
TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderforschungsbereich 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Rechnerarchitekturen
PFSLib { A File Systemfor Parallel ProgrammingEnvironmentsStefan Lamberts, Thomas Ludwig, Christian R�oder,Arndt Bode

TUM-I9619SFB-Bericht Nr.342/10/96 AMai 1996

TUM{INFO{05-96-I19-100/1.{FIAlle Rechte vorbehaltenNachdruck auch auszugsweise verbotenc1996 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler ArchitekturenAnforderungen an: Prof. Dr. A. BodeSprecher SFB 342Institut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, GermanyDruck: Fakult�at f�ur Informatik derTechnischen Universit�at M�unchen

Technische Universität München
Institut für Informatik

Lehrstuhl für Rechnertechnik und Rechnerorganisation
D-80290 München

A File System for Parallel Programming
Environments

Stefan Lamberts Thomas Ludwig Christian Röder
Arndt Bode

pfslib@informatik.tu-muenchen.de
Tel: +49-89-289-22382
Fax: +49-89-289-28232

May 9, 1996

Abstract

In 1994, LRR-TUM obtained a research grant from the Intel Foundation for design and im-
plementation of PFSLib, a parallel file system library which provides source code compatibility
with Intel’s parallel file system PFS. Its primary purpose is to work together with NXLib as
an emulator of a Paragon supercomputer. Furthermore, PFSLib can be used as a stand-alone
software product together with other parallel programming environments like e.g. PVM. Finally,
PFSLib serves as a research platform to investigate issues of parallel file systems like e.g. file
distribution or design of the user interface.

This document will at first give an introduction into the issues connected with parallel file
sytems. The second chapter will give an extended overview over the state of the art in the field
of parallel I/O. The main aspect of this investigation will concentrate on the user interfaces
of current parallel file systems. Chapter 3 describes in detail concepts of the PFSLib’s design
and implementation. A presentation of essential data structures and the flow of control and
information throughout PFSLib calls will be given. Finally, chapter 4 puts the project of PFSLib
in relation to current research in the group at LRR-TUM and shows issues for future research.

This report also comprises the PFSLib manual giving details on each PFSLib call.

PFSLib may be distributed freely under the GNU license agreements and can be obtained at
ftp://ftpbode.informatik.tu-muenchen.de/PFSlib/.

Contents

1 Motivation 1

2 State of the Art 5
2.1 Bridge Multiprocessor File System : 5
2.2 CalTech Concurrent I/O System : 6
2.3 Peter Crockett’s Work : 7
2.4 nCube Parallel I/O system : 8
2.5 IBM Vesta : 9

2.5.1 SPMD Library for Vesta : 11
2.6 IBM PIOFS : 12
2.7 PIOUS : 12
2.8 MPI-IO : 13
2.9 ExtensibLe File System : 15
2.10 David Kotz’s Work : 16
2.11 Conclusion : 17

3 Concepts of PFSLib 18
3.1 History and Starting Point : 18

3.1.1 Intel’s Parallel File System PFS : 18
3.2 Design : 22

3.2.1 Design Objectives : 22
3.2.2 Design Aspects : 23

3.3 Implementation : 24
3.3.1 Client Server Model : 24
3.3.2 Basic Communication Mechanism : 26
3.3.3 Course of Operations : 27
3.3.4 PFSLib Server Data Structures : 28
3.3.5 PFSLib Client Data Structures : 31
3.3.6 Three Phase I/O Operations : 33
3.3.7 Synchronization : 37

4 Future Work 39

I

CONTENTS

Acknowledgements 41

Bibliography 42

Manual
pfsd (1 PFSLib) : 1
pfsdexit (1 PFSLib) : 2
pfsdreset (1 PFSLib) : 3
pfsdstat (1 PFSLib) : 4
close() (3 PFSLib) : 5
cread() (3 PFSLib) : 6
cwrite() (3 PFSLib) : 9
gopen() (3 PFSLib) : 12
iodone() (3 PFSLib) : 14
iomode() (3 PFSLib) : 15
iowait() (3 PFSLib) : 16
iread() (3 PFSLib) : 17
iseof() (3 PFSLib) : 19
iwrite() (3 PFSLib) : 20
lseek() (3 PFSLib) : 22
lsize() (3 PFSLib) : 24
open() (3 PFSLib) : 26
pfslib init() (3 PFSLib) : 29
pfslib perror() (3 PFSLib) : 31
setiomode() (3 PFSLib) : 32
iod (8 PFSLib) : 34

II

List of Figures

2.1 Bridge file structure : 6
2.2 Crockett’s sequential access patterns : 8
2.3 nCUBE mappings : 8
2.4 nCUBE bit permutation function : 9
2.5 Vesta partitions : 10
2.6 PIOUS segmentation and views : 13
2.7 MPI-IO tiling and offsets : 14
2.8 Orthogonality of MPI-IO access functions : 14
2.9 ELFS MRS : 16

3.1 I/O node and message-passing network of Intel’s Paragon : : : : : : : : : : : : 19
3.2 PFSLib Client Server Model : 25
3.3 Course of an operation : 27
3.4 File table entry of PFSLib server : 29
3.5 File table entry of PFSLib clients : 32
3.6 I/O identifier table of PFSLib clients : 32
3.7 Three Phase I/O operation : 34
3.8 Process Graph of two Asynchronous Operations : : : : : : : : : : : : : : : : : 36
3.9 Process Graph of File Access in I/O Mode M SYNC : : : : : : : : : : : : : : 37
3.10 Synchronization of clients : 37

III

LIST OF FIGURES

IV

1 Motivation

During the last decade the computational power of parallel computers increased dramatically.
Their performance allows to search for solutions of problems which were unsolvable in the
past. The main application field of these architectures is still the area of intensive mathematical
calculations, usually called number crunching.

With the technical progress we now find main memory sizes of many dozens of megabyte
per computing node summing up to several gigabyte for the machine as a whole. Typical
applications like problem solvers for computational fluid dynamics use only a small part of
the available main memory for the program code itself and try to fill the remainder with data.
Thus, the problem arises of how to handle huge amounts of result data. In addition, applications
exist which need an enormous amount of input data but do not generate much output data. E.g.
experiments at the research center CERN produce several terrabyte of recorded data which will
later be processed with a parallel computer system.

For several years, manufacturers of parallel systems try to meet the users’ requirements
by developing and providing special parallel file systems. They are designed to overcome the
former bottleneck of having disks only at the front-end computer of the parallel system which
served as an entry point for all parallel programs. Most parallel file systems do not only provide
distributed disks attached to the nodes of the parallel system; often they add dedicated nodes
which are specialized and restricted to handling I/O-requests. By means of such a parallel file
system it is possible to achieve a high bandwidth for disk I/O. This is a prerequisite to writing
efficient parallel programs which read and write high amounts of data.

However, with parallel file systems files exist mainly in a distributed version, e.g. being
divided into stripes located on different physical disks. The problems of how to archive or copy
these files are still under investigation. Much research is currently devoted to that problem
field and also to the question, which user interface might be appropriate to efficiently express
a desired functionality of the I/O system. The main stream of these investigations deals with
parallel computers, only few activities concentrate on clusters and networks of workstations
(COWs, NOWs). In addition, the latter activities are driven mainly by universities. They are
more research oriented and result in software prototypes released as public domain packages.

In fact, workstation environments exhibit two characteristics which strengthen the necessity
of such investigations. First, these environments become more and more important during
development phases and even for production phases of parallel software. Thus, parallel file
systems are desirable. Second, these systems are often well fitted from the architectural point of
view: in contrast to parallel computers many nodes of a workstation environment have already
a local disk. Therefore, algorithms for writing data to parts of a file assigned to a local disk can

1

1 MOTIVATION

easily be studied and improved. The PFSLib project which will be presented in this report takes
into consideration both aspects. Its goal is to provide the user with an emulation of the Intel
Paragon supercomputer parallel file system (PFS) and to provide a test-bed for studying access
and distribution algorithms as well as user interface characteristics.

