnische Universitt MnchenD-80290 Mnchene-mail: fluksch, maier, maiers, weidmanng@informatik-tu.muenchen.deWWW: http://wwwbode.informatik.tu-muenchen.de/Tel.: (089)2105-8164; Fax: (089)2105-8232AbstractSEMPA is an interdisciplinary project that brings together researchers from computerscience, mechanical engineering and numerical mathematics. Its central objective is to de-velop new software engineering (SWE) methods for (distributed memory) parallel scienti�ccomputing.The parallelization of an industrial CFD software package (TASCow from ASC GmbH)will serve as the main test case for de�ning and evaluating these methods. A major concernin parallelizing TASCow is to achieve maximum portability, i.e. cover a large number oftarget systems ranging from (possibly heterogeneous) networks of workstations (NOWs) tomassively parallel systems (MPPs).In order to optimize utilization of NOWs, a resource management system is being designed,which runs parallel applications in batch mode. It keeps track of the resources that arenot claimed for interactive use and assigns them to the parallel applications waiting in thequeue. The individual tasks of the applications are dynamically reassigned as workstationsare claimed for interactive use and other workstations become idle.SEMPA is being funded by the BMBF (Federal Department of Education, Research andTechnology). The project has started in April 1995, and is scheduled for three years, with atotal sta� of six researchers. LRR-TUM is in charge of project management.1 MotivationIn many applications, uid simulations are required because experiments are either impossible(such as in the case of climate modeling) or are too expensive. Today, the main factor that limitsthe use of simulation is run-time. Only parallel processing together with e�cient numerical algo-rithms can achieve the performance that is necessary to enable more wide-spread use of simulation.Providing the necessary computational power will make simulations feasible in many areas wherethey would require unrealistic run-times today. In mechanical engineering, productivity can beconsiderably increased if ow simulations, which today have to be run as batch jobs overnight,could be run interactively from a CAD program.Parallel processing has developed successfully in the research area over the last years. Now,as there are standardized message passing interfaces, such as PVM [GBD+94], MPI [MPI94] etc.,portable software can be developed for a wide range of hardware platforms { from (heterogeneous)networks of workstations (NOWs) to high-end massively parallel systems (MPPs). Since evensmall companies usually have a number of workstations connected by a local area network (LAN),developing parallel software on a commercial basis is becoming an attractive option.However, experience has shown that software development for parallel systems still is much lessproductive than writing sequential programs. One reason for this is that there are no adequate75

Science

ASC

Advanced

Computer

Computing
GmbH

GENIAS

Engineering

GmbH

Mechanical

Mathematics
Numerical

Applied

Science

Computer
Scientific

Software

SEMPA - An Interdisciplinary Project of Academia and Industry

Academia Industry

Institut für
Computeranwendungen

ICA III

Tools: Debugging,
Performance Analysis,

Visualization,
interactive on-line control

Parallelization

Applications
3-D CFD Package

SFB 342 TP A1

DFG-SPP CFD
FORTWIHR

Batch Queueing
System

for NOW’s

CODINE

Uni Stuttgart

TASCflow
of Numerical

TU München
Lehrstuhl für

Rechnertechnik und
Rechnerorganisation

Color Code:
Projects, Products

Partners

Abbrev.: NOW = network of

SEMPA

UG

Adaptive Multi-
grid methods

Load balancing
at the application

level

workstations

LRR-TUM

Figure 1: partners involved in the projecttools for designing and analyzing parallel software. In addition, there are no software engineering(SWE) methods that address the problems related to parallelism such as synchronization issues,deadlocks and non-determinism. Finally, there is only very little support for the software engineerwho is faced with the problem of understanding and existing program in order to parallelize it forexecution on a distributed memory multiprocessor.2 PartnersSEMPA is a joint interdisciplinary project involving partners from industry and academia:LRR-TUM (Lehrstuhl fr Rechnertechnik und Rechnerorganisation, Institut fr Informatik, Tech-nische Universitt Mnchen). LRR-TUM is in charge of project management, and is doingresearch in the following areas of Computer Science:� multiprocessor architectures� tools for designing and analyzing parallel programs� parallel and distributed applications� distributed shared memory systemsFor more detailed information, see LRR-TUM's WWW home page(URL http://wwwbode.informatik.tu-muenchen.de/).76

Advanced Scienti�c Computing GmbH (ASC), Holzkirchen. ASC is developing and mar-keting the CFD simulation package TASCow which solves the Navier-Stokes equations in3d space. TASCow is used in many companies and universities for simulating ows in awide range of applications [TUG93, TUG94, TUG95].GENIAS Software GmbH, Neutraubling near Regensburg. The companymarkets a num-ber of software packages for NOWs and MPPs. They have developed the batch queuingsystem CODINE on NOWs, which will be the basis for the resource to be developed inSEMPA.Institut fr Computeranwendungen (ICA III), Universitt Stuttgart. ICA's main areas ofresearch in numerical mathematics are:� robust multi-grid methods for a wide range of problems including computational uiddynamics, ow in porous media and computational mechanics.� the software tool-box UG, which simpli�es the adaptive solution of partial di�erentialequations on unstructured meshes in two and three dimensions.� parallelization of the above-mentioned techniques which requires dynamic load migra-tion and dynamic load balancing on the application level.3 ObjectivesIn SEMPA, three major domains of research can be identi�ed:Software Engineering Methods. In parallel scienti�c computing, software engineers usuallyare faced with an existing program or with existing modules, typically written in FOR-TRAN77, which they are expected to parallelize for execution on a distributed memorymultiprocessors (NOW or MPP). Therefore the focus of SWE is on the following topics:Analysis of complex software systems. Before de�ning a concept for parallelizing anexisting program, one must gain a basic understanding of its main data and controlstructures. Performance analysis is necessary to �nd out the computationally intensivemodules.General Approaches to Parallelizing Scienti�c Computations. A generally acceptedapproach to parallelizing scienti�c applications is the SPMD model. While the SPMDapproach is very general, our objective is to de�ne additional approaches which arespeci�c to certain classes of scienti�c applications.Documentation standards. Standards are needed for documenting the sequential soft-ware, the parallelization concept and its implementation.Standards for program development. Guidelines have to be set up that de�ne the thestages of the development process: functional speci�cation, high level and detailed de-sign, implementation, test and veri�cation, documentation, and release. It is importantthat each stage of speci�cation and design is carefully reviewed before proceeding tothe next step.Portability. Parallel software design on a commercial basis requires programs to be avail-able for hardware platforms ranging from (low-end) NOWs to high performance MPPs.Portability does not only guarantee a large market to the software vendor, it also savesthe users' investment into model design as they move to more powerful hardware plat-forms. Besides being independent from speci�c hardware platforms, the software shouldbe designed to be as independent as possible from a speci�c message passing library,because it is not yet clear which interface will be the standard in the future and becausefor some MPPs considerable performance can be gained by porting the software to thevendor's native library. 77

