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Abstract

The major part of environments for parallel programming in distributed systems either
neglects load distribution support or realizes load distribution by the trivial task farming
paradigm. This paper presents new language concepts for the support of application
integrated load distribution. In addition to the task farming approach, the system can
also dynamically migrate objects. Active objects and passive objects are combined to
a very flexible and elegant programming model. Specific tasks for initialization and
migration are used to realize efficient and portable load distribution mechanisms. The
paper describes the new programming model and presents language constructs realizing
this model. The language constructs are an extension of the parallel and distributed
programming language ParMod-C. A program example shows the usage of the new
language constructs and demonstrates easy implementation of load distribution using the
new concept.

1 Introduction

Environments for parallel programming in distributed systems are presently realized either
as library as for example PVM [20] and p4 [5], or as parallel programming language as
for example Linda [7], Concert/C [2], and ParMod-C [22]. The discussion about parallel
programming environments is going on and many different paradigms and language constructs
have been proposed in the last years. Main aspects of the discussion are the expressiveness
of language constructs, the simple usage of the programming environment, the flexibility of
the programming model, and the possibility of an efficient language implementation.

This paper emphasizes another aspect which is often neglected by programming environ-
ments but which is essential for an efficient execution: load distribution support in parallel
programming environments. Generally, load distribution has to manage the assignment of
service demands to distributed resources of a system. In the context of a parallel program-
ming environment, load distribution has to manage the mapping of subproblems of a parallel
program to processes with the goal of minimizing the runtime of a parallel program. In the
following, we denote subproblems also as objects where the definition and implementation
of objects depends fully on the particular application: Objects may be passive (for example
variables, complex data structures, external files) or active (for example processes or threads).

We present a new programming model based on cooperating agents and language con-
structs realizing this model. A language based approach for the support of load distribution
has several important advantages compared to a programming library or the direct usage of
the operating system:1This report is available via
http://wwwpaul.informatik.tu-muenchen.de/projekte/sfb342/pub/sfb342-19-95A.ps.gz
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� Semantics: By integrating the parallel programming model into the language imple-
mentation, the runtime system has more information about the (parallel) semantics of
the application.� Instrumentation: Transparent integration of implicit runtime system calls can facilitate
the difficult task of parallel programming. For example, allocation and deallocation of
message buffers can be performed implicitly by the runtime system.� Compiler checks: The compiler of a parallel programming language has more possi-
bilities to find errors relating to communication and synchronization.

The next section classifies parallel applications and programming environments with
respect to load distribution. Section 3 presents the new programming model. Section 4
describes the language constructs realizing the programming model. An example in section
5 illustrates the language constructs. Section 6 gives a summary and a conclusion.

2 Classification and Related Work

This section classifies parallel applications and programming environments with respect to
dynamic load distribution. Considering the requirements for dynamic load distribution,
parallel applications can be classified into two classes.

The first class are applications which can be implemented using the task farming paradigm
[13] (also called pool of tasks or task bag [1] paradigm). Load distribution is realized by
dynamically assigning new objects to processes. Typical examples are backtracking programs
like traveling salesman. Load distribution support is relatively easy to accomplish for this
application class: The function of the load distribution system is just to find underloaded
processes and to assign new objects to these processes. The emerging problems are similar
to the traditional non-preemptive assignment of processes to computing units.

An efficient execution of task farming programs can only be achieved if the semantics of
the program does not fix the mapping of subproblems to processes. Furthermore, the synchro-
nization among subproblems must allow a reasonable degree of parallelism. Applications
which do not meet these requirements form the second class. These are for example many
numerical algorithms (e.g., PDE solvers and simulation programs [9]), and typical client-
server applications where server requests are bound to specific servers and therefore cannot
be assigned according to load distribution requirements. For applications in this second class,
dynamic load distribution can only be achieved by redistributing or migrating objects.

Implementing efficient parallel programs using object migration for dynamic load distri-
bution however is usually a complex and error proning task:� Either a protocol has to ensure globally consistent information about the location of

migration objects or messages concerning migration objects have to be forwarded if
they are received by a wrong process.� Due to real-time dependencies of the load distribution strategy, testing and debugging
of strategies and reproduction of specific executions is very difficult.� There is usually a large variety of suitable load distribution strategies. Since the
implementation of different strategies always requires a considerable effort, a non-
expert in load distribution will not use “the best” strategy.
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� Observation of program behavior is essential for designing efficient parallel programs.
If the programming environment does not directly support migration mechanisms,
the corresponding observation tools cannot support migration too. As a result, the
programmer has to use (and in most cases to implement) specific tools for observing
migrations.