The question arises for which purposes the user would like to have a parallel file system.
A partial answer is given by e.g. a study conducted by the Argonne National Laboratory in
December 1993 [19]. The most obvious I/O situation is the input of data needed for computation.
In that case we often find the access scheme that all nodes read the same input file either
completely or partially depending on the data set they have to compute. During the program run
there might be a need for intermediate files to store data which can not be kept in main memory.
As long as data is exclusively written and read by the same process there is no need for a parallel
file system. As soon as accessing these files is also used for information passing between
processes we can profit from the single file image a parallel file system provides. Processes on
different nodes can now easily read data which was written from other processes before (e.g.
during a former iteration of a numerical program). Finally, we would like to write result data
efficiently to disk. All processes write their data locally but the sum of all these pieces has to
be accessed like a single file. We can see that even with these fundamental situations we need
several different access modes for reading and writing to files of a parallel file system.

In addition to above listed categories we can identify further situations where a parallel file
system appears to be advantageous.� Debugging

Unfortunately, debugging of parallel processes is still very much based on adding print
statements to the source code. We compare two different output protocols by e.g. using
the diff command and try to find irregularities in the program run. When debugging
programs on a large number of nodes it will dramatically slow down the program to be
debugged if all control data is written to a single disk. Therefore, a parallel file system
offering a single file image is quite helpful. Of course, we hope to have better debugging
tools in the future, reducing the usage of print statements to a minimum.� Tracing

Many tool environments (e.g. with off-line debuggers) are based on tracing concepts.
Run-time data is written to a file and accessed after program completion for analysis
purposes. There is no need to write locally arising trace data to a single remote disk;
however, it would ease things up if all individual trace files could be accessed as a single
one.� Checkpointing

Long running programs might want to integrate principles of fault tolerance. Restarting
of applications is usually done by using checkpoint information, where the checkpoints
are written in regular intervals (This can either be triggered by the user or by the operating
system itself). Checkpoints reflect the current state of the program execution. The number
of processes after restart might vary from the number before system crash. Therefore,

2

files will be written and read by a varying number of processes. Again, a single file image
will increase applicability and efficiency of fault tolerance mechanisms.

We can summarize that the most common situations where we would like to have a parallel
file system belong to the following two categories:� Data appears on each individual node and is written to a local disk. The organizational

structure is a global file such that all segments on all disks can be accessed as one file (e.g.
for data post-processing).� Data is located in one file and has to be accessed by all nodes. The file might be distributed
over the local disks such that only local disk access is performed by the nodes (e.g. input
of data to a computation, data base applications).

As these categories can essentially be found in any parallel program a parallel programming
environment must take these necessities into consideration and provide efficient means for
parallel I/O.

In 1993 the parallel processing group at LRR-TUM designed and implemented an emulator
for the Intel Paragon supercomputer. Within the limited effort of that project we focused on the
programming library as it is defined by Intel’s NX (node executive) interface. This covered all
aspects necessary for process management, message passing, etc. (However, parallel file I/O is
handled within Intel’s PFS interface). The Paragon supercomputer emulator NXLib is a stand-
alone software product which allows to run Paragon programs on a cluster of workstations.
Heterogeneity is not yet supported but the library runs in homogeneous environments on a
large set of different workstation architectures. Users report to use NXLib mainly for off-line
development of Paragon programs but also for production runs of their parallel code.

Very quickly the request appeared to have a parallel file system in conjunction with NXLib
which is compatible to Intel’s PFS (parallel file system) interface. In a follow-up project we
designed and implemented PFSLib which together with NXLib provides a high degree of source
code compatibility to the Paragon. Programs using the NX and PFS interface only have to be
recompiled for the workstation architecture and then run in parallel on top of NXLib and PFSLib.

In addition of being a file system emulator, PFSLib serves for several other purposes:� First, PFSLib is independent of the message passing interface defined by NX. Thus,
PFSLib can be used in conjunction with any available cluster programming environment
such as PVM, P4, MPI, and others. An additional initialization call, not existing with the
PFS interface, prepares PFSLib to work together with other environments. However, as
the semantics of the calls is fixed, not all features of other programming libraries can be
applied to PFSLib. E.g. with PVM we are restricted to a constant number of processes
participating in file access operations.� Second, we will use PFSLib for research in the field of parallel I/O. Three types of
investigations will be conducted:

3

1 MOTIVATION

– What user interface is desirable? Which of the available functionality is fundamen-
tal? Which is superfluous or perhaps missing? What application specific access
modes and access functionality the user would like to see? (E.g. special matrix file
operations).

– How can the performance be improved? We will investigate strategies of file striping
and and parallelization of server processes to increase locality of file access.

– How can we combine performance and user interface issues? The user should be
given access to striping strategies either dynamically before opening files or statically
before program compilation.

PFSLib is an integral part of THE TOOL-SET project. We will use it as an enhancement of
PVM for parallel programming. THE TOOL-SET will provide interactive and automatic tools for
development and maintenance of parallel programs using PVM as a message passing library
and PFSLib as a parallel file system library (for details please refer to [28]).

The remainder of the document is structured as follows: Chapter 2 gives an extended
overview over the state of the art in the field of parallel I/O. The main aspect of this investigation
will concentrate on the user interfaces of current parallel file systems. Chapter 3 describes in
detail concepts of the PFSLib’s design and implementation. A presentation of essential data
structures and the flow of control and information throughout PFSLib calls will be given. Finally,
chapter 4 puts the project of PFSLib in relation to current research in the group at LRR-TUM
and shows issues for future research. This report also comprises the PFSLib manual giving
details on each PFSLib call.

4

2 State of the Art

Currently, many researchers work in the field of parallel I/O. There are already some com-
mercially available parallel file systems like Intel’s CFS and PFS, IBM’s PIOFS, and nCube’s
parallel file system for the nCube 2.

Parallel file systems address manly two issues. Firstly, the access to disks is parallelized
in order to reduce access latency and to increase data transfer bandwidth. This is usually done
by distributing a file onto a set of disks using distribution strategies like striping. To achieve
scalability the disks are connected to a set of I/O-nodes, which include CPU and memory but
usually do not run any application program. Secondly, parallel file systems provide a special
user interface to facilitate file I/O for parallel applications.

In this chapter we will give an overview on existing parallel file systems and their interfaces.
We will not describe the approaches of disk access parallelization and hardware aspects like
I/O node architectures and special disk subsystems like RAIDs. Since PFSLib emphasizes on
the user interface of Intel’s parallel file system PFS, we will give an overview on existing and
proposed interfaces for parallel file I/O for parallel applications. We will not value or classify
the interfaces in this report but merely describe them and show their variety.

2.1 Bridge Multiprocessor File System

Dibble et al. implemented the Bridge Multiprocessor File System on a BBN Butterfly multi-
processor [14, 16, 15]. Here, a file is a two-dimensional array of blocks in row major order as
shown in figure 2.1. Each column is stored in a separate storage device attached to a separate
processor and managed by a local file system. In order to access the distributed parts stored
in local file systems as one file, Bridge has three functional layers. The device driver layer
manages local disk access. The local file system layer manages files and file meta data locally
on every processor. Finally the central Bridge server offers the interface for the user programs.

The Bridge server interface provides the following three different access modes.� An ordinary sequential file system access with open, read and write calls follows
standard Unix semantics.� An access mode for reading and writing of multiple blocks of a file in parallel can be
used to transfer data records from or to processes of a parallel application. A parallel
open operations groups several processes together. The first process to open the file
becomes the job controller. Every time the job controller issues a read or write operation,

5

2 STATE OF THE ART

Local File Systems

1 2 3 4 5 6 7

Figure 2.1: Bridge file structure

data is transferred to or from all processes. Hence, every I/O operation synchronizes all
participating processes.� Finally, it is possible to access the Bridge server directly and access the file in a user
defined manner using information about the number of local file systems and block size.
Using this possibility, the user can implement many different access modes tailored for
an application. Since the data layout on disks is very similar to the Vesta file system, this
also enables an implementation of the Vesta access modes (see section 2.5).

2.2 CalTech Concurrent I/O System

At the California Institute of Technology Witkowski et al. designed a Concurrent I/O (CIO)
system for the Hypercube Multiprocessor build at the same institute [37]. It offers the possibility
to set up different hardware configurations depending on the needs of the application. The
architecture consists of a collection of clusters, each of which has hypercube topology. The
clusters are connected in a way which suits best the requirements of the application. If a cluster
is a file system cluster, each of the nodes is equipped with a CPU, small local memory, and a
VME bus which is used to connect disks and additional memory.