Modularity and Re-usability. Maintenance of a large software package produced by mul-tiple groups requires a modular structure, where modules interact via de�ned interfaces.Since FORTRAN77 o�ers only minimal support for modular design, newer object ori-ented languages will be considered.Concurrent Software Engineering. The design of parallel scienti�c software typicallyinvolves several groups of programmers from di�erent disciplines and institutions work-ing in parallel on di�erent parts of the software system.Parallelization of TASCow. An enhanced version of the 3d CFD package marketed by ASC isbeing parallelized for execution on NOWs and MPPs. It is the major test case for developingand evaluating our SWE methods.TASCow solves the Navier-Stokes equation in 3d space on unstructured grids using a �-nite volume discretization and an algebraic multi-grid solver. The program is written inFORTRAN77 and has about 113,000 lines of code.Load Balancing and Resource Management. A resource manager is being developed, whichbasically is a batch queuing system for parallel applications running on NOWs. The indi-vidual processes of the application are dynamically assigned to available processors (i.e.workstations). The resource manager will support load balancing by providing appropriateresource usage information and a mechanism to migrate processes from one workstation toanother.Figure 2 illustrates the interactions between these domains. In this paper, we will focus on thearea of SWE methods.4 Software Engineering in SEMPABeing an interdisciplinary project of partners from academia and industry, the emphasis of SEMPAis on putting into practice the methods that are de�ned in the project. The experience gained fromapplying them to the parallelization of TASCow will help to improve our methods. TASCowis particularly well suited as a test case, because it is a complex software system which implementsstate-of-the-art methods in CFD simulation and because the sequential program has been designedbased on SWE methods used in industry.SEMPA focuses on the task of designing parallel scienti�c software, either from existing (se-quential) programs or by integrating existing software modules into a new parallel program. Asmentioned in section 3, portability and modularity are central design objectives. Given this back-ground, we have to consider FORTRAN77, the language in which most scienti�c software is writ-ten, although its support for modularity is minimal. An important objective is to demonstratepractical ways towards using object oriented languages in software systems for which completere-implementation is unfeasible for reasons of manpower.The parallelization paradigm adopted in SEMPA is message passing, because message passingcurrently is the generally accepted standard for programming MPPs and NOWs, and because it isthe only paradigm for which e�cient implementations are available for a wide range of hardwareplatforms.The following aspects of SEMPA are of particular relevance to software engineering for paralleland distributed systems:Analysis of complex software systems. In SEMPA, two methods for acquiring the knowledgenecessary to set up a parallelization concept are considered:\human" analysis: The authors of the sequential program (mostly engineers) provide theinformation needed by computer scientists (who do the parallelization). This is usuallyan interdisciplinary e�ort requiring several iterations to overcome mutual misconcep-tions. 78

model
programming
standardized

architecture
virtual multiprocessor

interface
application

support development of

parallel SW
re-usable
modular, and

sc
ie

nt
ific

 a
pp

lic
at

io
ns

portablity: virtual multiprocessor

code modularity and re-usability

architecture + standardized

Software Engineering
Methods

programmin model

documentation standards
concurrent software development

efficient, portable,

MPP: Massively Parallel Processor
NOW: Network of Workstations

dynamic loadbalancing

concepts for parallelizing

batch execution of parallel
applications on NOW’s

optimize utilization of resources
in a NOW dynamically

Navier-Stokes equations

speed (CPU power)

increase performance
with respect to

modelling complexity
(memory)

a 3-D CFD code solving the
Parallelization of TASCflow Load Balancing and

Resource Management

dynamic resource management
for parallel applications in CODINE

target HW: NOWs and MPPs

ParTASCflow
Prototype

ParCODINE
Prototype

ch
ar

ac
te

ris
tic

s
of

 a
 "t

yp
ica

l"

pr
ov

id
e

a
re

al
 w

or
ld

 te
st

 c
as

e

scientific applications

concepts for load balancing

and resource m
anagem

ent

load balancing and
resource management
services

real world test case

Figure 2: project objectivestool supported analysis: Analysis of data and control dependencies with the help of in-teractive parallelization tools.Design and Analysis Tools. A survey conducted by C.M. Pancake [PC94, CPW94] has shownthat tools for programming multiprocessors often prove to be inadequate in practice, be-cause on the one hand tool developers lack the necessary understanding of the requirementsthat developers of complex \real world" applications have, while on the other hand mostapplication programmers refuse to spend much e�ort in trying to use tools.Since at LRR-TUM there is a large research group designing tools for parallel systems(The Tool-Set [LW95]), SEMPA (and other projects in the research group \parallel anddistributed applications") can help to improve the exchange of information and experiencebetween tool designers and tools users.Resource management in NOWs: E�cient resource management is of particular interest forusers running large simulations on NOWs, since it provides a low-cost entry to parallelprocessing especially to small to medium-size companies or research institutions.The result of SEMPA will be 79

� a collection of SWE methods that have been approved in practice,� a prototypical implementation of the parallel version of TASCow,� a prototype of a resource and load manager for batch execution of parallel applications.Our emphasis in SWE is on practical applicability of the proposed methods. Starting with SWEguidelines that have been approved in practice, we develop and integrate new methods, which aremotivated by our experience or by concepts published in literature. Our approach to SWE thusis evolutionary in that, starting with an approved set of methods, each step towards an improvedmethodology is evaluated immediately upon implementation.We are interested in cooperation with other SWE projects, especially if their approach to SWEstarts from the theory side.Upon completion of the research project, our industrial partners intend to develop further theprototypes of the parallel CFD package and the resource manager towards products that can bemarketed commercially.5 Progress ReportThe project has started in April, 1995. Up-to-date information about progress as well as project re-ports and publications related to SEMPA are available via WWW(URL http://wwwbode.informatik.tu-muenchen.de/parallelrechner/applications/sempa/). In thesubsequent section, we summarize the results achieved so far.5.1 Analyzing the sequential programThe �rst step in parallelizing TASCow has been to acquire the necessary understanding of thealgorithms it uses and their implementation. ASC and LRR-TUM have been organizing a seriesof meetings, covering the following topics (in that sequence):1. basics of CFD, i.e. the governing equations and their physical interpretation, discretizationmethods, and numerical methods for solving the system of linear equations that results fromdiscretization.2. a global overview of the code structure and the main data structures.3. a more detailed review of TASCow's main modules, stepping through each module sub-routine by subroutine.Each meeting started with a presentation by ASC, which was followed by a discussion. AtLRR-TUM, we documented our view of what we had learned in a meeting in form of an internalreport, which then was reviewed by ASC. This procedure has proved to be an e�cient way forknow-how transfer between groups from di�erent disciplines, since it has helped to identify and�x sources of misconception very early and quickly improved our understanding of each other'sterminology and point of view.As a �nal step, a framework has to be set up that de�nes a standard for documenting thedesign of the sequential program from the computer science point of view.5.2 A Concept for Parallelizing TASCowBased on the insight gained from analyzing the program structure, a parallelization concept hasbeen de�ned and documented [Luk95]. SEMPA follows a two-level concept of parallelism.On the top level the SPMD model is used. The sequential algorithm1 is replicated in multipleprocesses each of which operates on a partition of the problem description. An additional master1augmented by additional code for communication and synchronization80