Summing up, load distribution support by the programming environment is desirable espe-
cially for applications requiring object migrations. Based on these observations, programming
environments can be classified into three classes with respect to their load distribution support:� The first class consists of environments which regard load distribution as a problem of

the application and leave load distribution completely to the programmer. Most parallel
programming libraries like PVM [20] and p4 [5] and parallel programming languages
such as Emerald [4] and ARGUS [17] belong to this class; a survey may be found in
[3]. (Although PVM manages the assignment of processes to nodes, it does not manage
the assignment of subproblems to certain processes).� The second class consists of environments supporting the task farming paradigm as for
example Linda [7], DIB [12], and Dynamo [21]. Furthermore, many parallel object
oriented programming languages, as for example Mentat [14] and Charm++ [16], and
parallel functional programming languages [15] belong to this class.� Environments which can migrate application objects form the third class. Casas et. al.
[8] present three general concepts for load migration in PVM. Migration is either
based on process migration among nodes, thread migration among processes, or data
movement among processes. Furthermore, there are systems that support migration
for objects with a specific implementation. For example, the ParForm environment [6]
supports migration for numerical applications by automatically repartitioning the data
domain with respect to the actual load.

Our new concept belongs to the third class. It combines thread migration and data move-
ment, therefore it is comparable to the concepts presented by Casas et. al. [8]. Nevertheless,
due to the arguments mentioned above, our system is based on a language approach instead
of a library concept.

3 Programming Model

Our approach for realizing load distribution is to integrate an agent concept into a parallel
programming language.

3.1 Agents

An agent is an object that provides a certain service, hopping from node to node. In this
context, the agent concept can be described by the keywords processes, tasks, suitcase, move
task, and restart task:
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Processes Processes execute the program code associated with agents. Processes may contain
several agents.

Tasks Tasks are computational requests that are performed by agents. An agent processes
his tasks sequentially.

Suitcase Associated with an agent is its suitcase, containing data that the agent carries with
it if it moves to other processes.

Move task An agent executes a move task to migrate to another process.

Restart task If an agent is sent to a process, it receives initialization data. A restart task is
responsible for the initialization of further data structures corresponding to the agent
using this initialization data.

3.2 Basic program execution model

ParMod [11] is a set of constructs for parallel programming in distributed systems. The Par-
Mod programming model can be implemented by extending existing sequential programming
languages like Pascal, Modula, and C by ParMod language constructs. To realize a language
based environment supporting load distribution, we will extend the basic program execution
model of ParMod. Although ParMod was developed about a decade ago (when nobody did
talk about agents), it is excellently suited for integrating an agent concept without changing
the basic execution model. In fact, all load distribution mechanisms can be realized on top of
the existing programming model.

A ParMod program consists of a number of processes. Within each process, several
threads may run concurrently (see figure 1). ParMod offers conditional critical regions for
local synchronization of threads within a process. ParMod processes communicate via global
procedure calls (GPCs). To call a global procedure, the programmer has to specify the name
of the global procedure and the process in which the global procedure is executed. A global
procedure may have three basic types of parameters: in, out, and inout parameters. When
process A calls a global procedure in process B, the ParMod runtime system performs the
following steps:

1. Values of the actual in and inout parameters are sent from process A to process B.

2. After receiving the parameter values, a new thread with these parameter values is started
within process B.

3. After the termination of this thread, results (values of inout and out parameters) are
implicitly returned via a call of a special answer procedure in process A.

A GPC is asynchronous, that means a thread proceeds immediately after calling a global
procedure. Using an await result statement, it is possible for process A to wait for results
from the GPC.

In the ParMod model, a program consists of several processes which may have different
program codes. Some processes may be replicated, i.e, there may be several processes having
identical program codes. In the context of this paper it is assumed that all processes of the
program have identical program codes. The generalization to a system with different program
codes is straightforward.
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Figure 1: ParMod execution model

3.3 The PAT programming model

The integration of agents into ParMod is called the PAT (Process, Agent, Task) model. The
PAT model supports two basic paradigms of load distribution:

1. Non-preemptive assignment: Tasks are assigned non-preemptively to agents.

2. Agent migration: Agents may be migrated among processes, that means, they are
assigned preemptively to processes.

The integration of the agent model into ParMod is based on the following ideas:� An agent is represented by an elementary data structure (EDS), similar to a record data
structure.� ParMod threads correspond to tasks. Processing of a task by an agent therefore means
execution of the corresponding thread by the process that contains the agent.� The load distribution strategy (which is assumed to be integrated into the runtime
system) assigns a move task to an agent for migrating it to another process. Using the
agent’s EDS, the move task is responsible to “pack” and to move the agent’s suitcase
to another process.� If an agent is assigned to a new process, the runtime system implicitly assigns the restart
task to it. The restart task is responsible to “unpack” the suitcase.

