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Abstract
Consider the problem of finding a minimum length schedule for n unit execution
time tasks on m processors with tree-like precedence constraints. A sequential
algorithm can solve this problem in linear time. The fastest known parallel algorithm
needs O(logn) time using n? processors. For the case m = 2 we present two work
optimal parallel algorithms that produce greedy optimal schedules for intrees and
outtrees. Both run in O(logn) time using n/logn processors of an EREW PRAM.

Keywords: parallel algorithms, scheduling, tree precedence constraints, optimal
work

1 Introduction

The need to utilize resources economically gives scheduling theory an important role
in computer science. Another reason for the popularity of scheduling is its relevance in
complexity theory. Many if not most scheduling problems are intractable, i.e. they belong
to the class of NP-hard problems. The border between intractable scheduling problems
and those for which efficient algorithms are known is a challenging area for investigations.
Consider the problem of finding a schedule for n equal length tasks constrained by an
arbitrary precedence relation such that the total time needed to execute all tasks on m
identical processors is minimized. Ullman has shown that this problem is A/P-complete
in general [UII75]. If we restrict the problem to m = 2 it becomes polynomially solvable
[FKN69, CG72, Gab82] and even has an efficient parallel (i.e., N'C) algorithm [HM87h].

In this paper we restrict our attention to tree-like precedence constraints. This class
of scheduling problems has attracted special interest since the 1960s originating in ex-
pression evaluation and assembly line production problems. An early result by Hu [Hu61]
shows that unit execution time tasks constrained by a tree precedence relation can be
optimally scheduled for an arbitrary number of processors in polynomial time. Brucker,
Garey, and Johnson later showed that the problem can even be solved by a linear time
algorithm [BGJ77]. It is interesting to note that slight generalizations of the tree prece-
dence structure, e.g. one outtree combined with one intree, result in intractable problems

[May81, DUWS6].



We are interested in the parallel complexity of scheduling equal length tasks with
tree precedence constraints. Helmbold and Mayr [HM87a] developed two EREW PRAM
algorithms that compute greedy schedules for intrees and outtrees. Both run in O(logn)
time using n® processors. Dolev, Upfal and Warmuth [DUWS6] reduced the problem
of scheduling outtree precedence constraints to finding a perfect matching in a convex
bipartite graph which can be solved on an EREW PRAM in O(log’?n) time using n
processors [DS84]. In addition they developed an algorithm running in O(logn) time
using n? processors. An open problem is whether the number of required operations can
be lowered. In this paper we show that for the case m = 2 work optimal PRAM algorithms
exist that compute greedy optimal schedules for intrees and outtrees.

2 Preliminaries

A unit execution time (UET) 2-processor scheduling problem (7', <) consists of a set of n
tasks T and a partial order < on the set of tasks. A solution to the problem is a schedule
S :T'— N* mapping tasks to integer timesteps with the following properties:

e the precedence constraints are satisfied, i.e. if ¢ < ¢’ then S(#) < S(#') and
e no more than 2 tasks are mapped to the same timestep.

We assume that schedules always start at timestep 1 (which is the interval [0,1)). The
length of a schedule S is then max.er{S(t)}. We are interested in schedules that have
minimum length under all possible solutions to a given scheduling problem. Such schedules
are called optimal.

The precedence graph for (T, <) is a directed acyclic graph G' = (T, ') with vertex set
T and edge set £ = {(t,t")|t < t'}. We call GG a reduced precedence graph if no transitive
edges are present, i.e. if t < ¢ < " implies (¢,1") ¢ E. Let depth(G) be the number of
vertices on a longest path in G, let depth(t), ¢ € T', be the number of vertices on a longest
path ending at ¢ and let height(¢) be the number of vertices on a longest path starting at
t. Define the LPT value of a task t as LPT(?) := depth(G) — height(¢) + 1. Tasks having
the same LPT value are said to be on the same LPT level. Intuitively, LPT(¢) is the latest
possible timestep a task ¢ can be scheduled in order to yield an optimal schedule for an
unlimited number of processors. The earliest possible timestep a task ¢ can be scheduled,
called its EPT value, is obviously depth(t). For a given schedule a task ¢ is said to be
available at timestep s if all tasks ¢’ with ¢/ < ¢ are mapped to timesteps earlier than s.
A timestep s is full if two tasks are mapped to s, otherwise s is called partial. A schedule
is greedy if there is only one task available at any partial timestep.

In the sequel we will focus our attention on UET 2-processor scheduling problems,
where the reduced precedence graph (7', F) is either an intree or an outtree. In the former
case every vertex except one has outdegree 1, and the remaining vertex, called the root,
has outdegree 0. In the latter case, every vertex other than the root has indegree 1,
and the root has indegree 0. It is well known that a successful strategy for precedence
graphs having tree structure is to schedule tasks with lower LPT values earlier than others
whenever possible. This strategy is known as the level strategy:

Definition 1 A schedule S : T — N is a level schedule if it is greedy and there do not
exist tasks t and t' such that LPT(t) > LPT(t"), S(t) < S(t') and t' is available at timestep
S(t).

*IN denotes the set {1,...} of positive natural numbers.



Theorem 1 Level schedules are optimal for tree precedence constraints.

Proof: See [Hu61] for intrees and [Bru82] for outtrees. O

Note that all results apply to forests as well. If the reduced precedence graph is
a forest of intrees, we add a new task that succeeds all roots. After finding a greedy
optimal schedule for the resulting intree we remove the last task and thereby obtain a
greedy optimal schedule for the forest. Forests of outtrees are handled accordingly.

3 Two Processor Level Schedules for Intrees

Consider a UET 2-processor scheduling problem (7', <) where the reduced precedence
graph G = (T, F) is an intree. Select a longest path in G and call tasks on this path
backbone tasks. All other tasks in T' are said to be free. We start with two observations
on tasks with equal LPT value and the relationship between free and backbone tasks:

Lemma 1 Let ¢, € T be on the same LPT level. Then neither t <t nort < t.

Lemma 2 For any two tasks t,t" € T the following holds: if t is a backbone task and t'
a free task with LPT(t) < LPT(t') then neither t <t nort' <t.

Thus we have reason to call non-backbone tasks free. We can pair a free task with a
backbone task on a lower LPT level without having to fear that precedence constraints
are violated. Thus we implement the level strategy by pairing each backbone task that
has no free task on its own level with a free task from a higher LPT level. In order to
yield a level schedule we have to maintain the LPT order of free tasks that are paired
with backbone tasks on lower LPT levels.

3.1 A Sequential Algorithm

Assume we have determined the LPT value of each task. Initially we arrange tasks from
left to right sorted by their LPT value. In Figure 1 tasks are depicted as boxes and tasks
with equal LPT value are grouped into a single column. We order tasks from left to
right and within a single column from top to bottom. We mainly operate on free tasks
so we separate them from backbone tasks which we keep in the bottom row. Contiguous
columns with more than one task in each column are called a block. Imagine all free tasks
of a block being concatenated and threaded on a string like pearls as in Figure 1. Pull
the string of each block to the left — starting with the leftmost block — until the first task
on each string reaches either the left end or the last free task of the next block to the left.
In doing so the number of free tasks in each column is not increased beyond 1. The result
is shown in Figure 2 and again we assume the order of tasks from left to right and within
a column from top to bottom including backbone tasks. Note that each backbone task is
still the last on its level. Finally, we assign pairs of tasks from left to right in the resulting
order to consecutive timesteps as long as possible. In Figure 3 the mapping of tasks
is indicated by greyscale levels, where two consecutive tasks having the same greyscale
are supposed to be mapped to the same timestep. The main steps of the algorithm are
captured in the following outline. Let |P| denote the length of a sequence P, P[i] the ¢-th
element, and PJi, ..., j] the subsequence starting at P[] up to and including P[j].