Three different file access modes are available in the CIO system.

Single mode offers broadcast/reduce semantics. The first process opening the file becomes the
owner of the file. During the open call a set of participants is initiated which contains all
nodes accessing the file. All participants have to call the same operation before it actually
will be performed. In case of a read operation the data is read once by the owner of the
file and broadcasted to all processes. Only the write operation of the owner of the file has
a effect. Write operations of all other processes are simply discarded.

Multi mode offers a shared file pointer for all processes. In this mode a token is used to specify
the current owner of the file. Only the owner is allowed access to the file. The strategy for
forwarding the token is user definable. By default the token is forwarded to the compute
node with the next number in a round-robin manner. Since the forwarding is initiated by
the current owner this mode is very restrictive. If processes want to access the file in an
arbitrary order, the programmer has to take care for correct token handling.

6

2.3 PETER CROCKETT’S WORK

Independent mode supplies every process with its own file pointer. There is no coordination
of access if more than one process accesses the same file. This mode offers Unix-like
semantics.

2.3 Peter Crockett’s Work

Crockett proposed another concepts for parallel I/O [9]. In order to distinguish between parallel
files and standard sequential files, parallel file have an internal view in addition to a global
view. In the global view, the file appears as a standard sequential file. The internal view has
additional structure which can be used by parallel programs to operate on the file. Additionally,
he distinguishes between standard parallel files and specialized parallel files. The first outlive
the parallel application which uses a file. The files may later be used by another parallel or
sequential application. Hence, the files must have a meaningful global view. The latter are used
only by one parallel application and do not need to have a global view.

In order to specify access modes to the file a few terms need to be defined. A file is a
collection of logically related data items. Files contain one or more data partitions called blocks.
Blocks are logical groupings of contiguous data rather than physical partitions on hardware
devices. Each block is composed of one ore more records. A record is the smallest unit of
access. Each record contains one or more data items. Each record is assumed to be of the same
size.

Crockett distinguishes between sequential parallel files and direct access parallel files. A
sequential parallel file looks like a standard sequential file in the global view. The internal
organization might differ. There are four different access patterns for sequential parallel files as
shown in figure 2.2.

Sequential: The file is accessed in sequential order by a single process. This mode does is
identical to standard sequential files.

Partitioned sequential: The file is partitioned into contiguous blocks per process. Each process
performs its own I/O operations within its assigned block.

Interleaved sequential: The file is partitioned into non-contiguous blocks with constant stride.
Each process accesses its part of the file independently.

Self-scheduled sequential: The file is processed sequentially with each process performing its
own I/O operations. Each access is guaranteed to access the next record in the file.

With direct access parallel files every process has direct access to the parallel file. The file
does not have an inherent sequential structure and a process may access any record in the file in
any way. There are the two following access pattern for direct access files:

Global direct access: Any process may access any block or record in the file in any order.
References may be random or follow some predictable pattern.

7

2 STATE OF THE ART

P1

P1

P2

P3

P1
P2
P3
P1
P2
P3

P2
P1
P1
P3
P2

Self-scheduledPartitionedSequential

P1

Interleaved

Figure 2.2: Crockett’s sequential access patterns

Partitioned direct access: The file is partitioned into blocks which are assigned to processes.
A process may access records in their blocks randomly.

2.4 nCube Parallel I/O system

In order to improve the I/O capabilities of the system software nCube developed a parallel
I/O system and interface for applications running on their hypercube computer [12, 13, 10,
11]. It offers the possibility to map partitions of a file which represents a two-dimensional
matrix to different processing elements of an application. It supports four different mappings,
which are ROW, COLUMN, BLOCK, and SCATTER, as shown in figure 2.3.

DY

DX DX

DY
DY

DX

DY

DX

TW TW

WDX TW W=2

SCATTERBLOCKROWCOLUMN

=2 =2

=2=2
dy

=2
dx tw w

=2

Figure 2.3: nCUBE mappings

The mapping of a file is specified by the type of the mapping and by one to four parameters
(depending on the type). DX specifies the width or horizontal dimension of a data set. I.e. in
COLUMN mapping the width of one column; in ROW mapping the width of a row; in BLOCK
and SCATTER mapping the width of one block. DY specifies the height or vertical dimension
of a data set. I.e. in ROW mapping the height of one row; in BLOCK and SCATTER mapping
the height of one block. TW specifies the number of blocks along the template in the horizontal
dimension, i.e. the number of blocks in one template. W specifies the number of blocks along
the whole data set. Figure 2.3 shows the parameters and their interpretation.

8

2.5 IBM VESTA

Since the byte stream of the file is interpreted as an array which is linearized in row major
order, the width of a row Dimx must be known to distribute the data to different processing
elements. For COLUMN mappings it depends on the number of processing elementsP accessing
the file and is Dimx = P �DX . It is Dimx = DX for ROW mappings, Dimx = DX � TW
for BLOCK mappings, and Dimx = DX � TW �W for SCATTER mappings.

The mapping uses a bit permutation function which assigns bytes of a byte stream to
processing elements as shown in figure 2.4. The input argument for the function is the position
of the byte in the stream in binary representation. The output of the function is the number of
the processing element the byte is mapped to and the position of the element in the buffer in
binary representation. Due to the nature of bit permutation the parameters DX , DY , TW , andW must be a power of two. In figure 2.4 dx, dy, tw, w, and p represent the number of bits
significant for the corresponding parameter. Hence, DX = 2dx and so on1.

..
..

..
..

..
..

dx

tw

w

dy

p-tw

tw

p-tw

dx

dy

w

p

MSB

ou
tp

ut

MSB

LSB

LSB

PE

po
si

tio
n

in
 s

tr
ea

m

po
si

tio
n

in
 b

uf
fe

r
pr

oc
.

el
em

en
tin

pu
t

Figure 2.4: nCUBE bit permutation function

When a mapping function is used to assign a certain partition of a matrix to every processing
element, each of the processing elements has an independent local file pointer. In addition, the
nCube I/O system offers access to a file with a common file pointer for all processing elements.

The major drawback of nCube’s mapping functions is their dependency on the bit permutation
function. Though it offers low overhead for the mapping of partitions of the file to processing
elements the parameters are limited since they have to be a power of two. Matrices having a
size which does not match this partitioning scheme will be distributed poorly.

2.5 IBM Vesta

At the T.J. Watson Research Center IBM developed the Vesta file system for the Vulcan archi-
tecture [4, 3, 2, 17, 18, 25, 24].

A Vesta file is a two-dimensional array of data units, called basic striping unit, or BSU. The
horizontal dimension of this array is the number of cells2 in the file. The size of each BSU
and the number of cells are known as file structure parameters. They are given when the file is
initially created and do not change throughout the lifetime of the file. Cells can be thought of

1Since the nCube system is a hypercube P is always a power of two.
2In earlier papers cells are called physical partitions

9

2 STATE OF THE ART

as virtual I/O nodes or containers for data. The vertical dimension represents data in the cells
and is unbounded in principle. Each cell is always contained in a single I/O node. The number
of cells specifies the degree of explicit parallelism possible when accessing the file. If there are
less I/O nodes than cells the cells are distributed in a round-robin manner to the I/O nodes. In
this case the degree of explicit parallelism is limited by the number of I/O nodes.

The file can be partitioned into subfiles or logical partitions, which are sub-arrays of the
two-dimensional Vesta file array. The type of the subfile is specified with the open() call. It
is possible to access a file via different logical partitions simultaneously with separate open()
calls. The logical partitions is specified by five parameters, the first four of which specify the
partition scheme and the fifth defines which partition will be accessed.

To understand the partition schemes a file has to be seen as a two–dimensional data structure,
where the horizontal dimension represents the cells and the vertical dimension represents the
BSUs within a cell. The subfiles of a Vesta file is specified by the vertical and horizontal
interleave, Vi and Hi, and the vertical and horizontal group size, Vgs and Hgs, which are shown
in figure 2.5. Vgs is the number of contiguous BSU’s in one cell belonging to a subfile. Hgs
is the number of contiguous cells belonging to a subfile. Hi specifies the number of subfiles
interleaving in horizontal direction. Vi specifies the number of subfiles interleaving in vertical
direction.

i

...

