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Optimal Parallel Algorithms for Two ProcessorScheduling with Tree Precedence ConstraintsErnst W. Mayr Hans StadtherrInstitut f�ur InformatikTechnische Universit�at M�unchen80290 M�unchen, Germanyfmayrjstadtherg@informatik.tu-muenchen.deNovember 8, 1995AbstractConsider the problem of �nding a minimum length schedule for n unit executiontime tasks on m processors with tree-like precedence constraints. A sequentialalgorithm can solve this problem in linear time. The fastest known parallel algorithmneeds O(logn) time using n2 processors. For the case m = 2 we present two workoptimal parallel algorithms that produce greedy optimal schedules for intrees andouttrees. Both run in O(logn) time using n= logn processors of an EREW PRAM.Keywords: parallel algorithms, scheduling, tree precedence constraints, optimalwork1 IntroductionThe need to utilize resources economically gives scheduling theory an important rolein computer science. Another reason for the popularity of scheduling is its relevance incomplexity theory. Many if not most scheduling problems are intractable, i.e. they belongto the class of NP-hard problems. The border between intractable scheduling problemsand those for which e�cient algorithms are known is a challenging area for investigations.Consider the problem of �nding a schedule for n equal length tasks constrained by anarbitrary precedence relation such that the total time needed to execute all tasks on midentical processors is minimized. Ullman has shown that this problem is NP-completein general [Ull75]. If we restrict the problem to m = 2 it becomes polynomially solvable[FKN69, CG72, Gab82] and even has an e�cient parallel (i.e., NC) algorithm [HM87b].In this paper we restrict our attention to tree-like precedence constraints. This classof scheduling problems has attracted special interest since the 1960s originating in ex-pression evaluation and assembly line production problems. An early result by Hu [Hu61]shows that unit execution time tasks constrained by a tree precedence relation can beoptimally scheduled for an arbitrary number of processors in polynomial time. Brucker,Garey, and Johnson later showed that the problem can even be solved by a linear timealgorithm [BGJ77]. It is interesting to note that slight generalizations of the tree prece-dence structure, e.g. one outtree combined with one intree, result in intractable problems[May81, DUW86]. 1



We are interested in the parallel complexity of scheduling equal length tasks withtree precedence constraints. Helmbold and Mayr [HM87a] developed two EREW PRAMalgorithms that compute greedy schedules for intrees and outtrees. Both run in O(log n)time using n3 processors. Dolev, Upfal and Warmuth [DUW86] reduced the problemof scheduling outtree precedence constraints to �nding a perfect matching in a convexbipartite graph which can be solved on an EREW PRAM in O(log2 n) time using nprocessors [DS84]. In addition they developed an algorithm running in O(log n) timeusing n2 processors. An open problem is whether the number of required operations canbe lowered. In this paper we show that for the casem = 2 work optimal PRAM algorithmsexist that compute greedy optimal schedules for intrees and outtrees.2 PreliminariesA unit execution time (UET) 2-processor scheduling problem (T;�) consists of a set of ntasks T and a partial order � on the set of tasks. A solution to the problem is a scheduleS : T ! N� mapping tasks to integer timesteps with the following properties:� the precedence constraints are satis�ed, i.e. if t � t0 then S(t) < S(t0) and� no more than 2 tasks are mapped to the same timestep.We assume that schedules always start at timestep 1 (which is the interval [0; 1)). Thelength of a schedule S is then maxt2TfS(t)g. We are interested in schedules that haveminimumlength under all possible solutions to a given scheduling problem. Such schedulesare called optimal.The precedence graph for (T;�) is a directed acyclic graph G = (T;E) with vertex setT and edge set E = f(t; t0)jt � t0g. We call G a reduced precedence graph if no transitiveedges are present, i.e. if t � t0 � t00 implies (t; t00) 62 E. Let depth(G) be the number ofvertices on a longest path in G, let depth(t), t 2 T , be the number of vertices on a longestpath ending at t and let height(t) be the number of vertices on a longest path starting att. De�ne the LPT value of a task t as LPT(t) := depth(G)� height(t) + 1. Tasks havingthe same LPT value are said to be on the same LPT level. Intuitively, LPT(t) is the latestpossible timestep a task t can be scheduled in order to yield an optimal schedule for anunlimited number of processors. The earliest possible timestep a task t can be scheduled,called its EPT value, is obviously depth(t). For a given schedule a task t is said to beavailable at timestep s if all tasks t0 with t0 � t are mapped to timesteps earlier than s.A timestep s is full if two tasks are mapped to s, otherwise s is called partial. A scheduleis greedy if there is only one task available at any partial timestep.In the sequel we will focus our attention on UET 2-processor scheduling problems,where the reduced precedence graph (T;E) is either an intree or an outtree. In the formercase every vertex except one has outdegree 1, and the remaining vertex, called the root,has outdegree 0. In the latter case, every vertex other than the root has indegree 1,and the root has indegree 0. It is well known that a successful strategy for precedencegraphs having tree structure is to schedule tasks with lower LPT values earlier than otherswhenever possible. This strategy is known as the level strategy:De�nition 1 A schedule S : T ! N is a level schedule if it is greedy and there do notexist tasks t and t0 such that LPT(t) > LPT(t0), S(t) < S(t0) and t0 is available at timestepS(t).�N denotes the set f1; :::g of positive natural numbers.2



Theorem 1 Level schedules are optimal for tree precedence constraints.Proof: See [Hu61] for intrees and [Bru82] for outtrees. 2Note that all results apply to forests as well. If the reduced precedence graph isa forest of intrees, we add a new task that succeeds all roots. After �nding a greedyoptimal schedule for the resulting intree we remove the last task and thereby obtain agreedy optimal schedule for the forest. Forests of outtrees are handled accordingly.3 Two Processor Level Schedules for IntreesConsider a UET 2-processor scheduling problem (T;�) where the reduced precedencegraph G = (T;E) is an intree. Select a longest path in G and call tasks on this pathbackbone tasks. All other tasks in T are said to be free. We start with two observationson tasks with equal LPT value and the relationship between free and backbone tasks:Lemma 1 Let t; t0 2 T be on the same LPT level. Then neither t � t0 nor t0 � t.Lemma 2 For any two tasks t; t0 2 T the following holds: if t is a backbone task and t0a free task with LPT(t) � LPT(t0) then neither t � t0 nor t0 � t.Thus we have reason to call non-backbone tasks free. We can pair a free task with abackbone task on a lower LPT level without having to fear that precedence constraintsare violated. Thus we implement the level strategy by pairing each backbone task thathas no free task on its own level with a free task from a higher LPT level. In order toyield a level schedule we have to maintain the LPT order of free tasks that are pairedwith backbone tasks on lower LPT levels.3.1 A Sequential AlgorithmAssume we have determined the LPT value of each task. Initially we arrange tasks fromleft to right sorted by their LPT value. In Figure 1 tasks are depicted as boxes and taskswith equal LPT value are grouped into a single column. We order tasks from left toright and within a single column from top to bottom. We mainly operate on free tasksso we separate them from backbone tasks which we keep in the bottom row. Contiguouscolumns with more than one task in each column are called a block. Imagine all free tasksof a block being concatenated and threaded on a string like pearls as in Figure 1. Pullthe string of each block to the left { starting with the leftmost block { until the �rst taskon each string reaches either the left end or the last free task of the next block to the left.In doing so the number of free tasks in each column is not increased beyond 1. The resultis shown in Figure 2 and again we assume the order of tasks from left to right and withina column from top to bottom including backbone tasks. Note that each backbone task isstill the last on its level. Finally, we assign pairs of tasks from left to right in the resultingorder to consecutive timesteps as long as possible. In Figure 3 the mapping of tasksis indicated by greyscale levels, where two consecutive tasks having the same greyscaleare supposed to be mapped to the same timestep. The main steps of the algorithm arecaptured in the following outline. Let jP j denote the length of a sequence P , P [i] the i-thelement, and P [i; :::; j] the subsequence starting at P [i] up to and including P [j].1. Determine the LPT value of each task.3
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freeFigure 1: Tasks ordered by their LPT value. Free tasks in each block are concatenatedand threaded on a string.
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freeFigure 3: Pairs of tasks from left to right and within a column from top to bottom aremapped to consecutive timesteps until only backbone tasks remain. Each of those is sched-uled one at a time. 4