1. Determine the LPT value of each task.
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Figure 1: Tasks ordered by their LPT value. Free tasks in each block are concatenated

and threaded on a string.
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Figure 2: After pulling the strings to the left.
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Figure 3: Pairs of tasks from left to right and within a column from top to bottom are
mapped to consecutive timesteps until only backbone tasks remain. Fach of those is sched-

uled one at a time.



2. Sort tasks in LPT order. Let J be the sequence of ordered tasks and L be the
sequence of their levels.

3. Select a backbone in the intree and separate free tasks from backbone tasks. Let
Jr and Jp be the subsequences of J containing the free respectively the backbone
tasks. Let Ly and Lp be the respective subsequences of L.

4. For each free task compute its adjusted level:

s 1 ife =1,
Lp[i] := { min(Lg[i], Lz[¢ — 1] +1) otherwise. (1)

5. The highest adjusted level of any free task is h := Ly[|L}|]. Merge sequences Jp
and Jpl[l,..., h] using the adjusted levels from L’} such that each backbone task is
the last in its level. Let J’ be the resulting sequence.

6. Let P, be the subsequence of tasks at odd indices in J' followed by tasks Jg[h +
L,...,|/B|]. Let P> be the subsequence of tasks at even indices in J'.

In the end P, and P, define the mapping of tasks, where tp,[; is scheduled at timestep ¢
on processor 1 and ¢p,p; is scheduled at timestep ¢ on processor 2. Equation (1) formalizes
what we called “pulling the strings”. Free tasks move to the left as far as possible while
maintaining their LPT order and without increasing the number of free tasks on a level
beyond 1. This ensures that, after merging backbone tasks into free tasks at their respec-
tive levels, no two free tasks with different LPT values are neighbors. In the following
Lemma we describe the properties of our algorithm on which we base subsequent proofs.

Lemma 3 Let ty,15,...,1, be the sequence of tasks in J' followed by Jg[h + 1,...,|J5]|].
For any tasks 1;, t; the following holds:

1. If t; and t; are backbone tasks with LPT(t;) < LPT(t;) then i < j.
2. Ift; and t; are free tasks with LPT(t;) < LPT(;) then i < j.
3. If t; is a free task and t; a backbone task with LPT(t;) < LPT(t;) then ¢ < j.

4. If t; and t;1y are backbone tasks then all t; with 1 +1 < j <n are backbone tasks as
well.

5. If t; is a free task and tiy1 a backbone task with LPT(t;) > LPT(t;41) then either

1 =1 ort;_{ s a backbone task.

Proof: Obviously properties 1 and 2 are satisfied, because all tasks are initially sorted in
LPT order and the relative order of free tasks and the relative order of backbone tasks is
never changed.

In step 5 the first ~ backbone tasks and all free tasks are merged according to the
modified levels of free tasks. Since each backbone task is the last in its level we obtain
property 3 for the first A backbone tasks. There are no free tasks on levels greater than
h which means that after J’ only backbone tasks on higher LPT levels remain. It follows
that property 3 holds for the complete sequence.

From equation (1) we know that up to level h there is at least one free task per level.
Obviously there is exactly one backbone task per level. It is therefore impossible that two



backbone tasks are neighbors in J’. It follows that the first two neighboring backbone
tasks are J'[|.J'|] and Jg[h 4 1] which means that property 4 is satisfied.

Let J'[¢] be a free task and J'[7 + 1] a backbone task with LPT(J'[:]) > LPT(J'[: 4 1]).
Assume ¢ > 1. J'[{] must have a modified level that equals LPT(J'[7 + 1]). Otherwise
J'[{] would not be the right neighbor of J'[i + 1] after merging. Equation (1) implies that
the modified level of J'[i] was determined by the second argument to min. Otherwise
the modified level of J'[¢] would still be its LPT value. Being determined by the second
argument to min in equation (1) ensures that the modified level of .J'[7] and LPT(J'[¢ 4 1])
is exactly one greater than the modified level of the next free task to the left. Because
there is a backbone task on every level and because each backbone task is the last in its
level, there must be a backbone task between the free task to the left of J'[¢] and J'[¢].
Obviously J'[7 — 1] is the only candidate for this backbone task. We conclude that all five
properties are satisfied. a

Lemma 4 Let t1,15,...,1, be as in Lemma 3. For any two tasks t;, tp with1 <i <k <n
the following holds: if t; is a free task and ty, is a backbone task with LPT(t;) > LPT(t)

then t;11 ts a backbone task and either : =1 or t,_1 is a backbone task as well.

Proof: Let ¢; be the backbone task closest to ¢; with ¢ < 5. We will show that j = ¢+ 1.
Obviously ;-1 is a free task and because free tasks are ordered (property 2) it follows
that LPT(¢;) < LPT(¢;_1). By property 1 we know that LPT(¢;) < LPT(#x). Therefore
LPT(t;_1) > LPT(¢;). Property 5 shows that either t;_5 is a backbone task or j — 1 = 1.
Because there is no backbone task between ¢; and ¢;, we conclude that either ¢ = 1 or ¢,_4
must be a backbone task and therefore j = ¢+ 1 and ¢,4; is a backbone task. O

Lemma 5 Let t1,t5,...,t, be as in Lemma 3. For tasks t; and t;31 with 1 <1 < n the
following holds: if t; or t;11 is a free task then neither t; < t;41 nor t; 41 < t;.

Proof: case 1: t; and t;41 are both free tasks. Assume LPT(¢;) # LPT(#;41). That means
LPT(t;) < LPT(t;41) because free tasks are ordered (property 2). Let ¢; be the backbone
task on ¢;’s LPT level. Property 3 implies that ¢« < k and therefore ¢« + 1 < k. Applying
Lemma 4 yields that #; must be a backbone task which contradicts the case assumption.
We conclude that LPT(¢;) = LPT(¢,41) and by Lemma 1 neither ¢; < t,41 nor #;41 < ;.

case 2: 1; is a free task and ¢;41 is a backbone task. Assume LPT(#;) < LPT(#,41).
Let t; be the backbone task on ;s LPT level. From property 3 we know that j > .
Because backbone tasks are ordered (property 1) we have j < ¢+ 1, a contradiction to
J > ¢. Our assumption must have been wrong, therefore LPT(¢;) > LPT(¢,41) and by
Lemma 2 neither ¢; < ¢,41 nor ;41 < t;.

case 3: t; is a backbone task and t,41 is a free task. Property 3 shows that LPT(¢;) <
LPT(t;41). Applying Lemma 2 we get that neither ¢; < t,41 nor t;41 < t,. O

It is now easy to see that the last step in our algorithm computes a proper schedule.
Because neighboring tasks in J’ are never constrained by precedence we can map them
pairwise from left to right to increasing timesteps. All tasks in Jg[h + 1,...,|JB|] are
backbone tasks so the best we can do is to assign each of them to its own timestep.