7

logical

0

1

2

18

19

20

21

22

23 26

25

24

85

4

V

3

B
SU

s
w

ith
in

 a
 c

el
l

6 9 12 15

161310

11 14 17

333027

28 31 34

353229

H

V

V

gs

partitionsHgsxHi

gs

x gs

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3

BSU

physical partitions or cells

Figure 2.5: Vesta partitions

The number of records in a logical partition or subfile advances first within a vertical group,
second within a horizontal group, third among horizontal interleaved groups, and fourth among
vertical interleaved groups.

The total number subfiles is Hi � Vi. They are numbered from 0 to Hi � Vi � 1 with
the partition numbers increasing first among horizontal interleaved groups and second among
vertical interleaved groups.

10

2.5 IBM VESTA

This partitioning scheme allows for row, column and block mappings as well as cyclic row
column and block mappings. It is limited by the fixed number of cells of a file. Two matrices
with different horizontal dimension can not be stored in one file favorably.

If a file is partitioned into separate subfiles every process has its own independent file pointer.
Access to disjoint parts of a file are independent and no consistency mechanism is needed.

In addition, files may be opened with an open shared() call. In this case, there is one
valid file pointer for all processes. If a process accesses a file it requests the current offset and
increments the file pointer by the number of bytes it writes or reads. Thus, other processes may
read and write concurrently. Vesta offers no separate seek call due to possible conflicts with
shared file pointers.

2.5.1 SPMD Library for Vesta

Corbett et al. proposed a SPMD library for Vesta [3]. The goal of the library is to speed up
operations by using collective operations and to guarantee independent file access by checking
the logical partitions opened by all processes of the application.

This library offers the following six different I/O modes.

Mode A: All processes open disjoint logical partitions with the same view. The partitions are
specified with the scheme described above. File access it completely independent.

Mode B: Processes share access to logical partitions with independent offsets. Access to the
file is independent and uncoordinated. The user has to take care for data consistency. This
mode is most appropriate for independent read sharing.

Mode C: Processes share access to logical partitions with shared offsets. Access to the file is
independent. Read and write operations will result in reading and writing of data in the
order the calls are issued.

Mode D: Processes share access to logical partitions. Access to the file synchronizes the
processes. All processes do the same operation. For read operations this results in a
single read followed by a broadcast. Write operations result in writing data of only one
process and discarding the others.

Mode E: Processes share access to logical partitions. Access to the file synchronizes the
processes. The operations are independent and in order of the process ids with the same
size for all operations.

Mode F: Processes share access to logical partitions. Access to the file synchronizes the
processes. The operations are independent and in order of the process ids with different
sizes for the operations.

11

2 STATE OF THE ART

2.6 IBM PIOFS

IBM implemented a parallel file system called PIOFS for the SP/2 parallel computer based on
Vesta [8]. Partitioning and the concept of local and shared file pointers are identical to Vesta.
An vnode layer and some internal changes were necessary to make Vesta compatible to the AIX
kernel running on the SP/2. In addition, PIOFS comprises a library for SPMD like Programs
with the following modes.

Private: Each task in the calling group gets access to a disjoint subfile (logical partition), and
each task has its own file pointer. Subsequent accesses to the subfile are completely
asynchronous.

Coordinated: Assignment to subfiles is as in mode private. Accesses to subfiles are co-
ordinated, which means that synchronization of all tasks will be enforced before any
subsequent access to the subfile. The intention of this mode is to optimize performance
of the accesses by minimizing disk seeks.

Shared: All tasks within a group access the same subfile and share the same file pointer. All
subsequent accesses are made individually. Each access automatically updates the file
pointer. Read and write operations will result in reading and writing of data in the order
the calls are issued.

Collective: All tasks access the same subfile and share the file pointer. All accesses to the
file must be one of the following collective I/O-operations. The read broadcast and
write reduce calls offer global access to the same data. The read scatter and write gather
operations read and write data of the same size to processes according to the order of the
processes within the group accessing the file.

2.7 PIOUS

Moyer implemented the Parallel Input/OUtput system PIOUS as an extension for PVM on
workstation clusters [30, 31]. In PIOUS a file is striped onto several disks attached to different
workstations. The separate parts of a file are called segments as shown in figure 2.6. The number
of segments is specified at file creation time and does not change throughout the lifetime of the
file.

PIOUS offers three different views of a file.

Segmented: The segmented structure of a parallel file is exposed. Each process accesses a
segment which is a linear sequence of data bytes via a local file pointer. If two or more
processes access the same segment the programmer has to take care for correct behavior.
PIOUS offers a transaction mechanism to guarantee consistency in this case.

Global: A file appears as a linear sequence of data bytes, which interleaves all segments with
a block size specified in the open() call. All processes in a group share a single file

12

2.8 MPI-IO

File layout in INDEPENDENT and GLOBAL view

3

2

1

0

Se
gm

en
ts

Blocksize specified in open()

6543213213

865431

4321 5 6 7

1

8 9 10 11 12

2132

1 2 3 4 5

2 7

6 7 8 9 10 11 12

121110987654321

9 10 11 12

Figure 2.6: PIOUS segmentation and views

pointer. Datum access and file pointer update are atomic. Read and write operations will
result in reading and writing of data in the order the calls are issued.

Independent: A file appears as a linear sequence of data bytes, which interleaves all segments
with a block size specified in the open() call. Every process in a group maintains a local
file pointer. Datum access is atomic.

The fixed segment number limits the possibilities of independent non-overlapping file access.
Only a fixed number of processes may access independent segments. If a PIOUS file has to be
accessed by a different number of processes than it has segments, the user has to coordinate file
accesses.

2.8 MPI-IO

The MPI-IO initiative was brought into life in order to propose a standard parallel I/O interface
for message passing parallel applications [5, 7, 6]. MPI-IO is supposed to be seen as an
extension of the MPI message passing interface and uses many features of this interface. It is
targeted primarily to scientific applications and tries to offer common usage patterns for these
applications.

The basic idea of MPI-IO is that file I/O can be modeled as message passing. Writing to a
file is like sending a message. Reading from a file is like receiving a message.

Data partitioning can be expressed via MPI derived data types. In MPI-IO the data layout in
the file is described via derived data types which are used to define the data layout of a message
in the user buffer in MPI. Operations distinguish between so called buftype which described the
data layout in the buffer and the filetype which described the data layout in the file. They are
both based on an elementary data type called etype. The purpose of the elementary data type is
to ensure consistency of filetype and buftype and to enhance portability by basing them on data
types other than byte. Usually the elementary data type will be byte.

13

2 STATE OF THE ART

The filetype data pattern is replicated throughout the file to tile the data file as shown in
figure 2.7. MPI derived data types consist of fields of data at specified offsets. This may leave
holes in the data layout. In the context of tiling a file using the derived data types the process
may only access data that matches items in the filetype. Data in “holes” is inaccessible. Data in
“holes” may be read by other processes with complementary filetype.

relative offset

...

...

17 19

18

6 7

12

...

20

etype

file as seen by process B

file as seen by process A

filetype A

filetype B

relative offset
absolute offset

absolute offset

Figure 2.7: MPI-IO tiling and offsets

Offsets in a file can be seen in two different ways. First, the absolute offset in the file. This
is the offset in the file considering every etype element in the file. This includes holes which
can not be seen by an individual process due to its filetype. On the other hand the relative offset
is the offset considering only the etype elements which can be seen by the process according to
its filetype.

MPI-IO offers several procedures to facilitate the creation of filetypes. These include the
generation of patterns for broadcast, reduce, scatter, and vector scatter operations. In addition
HPF style matrix distribution patterns are available.

MPI-IO file access functions are orthogonal with respective to the position of the file pointer,
the coordination of the access with respect to other processes, and the synchronism of the call
as shown in figure 2.8.