2. Sort tasks in LPT order. Let J be the sequence of ordered tasks and L be thesequence of their levels.3. Select a backbone in the intree and separate free tasks from backbone tasks. LetJF and JB be the subsequences of J containing the free respectively the backbonetasks. Let LF and LB be the respective subsequences of L.4. For each free task compute its adjusted level:L0F [i] := ( 1 if i = 1;min(LF [i]; L0F [i� 1] + 1) otherwise: (1)5. The highest adjusted level of any free task is h := L0F [jL0F j]. Merge sequences JFand JB[1; :::; h] using the adjusted levels from L0F such that each backbone task isthe last in its level. Let J 0 be the resulting sequence.6. Let P1 be the subsequence of tasks at odd indices in J 0 followed by tasks JB[h +1; :::; jJBj]. Let P2 be the subsequence of tasks at even indices in J 0.In the end P1 and P2 de�ne the mapping of tasks, where tP1 [i] is scheduled at timestep ion processor 1 and tP2[i] is scheduled at timestep i on processor 2. Equation (1) formalizeswhat we called \pulling the strings". Free tasks move to the left as far as possible whilemaintaining their LPT order and without increasing the number of free tasks on a levelbeyond 1. This ensures that, after merging backbone tasks into free tasks at their respec-tive levels, no two free tasks with di�erent LPT values are neighbors. In the followingLemma we describe the properties of our algorithm on which we base subsequent proofs.Lemma 3 Let t1; t2; :::; tn be the sequence of tasks in J 0 followed by JB[h + 1; :::; jJBj].For any tasks ti, tj the following holds:1. If ti and tj are backbone tasks with LPT (ti) < LPT (tj) then i < j.2. If ti and tj are free tasks with LPT (ti) < LPT (tj) then i < j.3. If ti is a free task and tj a backbone task with LPT (ti) � LPT (tj) then i < j.4. If ti and ti+1 are backbone tasks then all tj with i+1 < j � n are backbone tasks aswell.5. If ti is a free task and ti+1 a backbone task with LPT (ti) > LPT (ti+1) then eitheri = 1 or ti�1 is a backbone task.Proof: Obviously properties 1 and 2 are satis�ed, because all tasks are initially sorted inLPT order and the relative order of free tasks and the relative order of backbone tasks isnever changed.In step 5 the �rst h backbone tasks and all free tasks are merged according to themodi�ed levels of free tasks. Since each backbone task is the last in its level we obtainproperty 3 for the �rst h backbone tasks. There are no free tasks on levels greater thanh which means that after J 0 only backbone tasks on higher LPT levels remain. It followsthat property 3 holds for the complete sequence.From equation (1) we know that up to level h there is at least one free task per level.Obviously there is exactly one backbone task per level. It is therefore impossible that two5



backbone tasks are neighbors in J 0. It follows that the �rst two neighboring backbonetasks are J 0[jJ 0j] and JB[h+ 1] which means that property 4 is satis�ed.Let J 0[i] be a free task and J 0[i+1] a backbone task with LPT(J 0[i]) > LPT(J 0[i+1]).Assume i > 1. J 0[i] must have a modi�ed level that equals LPT(J 0[i + 1]). OtherwiseJ 0[i] would not be the right neighbor of J 0[i+1] after merging. Equation (1) implies thatthe modi�ed level of J 0[i] was determined by the second argument to min. Otherwisethe modi�ed level of J 0[i] would still be its LPT value. Being determined by the secondargument to min in equation (1) ensures that the modi�ed level of J 0[i] and LPT(J 0[i+1])is exactly one greater than the modi�ed level of the next free task to the left. Becausethere is a backbone task on every level and because each backbone task is the last in itslevel, there must be a backbone task between the free task to the left of J 0[i] and J 0[i].Obviously J 0[i� 1] is the only candidate for this backbone task. We conclude that all �veproperties are satis�ed. 2Lemma 4 Let t1; t2; :::; tn be as in Lemma 3. For any two tasks ti, tk with 1 � i < k � nthe following holds: if ti is a free task and tk is a backbone task with LPT(ti) > LPT(tk)then ti+1 is a backbone task and either i = 1 or ti�1 is a backbone task as well.Proof: Let tj be the backbone task closest to ti with i < j. We will show that j = i+ 1.Obviously tj�1 is a free task and because free tasks are ordered (property 2) it followsthat LPT(ti) � LPT(tj�1). By property 1 we know that LPT(tj) < LPT(tk). ThereforeLPT(tj�1) > LPT(tj). Property 5 shows that either tj�2 is a backbone task or j � 1 = 1.Because there is no backbone task between ti and tj, we conclude that either i = 1 or ti�1must be a backbone task and therefore j = i+ 1 and ti+1 is a backbone task. 2Lemma 5 Let t1; t2; :::; tn be as in Lemma 3. For tasks ti and ti+1 with 1 � i < n thefollowing holds: if ti or ti+1 is a free task then neither ti � ti+1 nor ti+1 � ti.Proof: case 1: ti and ti+1 are both free tasks. Assume LPT(ti) 6= LPT(ti+1). That meansLPT(ti) < LPT(ti+1) because free tasks are ordered (property 2). Let tk be the backbonetask on ti's LPT level. Property 3 implies that i < k and therefore i+ 1 < k. ApplyingLemma 4 yields that ti must be a backbone task which contradicts the case assumption.We conclude that LPT(ti) = LPT(ti+1) and by Lemma 1 neither ti � ti+1 nor ti+1 � ti.case 2: ti is a free task and ti+1 is a backbone task. Assume LPT(ti) < LPT(ti+1).Let tj be the backbone task on ti's LPT level. From property 3 we know that j > i.Because backbone tasks are ordered (property 1) we have j < i + 1, a contradiction toj > i. Our assumption must have been wrong, therefore LPT(ti) � LPT(ti+1) and byLemma 2 neither ti � ti+1 nor ti+1 � ti.case 3: ti is a backbone task and ti+1 is a free task. Property 3 shows that LPT(ti) <LPT(ti+1). Applying Lemma 2 we get that neither ti � ti+1 nor ti+1 � ti. 2It is now easy to see that the last step in our algorithm computes a proper schedule.Because neighboring tasks in J 0 are never constrained by precedence we can map thempairwise from left to right to increasing timesteps. All tasks in JB[h + 1; :::; jJBj] arebackbone tasks so the best we can do is to assign each of them to its own timestep.Lemma 6 Let t1; t2; :::; tn be as in Lemma 3, and let f : T ! N be such that f(t) = i ift = ti. The mapping of tasks de�ned by P1 and P2 in step 6 is equivalent to the followingmapping S : T ! N: S(t) := 8><>: lf(t)2 m if f(t) � jJ 0j;l jJ 0 j2 m+ f(t)� jJ 0j otherwise:6