process is used for program set up and for doing I/O. Using parallel I/O systems, which areavailable for a number of platforms, is being considered, too.Partitioning is done node-based, i.e. the nodes of the (unstructured) grid are divided intodisjoint sets. We use a public domain graph partitioning package (MeTiS [MET95]) for assigningnodes to partitions.Below the SPMD level of parallelism, parallelization is considered at the level of processingnodes. Each replicated worker of the SPMD model can be further parallelized into a number ofconcurrent threads (light-weight processes having access to shared memory). This second level ofparallelism can make use of multiple CPUs per processing node as they are available in new MPPsor workstations.5.3 Interactive and automatic Parallelization ToolsThe parallelization of an existing program, especially if it is complex and has been developed bymany engineers over a long time, is a quite di�cult and error-prone task.Research projects as well as commercial e�orts during the last years have been dealing withthis problem. Most available tools are source-code analyzers for FORTRAN77 programs whichparallelize according to the SPMD model. One of those tools has already been subject of inves-tigation within SEMPA. It is the quite sophisticated interactive an automatic parallelization toolFORGE [Res95]. There the most signi�cant loops are identi�ed by either using pro�ling infor-mation, or checking the code for the deepest loop nestings. Once the loops have been chosen,the arrays referenced inside of them are partitioned and distributed according to the partitions.The parallel processes then run the same program but only on a subset of the partitioned datastructures following the so-called owner computes rule.The advantage of these tools is that the user can get a better understanding of the programthat he is about to parallelize. He also is taken o� the burden to explicitly program messagepassing code. On the other hand he anyhow has to have a good understanding of how messagepassing really works because the tools are not yet at a point where they can produce e�cient code.Neither can they really work on very complex packages as for example TASCow.5.4 New LanguagesMoving from FORTRAN77 to newer programming languages meets the requirements of moderncomputer architectures, programming paradigms, and software engineering aspects. Fortran 90 forexample o�ers not only more complex data structures and data encapsulation but also provideslanguage constructs (array operations) for concurrent execution. The latest of all FORTRANevolutions, High Performance Fortran, additionally has constructs for explicit data distributionas well as constructs for expressing concurrency.FORTRAN77 compilers produce fast object code and numerous numerical programming li-braries are available due to its long time of existence. Object oriented design is still uncommonin scienti�c computing because the compilers (e.g. for C++) do not yet generate optimized codethat is comparable to the one generated by FORTRAN77 compilers. However, the fundamentalideas of object oriented programming { objects, class-hierarchies and polymorphism { are of greatadvantage to modern software engineering and can help to overcome the gap between the codedevelopment and its concept.In SEMPA, we have decided that rewriting TASCow as a whole in an object-oriented languageis infeasible due to manpower restrictions. Instead, we have selected a module of reasonable size forimplementation in Fortran 90, C++ (and possibly other languages) to demonstrate the integrata-bility of object-oriented techniques to a scienti�c application, and to evaluate the appropriatenessof these languages for our purposes. 81

References[CPW94] Curtis Cook, Cherri M. Pancake, and Rebecca Walpole. Supercomputing'93:Parallel User Survey: Response Summary. In \Proceedings of Scalable High Perfor-mance Conference" (May 1994).[GBD+94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, RobertManchek, and Vaidy Sunderam. \PVM: Parallel Virtual Machine { A Users'Guide and Tutorial for Networked Parallel Computing". MIT Press (1994). www:http://www.netlib.org/pvm3/book/pvm-book.html.[Luk95] Peter Luksch. A Concept for Parallelizing TASCow. SEMPA-Report, Technis-che Universit�at M�unchen,Institut f�ur Informatik (September 1995). www: //http:/wwwbode.informatik.tu-muenchen.de/parallelrechner/applications/sempa/Reports/ws-aug-95.ps. draft ver-sion.[LW95] Thomas Ludwig and Roland Wism�uller. The Tool-Set. SFB 342{Bericht,Technische Universit�at M�unchen, Institut f�ur Informatik (1995). to appear.[MET95] \METIS: Unstructured Graph Partitioning and Sparae Matrix Ordering System".George Karypis and Vipin Kumar, University of Minnesota (1995).[MPI94] MPI: A Message Passing Interface Standard. Technical report University of Tennessee,Knoxville, Message Passing Interface Forum (May 1994).[PC94] C.M. Pancake and C. Cook. What Users Need in Parallel Tools Support: Survey,Results and Analysis. In \Proceedings of Scalable High Performance Conference" (May1994).[Res95] Applied Parallel Research. \The FORGE Product Set". Applied Parallel Re-search Inc., 550 Main Street, Placerville, CA 95667 (February 1995).[TUG93] 1st TASCow User Conference { Presentations. Tech. Report ASCG/TR-93-03, Ad-vanced Scienti�c Computing GmbH, Holzkirchen (1993).[TUG94] 2nd TASCow User Conference { Presentations. Tech. Report ASCG/TR-94-04, Ad-vanced Scienti�c Computing GmbH, Taufkirchen (July 1994).[TUG95] 3rd TASCow User Conference { Presentations. Tech. Report ASCG/TR-95-04, Ad-vanced Scienti�c Computing GmbH, Aying (May 1995).
82