A
cc

es
s

C
oo

rd
ia

tio
n

explicit offset independent shared
file pointer file pointer Synchronismcollective independent

File Pointer Position

bl
oc

ki
ng

no
n

bl
oc

ki
ng

Figure 2.8: Orthogonality of MPI-IO access functions

File positions in MPI-IO can be specified in three different ways. An explicit offset can be
used to access data at a certain position in file starting at the beginning of the file. Individual file

14

2.9 EXTENSIBLE FILE SYSTEM

pointers can be used for independent access of every process in a group. A shared file pointer
is valid for all processes in a group and will be updated atomically in every operation.

In contrast to independent operations, collective operations require that all processes in a
group issue the same operation. This may be used to take advantage of global access to a file
and to provide the underlying implementation with information which may speed up access to
the data.

Non-blocking I/O operations are useful to overlap file access and computation and is not
limited to parallel applications.

MPI-IO offers a very flexible interface which allows many different views and access modes
for parallel files. Since it does not depend on a certain disk distribution technique many optimiza-
tions are possible at this level. On the other hand the flexibility of the filetype/buftype mapping
makes it difficult to define a mapping appropriate for one’s application. Broadcast/reduce, scat-
ter/gather, and log file semantics can be implemented but the programmer has to take care for
correct mapping.

2.9 ExtensibLe File System

Grimshaw and Prem take an object-oriented approach to parallel I/O for the ExtensibLe File
System (ELFS) [21, 20, 26]. The basic class unix file offers the standard Unix file operations.
Based on this class other classes are implemented which inherit unix file operations and provide
additional member functions based on the semantics and structure of their abstraction. In
cooperation with the Mentat programming environment [22, 23] ELFS supports asynchronous,
overlapping I/O operations. The following classes are proposed or implemented in ELFS.

Class 2D matrix file offers row and column access to files which contain two-dimensional
matrices. It does not offer decomposition into independent partitions of the matrix. Hence, it is
not an interface specially for parallel I/O but an improved interface for matrix files. Due to the
known structure of the file it is possible to achieve low-level I/O parallelization by distributing
the file onto different disks. Unfortunately, the interface is not very flexible since the size of the
matrix has to be specified at file creation time. By implementing an additional class for row,
column, and block distribution the 2D matrix file class can be used for a parallel I/O interface.

The class for Multidimensional Range Searching (MRS) File Objects3 offers access to n-
dimensional data spaces, where each dimension represents a key field present in the data. E.g.
a data set containing a set of time indexed two-dimensional images can be viewed as a three-
dimensional data space with x,y, and t as coordinates. Sub-volumes of the data space may be
specified by giving a range of values for each dimension as shown in figure 2.9.

As the previous class MRS objects do not decompose the file in disjoint regions, it is the
user’s responsibility to care for correct behavior of concurrent I/O operations.

A Variable consistency files class offers an application specific consistency mechanism to
improve performance. The programmer may specify a consistency time window and consistency
semantics on a file-to-file basis and modify it during the course of the application.

3In [20] this class is called Parallel File Objects (pfo)

15

2 STATE OF THE ART

x

y

(b)
5

4

3

2

1

0
0 1 2 3 4 5

0
21

y

x
t

t ; 2 < x ; 1 < y < 2

120
0 1 2 3 4 5

0

1

2

3

4

5

t

t < 1 ; 1 < x < 2 ; 3 < y

(a)

Figure 2.9: ELFS MRS

2.10 David Kotz’s Work

Kotz proposed a file system interface for parallel applications in [27]. It intends to address the
difficulties when using conventional Unix-like interfaces in parallel applications.

In order to allow for distributing a single file to multiple disks transparently the proposal
includes a directory structure with a single name for a distributed file. The user does not need
to specify a list of disks or local disk files in which a distributed file is stored. A parallel file
appears to be a Unix file for the user with the same naming scheme for sequential and parallel
applications.

Kotz introduces a multiopen call, which opens a file for the entire parallel application,
assuming a way to group processes in a parallel application. The advantage of this call is a more
scalable way to open a parallel file without multiple seeks in a directory. There are two ways to
open a file with multiopen. The first provides an independent local file pointer for each process
while the other provides a global shared file pointer for all processes. With a global file pointer
data transfer and file pointer update are atomic. Since the process has no knowledge of the file
position where the operation took place, additional read and write operations return the original
file pointer position after completion.

File pointers do not point directly to an absolute position within the file. A mapping function
for each file pointer with the pointer and an additional parameter as input will calculate the
position in the file. A global file pointer has one mapping function while local file pointers each
have a separate mapping function. The mapping function is specified during the open call or
through a separate interface. Kotz proposes some built-in mapping functions, e.g. interleaved,
which uses the record size as parameter and defines a round-robin pattern of access to records.
This mechanism can be used to map separate portions of a sequential file to a certain process.

Kotz proposes logical records as the smallest unit of data transfer. The advantages are better
support of atomic operations and the possibility to optimize the distribution of a file to multiple
disks by avoiding the distribution of a single record over different disks. Kotz distinguishes
between byte and record files. The position in a file are references to record numbers. If the
size of a record is one byte it is simply a byte file.

In order to combine the advantages of a single file with a single name for a data set and
the advantages of multiple files, which allow independent access to their data sets and separate

16

2.11 CONCLUSION

beginnings and ends of a file, the proposal contains multifiles. A multifile is a file which actually
consists of a number of subfiles which can be accessed independently with only one directory
entry for the file. It offers the possibility of appending on each of the subfiles and an end-of-file
marker for each subfile. When opening an existing multifile, an optional mapping of subfiles
to processes may be specified. Usually there will be one subfile for every process of a parallel
application.

The file system offers four types of files derived from the combination of byte and record
specification and plain files and multifiles. Thus, there are byte plain files, record plain files,
byte mutifiles, and record multifiles. The type of the file is specified at creating time and it will
be stored with this type in the file system. All type of files can be read as byte plain files. The
files may be opened for reading in any mode. Writing has to take place in the mode the file was
created.

2.11 Conclusion

The systems and methods for parallel I/O described above show a great variety of user interfaces.
This report does not intend to classify or value the different approaches. It is not clear which
method is most appropriate for parallel applications and their input and output needs.

For PFSLib we chose Intel’s PFS user interface which will be described in more detail in the
following chapter. Together with our implementation of Intel’s Paragon message passing calls
in NXLib, it is possible to achieve source code compatibility of a parallel application between
the Paragon supercomputer system and clusters of workstations. Additionally, Intel’s interface
is flexible enough to allow the implementation other I/O modes and different file distribution
strategies. Hence, PFSLib can be used as research platform for both user interfaces for parallel
I/O and parallelization of disk access.

17

3 Concepts of PFSLib

3.1 History and Starting Point

In 1993 the parallel processing group at LRR-TUM developed NXLib. NXLib was a project
funded by the Intel Foundation which aimed at providing a source code compatible emula-
tor for Intel’s Paragon supercomputer. By using NXLib program developers can run Paragon
supercomputer applications on a homogeneous network of workstations. Many different work-
station architectures are supported and the sources of NXLib are available under GNU license
conditions. NXLib is frequently used by many people for off-line development of Paragon
supercomputer software, especially during coding and testing phases. In addition, many users
also perform production runs with NXLib.

Although NXLib is a functionally complete programming environment it does not emulate
all features of the NX environment of a real Paragon. Feedback from NXLib users unveiled that
especially the lack of a file system emulator is unsatisfying as it prevents application designers
who employ parallel file I/O to use NXLib. In principle, it would have been possible to attach
e.g. the freely available PIOUS environment to NXLib. However, it does not provide by itself
all access modes which are supported by Intel’s own parallel file system. Thus, no source code
compatibility could have been attained.

In 1994, LRR-TUM obtained a research grant from the Intel Foundation for design and im-
plementation of PFSLib, a parallel file system library which provides source code compatibility
with Intel’s parallel file system PFS. Its primary purpose is to work together with NXLib as
an emulator of a Paragon supercomputer. Furthermore, PFSLib can be used as a stand-alone
software product together with other parallel programming environments like e.g. PVM. Finally,
PFSLib serves as a research platform to investigate issues of parallel file systems like e.g. file
distribution or design of the user interface.

