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Heterogeneous Concurrent Computing with PVM: Recent
Developments and Future Trends *

V. S. Sunderam
Department of Math and Computer Science,

Emory University, Atlanta, GA 30322, U. S. A.

Abstract

Heterogeneous network-based distributed and parallel computing is gaining increasing ac-
ceptance as an alternative or complementary paradigm to multiprocessor-based parallel pro-
cessing as well as to conventional supercomputing. While algorithmic and programming
aspects of heterogeneous concurrent computing are similar to their parallel processing coun-
terparts, system issues, partitioning and scheduling, and performance aspects are significantly
different. In this paper, we discuss design and implementation issues in heterogeneous con-
current computing, in the context of the PVM system, a widely adopted software system
for network computing. In particular, we highlight the system level infrastructures that are
required, aspects of parallel algorithm development that most affect performance, system
capabilities and limitations, and tools and methodologies for effective computing in heteroge-
neous networked environments. We present recent developments and experiences in the PVM
project, and comment on ongoing and future work.

1 Introduction

We discuss parallel and distributed computing on networked heterogeneous environments. As used
in this paper, these terms, as well as “concurrent” computing, refer to the simultaneous execution
of the components of a single application on multiple processing elements. While this definition
might also apply to most other notions of parallel processing, we make a deliberate distinction,
to highlight certain attributes of the methodologies and systems discussed herein — namely loose
coupling, physical and logical independence of the processing elements, and heterogeneity. These
characteristics distinguish heterogeneous concurrent computing from traditional parallel process-
ing, normally performed on homogeneous, tightly coupled platforms which possess some degree of
physical independence but are logically coherent.

Concurrent computing, in various forms, is becoming increasingly popular as a methodology
for many classes of applications, particularly those in the high-performance and scientific com-
puting arenas. This is due to numerous benefits that accrue, both from the applications as well
as the systems perspectives. However, in order to fully exploit these advantages, a substantial
infrastructural framework is required — in the form of novel programming paradigms and models,
systems support, toolkits, and performance analysis and enhancement mechanisms. In this paper,
we focus on the latter aspects, namely the systems infrastructures, functionality, and performance
issues in concurrent computing.

Supported by NASA grant NAG 2-828, DoFE grant DE-FG05-91ER25105, NSF grant ASC-9214149, and German
Science Foundation grant SFB 342.



1.1 Heterogeneous, Networked, and Cluster Computing

One of the major goals of concurrent computing systems is to support heterogeneity. Hetero-
geneous computing refers to architectures, models, systems, and applications that comprise sub-
stantively different components, as well as to techniques and methodologies that address issues
that arise when computing in heterogeneous environments. While this definition encompasses nu-
merous systems, including reconfigurable architectures, mixed-mode arithmetic, special purpose
hardware, and even vector and input-output units, we restrict ourselves to systems that are com-
prised of networked, independent, general-purpose computers that may be used in a coherent and
unified manner. Thus, heterogeneous systems may consist of scalar, vector, parallel, and graph-
ics machines that are interconnected by one or more (types of) networks, and support one or
more programming environment/ operating system. In such environments, heterogeneity occurs
in several forms:

e System architecture - heterogeneous systems may consist of SIMD, MIMD), scalar, and vector
computers.

e Machine architecture - individual processing elements may differ in their instruction sets
and/or data representation.

e Machine configurations - even when processing elements are architecturally identical, differ-
ences such as clock speeds and memory contribute to heterogeneity.

e FErxternal influences - as heterogeneous systems are normally built in general purpose environ-
ments, external resource demands can (and often do) induce heterogeneity into processing
elements that are identical in architecture and configuration, and further, cause dynamic
variations in interconnection network capacity.

e Interconnection networks - may be optical or electrical, local or wide-area, high or low speed,
and may employ several different protocols.

e Software - from the infrastructure point of view, the underlying operating systems are often
different in heterogeneous systems; from the applications point of view, in addition to oper-
ating systems aspects, different programming models, languages, and support libraries are
available in heterogeneous systems.

Research in heterogeneous systems is in progress in several areas [1, 2] including applications,
paradigm development, mapping, scheduling, reconfiguration, etc., but the primary thrust has thus
far been in systems, methodologies, and toolkits. This latter thrust has been highly productive
and successful, with several systems in production-level use at hundreds of installations worldwide.
The body of this paper will discuss the PVM (Parallel Virtual Machine) system that has evolved
into a popular and effective methodology for heterogeneous concurrent computing.

It is worthwhile to note at this juncture, that heterogeneous processing is a superset of similar
methodologies referred to as network computing and cluster computing. While the nomenclature
is as yet informal, network computing may be considered equivalent to heterogeneous computing,
but with rather less emphasis on application heterogeneity, mapping, and task partitioning as-
pects. Cluster computing is even more restrictive, in that it generally refers to usually identical
workstation clusters that are used as a substitute for hardware multiprocessors. These classes of
frameworks are distinct from distributed systems, although several features and technologies are
common to both. Distributed systems are distinguished by their goal of maximal transparency, as
well as their emphasis on traditional operating systems issues such as filesystems, process manage-
ment, kernel services, etc. Figure 1 depicts the relationship between various concurrent computing
paradigms.
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Figure 1: Heterogeneous, Network, and Cluster Computing

1.2 Applications Perspective

From the point of view of application development, heterogeneous computing is attractive, since
it inherently supports function parallelism, with the added potential of executing subtasks on
best-suited architectures. It is well known that different types of algorithms are well matched to
different machine architectures and configurations, and at least in the abstract sense, heterogeneous
computing permits this matching to be realized, resulting in optimality in application execution
as well as in resource utilization. However, in practice, this scenario may be difficult to achieve
for reasons of availability, applicability, and the existence of appropriate mapping and scheduling
tools. Nevertheless, the concept is an attractive one and several research efforts are in progress in
this area [3, 4].

In this respect, many classes of applications that would benefit substantively from heteroge-
neous computing have been identified. For example, a critically important problem which is ideally
suited to heterogeneous computing is is global climate modeling. Simulation of the global climate
is a particularly difficult challenge because of the wide range of time and space scales governing
the behavior of the atmosphere, the oceans, and the surface. Parallel GCM codes require dis-
tinct component modules representing the atmosphere, ocean and surface and process modules
representing phenomena like radiation and convection. Sampling, updating and manipulating this
data requires scalar, vector, MIMD and SIMD paradigms, many of which can be performed con-
currently. Another application domain that could exploit heterogeneous computing is computer
vision. Vision problems generally require processing at 3 levels: high, medium and low. Low-level
and some medium-level vision tasks often involve regular data flow and iconic operations. This
type of computation is well-matched to mesh-connected SIMD machines. Medium-grained MIMD
machines are more suitable for various high level and some medium level vision tasks which are
communication-intensive and in which the flow of data is not regular. Coarse-grained MIMD ma-
chines are best matched for high-level vision tasks such as Image understanding/recognition and
symbolic processing.

As previously mentioned however, the above aspect of heterogeneous concurrent computing
is still in its infancy. Proof-of-concept research and experiments have demonstrated the viability
of exploiting application heterogeneity, and many others are evolving. On the other hand, the
systems aspect has matured significantly; to the extent that robust environments are now available
for production execution of traditional parallel applications while providing stable testbeds for
the evolving, truly heterogeneous, applications. We discuss the systems facet of heterogeneous



concurrent computing in the remainder of the paper, with particular reference to the Parallel
Virtual Machine (PVM) software infrastructure.

2 The PVM System

2.1 PVM Overview

PVM (Parallel Virtual Machine) is a software system that permits the utilization of a hetero-
geneous network of parallel and serial computers as a unified general and flexible concurrent
computational resource. The PVM system [8] initially supported the message passing, shared
memory, and hybrid paradigms, thus allowing applications to use the most appropriate computing
model, for the entire application or for individual sub-algorithms. However, support for emulated
shared-memory was omitted as the system evolved, since the message-passing paradigm was the
model of choice for most scientific parallel processing applications. Processing elements in PVM
may be scalar machines, distributed- and shared-memory multiprocessors, vector supercomputers
and special purpose graphics engines, thereby permitting the use of the best suited computing
resource for each component of an application.

The PVM system is composed of a suite of user-interface primitives supporting software that
together enable concurrent computing on loosely coupled networks of processing elements. PVM
may be implemented on a hardware base consisting of different machine architectures, including
single CPU systems, vector machines, and multiprocessors. These computing elements may be
interconnected by one or more networks, which may themselves be different (e.g. one implemen-
tation of PVM operates on Ethernet, the Internet, and a fiber optic network). These computing
elements are accessed by applications via a standard interface that supports common concurrent
processing paradigms in the form of well-defined primitives that are embedded in procedural host
languages. Application programs are composed of components that are subtasks at a moderately
large level of granularity. During execution, multiple instances of each component may be initi-
ated. Figure 2 depicts a simplified architectural overview of the PVM computing model as well as
the system.

Application programs view the PVM system as a general and flexible parallel computing re-
source. A translucent layering permits flexibility while retaining the ability to exploit particular
strengths of individual machines on the network. The PVM user interface is strongly typed; sup-
port for operating in a heterogeneous environment is provided in the form of special constructs that
selectively perform machine-dependent data conversions where necessary. Inter-instance commu-
nication constructs include those for the exchange of data structures as well as high-level primitives
such as broadcast, barrier synchronization, mutual exclusion, and rendezvous. Application pro-
grams under PVM may possess arbitrary control and dependency structures. In other words,
at any point in the execution of a concurrent application, the processes in existence may have
arbitrary relationships between each other and, further, any process may communicate and/or
synchronize with any other.

The PVM system is composed of two parts. The first part is a daemon, called pvmd, that
executes on all the computers comprising the virtual machine. PVM is designed so that any user
normal access rights to each host in the pool may install and operate the system. daemon on a
machine. To run a PVM application, the user executes the daemons on a selected host pool, and
the set of daemons cooperate via distributed algorithms to initialize the virtual machine. The
PVM application can then be started by executing a program on any of these machine; the usual
method is for this manually started program to spawn other application processes, using PVM
facilities. Multiple users may configure overlapping virtual machines, and each user can execute
several PVM applications simultaneously. The second part of the system is a library of PVM
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Figure 2: PVM System Overview

interface routines (libpvm.a). This library contains user callable routines for message passing,
spawning processes, coordinating tasks, and modifying the virtual machine.

2.2 Installing PVM

The installation process for PVM is straightforward. PVM does not require special privileges to be
installed. Anyone with a valid login on the hosts that make up a virtual machine can do so. PVM
uses two environment variables when starting and running. Each PVM user needs to set these
two variables to use PVM. The first variable is PVM_ROOT, which is set to the location of the
installed pvm3 directory. The second variable is PVM_ARCH, which tells PVM the architecture
of this host and thus what executables to select from the PVM_ROQOT directory. The following
simple steps complete the basic setup of PVM:

e Set PVM_ROOT and PVM_ARCH in the user’s .cshrc file

e Build PVM for each architecture type

e Create .rhosts file on each host listing all the hosts

o Create $HOME/ . xpvm hosts file listing all the hosts prepended by an “&”.

Configuring and testing the PVM system is the next logical step. On any host on which PVM
has been installed the following command:

% pvm

should result in a PVM console prompt signifying that PVM is now running on this host. Hosts
may then be added to this virtual machine by typing at the console prompt:



pvm> add hostname
One may also delete hosts (except the one logged into) from the virtual machine by typing:
pvm> delete hostname

The PVM console supports several interactive commands such as: conf that lists the VM
configuration, ps -a to show the status of all executing tasks, spawn to start applications and
halt to dismantle the virtual machine.

For situations where interactive configuration is not desired, there i1s a hostfile option. The
user can list the hostnames in a file one per line and then type:

% pvm hostfile

PVM will then add all the listed hosts simultaneously before the console prompt appears. There
are several options that can be specified on a per host basis in the hostfile. These are described at
the end of this chapter for the user who wants to customize his virtual machine for a particular
application or environment. There are also other ways to start up PVM. The functions of the
console and a performance monitor have been combined in a graphical user interface called XPVM,
which is also available as part of the distribution.

2.3 Fundamentals of PVM Programming

Developing applications for the PVM system follows, in a general sense at least, the traditional
paradigm for programming distributed memory multiprocessors such as the nCUBE or the Intel
family of hypercubes. This is true for both the logistical aspects of programming as well as for
algorithm development. However, there are significant differences in terms of (a) task management,
especially issues concerning dynamic process creation, naming and addressing; (b) initialization
phases prior to actual computation; (c) granularity choices; and (d) heterogeneity. In this chapter,
we present a discussion of the general programming process for PVM and identify factors that
impact functionality and performance.

Parallel computing, using a system such as PVM, may be approached from three fundamental
viewpoints, based upon the organization of the computing entities, i.e. the processes. Within each,
different workload allocation strategies are possible, and will be discussed later in this chapter. The
first, and most common model for PVM applications can be termed “crowd” computing — where a
collection of closely related processes, typically executing the same code, perform computations on
different portions of the workload, usually involving the periodic exchange of intermediate results.
This paradigm can be further subdivided into two categories

e The master-slave (or host-node) model in which a separate “control” program termed the
master is responsible for process spawning, initialization, collection and display of results,
and perhaps timing functions. The slave programs perform the actual computation involved;
they are either allocated their workloads by the master (statically or dynamically) or perform
the allocations themselves.

e The node-only model where multiple instances of a single program execute, with one process
(typically the one initiated manually) takes over the above non-computational responsibilities
in addition to contributing to the computation itself.

The second model supported by PVM is termed a “tree” computation. In this scenario,
processes are spawned (usually dynamically as the computation progresses) in a tree-like manner,
thereby establishing a tree-like, parent-child relationship (as opposed to crowd computations where
a star-like relationship exists). This paradigm, although less commonly used, is an extremely
natural fit to applications where the total workload is not known a priori, e.g. in branch-and-
bound algorithms, alpha-beta search, etc. as well as to recursive “divide-and-conquer” algorithms.



The third model, which we term “hybrid” can be thought of as a combination of the tree- and
crowd- models. Essentially, this paradigm possesses an arbitrary spawning structure, 1.e. at any
point in time during application execution, the process relationship structure may resemble an
arbitrary and changing graph. It should be noted that these classifications are made on the basis
of process relationships though they frequently also correspond to communication topologies —
nevertheless, in all three it is possible for any process to interact and synchronize with any other.
Further, as may be expected, the choice of model is application dependent, and should be selected
to best match the natural structure of the parallelized program.

2.4 Crowd computations

In crowd computations, there are typically three phases. The first is the initialization of the process
group; in the case of node-only computations, dissemination of group information and problem
parameters, as well as workload allocation is typically done within this phase. The second phase
is computation. Finally, results are collected and displayed or output, and the process group is
disbanded or terminated.

The master-slave model is illustrated below, using the well-known Mandelbrot set computation
which is representative of the class of problems termed “embarrassingly” parallel. The computation
itself involves applying a recursive function to a collection of points in the complex plane, until the
function values either reach a specific value or begin to diverge. Depending upon this condition, a
graphical representation of each point in the plane is constructed. Essentially, since the function
outcome depends only on the starting value of the point (and is independent of other points), the
problem can be partitioned into completely independent portions, the algorithm applied to each,
and partial results combined using simple combination schemes. However, this model permits
dynamic load balancing, thereby permitting processing elements to share the workload unevenly.
In this and subsequent examples within this chapter, we only show a skeletal form of the algorithms,
and also take syntactic liberties with the PVM routines in the interest of clarity. The control
structure of the master-slave class of applications is shown in Figure 1.

Slave

Figure 1: Master-Slave Paradigm

{Master Mandelbrot algorithm.}

{Initial placement}



for i := 0 to NumWorkers - 1

pvn_spawn(<worker name>) {Start up worker i}
pvm_send(<worker tid>,999) {Send task to worker i}
endfor

{Receive-send}
while (WorkToDo)
pvm_recv(888) {Receive result}

pvm_send(<available worker tid>,999)
{Send next task to available worker}

display result
endwhile

{Gather remaining results.}

for i := 0 to NumWorkers - 1

pvm_recv(888) {Receive result}
pvm_kill (<worker tid i>) {Terminate worker i}
display result

endfor

{Worker Mandelbrot algorithm.}

while (true)

pvm_recv(999) {Receive task}
result := MandelbrotCalculations(task) {Compute result}
pvm_send(<master tid>,888) {Send result to master}
endwhile

The master-slave example described above involves no communication among the slaves. Most
crowd computations of any complexity do need to communicate among the computational pro-
cesses; we 1llustrate the structure of such applications using a node-only example for matrix mul-
tiply using Cannon’s algorithm (programming details for a similar algorithm are given in a future
chapter). The matrix multiply example, shown pictorially in Figure 2, multiplies matrix subblocks
locally, and uses row-wise multicast of matrix 4 subblocks in conjunction with column-wise shifts
of matrix B subblocks.

{Matrix Multiplication using Pipe-Multiply-Roll algorithm.}

{Processor 0 starts up other processes}
if (<my processor number> = 0) then

for i := 1 to MeshDimension*MeshDimension
pvm_spawn(<component name>, . .)
endfor
endif

forall processors Pij, 0 <= i,j < MeshDimension
for k := 0 to MeshDimension-1

10



First 4 Steps of Pipe-Multiply-Roll on a 3x3 Mesh-Connected Machine

C C A B
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Step 2: Multiply temp matrix and matrix B
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Step 4: Second "pipe”

Figure 2: General Crowd Computation

{Pipe.}
if myrow = (mycolumn+k) mod MeshDimension
{Send A to all Pxy, x = myrow, y <> mycolumn}
pvm_mcast ((Pxy, x = myrow, y <> mycolumn),999)
else
pvm_recv(999) {Receive A}
endif

{Multiply. Running totals maintained in C.}
Multiply(4,B,C)

{Rol1l.}
{Send B to Pxy, x = myrow-1, y = mycolumn}
pvm_send((Pxy, x = myrow-1, y = mycolumn),888)
pvm_recv(888) {Receive B}
endfor
endfor

2.5 Tree computations

As mentioned earlier, tree computations typically exhibit a tree-like process control structure that
also conforms to the communication pattern in many instances. To illustrate this model, consider
a parallel sorting algorithm that works as follows. One process (the manually started process in
PVM) possesses (inputs or generates) the list to be sorted. Tt then spawns a second process and
sends it half the list. At this point, there are two processes each of which spawns a process and
sends them one-half of their already halved lists. This continues until a tree of appropriate depth
is constructed. Each process then independently sorts its portion of the list, and a merge phase
follows where sorted sublists are transmitted upwards along the tree edges, with intermediate
merges being done at each node. This algorithm is illustrative of a tree computation in which the
workload is known in advance; a diagram depicting the process and an algorithmic outline are
given below.

11



Stage 1 @
Stage 2 Y

,,.Sféée 3

(53Tel4l1T7Tol2[E]1d o[1iiqTIi4iT

Time

EEOEMATEE  stage 2 <:j
CEEOEMAERED  stage 3

Stage 3@

GO stage 3 @

siaged (1),

BEIR A KA1 A 5 G i I 0, 6F 7 Sw“ii:j

Lol 1l 2)sfalofel 7Esjoliqififiqi4iy Stage 5

Split-Sort-Merge Algorithm on Four-Node Hypercube

Figure 3: Tree-computation example

{ Spawn and partition list based on a broadcast tree pattern. }
for i := 1 to N, such that 2°N = NumProcs
forall processors P such that P < 271
pvm_spawn(...) {process id P XOR 2"i}

if P < 27(i-1) then

midpt: = PartitionList(list);

{Send 1ist[0..midpt] to P XOR 2"i}
pvm_send((P XOR 271),999)

list := list[midpt+1..MAXSIZE]

else

pvm_recv(999) {receive the list}

endif

endfor

endfor

{ Sort remaining list. }
Quicksort(list[midpt+1..MAXSIZE])

{ Gather/merge sorted sub-lists. }
for i := N downto 1, such that 2°N = NumProcs
forall processors P such that P < 271
if P > 27(i-1) then

pvm_send((P XOR 2°1),888)

{Send 1list to P XOR 2"i}

else

pvm_recv(888) {receive temp list}
merge templist into list

endif

endfor

endfor

12



3 Workload Allocation

In the previous section, we discussed the common parallel programming paradigms with respect
to process structure, and outlined representative examples in the context of the PVM system.
In this section we address the issue of workload allocation, subsequent to establishing process
structure, and describe some common paradigms that are used in distributed memory parallel
computing. Two general methodologies are commonly used. The first, termed data decomposition
or partitioning, assumes that the overall problem involves applying computational operations or
transformations on one or more data structures, and further, that these data structures may be
divided and operated upon. The second, called function decomposition, divides the work based
on different operations or functions. In a sense, the PVM computing model supports function
decomposition at the component level (components are fundamentally different programs that
perform different operations) and data decomposition at the instance level i.e., within a component,
the same program operates on different portions of the data.