Lemma 6 Let ty,ts,....1, be as in Lemma 3, and let f: T — N be such that f(t) =1 if
t =t;. The mapping of tasks defined by Py and Py in step 6 is equivalent to the following
mapping S : T — N:

[100] i 1) < 17,
“;Jw + f(t) = |J'| otherwise.



Proof: Left to the reader. O

Theorem 2 S is a 2-processor level schedule, and hence optimal.

Proof: Let ¢1,1,,....,1, be as in Lemma 3. We first show that S is a 2-processor schedule.
Any two tasks ¢; and t; with |¢ —j| > 2 are assigned to different timesteps by S. Therefore
no more than 2 tasks are assigned to the same timestep. Lemma 5 implies that two
consecutive tasks ¢;,%,41 are either two backbone tasks or neither ¢; < ¢,41 nor ;11 < t,.
The latter ensures that no precedence constraints are violated by S for tasks ¢;,¢,,1 with
¢ < |J|. If t; and ¢;41 are both backbone tasks then ¢ > |.J/| and therefore both tasks are
assigned to consecutive timesteps which again makes sure that the precedence constraints
are satisfied.

Next we show that S is a level schedule. Timesteps 1 to [|J/|/2] are full and timesteps
[|/']/2] +1 to length(S) are partial. All tasks ¢; with ¢ > |.J/| are backbone tasks because
of property 4 and the fact that the last task is always on the backbone by property 3. So
there is no free task available at any partial timestep. It follows that S is greedy.

Assume that there exist tasks ¢; and ¢; with S(¢;) < S(¢;), LPT(¢;) > LPT(¢;) and
t; is available at timestep S(¢;). Backbone tasks are ordered (property 1), free tasks are
ordered (property 2) and each backbone task ¢ is behind any other task that has an LPT
value less or equal to t’s LPT value (property 3). It follows that ¢#; must be a free task
and t; a backbone task. Lemma 4 implies that ¢, is a backbone task and either ¢ =1
or t;_y is a backbone task as well.

case 1: 1 = 1. Then ¢; is the first task to be scheduled and t;;; is scheduled at the
same timestep as ;. Obviously ¢; can not be available at this timestep because ;41 < {;
as both tasks are on the backbone and backbone tasks are ordered.

case 2: t;_y and t;4y are backbone tasks. In this case ¢; is scheduled at the same
timestep as either ¢,_; or ;41. Again ¢; is not available at timestep S(t;) because #;_1 <
tiv1 < t]‘.

Both cases contradict our assumption and we conclude that no such tasks ¢; and ¢
exist, which proves that S is a level schedule. O

3.2 The Parallel Algorithm

In the following we give details on a parallel version of the algorithm using prefix opera-
tions, list ranking, and parenthesis matching as basic building blocks. When we visualize
intree precedence constraints, the leafs are towards the top and the root is at the bottom
of the tree. We assume the precedence tree being represented as a sequence of tasks, each
task being associated with a pointer to its successor and its left sibling as is shown in
Figure 4. An alternative representation is a sequence of edges where edges that point to
the same task are grouped together. It is easy to convert the latter representation into
the former and vice versa.

Algorithm TWOPROCINTREE

(1) Compute the Euler contour path of the precedence tree: We use the Euler
tour technique introduced by Tarjan and Vishkin [TV85]. Every tree edge is replaced
by two anti-parallel arcs. We build a list of these arcs such that the resulting path runs
along the contour of the tree, i.e. the path is an Fulerian tour of the tree. We break this
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Figure 4: Input representation of a reduced Figure 5: Fuler contour path.

precedence graph with additional pointers to
left siblings.

tour at the root task and obtain a path that corresponds to the order of advancing and
retreating along edges during an ordered depth first traversal of the tree.

More formally the Euler tour technique works as follows. For each task we need a
pointer to its leftmost predecessor, its successor, and its right sibling. We can easily
obtain this data from the given input. For each task t let d(¢) and u(¢) be pointers
(initially set to nil) representing two anti-parallel arcs that run down' respectively up
along the tree edge leaving ¢. For technical reasons we assume that the root task r has
d(r) and u(r) as well, although no tree edge leaves r. For each task ¢ with no leftmost
predecessor (¢ is then a leaf) set u(?) to the address of d(¢). Otherwise let ¢’ be its leftmost
predecessor and set u(t) to the address of u(t'). For each task ¢ with no right sibling let
" be its successor and set d(¢) to the address of d(#'). Otherwise let ¢’ be its right sibling
and set d(¢) to the address of u(t') if ¢’ exists.

Obviously the resulting path starts with u(r) and ends with d(r) = nil. Figure 5 shows
the Euler contour path of the tree in Figure 4.

(2) Compute the LPT value of each task: Associate a value of 1 with each upgoing
arc and —1 with each downgoing arc in the Euler contour path. Perform list ranking

TNote that “down” here means towards the root of the intree (which is at the bottom) and “up” means
towards the leaves.



on the Euler contour path while permuting the associated arc values accordingly. Apply
prefix sum to the resulting array of arc values. The resulting value of each upgoing arc
u(t) is the height of . Compute the depth of the precedence tree G by applying prefix
maximum to the task heights and compute LPT(¢) = depth(G) — height(¢) + 1.

(3) Sort tasks in LPT order: Sorting the vertices of a tree in level order using
parenthesis matching and list ranking has been described by Chen and Das in [CD92].
Applied to our context, it works as follows. Associate an opening parenthesis with each
downgoing arc and a closing parenthesis with each upgoing arc. Perform list ranking on
the Euler path and permute parentheses accordingly. The resulting word is an incomplete
parenthesis word. Prepend depth((7) opening parentheses (imagine the first of these on
level 1, the second on level 2, etc.) and append depth((7) closing parentheses (visualize
the first of these on level depth((), the second on level depth(G) — 1, etc.) to form a
complete parenthesis word. Apply parenthesis matching to this word. For each opening
parenthesis we now have a pointer to its matching closing parenthesis. To build a list
of all parentheses we associate a pointer with each closing parenthesis as follows. With
the i-th of the depth((') appended closing parentheses (i = 2, ..., depth((7)) we associate
a pointer to the (depth(G) + 2 — ¢)-th prepended opening parenthesis. The first of the
appended parentheses has a nil pointer which indicates the end of the list. Every other
closing parenthesis b belongs to an upgoing arc u(t). We associate with b a pointer to the
opening parenthesis belonging to d(¢). We now have a list of all parentheses, starting with
the first prepended parenthesis and ending with the first appended parenthesis. Apply list
ranking to this list of parentheses. Build the subsequence of all closing parentheses that
belong to tasks using prefix sum. Replacing each closing parenthesis in this subsequence
with its corresponding task yields the sequence of tasks in reverse breadth first order
which is LPT order. Let J be the ordered sequence of tasks and L be the sequence of
their LPT values.