3.1.1 Intel’s Parallel File System PFS

Intel’s Paragon OSF/1 provides parallel I/O to files with the Parallel File System PFS which
offers high-speed access to a large amount of disk storage. The PFS file system is optimized
for simultaneous access by multiple nodes. Special I/O system calls with different modes for
I/O operations facilitate I/O from multiple nodes. In this section, we will first give a short
description of the architecture of the I/O subsystem of Intel’s Paragon System followed by a
closer description of the users’ interface, the I/O modes, and the parallel I/O system calls.

18

3.1 HISTORY AND STARTING POINT

PFS I/O Architecture

On Intel’s Paragon Supercomputer hard disks are connected to so-called I/O nodes. I/O nodes
are compute nodes with I/O capabilities provided by a node expansion as shown in figure 3.1.
I/O nodes are integrated in the message-passing network as standard compute nodes. It depends
on the system configuration whether application processes may or may not run on I/O nodes.
Hard disks or RAIDs are usually connected to the SCSI interface of an I/O node. A single I/O
node may control up to seven disk devices.

Node

Node

Node

Node Node

SCSI-2 RAID

Node Node

other I/O

Ethernet

Node
Expansion

Message
Processor

Application
Processor

Memory

Node

Performance
Monitor

Network
Interface

iMRC

{VME bus
HIPPI

Figure 3.1: I/O node and message-passing network of Intel’s Paragon

Internally, Intel’s PFS file system consists of one ore more stripe directories. The stripe
directories are usually mount points of separate Unix file systems located on disk devices
connected to one or more I/O nodes. PFS files are striped across the stripe directories with a
fixed configurable stripe unit. Hence, a PFS file system collects together several hard disks into
one unit.

PFS I/O Modes

A parallel application on a Paragon system can access a PFS file in five different I/O modes.
Depending on the I/O mode, parallel file accesses� are performed on first-come-first-served basis or in order of node number,

19

3 CONCEPTS OF PFSLIB� use a shared file pointer which is valid for all application processes or file pointers which
are owned by the application processes independently,� may have variable length or must have identical length, and� may be performed by a single process which distributes the result to the other processes.

The application can set the access mode initially when opening a file or change the I/O mode
of a file that is already open. The I/O mode is an attribute of the file pointer not the file itself.
Hence, it is possible to open one file more than once and access it with different I/O modes.

PFS supplies the following five I/O modes.

M UNIX: In I/O mode M UNIX each process has its own file pointer. File access requests
will be served on first-come-first-served basis. If two processes write to the same location of
the file, the second access will overwrite the data written by the first process. All file accesses
are independent and may have variable length. However, PFS guarantees that all file accesses
are atomic. The data in the file is unordered and may be accessed randomly by every process.

M LOG: In I/O mode M LOG all processes share a single file pointer. File access requests
will be served on first-come-first-served basis. Every read or write operation modifies the
file pointer. Hence, data will be written to the file in order of the requests. Succeeding read
operations will read succeeding data from the file. Besides that, all file accesses are independent
and may have variable length. Closing a file in this mode is a synchronizing operation.

M SYNC: In I/O mode M SYNC all processes share a single file pointer. File access requests
will synchronize the processes. All processes must perform the same operations in the same
order. However, the amount of data may be different. The file position for every process will
be calculated by adding the amount of data read or written by the processes with a lower node
number to the current file pointer. After an operation the file pointer is increased by the total
amount of data read or written. Hence, data in the file appears in order of node number. Closing
a file in this mode is a synchronizing operation.

M RECORD: In I/O mode M RECORD every processes has its own file pointer. File access
requests will be served in first-come-first-served basis. All processes must perform the same
operation in the same order with identical amount of data. Nevertheless, the system will not
check this and operations will be carried out independently. After an operation the file pointer
will be increased by the the amount of data read or written multiplied with the number of nodes.
Hence, data in the the file appears in order of node number. Closing a file in this mode is a
synchronizing operation.

20

3.1 HISTORY AND STARTING POINT

M GLOBAL: In I/O mode M GLOBAL all processes share a single file pointer. File access
requests will synchronize the processes. All processes must perform the same operations in the
same order with identical amount of data. Only one process will actually perform the operation
and, in case of a read access, distribute the data to all other processes. The result of an operation
is identical to one performed in I/O mode M UNIX if all file pointers point to the same position.
However, performance can be improved due to fewer disk accesses. Closing a file in this mode
is a synchronizing operation.

PFS Parallel I/O Calls

As with the standard Unix I/O library calls, PFS parallel I/O calls can be subdivided in three
main categories. First, calls which enable and disable access to a file in the file system, i.e.
opening and closing of files. Second, calls to read data from a file and write data to a file. Third,
miscellaneous calls to administer the file access including setting of the file position, modifying
the size of the file, setting the I/O mode, and so on.

PFS differs from the standard Unix interface mainly in two aspects, which will be discussed
in this section. First, PFS offers the possibility of synchronous and asynchronous read and write
calls, and second, some calls are global calls which have to be performed by all processes and
synchronize all processes of the application.

Synchronous and Asynchronous I/O Operations As with NX message passing calls, PFS
read and write calls may be performed synchronously or asynchronously. The synchronous
versions of I/O operations cread() and cwrite() block the calling process until the opera-
tion is finished. The asynchronous calls iread() and iwrite() return immediately with an
identifier for the I/O operation. The operation will be carried out concurrently by the operation
system while the calling process continues its execution. To check the state of an asynchronous
I/O operation PFS offers the iodone() call which returns 0 (zero) if the operation is not yet
finished or 1 if the operation is finished. The iowait() call blocks the calling process until
the I/O operation is finished. In the current implementation every process may have up to 20
outstanding asynchronous I/O operations.

Global Operations Some PFS calls are global operations which must be called by all processes
of an application with matching parameters. These calls synchronize all processes which implies
that all processes performed the call.

The global open operation gopen() opens a file for all processes and offers the possibility
to set the I/O mode of a file at the same time. The main issue of this call is a performance
improvement since directory information has to be accessed only once.

The setiomode() call which can be used to modify the I/O mode of a file needs to be
synchronizing since all processes must have the same I/O mode.

The following calls are synchronizing depending on the current I/O mode as described earlier.
The close() PFS call is synchronizing in all I/O modes other than M UNIX. The lseek()
call which sets the file pointer position synchronizes the processes in I/O mode M RECORD

21

3 CONCEPTS OF PFSLIB

and M SYNC since all processes have to have the same file position in this mode. Read and
write operations are synchronizing in I/O mode M SYNC and M GLOBAL. In M SYNC the
data in file that will be accessed depends on the amount of data read or written by processes
with lower node number. In M GLOBAL all processes have to perform the call with identical
parameters which can only be checked if the execution is delayed until all processes performed
the call.

3.2 Design

Our main goal with the PFSLib project was to offer Intel’s Paragon PFS interface and its
semantics on clusters of workstations. A programmer should have the possibility to develop
and run applications intended for Intel’s Paragon system on clusters of workstations. Since we
already offered the NX message passing on workstations with NXLib, PFSLib was the next step
to a complete development environment on workstations.

On the other hand, more and more people use clusters of workstations as an alternative
for supercomputers with parallel programming environments like PVM, MPI, and NXLib.
All of these programming environments lack sophisticated I/O support for parallel applications.
Starting from Intel’s PFS interface we wanted to offer scalable parallel I/O for those applications.

Eventually, we wanted to have a research platform to investigate different file distribution
strategies and I/O modes on workstations. Usually, workstations have an I/O subsystem and hard
disks connected to it. This offers the possibility to access these disks in parallel and increase the
I/O bandwidth for an application. To do that efficiently, the file should at best be distributed in a
way that allows reading and writing of junks of consecutive bytes from and to disks connected
to different workstations. It should be possible to use PFSLib as a testbed for different file
distributions. In conjunction with the file distribution, I/O modes other than those offered by
Intel’s PFS can raise I/O performance if they offer information on how the application accesses
file data. PFSLib should be flexible enough to allow an easy incorporation of other I/O modes.
E.g. we plan a mode that offers High Performance Fortran array distribution.

3.2.1 Design Objectives

Considering the goals of the project mentioned above three major objectives had to be pursued
during the design of PFSLib.

Portability should be easily achievable between different Unix platforms as also between
different parallel programming environments like PVM, MPI, NXLib, and others.