Parallel Communication on Workstation Networks withComplex Topologies yAlexander Pfa�ngerInstitut f�ur InformatikTechnische Universit�at M�unchenArcisstra�e 21, D-80290 M�unchen 21 IntroductionIn the �eld of parallel high performance computing, there is a trend towards workstation clusters,which are usually interconnected via Ethernet buses. Networked workstations are already availableat many sites and typically their computing capacity is not fully exploited. Therefore, they o�era cost-e�ective alternative to dedicated parallel computers.Recently, a number of machine independent parallel platforms like MPI, PVM, and LINDAhas been developed. They support the distributed programming of a workstation cluster. Thesesystems are now widely used in parallel numerical computing.With increasing demand for communication between the parallel tasks, however, the bus-likenature of the Ethernet soon becomes a bottleneck. Hence, only few computing nodes can be usede�ciently. The system is not scalable with respect to the number of processors.By introducing additional buses and a more complex interconnection topology of the work-stations, the communication bandwidth can be signi�cantly improved. The required hardwareinvestment are just some additional LAN adapter cards and Ethernet cables. Depending on thenetwork topology, pairs of workstations may now communicate in parallel.In this paper we will describe two network topologies which both need only two I/O-portsper workstation. In section 2 we will sketch out a tree-like structure which is optimally adaptedto divide-and-conquer algorithms. In section 3 we will present a more general hypercube-liketopology.2 A Hierarchical TopologyA common model for parallel computing is the divide-and-conquer paradigm: a task is split intotwo (or more) subtasks that can be executed in parallel. Each of these subtasks can be divided insubsubtasks and so on.This leads to a tree-like dependence graph. In the case of exactly two subtasks per node weobtain a binary tree. This graph also reects the communication scheme of the parallel tasks. Atask needs to talk only to its parent and its children.When we consider the distribution of the jobs onto the computing nodes, we get a slightlydi�erent graph. The parallel algorithm starts at node one. At the point of division two new tasksare created, which should be placed at di�erent nodes. Since the parent is idle when the twosubjobs are calculating, one subtask can remain on the initial node. This leads to a "squashed"binary tree. Figure 1 shows a divide-and-conquer graph with 16 computing nodes. Each left childof a node is identi�ed with its parent.We will discuss the communication pattern in more detail. Most importantly, we must distin-guish between the cheap communication within a node and the expensive external communicationyThis work was supported by the Siemens AG. 83

1 2 43 5 96 7 8 10 11 12 13 14

15

16

1

1

1

1

3 5

5

7 9

9

9

11 13

13

15Figure 1: Binary tree with 16 computing nodes: dependence and communicationgraph of a paralleldivide-and-conquer application. Each interior node is identi�ed with its leftmost descendent.between di�erent nodes. The �rst one arises between parent and left child in Figure 1. Only thecommunication of each parent with its right child is external.If we assume that all tasks at one layer of the tree need quite the same computation time,there are no simultaneous communications at di�erent (edge-) levels of the tree. Therefore, it isdesirable that all communications on one level are done in parallel, i.e. on di�erent buses. Theproblem is to �nd a minimal bus topology in which at each level all nodes can communicate withtheir right child via di�erent buses.
1

2

4

3 5 9

6 7

8

10 11

12

13

14 15

16Figure 2: Tree-like Ethernet topology: all communication between parent and (right) child at onelevel of Figure 1 can be done in parallel via di�erent buses.Of course, this could be achieved by a complete interconnection, where each node is connectedto any other node via a di�erent bus (or link). This would mean that for n processing elements84

30

40

50

60

70

80

90

100

110

120

1 2 4 8 16

t [
s]

no. processors

’single_bus’
’tree_topology’

Figure 3: ARESO runtimes on the single bus and the hierarchical tree-like topology.each node needs to have n�1 I/O-ports. But real hardware will always show a constant maximum.In this paper we will examine topologies where only two I/O ports per workstation are needed.Figure 2 shows an appropriate tree-like solution with 8 buses that is obviously minimal inrespect to the number of buses (we have 8 parallel communication at the deepest level). Itshierarchical structure reects the recursive de�nition of the corresponding squashed binary tree.The next higher network, which includes 32 nodes and 16 buses, would be constructed asfollows: take a copy of the 16-node-network, add 16 to all of its node labels, and put the leastlabeled node (17 here) with an additional link into the bus that connects 1 and 2. This topologycorresponds perfectly to the complete squashed binary tree with 32 leaf nodes.In general, for a complete binary tree with 2d leaves the corresponding bus network wouldconsist of 2d computing nodes and 2d�1 buses. Each node is connected to at most 2 buses andeach bus is assigned to at most d+ 1 nodes.For each level in the binary tree all data transfer at that level from parent to child (or viceversa) can be done in parallel. This is a prerequisite of scalability.Numerical ApplicationsThe architecture shown in Figure 2 has been implemented with 16 HP-720 workstations. Eachodd-numbered node has been provided with an additional LAN adapter card. Node 1 is used asthe gateway to outside networks.On this installation several applications with a divide and conquer strategy have been paral-lelized. Besides the complex chip placement algorithm GORDIAN [5] this is the parallel FiniteElement application ARESO [4, 6] which we will describe somewhat more in detail below.ARESO is a solver for partial di�erential equations that is based on domain decompositionand recursive substructuring. In the case of a square domain ARESO starts on top level with acertain problem size N , typically a power of 2, that describes the number of grid points on theborderlines.When the problem is split up in two parts, the size decreases by the factor 1=p2. (Moreaccurately, N is halved every second step.) At level l we, therefore, get Nl = N=p2l. Thecomputation time per node on level l is of order O(N3l) while the communication amount per85

node is O(N2l). This means that the message size per node decreases with increasing level l, butthe number of communicating nodes increases. With a single Ethernet this leads to high collisionrates.Figure 3 compares the runtime of ARESO for a �xed problem size on the single bus and onthe tree topology. At 4 nodes the tree structure has only a slight advantage over the single bus.But involving 8 and 16 computers the single bus is overloaded so that no speed up is obtained.The runtime is even longer than for 4 nodes. For the tree topology, in contrast, the algorithm stillshows a speed up.It is interesting that the advantage of multiple buses is not only restricted to divide-and-conquer algorithms. In [8] the runtime behavior of a parallel unstructured matrix applicationon the di�erent topologies was compared. It concerns the distributed solution of a big sparseblock matrix system. The matrix is split into di�erent block rows that are distributed among theprocessors. Eliminated rows must be transferred to those processors who need the speci�c rowfor elimination of one of its own rows. A detailed discussion of the numerical problem and thealgorithm can be found in [7, 6, 8].Figure 4 shows the runtimes on the two topologies for di�erent block sizes. Again, the multiplebus system is signi�cantly faster than the single bus.
050100150200250300350400450
0 20 40 60 80 100t[s] block size

tree topology �
� � � � �single bus

Figure 4: Runtime comparison of a distributed block matrix solver on the single bus and on thehierarchical tree network.Nevertheless, the introduced tree topology is not very convenient for unstructured dependencegraphs. We will sketch out a better solution in the next section.3 The Dual HypercubeThe tree-like topology in the previous section is tailored to applications where the process graphis a complete binary tree that arises from the divide-and-conquer paradigm. However, for moregeneral applications several inherent disadvantages and di�culties may arise.If the dependence graph is less structured, e.g. even for divide-and-conquer with adaptivity, itis not clear how the processes should be mapped to the tree. Simple and convenient embeddingschemes may result in a large amount of long-distance communication and an overload of the toplevel bus. 86