3.1 Data Decomposition

As a simple example of data decomposition, consider the addition of two vectors, A[l..N] and
B[1..N], to produce the result vector C[1..N]. Assuming P processes working on this problem, data
partitioning involves the allocation of N/P elements of each vector to each process, that computes
the corresponding N/P elements of the resulting vector. This data partitioning may be done either
“statically” i.e. where each process knows a priori (at least in terms of the variables N and P)
its share of the workload. It may also be done “dynamically”, where a control process (e.g. the
master process) allocates subunits of the workload to processes as and when they become free.
The principal difference between these two approaches is with regard to a related concept, that
of “scheduling”. With static scheduling, individual process workloads are fixed; with dynamic
scheduling, they vary as the computation progresses. In most multiprocessor environments, static
scheduling is effective for problems such as the above vector addition example; however, in the
general PVM environment, this is not necessarily true. The reason is that PVM environments
based on networked clusters are susceptible to external influences; therefore, a statically scheduled,
data partitioned problem might encounter one or more processes that complete their portion of
the workload much faster or much slower than the others. This situation could also arise when
the machines in a PVM system are heterogeneous, possessing varying CPU speeds and different
memory and other system attributes.

In a real execution of even this trivial vector addition problem, an issue that cannot be ignored
is input and output. In other words, how do the processes described above receive their workloads,
and what do they do with the result vectors? The answer to these questions is dependent on the
application and the circumstances of a particular run, but in general:

1 Individual processes generate their own data internally e.g. using random numbers or stat-
ically known values. This is only possible in very special situations or for program testing
purposes.

2 Individual processes independently input their data subsets from external devices. This
method is meaningful in many cases, but only possible when parallel 1/O facilities are sup-
ported.

3 A controlling process sends individual data subsets to each process. This is the most common
scenario, especially when parallel /O facilities do not exist. Further, this method is also
appropriate when input data subsets are derived from a previous computation within the
same application

The third method of allocating individual workloads is also consistent with dynamic scheduling
in applications where interprocess interactions during computations are rare or nonexistent. How-

13



ever, non-trivial algorithms generally require intermediate exchanges of data values, and therefore,
it is only the initial assignment of data partitions that can be accomplished via these schemes.
For example, consider the data partitioning method depicted in Figure 4.2. In order to multiply
two matrices A and B, a group of processes is first spawned, using the master-slave or node-only
paradigm. This set of processes is considered to form a mesh; the matrices to be multiplied are
divided into subblocks, also forming a mesh. Each subblock of the A and B matrices is placed
on the corresponding process, by utilizing one of the data decomposition and workload allocation
strategies listed above. During computation, subblocks need to be forwarded or exchanged be-
tween processes, thereby transforming the original allocation map, as shown in the figure. At the
end of the computation however, result matrix subblocks are situated on the individual processes,
in conformance with their respective positions on the process grid, and consistent with a data
partitioned map of the resulting matrix C. The foregoing discussion illustrates the basics of data
decomposition. In a later chapter, example programs highlighting details of this approach will be
presented.

3.2 Function Decomposition

Parallelism in distributed memory environments such as PVM may also be achieved by partition-
ing the overall workload in terms of different operations. The most obvious example of this form
of decomposition is with respect to the three stages of typical program execution, namely input,
processing, and result output. In function decomposition, such an application may consist of three
separate and distinct programs, each one dedicated to one of the three phases. Parallelism is ob-
tained by concurrently executing the three programs and by establishing a “pipeline” (continuous
or quantized) between them. Note however, that in such a scenario, data parallelism may also
exist within each phase. An example is shown in Figure 2.1 where distinct functions are realized
as PVM components, with multiple instances within each component implementing portions of
different data partitioned algorithms.

Although the concept of function decomposition is illustrated by the trivial example above,
the term is generally used to signify partitioning and workload allocation by function within the
computational phase. Typically, application computations contain several different subalgorithms
— sometimes on the same data (the MPSD or multiple program/single data scenario), sometimes
in a pipelined sequence of transformations, and sometimes exhibiting an unstructured pattern of
exchanges. We illustrate the general functional decomposition paradigm by considering the hypo-
thetical simulation of an aircraft consisting of multiple interrelated and interacting, functionally
decomposed, subalgorithms. A diagram providing an overview of this example is shown in Figure
4, and will also be used in a later chapter dealing with graphical PVM programming.

In the figure, each node or circle in the “graph” represents a functionally decomposed piece of
the application. The input function distributes the particular problem parameters to the different
functions 2 through 6, after spawning processes corresponding to distinct programs implementing
each of the application subalgorithms. The same data may be sent to multiple functions (e.g. asin
the case of the two wing functions, or data appropriate for the given function alone may be deliv-
ered. After performing some amount of computations these functions deliver intermediate or final
results to functions 7, 8, 9 that may have been spawned at the beginning of the computation or as
results become available. The diagram indicates the primary concept of decomposing applications
by function, as well as control and data dependency relationships. Parallelism is achieved in two
respects — by the concurrent and independent execution of modules as in functions 2 through 6,
and by the simultaneous, pipelined, execution of modules in a dependency chain, as for example,
in functions 1, 6, 8, 9.
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Figure 4: Function decomposition example

4 Porting Existing Applications to PVM

In order to utilize the PVM system, applications must evolve through two stages. The first
concerns development of the distributed memory parallel version of the application algorithm(s);
this phase is common to the PVM system as well as to other distributed memory multiprocessors.
The actual parallelization decisions fall into two major categories — those related to structure,
and those related to efficiency. For structural decisions in parallelizing applications, the major
decisions to be made include the choice of model to be used i.e. crowd computation vs. tree
computation and data decomposition vs. function decomposition. Decisions with respect to
efficiency when parallelizing for distributed memory environments are generally oriented towards
minimizing the frequency and volume of communications. It is typically in this latter respect that
the parallelization process differs for PVM and hardware multiprocessors; for PVM environments
based on networks, large granularity generally leads to better performance. With this qualification,
the parallelization process is very similar for PVM and for other distributed memory environments,
including hardware multiprocessors.

The parallelization of applications may be done either ab wnitio or from existing sequential
versions or from existing parallel versions. In the first two cases, the stages involved are to
select an appropriate algorithm for each of the subtasks in the application, usually from published
descriptions — or by inventing a parallel algorithm. These algorithms are then coded in the
language of choice (C, C++, or Fortran77 for PVM) and interfaced with each other as well as with
process management and other constructs. Parallelization from existing sequential programs also
follows certain general guidelines, primary among which are to decompose loops, beginning with
outermost loops and working inward. In this process, the main concern is to detect dependencies
and partition loops such that dependencies are preserved while allowing for concurrency. This
parallelization process is described in numerous textbooks and papers on parallel computing,
although few textbooks discuss the practical and specific aspects of transforming a sequential
program to a parallel one.

Existing parallel programs may be based upon either the shared memory or distributed memory
paradigms. Converting existing shared memory programs to PVM is similar to converting from
sequential code, when the shared memory versions are based upon vector or loop-level parallelism.
In the case of explicit shared memory programs, the primary task is to locate synchronization
points and replace these with message passing. In order to convert existing distributed memory
parallel code to PVM, the main task is to convert from one set of concurrency constructs to
another. Typically, existing distributed memory parallel programs are written either for hardware
multiprocessors or other networked environments such as P4 or Express. In both cases, the major
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changes required are with regard to process management. For example, in the Intel family of
DMMP’s; it is common for processes to be started from an interactive shell command line. Such a
paradigm should be replaced for PVM by either a master program or a node program that takes
responsibility for process spawning. With regard to interaction, there is, fortunately, a great deal
of commonality between the message passing calls in various programming environments. The
major differences between PVM and other systems in this context are with regard to (a) process
management and process addressing schemes; (b) virtual machine configuration/reconfiguration
and its impact on executing applications; (c) heterogeneity in messages as well as the aspect of
heterogeneity that deals with different architectures and data representations; and (d) certain
unique and specialized features such as signaling, task scheduling methods, etc.

5 PVM Performance in Cluster Environments

With the ever-increasing adoption of PVM (and systems like it) for high performance concur-
rent computing, the issue of performance assumes great significance. In order to experimentally
evaluate the efficacy and viability of PVM, on typical networked environments i.e. clusters of
workstations, we have undertaken a performance measurement and system enhancement exercise,
which is described in this section. This involves the implementation and execution of a set of
CFD benchmark applications on virtual parallel machines using the PVM software system. These
applications are the five “kernel” benchmarks from the NAS Parallel Benchmark suite [25], an
algorithmically specified collection of programs that are representative of real codes (or portions
thereof) that are in production use in the aerospace community. Despite being termed kernels, the
five applications rigorously exercise the processor, memory and, in the case of distributed-memory
parallel machines, the communications capacity of any given system.

5.1 The NAS Parallel Benchmarks

The NAS Parallel Benchmarks refer to a suite of applications devised by the Numerical Aerody-
namic Simulation (NAS) Program of the National Air and Space Administration (NASA) for the
performance analysis of highly parallel computers. While the NPB suite is rooted in the prob-
lems of computational fluid dynamics and computational aerosciences, they are valuable in the
evolution of parallel computing, since they are rigorous and as close to “real” applications as may
be reasonably expected from a benchmarking suite. The NPB consist of five “kernels” and three
simulated applications which “mimic the computation and data movement characteristics of large
scale computational fluid dynamics (CFD) applications” [24]. These benchmarks are specified
only algorithmically, thereby encouraging optimization and refinement, at the cost of necessitat-
ing substantial expertise and effort in porting to a new platform. Complete details of the NPB
suite may be found in [24, 25]; for the sake of completeness, we outline the five kernels that were
ported to PVM and used in the experiments reported in this paper.

o Kernel EP is to execute 228 iterations of a loop in which a pair of random numbers are gener-

ated and tested for whether Gaussian random deviates can be made from them according to
a specific scheme. This kernel falls into the category of applications termed “embarrassingly
parallel”.

o Kernel MG is to execute four iterations of the V-cycle multigrid algorithm to obtain an
approximate solution to the discrete Poisson problem VZu = v on a 256 x 256 x 256 grid
with periodic boundary conditions. This application rigorously exercises both short- and
long-distance communication.

e Kernel CG is to use the power and conjugate gradient methods to approximate the smallest
eigenvalue of a symmetric, positive definite, sparse matrix of order 14000 with a random
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pattern of nonzeros. The communication patterns in this kernel are long-distance and un-
structured.

e Kernel FT uses FFT’s on a 256 x 256 x 128 complex array to solve a 3-dimensional par-
tial differential equation. Communication patterns in this kernel are structured and long
distance.

e Kernel IS is to perform 10 rankings of 223 (8388608) integer keys in the range [0, 2!°
(524288)). Communication in this benchmark is frequent and relatively low-volume.

5.2 PVM Implementation of the NPB Kernels

The parallelization of the five NPB kernels for the PVM system was based on a set of codes
originally written for the Intel iPSC hypercube. These codes provided the basic partitioning and
parallelization algorithms; substantial modifications to these code were required to convert them
for the PVM system. Details of the parallelization as well as algorithm specifics pertaining to the
applications may be found in [26]. In this section we present preliminary results of our performance
experiments with these five kernels in three different PVM environments. The release version
(3.2) of the PVM software, was used, and the default “daemon-based” communication scheme
was selected. In the next section we describe a significant performance enhancement to the PVM
communications scheme!, and present updated results. In order to obtain an understanding of
the effect of different hardware platforms while utilizing the same software system, we conducted
our benchmark experiments on three environments, each with its unique characteristics.

Low-end workstations on low-speed shared medium networks: This platform is made up of 16 disk-
less Sun SS1+ workstations, each with 16 MB of memory and 32 MB of virtual memory(swap
space), at the Emory University Parallel Processing Lab.

Medium-power workstations on high-speed shared networks: This environment is made up of seven
IBM RS/6000 model 560 computers, and one RS/6000 model 320 computer, each with 32 MB of
memory, and 64 MB of swap space, connected by FDDI.

Medium-power workstations on high-speed switched medium networks: This platform consisted of
SGI R4000 workstations interconnected by FDDI Gigaswitch.

5.3 Preliminary Performance Results

In this subsection we present consolidated performance results for the five kernel benchmarks.
Table 1 shows the the total elapsed time in seconds for each platform, the total communication
volume, and the time for communication related activities alone for each benchmark on the three
testbed platforms, using an unmodified version of PVM version 3.2.

A few observations are in order, regarding the measurements in table 1. The first is that
generally, clusters of about ten workstations perform within an order of magnitude of a Cray YMP-
1. The second is that communication times account for a large fraction of the overall execution
time in many cases. Finally, communication efficiency, i.e. the ratio of obtained throughput to
that theoretically possible in each network, appears low.

5.4 Enhanced Performance in PVM

To address some of the performance shortcomings described above, we devised an alternative com-
munication scheme for PVM, and re-implemented the NAS benchmarks. The enhanced message
passing scheme, accessible via the pvm_fsend() and pvm_frecv() calls, permit the direct transfer

1Since the time of this exercise, the release version of PVM (3.3.3) has incorporated the fast communication
scheme.
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Bench- 16 SS1+ Enet 8 RS6000 FDDI 8 SGI Gswitch Cray 1860
mark Y /MP-1 128
Time Com. Vol. Time Vol. Com. Time Vol. Com. Time Time
(secs) | (MB) | time (secs) | (MB) time (secs) | (MB) time (secs) (secs)
EP 1603 NA NA 342 NA NA 446 NA NA 126 26
MG 198! 96 154 229 192 162 264 192 112 22 8.6
CG 701 370 480 285* 130 192 130T 250 101 12 8.6
IS 6072 150 595 674 560 610 770 560 720 17 14
FT 7171 420 502 645 1500 395 1070 1500 516 29 10

1 Reduced problem size (128 x 128 x 128); 2 Reduced problem size (22! keys, range 0 to 2'9)
* 4 RS 6000 processors; T 9 SGI R4000 processors

Table 1: NPB Kernels on unmodified PVM

of user program data without requiring buffer initialization and packing. The pvm_fsend() and
pvm_frecv() mechanisms are built on standard TCP internet protocols and are manifested as a
separate and non-intrusive library in the PVM system. The pvm_fsend() and pvm_frecv() library
was implemented and tested on a variety of environments and networks. Table 2 indicates the
performance of this communication scheme for simple point-to-point data transfer, for a variety
of message sizes, for each environment discussed in this paper. Also shown for reference, are the
corresponding values for daemon-based PVM communication, and for a standalone benchmarking
program, viz. TTCP.

Platform Throughput (kB/sec)
Msg. size— 1 byte | 100 bytes | 10kB | 1MB
SS1+4+ Ethernet
Daemon 0.06 12.88 263.41 358.48
Fsend 0.49 81.79 902.42 1003.87
TTCP 0.65 130.45 965.04 1125.24
RS6000 FDDI
Daemon 0.09 20.67 374.04 711.58
Fsend 0.82 112.79 1568.40 | 2285.89
TTCP 1.85 325.40 2573.00 | 2918.20
SGI Gigaswitch
Daemon 0.21 38.92 406.04 483.58
Fsend 1.11 102.79 3400.42 | 9550.87
TTCP 2.15 500.40 9203.00 | 9624.20

Table 2: Point-to-point communication bandwidth in PVM

These improvements were also carried over to the applications, as indicated by the representa-
tive tables shown below — 3 and 4. In the tables, we also include the total time and communication
time for the previous experiments (in parentheses) for convenient comparison. We also include
the number of messages, and an additional measure, viz the “maximum idle time”.

These revised results demonstrate that performance levels close to theoretical capacities can
be obtained in cluster environments while using PVM. However, certain factors in the results
also indicate that dynamic load balancing schemes and better partitioning methods are probably
required to exploit the full potential of network computing.
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Platform Time Comm. Comm. Number Idle
(secs) Volume | Time(secs) | of msgs | Time(secs)

16 SS1+ Enet | 138" (198°) | 96 MB | 85 (154) 2704 18

§ RS6000 FDDI | 110 (229) | 192 MB | 52 (162) 1808 30

§ SGI Gswitch | 168 (264) | 192 MB | 81 (112) 1808 50

| Cray Y-MP/1: 22 secs; 1860/128 : 8.6 secs
* Reduced problem size (128 x 128 x 128)

Table 3: Kernel MG on enhanced PVM

Platform Time Comm. Comm. Number Idle
(secs) Volume | Time(secs) | of msgs | Time(secs)

16 SS1+ Enet | 605 (701) | 370 MB | 404 (480) | 37920 390

4 RS6000 FDDI | 203 (285) | 130 MB | 101 (192) | 7116 88

9 SGI Gswitch | 108 (130) | 250 MB | 46 (101) | 19756 12

| Cray Y-MP/1: 12 secs; i860/128: 8.6 secs

Table 4: Kernel CG on enhanced PVM

6 Generalized Distributed Computing and Parallel I/O with
PVM

In the evolution of the PVM system for heterogeneous distributed computing, high-performance
scientific applications have thus far been the main technical drivers. The computing model, as
well as specific software features have been influenced by the requirements of scientific algorithms
and their parallel implementations. We believe that by extending this infrastructure along cer-
tain important dimensions, systems such as PVM will be able to cater to a much larger class of
application categories. The goal therefore is to enable generalized distributed computing within
distributed and networked environments, i.e. to evolve both a conceptual model and a software in-
frastructure that integrally support high performance applications as well as other general purpose
applications, including, but not limited to, distributed teleconferencing and groupware systems,
heterogeneous and multi-databases, high speed on-line transaction processing and geographically
distributed information systems.

The basic infrastructural requirements for supporting general purpose distributed computing
in cluster environments include:

o facilities for parallel input and output, including the ability for multiple processes to simul-
taneously access files as well as for individual files to be distributed.

e concurrency control mechanisms at various levels, including the ability for multiple processes
to synchronize and perform distributed mutual exclusion, for atomic broadcast and multicast,
and preservation of delivery order.

o fault tolerance and data replication facilities that permit continued (but degraded) execution
and protect against computation or data loss.

e support for a client/server model of computing, including mechanisms for service naming
and lookup.

e transaction processing support.
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6.1 The GDC Architecture

The proposed model for generalized distributed computing in PVM (termed the GDC layer) is an
extension of, and consistent with, the existing model. The concept of ”sessions” is central to this
architecture — the basic notion being that processes from inter-related computations are dynam-
ically created and destroyed as necessary, join sessions in order to contribute their portion of the
computation, and primarily interact with other session members although cross-session interaction
is also possible. Sessions are also the computational units in which computation and interaction
semantics are established; e.g. a parallel program session might require process placement on the
fastest CPU’s and reliable communication, whereas a database access session must locate servers
on specific machines and provide transaction oriented data exchange semantics. In the PYM GDC
layer, library primitives are provided for ”checking-into” (and ”out of”) sessions, at which time
access control functions are also established. Processes enrolled in specific sessions may cooperate
via normal PVM message passing mechanisms, but in addition, may achieve concurrency control
by invoking special primitives for locking resources, entering transaction modes of operation, and
can avail of failure resilience facilities based either on shadowing or on checkpoints. The GDC
architecture also supports a parallel input-output framework as well as the client-server mode of
distributed computing, details of which are presented in the next subsection. This enhancement
layer to PVM is currently under alpha test and will be incorporated into the release version of the
software in the near future. An overview of the proposed GDC architectural model is shown in

figure 5.
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Figure 5: GDC Architectural Overview

6.2 The PIOUS Parallel I/O Subsystem
Central to the GDC layer of PVM is the parallel /O subsystem, termed PIOUS. The PIOUS

module or layer is motivated by the fact that most production level applications require infras-
tructural support for high performance input output, with mechanisms for concurrency control
and failure resilience. PIOUS is an input/output system that provides process groups access to
permanent storage within a heterogeneous network computing environment. PIOUS is a parallel
distributed file server that achieves a high-level of performance by exploiting the combined file /O
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and buffer cache capacities of multiple PVM-interconnected computer systems. Fault tolerance is
achieved by exploiting the redundancy of storage media.