Figure 2 illustrates the realization of the PAT model on top of the basic ParMod model.
The example consists of three processes. There are four agents. Agent a1 is assigned to
process 2. The agents a2, a3, and a4 are assigned to process 3. In the diagram, tasks are
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Figure 2: Agent migration using the basic ParMod model

placed in the column of the agent to which they are assigned. At the beginning, the procedure
main in process 1 performs several GPCs, corresponding to the assignment of tasks to agents.
Note that tasks for a certain agent are sequentialized. The most interesting phase of the
example is the migration of agent a2 from process 3 to process 2. When the load distribution
strategy decides to migrate agent a2, the following steps are performed:

1. The runtime system waits until the current task of agent a2 is terminated.

2. The elementary data structure (EDS) of a2 is copied implicitly to process 2. Since
addresses are useless when they are sent to another process, it is not allowed that an
EDS contains addresses. Nevertheless, the next steps make the migration of linked data
structures or other data which are not directly connected to an agent feasible:

3. The load distribution system implicitly calls the move task which is assigned to a2.
The move task is implemented as global procedure by the programmer and has first to
“pack” the agent’s suitcase. For example, a linked list has to be packed into a linear
array.

4. The move task sends the suitcase via a restart task to process 2. The restart task is also
implemented as global procedure by the programmer.

5. The restart task “unpacks” the suitcase. For example, a linked list has to be constructed
out of a linear array.

6. When the restart task terminates, the migration of the agent is complete. Now the load
distribution system can assign further (conventional) tasks to the agent.

6



The assignment of agents to processes may be classified as quasi-preemptive: The load
distribution strategy initializes an agent migration only if no task is assigned to the agent.
Therefore, it is not necessary to interrupt tasks and to save intermediate task states. Agent
migrations are just implemented by moving the suitcase of an agent to another process. There-
fore, agent migrations can be implemented efficiently and also portable across heterogeneous
platforms. Obviously, this is an significant advantage compared to preemptive assignment as
used for example by Casas et. al. [8]. The price for the advantages of quasi-preemptive assign-
ment is that the LDS probably has to wait for the termination of the agent’s task. Therefore,
the programmer should try to avoid “long-lived” tasks.

An interesting point is the automatic forwarding of tasks: When an agent is migrated, all
tasks which have been assigned to this agent but which are not yet processed are forwarded
automatically to the new location of the agent.

The combination of an EDS and a move task provides more flexibility compared to a
deep copy concept (a deep copy implicitly follows the pointers in data structures, as used for
example in Concert/C [2]).

3.4 Load distribution strategy

To realize load distribution mechanisms for a programming model like PAT, a load distribution
strategy has to be provided by the runtime system of the programming language implementa-
tion. The ALDY load distribution system [18] directly supports the PAT programming model.
ALDY is independent of the implementation of load distribution objects. Furthermore, ALDY
uses the communication routines of the application for internal communication. Therefore,
ALDY can be easily integrated into the ParMod runtime system.

Experiences with several types of applications have shown that the benefit of a specific
load distribution strategy depends strongly on the characteristics of the application. Therefore,
ALDY offers not a single strategy but a collection of several parameterized load distribution
strategies. The strategy is specified in a separated specification file that is scanned by the
runtime system at program start. Therefore, the application program is independent of the
load distribution strategy and the programmer can easily experiment with several strategies.

A load distribution strategy for the PAT model consists of two components: The as-
signment component is responsible for the assignment of new agents to processes and the
assignment of tasks to agents. The migration component is responsible for the migration of
agents to other processes. For both components there is a large number of possible strategies.
For example, the assignment component may be realized as central queue of tasks or as
distributed object management (see for example [12]). The migration component may be
realized using a sender-initiated or a receiver-initiated protocol [10].