Proof: Left to the reader. 2Theorem 2 S is a 2-processor level schedule, and hence optimal.Proof: Let t1; t2; :::; tn be as in Lemma 3. We �rst show that S is a 2-processor schedule.Any two tasks ti and tj with ji�jj � 2 are assigned to di�erent timesteps by S. Thereforeno more than 2 tasks are assigned to the same timestep. Lemma 5 implies that twoconsecutive tasks ti; ti+1 are either two backbone tasks or neither ti � ti+1 nor ti+1 � ti.The latter ensures that no precedence constraints are violated by S for tasks ti; ti+1 withi < jJ 0j. If ti and ti+1 are both backbone tasks then i � jJ 0j and therefore both tasks areassigned to consecutive timesteps which again makes sure that the precedence constraintsare satis�ed.Next we show that S is a level schedule. Timesteps 1 to bjJ 0j=2c are full and timestepsbjJ 0j=2c+1 to length(S) are partial. All tasks ti with i � jJ 0j are backbone tasks becauseof property 4 and the fact that the last task is always on the backbone by property 3. Sothere is no free task available at any partial timestep. It follows that S is greedy.Assume that there exist tasks ti and tj with S(ti) < S(tj), LPT(ti) > LPT(tj) andtj is available at timestep S(ti). Backbone tasks are ordered (property 1), free tasks areordered (property 2) and each backbone task t is behind any other task that has an LPTvalue less or equal to t's LPT value (property 3). It follows that ti must be a free taskand tj a backbone task. Lemma 4 implies that ti+1 is a backbone task and either i = 1or ti�1 is a backbone task as well.case 1: i = 1. Then ti is the �rst task to be scheduled and ti+1 is scheduled at thesame timestep as ti. Obviously tj can not be available at this timestep because ti+1 � tjas both tasks are on the backbone and backbone tasks are ordered.case 2: ti�1 and ti+1 are backbone tasks. In this case ti is scheduled at the sametimestep as either ti�1 or ti+1. Again tj is not available at timestep S(ti) because ti�1 �ti+1 � tj.Both cases contradict our assumption and we conclude that no such tasks ti and tjexist, which proves that S is a level schedule. 23.2 The Parallel AlgorithmIn the following we give details on a parallel version of the algorithm using pre�x opera-tions, list ranking, and parenthesis matching as basic building blocks. When we visualizeintree precedence constraints, the leafs are towards the top and the root is at the bottomof the tree. We assume the precedence tree being represented as a sequence of tasks, eachtask being associated with a pointer to its successor and its left sibling as is shown inFigure 4. An alternative representation is a sequence of edges where edges that point tothe same task are grouped together. It is easy to convert the latter representation intothe former and vice versa.Algorithm TwoProcIntree(1) Compute the Euler contour path of the precedence tree: We use the Eulertour technique introduced by Tarjan and Vishkin [TV85]. Every tree edge is replacedby two anti-parallel arcs. We build a list of these arcs such that the resulting path runsalong the contour of the tree, i.e. the path is an Eulerian tour of the tree. We break this7
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d(t   )16u(t   )14Figure 5: Euler contour path.tour at the root task and obtain a path that corresponds to the order of advancing andretreating along edges during an ordered depth �rst traversal of the tree.More formally the Euler tour technique works as follows. For each task we need apointer to its leftmost predecessor, its successor, and its right sibling. We can easilyobtain this data from the given input. For each task t let d(t) and u(t) be pointers(initially set to nil) representing two anti-parallel arcs that run downy respectively upalong the tree edge leaving t. For technical reasons we assume that the root task r hasd(r) and u(r) as well, although no tree edge leaves r. For each task t with no leftmostpredecessor (t is then a leaf) set u(t) to the address of d(t). Otherwise let t0 be its leftmostpredecessor and set u(t) to the address of u(t0). For each task t with no right sibling lett0 be its successor and set d(t) to the address of d(t0). Otherwise let t0 be its right siblingand set d(t) to the address of u(t0) if t0 exists.Obviously the resulting path starts with u(r) and ends with d(r) = nil. Figure 5 showsthe Euler contour path of the tree in Figure 4.(2) Compute the LPT value of each task: Associate a value of 1 with each upgoingarc and �1 with each downgoing arc in the Euler contour path. Perform list rankingyNote that \down" here means towards the root of the intree (which is at the bottom) and \up" meanstowards the leaves. 8