To better support parallel applications, PIOUS implements a parallel access file object called a
parafile and provides varying levels of concurrency control for process group members. For porta-
bility, PIOUS allows parafile objects to be accessed with standard Unix semantics 1.e. processes
open, close, read and write parafiles as with sequential files. PIOUS is itself implemented as a
group of cooperating processes within the GDC distributed computing framework. Parafiles are
logically single files composed of one or more disjoint segments. Each segment is composed of zero
or more records; a record is the base unit of information stored in a parafile. The PIOUS interface
provides a process group with three views of a parafile object: global, independent, and segmented.
Parafiles are two-dimensional file objects. Thus mapping arrays of data is simplified. A parallel
computation can easily access rows or columns of a matrix by accessing individual segments of
the parafile or by accessing the parafile as a linear sequence, as appropriate; block access is also
possible via higher-level libraries. A schematic of the PIOUS subsystem is shown in Figure 6.
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Figure 6: PIOUS Architectural Overview

PIOUS consists of a set of data servers, a service coordinator, and library routines linked with
client processes. An underlying transport mechanism (i.e. PVM) is assumed to carry messages
between client processes and components of the PIOUS architecture. PIOUS data servers are
assumed to access permanent storage via a native file system, and reside on on each machine over
which a file to be accessed is declustered. A preliminary prototype of the PIOUS system has been
implemented, and has undergone initial performance and functionality testing. Our experiences
indicate that the facilities provided by PIOUS are extremely valuable for concurrent applications
requiring high performance parallel file access and a distributed database system is presently being
built to verify the usefulness of the parallel I/O system for real applications. Performance results
from the prototype implementation indicate that, for modest size data transfers, the overhead
introduced by the PIOUS software is minimal, and is comparable to levels attained by other (non
parallel) network file systems. A more detailed description of the PIOUS parallel I/O system may
be found in [27].
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7 A Threads-Based Concurrent Computing Model

In this research initiative, an alternative concurrent computing paradigm, based on “services”,
supporting data driven computation, and built on a lightweight process infrastructure, is proposed
to enhance the functional capabilities and the operational efficiency of heterogeneous network-
based concurrent computing. This approach, which is derived by combining variants of principles
from multithreading systems, data flow computing, and remote procedure call, is believed to have
the potential to enhance performance and functionality in heterogeneous systems, without too
drastic a departure from the prevalent parallel programming methodologies.

7.1 The TPVM Framework

TPVM is a collection of extensions and enhancements to the PVM computing model and system.
In TPVM, computational entities are threads. TPVM threads are runtime manifestations of
imperative subroutines or collections thereof that cooperate via a few simple extensions to the
PVM programming interface. In the interest of straightforward transition and to avoid a large
paradigm shift, one of the modes of use in TPVM is identical to the process-based model in
PVM, except that threads are the computational units. TPVM also offers two other programming
models — one based on data driven execution, and the other supporting remote memory access.
The individual models supported by TPVM are discussed in later sections; a general architectural
overview of TPVM 1s depicted in Figure 7, and a brief description follows.
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Figure 7: TPVM Architectural Overview

Architecturally, TPVM is a natural extension of the PVM model. In terms of the resource
platform, TPVM also emulates a general-purpose heterogeneous concurrent computer on an inter-
connected collection of independent machines. However, since TPVM supports a threads-based
model, it is potentially capable of exploiting the benefits of multithreaded operating systems as well
as small-scale SMMP’s — both of which are becoming increasingly prevalent in general purpose
computing environments. Further, multiple computational entities may now be manifested within
a single process. In combination, these aspects enable increased potential for optimizing interac-
tion between computational units in a user-transparent manner. In other words, inter-machine
communication may continue to use message passing, while intra-machine communication, in-
cluding that within SMMP’s; may be implemented using the available global address space. In
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addition, “latent” computational entities in the form of dormant threads may be instantiated ei-
ther asynchronously or during initialization, at negligible or low cost. In many cases, this helps
reduce the overhead of spawning new computational entities during application execution. Fur-
ther, the concept of latent threads extends naturally to service-based computing paradigms that
are more appropriate in general purpose, non-scientific, distributed and concurrent processing.

TPVM is designed to be layered over the PVM system, and does not require any modifications
or changes to PVM. User level primitives are supplied as a library against which application
programs link; operational mechanisms are provided in the form of standalone PVM programs.
Central to the TPVM implementation is the concept of a scheduling interface that is responsible for
controlling thread spawning as well as other facilities that are available in TPVM. Thus interface
is defined in functional terms, thereby enabling implementations to evolve from a centralized
mechanism in preliminary implementations to one based on distributed algorithms. A schematic
of this the scheduling interface and the principal facets of a TPVM implementation are shown in
Figure 8.

invoke(dep1)

spaw

" Exoort Scheduling
xports
schedule ‘ . Interface
i * Active LWPs : (locall

\ *LatentLwPs . centralized/
export ‘ L distri

p o HWstaws | distributed)
M ‘

M

Exported

hol :
typed memor §

Figure 8: Schematic of TPVM Implementation

A thread in TPVM is essentially a subroutine/procedure (or a code segment, including nested
procedure invocations, identified by one entry point). TPVM requires “strong encapsulation”
of threads, i.e. shared variables are not permitted, although the system cannot enforce this
restriction. Thus, a TPVM thread is a (sequence or collection of) subroutine(s) that, when
initiated, possesses a thread of control and executes on its own stack, with its own data segment.
Threads in TPVM exist within the context of PVM processes. However, processes in TPVM do
not indulge in computation and/or communication; they only serve as ”shells” or environments
for threads to exist in, and play active roles only at certain points during execution e.g. for thread
creation. A process may play host to (be the “pod” of) one or more threads, each of which may be
an instantiation of the same or of different entry points. Application programmers access facilities
in TPVM by invoking model-dependent functions; a detailed description may be found in [28].

7.2 Implementation and Experiences

Two different models are provided in the TPVM system and a preliminary version of each has
been implemented and tested. The first is a process based model — TPVM supports a “tradi-
tional” concurrent computing model based on multiple interacting threads cooperating via explicit
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message passing. In this model, multiple threads, each with its unique thread id, are spawned
and subsequently exchange messages using send and receive calls in a manner analogous to pro-
cess spawning and interaction in PVM. However, to define threads that may be spawned, PVM
pod (host) processes utilize functions such as tpvm_export(. . .) which declares a potential
thread identified by a symbolic string valued name, and associated with a function entry point;
additional parameters specify options, and limits to the number of threads allowed within this pod.
An already existing thread or a pod process may subsequently spawn one or more instantiations
of an exported thread which then communicate and synchronize via TPVM variants of the usual
PVM routines.

Our experiences with a preliminary implementation of this process-oriented model for TPVM
have been encouraging, both from the viewpoints of functionality as well as performance. Two
textbook applications, namely matrix multiplication and sorting, were written to conform to this
model and tested on our experimental implementation; results are shown in Table 5. As can be
seen from this table, the TPVM versions perform better, by a factor of upto 24% — with the
largest gains occurring when the granularity and the number of threads are “ideal”. As some
entries show, TPVM performance is worse when the overheads of thread management offset any
gains due to the increased asynchrony.

Problem PVM: CPUs/Processes || TPVM: CPU’s/Threads
(size) 4/4 | 16/16 4/16 | 16/64 | 16/36
Matmul (500x500) 201 78 182 94 60
Matmul (1000x1000) || 1618 756 1610 | 710 663
Sort (2M integers) 1423 366 1201 | 351 309

Table 5: PVM vs. TPVM times in seconds (SS1+ workstations on Ethernet)

Motivated by the well known advantages of data driven computing, as well as by observations
that scheduling is of critical importance for high performance, the TPVM system also supports a
computing model that is different from the process-based paradigm. In this scheme, thread entry
points are exported as before, but contain a list of “firing rules” that are required to be satisfied
before a thread can be instantiated. The last two arguments of tpvm_export contain the size of,
and a pointer to, an array containing a list of message tags — implying that the specified thread
may be instantiated when one message of each tag type is available. Typically, as threads complete
some portion of their allocated work, they are able to (partially) satisfy such a dependency. In
order to indicate that a thread is able to satisfy a firing rule of an exported service, and to deliver a
message containing the required data, special invocation functions are provided. Table 6 indicates
the measured performance for the matrix multiplication and sorting examples mentioned earlier;
results from the process-based model are also included for convenient comparison. As can be seen,
the data driven model performs at approximately the same levels in some cases, and significantly
better in others.

Problem ProcModel: CPU’s/Threads || DflowModel: CPUs/Threads
(size) 4/16 | 16/64 | 16/36 47 | 16/7
Matmul (500x500) || 182 | 94 60 194 62
Matmul (1000x1000) || 1610 | 710 663 1582 640
Sort (2M integers) 1201 | 351 309 1167 309

Table 6: TPVM ProcModel vs. DflowModel times in seconds (SS14+ workstations on Ethernet)
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8 Discussion

In this paper, we have presented the paradigm of concurrent computing on heterogeneous clusters
using PVM, both from the operational perspective and in terms of future trends and research
initiatives. As is evident from the material presented, PVM is both a robust heterogeneous com-
puting system and an ongoing experimental research project, and continually evolving new ideas
are investigated both by the project team and at external institutions; successful experimental
enhancements or subsystems eventually become part of the software distribution. One example of
a relatively concise enhancement that is undergoing investigation concerns system level optimiza-
tions for operating in shared memory environments. Small-scale SMM’s are re-emerging, and a
version of PVM that utilizes physical shared memory for interaction between the daemon and all
user processes on such machines is being developed. Another project i1s aimed at providing fail-
safe capabilities in PVM [20]. This enhanced version uses checkpointing and rollback to recover
from single-node failures in an application-transparent manner, provided the application i1s not
dependent on real-time events. Several other enhancements are also in progress, including load
balancing extensions, integrating debugging support, and task queue management [21].

Apart from the experimental and research-oriented work described above, a number of other
projects related to PVM are in various stages of progress; a few representative ones are:

e HeNCE [23] is a graphical programming system for PVM; this toolkit generates PVM pro-
grams, from depictions of parallelism dependencies as directed graphs, and provides an
interactive administrative interface for virtual machine configuration, application execution,
and animated visualization.

e XPVM is a graphical tool for PVM administration and profiling of PVM programs. It
gathers monitoring events from applications, and displays this information, which can be
useful for profiling, error detection, and optimization. This system i1s complemented by a
buffered tracing scheme that permits monitoring data to be gathered without perturbing the
application or overloading the network.

e The notion of “groups” and “contexts” are being introduced into the PVM system. Commu-
nications contexts are needed in situations where embedded applications exchange messages
and message tags intended for an embedded library can potentially conflict with another, or
with the host application. Such situations are avoided by specifying that message exchanges
occur in identifiable sessions or contexts; grouping of processes to define process boundaries
and establish contexts complements this methodology.

e The next version of the system, PVM 3.4, is scheduled to use a Receiver makes Right (RMR)
data encoding instead than the XDR and RAW encodings now available. While some data
conversion is needed to ensure that machines with differing data representations inter-operate
correctly, the traditional methods of unconditionally converting to a standard form at the
sender and reconverting at the receiver is probably wasteful. With fewer different data
representations in emerging computer architectures; an optimistic scheme where the receiving
end converts the data when necessary, is possible and more efficient.

e The DoPVM subsystem [22] is aimed at supporting the “shared object” paradigm in PVM.
By writing C++ programs in which objects derived from built-in classes can be declared,
this PVM extension permits a shared address space concurrent computing model, thereby
alleviating the inherent complexity of explicit message passing programming.

25



References

[1] R. F. Freund and H. J. Siegel (eds.), IEEE Computer Special Issue on Heterogeneous Process-
ing, 26(6), June 1993.

[2] V. S. Sunderam and R. F. Freund, J. Parallel and Distributed Computing, Special Issue on
Heterogeneous Processing, (to appear) January 1994.

[3] R. F. Freund, SuperC or Distributed Heterogeneous HPC, 2(4):349-355, 1991.
[4] J. Potter, Associative Computing, Plenum Publishing, New York, 1992.

[6] L. H. Turcotte, A Survey of Software Environments for Exploiting Networked Computing
Resources, Technical Report, ERCCFS, Mississippi State University, June 1993.

[6] D.Y. Cheng, A Survey of Parallel Programming Languages and Tools, NAS Systems Division
Technical Report RND-93-005, NASA Ames Research Center, March 1993.

[7] L. Patterson, et. al., Construction of a Fault-Tolerant Distributed Tuple-Space, Proc. 1993
Symposium on Applied Computing, Indianapolis, February 1993.

[8] D. Gelernter, Domesticating Parallelism, IEEE Computer, 19(8):12-16, August 1986.
[9] J. Boyle, et. al., Portable Programs for Parallel Processors, Holt, Rinehart, and Winston, 1987.

[10] R. Hempel, The ANL/GMD MAcros (Parmacs) in Fortran for Portable Parallel Programming
Using Message Passing, GMD Technical Report, November 1991.

[11] V. S. Sunderam, PVM : A Framework for Parallel Distributed Computing, Journal of Con-
currency: Practice and Experience, 2(4):315-339, December 1990.

[12] V. Rego and V. S. Sunderam, Experiments in Concurrent Stochastic Simulation: The
ECLIPSE Paradigm, Journal of Parallel and Distributed Computing, 14(1):66-84, January
1992.

[13] H. Nakanishi, V. Rego, and V. S. Sunderam, Superconcurrent Simulation of Polymer Chains
on Heterogeneous Networks, Proceedings — Fifth IEEE Supercomputing Conference, Min-
neapolis, November 1992.

[14] D. H. Bailey, et. al., The NAS Parallel Benchmarks, International Journal of Supercomputer
Applications, 5(3):63-73, Fall 1991.

[15] S. M. White, Implementing the NAS Benchmarks on Virtual Parallel Machines, Emory Uni-
versity M. S. Thesis, April 1993.

[16] S. M. White, A. Anders, and V. S. Sunderam, Performance Optimization of the NAS NPB
Kernels under PVM, Proc. Distributed Computing for Aeroscience Applications, Moffett Field,
October 1993.

[17] Flory, P. J., Statistical Mechanics of Chain Molecules, Interscience, New York, 1969.
[18] Stauffer, D., Introduction to Percolation Theory, Taylor and Francis, London, 1985.

[19] S. Moyer and V. S. Sunderam, “Parallel /O as a Parallel Application”, International Journal
of Supercomputer Applications, Vol. 9, No. 2, summer 1995.

[20] J. Leon, et. al., “Fail Safe PVM: A Portable Package for Distributed Programming with Trans-
parent Recovery”, School of Computer Science Technical Report, Carnegie-Mellon University,

CMU-CS-93-124, February 1993.

26



[21] J. Dongarra, et. al., Abstracts: PVM User’s Group Meeting, University of Tennessee,
Knoxville, May 1993.

[22] C. Hartley and V. S. Sunderam, “Concurrent Programming with Shared Objects in Net-
worked Environments”, Proceedings — 7th Intl. Parallel Processing Symposium, pp. 471-478,
Los Angeles; April 1993.

[23] A. Beguelin, et. al., “HeNCE Users Guide”, University of Tennessee Technical Report, May
1992.

[24] D. Bailey, J. Barton, T. Lasinski, and H. Simon, eds. “The NAS Parallel Benchmarks”. Report
RNR-91-002, Moffett Field, CA: NASA Ames Research Center, 1991.

[25] D. Bailey, E. Barszcz, et al. “The NAS Parallel Benchmarks.” International Journal of Su-
percomputer Applications, Vol. b, No. 3, pp.63-73, Fall 1991.

[26] A. Alund, S. White, and V. S. Sunderam, “Performance of the NAS Parallel Benchmarks on
PVM Based Networks”, Journal of Parallel and Distributed Computing, Vol. 26, No. 1, pp.
61-71, April 1995.

[27] S. Moyer and V. S. Sunderam, “PIOUS: A Scalable Parallel I/O System for Distributed Com-
puting Environments”, Proceedings — 1994 Scalable High Performance Computing Conference,
May 1994.

[28] V. S. Sunderam, “Heterogeneous Concurrent Computing with Exportable Services”, Pro-
ceedings — Workshop on Environments and Tools for Parallel Processing, STAM Press, May
1994.

27



THE TOOL-SET FOR PVM T

Thomas Ludwig, Roland Wismiiller
Lehrstuhl fiir Rechnertechnik und Rechnerorganisation
Institut fur Informatik der Technischen Universitat Munchen
D-80290 Munchen, Germany
Tel.: +49-89-2105-2042 or -8164 or -8240, Fax: +49-89-2105-8232

E-mail: {ludwig,wismuell bode}@informatik.tu-muenchen.de

Abstract

THE TooL-SET for PVM will comprise a set of integrated tools which can either be used
individually or in concert. Tools will be subdivided into interactive tools for investigation and
manipulation of the program state and automatic tools. Both types of tools will use online
data, trace data, and checkpoint information to perform their task. THE ToOL-SET will
be composed of a debugger, a performance analyzer, a visualizer, a deterministic execution
controller, a load balancer including a checkpoint generator, and a parallel file system. All
tools will be available under the GNU General Public License Agreement. First versions of
the tool environment will be released in spring 1996; some of its components will be available
earlier.

1 Introduction

The PVM programming library has become an increasingly popular de-facto standard for writing
explicitly parallel programs based on the message passing paradigm. A large variety of parallel
applications, e.g. multigrid solvers, image processing or gene sequence analysis has been imple-
mented on top of PVM. PVM is also being used as a platform for developing tools for parallel
programming. Although some of them are rather sophisticated, currently only few tools are avail-
able and usable for the application programmers’ community. One reason for this fact is that
many tools are pure research prototypes providing only rudimentary, clumsy interfaces difficult
to use for non-experts. A second reason is that existing tools are not integrated and cover only
a single aspect of parallel program development. Here the term “integrated” does not primarily
mean an integrated implementation of these tools, but the more important aspect of integrated
usage, that is whether or not the tools can be used in combination and also provide support for
each other. Currently, different tools can usually not be used for the same program, since they
require the program to be compiled in different ways or to be linked with instrumented libraries
not compatible with each other.

A new project of the Lehrstuhl fur Rechnertechnik und Rechnerorganisation, Technische Uni-
versitdt Minchen (LRR-TUM) will change this situation by providing an integrated tool-set for
PVM including both run-time support and programming tools. The project is based on the pre-
vious work of our group that i1s performing research in the field of parallel processing tools for
more than eight years'. It will integrate and adapt our existing tools and experience to form
a PVM tool environment supporting parallel I/O [8], load balancing [5], resource management
and checkpointing [9], performance analysis [4, 3], debugging [7], deterministic execution [6], and
visualization [2] (the citations refer to already existing work). Since we can rely on considerable

This work is partly funded by the German Science Foundation, Contract: SFB 342, TP A1l
LIf you are interested in the ancestors of THE TOOL-SET, please refer to [1].
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preparatory work that always aimed towards industrial quality, easy-to-use interfaces, and inte-
gration of programming tools, we expect a first version of THE TOOL-SET to be available for the
user community in spring 1996.

2 THE TOOL-SET

This section will give an overview over the concepts of THE T0OOL-SET. Many of them are already
fixed and are waiting just to be implemented, others are still research topics and require more
conceptual work. As the complete tool-set has a high internal complexity, not all features will be
available at the same time with full functionality. The end of this paper will present a preliminary
time schedule and some first deadlines.

The tools can be divided into classes according to the following criteria. First, we will of-
fer interactive tools and automatic tools. Interactive tools (like THE DEBUGGER, THE LOAD
BaraNceR) will support implementation and maintenance phases whereas automatic tools (THE
LoaD BALANCER) mainly concentrate on the production phase of the software. Tools will use dif-
ferent sources of information. A monitoring system will give direct access to the running program
on the workstation cluster, thus supporting online debugging and performance measurement. All
measured characteristics can be recorded in traces which describe the individual behavior of a
single program execution. Traces can be used e.g. for statistical program analysis. In addition,
checkpoints will be generated which represent the state of a program at a given point of time.
Checkpoint data is mainly used for load balancing purposes. Traces and checkpoints can be en-
tered in a database system for comparison, version management etc. All tools are based upon
these few information types, however, none of them uses the complete set. Interactive tools will
be integrated considering their graphical user interface. Implementation of the GUIs will be based
on OSF/Motif and therefore give the users a standardized look and feel.

Finally everything i1s grouped around PVM version 3.3.x. We expect THE TOOL-SET to be
easily adaptable to future versions of PVM as only the monitoring system 1s closely interconnected
with internal PVM mechanisms. However, any change of programming model (e.g. new commu-
nication types) would also require an adaption of those interactive tools which should be able to
handle the new constructs.