Scalability of I/O operations shall be obtained by file distribution and concurrent access to
different disks. There should be no software bottleneck inherent in PFSLib, which
serializes disk access in any way.

Flexibility of the system should be achieved in two ways. It should be possible to incorporate
different file distribution strategies and the implementation of I/O modes other than those
of Intel’s PFS within PFSLib should be easy.

22

3.2 DESIGN

Finally there is a fourth objective which should not be neglected in a Unix environment,especially
if the file access is the issue.

Security of file access in a multiuser environment must be assured. Authentication measures
must be a part of the parallel file system which assure, that no unauthorized user is able
to gain access to a file via PFSLib.

3.2.2 Design Aspects

Looking at Intel’s PFS, its I/O modes, the semantics of the file access, and the library calls
offered, the following aspects have to be considered in the design of PFSLib.

File Position

Depending on the I/O mode PFS I/O operations use a shared file pointer for all processes or a
private file pointer for each process.

If a shared file pointer is used, it needs to be updated for all processes during an I/O operation.
If two or more processes perform an I/O operation the accesses have to be serialized so that the
file pointer for the second operation is at the position after the first operation. Nevertheless, the
actual file access may be performed concurrently. Since the number of byte to be transmitted is
known at the beginning of the operation the file pointer may be set to the new position before
the file access actually takes place.

If each process has its own file pointer the file pointer update depends only an operations
previously performed by the same process. Asynchronous I/O operations issued with previous
operations not being finished, may be performed concurrently with the previous operations if
the file pointer is updated at the beginning of the operation.

In this case, it has to be checked whether a read operation would read past the end of the
file. If this happens the file pointer has to be set to the end-of-file mark and the amount of data
for the read operation has to be reduced to the number of bytes remaining.

If the O APPEND flag is set for a file, each write operation writes the data at the end of the
file and sets the file pointer to the end-of-file mark. To offer a meaningful semantics in I/O
mode M RECORD the end-of-file mark must not be the actual end of the file for all processes.
Since the write operations of different processes are independent one of the processes might
have issued more write calls than other processes. A write of another process to the actual end of
the file will not be at the position the record is meant to be. Hence, it would leave “holes” with
random data in the file. A separate end-of-file mark for each process pointing to the position
which is the end-of-file for the process solves the problem.

Synchronization

Some of the PFS calls synchronize all processes. All processes have to call the same function
with matching parameters. It is not necessary that the function terminated for all processes
before a synchronizing operation returns.

23

3 CONCEPTS OF PFSLIB

In I/O operations in I/O mode M SYNC and M RECORD the synchronization is required
to check the input parameters of all client processes and to be able to set the file position for the
operations. If the operation is asynchronous the synchronization does not need to synchronize
the client processes but the execution of the I/O operation. I.e. the read or write operation has
to be delayed until the operation was called by all processes. The asynchronous I/O call may
return the I/O identifier immediately.

The setiomode() call checks whether all processes request the same new I/O mode.
Hence, the new mode can not be set until all processes performed the call. The lseek() call
synchronizes the processes in I/O mode M SYNC, M RECORD, and M GLOBAL because all
processes must set the file pointer to the same position.

Asynchronous Operations

PFS offers asynchronous I/O operations to hide latency and overlap file access and computation.
These operations return immediately with an identifier for the operation. The state of the
operation can be checked or the process can wait for the completion of an I/O operation using
the identifier. The I/O operation is carried out by the operating system while the process may
continue its execution. Since file access requires little CPU time the CPU may be used by the
application process. Two subsequent asynchronous I/O operation may overlap if the file pointer
is updated at the beginning of every operation as described earlier.

Standard Unix Calls

Some of calls offered by Intel’s PFS have the same name as standard Unix calls. If an application
uses PFSLib, the programmer must have the possibility to access standard Unix files with these
calls.

3.3 Implementation

3.3.1 Client Server Model

The implementation of PFSLib is based on a client server model as shown in figure 3.2. It is
based on three major components. The PFSLib server as global administration instance, the I/O
daemons which handle basic I/O operations, and the user’s application processes using PFSLib
library calls as clients.

The PFSLib server is the global administration instance which manages and coordinates all
PFSLib file accesses. It administers the file information, file pointers, and takes care for the
process synchronization if necessary. By design, the PFSLib server does not belong to one
application but is capable to serve different applications, even different users. It is intended to
run in the background as other Unix daemon processes. Currently, we restricted the server to
serve only one user to facilitate installation and guarantee security. If a server should be capable
to serve different users it has to run with root privileges.

24

3.3 IMPLEMENTATION

I/O Daemon

RPC

fo
rk

()
Unix I/O

PFSLib Client

PFSLib Client

PFSLib Client

PFSLib Client

PFSLib Server

I/O Daemon

Figure 3.2: PFSLib Client Server Model

The I/O daemons handle basic I/O requests, i.e. reading and writing of data. They are
started by the PFSLib server. The PFSLib server sends requests for I/O operations to the I/O
daemons containing an identifier for the request, a specification of the file, the file position, the
amount of data to transfer, and a specification of the client. The client gets the address of the
I/O daemon which handles the request and the identifier for the I/O operation from the PFSLib
server. It sends or receives the data to or from the I/O daemon with the corresponding request
identifier. I/O daemons basically have a list of requests coming from the PFSLib server and a
list of pending I/O operations from clients. If a new request arrives at the I/O daemon it searches
the list of pending I/O operations for the matching operation. If it exists, the I/O daemon reads
the data form the file and sends it to the client or writes the data received form a client to the file.
Otherwise, the request will be appended to the list of pending requests. If a new I/O operation
arrives, the I/O daemon handles the operation if the matching request exists or appends the
operation to the list of pending I/O operations otherwise. The independent I/O daemons allow
a scalable and flexible handling of basic I/O operations. Since they hold no information on the
files but the file position and the amount of data for I/O operations, they can be started or deleted
on demand even on remote machines. Hence, a file distribution can easily be implemented by
assigning I/O operations to I/O daemons on machines where the requested portion of the file is
located.

The users application processes using PFSLib library calls are clients of a PFSLib server.
Before a client may call any PFSLib function it has to initialize the connection to a PFSLib
server and set up an internal data structure which holds the file descriptors for PFSLib files.
This is done with a special PFSLib library call. The client is stateless, meaning that it holds
no information on the file but a file handle which contains the identifier of the file used by
the PFSLib server. Thus, different file distributions and I/O modes can be implemented by
modifying the PFSLib server.

In case of asynchronous I/O operations the client forks a child process if the amount of data
to transfer is above a configurable threshold. The child process carries out the data transfer to
the I/O daemon. We refrained to use threads since read and write operations usually block the
Unix process and not the thread which issued the call. Hence, a thread based implementation

25

3 CONCEPTS OF PFSLIB

of asynchronous operations would not allow concurrent execution of the I/O operation and the
user’s program. Besides on most systems the implementations of the communication facilities
needed for the communication between clients and server are not thread-save.

3.3.2 Basic Communication Mechanism

Client Server Communication

A convenient and reliable mechanism for the communication in client/server applications in a
network of workstations is the remote procedure call (RPC) facility. The course of a RPC is
well known and is fully described in [33].

Communication within PFSLib is based on the ONC1 RPC [35]. Since it is available on
all major platforms it improves the portability of the library. Besides, it works in conjunction
with parallel programming environments like PVM, NXLib, and others. Hence, PFSLib is
independent from the parallel programming environment and may be used even in application
which do not use any parallel programming environment. In order to use PFSLib no additional
software needs to be installed.

The ONC RPC transfers data in external data representation (XDR) [36] format. XDR is a
hardware independent description of data structures. Before the transmission of an argument
or a result of a RPC the data will be translated in its XDR format on the sender side based
on the type of the data. On the receiver side, the data is translated to the machine specific
representation. This mechanism supports RPCs between heterogeneous machines. XDR also
offers an opaque data type. Opaque data will not be translated in a machine independent format
but will be transferred as is. PFSLib uses XDR for control messages and internal data. The
users data will not be translated in XDR format for transmission since file access calls do not
offer information on the type of data. If the user takes care for the data in the file PFSLib can
be used heterogeneously.