on the Euler contour path while permuting the associated arc values accordingly. Applypre�x sum to the resulting array of arc values. The resulting value of each upgoing arcu(t) is the height of t. Compute the depth of the precedence tree G by applying pre�xmaximum to the task heights and compute LPT(t) = depth(G) � height(t) + 1.(3) Sort tasks in LPT order: Sorting the vertices of a tree in level order usingparenthesis matching and list ranking has been described by Chen and Das in [CD92].Applied to our context, it works as follows. Associate an opening parenthesis with eachdowngoing arc and a closing parenthesis with each upgoing arc. Perform list ranking onthe Euler path and permute parentheses accordingly. The resulting word is an incompleteparenthesis word. Prepend depth(G) opening parentheses (imagine the �rst of these onlevel 1, the second on level 2, etc.) and append depth(G) closing parentheses (visualizethe �rst of these on level depth(G), the second on level depth(G) � 1, etc.) to form acomplete parenthesis word. Apply parenthesis matching to this word. For each openingparenthesis we now have a pointer to its matching closing parenthesis. To build a listof all parentheses we associate a pointer with each closing parenthesis as follows. Withthe i-th of the depth(G) appended closing parentheses (i = 2; :::;depth(G)) we associatea pointer to the (depth(G) + 2 � i)-th prepended opening parenthesis. The �rst of theappended parentheses has a nil pointer which indicates the end of the list. Every otherclosing parenthesis b belongs to an upgoing arc u(t). We associate with b a pointer to theopening parenthesis belonging to d(t). We now have a list of all parentheses, starting withthe �rst prepended parenthesis and ending with the �rst appended parenthesis. Apply listranking to this list of parentheses. Build the subsequence of all closing parentheses thatbelong to tasks using pre�x sum. Replacing each closing parenthesis in this subsequencewith its corresponding task yields the sequence of tasks in reverse breadth �rst orderwhich is LPT order. Let J be the ordered sequence of tasks and L be the sequence oftheir LPT values.(4) Select a backbone and separate free tasks from backbone tasks: Associatea value of 1 with each upgoing arc and �1 with each downgoing arc with the exceptionof the downgoing arc of J [1]. Associate �2 with d(J [1]). Task J [1] is the �rst task of alongest path in G. Perform list ranking on the Euler contour path while permuting theassociated arc values accordingly. Apply pre�x sum to the resulting array of arc values.Mark tasks whose up- and downgoing arcs carry values which di�er by 2. Arc values oftasks not on the selected longest path di�er by 1. Divide J into subsequences JF and JBof free respectively backbone tasks using pre�x sum. Divide L into subsequences LF andLB.(5) Adjust levels of free tasks: For each task JF [i] compute max(i � LF [i]; 0) andlet � be the pre�x maximum of the resulting sequence. Then compute L0F [i] as i��[i].(6) Merge backbone tasks and free tasks: Create a sequence B of f0; 1g withB[1] = 0 and B[i] = 1 i� L0F [i] 6= L0F [i� 1], 1 < i � jL0F j. Thus a 1 in B indicates a levelboundary in L0F . We want to expand JF such that whenever there is a level boundary weinsert an empty position allocating space for the backbone task at this level. Compute asequence of new positions for elements in JF by applying pre�x sum to B and adding i toan element at position i. Let P be the resulting sequence. The highest adjusted level ofany free task is h := L0F [jL0F j]. Initialize a sequence J 0 with jJF j+h zeroes and store eachJF [i] into J 0[P [i]]. Create a sequence of f0; 1g where the k-th element (k = 1; :::; jJ 0j) is9



1 i� J 0[k] = 0 and let C be the pre�x sum of this sequence. Store JB[C[k]] into J 0[k] i�J 0[k] is 0. By this we merge backbone tasks JB[1; :::; h] into J 0 such that tasks are sortedby level and each backbone task is the last in its level.(7) Map tasks to processors: Let P1 be the sequence of tasks at odd positions in J 0followed by tasks JB[h+ 1; :::; jJBj]. Let P2 be the sequence of tasks at even positions inJ 0. As before P1 and P2 de�ne the mapping of tasks to timesteps. Figures 6, 7 and 8 showthe intermediate results of algorithm TwoProcIntree when applied to the input fromFigure 4. Figure 9 depicts the output sequences P1 and P2.
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Theorem 3 Let (T;�) be a UET 2-processor scheduling problem where the reduced prece-dence graph G = (T;E) is an intree. Then algorithm TwoProcIntree computes a levelschedule for (T;�).Proof: Steps (1) to (4) should be clear. For details on the Euler tour technique we referto [TV85]. Sorting the vertices of a tree in breadth �rst order using parenthesis matchingand list ranking has been described in [CD92]. From Lemma 7 we know that step (5)in algorithm TwoProcIntree is equivalent to step 4 in the sequential algorithm. It isfurthermore obvious that step (6) merges as proposed and step (7) is equivalent to step 6in the sequential algorithm. By Lemma 6 and Theorem 2 we obtain the desired result. 24 Greedy Two Processor Schedules for OuttreesLet (T;�) now be a UET 2-processor scheduling problem where the reduced precedencegraph G = (T;E) is an outtree. Note that applying algorithm TwoProcIntree toa reversed outtree and reversing the resulting schedule would yield an optimal but notnecessarily greedy schedule for the outtree.Again we select a longest path in G and call tasks on this path backbone tasks. Allother tasks in T are called free. We do not produce level schedules this time. Instead weinitially sort the outtree tasks by their EPT value which is equal to depth(G) + 1 minusthe LPT value in the corresponding intree that results from reversing the edges. This waywe can reuse part of the intree algorithm when computing greedy optimal schedules forouttrees. The following two observations are equivalent to Lemmas 1 and 2 for the caseof outtrees.Lemma 8 Let t; t0 2 T be on the same EPT level. Then neither t � t0 nor t0 � t.Lemma 9 For any two tasks t; t0 2 T the following holds: if t is a backbone task and t0a free task with EPT(t) � EPT(t0) then neither t � t0 nor t0 � t.Thus pairing a free task with a backbone task t on a higher EPT level doesn't violatethe precedence constraints. We have to �nd matches for as many backbone tasks aspossible giving preference to backbone tasks on lower EPT levels in order to be greedy.We start with an outline of a sequential version of our algorithm.4.1 A Sequential AlgorithmAssume we have sorted tasks by their EPT values. Figure 10 gives an example wheretasks with equal EPT value are grouped into the same column. We order tasks from leftto right and within a column from bottom to top. Each backbone task must be the �rston its level so we keep them in the bottom row. Figure 10 shows how the free tasks ofeach block are concatenated and threaded on a string like pearls. This time we pull thestrings to the right. But to compute a greedy schedule, we must not pull a string furtherright if there is no free task to the left of the string that we can move up. This ensuresthat every EPT level originally occupied by free tasks has at least one free task in theend. In terms of our strings: start pulling with the leftmost string keeping its leftmosttask �xed. Pull to the right until either the string is fully stretched or the rightmost taskreaches the leftmost task of the next string (or the highest EPT level). In the formercase repeat with the next string to the right. In the latter case concatenate the head of11



the current string with the tail of the next string to the right and proceed by pulling theresulting string. Figure 11 shows the result of pulling strings in the described way. Theorder of tasks is from left to right and within a single column from bottom to top includingbackbone tasks. In the next step we insert idle tasks between every two backbone tasksthat are adjacent and �nally we map tasks at odd positions to processor 1 and tasks ateven positions to processor 2 (Figure 12). Let us state the main steps of the algorithmmore formally in the following.
EPT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

backbone

freeFigure 10: Tasks ordered by their EPT value. Free tasks in each block are concatenatedand threaded on a string.
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backbone

freeFigure 11: After pulling strings to the right. We have to ensure that the number of freetasks in each level is not decreased to 0 if it was initially > 0.1. Determine the EPT value of each task.2. Sort tasks in EPT order. Let J be the sequence of ordered tasks and L be thesequence of their EPT values.3. Select a backbone in the outtree and separate free tasks from backbone tasks. LetJF and JB be the subsequences of J containing the free respectively the backbonetasks. Let LF and LB be the respective subsequences of L.12