(4) Select a backbone and separate free tasks from backbone tasks: Associate
a value of 1 with each upgoing arc and —1 with each downgoing arc with the exception
of the downgoing arc of J[1]. Associate —2 with d(J[1]). Task J[1] is the first task of a
longest path in . Perform list ranking on the Euler contour path while permuting the
associated arc values accordingly. Apply prefix sum to the resulting array of arc values.
Mark tasks whose up- and downgoing arcs carry values which differ by 2. Arc values of
tasks not on the selected longest path differ by 1. Divide J into subsequences Jr and Jp
of free respectively backbone tasks using prefix sum. Divide L into subsequences Ly and

Lp.

(5) Adjust levels of free tasks: For each task Jg[i] compute max(i — Lg[t],0) and
let A be the prefix maximum of the resulting sequence. Then compute L% [i] as ¢« — A[z].

(6) Merge backbone tasks and free tasks: Create a sequence B of {0,1} with
B[l]=0and B[;] =1iff L}:[i]] # Lyt — 1], 1 <i <|L%|. Thus a 1 in B indicates a level
boundary in L%. We want to expand Jr such that whenever there is a level boundary we
insert an empty position allocating space for the backbone task at this level. Compute a
sequence of new positions for elements in Jr by applying prefix sum to B and adding ¢ to
an element at position :. Let P be the resulting sequence. The highest adjusted level of
any free task is h := L[| L}|]. Initialize a sequence J' with |Jg| + h zeroes and store each
Jr[t] into J'[P[t]]. Create a sequence of {0,1} where the k-th element (k = 1,...,|J']) is



L iff J'[k] = 0 and let C be the prefix sum of this sequence. Store Jg[C[k]] into J'[k] iff
J'[k] is 0. By this we merge backbone tasks Jg[l,..., h] into J such that tasks are sorted
by level and each backbone task is the last in its level.

(7) Map tasks to processors: Let P; be the sequence of tasks at odd positions in J’/
followed by tasks Jg[h + 1, ..., |JB|]. Let Py be the sequence of tasks at even positions in
J'.

As before P; and P, define the mapping of tasks to timesteps. Figures 6, 7 and 8 show
the intermediate results of algorithm TWOPROCINTREE when applied to the input from
Figure 4. Figure 9 depicts the output sequences P; and P.

b lg |t1o|t14|l17 b ('[\15 ﬂs
tgy)

L3ty |t | T | 7 |ty3|t15) T1g| Tng t) ey —lartestetey
LPT 1 2 34 5 6 7 8 9 L3ty | t5| tg | 7 | ty3|t1g| L1g| Tag

Figure 6: Tasks from the example sorted Figure 7: After adjusting levels of free tasks

by LPT value. and merging them with backbone tasks.
b U15|lig P [ty tg | tg|tip|tyg | tio| tas| tyg| a7
Uy | tg | tg [Tao G t10|t1a [ ts7 Po [t 3|t ts] te] t7]ti3 tia | tig| tig| Lo
3|t | s i8N 17 L3 t16.t20 timestep 1 2 3 4 5 6 7 8 9 10 11
Figure 8: Consecutive tasks with Figure 9: The resulting sequences Py and Ps.

equal greyscale level are mapped to
the same timestep.

Lemma 7 The sequence L'y computed in step (5) of algorithm TWOPROCINTREE satis-
fies equation (1).

Proof: For i =1 we get L[1] =1 — A[l] =1 — max(1 — Lg[1],0). Because Lg[l] > 1
we have L%[1] = 1. For i > 1 we get

Lpli] = i—maxi_{max(j — Lr[j],0)}
= i—max(maxé;ll{max(j — Lrlj],0)}, 0 — Lp[i])
= ¢—max(i — (Lp[i — 1]+ 1),7 — Lg[d]).

Assume Lpli] < L[t — 1] + 1. It follows that ¢ — Lg[i] > ¢ — (L[t — 1] + 1) and
therefore the second argument to max dominates. In this case L'z[i] computes to Lg[¢].
Otherwise Lp[i] > L[t — 1] + 1. We get ¢« — Lp[i] < i — (L[i — 1] + 1) which lets the
first argument to max dominate and L%[i] becomes Ly[i — 1] + 1. We conclude that
L[f] = min(L%[i — 1] + 1, Lg[t]). O

10



Theorem 3 Let (T, <) be a UET 2-processor scheduling problem where the reduced prece-
dence graph G'= (T, E) is an intree. Then algorithm TWOPROCINTREE computes a level
schedule for (T,<).

Proof: Steps (1) to (4) should be clear. For details on the Euler tour technique we refer
to [TV85]. Sorting the vertices of a tree in breadth first order using parenthesis matching
and list ranking has been described in [CD92]. From Lemma 7 we know that step (5)
in algorithm TWOPROCINTREE is equivalent to step 4 in the sequential algorithm. It is
furthermore obvious that step (6) merges as proposed and step (7) is equivalent to step 6
in the sequential algorithm. By Lemma 6 and Theorem 2 we obtain the desired result. O

4 Greedy Two Processor Schedules for Outtrees

Let (T, <) now be a UET 2-processor scheduling problem where the reduced precedence
graph ¢ = (T, F) is an outtree. Note that applying algorithm TWOPROCINTREE to
a reversed outtree and reversing the resulting schedule would yield an optimal but not
necessarily greedy schedule for the outtree.

Again we select a longest path in G and call tasks on this path backbone tasks. All
other tasks in 7" are called free. We do not produce level schedules this time. Instead we
initially sort the outtree tasks by their EPT value which is equal to depth(() 4+ 1 minus
the LPT value in the corresponding intree that results from reversing the edges. This way
we can reuse part of the intree algorithm when computing greedy optimal schedules for
outtrees. The following two observations are equivalent to Lemmas 1 and 2 for the case
of outtrees.

Lemma 8 Let t,¢' € T be on the same EPT level. Then neither t < t' nort’ <t.

Lemma 9 For any two tasks t,t € T the following holds: if t is a backbone task and t'
a free task with EPT(t) > EPT(t') then neither t < t' nort' < t.

Thus pairing a free task with a backbone task ¢ on a higher EPT level doesn’t violate
the precedence constraints. We have to find matches for as many backbone tasks as
possible giving preference to backbone tasks on lower EPT levels in order to be greedy.
We start with an outline of a sequential version of our algorithm.

4.1 A Sequential Algorithm

Assume we have sorted tasks by their EPT values. Figure 10 gives an example where
tasks with equal EPT value are grouped into the same column. We order tasks from left
to right and within a column from bottom to top. Each backbone task must be the first
on its level so we keep them in the bottom row. Figure 10 shows how the free tasks of
each block are concatenated and threaded on a string like pearls. This time we pull the
strings to the right. But to compute a greedy schedule, we must not pull a string further
right if there is no free task to the left of the string that we can move up. This ensures
that every EPT level originally occupied by free tasks has at least one free task in the
end. In terms of our strings: start pulling with the leftmost string keeping its leftmost
task fixed. Pull to the right until either the string is fully stretched or the rightmost task
reaches the leftmost task of the next string (or the highest EPT level). In the former
case repeat with the next string to the right. In the latter case concatenate the head of

11



the current string with the tail of the next string to the right and proceed by pulling the
resulting string. Figure 11 shows the result of pulling strings in the described way. The
order of tasks is from left to right and within a single column from bottom to top including
backbone tasks. In the next step we insert idle tasks between every two backbone tasks
that are adjacent and finally we map tasks at odd positions to processor 1 and tasks at
even positions to processor 2 (Figure 12). Let us state the main steps of the algorithm
more formally in the following.