Figure 1 shows the module structure of THE T0OOL-SET. Due to the limited space of this paper
we can only give a list of some selected highlights and a short description of two of the tools: of
THE DEBUGGER and of THE PERFORMANCE ANALYZER.

e THE DEBUGGER can use checkpoint information to resume execution of a program starting
from a specific point during the program run. Debugging cycles will become shorter as the program
has not to be restarted from the beginning.

e THE PERFORMANCE ANALYZER will have extended functionality to try to automatically
detect a focus of interest, e.g. workstations with high idle-time or communication frequency. It
will also offer statistical data and comparison of different program runs by using traces.

e THE VISUALIZER will show the behavior of PVM programs at the level of tasks and com-
munications thus unveiling e.g. deadlock situations.

e THE DETERMINISTIC EXECUTION CONTROLLER (also called THE DETERMINIZER) supports
deterministic runtime behavior of a parallel program thus ensuring reproducible program runs and
results during test phases.

e THE LoAD BALANCER can migrate running processes from loaded workstations (e.g. owner
wants to work at his console) to free workstations, using the mechanisms of the checkpoint gen-
erator CoCheck. Furthermore, the heuristics for controlling migration decisions can be improved
by learning from trace material from previous program runs.

e THE PARALLEL FILE SYSTEM will support various modes for accessing data files. Moreover,
all activities can be monitored and evaluated by THE PERFORMANCE ANALYZER.
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Figure 1: Module structure of the complete tool environment

2.1 THE DEBUGGER

THE DEBUGGER will provide support for the efficient source level debugging of distributed pro-
grams written in C or Fortran 77. In contrast to other projects it is not a simple interface built
around a sequential debugger, but a real parallel debugger with special support for PVM. THE
DEBUGGER offers a comfortable graphical interface which is based on a debugger window showing
the source code and command output. In addition, visualizers for regular and also irregular data
structures will be provided. The debugger window can be associated with an arbitrary set of tasks
that is displayed in a list. All debugger commands, e.g. single-step, set breakpoint or print, are
applied to all these tasks or a selectable subset. So data parallel programs where all tasks execute
roughly the same code can be examined using a single window. Multiple windows can be used to
debug groups of tasks executing different codes.

Besides the flexible user interface, THE DEBUGGER provides a variety of other features essential
for parallel programming. We will discuss only the most important ones here. First of all, PVM
is fully supported. THE DEBUGGER can be used for heterogeneous environments and allows to
inspect PVM objects like a task’s incoming message queue or a barrier’s task queue. Tasks can
be 1dentified not only by their ID, but also by additional information, such as host, file and group
names or parent task. Based on patterns using this information, dynamically spawned tasks can
be automatically stopped at the beginning and may be added to any debugger window.

Second, THE DEBUGGER uses the event-action paradigm instead of a simple breakpoint scheme.
Events which may be parameterized, represent special conditions in the program, e.g. 'task reaches
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a source line’ or ‘'message is received’. Each event defined can be associated with a list of actions
that are executed when the event occurs. Actions include stopping any set of tasks, tracing the
event, printing variables or defining new events and actions. Since actions are evaluated au-
tonomously by the distributed monitoring system without interaction with the debugger’s front
end or the user, intrusion is kept very low. Furthermore, actions may also be triggered by events
on remote hosts, so global halting and distributed breakpoints are possible. We will also provide
special breakpoints allowing to follow message transfers: when a task sends a message, the break-
point will stop the receiver immediately after it has received that message, so data processing can
be watched across task boundaries.

Finally, THE DEBUGGER will be integrated with THE DETERMINIZER and CoCheck, making
cyclic debugging practical. Parallel programs usually run for a very long time, so re-running
them becomes a tedious job. In addition, program behavior may not be reproducible due to race
conditions. Therefore, a form of backtracking will be provided by generating a checkpoint and
saving the debugger’s configuration upon user request. The user may then return relatively quickly
to that point and re-execute the last part of the program. THE DETERMINIZER will then either
ensure reproducible behavior or may enforce a different message ordering, so the effects of race
conditions can be examined.

2.2 THE PERFORMANCE ANALYZER

THE PERFORMANCE ANALYZER will we able to handle two different kinds of measurements types:
online analysis and trace evaluation. Both types offer slightly different functionality and are
distinguished by the fact that a trace reflects a fixed program run of the past which includes only
a limited amount of measured data. Measures which have not been evaluated during runtime are
lost for trace analysis.

Let us have a closer look at the functionality of THE PERFORMANCE ANALYZER. It provides
analysis on four levels of abstraction: at the level of the virtual machine, the node level, the task
level, and the function level. Three types of load characteristics can be evaluated: the amount of
computation (CPU-time etc.), communication characteristics like number of bytes sent/received,
and I/O characteristics (also volume and time based). An investigation of these measures should
give the programmer some idea on possibly inefficient constructs in his program. However, with
an increasing number of tasks it becomes difficult to detect the nodes of interest. Therefore,
THE PERFORMANCE ANALYZER offers special attributed measurements. The nodes which shall
contribute to a value are specified via a predicate. If the predicate 1s not true, their current value
is disregarded. Currently, specification of predicates has to be done manually. In future, we will
think about methods of how to add some automatism, e.g. by stepwise strengthening user-defined
predicates in order to minimize the set of interesting nodes. By having identified nodes with
unusual behavior it would be possible to automatically start a refinement of performance analysis.

Attributed measurements not only make it easier to find bottlenecks but also improve the
scalability of the tool. Especially with a higher number of nodes or tasks this feature can reduce
the amount of information that has to be displayed on the screen.

Apart from offering current values, mean values, and a graphical representation of values chang-
ing during runtime THE PERFORMANCE ANALYZER will support enhanced statistical functionality
like minimum and maximum values, statistical distributions of values over the time-axis, and may-
be user definable combinations of primitive performance measures. Finally, THE PERFORMANCE
ANALYZER will support the program dynamics of PVM. Not only will it be possible to handle
a dynamically changing set of active workstations, but also to evaluate the positive or negative
influence of load balancing. This will be achieved by a monitoring system which informs the tool
about every change of the current process graph and its mapping.
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3 Project Status and Availability

Currently we are implementing THE VISUALIZER, THE PARALLEL FILE SYsTEM, and CoCheck.
The latter will be available in 9/95. As the monitoring system is not yet implemented, THE
VISUALIZER will preliminaryly be based upon traces generated by PVM and XPVM. We have not
yvet decided whether we will also provide a version of THE PERFORMANCE ANALYZER for this
trace type.

The next important step to be made is the implementation of the monitoring system which
is a prerequisite to all interactive tools and to THE LoAD BALANCER. With the monitor being
finished we will adapt our existing tools to the instrumented PVM environment. First products
should be available for the users in spring 1996. They will be fully functional but will not yet have
integrated enhanced features which are current research topics of our group.
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Abstract

The paper describes a tool for debugging parallel programs by visualization and animation
of their execution behavior. The visualization and animation tool VISTOP (VISualization
TOol for Parallel Systems) has originally been developed for a programming library called
MMK in a PhD-thesis [Bra94] as part of a tool environment for programming distributed
memory multiprocessors. VISTOP supports the interactive on-line visualization of message
passing programs based on various views, in particular, a process graph based concurrency
view for detecting synchronization and communication bugs.

The paper presents the features of this original version of VISTOP, the process of porting
the tool to the PVM programming model, the new features of the PVM version and some of
the problems that occurred during the port.

1 Introduction

While the development of parallel hardware advances very rapidly with systems consisting of
hundreds or thousands of processing elements, the development and improvement of techniques
and tools for debugging and performance analysis are lagging behind modern hardware technology.
This is one of the main obstacles of a widespread usage of these systems.

New methods to program high performance computer systems such as HPF (High Perfor-
mance Fortran) try to facilitate their use, however, the majority of parallel systems with fully
distributed resources are still programmed with an explicit parallel programming model. Pro-
gramming libraries such as PVM provide a model of communicating sequential processes which
exchange information solely by messages. The interaction of many independent processes causes
additional difficulties and bugs in parallel programs such as communication errors or performance
bottlenecks which occur in addition to problems within the sequential parts of the program. The
understanding of the execution behavior of many concurrent processes is very difficult and re-
quires adequate software tools for debugging and performance analysis. However, current parallel
debuggers operate at a very low level of abstraction and cannot provide enough insight into the
overall execution of parallel programs. This is one of the main reasons why current tools are very
often not accepted by the programmers of parallel systems [Pan93].

The following section gives a brief description of the visualization tool VISTOP for the MMK
programming model. This version is currently being ported in order to support PVM applications.
The changes to be made and the problems that arise are described in Section 3.

This work is partly funded by the German Science Foundation, Contract: SFB 342, TP A1
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2 The Visualizer VISTOP for the MMK Programming Model

The current version of the visualization tool VISTOP (VISualization TOol for Parallel Pro-
grams) animates message passing programs developed with the parallel programming library MMK
[BL90], which is similar to PVM or MPI. The basic idea of VISTOP is analogous to the classical
approach to debugging sequential programs, which involves repeatedly stopping the program dur-
ing execution, examining the state, and then continuing the execution. This is also the approach
used in most commercially available debuggers for parallel and distributed systems.

VISTOP tries to overcome the limitations of these extensions of traditional low-level break-
point debuggers for sequential programs by providing a global view of the program state at the
level of abstraction of the programmer. A global perspective makes it much easier to detect the
reason for communication errors such as deadlocks or races. Main features of VISTOP compared
to other approaches are [Bra94]:

e Most visualization systems are post mortem systems which analyze the program execution
off-line after the program has terminated. However, debugging is an interactive process
where the user examines the state of the system in order to decide which information is
needed next. This approach can only be supported effectively by on-line tools. For instance,
VISTOP can be used in conjunction with our parallel debugger DETOP [BW94] in order
to inspect values of variables or to define break-points. On-line use reduces the amount of
information that has to be gathered from the application as only the information that is
requested by the user must be collected.

e Many distributed systems are missing a global time base. Thus, most visualization tools
that rely on time stamped trace events cannot guarantee to show a “correct” representation
of the program execution. This is not acceptable for a tool that should serve to increase the
understanding of the program execution. VISTOP is based on a formal time model which
uses causal relationships to enforce that the visualization is consistent with causality [SM92].

e The presentation is based on the semantics of the programming model. It shows the commu-
nication protocols and communication errors, i.e. the tool can be used during the debugging
phase of a program and does not require that the program must terminate correctly.

e VISTOP supports a dynamic process model which makes the tool applicable to a wide range
of applications such as distributed database or traffic control systems.

The system provides three views that show different aspects of a parallel computation. The
concurrency view is based on a hierarchical process graph and shows communication and synchro-
nization events. The object creation graph presents dynamic object creation. The system view
shows the distribution of the program objects on a parallel system.

2.1 Concurrency View

In the concurrency view, the program objects are arranged in a two-dimensional area. The basic
presentation metaphor of the view is a dynamic, hierarchical object graph. The nodes of the graph
form little icons which can represent either objects of the programming model or subgraphs of the
program (see figure 1).

The MMK programming model provides three predefined object types. Tasks are the active
components which perform the calculations of the program. They communicate via mailbozes and
synchronize via semaphores. The communication protocol can be adjusted by specifying the buffer
size of the mailboxes and by the selection of timeout intervals of the communication functions. For
example, a synchronous communication between two task objects similar to the ADA rendezvous
semantics can be specified by setting the buffer size to 0 and the timeout interval to unlimited.
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Figure 1: VISTOP Concurrency View.

Usually, programming objects are displayed by a small icon which shows a characteristic symbol
for the object type and the identifier of the object. The size of the icon can be adjusted by zooming.
In addition, the icons change their shape to show the current state of the object. This feature is
used to visualize the communication protocol and error conditions. Additional information about
objects can be displayed in a so-called “detail view” which can be obtained by selecting an object
with the left mouse button. For instance, the detail view of a mailbox object shows the message
buffer and the task objects which were sending the messages which allows to detect communication
errors that are caused by messages from wrong senders.

The layout of the object graph should ideally reflect the communication structure of the parallel
application in order to make the display most effective. The arrangement of the program object
can be assigned by the user accordingly by selecting and moving the objects. Communication
and synchronization events are indicated by arrows. A thin arrow characterizes a non-blocking
communication or synchronization. Blocking library calls are visualized by thick arrows (see figure

).

2.2 Hierarchical Abstraction

Hierarchical abstraction can be used at every level of computation to control complexity and
make the construction of larger systems more manageable. While the method i1s widely applied
in textual programming (e.g. functions, procedures, modules) and in design tools such as CASE
tools, currently no existing visualization tool exploits this technique.

In VISTOP hierarchical abstraction is realized by “container objects”. Fach container consists
of two parts, an icon and an associated concurrency window. The icon represents the group
of program objects located in its concurrency window or one of its descendants. Program and
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container objects can be moved between different windows by drag and drop. Thus, container can
be used to form a hierarchical program graph by distributing the program objects in an appropriate
way.

In order to control presentation complexity of the display during visualization all concurrency
windows can be closed and opened by selecting the respective container. Figure 1 shows the main
window of the concurrency view that contains two container objects Container0 and Containeri.
Only the concurrency window of Container1 is visible whereas Container0 is closed.

Communications between objects outside and objects inside a container are displayed by an
arrow from the outside object to the container (see communication between Container0 and
mailbox mb3). Communication events within a container are only displayed in the concurrency
window associated with the container, i.e. if the window is closed, the event is invisible (see
communication between task H and mb7). Communication between members of a container with
communication partners outside are displayed by an arrow head (see task_G). The window that
contains representations of both communicating objects shows the communication partner which
1s mb6 in the example.

2.3 Object Creation View

This view displays the dynamic object creation chain of programming objects created and/or
deleted frequently as it happens for example in database systems or tree search algorithms. The
objects are represented in form of a graph consisting of at least one tree. An example for an
object tree can be seen in figure 2. Each of the tasks that are declared statically form the root of
a separate tree. The parent entry shows the task that created the child object dynamically. By
selecting a node of the graph, additional information about the object is displayed (state of the
object, module where the object was created, ...).

When a new object is created, this is animated in the object creation view as follows. First,
the position of the object in the tree is determined. All objects below this position move down
one line. A “turtle” appears below the task which creates the new task and draws a line from the
parent to the new object. Now the turtle grows and finally the icon for the new object appears.
The deletion of an object is animated in a way analogously to the creation.

2.4 System View

This visualization component shows the distribution of the objects of an application onto differ-
ent processing nodes. Different processing nodes may be located on different machines, when a
program 1is distributed in a network of UNIX workstations. The display is organized as a ma-
trix. Each column contains all objects of one node. An object may be displayed as an icon that
shows its type, its name or its object identifier. By selecting an object with the mouse, additional
information about the object can be obtained. The VISTOP system view is displayed in figure 3.

This view can visualize migration of objects in applications which perform migration with the
automatic load balancing facility of the MMK. When objects are created or deleted dynamically,
this view shows the location of the objects and their overall distribution in the system. Again,
the events displayed in this view are animated to show the dynamic behavior of the underlying
application.

3 Porting VISTOP to PVM

The application of the MMK version of VISTOP proved that the visualizer is a valuable tool
for understanding and debugging parallel programs. For PVM, however, no tool of comparable
functionality existed. Therefore, we decided to port VISTOP to the PVM programming model.
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This port is one part of a much larger project called “THE T0oo0L-SET for PVM” [LWBT95], where
a set of integrated tools for the development and execution of PVM programs is being developed.

3.1 Structure of VISTOP

In order to show, which parts of the visualizer are affected by the port to another programming
model, we will now briefly present the structure of VISTOP. Tt consists of three major parts (see

Fig. 4):

1. The data acquisition is responsible for detecting relevant events in the execution of a
program and for feeding the events to the modeling layer in a correct order. Events are
either read on-line from a monitoring system, or off-line from a pre-recorded trace file. In
any case, since the target systems usually don’t provide an accurate global time, events from
different processes must be sorted according to the causality (“happened before”) relation

[Lam78].

2. The modeling layer computes consistent global states from the event stream generated
by the acquisition layer. This computation also takes into account the semantics of the
programming model, so the computed state can provide information that is not directly
contained in the events. For instance, the model can decide whether or not a receive call
blocks its caller, since it computes the queue of receivable messages from the event stream.
If the queue is empty, the task must be blocked. In the same manner, error conditions, e.g.
receiving a message with wrong data type or length can be detected by the model.

3. The visualization layer finally visualizes different views of the global state computed by
the model. It also controls the two other layers.

From this description, it is clear that most of the work has to be done in the two lower lay-
ers. Since we have a new programming library and also new target hardware, we need a different
monitoring system. Also the event processing has to be adapted, since events and parameters
have changed, and there are new interactions (e.g. barrier synchronization) that influence the
computation of a causal event ordering. The modeling layer requires major modifications, since
the semantics of PVM is very different from the semantics of the MMK programming model.
Therefore, the way how global states are computed from events is also different. Finally, visual-
ization patterns for the new object and interaction types in PVM have to be incorporated into
the visualization layer. However, most of its features can be reused.

3.2 Visualization Patterns

In contrast to the MMK, there are no mailboxes and no semaphores in PVM; communication
1s performed directly between tasks. For synchronization, there is a new object, the barrier. In
addition, PVM offers process groups and new communication patterns: broadcast in a group,
multicast to a list of tasks and receiving messages without specifying the sender.

These differences must be reflected in the patterns that are used to visualize communication
and synchronization in the concurrency view. The new patterns are depicted in Fig. 5: The task
icons are identical to that of the MMK version. In addition, there is a new symbol for barriers. It
is created when the first task in a group calls pvm_barrier() and is destroyed when the last task
leaves the synchronization call.

There are no explicit objects visualizing groups in the concurrency view. A first idea has been
to visualize each group by a container object that contains all the tasks in that group. However,
containers in VISTOP form a strict hierarchy of tasks, 1.e. a task can only be in one container,
while in PVM, a task can belong to more than one group. Thus we decided to provide an additional
view, called group manager. It displays the list of all groups that exist at the current point in the
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animation, and allows to select a single group, a union, or an intersection of groups. When this is
done, all visualized objects that do not belong to the specified group (or union/intersection) loose
parts of their coloring, as shown in Fig. 6. In this way, users can quickly determine the group
membership of visualized objects.

Since PVM uses direct communication between tasks and offers some new communication
structures, also the way of visualizing interaction between objects has been modified, as shown
in Fig. 5. Instead of drawing thin or thick arrows between objects, now a simple line is drawn,
denoting that there is some interaction. Additional arrow heads in different colors on either side of
the line specify the kind of interaction: A green (filled) arrow head denotes an interaction that does
not block the active partner, while a red (hollow) arrow head denotes a blocking interaction. The
direction of the arrow head indicates the direction of the (requested) information transfer, while
its position marks the active partner of an interaction. For example, in the middle left of Fig. b,
task1 is sending to taskO, since there is a filled arrow head attached to taski1 that is directed
towards task0. The lower left of the figure shows the visualization pattern when task4 waits for
a message from task3. The new visualization strategy can also show multiple interactions, e.g.
between a task and a container object. In the lower right of Fig. 5, taskO sends a broadcast to
taskl and task2, both in the container, while task1 receives a message from task0. task2 didn’t
start receiving yet and is still waiting for a message from task0. Broadcasts and multicasts are
visualized in an intuitive way by showing that a task sends to multiple tasks at the same time (see
taskOB in Fig. 6).

In addition to these changes in the concurrency view, the detail view of task objects has been
adapted to the task information available with the PVM programming model (see Fig. 7).

3.3 Data Acquisition and Modeling

Although the long term goal for our work is to provide the visualizer VISTOP for PVM based on
an on-line monitoring system, the first version uses XPVM for data acquisition. XPVM records
a trace of events in a PVM application and is able to store this trace in an SDDF file [GKP94,
BDG195]. Using XPVM for data acquisition allows VISTOP can be used for PVM before our
own monitoring system 1s ported. However, we currently loose the interactive control over the
application’s execution. Therefore in a next step, the visualizer will make use of the monitoring
system developed in the OMIS project [LWSB95] and will then also become part of THE TooL-
SET.

The modeling of global states from a sequence of events turned out to be much more com-
plicated for PVM than it was for the MMK programming model. The main reason for this fact
is the absence of an event that indicates the insertion of a message into a task’s message queue.
Such an event is not provided by the built-in trace facility of XPVM. For the modeling of global
states, this has three consequences:

1. The message queue of a task cannot be computed accurately. All the model can provide is
a set of receivable messages. It cannot determine the order in which messages are stored in
the queue.

2. The VISTOP animation is designed to show when a task blocks in a receive call due to an
empty message queue. Since the point in time, when a message is put into the message
queue of a task is unknown, it is not possible to decide whether the task blocks in a receive
call or not. As the current solution, we assume that a message is inserted into the receiver’s
queue when the sender finishes its send operation.

3. It is impossible to easily visualize receive operations in the usual way, if no sender is specified
in the receive call, i.e. a wild-card is used. Since the order of messages in the task’s message
queue cannot be modeled properly, it is not known in this situation, which task is the sender
of the message that is being received.
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Fig. 8 illustrates the modeling process and the last problem just mentioned. The first line
shows a simplified event stream that is the input for the model. s0/s1 denote the start/end of
a send call, r0/r1 the start/end of a receive operation. The numbers in parentheses indicate the
destination or source task, -1 denotes a wild-card. The space-time diagram below shall indicate
the result of the modeling process: a sequence of global states is computed. Finally, as shown in
the bottom half of the figure, each global state is visualized by a graphical pattern.