backbone

free

idle tasksFigure 12: After inserting idle tasks between adjacent backbone tasks, pairs of tasks fromleft to right and within a column from bottom to top are mapped to consecutive timesteps.4. For each free task compute its minimum level such that there is no more than onefree task per level:L1F [i] := ( LF [i] if i = 1;max(LF [i]; L1F [i� 1] + 1) otherwise: (2)5. For each free task compute its minimum level such that there is at least one freetask on each higher EPT level:L2F [i] := ( depth(G) if i = jLF j;max(LF [i]; L2F [i+ 1]� 1) otherwise: (3)6. Let j be the smallest index such that L1F [j] = L2F [j] or j = jLF j if no such indexexists. For each free task compute its adjusted level:L0F [i] := ( L1F [i] if i � j;L2F [i] otherwise: (4)7. Merge sequences JF and JB using the adjusted levels from L0F such that each back-bone task is the �rst in its level. Let J 0 be the resulting sequence.8. Insert an idle task between every two adjacent backbone tasks in J 0. Let J 00 be theresulting sequence.9. Let P1 be the subsequence of tasks at odd indices in J 00 and P2 be the subsequenceof tasks at even indices.As before, P1 and P2 de�ne the mapping of tasks to timesteps. P2 may contain idletasks where P2[i] = idle means that processor 2 stays idle at timestep i. Note that thelength of P1 may di�er from that of P2 by 1. In this case the missing last task is supposedto be an idle task.Lemma 10 Let t1; t2; :::; tn be the sequence of tasks in J 0. For any tasks ti, tj the followingholds:1. If ti and tj are backbone tasks with EPT (ti) < EPT (tj) then i < j.2. If ti and tj are free tasks with EPT (ti) < EPT (tj) then i < j.13



3. If ti is a backbone task and tj a free task with EPT (ti) � EPT (tj) then i < j.4. If ti and ti+1 are backbone tasks then there is no j < i such that tj and tj+1 are freetasks.5. If ti and ti+1 are backbone tasks and ti+2 is a free task then EPT (ti+1) = EPT (ti+2).6. If ti and ti+1 are free tasks then EPT (ti) = EPT (ti+1).Proof: Tasks are initially sorted by EPT value and the order of free tasks and the orderof backbone tasks is left unchanged throughout the algorithm. It follows that properties 1and 2 are satis�ed. The modi�ed level of a free task is not less than its original EPT valueand because step 7 merges each backbone task earlier than all free tasks with a highermodi�ed level, property 3 holds.Let L0F [i] = L0F [i+ 1] for some 1 � i < n. It follows from equations (2), (3) and (4)that i � j, where j is chosen as in equation (4), because in L1F no two positions haveequal value. All levels at higher positions in L0F are therefore determined by L2F whichmeans that there is at least one free task per level � L0F [i]. It follows that after mergingJF and JB in step 7 there are no two adjacent backbone tasks in J 0 behind JF [i] but JF [i]and JF [i+ 1] are adjacent in J 0. Thus property 4 holds.Let J 0[i] and J 0[i+ 1] be backbone tasks and J 0[i+ 2] = JF [k] be free. It follows thateither k = 1 or L0F [k] � L0F [k � 1] > 1. Otherwise JF [k � 1] would have been mergedbetween J 0[i] and J 0[i+1]. In both cases the modi�ed level of JF [k] equals L1F [k] becauseby equation (3) the levels L2F don't di�er for any adjacent positions by more than 1. Theonly way in equation (2) that L1F [k]�L1F [k� 1] > 1 is that L1F [k] = LF [k] = EPT(JF [k]).In other words the adjusted level of J 0[i+ 2] is still its original EPT value and thereforeEPT(J 0[i+ 2]) = EPT(J 0[i+ 1]) which means that property 5 holds.Finally property 6 is satis�ed because if two free tasks are adjacent in J 0 they musthave the same adjusted level. This is only possible if their level is determined by L2F andif both still have their original levels which means that both are on the same EPT level.2Lemma 11 Let t1; t2; :::; tn be as in Lemma 10. For tasks ti and ti+1 with 1 � i < n thefollowing holds: if ti or ti+1 is a free task then neither ti � ti+1 nor ti+1 � ti.Proof: case 1: ti and ti+1 are both free tasks. The desired result follows from property 6and Lemma 8.case 2: ti is a free task and ti+1 is a backbone task. Property 3 implies that EPT(ti)< EPT(ti+1) and by applying Lemma 9 we obtain the desired result.case 3: ti is a backbone task and ti+1 is a free task. Assume EPT(ti) < EPT(ti+1). Lettj be the backbone task on ti+1's EPT level. Property 3 implies that j < i+ 1. Becausebackbone tasks are ordered (property 1) we have j > i, a contradiction to j < i + 1.Our assumption must have been wrong, therefore EPT(ti) � EPT(ti+1) and by Lemma 9neither ti � ti+1 nor ti+1 � ti. 2Lemma 12 Let t1; t2; :::; tn be as in Lemma 10. For tasks ti and ti+1 with 1 � i < n thefollowing holds: if ti and ti+1 are backbone tasks then ti � tj for all tasks tj with j > i.Proof: Obviously the Lemma holds for all backbone tasks tj with j > i. We have toshow that it also holds for free tasks tj, j > i+ 1. Property 5 in Lemma 10 ensures that14