An important factor for all load distribution strategies is the information about the actual
state of the system. For using ALDY within the ParMod runtime system we can use the
following approach:� The strategy uses only information about the states of objects of the PAT model. System

resources like CPU, interconnection network, main memory are not observed directly.
Nevertheless the strategy reacts indirectly on the load of system resources by migrating
agents from “busy” processes to “idle” processes. By using only application specific
load information, the system remains portable and may be used in an heterogeneous
environment since is does not depend on specific hardware oriented information.
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� Object states are usually determined implicitly by the ParMod runtime system since
the runtime system controls communication and synchronization. If necessary, the
programmer may explicitly report object states to the load distribution system. This
is useful for some special cases as for example user implemented busy waiting loops
which are not detected by the runtime system.

4 Language Constructs

This section describes the new language constructs realizing the PAT model. The language
constructs are an extension of the parallel and distributed programming language ParMod-C
[22, 19]. ParMod-C is an extension of ANSI-C and realizes the basic ParMod program
execution model (see section 3.1) by offering global procedures and language constructs for
local synchronization. The following description does not require knowledge of the ParMod-C
language constructs.

Agents are represented by an elementary data structure (EDS, see above) of a programmer-
specified type. The declaration of an agent type atype consists of the declaration of local
variables representing the the elementary data structure and the init and move procedures:

agent atype f local variables g init init proc move move proc;

The local variables may be defined similar to a C struct. If an agent is migrated, the values
of the local variables are implicitly sent by the runtime system to the new process. Agents
are generated by calling an initialization procedure. For that purpose, the init part declares
a global procedure that has to be called to generate an agent of type atype. The move part
declares the global procedure that is invoked if an agent of type atype is migrated to another
process. This global procedure is started implicitly by the runtime system in the process that
sends the agent (see figure 2).

There are two possibilities to define global procedures: Global procedures may be bound
to an agent type or not bound to an agent type. A global procedure that is bound to an agent
type is defined by

global gp bound ( parameters ) agent atypef statements g
If a global procedure is bound to the agent type atype, GPCs of this procedure are always
assigned to an agent of this type. A global procedure that is not bound to an agent type is
defined by

global gp unbound ( parameters )f statements g
Global procedures that are specified as init or move procedures for an agent type have to be
bound to this agent type. The syntax for the access to the local variables of an agent is similar
to an access to the components of a C struct where the struct name is the name of the agent
type.

The possibility to bind global procedures to agent types and the possibility to bind global
procedures to certain process or agent instances implies four modes of GPCs:
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� Process-bound calls: The programmer specifies the target process for a GPC, where the
global procedure is not bound to an agent type. The corresponding task is not assigned
to a certain agent but is started immediately within the specified process. This is the
conventional mode in the ParMod model and the basic ParMod-C language.� Unbound calls: The programmer specifies a global procedure that is not bound to an
agent type: the load distribution system automatically selects a target process for the
GPC and performs a process-bound GPC to that process. This mechanism directly
realizes the task farming paradigm.� Agent-bound calls: The programmer specifies an agent, to which the GPC is bound.
The job of the load distribution system is to pass the GPC to the process actually owning
the agent. The location (process) of an agent is transparent for the programmer. As
mentioned above, agent-bound calls to the same agent are sequentialized.� Agent-type-bound calls: The programmer specifies an agent type. The load distribution
system selects an agent of this type and performs an agent-bound call to this agent.

The following statements illustrate the four modes of GPCs:

gp unbound ( parameters );
gp unbound [ process instance ] ( parameters );
gp bound ( parameters );
gp bound [ agent instance ] ( parameters );

Assuming that gp unbound is not bound to an agent type (see above), the first GPC is unbound
and the second GPC is process-bound. Assuming that the global procedure gp bound is bound
to an agent type atype, the third GPC is agent-type-bound. The fourth GPC specifies an agent-
bound GPC to the agent instance of type atype.

To generate a new agent of type atype, the programmer has to call the global procedure
that is specified as init procedure for this agent type. In addition, the programmer specifies
an instance number for the new agent:

init proc [ instance ] ( parameters );

It is the responsibility of the programmer to use globally unique agent instance numbers. At
first sight, this concept seems uncomfortable, but it enables the application to make a “global
plan” of agent identifiers and therefore to be relieved from implementing protocols for the
exchange of identifiers.