1L FML .

backbone [

EPT 1 2 3 45 6 7 8 910 11 12 13 14 15 16 17 18 19 20

Figure 10: Tasks ordered by their EPT value. Free tasks in each block are concatenated
and threaded on a string.

free
L *—eo—o P *—— o —o P

backbone [

EPT 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 11: After pulling strings to the right. We have to ensure that the number of free
tasks in each level is not decreased to 0 if it was initially > 0.

1. Determine the EPT value of each task.

2. Sort tasks in EPT order. Let J be the sequence of ordered tasks and L be the
sequence of their EPT values.

3. Select a backbone in the outtree and separate free tasks from backbone tasks. Let

Jr and Jp be the subsequences of J containing the free respectively the backbone
tasks. Let Ly and Lp be the respective subsequences of L.
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idle tasks

=/ 2\
conee’ | | |

Figure 12: After inserting idle tasks between adjacent backbone tasks, pairs of tasks from
left to right and within a column from bottom to top are mapped to consecutive timesteps.

4. For each free task compute its minimum level such that there is no more than one
free task per level:

L] { Lpli] ifi=1,

max(Lp[i], Lp[i — 1] + 1) otherwise.

(2)

5. For each free task compute its minimum level such that there is at least one free

task on each higher EPT level:

, depth(G) if i = |Lp|,
L[] = {

max(Lp[i], L34[i + 1] — 1) otherwise.

(3)

6. Let j be the smallest index such that Li:[j] = L%[j] or j = |Lp| if no such index
exists. For each free task compute its adjusted level:
L[] ife <,

Lyl = { L%]i] otherwise. )

7. Merge sequences Jr and Jp using the adjusted levels from L% such that each back-
bone task is the first in its level. Let J’ be the resulting sequence.

8. Insert an idle task between every two adjacent backbone tasks in J'. Let J” be the
resulting sequence.

9. Let P; be the subsequence of tasks at odd indices in J” and P, be the subsequence
of tasks at even indices.

As before, P, and P, define the mapping of tasks to timesteps. P, may contain idle
tasks where P,[i] = idle means that processor 2 stays idle at timestep ¢. Note that the
length of P, may differ from that of P, by 1. In this case the missing last task is supposed
to be an idle task.

Lemma 10 Letty, ty,....1, be the sequence of tasks in J'. For any tasks t;, t; the following
holds:

1. If t; and t; are backbone tasks with EPT(t;) < EPT(t;) then ¢ < j.
2. Ift; and t; are free tasks with EPT(t;) < EPT(t;) then ¢ < j.
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3. If t; is a backbone task and t; a free task with EPT(t;) < EPT(t;) then i < j.

4. If t; and t;1y are backbone tasks then there is no j <1 such that t; and t;11 are free
tasks.

5. Ift; and t;41 are backbone tasks and t;15 is a free task then EPT (t;41) = EPT (t:12).
6. If t; and t,1 are free tasks then EPT(t;) = EPT(t;41).

Proof: Tasks are initially sorted by EPT value and the order of free tasks and the order
of backbone tasks is left unchanged throughout the algorithm. It follows that properties 1
and 2 are satisfied. The modified level of a free task is not less than its original EPT value
and because step 7 merges each backbone task earlier than all free tasks with a higher
modified level, property 3 holds.

Let L[] = L[t + 1] for some 1 < ¢ < n. It follows from equations (2), (3) and (4)
that i > j, where j is chosen as in equation (4), because in L} no two positions have
equal value. All levels at higher positions in L/ are therefore determined by L3 which
means that there is at least one free task per level > L:[i]. It follows that after merging
Jr and Jp in step 7 there are no two adjacent backbone tasks in J’ behind Jg[i] but Jg[(]
and Jp[i 4+ 1] are adjacent in J'. Thus property 4 holds.

Let J'[¢] and J'[¢ 4+ 1] be backbone tasks and J'[i + 2] = Jg[k] be free. It follows that
either £ = 1 or Ly[k] — Ly[k — 1] > 1. Otherwise Jp[k — 1] would have been merged
between J'[i] and J'[i + 1]. In both cases the modified level of Jp[k] equals Ly:[k] because
by equation (3) the levels L3 don’t differ for any adjacent positions by more than 1. The
only way in equation (2) that Li[k] — L}.[k —1] > 1is that LL[k] = Lgp[k] = EPT(Jr[k]).
In other words the adjusted level of J'[t + 2] is still its original EPT value and therefore
EPT(J'[i 4+ 2]) = EPT(J'[i 4+ 1]) which means that property 5 holds.

Finally property 6 is satisfied because if two free tasks are adjacent in J’ they must
have the same adjusted level. This is only possible if their level is determined by L7 and
if both still have their original levels which means that both are on the same EPT level.

O

Lemma 11 Let ty,ts,....t, be as in Lemma 10. For tasks t; and t;31 with 1 <1 < n the
following holds: if t; or t;11 is a free task then neither t; < t;41 nor t; 41 < t;.

Proof: case 1: t; and t;41 are both free tasks. The desired result follows from property 6
and Lemma 8.

case 2: 1; is a free task and t,41 is a backbone task. Property 3 implies that EPT(#;)
< EPT(t;41) and by applying Lemma 9 we obtain the desired result.

case 3: t; is a backbone task and #;11 is a free task. Assume EPT(¢;) < EPT(¢,41). Let
t; be the backbone task on t,41’s EPT level. Property 3 implies that j < ¢+ 1. Because
backbone tasks are ordered (property 1) we have j > ¢, a contradiction to j < @ + 1.
Our assumption must have been wrong, therefore EPT(¢;) > EPT(#;41) and by Lemma 9
neither ¢; < t;14 nor t;11 < t;. O

Lemma 12 Let ty,ts,...,t, be as in Lemma 10. For tasks t; and t;31 with 1 <1 < n the
following holds: if t; and t;11 are backbone tasks then t; <1; for all tasks t; with y > 1.

Proof: Obviously the Lemma holds for all backbone tasks ¢; with j > . We have to
show that it also holds for free tasks ¢;, y > ¢+ 1. Property 5 in Lemma 10 ensures that
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either there are no free tasks at all behind ¢;,;; or there is a possibly empty sequence of
adjacent backbone tasks following ¢; ending with backbone tasks ., tz11, & > ¢ and free
task g4 with EPT(#341) = EPT(Z542). No free task ¢t with EPT(¢) = EPT(#x) exists,
otherwise properties 2 and 3 would ensure that ¢ would fall between ¢; and t;,5. Because
any free task t;, j > k 4+ 1 has an EPT value greater or equal EPT(#411) and there is no
free task on t;’s EPT level, it follows that {5 < ;. Furthermore either £ = ¢ or ¢; < 1,
which proves the Lemma. a

Definition 2 Let ty,1q,....1, be as in Lemma 10. The idle task indicator I : {1,....,n} —
{0,1} is defined as follows:

) 1 ife>1 and t;_1,1; are backbone tasks,
1(2) := .
0 otherwise.