Another problem is fault tolerance. If workstation no. 9 in Figure 2 crashes, the half of the 16computers is unreachable. A more symmetric topology with several communication paths betweendi�erent nodes seems to be more comfortable.A general topology would be the hypercube. But two main problems arise. First, the directlinks between two nodes do not �t the bus-like nature of Ethernet. Secondly, we would need alogarithmic number of connections per workstation. In practice only a �xed number of connectionsper workstation is supported.Both di�culties vanish if we exchange the roles of nodes and edges in the hypercube graph.Then, each edge represents a computing node with exactly two connections to buses, which are intheir turn represented by the graph vertices. Because we changed the role of nodes and edges, wecall this family of topologies dual hypercube. Figure 5 shows an example of dimension d = 3.
1

2

3

4

5

6 7

12

11

10

9

8

Figure 5: Dual hypercube of dimension 3.For dimension d we get d2d�1 nodes and 2d buses. Thus, we have d=2 as many nodes as buses,enough to provide a logarithmic diameter d and high throughput of the network. Since d is onlythe logarithm of the graph size, the amount of communication in each bus is expected to increaseslowly. Each bus is assigned to exactly d workstations and each node needs to have only twoI/O-ports. Some other basic properties can be found in [1, 2] where similar types of graphs wereintroduced.Due to its proximity to the hypercube and cube-connected-cycles, the dual hypercube seemsto be well suited for a broad class of algorithms.3.1 Hardware Realization and Numerical TestsBy introducing four additional buses in the former tree-like network we could realize the 3-dimensional dual hypercube with 12 of the 16 workstations. Using di�erent routing mechanismswe could directly compare the performance of the two distinct topologies.While the routing on the tree could be done statically by standard UNIX software, it was anontrivial issue to realize a reasonable routing scheme for the cube. Dynamic routers like gateddo not allow to change the path from one node to another in short intervals (e.g. between twomessages or packets). Parallel platforms like PVM don't support multiple paths between twoworkstations at all. 87

0

50

100

150

200

250

300

350

400

30 40 50 60 70 80 90 100

t[s
]

block size

Dualhypercube
Tree Topology

Figure 6: Runtimes of the sparse block matrix solver on the dual hypercube and the hierarchicaltopology.Therefore, a new routing daemon MRouter [3] (based on the TCP protocol) was developed,which runs a random path strategy: before each message is sent from one node to another theroute is determined uniformly random among all optimal (i.e. shortest) paths.We adapted the sparse block matrix solver mentioned in section 2 to MRouter and comparedit to the PVM version on the tree-like network using the 12 HP-720 workstations that belong tothe three-dimensional dual hypercube. The runtime behavior on the di�erent topologies is shownin Figure 6.At low block sizes (up to 75) the version on the tree-like topology is faster due to the minoroverhead of the UDP protocol used by PVM. When the size of the matrix blocks grows, however,the hypercubic network is more scalable.4 ConclusionsWe presented two classes of bus topologies for workstation clusters. The �rst one, a hierarchicaltree-like network, is shown to be best suited for divide-and-conquer parallelization. This theoreticalconsideration is con�rmed by real applications running on 16 HP-720 computers connected viaEthernet cables.The second class of topologies, the dual hypercube, is better suited for more general algorithmsrequiring more exibility. This includes adaptive divide-and-conquer applications and totallyunstructured (random) communication dependencies.References[1] D.P. Agrawal and V.K. Janakiram. Evaluating the Performance of Multicomputer Con�gura-tions. Computers, May 1986.[2] L.N. Bhuyan and D.P. Agrawal. Generalized Hypercube and Hyperbus Structures for a Com-puter Network. IEEE Transactions on Computers, April 1984.[3] M. Eckart. Parallelisierung auf hypercubeartigen Workstationnetzen. Master's thesis, Tech-nische Universit�at M�unchen, 1994. 88

[4] R. H�uttl and M. Schneider. Parallel Adaptive Numerical Simulation. SFB-Bericht 342/01/94A, Technische Universit�at M�unchen, 1994.[5] H. Regler and U. R�ude. Layout optimization with algebraic multigrid methods (AMG). InProceedings of the Sixth Copper Mountain Conference on Multigrid Methods, Copper Mountain,April 4-9, 1993, Conference Publication. NASA, 1993.[6] M. Schneider. Verteilte adaptive numerische Simulation auf der Basis der Finite-Elemente-Methode. PhD thesis, Technische Universit�at M�unchen, 1994.[7] M. Schneider, U. Wever, and Q. Zheng. Solving large and sparse linear equations in analogcircuit simulation on a cluster of workstations. The Computer Journal, 36(8):685{689, 1993.[8] B. Weininger. L�osen gro�er, d�unnbesetzter linearer Gleichungssysteme auf einem Netz vonWorkstations. Master's thesis, Technische Universit�at M�unchen, 1994.

89

SFB 342: Methoden und Werkzeuge f�ur die Nutzung parallelerRechnerarchitekturenbisher erschienen :Reihe A342/1/90 A Robert Gold, Walter Vogler: Quality Criteria for Partial OrderSemantics of Place/Transition-Nets, Januar 1990342/2/90 A Reinhard F�o�meier: Die Rolle der Lastverteilung bei der nu-merischen Parallelprogrammierung, Februar 1990342/3/90 A Klaus-J�orn Lange, Peter Rossmanith: Two Results on Unambi-guous Circuits, Februar 1990342/4/90 A Michael Griebel: Zur L�osung von Finite-Di�erenzen- und Finite-Element-Gleichungen mittels der Hierarchischen Transformations-Mehrgitter-Methode342/5/90 A Reinhold Letz, Johann Schumann, Stephan Bayerl, Wolfgang Bibel:SETHEO: A High-Performance Theorem Prover342/6/90 A Johann Schumann, Reinhold Letz: PARTHEO: A High Perfor-mance Parallel Theorem Prover342/7/90 A Johann Schumann, Norbert Trapp, Martin van der Koelen:SETHEO/PARTHEO Users Manual342/8/90 A Christian Suttner, Wolfgang Ertel: Using Connectionist Networksfor Guiding the Search of a Theorem Prover342/9/90 A Hans-J�org Beier, Thomas Bemmerl, Arndt Bode, Hubert Ertl, OlavHansen, Josef Haunerdinger, Paul Hofstetter, Jaroslav Kremenek,Robert Lindhof, Thomas Ludwig, Peter Luksch, Thomas Treml:TOPSYS, Tools for Parallel Systems (Artikelsammlung)342/10/90 A Walter Vogler: Bisimulation and Action Re�nement342/11/90 A J�org Desel, Javier Esparza: Reachability in Reversible Free- ChoiceSystems342/12/90 A Rob van Glabbeek, Ursula Goltz: Equivalences and Re�nement342/13/90 A Rob van Glabbeek: The Linear Time - Branching Time Spectrum342/14/90 A Johannes Bauer, Thomas Bemmerl, Thomas Treml: Leistungsanal-yse von verteilten Beobachtungs- und Bewertungswerkzeugen342/15/90 A Peter Rossmanith: The Owner Concept for PRAMs