For the first four states, the modeling and visualization process is quite straightforward. How-
ever, a problem arises when event r0(-1) is beefing processed. The global state after this event is
the following: “task3 is receiving a message from task2”' However, according to the description
above, the model cannot determine the sender of the message being received until it sees the event
r1(2) that always contains the actual sender. So in order to visualize correct global states, the
receive operation is shown not before the modeling layer has processed the end-of-receipt event.
Then an artificial event is introduced that causes the model and the visualization to return to a
state where the task finished receiving. So in effect, receive operations are shown one step too
late, but a simple analysis shown that at least the causality relation cannot be violated by this
delay.

As a longer term solution, we will try to provide the crucial event “a message is inserted
into a tasks message queue” with the PVM on-line monitoring system developed in the OMIS
project. However, this will most probably require some modifications in the PVM daemons. We
will therefore try to further cooperate with the PVM development team in order to avoid the
necessity of a special PVM version for the usage of our tools.

4 Conclusion

The application of VISTOP for the MMK programming model has shown that visualization can
increase the understanding of parallel programs. Hierarchical abstraction is quite helpful to in-

1Even if the messages have the same tag and arrive at task3 in the order suggested by the dashed arrows, the
task can still receive task2’s message first, if there is a direct connection between taskl and task3. In this case,
PVM will always first ask the daemon for a receivable message before it checks the direct connections.
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crease the scalability of visualization tools for functional debugging of parallel programs. The

concept is easy to understand and can be applied to any parallel program.

The visualizer is now also available for the PVM programming environment in a first version.
It currently animates SDDF traces generated by the XPVM tool. Future work includes the
development of a PVM on-line monitor that will acquire the data needed for VISTOP, and an
integration of the visualizer into THE TOOL-SET.
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Abstract

Checkpoints cannot only be used to increase fault tolerance, but also to migrate processes.
The migration is particularly useful in workstation environments where machines become
dynamically available and unavailable. We introduce the CoCheck environment which allows
the creation of checkpoints. Particularly, we focus on the basic protocol and the improvements
made to efficiently support process migration.

1 Introduction

Researchers from many different areas have needs for computational power to solve their specific
problems. Today, many are successfully using PVM[4] on Networks of Workstations (NOW) [1] to
satisfy their requirements. A PVM application uses the aggregate computational power of several
workstations to speed-up the computation of a single problem. PVM has been used to parallelize a
great variety of applications like genetic sequence analysis, semiconductor simulation or air quality
modeling.

Usually, in a NOW a single workstation is assigned to a single primary user (owner): the
workstation can typically be found on this user’s desk. Other users (secondary users (guests))
may access this machine via the network. Psychologically, the owner of the workstation expects
that his workstation is at his disposal all the time. Whenever he wants to work interactively, he
expects quick and immediate responses of his machine.

Running a PVM application on a NOW requires executing processes on many machines as a
secondary user. Hence, a PVM application borrows resources such as computational power or main
memory from other primary users. A single process of a PVM application is typically bound to the
machine where it has been started for its lifetime, primary users may find their system in a state
where interactive work 1s slowed by secondary users. As a consequence, they refrain from making
the resources of their machines available to other users. For users, it becomes more and more
difficult to find workstations on which to run their PVM applications. The situation becomes
worse with an increasing number of users parallelizing their application using PVM. Hence, a
facility is needed that maintains the ownership of the machines: as soon as interactive work
begins on a machine, all processes which are borrowing resources must vacate. The mechanism
for doing this are consistent checkpoints and process migration.

2 CoCheck: Checkpoints and Process Migration

Our protocol to create consistent checkpoints described in [3] proved to be viable and stable but
was lacking good performance. This was due to several reasons. First, the checkpoint files which
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Figure 1: Steps to create a consistent checkpoint in CoCheck

were produced by the single process checkpointer were too large. Then the migration of a single
process required that all processes had to write a checkpoint file. Finally, all checkpoints were
written to a network file system producing burst network traffic.

Hence, in the latest version of the CoCheck checkpointer for PVM applications we have ad-
dressed those problems to improve the performance. First, we have incorporated the latest version
of the Condor single process checkpointer. It reduces the size of the checkpoint file of each process
[5]. Then, the protocol has been enhanced to allow that checkpoint files can also be written to local
discs and that only migrating processes write a checkpoint file. Finally, we now use the resource
manager interface of PVM 3.3.x to register an additional system task: the resource manager (RM).
The RM task intercepts certain PVM calls such as adding or removing hosts or spawning tasks.
It is responsible to carry out the requested services instead of the PVM daemons. Hence, it is
possible to introduce a modified behavior of the intercepted PVM calls.

Both the creation of a consistent checkpoint of an application and the migration of a set of
processes is initiated by the RM of the virtual machine by delivering a combination of a signal
and a message to each process of the PVM application (c¢f. Figure 1). As the wrappers for the
PVM functions guarantee that the PVM calls cannot be interrupted by a signal, it is possible to
use PVM functions within the signal handler. PVM calls such as pvm_recv present a problem
because they cannot safely be interrupted by a signal. Here, the message which is sent together
with the signal can be used to force the interception of the signal. The wrapper functions for
the blocking PVM calls have been implemented in that way. In addition this message contains
information about all tasks of the application, which tasks need to create a checkpoint file, the
location of the checkpoint file and if the process should exit. The location can either be a file on
a local or network file system or a network address. The network address can be used in case of
process migration, where the checkpoint can be directly transfered to the new process on another
host. Exiting is only necessary if a process must vacate a machine.

After the signal and the task list have been intercepted all the tasks send specially tagged
“ready” messages to each other. As PVM guarantees the delivery of the messages in sending
sequence each task can draw the following conclusion: after all ready messages from all other
tasks have been received there are no more outstanding messages on the network for this task.
Hence, it can be seen as a normal stand alone process without any network state. While each
process waits for the reception of the ready messages, it collects all other incoming messages in
its address space, so that they become part of the checkpoint file when it is produced and can be
retrieved after restart from the wrapper functions.

After each process has collected all the ready messages it disconnects itself from the PVM
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system and uses the Condor single process checkpoint library to create a checkpoint. Depending
on what was specified in the task list message the file is either written to disk (local or via a remote
file system) or its state is transferred directly to a remote process which will become the migrated
process. If the checkpoint has to vacate the machine 1t exits after the creation of the checkpoint
is complete. Otherwise it directly begins the restart protocol (cf. Figure 2).

At the beginning of the restart phase all processes are stand alone processes. As the first step
to continue the parallel PVM application, each process rejoins PVM and gets a new task identifier
(tid). This tid is then sent to the RM which can set up a tid mapping table from original tids to
current tids. As the application should not be aware of the fact that a process has migrated or a
checkpoint was taken and the application has been restarted from that checkpoint, the tids which
each task got, when it enrolled for the first time, are used throughout the lifetime of the whole
application. To achieve this transparency of the tids the wrappers use a mapping table each time
a tid is referenced in a PVM call. This mapping table is set up and distributed to all tasks by the
RM. After each task has received its copy of the mapping table it can continue normal execution.
The wrapper functions take care of retrieving messages that have been stored in the restored user
address space before other incoming messages.

As already mentioned one requirement is to have a signal safe extension of PVM. CoCheck
achieves this by providing wrapper functions for all PVM calls which block signals. This introduces
an additional overhead of about 2 percent during normal operation for sends and receives as shown
in figure 3. The ping-pong measurements were done on two Sparc 10 machines connected by a
nearly unloaded Ethernet during nighttime.

3 Conclusion and Future Work

The latest version of CoCheck allows for creating checkpoints of PVM applications. Due to the
enhancements discussed in this paper CoCheck now also provides a means to efficiently migrate
single processes. This has been achieved by restricting the creation of checkpoint files to the
migrating processes. Local discs can now be used to store those files or the checkpoint can be
directly transfered over a TCP connection to the new host of the process.

The CoCheck environment comprises a set of libraries, a simple RM for PVM and a program
to use CoCheck’s functionality. Applications which should benefit from CoCheck’s features simply
need to be relinked against the CoCheck libraries. The user can then use the supplied command
to either create a checkpoint, restart an application or migrate certain processes. The CoCheck
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Figure 3: Performance of the CoCheck wrappers compared to PVM 3.3.7

system is publicly available under the terms of the GNU public license. To obtain the software refer
to the CoCheck homepage: http://wwwbode.informatik.tu-muenchen.de/ stellner/CoCheck/.

In addition to the supplied control command CoCheck offers an API with which the users can
request CoCheck functionality within their applications. This includes the creation of checkpoints
or the migration of processes. Hence, the user is capable of integrating dynamic load balancing
into his applications, where the application can request to migrate a set of processes to new hosts,
which are more powerful or less loaded. Together with the PVM feature of notifications, CoCheck
can be used to detect failures of machines and restart the application from a formerly created
checkpoint.

CoCheck provides a preemptive global scheduler to RM processes. Hence, in the future we will
focus on using this service in the RM. In addition to the use for RM, CoCheck will be incorporated
in THE TooL-sET[2]. Apart from providing basic checkpointing, CoCheck will be used within THE
TOOL-SET to provide the core migration facility for system integrated dynamic load balancing.
The debugger of THE TooL-SET will use CoCheck’s checkpointer to provide cyclic debugging, i.e.
during a debugger session the user can create a checkpoint and restart the program from that
state all over again to examine it.
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Abstract

NXLib is a library and programming environment for workstations which resembles the
parallel programming environment of Intel’s Paragon Supercomputer. This article will give a
short overview of our motivation for NXLib, its implementation, and show some performance
figures.

1 Motivation

State-of-the-art multicomputers like the Paragon offer a proprietary message passing environment.
An implementation of that on coupled workstations allows the use of interconnected workstations
as a development platform for applications. In addition to that, it is also attractive to use intercon-
nected workstations as additional computational resource. The performance constraints of coupled
workstations restricts this to applications with limited demands concerning message latency and
bandwidth, which usually are applications with coarse grain or medium grain parallelism.

In contrast to other parallel programming environments like PVM [5] and P4 [1], NXLib resem-
bles a native message passing environment of a real supercomputer, the Paragon [2]. Thus, NXLib
applications running on Intel’s Paragon will take advantage of better communication performance
of the native message passing calls. NXLib applications on workstation clusters will achieve about
the same performance as applications which use other parallel programming environments [4, 3].

2 Implementation

2.1 Virtual Paragon Node

In the following discussion the term Paragon Node will be referred to as the collection of a hardware
Paragon node, the operating system kernel and a set of application processes running on top of
that.

The basic means to model Paragon nodes on coupled workstations is virtualization. Conse-
quently, a virtual Paragon node (VPN) resembles a Paragon node on a workstation. The hardware
and software properties of a Paragon node which are not available on a workstation are offered in
the following way. We introduce a daemon process which takes over part of the functionality of the
Paragon hardware and operating system. The calls of the application processes to NX routines
are transformed into requests to the daemon.

This project was partially funded by a research grant from Intel Corporation
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Figure 1: NXLIb’s Virtual Paragon Node

In such an implementation every system call would require an interprocess communication
between daemon and application process. To reduce the amount of interprocess communication,
parts of the operating system’s tasks have been moved into the application processes and will be
linked to the application process. Figure 1 illustrates the structure of a virtual Paragon node.

2.2 Communication Layers

An important issue for a message passing library for coupled workstations is portability and
flexibility. A layering of the message passing library has been designed to cover both aspects.
Figure 2 shows the layers of the NXLib environment.

Paragon OSF/1 AD Interface

Call Buffer |—' Message Buffef

Reliable Communication Interface

Address Conversion

SIGNAL

Local Communication | Remote Communication

Local UNIX Calls Remote UNIX Calls

Figure 2: Communication Layers of NXLib

The basis consists of standard UNIX system calls. To achieve a great flexibility concerning
the communication protocol which is used for the implementation, NXLib distinguishes between
local and remote communication. Within the local and remote communication layer a protocol
specific addressing scheme is used. The reliable communication layer provides reliable point-to-
point communication calls disregarding the location of the communication partners. The reliable
communication interface still uses the Paragon addressing scheme. The address conversion layer
has been introduced to map Paragon addresses to corresponding protocol specific addresses. In
addition to its address conversion task, this layer also distinguishes whether a communication is
local or remote. Provided with that information, the reliable communication layer can invoke the
appropriate local or remote communication calls.

We introduced a buffer layer which consists of the call buffer for pending send and receive calls
and the message buffer for incoming messages. The latter is based on the simplifying assumption
that on each machine unlimited buffer space is available. Unlike the Paragon, where incoming
messages are placed in a reserved memory area, in NXLib the memory is dynamically allocated
when a message arrives on a node.
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The Paragon OSF/1 communication interface finally provides the user calls which are available
on a Paragon system. Send and receive calls access the buffer layer by inserting the call in the call
buffer or checking the message buffer for matching messages. NX calls which imply interprocess
communication (e.g. global operations), access the reliable communication layer directly. Some
calls of the Paragon interface, e.g. dclock(), will be handled immediately by the interface layer.

In order to provide Paragon’s interrupt driven message passing, on arrival of an incoming
message a signal i1s delivered to the receiving process. Within the signal handler NXLib receives
and handles the message. Currently, local and remote communication uses the TCP/IP socket

interface.

3 Performance

Figure 3 shows the message latencies for local communication (both application processes on the
same workstation) and remote communication (application processes on different workstations)
in a log-log-scale. The results were obtained by dividing the time of synchronous ping-pong
operations between two processes using csend() and crecv() calls by two. The plots show
maximum, average and minimum values obtained in 1000 iterations during normal working time.
The values for remote communication with message sizes above 100 K-bytes were measured with
only 100 iterations due to the very long execution times. We used an IBM RS/6000 3BT and an
IBM RS/6000 390 both with 64 Mbytes of memory coupled via our local Ethernet.
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Figure 3: Local and Remote Message Latency of NXLib

The average 1 byte message latency is 1.95 m-sec for local communication and 4 m-sec for
remote communication. Best 1 byte message latency is 1.3 m-sec and 1.4 m-sec respectively. The
highest average bandwidth is achieved with the largest messages. In this measurement this was 6.9
M-bytes/sec locally and 1.06 M-bytes/sec remotely with a message size of 1 M-byte. For remote
communication the best bandwidth value of all iterations increases only slightly if the message
size is above 16 K-bytes where 1 M-bytes/sec is reached.

4 Conclusions

The NXLib environment allows the use of a network of workstations for mainly two purposes.
First, the network of workstations can be used to develop software which should finally run on a
Paragon system. Workload can therefore be withdrawn from the multicomputer system. The CPU
time which is gained by shifting the development of applications to workstations can be used for

51



production runs of computational intensive problems. Second, instead of using the workstations
merely as a development platform they can also be used as a production environment for certain
applications. Especially coarse grain applications can achieve good speed-ups in a workstation
environment.

NXLib was made available to the public under the Gnu library license and the Gnu general
public license end of 1993 for SunOS 4.1.x. In the course of 1994, NXLib was ported for HP 9000
HP UX 09.01, SGI TRIX 5.1.1.1, IBM RS 6000 AIX 2.3, DEC Alpha AXP OSF 1.2, and Sun
Solaris 2.3. Thus, NXLib 1s now available for all major workstation platforms via anonymous ftp
from ftp://ftpbode.informatik.tu-muenchen.de/NXLIB/ and other ftp servers. We released
four new versions of NXLib up to the current release V1_1_4 which included several bug fixes and
ports to other platforms.

Work on an implementation which uses System V IPC shared memory facilities for local com-
munication is almost finished. Additionally, we are developing an environment which offers the
functionality of Paragon’s parallel file system PFS on workstations.
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Abstract

In this paper we discuss the design and implementation of an I/O interface for parallel
programming environments on clusters of workstations. The PFSLib library offers the func-
tionality of Intel’s parallel file system PFS and is intended to be used for parallel applications
using PVM or other message passing libraries for workstation clusters. An example of a sim-
ple parallel matrix-vector-multiplication shows how PFSLib function calls are used together

with PVM.

1 Introduction

During the last years parallel programming environments (PPEs) like PVM [8], P4 [1] or NXLib [7]
became more and more popular in the parallel computing community. Those PPEs offer sophisti-
cated mechanisms for managing processes of parallel applications and communication via message
passing. If the interdependency of the processes and thus their need of synchronization and com-
munication is low compared to the applications overall runtime a workstation cluster is a good
alternative to supercomputers. But the development of an appropriate I/O interface follows a sim-
ilar history as it was for real supercomputers where the primary design goals focused on increasing
processor speed and fast interconnection networks. The I/O traffic was handled by a host com-
puter producing a severe I/O bottleneck. Increasing the speed of I/O traffic to the attached hard
disks was neglected for a long time. To solve the I/O requirements of scientific applications vendors
like Tntel and nCUBE offered dedicated I/O subsystems for their parallel computers, which are
able to perform parallel I/O operations concurrently on a set of disks. A similar situation arised
when PPEs for coupled workstations were under development. There, two major paradigmas were
used for I/O in parallel applications. Firstly, one dedicated process is responsible for all read and
write accesses to files, thus distributing and gathering all data to or from the other processes via
messages. Secondly, every process within in the application accesses local files confirming its data.
Those files have to be post-processed for further usage. Current research activities in the field of
parallel computing show that scalable I/O and parallel file systems are one of the major topics of
interest.

In 1993 the parallel processing group at the LRR-TUM developed an emulation of the Intel
Paragon Supercomputer. The latest release of this parallel programming model for coupled work-
stations called NXLib! is available since February 1995. The NXLib library comprises message
passing and process management routines. It allows to run early software development phases on

This project was partially funded by a research grant from Intel Corporation
1Release V_1_1_4 can be accessed via URL: ftp://ftpbode.informatik.tu-muenchen.de/NXLIB
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a workstation cluster and to switch to the Paragon for final production runs only. Like in most
others PPEs the lack of a sophisticated I/O facility restricts programmers in writing applications
which operate on large amounts of data. The new library PFSLib adds the functionality of Intel’s
parallel file system. One of the main goals in designing and implementing PFSLib was to be
independend from the native message passing library and thus having a universal 1/O interface

for all PPEs.

2 Related Work

Available results taken under consideration when designing and implementing the PFSLib can be
grouped into three different categories:

e Operating system integrated approaches for remote handling of 1/O on clusters of coupled

workstations (e. g. NFS, AFS, DFS).
e Existing approaches for parallel I/O for workstation clusters (e. g. PIOUS [6]).
o Definitions of user interfaces for parallel /O (e. g. MPI-1/0 [2], Intel PFS [4], IBM Vesta [3])

PIOUS (Parallel Input OUtput System) is an existing approach for workstation clusters and
was presented in 1993 by Moyer and Sunderam. In PIOUS process groups on heterogenous clusters
access common data on peripheral storage devices. The following issues are covered in the first

version of PIOUS:

e Portability to other systems is achieved by the independence of the underlying transport
mechanism. PIOUS only requires reliable data transfer mechanisms between cooperating
workstations.

e Parallelism of the system results from asynchronous execution of the operations.
e Scalability 1s guaranteed by storing files in a distributed manner.

e Integrated control of parallelism and mechanisms for fault tolerance through the replication
of data.

e An optimal structure of a parallel file system is currently unknown. Therefore, PIOUS has a
flexible design that allows modification to the user interface and the internal data structures.

For a more detailed description of the implementation and a performance analysis of PIOUS
see [6].

Although it is still not yet clear which concepts have to be integrated, available interfaces offer
different T/O modes, such as how processes participating in parallel I/O access parts of a file. With
MPI-I/0 it was suggested to treat I/O as a special kind of message passing. However, by adhering
to the syntax of message passing calls an I/O library can only be used with one individual message
passing library. PFSLib provides much more flexibility in that point.

3 The User Interface of PFSLib

The main concepts of parallel I/O concern file access patterns and the semantics of read and write
calls. As mentioned above the user interface of PFSLib is in most parts identical to that of Intel’s
parallel file system PFS. Due to the different architectural concepts of clusters a few restrictions
have to be made.

54



File access patterns are selected by specifying one of five I/O modes, which can be set, queried,
and changed by using library calls. To gurantee correct semantics obviously all processes involved
in accesses to a specific file must use identical I/O modes. The modes are just attributes indicating
how the file accesses are ordered but they are not stored within the file. Every new open() call is
independent from previous operations on the file.

M_UNIX provides each process with its own file pointer and it is the programmer’s responsibility
to perform reasonable read and write calls. This mode is best used when processes operate
on large disjoint segments of the file. All read/write requests are served immediately.

M_LOG provides a single file pointer for all processes. Each I/O operation modifies the file pointer
of all processes. This mode is preferable to write log-files.

M_SYNC provides a single file pointer for all processes. The operations are ordered by the logical
number of the calling process. Thus, all processes have to perform the same sequence of
calls. This mode is especialy useful when writing ordered lists or checkpoint information to

disk.