Lemma 13 Let ty,ty,...,t, be as in Lemma 10. If I(i) =1 then i — 1432, 1(j) is odd.

Proof: By induction over i. The first task ¢; is a backbone task (the root of ). By
property 3 the second task, if any, is a backbone task as well and therefore I(1) = 0 and
1(2) = 1. Thus the Lemma is true for ¢ = 1 and ¢ = 2. Assume the Lemma is true
up to some ¢ — 1. If I(¢) = 1 then t,_y and ¢; are backbone tasks by Definition 2. Let
k < i be the greatest index such that /(k) = 1. The induction hypothesis implies that
E—1+ Zf;ll 1(y) is odd. From t; up to t,_; are no adjacent free tasks (Property 4 in
Lemma 10) and no adjacent backbone tasks (ensured by the choice of k). It follows that
the number of tasks between ¢, and #;_; is odd and therefore : — % 1s odd. We have

i-1 k k-1
=L TG =i — 1+ I = k= 1+ Y () + (k) 43—k
% % % =T odd

odd

which results in an odd value and makes the Lemma true for . We conclude that the
Lemma holds for all 1 <37 <n. O

Lemma 14 Let t1,1q,...,t, be as in Lemma 10 and let f: T — N be such that f(t) =1 if
t =t;. The mapping of tasks defined by Py and Py in step 9 is equivalent to the following
mapping S : T — N:

S(t) :=

O 1(%
2

Proof: Left to the reader. O

Theorem 4 The mapping S from Lemma 14 is a greedy optimal 2-processor schedule.

Proof: Let ¢1,1s,.... ¢, be as in Lemma 10. We first show that S is a 2-processor schedule.
Obviously no more than 2 tasks are assigned to the same timestep. Assume there exist
two tasks t;, t;41 that are constrained by precedence and assigned to the same timestep.
Lemma 11 implies that both tasks must be on the backbone. Because S(#;) = S(t;41) it
follows from Lemma 14 that 2;21 I(y) = Z;"';ll 1(y) and therefore I(: 4+ 1) = 0. This and
Definition 2 imply that either ¢; or #;14 is a free task, in contradiction to Lemma 11 and
our assumption. It follows that 5 is a 2-processor schedule.
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Next we show that S is greedy. Let S(#;) be a partial timestep. Obviously only one
task is available at S(¢;) if ¢ = 1 or ¢ = n so we only have to consider the case 1 < ¢ < n.
We will prove by contradiction that ¢; and t;1; are backbone tasks. Assume ¢; is free. It

follows from Definition 2 that /(:) = 0 and [(i 4+ 1) = 0. If we write [ for Z;;ll 1(y) then

S(tiy) = [#-‘ . S(t) = [l —|2- ]" . S(tiqr) = [#-‘

and therefore either S(#;,_1) = S(¢;) or S(t;) = S(tiy1). In both cases S(¢;) can not be
a partial timestep. Our assumption was wrong and ¢; is a backbone task. Assume next
that ¢;11 is free. It follows from Definition 2 that I(z + 1) = 0. We obtain

S(1:) = {ww S(tian) = F+1+QI+J(@'W

and because S(t;) # S(ti41) we get that ¢ + [ + I(¢) must be even. On the other hand we
have S(t;,—1) # S(t;) from which follows that I(¢) = 1 and therefore 1 — 1 + Z;;ll I(y) is
odd by Lemma 13. This contradicts ¢ + I + I(2) to be even, because

1—1
=1+ Y I()=i—1+T=0+1+1(i)—2
j=1 N’

odd

odd

This proves that ¢; and ¢,41 are both backbone tasks. Together with Lemma 12 it follows
that ¢; < ¢; for all tasks ¢; with j > ¢ and therefore no other task than ¢; is available at
timestep S(¢;) which settles that S is greedy.

We will now show that S is optimal. Let S’ be an optimal 2-processor schedule for
(T, <). Let 1 <¢ < n be the largest index such that ¢; and ;41 are backbone tasks. Such
an index always exists if n > 1, because t; and ¢, are backbone tasks. By property 4 there
are no adjacent free tasks ty, t;41 with k£ < ¢ and because S is greedy, t; is scheduled at
the earliest possible timestep, i.e. S(¢;) = EPT(¢;). From Lemma 12 we know that there
is no task ¢; with j > ¢ and ¢; £ t;. In other words ¢; can not be scheduled earlier in
S’ than S(¢;) and all tasks t;, 7 > 7 have to be scheduled after S(¢;) in S’. Because S
schedules tasks ;41,...,t, in [(n —¢)/2] timesteps and S’ can not do better than this, it
follows that 5" and S are of equal length. O

4.2 The Parallel Algorithm

We assume the precedence outtree being given as a sequence of edges (¢, j) where each
(¢,7) stands for ¢; < t;. Edges starting at the same task are grouped together.

Algorithm TWOPROCOUTTREE

(1) Reverse precedence tree: For each edge (¢, 7) associate with ; a successor pointer
to t;. Let (k,l) be the edge to the left of (7,7) in the input sequence. Associate with ¢;
a left-sibling pointer to t; if ¢ = k or nil if ¢ # k. The result is the representation of an
intree with each task having a pointer to its successor and to its left sibling.

(2) Compute the Euler contour path of the precedence tree: Apply step (1) of
algorithm TWOPROCINTREE to the reversed precedence tree.
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(3) Compute the EPT value of each task: Compute the LPT value of each task in
the reversed precedence tree and let EPT(¢) be depth(G) + 1 — LPT(#). See step (2) of
algorithm TWOPROCINTREE.

(4) Sort tasks in EPT order: Sort tasks according to their LPT value in the reversed
precedence tree and reverse the resulting order. See step (3) of algorithm TWOPROCIN-
TREE.

(5) Select a backbone and separate free tasks from backbone tasks: Apply
step (4) of algorithm TWOPROCINTREE to the reversed input tree. Let Jp and Jg be
the sequences of backbone and free tasks and Lp, Lg be the sequences of their respective

EPT value.

(6) Adjust levels of free tasks: For each index in Ly compute Lp[i] — ¢ and let
Ay be the prefix maximum of the resulting sequence. Compute L}.[i] as Aq[i] +¢. Let
X be the integer sequence depth(G) 4+ 1 — |Lg|,depth(G) 4+ 2 — |Lg|, ..., depth(G). For
each index in Ly compute max(Lg[t] — X[¢],0) and let Ay be the suffix maximum of the
resulting sequence. Compute L%.[i] as Ay[i] + X[7]. Compute the smallest index j such
that Li[j] = LE[j], with j = |Lg| if no such index exists, as follows. Create a sequence of
length |Lp| with value ¢ at position ¢ iff L} [i] = L%.[/] and |Lp| in all other positions. Let
R be the prefix minimum of this sequence and set j := R[|Lr|]. Let L be the sequence
LL[L, ..., ] followed by Li[j + 1, ..., |Lr]].