Reihe A342/16/90 A G. B�ockle, S. Trosch: A Simulator for VLIW-Architectures342/17/90 A P. Slavkovsky, U. R�ude: Schnellere Berechnung klassischer Matrix-Multiplikationen342/18/90 A Christoph Zenger: SPARSE GRIDS342/19/90 A Michael Griebel, Michael Schneider, Christoph Zenger: A combi-nation technique for the solution of sparse grid problems342/20/90 A Michael Griebel: A Parallelizable and Vectorizable Multi- Level-Algorithm on Sparse Grids342/21/90 A V. Diekert, E. Ochmanski, K. Reinhardt: On conuent semi-commutations-decidability and complexity results342/22/90 A Manfred Broy, Claus Dendorfer: Functional Modelling of Operat-ing System Structures by Timed Higher Order Stream ProcessingFunctions342/23/90 A Rob van Glabbeek, Ursula Goltz: A Deadlock-sensitive Congruencefor Action Re�nement342/24/90 A Manfred Broy: On the Design and Veri�cation of a Simple Dis-tributed Spanning Tree Algorithm342/25/90 A Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, PeterLuksch, Roland Wism�uller: TOPSYS - Tools for Parallel Systems(User's Overview and User's Manuals)342/26/90 A Thomas Bemmerl, Arndt Bode, Thomas Ludwig, Stefan Tritscher:MMK - Multiprocessor Multitasking Kernel (User's Guide andUser's Reference Manual)342/27/90 A Wolfgang Ertel: Random Competition: A Simple, but E�cientMethod for Parallelizing Inference Systems342/28/90 A Rob van Glabbeek, Frits Vaandrager: Modular Speci�cation of Pro-cess Algebras342/29/90 A Rob van Glabbeek, Peter Weijland: Branching Time and Abstrac-tion in Bisimulation Semantics342/30/90 A Michael Griebel: Parallel Multigrid Methods on Sparse Grids342/31/90 A Rolf Niedermeier, Peter Rossmanith: Unambiguous Simulations ofAuxiliary Pushdown Automata and Circuits342/32/90 A Inga Niepel, Peter Rossmanith: Uniform Circuits and ExclusiveRead PRAMs342/33/90 A Dr. Hermann Hellwagner: A Survey of Virtually Shared MemorySchemes342/1/91 A Walter Vogler: Is Partial Order Semantics Necessary for ActionRe�nement?342/2/91 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Rainer Weber:Characterizing the Behaviour of Reactive Systems by Trace Sets342/3/91 A Ulrich Furbach, Christian Suttner, Bertram Fronh�ofer: MassivelyParallel Inference Systems

Reihe A342/4/91 A Rudolf Bayer: Non-deterministic Computing, Transactions and Re-cursive Atomicity342/5/91 A Robert Gold: Dataow semantics for Petri nets342/6/91 A A. Heise; C. Dimitrovici: Transformation und Komposition vonP/T-Netzen unter Erhaltung wesentlicher Eigenschaften342/7/91 A Walter Vogler: Asynchronous Communication of Petri Nets and theRe�nement of Transitions342/8/91 A Walter Vogler: Generalized OM-Bisimulation342/9/91 A Christoph Zenger, Klaus Hallatschek: Fouriertransformation aufd�unnen Gittern mit hierarchischen Basen342/10/91 A Erwin Loibl, Hans Obermaier, Markus Pawlowski: Towards Paral-lelism in a Relational Database System342/11/91 A Michael Werner: Implementierung von Algorithmen zur Kompak-ti�zierung von Programmen f�ur VLIW-Architekturen342/12/91 A Reiner M�uller: Implementierung von Algorithmen zur Optimierungvon Schleifen mit Hilfe von Software-Pipelining Techniken342/13/91 A Sally Baker, Hans-J�org Beier, Thomas Bemmerl, Arndt Bode, Hu-bert Ertl, Udo Graf, Olav Hansen, Josef Haunerdinger, Paul Hof-stetter, Rainer Kn�odlseder, Jaroslav Kremenek, Siegfried Langen-buch, Robert Lindhof, Thomas Ludwig, Peter Luksch, Roy Milner,Bernhard Ries, Thomas Treml: TOPSYS - Tools for Parallel Sys-tems (Artikelsammlung); 2., erweiterte Auage342/14/91 A Michael Griebel: The combination technique for the sparse gridsolution of PDE's on multiprocessor machines342/15/91 A Thomas F. Gritzner, Manfred Broy: A Link Between Process Al-gebras and Abstract Relation Algebras?342/16/91 A Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen,Thomas Treml, Roland Wism�uller: The Design and Implementa-tion of TOPSYS342/17/91 A Ulrich Furbach: Answers for disjunctive logic programs342/18/91 A Ulrich Furbach: Splitting as a source of parallelism in disjunctivelogic programs342/19/91 A Gerhard W. Zumbusch: Adaptive parallele Multilevel-Methodenzur L�osung elliptischer Randwertprobleme342/20/91 A M. Jobmann, J. Schumann: Modelling and Performance Analysisof a Parallel Theorem Prover342/21/91 A Hans-Joachim Bungartz: An Adaptive Poisson Solver Using Hier-archical Bases and Sparse Grids342/22/91 A Wolfgang Ertel, Theodor Gemenis, Johann M. Ph. Schumann,Christian B. Suttner, Rainer Weber, Zongyan Qiu: Formalisms andLanguages for Specifying Parallel Inference Systems342/23/91 A Astrid Kiehn: Local and Global Causes