M_RECORD is similar to M_.SYNC but gives each process its own virtual file pointer. The data
is read or written in records of equal size. Still the processes stick to the same sequence
of calls but in contrast to the above mode they are no longer synchronized when actually
performing them.

M_GLOBAL provides read access in a broadcast manner where all processes read the same data,
e.g. in the startup phase of the application. Write access will write the data of only one
arbitrary process to the file. If the contents of written data is validated by some other
means this gives a much higher performance than every process writing the same data.

The concepts of reading and writing to parallel files follow the principle of message passing
between processes. However, there 1s no syntactical or semantical dependency with the NX message
passing calls. This is a prerequisite for PFSLib to be usable with other programming environments.

Two exisiting variations for read and write calls are blocking and nonblocking calls. With
blocking calls the data is already read or written when the call returns whereas with nonblocking
calls the user has to check for completion of the call. In addition to reading and writing sequences
of bytes the user interface supports operations for scattered data structures.

Additionally, the user interface comprises various calls for opening, closing and advanced man-
agement of files.

4 Design and Implementation Aspects

Following one of our main design goals PFSLib works together with major environments like PVM,|
MPI [9], and NXLib. Neither do we rely on any semantical information from the environment
nor is PFSLib based on a specific message passing subsystem. To achieve this we consider that
processes within the application implicitely form a group. This is neccessary to ensure correct
semantics for M_SYNC and M_RECORD mode where access to the same file is ordered by the
identifiers of the processes within the application. Additionally the independence from the message
passing system 1s achieved by using the remote procedure call mechanisms provided by the UNIX
operating system. Finally, the complete functionality can be accessed via C and Fortran user
interfaces.

The current implementation of PFSLib has a centralized server for managing file access and
does not yet incorporate mechanisms to distribute single files to several disks. However, for large
amounts of data being accessed the data transfer is executed by an extra server. This concept is
flexible enough to be extended to mechanisms for data distribution. The design aspects of this
version cover the following issues:
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Internal states of server and clients: As opposed to NFS the PFSLib server is not stateless. Its
activities depend for several modes on the sequence of read and write requests transferred
by the processes (clients) to the server. In the current implementation the server keeps
information on both connected clients as well as open files.

File access strategy: All read and write operations are currently managed by the server. Hence,
filesystems with and without NFS can be treated identically. If the amount of data exceeds
a configurable threshold the file access is handled by a so-called IO-Server. In case of an
asynchronous operation the client process forks and the child process carries out the file
access. Unix IPC shared memory is used for the data transfer between client and its child
process.

Course of an operation: 1.) The client checks whether the operation accesses a file controlled by
the PFS-Server or a Unix file. If the file is a Unix file the appropriate standard library call
will be executed and the call returns. 2.) In case of a PFSLib file the client increases the
RPC timeout if the operation is synchronizing. This is necessary because the answer of the
server might be delayed until all other processes issued the same operation. 3.) The client
sends a RPC request to the server. 4.) The server carries out several security and parameter
checks. 5.) The server handles the request and sends the result back to the client. 6.) The
client analyzes the response and the call returns.

Client synchronization: In the case of synchronizing calls (e. g. in I/O-mode M_SYNC) the call
can not be completed unless all participating processes have performed that call. Hence, the
server delays the completion of the corresponding RPCs.

5 Using PFSLib for PVM Applications

In this section we want to show the ease of using PFSLib in a parallel application based on PVM
performing a matrix-vector-multiplication M x & = ¥.

M_GLOBAL M_RECORD client()

A infile A {
- X ; int fd, cnt;
m(0) int mynum = pvmnytid();
m(1) int total = pvmnuntids();
m(2) pfs_init("pfsdhost", total, mnum;
i/i m(3) W fd = gopen("infile", O RDONLY, M GLOBAL) ;
] cread(fd, x, n);
setionode(fd, M RECORD);
outfile for (cnt=0; cnt <(n/total); cnt++) {
——= y(0) cread(fd, nfcnt*total +nynuni, n);
y(1) /* cal cul ate and store results */
y(2) }
y(3) cl ose(fd);
N }

Figure 1: Two processes reading parallel from a file and the corresponding code
Let £ be the number of processes participating in that application and let n be the dimension

of the components with n mod k = 0. The input file contains a vector & as the first entry and the
matrix M row by row as the second entry. Setting the M_GLOBAL mode and reading the first
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n numbers from the file every process will get the vector # as the result. Now the mode changes
to M_RECORD. Subsequent read calls will access row (i — 1) * k + j where ¢ is the number of
calls and j 1s the identifier of the process within the application. Thus every process calculates
the component (i — 1) * k + j of the output vector § with each step. The vector may be written
to another file also using the mode M_RECORD. No synchranization of clients or their performed
calls is needed. Figure 1 shows this scenario for two processes.

6 Future Work

In the future we will improve the efficiency of PFSLib by modifying some of the internal concepts
of implementation. Qur main goal is to achieve scalability. Hence, we will introduce a concept
of distributed servers which will access files distributed over several workstations in parallel. Fur-

thermore, we will enhance the user interface in order to study the usefulness of different access
modes. In addition PFSLib will be incorporated within The Tool-Set [10].
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Abstract

SPTHEO is a parallelization of the sequential theorem proving system SETHEO, based
on the SPS model for parallel search. The SPS model has been designed to allow efficient
parallel search even in comparatively low bandwidth and high latency environments, such as
common workstation networks. In order to obtain a portable and efficient implementation,
the PVM message passing system has been used for implementing the communication part
of the system. This report describes the basic outline of the system, and presents evaluation
results for the communication aspects as well as the performance as a proof system.

1 Introduction

The goal in automated theorem proving (ATP) is, given a set of axioms and a sentence to be proven,
to show that the sentence is a logical consequence of the axioms. This general paradigm can be
used in many applications, such as circuit verification [BCMD90], program synthesis [SWLT94],
and software and protocol verification [CGHT93, Sch95].

ATP is based on search: the solution to a problem is found by a systematical trial-and-error of
possible combinations between inference rules, axioms, and deduced formulas. A common way to
describe a search space is the OR-search tree. Figure 1 gives an example for an OR-search tree.
The top node denotes the original problem (start situation), from which alternative search paths
extend. In theorem proving, the OR-branches result from different clauses that can be used to
solve a particular subgoal.

or

Figure 1: OR-search-tree.

The predominant problem in theorem proving (and search in general) is the performance lim-
itation that arises due due to a combinatorial explosion of the search space: if a proof consists of
many individual steps, the number of possible paths becomes intractable for exhaustive search.
Even though advanced systems use various search pruning and shortcut techniques, many inter-
esting problems require enormous computing time or are well beyond tractability.

In order to improve the usefulness of ATP systems in practical applications, a significant
performance increase, esp. with respect to solving harder problems, is required. An approach to
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achieve such an improvement is the use of parallel instead of sequential search. Parallelism offers
two advantages in that respect. First, the use of hundreds of processors significantly increases the
hardware resources, both in computational power and in main memory capacity. This allows up
to a linear reduction in the runtime of problems and makes problems tractable which previously
were out of reach due to memory requirements. Second, and even more importantly, parallel
search allows the avoidance of early bad search decisions. The exploration of several paths in
parallel ensures that (viewed from the top of the search tree) at least one process is guaranteed to
follow the best search path initially. This can lead to an exponential reduction in the amount of
search required, compared to sequential depth-first exploration of the search tree. In sequential
search, a similar reduction can only be achieved with breadth-first search, a technique that proved
undesirable in practice due to memory requirements that are usually too large for a single processor
and also the associated system complexity.

A thorough examination of previous work in parallel automated theorem proving [SS94] has
lead to the establishment of guidelines which seem necessary to ensure the construction of a parallel
search system which lasts for more than one hardware generation and can adopt improvements in
sequential search technology adequately. These guidelines are:

e coarse-grain parallelization
— minimize the synchronization overhead

e start with good sequential systems
— employ their sophistication and functionality

e use powerful processors
— to compare well against sequential system on the best workstation

e avoid specialized hardware
— increases lifetime
— increases portability

e simple model for parallelization (esp. wrt. communication)
— good for implementation/maintenance
— sequential search improvements easier to incorporate

The SPS (Static Partitioning with Slackness) model [Sut95] provides a parallelization model
which follows these guidelines.

2 The SPTHEO System

The Underlying Sequential System. SPTHEO (Static Partitioning THEOrem prover) is
based on the SETHEO (SEquential THEOrem prover) system [LSBB92, LMG94, GLMS94].
SETHEQ is a sound and complete for first order predicate logic. It is based on the model elimi-
nation calculus (similar to PROLOG) and implemented as an extended Warren Abstract Machine

[War83, Sch91].

The Computational Model of SPTHEO. The execution of SPTHEO is based on the SPS-
model [Sut95, Sut96], and can be separated into three phases as shown in Figure 2. Briefly, tasks
are generated in an initial, sequential search phase. These tasks are then distributed and executed
in parallel. The motivation for this is to minimize the communication overhead, while avoiding
load imbalance by proper task generation and by supplying more than one task to each processor.
Below the individual phases are described in more detail.
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Phase 1 Task Generation

Phase 2 Task Distribution

Phase 3 Parallel Execution

Figure 2: The computational phases of SPTHEOQ.

The Task Generation Phase. In the first phase (task generation), an initial, finite segment of
the search space is explored. During this phase, tasks for parallel execution are generated. Task
generation occurs only during this phase and independently of the processing of the tasks later
(static partitioning). The number of generated tasks (denoted by the letter m) is equal to or larger
than the number of processors (denoted by the letter n). The term slackness is used to express
the relation between the number of tasks and the number of processors.

The task generation phase is defined by the rules used for partitioning the search space
into tasks, a generation strategy, and the desired number of tasks. SPTHEO allows OR- and
independent-AND partitioning (1IAND-partitioning for short). With OR-partitioning, a separate
task is created for each alternative clause that can be used to solve the current subgoal. With
1AND-partitioning, a separate task is created for each group of independent subgoals that remains
to be solved. The generation strategy used is iterative-deepening search over the depth of the
proof tree. That means that for each particular deepening level, the search is pruned as soon as
the resulting proofs would exceed a certain depth. The task generation thus operates as follows.
The levels defined by iterative-deepening are successively explored, counting the number of search
cut-offs due to reaching the depth limit. Each such point where the search has been artificially
stopped can be used as a task for parallel search. As soon as a level is reached which allows to
create enough tasks (m is specified by the user), task generation is enabled and the desired num-
ber of tasks is approximated by appropriately switching to a previous deepening level (where the
number of tasks that remain to be produced is already known). For details about the generation
control see [Sut95].

The Task Distribution Phase. In the second phase (task distribution), the tasks generated
in phase one are distributed among the available processors. SPTHEQO makes beneficial use of
the availability of all tasks prior to their distribution: in the iAND-processing option, redundant
tasks may occur, which are detected and eliminated. The task distribution affects the potential for
load imbalance: if tasks with very long run time accumulate at one processor, while small tasks
accumulate on another, imbalance results. Experiments showed that the cumulation of similar
sized tasks is heuristically minimized, if the distance in the OR-search tree between the tasks
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mapped to the same processor is as large as possible. Further experiments [Hub93] showed that
a very good approximation of the optimal solution is obtained by employing a simple modulo
mapping: Task; — Prozessor;medqn, where Task; is the ¢-th task generated.

In order to keep the communication overhead low, an efficient task encoding is used. Since each
task represents a location in the OR-search tree, simply the choices made during the search that
lead to the task-defining position in the search tree are stored. This is simply a list of numbers,
for example 3 1 ... for saying: take the third choice among the first set of alternatives, take
the first choice among the second set, etc. From these numbers, each processor then recomputes
deterministically the state that has been saved by the task, and proceeds searching for a solution
from there. For iAND-partitioning, the tasks do not comprise full OR-search tree nodes, but are
further restricted to solving a particular set of open subgoals within such an OR-search tree node.
Therefore, the task encoding for an 1AND-task consists of the previously described list of numbers
plus a list of numbers that denotes which subgoals (e.g., the second and the fifth) have to be
processed.

The Parallel Task Execution Phase. TFinally, in the third phase (task execution), the tasks
are executed independently on their assigned processors. Note that no interaction with other tasks
is necessary in order to carry out a task. Since possibly more than one task has to be processed
per processor, a service strategy is required. For this, quasi-parallel processing is preferable over
serial processing. The reason for this is that a task may not terminate within a given runtime
limit. With serial processing, this would lead to an infinite delay of all tasks remaining on that
processor, which causes search incompleteness. Timesharing of tasks at a processor is realized
by starting for each task a modified version of the SETHEO system (extended by the ability to
receive and process a task) as a PVM process.

The Process Structure of SPTHEO. SPTHEO employs a simple master/slave process struc-
ture. A modified SETHEO process (master) performs the initial sequential task generation, in-
cluding redundancy elimination for 1AND-partitioning. The generated tasks are then one after
the other spawned on the available processors. For this, a load-dependent performance index for
all processors is established at the time the virtual machine is built. Tasks are then distributed in
a round-robin manner, with processors ordered according to their performance index.

Each terminating task returns a result status to the master. For OR-partitioning, each task
simply returns a status flag denoting success (a proof has been found) or failure (the search space
has been completely exhausted with no proof found). As soon as the first success message is
received, the master terminates all still active processes. Each task process terminates itself after
its runtime limit is exhausted, and so does the master.

For iAND-partitioning, the same basic structure is used. However, for each success message
received, the master checks if the solution of the respective task already provides a solution to
the full problem, or if further open subgoals remain. In case further work remains, a message is
printed summarizing the current proof advance. Regarding control, 1AND-partitioning allows two
options. Fither all iAND-tasks are distributed in the beginning, or only a selected subset. Based
on the membership of particular iAND-subgoals in different OR-nodes (the same iAND-subgoal
can be part of several OR-nodes), partial orderings can be constructed which enforce as much
parallelism as necessary, but as little as possible. This has been shown to be able to improve the
efficiency of parallel search [Sut95]. Therefore, initially only a small set of tasks are started, and
further tasks are spawned by the master whenever a success message is received and work remains
to be done, depending on the partial task ordering.

3 Evaluation of SPTHEO

The SPTHEO system has been extensively evaluated using the TPTP library [SSY94, SS95].
Altogether, 2571 TPTP v1.1.3 problems were evaluated, thereby covering a broad application
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spectrum of 25 scientific domains, with problem difficulties ranging from very easy to very difficult
(including open) problems.

In order to determine the performance improvement compared to the underlying SETHEO
system and a previous parallelization, called RCTHEO (for Random Competition parallelization
of SETHEO [Ert93]), both these systems have been tested as well. Since all three systems share
most of their code (all are versions of the same program), the comparison is highly accurate in the
sense that differences are mainly due to differences in the computational models, and not due to
implementation differences.

All experiments have been performed on a network of 121 HP workstations connected by Eth-
ernet. The network consists of 110 HP-720 workstations (58 Drystone MIPS, 38.5 SpecInt’92)
with 32 MByte main memory each (200 MByte disk for swap space), and 11 HP-715/50 work-
stations (62 Drystone MIPS, 36 SpecInt’92) with 80 MByte main memory each (2GByte storage
disk and two 500MByte disks for system and NFS data). Each HP-715/50 workstation operates
as file server for 10 HP-720 clients. The network is partitioned with bridges into 5 segments with
two servers each, and one segment with one server. In order to ensure that equivalent hardware
is used in all experiments, no processes were run on server machines.

Runtime Assessment in a Distributed Environment. A major difficulty for the evaluation
of a network-based parallel system is the influence of other users on the available processing
capacity, both in terms of processor load and available communication bandwidth. As a result,
the wall-clock runtime of a parallel job can vary significantly. Since an important purpose of
the SPTHEQO evaluation is an analysis of the performance of the SPS-model, such variations are
undesirable. Ideally, exclusive usage of the network would be possible, allowing to obtain the true
runtimes on such a network. However, measurements show that the employed network is highly
utilized, even during the night and on weekends. Therefore, extensive experiments based on
exclusive usage are not possible. Fortunately, both the SPS-model and the random competition
model (RCTHEO) nevertheless allow an analysis which reliably approximates the results that
would be obtained under exclusive usage. For SPTHEQ, this is achieved by the following.

Instead of the standard SPTHEQO operation where termination occurs as soon as a proof has
been found, each task is independently processed until it fails, succeeds, or is terminated due to
the runtime limit. The performance statistics for all tasks are then collected in a file. Also, at the
beginning of this file the performance statistics for the task generation phase are included. These
data provide a precise assessment of the number of search steps and runtime for each task and for
the task generation.

Given these data, the runtime on some hardware platform can be estimated. Assume a par-
ticular task o is the first task that leads to a proof in a standard SPTHEO run under exclusive
hardware usage. The runtime of SPTHEO using OR-partitioning then consists of the runtime
Tyen for task gemeration, the time Ty,4(o) until ¢ is distributed, the runtime 7, for process-
ing task o, the time T;p,_geiqy for the processing delay of o due to time sharing, and the time
Thermination Until the success message from o is received and processed by the master? (runtime
= Tyen + T4ist(0) + Lo + Topp_detay + Ttermination). Lgen and T, are already contained explicitly
in the logging file. Ty;54 can be upper bounded by the worst-case assumption that ¢ is always
the last task distributed. In practice, for many problems a proof is reported to the master even
before all tasks have been distributed. An assessment of the “location” of the successful task
with the shortest runtime is shown in Table 7. Tt shows that in the case of many generated tasks
(Mgesireqd = 256), o in (geometric) average appears after approximately % of all tasks have been
distributed. Typp_getay depends on the number of tasks, the times of processing start, and runtimes
of the tasks that are processed on the same processor as ¢. Given a particular distribution scheme
for tasks, the number and runtimes of these tasks can be extracted from the logging file. For an
upper bound on Tpp_getay, it can be assumed that all these tasks start at the same time as o. In
case the task switching overhead due to quasi-parallelism is not negligible, measurements need to
be performed. It is then straightforward to compute T, _ge1ay from the logging data and measure-

20One may also add the time until the master terminated all tasks still being processed.
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ments. Finally, Ticrmination can be obtained by appropriate communication time measurements.
In case no proof is found within the runtime limit, the runtime can be computed as above, based
on the particular task ¢ which terminates last.

Mdesired =
Averages 16 | 256
Harmonic 0.17 | 0.04
Geometric | 0.35 | 0.26
Arithmetic | 0.53 | 0.50

Table 7: Average location of the task with the shortest runtime, given in terms of a fraction of
the number of tasks. mgesireq specifies the number of tasks for task generation (specified by the
user).

Figure 3 shows the wall-clock time required for distributing a single task (including process
startup) using the PVM message passing library on the HP network under non-exclusive usage.
The measurements have been obtained for SPTHEQO, but equivalent values can be assumed for
RCTHEO. It shows arithmetical average values for the average and maximal distribution time over
20 repetitions, for 20 different problems with different numbers of tasks to distribute. The average
time for up to 20 tasks is approximately 0.1 seconds, with maximal values from 0.2 to 0.7 seconds.
The figure shows a slight increase of the average value as the number of tasks increases, and a
significant increase of the maximal value that is observed (here up to 2.1 seconds). The reason
for this is that as the number of tasks increases, the probability increases that a processor with
a high load is used. Such a processor responds slowly, leading to significantly increased maximal
values for some tasks, which in turn leads to an increase in the average distribution time. The
figure suggests that for exclusive network usage an average distribution time of approximately 0.1
wall-clock seconds can be expected, for at least up to 60 tasks.

Below the output regarding task distribution of an actual SPTHEO run is shown. The run
has been performed during daytime with a high load on the network.

Entering PVM! Start Parallel Processing...

Spawned tasks: 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22
Spawned tasks: 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
Spawned tasks: 45 46 47 48 49 50 51 52 53 54 55

Task 37 (iand-task) successful ... solves part of OR-node 31 (1 tasks left)
Spawned tasks: 56 57 58 59 60
Task 39 (iand-task) successful ... solves part of OR-node 32 (1 tasks left)

Spawned tasks: 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
Spawned tasks: 82 83 84
Now waiting for a proof ...

Task distribution time (wall-clock): 67.40 seconds
Task spawning times (wall-clock): min= 0.04 max= 5.27 average= 0.79 seconds

The example shows that two iIAND-tasks (37 and 39) are solved before the task distribution is
finished. The time required to distribute all tasks is quite high: 67 seconds. The reason for this
is that some processors respond slowly (the maximal time required for a single spawn has been
over 5 seconds) due to other load. The maximal time for a spawn observed in a run has been 191
seconds. High spawning times can significantly decrease the performance: while the particular
slow-spawning task may not even be necessary for a proof, the processing of all tasks remaining
to be spawned is blocked. This can be counteracted either by a modified (but more complicated)
system design using hierarchical task distribution scheme, or preferably by a different spawning
primitive which is non-blocking.