(7) Merge backbone tasks and free tasks: Create a sequence B of length |L%| with
B[l] = L[1] and B[i] = Lz[t] — Lzt — 1] for 1 <¢ < |L%]. Thus B indicates level jumps
in L. Apply prefix sum to B and add 7 to position ¢. Let P be the resulting sequence.
Initialize a sequence J" with n zeroes and store each Jg[i] into J'[P[¢]]. Create a sequence
A of {0,1} where the k-th element (k =1,...,n) is 1 iff J'[k] = 0 and let C' be the prefix
sum of A. Store Jp[C[k]] into J'[k] iff J'[k] is 0. By this we merge backbone tasks into
J' such that tasks are ordered by level and each backbone task is the first in its level.

(8) Map tasks to processors: Let A be from the previous step. Create the idle task
indicator [ with I[1] = 0 and I[;] = 1 iff Als] = Alz — 1] = 1 and [[¢] = 0 otherwise for
1 <t < n. Apply prefix sum to [ and add ¢ to position ¢. Let D be the resulting sequence.
Initialize a sequence J” with D[n| zeroes and store J'[k] into J"[D[k]], 1 < k < n. Let P,
be the subsequence of tasks at odd positions in J” and P, be the subsequence of tasks at
even positions in J”.

Again P; and P define the mapping of tasks to processors. If P[i] = 0 then processor
2 must stay idle at timestep ¢. In the following we show that TWOPROCOUTTREE
computes greedy optimal schedules.

Lemma 15 The sequence Ly computed in step (6) of algorithm TWOPROCOUTTREE
satisfies equations (2), (3), and (4).

Proof: We first take a look at the computation of L} in step (6). For ¢ = 1 we have
Li[1] = Ay[1] 4+ 1 = Lg[l]. For ¢ > 1 we get

Lipli] = i+ Aq[7]
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= i—l—maX;ZI{LF[']—j}

i 4 max(Lp[i] — i, max;2y {Lr[j] — j})
= i+ max(Lp[i] — 1, Lp[i — 1] +1 — 1)
= max(Lr[i], Lp[i — 1]+ 1),

which is equivalent to equation (2). Next we analyze L% in step (6). For i = |Lg| we have

LE(ILrl) = Aof|Le|] + X[|Lr|]
= max(Lp[|Lp|] = X[|Lp|],0) + X[|Lp]]
= X[|Lrl]
= depth(G),

because Lp[|Lr|] < X[|Lr|] = depth(G). For i < |Lp| we get

L[] = Agli]+ X[
= max S {max(Lp[j] — X[j1,0)} + XTi]
] = X[i],0), max|ZEL {max(Lp[j] — X[j],0)}) + X[
) = X[i).0). Lili + 1] = 1 = X[i)) + X[}
= max{Lp[i], X[{],L[i +1] — 1}
= max(Lpli], LE[i +1] - 1),

= max(max(Lg[s

= max(max(Lg[s

because L%[i] > X[i] (from equation (3) and the definition of X') which implies L[i 4 1] —
1> X[i+1]—1 = X[i]. It follows that L} computed in step (6) satisfies equation (3). It is
furthermore obvious that step (6) computes L% from L} and L3 according to equation (4).

O

Theorem 5 Let (T, <) be a UET 2-processor scheduling problem where the reduced prece-
dence graph G = (T, E) is an outtree. Then algorithm TWOPROCOUTTREE computes a
greedy optimal schedule for (T,<).

Proof: Steps (1) to (5) should be clear. Lemma 15 implies that step (6) computes L
according to equations (2), (3), and (4). The reader may easily verify that step (7) merges
backbone and free tasks such that each backbone task is the first on its level and that
J' is therefore computed as in the sequential algorithm. It is furthermore obvious that
step (8) is equivalent to steps 8 and 9 of the sequential algorithm and in conjunction with
Lemma 14 and Theorem 4 we conclude that P; and P, define a greedy optimal schedule.

O

Until now we have omitted any details on how to implement the algorithms on a
specific machine model. The following section shows that it is easy to find work optimal

implementations on the EREW PRAM.

5 PRAM Implementations

The model of computation we consider is the synchronous shared-memory model. It
consists of a number of processors each having its own local memory and sharing a common
global memory. Processors are controlled by a common clock and in every timestep each
of the processors executes one instruction handling a constant number of log n-bit words.
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Usually all of them execute the same program on different data. This data parallelism is
supported by the fact that each processor can check his locally available processor number.
We restrict access to global memory in such a way that no two processors can read or write
the same memory cell at the same timestep. A machine with these properties is called
an exclusive-read, exclusive-write parallel random access machine, or EREW PRAM for
short. For details and variations of this model we refer to [FWT78].

Theorem 6 There are EREW PRAM implementations of algorithms TWOPROCINTREE
and TWOPROCOUTTREE that run in O(logn) time using n/logn processors, where n is
the number of tasks to be scheduled.

Proof: Algorithms TWOPROCINTREE and TWOPROCOUTTREE apply basic parallel
functions a constant number of times. We have to show that all those functions can be
computed within the desired resource bounds. It is obvious that we can construct the
Euler contour path of an intree in constant parallel time on n processors if for each vertex
a pointer to its successor and its left sibling is given. If we dedicate each processor to log n
tasks we can compute the Euler path in O(log n) time on n/logn processors. A technique
similar to the Euler path technique was used by Wyllie [Wyl79] for tree traversals. As a
general technique it was introduced by Tarjan and Vishkin [TV85]. A prefix sum algorithm
for the EREW PRAM running in O(log n) time using n/logn processors was developed
by Ladner and Fischer [LF80]. For optimal list ranking on the EREW PRAM we can
either use the algorithm of Cole and Vishkin [CV88] or the one developed by Anderson
and Miller [AMS8]. Algorithms for parenthesis matching running in O(logn) time using
n/logn processors of an EREW PRAM can be found in [AMWS&9], [TLC89], or [CD91].

O

6 Conclusion and Open Problems

We have analyzed the problem of scheduling n tasks constrained by a tree-like precedence
relation on 2 processors. Two work optimal EREW PRAM algorithms running in O(log n)
time using n/log n processors have been presented, one computing greedy optimal sched-
ules for intrees, the other for outtrees. Compared to the fastest existing parallel algorithm
for intrees [HM87a] the number of operations is reduced by a factor of O(n*logn), in the
case of outtrees [DUWS86] the factor is O(nlogn).

Future research has to show whether the techniques used in this paper can successfully
be applied to constant m > 2. Furthermore it remains an open problem if there is a
parallel algorithm that schedules UET trees with m part of the problem instance running
in O(logn) time with less than O(n*logn) operations.