Reihe A342/24/91 A Johann M.Ph. Schumann: Parallelization of Inference Systems byusing an Abstract Machine342/25/91 A Eike Jessen: Speedup Analysis by Hierarchical Load Decomposition342/26/91 A Thomas F. Gritzner: A Simple Toy Example of a Distributed Sys-tem: On the Design of a Connecting Switch342/27/91 A Thomas Schnekenburger, Andreas Weininger, Michael Friedrich:Introduction to the Parallel and Distributed Programming Lan-guage ParMod-C342/28/91 A Claus Dendorfer: Funktionale Modellierung eines Postsystems342/29/91 A Michael Griebel: Multilevel algorithms considered as iterativemethods on inde�nite systems342/30/91 A W. Reisig: Parallel Composition of Liveness342/31/91 A Thomas Bemmerl, Christian Kasperbauer, Martin Mairandres,Bernhard Ries: Programming Tools for Distributed Multiproces-sor Computing Environments342/32/91 A Frank Le�ke: On constructive speci�cations of abstract data typesusing temporal logic342/1/92 A L. Kanal, C.B. Suttner (Editors): Informal Proceedings of theWorkshop on Parallel Processing for AI342/2/92 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs,Thomas F. Gritzner, Rainer Weber: The Design of DistributedSystems - An Introduction to FOCUS342/2-2/92 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs,Thomas F. Gritzner, Rainer Weber: The Design of Distributed Sys-tems - An Introduction to FOCUS - Revised Version (erschienen imJanuar 1993)342/3/92 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs,Thomas F. Gritzner, Rainer Weber: Summary of Case Studies inFOCUS - a Design Method for Distributed Systems342/4/92 A Claus Dendorfer, Rainer Weber: Development and Implementationof a Communication Protocol - An Exercise in FOCUS342/5/92 A Michael Friedrich: Sprachmittel und Werkzeuge zur Unterst�ut-zung paralleler und verteilter Programmierung342/6/92 A Thomas F. Gritzner: The Action Graph Model as a Link betweenAbstract Relation Algebras and Process-Algebraic Speci�cations342/7/92 A Sergei Gorlatch: Parallel Program Development for a RecursiveNumerical Algorithm: a Case Study342/8/92 A Henning Spruth, Georg Sigl, Frank Johannes: Parallel Algorithmsfor Slicing Based Final Placement342/9/92 A Herbert Bauer, Christian Sporrer, Thomas Krodel: On DistributedLogic Simulation Using Time Warp342/10/92 A H. Bungartz, M. Griebel, U. R�ude: Extrapolation, Combinationand Sparse Grid Techniques for Elliptic Boundary Value Problems

Reihe A342/11/92 A M. Griebel, W. Huber, U. R�ude, T. St�ortkuhl: The CombinationTechnique for Parallel Sparse-Grid-Preconditioning and -Solutionof PDEs on Multiprocessor Machines and Workstation Networks342/12/92 A Rolf Niedermeier, Peter Rossmanith: Optimal Parallel Algorithmsfor Computing Recursively De�ned Functions342/13/92 A Rainer Weber: Eine Methodik f�ur die formale Anforderungsspez-ifkation verteilter Systeme342/14/92 A Michael Griebel: Grid{ and point{oriented multilevel algorithms342/15/92 A M. Griebel, C. Zenger, S. Zimmer: Improved multilevel algorithmsfor full and sparse grid problems342/16/92 A J. Desel, D. Gomm, E. Kindler, B. Paech, R. Walter: Bausteineeines kompositionalen Beweiskalk�uls f�ur netzmodellierte Systeme342/17/92 A Frank Dederichs: Transformation verteilter Systeme: Von applika-tiven zu prozeduralen Darstellungen342/18/92 A Andreas Listl, Markus Pawlowski: Parallel Cache Management ofa RDBMS342/19/92 A Erwin Loibl, Markus Pawlowski, Christian Roth: PART: A ParallelRelational Toolbox as Basis for the Optimization and Interpretationof Parallel Queries342/20/92 A J�org Desel, Wolfgang Reisig: The Synthesis Problem of Petri Nets342/21/92 A Robert Balder, Christoph Zenger: The d-dimensional Helmholtzequation on sparse Grids342/22/92 A Ilko Michler: Neuronale Netzwerk-Paradigmen zum Erlernen vonHeuristiken342/23/92 A Wolfgang Reisig: Elements of a Temporal Logic. Coping withConcurrency342/24/92 A T. St�ortkuhl, Chr. Zenger, S. Zimmer: An asymptotic solution forthe singularity at the angular point of the lid driven cavity342/25/92 A Ekkart Kindler: Invariants, Compositionality and Substitution342/26/92 A Thomas Bonk, Ulrich R�ude: Performance Analysis and Optimiza-tion of Numerically Intensive Programs342/1/93 A M. Griebel, V. Thurner: The E�cient Solution of Fluid DynamicsProblems by the Combination Technique342/2/93 A Ketil St�len, Frank Dederichs, Rainer Weber: Assumption / Com-mitment Rules for Networks of Asynchronously CommunicatingAgents342/3/93 A Thomas Schnekenburger: A De�nition of E�ciency of Parallel Pro-grams in Multi-Tasking Environments342/4/93 A Hans-Joachim Bungartz, Michael Griebel, Dierk R�oschke,Christoph Zenger: A Proof of Convergence for the Combina-tion Technique for the Laplace Equation Using Tools of SymbolicComputation

Reihe A342/5/93 A Manfred Kunde, Rolf Niedermeier, Peter Rossmanith: Faster Sort-ing and Routing on Grids with Diagonals342/6/93 A Michael Griebel, Peter Oswald: Remarks on the Abstract Theoryof Additive and Multiplicative Schwarz Algorithms342/7/93 A Christian Sporrer, Herbert Bauer: Corolla Partitioning for Dis-tributed Logic Simulation of VLSI Circuits342/8/93 A Herbert Bauer, Christian Sporrer: Reducing Rollback Overhead inTime-Warp Based Distributed Simulation with Optimized Incre-mental State Saving342/9/93 A Peter Slavkovsky: The Visibility Problem for Single-Valued Surface(z = f(x,y)): The Analysis and the Parallelization of Algorithms342/10/93 A Ulrich R�ude: Multilevel, Extrapolation, and Sparse Grid Methods342/11/93 A Hans Regler, Ulrich R�ude: Layout Optimization with AlgebraicMultigrid Methods342/12/93 A Dieter Barnard, Angelika Mader: Model Checking for the ModalMu-Calculus using Gau� Elimination342/13/93 A Christoph Paum, Ulrich R�ude: Gau�' Adaptive Relaxation forthe Multilevel Solution of Partial Di�erential Equations on SparseGrids342/14/93 A Christoph Paum: Convergence of the Combination Technique forthe Finite Element Solution of Poisson's Equation342/15/93 A Michael Luby, Wolfgang Ertel: Optimal Parallelization of Las VegasAlgorithms342/16/93 A Hans-Joachim Bungartz, Michael Griebel, Dierk R�oschke,Christoph Zenger: Pointwise Convergence of the CombinationTechnique for Laplace's Equation342/17/93 A Georg Stellner, Matthias Schumann, Stefan Lamberts, ThomasLudwig, Arndt Bode, Martin Kiehl und Rainer Mehlhorn: Devel-oping Multicomputer Applications on Networks of WorkstationsUsing NXLib342/18/93 A Max Fuchs, Ketil St�len: Development of a Distributed Min/MaxComponent342/19/93 A Johann K. Obermaier: Recovery and Transaction Management inWrite-optimized Database Systems342/20/93 A Sergej Gorlatch: Deriving E�cient Parallel Programs by System-ating Coarsing Speci�cation Parallelism342/01/94 A Reiner H�uttl, Michael Schneider: Parallel Adaptive NumericalSimulation342/02/94 A Henning Spruth, Frank Johannes: Parallel Routing of VLSI Cir-cuits Based on Net Independency342/03/94 A Henning Spruth, Frank Johannes, Kurt Antreich: PHIroute: AParallel Hierarchical Sea-of-Gates Router