either there are no free tasks at all behind ti+1 or there is a possibly empty sequence ofadjacent backbone tasks following ti ending with backbone tasks tk, tk+1, k � i and freetask tk+2 with EPT(tk+1) = EPT(tk+2). No free task t with EPT(t) = EPT(tk) exists,otherwise properties 2 and 3 would ensure that t would fall between tk and tk+2. Becauseany free task tj, j > k + 1 has an EPT value greater or equal EPT(tk+1) and there is nofree task on tk's EPT level, it follows that tk � tj. Furthermore either k = i or ti � tk,which proves the Lemma. 2De�nition 2 Let t1; t2; :::; tn be as in Lemma 10. The idle task indicator I : f1; :::; ng !f0; 1g is de�ned as follows:I(i) := ( 1 if i > 1 and ti�1; ti are backbone tasks;0 otherwise:Lemma 13 Let t1; t2; :::; tn be as in Lemma 10. If I(i) = 1 then i� 1+Pi�1j=1 I(j) is odd.Proof: By induction over i. The �rst task t1 is a backbone task (the root of G). Byproperty 3 the second task, if any, is a backbone task as well and therefore I(1) = 0 andI(2) = 1. Thus the Lemma is true for i = 1 and i = 2. Assume the Lemma is trueup to some i � 1. If I(i) = 1 then ti�1 and ti are backbone tasks by De�nition 2. Letk < i be the greatest index such that I(k) = 1. The induction hypothesis implies thatk � 1 +Pk�1j=1 I(j) is odd. From tk up to ti�1 are no adjacent free tasks (Property 4 inLemma 10) and no adjacent backbone tasks (ensured by the choice of k). It follows thatthe number of tasks between tk and ti�1 is odd and therefore i� k is odd. We havei� 1 + i�1Xj=1 I(j) = i� 1 + kXj=1 I(j) = k � 1 + k�1Xj=1 I(j)| {z }odd + I(k)| {z }=1 + i� k| {z }oddwhich results in an odd value and makes the Lemma true for i. We conclude that theLemma holds for all 1 � i � n. 2Lemma 14 Let t1; t2; :::; tn be as in Lemma 10 and let f : T ! N be such that f(t) = i ift = ti. The mapping of tasks de�ned by P1 and P2 in step 9 is equivalent to the followingmapping S : T ! N: S(t) := 2666f(t) +Pf(t)j=1 I(j)2 3777Proof: Left to the reader. 2Theorem 4 The mapping S from Lemma 14 is a greedy optimal 2-processor schedule.Proof: Let t1; t2; :::; tn be as in Lemma 10. We �rst show that S is a 2-processor schedule.Obviously no more than 2 tasks are assigned to the same timestep. Assume there existtwo tasks ti, ti+1 that are constrained by precedence and assigned to the same timestep.Lemma 11 implies that both tasks must be on the backbone. Because S(ti) = S(ti+1) itfollows from Lemma 14 that Pij=1 I(j) = Pi+1j=1 I(j) and therefore I(i+ 1) = 0. This andDe�nition 2 imply that either ti or ti+1 is a free task, in contradiction to Lemma 11 andour assumption. It follows that S is a 2-processor schedule.15



Next we show that S is greedy. Let S(ti) be a partial timestep. Obviously only onetask is available at S(ti) if i = 1 or i = n so we only have to consider the case 1 < i < n.We will prove by contradiction that ti and ti+1 are backbone tasks. Assume ti is free. Itfollows from De�nition 2 that I(i) = 0 and I(i+ 1) = 0. If we write I for Pi�1j=1 I(j) thenS(ti�1) = �i� 1 + I2 � ; S(ti) = �i+ I2 � ; S(ti+1) = �i+ 1 + I2 �and therefore either S(ti�1) = S(ti) or S(ti) = S(ti+1). In both cases S(ti) can not bea partial timestep. Our assumption was wrong and ti is a backbone task. Assume nextthat ti+1 is free. It follows from De�nition 2 that I(i+ 1) = 0. We obtainS(ti) = &i+ I + I(i)2 ' ; S(ti+1) = &i+ 1 + I + I(i)2 'and because S(ti) 6= S(ti+1) we get that i+ I + I(i) must be even. On the other hand wehave S(ti�1) 6= S(ti) from which follows that I(i) = 1 and therefore i � 1 +Pi�1j=1 I(j) isodd by Lemma 13. This contradicts i+ I + I(i) to be even, becausei� 1 + i�1Xj=1 I(j)| {z }odd = i� 1 + I = i+ I + I(i)| {z }odd �2:This proves that ti and ti+1 are both backbone tasks. Together with Lemma 12 it followsthat ti � tj for all tasks tj with j > i and therefore no other task than ti is available attimestep S(ti) which settles that S is greedy.We will now show that S is optimal. Let S0 be an optimal 2-processor schedule for(T;�). Let 1 � i < n be the largest index such that ti and ti+1 are backbone tasks. Suchan index always exists if n > 1, because t1 and t2 are backbone tasks. By property 4 thereare no adjacent free tasks tk, tk+1 with k < i and because S is greedy, ti is scheduled atthe earliest possible timestep, i.e. S(ti) = EPT(ti). From Lemma 12 we know that thereis no task tj with j > i and ti 6� tj. In other words ti can not be scheduled earlier inS0 than S(ti) and all tasks tj, j > i have to be scheduled after S(ti) in S0. Because Sschedules tasks ti+1; :::; tn in d(n � i)=2e timesteps and S0 can not do better than this, itfollows that S 0 and S are of equal length. 24.2 The Parallel AlgorithmWe assume the precedence outtree being given as a sequence of edges (i; j) where each(i; j) stands for ti � tj. Edges starting at the same task are grouped together.Algorithm TwoProcOuttree(1) Reverse precedence tree: For each edge (i; j) associate with tj a successor pointerto ti. Let (k; l) be the edge to the left of (i; j) in the input sequence. Associate with tja left-sibling pointer to tl if i = k or nil if i 6= k. The result is the representation of anintree with each task having a pointer to its successor and to its left sibling.(2) Compute the Euler contour path of the precedence tree: Apply step (1) ofalgorithm TwoProcIntree to the reversed precedence tree.16



(3) Compute the EPT value of each task: Compute the LPT value of each task inthe reversed precedence tree and let EPT(t) be depth(G) + 1 � LPT(t). See step (2) ofalgorithm TwoProcIntree.(4) Sort tasks in EPT order: Sort tasks according to their LPT value in the reversedprecedence tree and reverse the resulting order. See step (3) of algorithm TwoProcIn-tree.(5) Select a backbone and separate free tasks from backbone tasks: Applystep (4) of algorithm TwoProcIntree to the reversed input tree. Let JF and JB bethe sequences of backbone and free tasks and LF , LB be the sequences of their respectiveEPT value.(6) Adjust levels of free tasks: For each index in LF compute LF [i] � i and let�1 be the pre�x maximum of the resulting sequence. Compute L1F [i] as �1[i] + i. LetX be the integer sequence depth(G) + 1 � jLF j;depth(G) + 2 � jLF j; :::;depth(G). Foreach index in LF compute max(LF [i]�X[i]; 0) and let �2 be the su�x maximum of theresulting sequence. Compute L2F [i] as �2[i] + X[i]. Compute the smallest index j suchthat L1F [j] = L2F [j], with j = jLF j if no such index exists, as follows. Create a sequence oflength jLF j with value i at position i i� L1F [i] = L2F [i] and jLF j in all other positions. LetR be the pre�x minimum of this sequence and set j := R[jLF j]. Let L0F be the sequenceL1F [1; :::; j] followed by L2F [j + 1; :::; jLF j].(7) Merge backbone tasks and free tasks: Create a sequence B of length jL0F j withB[1] = L0F [1] and B[i] = L0F [i]�L0F [i� 1] for 1 < i � jL0F j. Thus B indicates level jumpsin L0F . Apply pre�x sum to B and add i to position i. Let P be the resulting sequence.Initialize a sequence J 0 with n zeroes and store each JF [i] into J 0[P [i]]. Create a sequenceA of f0; 1g where the k-th element (k = 1; :::; n) is 1 i� J 0[k] = 0 and let C be the pre�xsum of A. Store JB[C[k]] into J 0[k] i� J 0[k] is 0. By this we merge backbone tasks intoJ 0 such that tasks are ordered by level and each backbone task is the �rst in its level.(8) Map tasks to processors: Let A be from the previous step. Create the idle taskindicator I with I[1] = 0 and I[i] = 1 i� A[i] = A[i� 1] = 1 and I[i] = 0 otherwise for1 < i � n. Apply pre�x sum to I and add i to position i. Let D be the resulting sequence.Initialize a sequence J 00 with D[n] zeroes and store J 0[k] into J 00[D[k]], 1 � k � n. Let P1be the subsequence of tasks at odd positions in J 00 and P2 be the subsequence of tasks ateven positions in J 00.Again P1 and P2 de�ne the mapping of tasks to processors. If P2[i] = 0 then processor2 must stay idle at timestep i. In the following we show that TwoProcOuttreecomputes greedy optimal schedules.Lemma 15 The sequence L0F computed in step (6) of algorithm TwoProcOuttreesatis�es equations (2), (3), and (4).Proof: We �rst take a look at the computation of L1F in step (6). For i = 1 we haveL1F [1] = �1[1] + 1 = LF [1]. For i > 1 we getL1F [i] = i+�1[i] 17