Proof-finding Performance of SPTHEO. The most relevant criteria in automated theorem
proving is the number of problems that can be solved with given resources. For the comparison,
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a runtime limit of 1000 seconds (= 17 min) for each problem has been used for SETHEO. For
SPTHEO and RCTHEOQO, a runtime limit of 20 seconds per task has been used.

It is found that SPTHEOQO achieves a substantial performance improvement compared to both
systems. As an indication of the achieved advance in ATP, with 256 processors (simulated)
SPTHEOQO solves 167 more problems than SETHEQO, and 150 more problems than RCTHEO.
Neglecting all trivial problems in the TPTP (i.e., problems solved by the sequential system in less
than one second), this represents an increase of 83% of solved problems. Even compared to the
parallel RCTHEO systems (with the same number of processors), 69% more non-trivial problems
are solved.

Speedup Performance of SPTHEO. Figure 4 shows the relative speedup for SPTHEO based
on the number of search steps, for mgesireqd = 16 and mgesireq = 256. It shows nearly linear speedup
up to 16 processors, and an increasing deviation from linear speedup for larger n. It should be
noted that the plots display the geometric averages; the arithmetic averages are much closer to
being linear for large numbers of processors. There are several reasons why the relative speedup
does not remain linear for large n. First, for n = myesireq, the slackness is close to one. In this
case, the largest load imbalance is encountered, and some processors may become idle due to
failing tasks. However, since failures occur rare in average, this has comparatively little influence
on the average speedup. Second, since usually slightly more tasks are generated than specified
by Mgesired, there are cases where the number of tasks at the processor which first terminates
successfully for some n 1s not decreased by using twice as many processors, due to an unfortunate
task distribution. Inspection of some individual problems with low relative speedup indeed showed
that adjusting the number of processors such that spp = = are whole numbers (or as close as
possible), better speedup is obtained. Third, and most importantly, the influence of the serial
fraction given by the task generation overhead increases with decreasing spp. For large n, the
number of search steps required to solve a task i1s frequently smaller than the number of search
steps required for task generation, which limits the achievable speedup considerably. As discussed
before, the relative speedup metric does not provide a useful judgment in these cases, because it
ignores the absolute values. Reducing the task generation overhead would improve the relative
speedup for large n significantly. However, since the task generation overhead is typically quite
small in absolute terms, the actual performance of the system in terms of theorems provable under
typical constraints or in terms of runtime (in the order of seconds) would not improve noticeably.
This shows the danger of using a relative speedup for the evaluation of parallel systems: an
improvement of the relative speedup for large n would be possible, but ineffective for the absolute
system performance.

More interesting, in particular for potential users of the system, is a comparison of the actual
runtime improvement that is achieved by SPTHEQ. Figure 5 shows lower bounds for the geometric
average of the absolute speedup of SPTHEO compared to SETHEO. The runtime measurements
for this include the input overhead. Furthermore, the task distribution overhead is included based
on the assumption that the task which terminates the computation is the m/2-th task distributed
(where m is the number of generated tasks), and assuming a distribution time of 0.1 seconds per
task. According to Table 7, the use of m/2 in this calculation provides a pessimistic average case
assumption.

Figure 5 gives lower bounds on the average speedup because there is a large number of problems
for which SETHEO did not find a solution (28%). The true speedup for these problems is therefore
unknown, and the runtime limit of 1000 seconds is used as a lower bound of the SETHEO runtime.
Therefore, the decreasing speedup slope noticeable for large n is not necessarily an indication of
a performance saturation, but is significantly influenced by the runtime limit. Again, it may be
noted that the arithmetic average speedup values are significantly larger in all cases. Moving
from the left to the middle to the right plot shows a strong dependency of the speedup on the
problem difficulty for SETHEO. Including many of the simple problems, low absolute speedup is
achieved. This is little surprising, since the overhead of generating and distributing tasks cannot
pay off for problems which require only a few seconds sequentially (the estimate of the distribution
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overhead alone leads to a runtime of 128 x 0.1 = 12.8 seconds for 256 processors). For increasingly
difficult problems (middle and right plots), the absolute speedup becomes superlinear in average
(up to some n for Myesirea = 256). The plots also reveal a significantly better performance for
Myesired = 16 than for myesireq = 256 for an equivalent number of processors. This is mainly due
to the task distribution overhead. For the applied estimate, the geometric averages are Ty;5¢ = 1.1
seconds for myesireq = 16 and Ty;5; = 13.3 seconds for mgesireq = 256, regardless of n. These times
are part of the serial fraction of the computation, and therefore reduce the speedup noticeably.
Assuming faster communication hardware would therefore lead to a significant shift upwards of
the curves for mgyesireq = 256, and a small shift upwards for mgesireq = 16. This shows how the
net improvement for some number of processors depends on the communication performance of
the hardware. For good absolute speedup on systems with low communication performance, it
is sufficient to use a comparatively small number of processors. But even for low communication
performance large numbers of processors can be used successfully if sufficiently hard problems are
treated.

4 Conclusion

In this paper, the SPTHEO system has been presented. SPTHEOQ is the first ATP system utilizing
OR- and independent-AND search space partitioning. It is implemented in C and PVM and
thereby provides a portable system running on most parallel hardware as well as networks of
workstations. An evaluation has been presented which is based on extensive experiments performed
on a network of 121 HP-Workstations. At the time of its construction, this represented the largest
PVM application (in terms of workstation nodes) in operation.

The availability of a message-passing library significantly simplified the implementation of the
parallel system. With respect to the further development of such libraries, three issues were noticed
that would improve their use in SPTHEO-like systems:

e best processor spawn
Spawn the next process on the most powerful processor available (this issue is also mentioned

in the PVM FAQ 2.19).

e non-blocking spawn
Do not wait for a process spawn to finish, but continue working immediately. For SPTHEO,
the blocking of individual spawns provides a significant performance limitation, as it delays
the start of all following tasks.

e environment evaluation suite
A program which produces a table of performance statistics for the current virtual machine,
e.g.
- min/max/average time to spawn a process
- min/max/average time to send messages of various sizes
Such a tool would be very helpful for developers whenever tradeoffs depending on the commu-
nication performance have to be made as well as for everyday use for obtaining information
on the currently available performance.
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Abstract

MIDAS (Munlch Parallel DAtabase System) is a parallel relational database system [4].
It is well suited to serve as a platform for the exploration of various strategies in order to
parallelize a relational database system. This paper depicts how the abstract architecture of
MIDAS looks like. A detailed description shows the implementation of a MIDAS prototype
on a network of UNIX workstations. The core of the MIDAS prototype is implemented using
PVM. But pure PVM does not fulfil all demands in order to implement a parallel database
system. We demonstrate how our implementation combines the PVM programming model
with standard UNIX mechanisms. We use UNIX shared memory to enhance the efficiency of
our implementation and we use access privileges to UNIX files to secure the database against
unauthorized access. Furthermore, we describe the requirements of MIDAS for a parallel
programming environment like PVM.

The MIDAS Architecture

MIDAS has a client/server architecture (see figure 1). The MIDAS server provides a high level
interface (SQL) to retrieve and manipulate efficiently the contents of a relational database. The
database itself is stored in the file system provided by the implementation platform. MIDAS clients
are database applications. They are sequential programs issuing transactions to the MIDAS server.
Each transaction consists of retrieval and update queries. A MIDAS client can run on any computer
having access to the MIDAS server over anetwork.

The MIDAS server is composed of two layers: The MIDAS access system and the MIDAS

execution system .

e The MIDAS access system supports parallelism between different MIDAS clients. This kind

of parallelism is usually called inter-transaction parallelism . For that purpose, the access
systeem provides a mechanism so that an arbitrary and varying number of clients can issue
their queries to the MIDAS server in parallel.

The second task of the access system is to compile, optimize and parallelize the queries
issued by the clients. The queries are purely descriptive (SQL). They do not contain any
parallel constructs. The access system generates query execution plans (QuEP) which can
be performed by the execution system in parallel in order to answer the queries of the clients.

The MIDAS exzecution system 1is responsible for the parallel execution of queries in accor-
dance with their query execution plans. This kind of parallelism is usually called intra-query
parallelism . It is achieved by the capability of the execution server to work on different
parts of one QuEP simultaneously. Interim results can be exchanged between the workers
involved in one QuEP.

This research is directed by Prof. R. Bayer Ph.D. and is part of the more extensive project ” Tools and Methods

for Using Parallel Computer Architectures” executed at the dept. of computer science of the Technische Universitat
Miinchen since 1990 (sponsored by DFG contract SFB 342).
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Figure 1: The MIDAS architecture

Furthermore, the MIDAS execution system has to provide an efficient access to the physical
database stored on non volatile memory like magnetic disks.

2 The MIDAS Prototype

Flexibility and scalability are the two main goals which must be accomplished by the implementa-
tion of the MIDAS server. PVM seems to be well suited because it provides much flexibility. The
possibility to start dynamically new PVM tasks helps to implement a scalable system. Whenever
a new MIDAS client arrives, the MIDAS server can increase its degree of parallelism by starting
new PVM tasks within the MIDAS server. These new PVM tasks are dedicated to the additional
work caused by new MIDAS clients.

All components of the MIDAS server are implemented as a set of PVM tasks. All MIDAS
clients are conventional UNIX processes. It is not possible to implement the clients as PVM tasks,
because we must protect the database against unauthorized access and PVM is not capable of
dealing with different user-IDs in one PVM program (see section 3).

The detailed description of the MIDAS prototype follows figure 2. A set of UNIX workstations
builds the set of hosts composing the virtual machine on top of which the MIDAS server is running.
The MIDAS server consists of a static and a dynamic part . Its static part is made of a fixed
number of PVM tasks which does not change during the lifetime of the MIDAS server. Its dynamic
part grows and shrinks during the lifetime of the MIDAS server.

2.1 MIDAS access system

The implementation of the MIDAS access system consists of one connection server and a varying
number of application servers. The numbers within the following description refer to figure.

The connection server i1s a PVM task belonging to the static part of MIDAS. It builds the
entry point to the MIDAS server for the MIDAS clients. The connection server can be accessed
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by remote procedure calls (RPC) and is globally known to all clients (1). Whenever a new client
wants to connect to a database maintained by the MIDAS server, it applies for an application
server. This is done by calling the appropriate remote procedure of the connection server (2).
Due to that call the connection server starts a new application server for this client (3). This
application server is a PVM task belonging to the dynamic part of MIDAS. The connection server
takes the actual load of the virtual machine into account in order to choose the host where the
application server will be started. By that means, the connection server is able to distribute the
load among the hosts of the virtual machine evenly. Once that the application server is started, it
is exclusively at the MIDAS client’s disposal. The client and its application server are fellows and
belong together until the client disappears. Furthermore, the application server provides a private
RPC interface to its client. The client uses this interface to communicate with the application
server by remote procedure calls (4). In this manner, we achieve a scalable system. The number
of application servers grows with the number of clients actually connected to the MIDAS server.
No single component of MIDAS becomes a bottleneck.

The application server receives queries from its client. The queries are transformed into
QuEPs by compilation, optimization and parallelization. The application server initiates and
controls the parallel execution of these QuEPs by scheduling. For that purpose, it starts and
removes dynamically so-called interpreters (5). They belong to the MIDAS execution system (see
below). Finally, the application server sends back the results produced by the execution of the
QuEPs.

The application server disappears as soon as its client disconnects from the MIDAS server.

2.2 MIDAS execution system

The MIDAS execution system is designed as a set of cache/lock servers and a set of interpreters

The cache/lock servers belong to the static part of MIDAS. Exactly one cache/lock server
is running on each host of the virtual machine. The interpreters belong to the dynamic part of
MIDAS. Their actual number depends on the number of QuEPs actually performed by the MIDAS
execution system and the chosen degree of parallelism for each QuEP.

The cache/lock server is a PVM task. It provides an efficient and transparent mechanism
so that all interpreters can access all database pages. For that purpose, caching techniques are
used [2]. Each cache/lock server installs a UNIX shared memory on its host. This UNIX shared
memory makes up the local database cache (LDBC). Tt is divided into frames. Each frame can hold
one database page. If an interpreter requires an access to a database page during the execution
of a QuEP, it sends a request (6) to the cache/lock server running on its host. The cache/lock
server puts the required page into a frame of the local database cache. The requesting interpreter
is informed (6) about the address of the frame holding the required page. Efficiency is the reason
why we use UNIX shared memory in order to implement the LDBC. Pages can be accessed by
several interpreters sequentially or even simultaneously without copying them from one address
space to another. Our MIDAS prototype uses UNIX shared memory, because PVM does not
provide a mechanism to share parts of the address space of different PVM tasks running on the
same host. But at least, PVM is flexible enough to combine the UNIX shared memory mechanism
with the message passing library of PVM.

The usage of an own LDBC on each host of the virtual machine causes a cache coherency
problem. It is solved by using a variation of the invalidation approach combined with dynamic
page ownership to guarantee weak cache coherency [2, 3]. Two phase locking is used in order to
synchronize different transactions. The communication between the cache/lock servers which is
necessary to realize cache coherency and concurrency control is done by PVM messages (7). In
this case, a thread mechanism would be very helpful to avoid the implementation of a complicated
scheduling strategy in order to prevent deadlock situations.

The interpreters are PVM tasks as well. They are started and removed by the application
servers (5). Their job is to execute one QuEP in parallel. Each interpreter works on one part of
a QuEP which is sent to it by the application server (8). The lifetime of an interpreter coincides
with the time necessary to execute its part of the QuEP assigned to it. The access to database
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Figure 2: The MIDIAS Prototype

MIDAS server

pages is performed locally by the mechanism described above. For that purpose, each interpreter
must be attached to the UNIX shared memory building the LDBC.

3

In order to achieve an efficient and robust implementation of the MIDAS prototype using a parallel

Requirements

programming environment like PVM we have the following mandatory requirements to PVM:

Protection and Authentication. The physical database is stored in files of the UNIX

file system. Protection bits grant access rights based on user-IDs. The PVM tasks making

up the MIDAS server must be allowed to access the database files directly, whereas the
MIDAS clients must be prevented from direct access because of security reasons. Therefore
the clients and the MIDAS server must have different user-IDs. This is not possible within

one PVM program [1].

Fault tolerance.

Typically database systems have to provide a high degree of fault

tolerance. Especially in a parallel environment the failure of one computation node or disk
should not break down the whole database system. Using PVM as parallel environment it is
possible to design a highly fault tolerant database system. Because of its robustness PVM
can easily be expanded to support fault tolerance [5].
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e Shared memory. As mentioned in section 2.2 MIDAS uses shared memory to efficiently
implement the local database cache on each node. Due to the lack of shared memory con-
cepts in PVM MIDAS has to use UNIX shared memory, which makes it system dependent.
Therefore our requirement to PVM is to provide a system independent mechanism to share
parts of the address space of different PVM task running at least on the same host.

e Threads. The communication between the cache/lock servers is done by PVM messages.
In this case, a thread mechanism would be very helpful to avoid the implementation of a com-
plicated scheduling strategy in order to prevent deadlock situations. Furthermore threads
would increase the performance of MIDAS: In the actual implementation the dynamically
started PVM tasks (interpreter, application server) are realized as UNIX processes. But
UNIX processes have high start-up costs. Using threads instead of processes would decrease
these start-up costs dramatically, which leads to higher performance.

¢ Dynamic behavior. One main requirement of MIDAS to a parallel programming environ-
ment is the ability to dynamically start and stop tasks and to dynamically add and remove
computing nodes to an from the set of nodes (virtual machine). Since PVM provides these
abilities it is well suited to implement a parallel database system.

Additionally to these mandatory requirements a parallel programming environment should also
be flexible and scalable, in order to implement a parallel database system. Furthermore it should
provide a common file system and it should be available on many different platforms. Last but not
least a parallel programming environment should be easy to use, since making parallel programs
is difficult enough and the programer should not mess around with the difficulties of a not well
implemented parallel programming environment.

4  Conclusion

PVM is well suited to implement a parallel database system. We have chosen PVM because it
is convenient to use and flexible to scale the database system dynamically. Furthermore, PVM
provides a high degree of fault tolerance which is important to database systems, also. One
drawback of PVM is the absence of different access rights to the database stored in the UNIX file
system within one PVM program. Another drawback is the lack of shared memory to implement
an efficient database cache. Threads within PVM are desired to make the MIDAS implementation
easier and more efficient.
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Abstract

SEMPA is an interdisciplinary project that brings together researchers from computer
science, mechanical engineering and numerical mathematics. Its central objective is to de-
velop new software engineering (SWE) methods for (distributed memory) parallel scientific
computing.

The parallelization of an industrial CFD software package (TASCflow from ASC GmbH)
will serve as the main test case for defining and evaluating these methods. A major concern
in parallelizing TASCflow is to achieve maximum portability, i.e. cover a large number of
target systems ranging from (possibly heterogeneous) networks of workstations (NOWs) to
massively parallel systems (MPPs).

In order to optimize utilization of NOWs, a resource management system is being designed,
which runs parallel applications in batch mode. It keeps track of the resources that are
not claimed for interactive use and assigns them to the parallel applications waiting in the
queue. The individual tasks of the applications are dynamically reassigned as workstations
are claimed for interactive use and other workstations become idle.

SEMPA is being funded by the BMBF (Federal Department of Education, Research and
Technology). The project has started in April 1995, and is scheduled for three years, with a
total staff of six researchers. LRR-TUM is in charge of project management.

1 Motivation

In many applications, fluid simulations are required because experiments are either impossible
(such as in the case of climate modeling) or are too expensive. Today, the main factor that limits
the use of simulation is run-time. Only parallel processing together with efficient numerical algo-
rithms can achieve the performance that is necessary to enable more wide-spread use of simulation.
Providing the necessary computational power will make simulations feasible in many areas where
they would require unrealistic run-times today. In mechanical engineering, productivity can be
considerably increased if flow simulations, which today have to be run as batch jobs overnight,
could be run interactively from a CAD program.

Parallel processing has developed successfully in the research area over the last years. Now,
as there are standardized message passing interfaces, such as PVM [GBD*94], MPI [MPI94] etc.,
portable software can be developed for a wide range of hardware platforms — from (heterogeneous)
networks of workstations (NOWSs) to high-end massively parallel systems (MPPs). Since even
small companies usually have a number of workstations connected by a local area network (LAN),
developing parallel software on a commercial basis is becoming an attractive option.

However, experience has shown that software development for parallel systems still is much less
productive than writing sequential programs. One reason for this is that there are no adequate

75



SEMPA - An Interdisciplinary Project of Academia and Industry

Academia

SFB 342 TP Al
Tools: Debugging,
Performance Analysis,
) Visualization,
interactive on-line control

Parallelization
of Numerical
Applications
DFG-SPP CFD

i
T H ASC

EFORTWIHR TU Miinchen
Lehrstuhl fur AS%Ygrrl]tle?cd
Computer Rechnertechnik und Computing
X Rechnerorganisation GmbH
Science LRR-TUM

App!led uG Institut fur
Numerical Adaptive Multi-\Computeranwendungen GENIAS
Mathematics : ICA Il Software
grid methods | GmbH
Uni Stuttgart (0

Load balancing
at the application
level

CODINE

System
for NOW'’s

Abbrev.: NOW = network of
workstations

Color Code: Partners
Projects, Products

Figure 1: partners involved in the project

TASCflow

Batch Queueing

Industry

Mechanical
Engineering

Computer
Science

tools for designing and analyzing parallel software. In addition, there are no software engineering
(SWE) methods that address the problems related to parallelism such as synchronization issues,
deadlocks and non-determinism. Finally, there is only very little support for the software engineer

who is faced with the problem of understanding and existing program in order to parallelize it for

execution on a distributed memory multiprocessor.

2 Partners

SEMPA is a joint interdisciplinary project involving partners from industry and academia:

LRR-TUM (Lehrstuhl fr Rechnertechnik und Rechnerorganisation, Institut fr Informatik, Tech-
nische Universitt Mnchen). LRR-TUM is in charge of project management, and is doing

research in the following areas of Computer Science:

e multiprocessor architectures
e tools for designing and analyzing parallel programs
e parallel and distributed applications

e distributed shared memory systems

For more  detailed  information, see  LRR-TUM’s WWW

(URL http://wwwbode.informatik.tu-muenchen.de/).
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Advanced Scientific Computing GmbH (ASC), Holzkirchen. ASC is developing and mar-
keting the CFD simulation package TASCHlow which solves the Navier-Stokes equations in
3d space. TASCflow is used in many companies and universities for simulating flows in a

wide range of applications [TUG93, TUG94, TUGY5].

GENIAS Software GmbH, Neutraubling near Regensburg. The company markets a num-
ber of software packages for NOWs and MPPs. They have developed the batch queuing
system CODINE on NOWs, which will be the basis for the resource to be developed in
SEMPA.