When a GPC is assigned by the runtime system to an agent, the corresponding task may
need the instance number of this agent. Therefore, the expression

instance

returns the instance number of the actual agent. A restart GPC is used to restart an agent in
the receiving process (see above). This GPC cannot be handled like an ordinary agent-bound
GPC since the system can not assign ordinary tasks to the agent before the migration is
complete. Therefore, the statement

restart gp bound ( parameters );

is used to specify a restart GPC. The restart statement can only be executed by a global pro-
cedure that is specified as move procedure. The target process of the restart GPC is implicitly
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determined by the load distribution system. To terminate an agent, a task which is assigned
to the agent just has to execute the statement

endagent;

This statement terminates the executing task (similar to the return statement), releases mem-
ory for the local variables of the agent, and stops any load distribution mechanisms (task
assignments or migrations) relating to this agent.

5 Example

The following example illustrates the new language constructs and shows how the migration
mechanism can be realized on top of the four GPC modes mentioned above. The example
shows a code fragment for a parallel program using the client-server paradigm (Figure 3).
Keywords are printed in boldface letters.

1 int phi(...); /* represents mapping of requests to server-instances */

2 agent server f long address; g init init server move move server;

3 /* Declaration of the agent type server */

4 global init server(void) agent server

5 f Initialize server data; server.address= (long)address of server data; g
6 global restart server(in int d[100]) agent server

7 f rebuild data structure of server usind d and put address to server.addressg
8 global move server(void) agent server
9 f int data[100];

10 build data of type int[100] using server.address
11 restart restart server(data);

12 g
13 global server task(inout int res) agent server
14 f perform server call using data in server.addressg
15 main(void)
16 f int i, res;

17 /* start four server agents locally: */
18 for (i=1; i<=4; ++i)
19 init server[i+4*mynumber]();
20 /* main now acts as a client performing server calls: */
21 for (all server calls) f
22 server task[phi(this call)](& res);
23 if necessary, wait for results using await result(res);
24 g
25 g

Figure 3: Client-server example
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There is one agent type server, representing a server type that handles some requests. It
is assumed that there is a fixed mapping of server requests to server instances, implied by the
data dependencies of the application. The function phi (line 1) represents this mapping of
server requests to server instances. Assuming that all servers are generated at the beginning of
the program, the only possibility for load distribution is to migrate servers to other processes.
To illustrate the usage of the restart mechanism, we assume that the data corresponding to a
server is not implemented as a collection of variables but as a complex data structure. If a
server is migrated, this data structure has to be packed into an array by the sending process.
The receiving process has to reconstruct the data from this array.

The declaration of the agent type server specifies one local variable address that
holds the address of the agent data (line 2). The global procedure init server is used to
initialize agents of type server. To migrate an agent of type server, the global procedure
move server packs the server data into the arraydata and sends the data via a restart GPC
of restart server to the receiving process. The global procedure restart server
rebuilds the data structure of the server and assigns the address to the local variableaddress.

The main function shows the initialization of four servers using agent-bound GPCs of
init server (line 19). The ParMod-C expression mynumber which returns the actual
process instance is used to compute globally unique instance numbers for agents. Server
requests are implemented by agent-bound GPCs to the corresponding instance of server
(line 22). The conventional ParMod-C language construct await result may be used to wait
for results of server requests (line 23).

The example demonstrates that there is only few effort for the programmer to realize object
migration, even if complex data structures are connected to the servers. The most difficult
parts of the implementation such as global information about object locations, forwarding of
GPCs, and the load distribution strategy are realized by the runtime system.

6 Summary and Conclusions

For several types of applications, the common task farming paradigm cannot be used to achieve
dynamic load distribution due to data dependencies and synchronization among subproblems
of the program. For these applications, migration of objects is necessary to realize load
distribution.

This paper introduces a new load distribution concept based on cooperating agents. Agent
migration is realized “quasi-preemptively” by data movement. This allows very easy and
efficient implementation of the migration mechanism. User implemented tasks for moving
and re-starting agents provide flexibility with respect to agent implementation. Furthermore,
agents can hop across heterogeneous platforms, because the underlying runtime system can
perform all necessary data marshalling. The load distribution strategy is completely sepa-
rated from the application program and can be exchanged without having to recompile the
application.

The paper presents an extension of the parallel and distributed programming language
ParMod-C realizing the new programming model. The program example demonstrates that
the programmer can limit implementation effort for object migration to object specific code.
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Summing up, the new concept represents an interesting compromise between automatic
object migration which is only useful for specific applications with a predefined implemen-
tation of migration objects, and systems which leave load distribution completely to the
programmer.
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