= i+maxij=1fLF [j]� jg= i+max(LF [i]� i;maxi�1j=1fLF [j]� jg)= i+max(LF [i]� i; L1F [i� 1] + 1 � i)= max(LF [i]; L1F [i� 1] + 1);which is equivalent to equation (2). Next we analyze L2F in step (6). For i = jLF j we haveL2F [jLF j] = �2[jLF j] +X[jLF j]= max(LF [jLF j]�X[jLF j]; 0) +X[jLF j]= X[jLF j]= depth(G);because LF [jLF j] � X[jLF j] = depth(G). For i < jLF j we getL2F [i] = �2[i] +X[i]= maxjLF jj=i fmax(LF [j]�X[j]; 0)g+X[i]= max(max(LF [i]�X[i]; 0);maxjLF jj=i+1fmax(LF [j]�X[j]; 0)g) +X[i]= max(max(LF [i]�X[i]; 0); L2F [i+ 1]� 1 �X[i]) +X[i]= maxfLF [i];X[i]; L2F [i+ 1]� 1g= max(LF [i]; L2F [i+ 1]� 1);because L2F [i] � X[i] (from equation (3) and the de�nition of X) which implies L2F [i+1]�1 � X[i+1]�1 = X[i]. It follows that L2F computed in step (6) satis�es equation (3). It isfurthermore obvious that step (6) computes L0F from L1F and L2F according to equation (4).2Theorem 5 Let (T;�) be a UET 2-processor scheduling problem where the reduced prece-dence graph G = (T;E) is an outtree. Then algorithm TwoProcOuttree computes agreedy optimal schedule for (T;�).Proof: Steps (1) to (5) should be clear. Lemma 15 implies that step (6) computes L0Faccording to equations (2), (3), and (4). The reader may easily verify that step (7) mergesbackbone and free tasks such that each backbone task is the �rst on its level and thatJ 0 is therefore computed as in the sequential algorithm. It is furthermore obvious thatstep (8) is equivalent to steps 8 and 9 of the sequential algorithm and in conjunction withLemma 14 and Theorem 4 we conclude that P1 and P2 de�ne a greedy optimal schedule.2Until now we have omitted any details on how to implement the algorithms on aspeci�c machine model. The following section shows that it is easy to �nd work optimalimplementations on the EREW PRAM.5 PRAM ImplementationsThe model of computation we consider is the synchronous shared-memory model. Itconsists of a number of processors each having its own local memory and sharing a commonglobal memory. Processors are controlled by a common clock and in every timestep eachof the processors executes one instruction handling a constant number of log n-bit words.18



Usually all of them execute the same program on di�erent data. This data parallelism issupported by the fact that each processor can check his locally available processor number.We restrict access to global memory in such a way that no two processors can read or writethe same memory cell at the same timestep. A machine with these properties is calledan exclusive-read, exclusive-write parallel random access machine, or EREW PRAM forshort. For details and variations of this model we refer to [FW78].Theorem 6 There are EREW PRAM implementations of algorithms TwoProcIntreeand TwoProcOuttree that run in O(log n) time using n= log n processors, where n isthe number of tasks to be scheduled.Proof: Algorithms TwoProcIntree and TwoProcOuttree apply basic parallelfunctions a constant number of times. We have to show that all those functions can becomputed within the desired resource bounds. It is obvious that we can construct theEuler contour path of an intree in constant parallel time on n processors if for each vertexa pointer to its successor and its left sibling is given. If we dedicate each processor to log ntasks we can compute the Euler path in O(log n) time on n= log n processors. A techniquesimilar to the Euler path technique was used by Wyllie [Wyl79] for tree traversals. As ageneral technique it was introduced by Tarjan and Vishkin [TV85]. A pre�x sum algorithmfor the EREW PRAM running in O(log n) time using n= log n processors was developedby Ladner and Fischer [LF80]. For optimal list ranking on the EREW PRAM we caneither use the algorithm of Cole and Vishkin [CV88] or the one developed by Andersonand Miller [AM88]. Algorithms for parenthesis matching running in O(log n) time usingn= log n processors of an EREW PRAM can be found in [AMW89], [TLC89], or [CD91].26 Conclusion and Open ProblemsWe have analyzed the problem of scheduling n tasks constrained by a tree-like precedencerelation on 2 processors. Two work optimal EREW PRAM algorithms running in O(log n)time using n= log n processors have been presented, one computing greedy optimal sched-ules for intrees, the other for outtrees. Compared to the fastest existing parallel algorithmfor intrees [HM87a] the number of operations is reduced by a factor of O(n2 log n), in thecase of outtrees [DUW86] the factor is O(n log n).Future research has to show whether the techniques used in this paper can successfullybe applied to constant m > 2. Furthermore it remains an open problem if there is aparallel algorithm that schedules UET trees with m part of the problem instance runningin O(log n) time with less than O(n2 log n) operations.Another possible line of research is to �nd e�cient implementations of our algo-rithms on networks such as the hypercube. It is easy to replace the basic parallelPRAM functions we use by their respective hypercube counterparts and thereby ob-tain hypercube algorithms. For pre�x operations, concentration routing, and parenthe-sis matching there are hypercube implementations known that require only logarithmictime [Sch80, NS81, MW92]. Unfortunately our algorithms apply list ranking and per-mutation routing as well and the fastest known list ranking algorithm requires timeO(log2 n log log log n log� n) on n hypercube processors [HM93] and the best known deter-ministic routing algorithm is Sharesort [CP90] which requires timeO(log n(log log n)2). Ifthe precedence tree is given as a parenthesis word (which is essentially the Euler contourpath) no list ranking is necessary but still tasks must be sorted in LPT order. Thus the19
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[TLC89] W. W. Tsang, T. W. Lam, and F. Y. L. Chin. An optimal EREW parallelalgorithm for parenthesis matching. In Fred Ris and Peter M. Kogge, editors,Proceedings of the 1989 International Conference on Parallel Processing, Vol. 3(Penn State University, August 1989), pages 185{192, UniversityPark-London,1989. Pennsylvania State University Press.[TV85] R. E. Tarjan and U. Vishkin. An e�cient parallel biconnectivity algorithm.SIAM J. Comput., 14(4):862{874, November 1985.[Ull75] J. D. Ullman. NP-complete scheduling problems. J. Comput. Syst. Sci.,10(3):384{393, 1975.[Wyl79] J. C. Wyllie. The Complexity of Parallel Computations. PhD thesis, ComputerScience Department, Cornell University, Ithaca, NY, 1979.AppendixWhat follows is an implementation of algorithm TwoProcIntree written in Nesl,a strongly typed, applicative, data-parallel language. Nesl supplies nested parallelismthrough the ability to apply any function concurrently over each element of a sequence,even if the function is itself parallel and the elements of the sequence are themselvessequences. For details we refer to [BHS+94]. In the sequel we assume the reader to befamiliar with basic concepts of Nesl. Our implementation is non-optimal for two reasons:� We use pointer jumping to rank the elements of a list and a standard sorting algo-rithm to sort tasks in level order. Both need O(n log n) operations. Work optimalalgorithms for list ranking or parenthesis matching are non-trivial and would havelengthened the appendix unnecessarily.� Nesl supplies the programmer with a care-free environment where all low-leveldetails such as allocating data to processors get handled dynamically. This costs anextra O(log n) overhead factor on the EREW PRAM.Functions prefix sum and prefix max are derived from Nesls built-in scan operations.repermute is the inverse function of the built-in permute operation. level, task, andtasks handle access to pairs of integers, where a task's level is the �rst component and atask's number the second. Note that Nesl-sequences start with index 0 and #s denotesthe length of a sequence s.function prefix_sum(s) =let r = take(rotate(plus_scan(s), -1), #s - 1)in r ++ [r[#r - 1] + s[#s - 1]];function prefix_max(s) =let r = take(rotate(max_scan(s), -1), #s - 1)in r ++ [max(r[#r - 1],s[#s - 1])];function repermute(x, permutation) =let index = plus_scan(dist(1, #x));in permute(x, permute(index, permutation));function level(p) = let (x,y) = p; in x;function task(p) = let (x,y) = p; in y;function tasks(s) = let (x,y) = unzip(s); in y;function last_elt(s) = s[#s-1]; 22