Institut fr Computeranwendungen (ICA III), Universitt Stuttgart. ICA’s main areas of
research in numerical mathematics are:

e robust multi-grid methods for a wide range of problems including computational fluid
dynamics, flow in porous media and computational mechanics.

e the software tool-box UG, which simplifies the adaptive solution of partial differential
equations on unstructured meshes in two and three dimensions.

e parallelization of the above-mentioned techniques which requires dynamic load migra-
tion and dynamic load balancing on the application level.

3 Objectives

In SEMPA | three major domains of research can be identified:

Software Engineering Methods. In parallel scientific computing, software engineers usually
are faced with an existing program or with existing modules, typically written in FOR-
TRAN 77, which they are expected to parallelize for execution on a distributed memory
multiprocessors (NOW or MPP). Therefore the focus of SWE is on the following topics:

Analysis of complex software systems. Before defining a concept for parallelizing an
existing program, one must gain a basic understanding of its main data and control
structures. Performance analysis is necessary to find out the computationally intensive
modules.

General Approaches to Parallelizing Scientific Computations. A generally accepted
approach to parallelizing scientific applications is the SPMD model. While the SPMD
approach is very general, our objective is to define additional approaches which are
specific to certain classes of scientific applications.

Documentation standards. Standards are needed for documenting the sequential soft-
ware, the parallelization concept and its implementation.

Standards for program development. Guidelines have to be set up that define the the
stages of the development process: functional specification, high level and detailed de-
sign, implementation, test and verification, documentation, and release. It is important
that each stage of specification and design is carefully reviewed before proceeding to
the next step.

Portability. Parallel software design on a commercial basis requires programs to be avail-
able for hardware platforms ranging from (low-end) NOWs to high performance MPPs.
Portability does not only guarantee a large market to the software vendor, it also saves
the users’ investment into model design as they move to more powerful hardware plat-
forms. Besides being independent from specific hardware platforms, the software should
be designed to be as independent as possible from a specific message passing library,
because it is not yet clear which interface will be the standard in the future and because
for some MPPs considerable performance can be gained by porting the software to the
vendor’s native library.
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Modularity and Re-usability. Maintenance of a large software package produced by mul-
tiple groups requires a modular structure, where modules interact via defined interfaces.
Since FORTRAN 77 offers only minimal support for modular design, newer object ori-
ented languages will be considered.

Concurrent Software Engineering. The design of parallel scientific software typically
involves several groups of programmers from different disciplines and institutions work-
ing in parallel on different parts of the software system.

Parallelization of TASCHow. An enhanced version of the 3d CFD package marketed by ASC is
being parallelized for execution on NOWs and MPPs. It is the major test case for developing
and evaluating our SWE methods.

TASCflow solves the Navier-Stokes equation in 3d space on unstructured grids using a fi-
nite volume discretization and an algebraic multi-grid solver. The program is written in

FORTRAN 77 and has about 113,000 lines of code.

Load Balancing and Resource Management. A resource manager is being developed, which
basically is a batch queuing system for parallel applications running on NOWs. The indi-
vidual processes of the application are dynamically assigned to available processors (i.e.
workstations). The resource manager will support load balancing by providing appropriate
resource usage information and a mechanism to migrate processes from one workstation to
another.

Figure 2 illustrates the interactions between these domains. In this paper, we will focus on the

area of SWE methods.

4 Software Engineering in SEMPA

Being an interdisciplinary project of partners from academia and industry, the emphasis of SEMPA
is on putting into practice the methods that are defined in the project. The experience gained from
applying them to the parallelization of TASCflow will help to improve our methods. TASCHlow
is particularly well suited as a test case, because 1t is a complex software system which implements
state-of-the-art methods in CFD simulation and because the sequential program has been designed
based on SWE methods used in industry.

SEMPA focuses on the task of designing parallel scientific software, either from existing (se-
quential) programs or by integrating existing software modules into a new parallel program. As
mentioned in section 3, portability and modularity are central design objectives. Given this back-
ground, we have to consider FORTRAN 77, the language in which most scientific software is writ-
ten, although its support for modularity is minimal. An important objective is to demonstrate
practical ways towards using object oriented languages in software systems for which complete
re-implementation is unfeasible for reasons of manpower.

The parallelization paradigm adopted in SEMPA is message passing, because message passing
currently 1s the generally accepted standard for programming MPPs and NOWs, and because it is
the only paradigm for which efficient implementations are available for a wide range of hardware
platforms.

The following aspects of SEMPA are of particular relevance to software engineering for parallel
and distributed systems:

Analysis of complex software systems. In SEMPA, two methods for acquiring the knowledge
necessary to set up a parallelization concept are considered:

“human” analysis: The authors of the sequential program (mostly engineers) provide the
information needed by computer scientists (who do the parallelization). This is usually
an interdisciplinary effort requiring several iterations to overcome mutual misconcep-
tions.
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tool supported analysis: Analysis of data and control dependencies with the help of in-
teractive parallelization tools.

Design and Analysis Tools. A survey conducted by C.M. Pancake [PC94, CPW94] has shown

that tools for programming multiprocessors often prove to be inadequate in practice, be-
cause on the one hand tool developers lack the necessary understanding of the requirements
that developers of complex “real world” applications have, while on the other hand most
application programmers refuse to spend much effort in trying to use tools.

Since at LRR-TUM there is a large research group designing tools for parallel systems
(The TooL-SET [LW95]), SEMPA (and other projects in the research group “parallel and
distributed applications”) can help to improve the exchange of information and experience
between tool designers and tools users.

Resource management in NOWs: Efficient resource management is of particular interest for

users running large simulations on NOWSs, since it provides a low-cost entry to parallel
processing especially to small to medium-size companies or research institutions.

The result of SEMPA will be
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e a collection of SWE methods that have been approved in practice,
e a prototypical implementation of the parallel version of TASCflow,

e a prototype of a resource and load manager for batch execution of parallel applications.

Our emphasis in SWE 1s on practical applicability of the proposed methods. Starting with SWE
guidelines that have been approved in practice, we develop and integrate new methods, which are
motivated by our experience or by concepts published in literature. Our approach to SWE thus
is evolutionary in that, starting with an approved set of methods, each step towards an improved
methodology is evaluated immediately upon implementation.

We are interested in cooperation with other SWE projects, especially if their approach to SWE
starts from the theory side.

Upon completion of the research project, our industrial partners intend to develop further the
prototypes of the parallel CFD package and the resource manager towards products that can be
marketed commercially.

5 Progress Report

The project has started in April, 1995. Up-to-date information about progress as well as project re-
ports and publications related to SEMPA are available via WWW
(URL http://wwwbode.informatik.tu-muenchen.de/parallelrechner /applications/sempa/). In the
subsequent section, we summarize the results achieved so far.

5.1 Analyzing the sequential program

The first step in parallelizing TASCHlow has been to acquire the necessary understanding of the
algorithms it uses and their implementation. ASC and LRR-TUM have been organizing a series
of meetings, covering the following topics (in that sequence):

1. basics of CFD, 1.e. the governing equations and their physical interpretation, discretization
methods, and numerical methods for solving the system of linear equations that results from
discretization.

2. a global overview of the code structure and the main data structures.

3. a more detailed review of TASCflow’s main modules, stepping through each module sub-
routine by subroutine.

Each meeting started with a presentation by ASC, which was followed by a discussion. At
LRR-TUM, we documented our view of what we had learned in a meeting in form of an internal
report, which then was reviewed by ASC. This procedure has proved to be an efficient way for
know-how transfer between groups from different disciplines, since it has helped to identify and
fix sources of misconception very early and quickly improved our understanding of each other’s
terminology and point of view.

As a final step, a framework has to be set up that defines a standard for documenting the
design of the sequential program from the computer science point of view.

5.2 A Concept for Parallelizing TASCflow

Based on the insight gained from analyzing the program structure, a parallelization concept has
been defined and documented [Luk95]. SEMPA follows a two-level concept of parallelism.

On the top level the SPMD model is used. The sequential algorithm® is replicated in multiple
processes each of which operates on a partition of the problem description. An additional master

Taugmented by additional code for communication and synchronization
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process is used for program set up and for doing I/0O. Using parallel I/O systems, which are
available for a number of platforms, is being considered, too.

Partitioning is done node-based, i.e. the nodes of the (unstructured) grid are divided into
disjoint sets. We use a public domain graph partitioning package (MeTiS [MET95]) for assigning
nodes to partitions.

Below the SPMD level of parallelism, parallelization is considered at the level of processing
nodes. Each replicated worker of the SPMD model can be further parallelized into a number of
concurrent threads (light-weight processes having access to shared memory). This second level of
parallelism can make use of multiple CPUs per processing node as they are available in new MPPs
or workstations.

5.3 Interactive and automatic Parallelization Tools

The parallelization of an existing program, especially if it is complex and has been developed by
many engineers over a long time, is a quite difficult and error-prone task.

Research projects as well as commercial efforts during the last years have been dealing with
this problem. Most available tools are source-code analyzers for FORTRAN 77 programs which
parallelize according to the SPMD model. One of those tools has already been subject of inves-
tigation within SEMPA. Tt is the quite sophisticated interactive an automatic parallelization tool
FORGE [Res95]. There the most significant loops are identified by either using profiling infor-
mation, or checking the code for the deepest loop nestings. Once the loops have been chosen,
the arrays referenced inside of them are partitioned and distributed according to the partitions.
The parallel processes then run the same program but only on a subset of the partitioned data
structures following the so-called owner computes rule.

The advantage of these tools is that the user can get a better understanding of the program
that he is about to parallelize. He also is taken off the burden to explicitly program message
passing code. On the other hand he anyhow has to have a good understanding of how message
passing really works because the tools are not yet at a point where they can produce efficient code.
Neither can they really work on very complex packages as for example TASCflow.

5.4 New Languages

Moving from FORTRAN 77 to newer programming languages meets the requirements of modern
computer architectures, programming paradigms, and software engineering aspects. Fortran 90 for
example offers not only more complex data structures and data encapsulation but also provides
language constructs (array operations) for concurrent execution. The latest of all FORTRAN
evolutions, High Performance Fortran, additionally has constructs for explicit data distribution
as well as constructs for expressing concurrency.

FORTRAN 77 compilers produce fast object code and numerous numerical programming li-
braries are available due to its long time of existence. Object oriented design is still uncommon
in scientific computing because the compilers (e.g. for C4++) do not yet generate optimized code
that is comparable to the one generated by FORTRAN 77 compilers. However, the fundamental
ideas of object oriented programming — objects, class-hierarchies and polymorphism — are of great
advantage to modern software engineering and can help to overcome the gap between the code
development and its concept.

In SEMPA | we have decided that rewriting TASCflow as a whole in an object-oriented language
is infeasible due to manpower restrictions. Instead, we have selected a module of reasonable size for
implementation in Fortran 90, C++ (and possibly other languages) to demonstrate the integrata-
bility of object-oriented techniques to a scientific application, and to evaluate the appropriateness
of these languages for our purposes.
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1 Introduction

In the field of parallel high performance computing, there is a trend towards workstation clusters,
which are usually interconnected via Ethernet buses. Networked workstations are already available
at many sites and typically their computing capacity is not fully exploited. Therefore, they offer
a cost-effective alternative to dedicated parallel computers.

Recently, a number of machine independent parallel platforms like MPI, PVM, and LINDA
has been developed. They support the distributed programming of a workstation cluster. These
systems are now widely used in parallel numerical computing.

With increasing demand for communication between the parallel tasks, however, the bus-like
nature of the Ethernet soon becomes a bottleneck. Hence, only few computing nodes can be used
efficiently. The system 1s not scalable with respect to the number of processors.

By introducing additional buses and a more complex interconnection topology of the work-
stations, the communication bandwidth can be significantly improved. The required hardware
investment are just some additional LAN adapter cards and Ethernet cables. Depending on the
network topology, pairs of workstations may now communicate in parallel.

In this paper we will describe two network topologies which both need only two I/O-ports
per workstation. In section 2 we will sketch out a tree-like structure which is optimally adapted
to divide-and-conquer algorithms. In section 3 we will present a more general hypercube-like
topology.

2 A Hierarchical Topology

A common model for parallel computing is the divide-and-conquer paradigm: a task is split into
two (or more) subtasks that can be executed in parallel. Each of these subtasks can be divided in
subsubtasks and so on.

This leads to a tree-like dependence graph. In the case of exactly two subtasks per node we
obtain a binary tree. This graph also reflects the communication scheme of the parallel tasks. A
task needs to talk only to its parent and its children.

When we consider the distribution of the jobs onto the computing nodes, we get a slightly
different graph. The parallel algorithm starts at node one. At the point of division two new tasks
are created, which should be placed at different nodes. Since the parent is idle when the two
subjobs are calculating, one subtask can remain on the initial node. This leads to a ”squashed”
binary tree. Figure 1 shows a divide-and-conquer graph with 16 computing nodes. Each left child
of a node is identified with its parent.

We will discuss the communication pattern in more detail. Most importantly, we must distin-
guish between the cheap communication within a node and the expensive external communication

This work was supported by the Siemens AG.
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Figure 1: Binary tree with 16 computing nodes: dependence and communication graph of a parallel
divide-and-conquer application. Each interior node is i1dentified with its leftmost descendent.

between different nodes. The first one arises between parent and left child in Figure 1. Only the
communication of each parent with its right child is external.

If we assume that all tasks at one layer of the tree need quite the same computation time,
there are no simultaneous communications at different (edge-) levels of the tree. Therefore, it is
desirable that all communications on one level are done in parallel, i.e. on different buses. The
problem is to find a minimal bus topology in which at each level all nodes can communicate with
their right child via different buses.

Figure 2: Tree-like Ethernet topology: all communication between parent and (right) child at one
level of Figure 1 can be done in parallel via different buses.

Of course, this could be achieved by a complete interconnection, where each node is connected
to any other node via a different bus (or link). This would mean that for n processing elements
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Figure 3: ARESO runtimes on the single bus and the hierarchical tree-like topology.

each node needs to have n—11/O-ports. But real hardware will always show a constant maximum.
In this paper we will examine topologies where only two I/O ports per workstation are needed.

Figure 2 shows an appropriate tree-like solution with 8 buses that i1s obviously minimal in
respect to the number of buses (we have 8 parallel communication at the deepest level). Tts
hierarchical structure reflects the recursive definition of the corresponding squashed binary tree.

The next higher network, which includes 32 nodes and 16 buses, would be constructed as
follows: take a copy of the 16-node-network, add 16 to all of its node labels, and put the least
labeled node (17 here) with an additional link into the bus that connects 1 and 2. This topology
corresponds perfectly to the complete squashed binary tree with 32 leaf nodes.

In general, for a complete binary tree with 2¢ leaves the corresponding bus network would
consist of 2¢ computing nodes and 24~ buses. Each node is connected to at most 2 buses and
each bus is assigned to at most d + 1 nodes.

For each level in the binary tree all data transfer at that level from parent to child (or vice
versa) can be done in parallel. This is a prerequisite of scalability.

Numerical Applications

The architecture shown in Figure 2 has been implemented with 16 HP-720 workstations. Each
odd-numbered node has been provided with an additional LAN adapter card. Node 1 is used as
the gateway to outside networks.

On this installation several applications with a divide and conquer strategy have been paral-
lelized. Besides the complex chip placement algorithm GORDIAN [5] this is the parallel Finite
Element application ARESO [4, 6] which we will describe somewhat more in detail below.

ARESO is a solver for partial differential equations that is based on domain decomposition
and recursive substructuring. In the case of a square domain ARESO starts on top level with a
certain problem size N, typically a power of 2, that describes the number of grid points on the
borderlines.

When the problem is split up in two parts, the size decreases by the factor 1/4/2. (More

. 1
accurately, N is halved every second step.) At level [ we, therefore, get N; = N/V2. The
computation time per node on level { is of order O(N;?) while the communication amount per
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node is O(N?). This means that the message size per node decreases with increasing level I, but
the number of communicating nodes increases. With a single Ethernet this leads to high collision
rates.

Figure 3 compares the runtime of ARESO for a fixed problem size on the single bus and on
the tree topology. At 4 nodes the tree structure has only a slight advantage over the single bus.
But involving 8 and 16 computers the single bus is overloaded so that no speed up is obtained.
The runtime is even longer than for 4 nodes. For the tree topology, in contrast, the algorithm still
shows a speed up.

It is interesting that the advantage of multiple buses is not only restricted to divide-and-
conquer algorithms. In [8] the runtime behavior of a parallel unstructured matrix application
on the different topologies was compared. It concerns the distributed solution of a big sparse
block matrix system. The matrix is split into different block rows that are distributed among the
processors. Eliminated rows must be transferred to those processors who need the specific row
for elimination of one of its own rows. A detailed discussion of the numerical problem and the
algorithm can be found in [7, 6, 8].

Figure 4 shows the runtimes on the two topologies for different block sizes. Again, the multiple
bus system is significantly faster than the single bus.

450 T T T T

tree topology -x---
single bus

350 | -

400

300 F |
250 |- _
200 ]
150 >< ]
100 F :

0 1 1 1 1
0 20 40 60 80 100

block size

Figure 4: Runtime comparison of a distributed block matrix solver on the single bus and on the
hierarchical tree network.

Nevertheless, the introduced tree topology is not very convenient for unstructured dependence
graphs. We will sketch out a better solution in the next section.

3 The Dual Hypercube

The tree-like topology in the previous section is tailored to applications where the process graph
is a complete binary tree that arises from the divide-and-conquer paradigm. However, for more
general applications several inherent disadvantages and difficulties may arise.

If the dependence graph is less structured, e.g. even for divide-and-conquer with adaptivity, it
is not clear how the processes should be mapped to the tree. Simple and convenient embedding
schemes may result in a large amount of long-distance communication and an overload of the top
level bus.
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Another problem is fault tolerance. If workstation no. 9 in Figure 2 crashes, the half of the 16
computers is unreachable. A more symmetric topology with several communication paths between
different nodes seems to be more comfortable.

A general topology would be the hypercube. But two main problems arise. First, the direct
links between two nodes do not fit the bus-like nature of Ethernet. Secondly, we would need a
logarithmic number of connections per workstation. In practice only a fixed number of connections
per workstation is supported.

Both difficulties vanish if we exchange the roles of nodes and edges in the hypercube graph.
Then, each edge represents a computing node with exactly two connections to buses, which are in
their turn represented by the graph vertices. Because we changed the role of nodes and edges, we
call this family of topologies dual hypercube. Figure b shows an example of dimension d = 3.

10 8

®

Figure 5: Dual hypercube of dimension 3.

For dimension d we get d2¢~! nodes and 2¢ buses. Thus, we have d/2 as many nodes as buses,
enough to provide a logarithmic diameter d and high throughput of the network. Since d is only
the logarithm of the graph size, the amount of communication in each bus is expected to increase
slowly. Each bus is assigned to exactly d workstations and each node needs to have only two
I/O-ports. Some other basic properties can be found in [1, 2] where similar types of graphs were
introduced.

Due to its proximity to the hypercube and cube-connected-cycles, the dual hypercube seems
to be well suited for a broad class of algorithms.

3.1 Hardware Realization and Numerical Tests

By introducing four additional buses in the former tree-like network we could realize the 3-
dimensional dual hypercube with 12 of the 16 workstations. Using different routing mechanisms
we could directly compare the performance of the two distinct topologies.

While the routing on the tree could be done statically by standard UNIX software, it was a
nontrivial issue to realize a reasonable routing scheme for the cube. Dynamic routers like gated
do not allow to change the path from one node to another in short intervals (e.g. between two
messages or packets). Parallel platforms like PVM don’t support multiple paths between two
workstations at all.
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Figure 6: Runtimes of the sparse block matrix solver on the dual hypercube and the hierarchical
topology.

Therefore, a new routing daemon MRouter [3] (based on the TCP protocol) was developed,
which runs a random path strategy: before each message is sent from one node to another the
route is determined uniformly random among all optimal (i.e. shortest) paths.

We adapted the sparse block matrix solver mentioned in section 2 to MRouter and compared
it to the PVM version on the tree-like network using the 12 HP-720 workstations that belong to
the three-dimensional dual hypercube. The runtime behavior on the different topologies is shown
in Figure 6.

At low block sizes (up to 75) the version on the tree-like topology is faster due to the minor
overhead of the UDP protocol used by PVM. When the size of the matrix blocks grows, however,
the hypercubic network is more scalable.

4 Conclusions

We presented two classes of bus topologies for workstation clusters. The first one, a hierarchical
tree-like network, 1s shown to be best suited for divide-and-conquer parallelization. This theoretical
consideration is confirmed by real applications running on 16 HP-720 computers connected via
Ethernet cables.

The second class of topologies, the dual hypercube, is better suited for more general algorithms
requiring more flexibility. This includes adaptive divide-and-conquer applications and totally
unstructured (random) communication dependencies.
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