Reihe A342/04/94 A Martin Kiehl, Rainer Mehlhorn, Matthias Schumann: Parallel Mul-tiple Shooting for Optimal Control Problems Under NX/2342/05/94 A Christian Suttner, Christoph Goller, Peter Krauss, Klaus-J�ornLange, Ludwig Thomas, Thomas Schnekenburger: Heuristic Op-timization of Parallel Computations342/06/94 A Andreas Listl: Using Subpages for Cache Coherency Control inParallel Database Systems342/07/94 A Manfred Broy, Ketil St�len: Speci�cation and Re�nement of FiniteDataow Networks - a Relational Approach342/08/94 A Katharina Spies: Funktionale Spezi�kation eines Kommunika-tionsprotokolls342/09/94 A Peter A. Krauss: Applying a New Search Space PartitioningMethod to Parallel Test Generation for Sequential Circuits342/10/94 A Manfred Broy: A Functional Rephrasing of the Assumption/Com-mitment Speci�cation Style342/11/94 A Eckhardt Holz, Ketil St�len: An Attempt to Embed a RestrictedVersion of SDL as a Target Language in Focus342/12/94 A Christoph Paum: A Multi-Level-Algorithm for the Finite-Element-Solution of General Second Order Elliptic Di�erentialEquations on Adaptive Sparse Grids342/13/94 A Manfred Broy, Max Fuchs, Thomas F. Gritzner, Bernhard Sch�atz,Katharina Spies, Ketil St�len: Summary of Case Studies in FOCUS- a Design Method for Distributed Systems342/14/94 A Maximilian Fuchs: Technologieabh�angigkeit von Spezi�kationendigitaler Hardware342/15/94 A M. Griebel, P. Oswald: Tensor Product Type Subspace SplittingsAnd Multilevel Iterative Methods For Anisotropic Problems342/16/94 A Gheorghe S�tef�anescu: Algebra of Flownomials342/17/94 A Ketil St�len: A Re�nement Relation Supporting the Transitionfrom Unbounded to Bounded Communication Bu�ers342/18/94 A Michael Griebel, Tilman Neuhoe�er: A Domain-Oriented Multi-level Algorithm-Implementation and Parallelization342/19/94 A Michael Griebel, Walter Huber: Turbulence Simulation on SparseGrids Using the Combination Method342/20/94 A Johann Schumann: Using the Theorem Prover SETHEO for veri-fying the development of a Communication Protocol in FOCUS -A Case Study -342/01/95 A Hans-Joachim Bungartz: Higher Order Finite Elements on SparseGrids342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance ofParallel Computers: Order Statistics and Amdahl's Law342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of theKronecker Product of Identical Servers to a Reduced Product Space

Reihe A342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van deLiefvoort: Auto-Correlation of Lag-k For Customers DepartingFrom Semi-Markov Processes342/05/95 A Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids:Applications to Multi-dimensional Schr�odinger Problems342/06/95 A Maximilian Fuchs: Formal Design of a Model-N Counter342/07/95 A Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-crosystem Technology342/08/95 A Alexander Pfa�nger: Parallel Communication on Workstation Net-works with Complex Topologies342/09/95 A Ketil St�len: Assumption/Commitment Rules for Data-ow Net-works - with an Emphasis on Completeness342/10/95 A Ketil St�len, Max Fuchs: A Formal Method for Hardware/SoftwareCo-Design342/11/95 A Thomas Schnekenburger: The ALDY Load Distribution System342/12/95 A Javier Esparza, Stefan R�omer, Walter Vogler: An Improvement ofMcMillan's Unfolding Algorithm342/13/95 A Stephan Melzer, Javier Esparza: Checking System Properties viaInteger Programming342/14/95 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Point-to-Point Dataow Networks342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Com-pute the Concurrency Relation of Free-Choice Signal TransitionGraphs342/16/95 A Bernhard Sch�atz, Katharina Spies: Formale Syntax zur logischenKernsprache der Focus-Entwicklungsmethodik342/17/95 A Georg Stellner: Using CoCheck on a Network of Workstations342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wism�uller:Workshop on PVM, MPI, Tools and Applications

SFB 342 : Methoden und Werkzeuge f�ur die Nutzung parallelerRechnerarchitekturenReihe B342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Speci�cations342/2/90 B J�org Desel: On Abstraction of Nets342/3/90 B J�org Desel: Reduction and Design of Well-behaved Free-choiceSystems342/4/90 B Franz Abstreiter, Michael Friedrich, Hans-J�urgen Plewan: DasWerkzeug runtime zur Beobachtung verteilter und parallelerProgramme342/1/91 B Barbara Paech1: Concurrency as a Modality342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox-Anwenderbeschreibung342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop�uber Parallelisierung von Datenbanksystemen342/4/91 B Werner Pohlmann: A Limitation of Distributed SimulationMethods342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent VirtuallyShared Memory Scheme: Formal Speci�cation and Analysis342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Speci�cationand Correctness Proof of a Virtually Shared Memory Scheme342/7/91 B W. Reisig: Concurrent Temporal Logic342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-SupportChristian B. Suttner: Parallel Computation of Multiple Sets-of-Support342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-ware, Software, Anwendungen342/1/93 B Max Fuchs: Funktionale Spezi�kation einer Geschwindigkeits-regelung342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: EinLiteratur�uberblick342/1/94 B Andreas Listl; Thomas Schnekenburger; Michael Friedrich: ZumEntwurf eines Prototypen f�ur MIDAS