Another possible line of research is to find efficient implementations of our algo-
rithms on networks such as the hypercube. It is easy to replace the basic parallel
PRAM functions we use by their respective hypercube counterparts and thereby ob-
tain hypercube algorithms. For prefix operations, concentration routing, and parenthe-
sis matching there are hypercube implementations known that require only logarithmic
time [Sch80, NS81, MW92]. Unfortunately our algorithms apply list ranking and per-
mutation routing as well and the fastest known list ranking algorithm requires time
O(log® nloglog log nlog* n) on n hypercube processors [HM93] and the best known deter-
ministic routing algorithm is Sharesort [CP90] which requires time O(log n(log logn)?*). If
the precedence tree is given as a parenthesis word (which is essentially the Euler contour
path) no list ranking is necessary but still tasks must be sorted in LPT order. Thus the
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resulting algorithms run in time O(log n(loglog n)?) on n hypercube processors. It would
be worth investigating whether one can find modifications to our algorithms that result

in faster implementations on the hypercube.
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Appendix

What follows is an implementation of algorithm TWOPROCINTREE written in NESL,
a strongly typed, applicative, data-parallel language. NESL supplies nested parallelism
through the ability to apply any function concurrently over each element of a sequence,
even if the function is itself parallel and the elements of the sequence are themselves
sequences. For details we refer to [BHS194]. In the sequel we assume the reader to be
familiar with basic concepts of NESL. Our implementation is non-optimal for two reasons:

o We use pointer jumping to rank the elements of a list and a standard sorting algo-
rithm to sort tasks in level order. Both need O(nlogn) operations. Work optimal
algorithms for list ranking or parenthesis matching are non-trivial and would have
lengthened the appendix unnecessarily.

o NESL supplies the programmer with a care-free environment where all low-level
details such as allocating data to processors get handled dynamically. This costs an

extra O(logn) overhead factor on the EREW PRAM.

Functions prefix_sum and prefix max are derived from NESLs built-in scan operations.
repermute is the inverse function of the built-in permute operation. level, task, and
tasks handle access to pairs of integers, where a task’s level is the first component and a
task’s number the second. Note that NESL-sequences start with index 0 and #s denotes
the length of a sequence s.

function prefix_sum(s) =
let r = take(rotate(plus_scan(s), -1), #s - 1)
in r ++ [r[#r - 1] + s[#s - 1]1]1;

function prefix_max(s) =
let r = take(rotate(max_scan(s), -1), #s - 1)
in r ++ [max(r[#r - 1]1,sl#s - 11)]1;

function repermute(x, permutation) =
let index = plus_scan(dist(1, #x));
in permute(x, permute(index, permutation));

function level(p) = let (x,y) = p; in x;
function task(p) = let (x,y) = p; in y;
function tasks(s) = let (x,y) = unzip(s); in y;
function last_elt(s) = s[#s-1];
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function jump_pointer(pointer, distance, count) =

let

nc = count - 1;

np = {if x == -1 then x else pointer[x]: x in pointer};

nd = {if x == -1 then y else y + distance[x]: y in distance; x in pointer}
in

if (nc > 0)

then jump_pointer(mnp, nd, nc)

else nd;

function rank_list(pointer) =

let
distance = {if x == -1 then 0 else 1: x in pointer};
count = ceil(log(float (#pointer), 2.0));

in

jump_pointer(pointer, distance, count);

function euler_path(successor, left_sibling) =
let
index = plus_scan(dist(1, #successor));
pred_insert ={(successor[i], i): i in index |
successor[i] >= 0 and left_sibling[i] == -1};
leftmost_predecessor = dist(-1, #successor) <- pred_insert;
sibling_insert = {(left_sibling[i],i): i in index | left_sibling[i] >= 0};
right_sibling = dist(-1, #successor) <- sibling_insert;

up = {if 1p == -1 then 2*i + 1 else 2#lp:
i in index; lp in leftmost_predecessorl;
down = {if rs == -1 then 2*s + 1 else 2#%rs:

rs in right_sibling; s in successor};
in
interleave(up, down);

function levels(euler_permutation) =
let
edge_values = interleave(dist(-1, #euler_permutation/2),
dist (1, #euler_permutation/2));
permuted_edges = prefix_sum(permute(edge_values, euler_permutation));
in
odd_elts(repermute(permuted_edges, euler_permutation));

function backbone(first_backbone_task, euler_permutation) =
let
edge_values = interleave(dist(-1, #euler_permutation/2),
dist (1, #euler_permutation/2));
edge_values = edge_values <- [(first_backbone_task*2 , -2)];
permuted_edges = prefix_sum(permute(edge_values, euler_permutation));
edge_values = repermute(permuted_edges, euler_permutation);
up_edges = odd_elts(edge_values);
down_edges = even_elts(edge_values);
in
{if diff(u,d) == 2 then 1 else 0: u in up_edges; d in down_edgesl};

function move(free_tasks) =

let
(1pt_levels, tasks) = unzip(free_tasks);
index = prefix_sum(dist(1, #free_tasks));

offset = prefix_max({max(idx-1pt,0): idx in index; lpt in lpt_levelsl});
in
zip({idx-off: idx in index; off in offsetl}, tasks);

function merge(backbone_tasks, free_tasks) =
let
index = plus_scan(dist(1, #free_tasks));
end_of_level = {if level(x) /= level(y) then 1 else 0:
x in free_tasks; y in rotate(free_tasks, -1)};
offset = plus_scan(end_of_level);
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newpos = {idx + off: idx in index; off in offset};
expanded = dist((0,0), newpos[#newpos-1]+2) <- zip(newpos, free_tasks);
backbone_pos = plus_scan({if level(x)==0 then 1 else 0: x in expanded});
schedule = {if level(ft) == O then backbone_tasks[pos] else ft:

ft in expanded; pos in backbone_pos};

pl = even_elts(schedule)
++ drop(backbone_tasks,level(last_elt(free_tasks)));
p2 = odd_elts(schedule);
in

(tasks(pl), tasks(p2));

function two_proc_intree(taskid, successor, left_sibling) =

let
index = plus_scan(dist(1, #taskid));
euler_permutation = rank_list(euler_path(successor, left_sibling));
vertex_levels = levels(euler_permutation);
level_order = rank(vertex_levels);
highest_level = last_elt(permute(vertex_levels, level_order));
lpt_levels = {highest_level - level + 1: level in vertex_levels};
lpt_order = {#level_order-1-pos: pos in level_order};
first_backbone_task = permute(index, lpt_order)[0];
bb_flags = backbone(first_backbone_task, euler_permutation);
tasks = permute(zip(lpt_levels, taskid), lpt_order);
bb_flags = permute(bb_flags, lpt_order);
bb_tasks = {x: x in tasks; bb_task in bb_flags | bb_task == 1};
free_tasks = {x: x in tasks; bb_task in bb_flags | bb_task == 0};

in
merge(bb_tasks, move(free_tasks));

Running the functions defined above against the example from Figure 4 yields:

<Nesl> two_proc_intree(

> 1, 2,3, 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20],
>[ 3, 3, 3, 4, 5, 6,12,12,12,13,13,13,15,16,17,18,19,19,19,-11,
>[-1, 0, 1,-1,-1,-1,-1, 6, 7,-1, 9,10,-1,-1,-1,-1,-1,16,17,-11);
Compiling..Writing..Loading..Running..Exiting..Reading. .

it = ([2, 3, 4, 5, 6, 7, 13, 14, 18, 19, 20],

(1, 9, 8, 12, 11, 10, 15, 16, 17]1) : [int], [int]
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