function jump_pointer(pointer, distance, count) =letnc = count - 1;np = {if x == -1 then x else pointer[x]: x in pointer};nd = {if x == -1 then y else y + distance[x]: y in distance; x in pointer}inif (nc > 0)then jump_pointer(np, nd, nc)else nd;function rank_list(pointer) =letdistance = {if x == -1 then 0 else 1: x in pointer};count = ceil(log(float(#pointer), 2.0));injump_pointer(pointer, distance, count);function euler_path(successor, left_sibling) =letindex = plus_scan(dist(1, #successor));pred_insert ={(successor[i], i): i in index |successor[i] >= 0 and left_sibling[i] == -1};leftmost_predecessor = dist(-1, #successor) <- pred_insert;sibling_insert = {(left_sibling[i],i): i in index | left_sibling[i] >= 0};right_sibling = dist(-1, #successor) <- sibling_insert;up = {if lp == -1 then 2*i + 1 else 2*lp:i in index; lp in leftmost_predecessor};down = {if rs == -1 then 2*s + 1 else 2*rs:rs in right_sibling; s in successor};ininterleave(up, down);function levels(euler_permutation) =letedge_values = interleave(dist(-1, #euler_permutation/2),dist(1, #euler_permutation/2));permuted_edges = prefix_sum(permute(edge_values, euler_permutation));inodd_elts(repermute(permuted_edges, euler_permutation));function backbone(first_backbone_task, euler_permutation) =letedge_values = interleave(dist(-1, #euler_permutation/2),dist(1, #euler_permutation/2));edge_values = edge_values <- [(first_backbone_task*2 , -2)];permuted_edges = prefix_sum(permute(edge_values, euler_permutation));edge_values = repermute(permuted_edges, euler_permutation);up_edges = odd_elts(edge_values);down_edges = even_elts(edge_values);in{if diff(u,d) == 2 then 1 else 0: u in up_edges; d in down_edges};function move(free_tasks) =let(lpt_levels, tasks) = unzip(free_tasks);index = prefix_sum(dist(1, #free_tasks));offset = prefix_max({max(idx-lpt,0): idx in index; lpt in lpt_levels});inzip({idx-off: idx in index; off in offset}, tasks);function merge(backbone_tasks, free_tasks) =letindex = plus_scan(dist(1, #free_tasks));end_of_level = {if level(x) /= level(y) then 1 else 0:x in free_tasks; y in rotate(free_tasks, -1)};offset = plus_scan(end_of_level); 23



newpos = {idx + off: idx in index; off in offset};expanded = dist((0,0), newpos[#newpos-1]+2) <- zip(newpos, free_tasks);backbone_pos = plus_scan({if level(x)==0 then 1 else 0: x in expanded});schedule = {if level(ft) == 0 then backbone_tasks[pos] else ft:ft in expanded; pos in backbone_pos};p1 = even_elts(schedule)++ drop(backbone_tasks,level(last_elt(free_tasks)));p2 = odd_elts(schedule);in(tasks(p1), tasks(p2));function two_proc_intree(taskid, successor, left_sibling) =letindex = plus_scan(dist(1, #taskid));euler_permutation = rank_list(euler_path(successor, left_sibling));vertex_levels = levels(euler_permutation);level_order = rank(vertex_levels);highest_level = last_elt(permute(vertex_levels, level_order));lpt_levels = {highest_level - level + 1: level in vertex_levels};lpt_order = {#level_order-1-pos: pos in level_order};first_backbone_task = permute(index, lpt_order)[0];bb_flags = backbone(first_backbone_task, euler_permutation);tasks = permute(zip(lpt_levels, taskid), lpt_order);bb_flags = permute(bb_flags, lpt_order);bb_tasks = {x: x in tasks; bb_task in bb_flags | bb_task == 1};free_tasks = {x: x in tasks; bb_task in bb_flags | bb_task == 0};inmerge(bb_tasks, move(free_tasks));Running the functions de�ned above against the example from Figure 4 yields:<Nesl> two_proc_intree(>[ 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20],>[ 3, 3, 3, 4, 5, 6,12,12,12,13,13,13,15,16,17,18,19,19,19,-1],>[-1, 0, 1,-1,-1,-1,-1, 6, 7,-1, 9,10,-1,-1,-1,-1,-1,16,17,-1]);Compiling..Writing..Loading..Running..Exiting..Reading..it = ([2, 3, 4, 5, 6, 7, 13, 14, 18, 19, 20],[1, 9, 8, 12, 11, 10, 15, 16, 17]) : [int], [int]
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