An additional feature of the RPC facility is embedded security. Three different mechanisms
are available which offer different levels of security. No security is provided by the authentication
style AUTH NONE. The authentication style AUTH UNIX transmits the user’s Unix user id and
group id together with the RPC parameter. The highest degree of authentication is provided by
AUTH DES. PFSLib currently uses the AUTH UNIX authentication.

Client Child Process Communication

In asynchronous read operations, the data will be read by the client’s child process. Since two
Unix process have different address spaces the data has to be transfered from the child process’
address space to the client’s address space. PFSLib uses the Unix System V IPC shared memory
facility [34]. The client allocates a shared memory segment with the size of the read operation
before it forks the child process. The child process reads the data from a I/O daemon into the
shared memory segment. After the termination of the child process the client copies the data
form the shared memory segment into the buffer supplied in the read call.

1Open Network Computing

26

3.3 IMPLEMENTATION

3.3.3 Course of Operations

Security check
Identify request

Check virtual file descriptor
Check parameters

Handle request
Modify data structures

Return result

Call synchronizing?2

4

1

3

Server

Disable timeout
Send request

no yes

yes

Analyze response12

Virtual file descriptor?

Unix call

no

Client
5
6
7
8
9
10
11

Figure 3.3: Course of an operation

After an initial startup phase the PFSLib server handles incoming requests from PFSLib clients.
A PFSLib function call is performed in several steps executed by the client and the server. Figure
3.3 shows the interaction of client and server and illustrates the following steps:

1. Check for virtual file descriptor: As some function calls within PFSLib (such asclose()
or lseek()) are available for local and global file descriptors we have to distinguish
both cases. This is done by comparing the values of the file descriptors against a given
offset. The offset is equal to the maximum number of file descriptors which is limited by
the UNIX operating system. If the value of a file descriptor is below this number it is a
local file descriptor and the standard UNIX call will be performed. If it is a global file
descriptor a request to the PFSLib server will be send.

2. Check for synchronizing call: If the current request is a synchronizing call the default
timeout of 25 seconds has to be disabled. For security reasons this timeout must be
restored when the call returns from the server. If it is no synchronizing call the course is
continued with 4.

3. Disable timeout: For a single client the default timeout for RPC calls is 25 seconds. The
time period during which all other clients perform the same request to the PFSLib server
depend on their runtime behaviour. Thus, a reply to a single client could elapse the default
value of 25 seconds. In our implementation we choose an arbitrary value of 24 hours as
the synchronizing timeout.

4. Send request: The client sends its request to the server by performing the corresponding
RPC call. After having sent the arguments the client waits until a response from the server
arrives.

5. Check authentification: To use the services provided by the PFSLib server the user must
have access permission. Authentication is provided by RPC and our implementation uses
the AUTH UNIX style.

6. Identify request: This is automatically done by the server when receiving the arguments.
The RPC compiler generates the appropriate dispatch function.

27

3 CONCEPTS OF PFSLIB

7. Check virtual file handle: The first argument of every request is the virtual file handle.
The server checks the file handle for validity and for the access permission of the client
to the file.

8. Check parameters: The arguments passed with a request have to be evaluated. In case of
a synchronizing call the arguments are compared with arguments previously received by
other clients which invoked the same command. For example the I/O modes passed with
the function setiomode() have to be equal for all clients. The arguments are stored
intermediately and the request will be delayed until the last call arrives.

9. Handle request: If all checks were performed successfully the server executes the re-
quested procedure.

10. Modify data structures: Except when requesting information from the PFSLib server (e.g.
iomode()) the internal data structures have to be updated after every request.

11. Return results: The results of the requested procedure are sent back to the clients. In case
of a synchronizing call the server sends the results back to all clients. If an error occurred
during the checks or if the procedure could not be executed due to wrong arguments the
server sets up an error response with more detailed error message.

12. Analyze response: When the client receives the results it first checks whether an error
occurred on the server side. In case of unrecoverable errors the client terminates. If no
error occurred the library function returns and the client continues its execution.

3.3.4 PFSLib Server Data Structures

As mentioned above all information on a PFSLib file is held by the server in order to keep the
clients stateless. The server has to keep all information on the file and the clients accessing it.
Figure 3.4 shows the major components of a file table entry of the PFSLib server, which will be
described in more detail.

An entry of the file table consists of the following elements:

Unix file descriptor: The file descriptor returned by the Unix operating system. The file is
opened during the first open() call from any client. Subsequent open calls for this file
from different clients simply return the result of the first call.

File name: The full path name of the file is used to compare the arguments of subsequent
open() calls from different clients. If the user does not pass a full path name to a
PFSLib call opening a file, the current working directory of the client process will be
prepended to the supplied name.

I/O mode: This entry represents the current I/O mode of the file as described above.

28

3.3 IMPLEMENTATION

I/O identifiers

File name
Unix file descriptor

I/O mode
Requested I/O mode
Shared file pointer

Clients

Synchronizing operation
Number of clients

File table data

Client identifier
Transport handle
Private file pointer
Private end-of-file
State of synchronizing operation
Sequence number of I/O operation

Data on Clients

Shared end-of-file

State of I/O identifier
Type of operation
Error code

Issued before last setiomode()
Sequence number of I/O operation

File position
Number of bytes
iowait() is pending

Data on I/O operations

I/O daemon identifier

Figure 3.4: File table entry of PFSLib server

Requested I/O mode: If the clients call the setiomode() function to set a new I/O mode,
this entry is used to verify that all clients request the same new mode. The new mode will
not be set until all clients performed the call with the same parameters.

Shared file pointer: In I/O mode M LOG, M SYNC, and M GLOBAL all processes share a
single file pointer. It contains the current position in the file valid for all client process.

Shared end-of-file pointer: This entry points to the end of the file as known by the PFSLib
server. If a file is opened the server sets this value to the current end-of-file. If a PFSLib
operation extends the file the value will be updated. In I/O modes other than M RECORD
the shared end-of-file pointer is used for write operations if the O APPEND flag is set.
Besides, it is used to check if read operations read past the end-of-file mark.

Synchronizing operation: If a client calls a PFSLib function that will synchronize the client
processes, the type of the operation will be stored in this entry when the first client calls
this operation. If other clients call a synchronizing function later, the PFSLib server
checks whether the client requests the same operation. If not the server will return an
error.

Number of clients: Since a PFSLib server is capable to administer files for more than one
application, the number of processes accessing a file may differ from file to file. The
number of clients will be initialized during an open() call. Hence, different groups
of processes within a single application may access different PFSLib files. PFSLib uses
default values specified during the initialization of PFSLib for compatibility with Intel’s
PFS.

Each entry of the file table holds a table containing client specific data. This client table has
the following entries.

29

3 CONCEPTS OF PFSLIB

Client identifier: The client is identified by the PFSLib server by its machine name and the
RPC authentication credentials. Before the server performs any operation on the file it
checks the client’s authenticity.

Transport handle: The server stores the RPC transport handle for each client to send back the
result of a synchronizing operation after it is completed.

Private file pointer: In I/O modes M UNIX and M RECORD each client has its own private
file pointer. It contains the current position in the file for each client.

Private end-of-file pointer: As mentioned above, in I/O mode M RECORD the read and write
operations of different clients are independent. However, if the O APPEND flag is set it is
necessary that each process writes its portion of a record not to the actual end of the file,
but to the position in the file where the corresponding records are stored. Hence, each
client has its private end-of-file pointing to the position up to where the client accessed
the file.

State of synchronizing operation: If the clients call a synchronizing operation the server has
to keep track which of the clients already performed the operation, how far the operation
proceeded, and whether an error occured.

Sequence number of I/O operations: In I/O modes M SYNC and M GLOBAL read and write
operations may be performed only after all processes called this operation. On the other
hand, more than one asynchronous operation on the file may be pending, which might
have been called even in a different I/O mode. The PFSLib server assigns a sequence
number to every read or write operation. The sequence number is reset to zero in every
setiomode() call. Hence, the server is capable to group together read and write
operations in sequence of their occurrence.

Asynchronous I/O operations return an I/O identifier immediately which can be used to
check the state of the operation. The PFSLib server stores a table of pending asynchronous
I/O operations for each file and each client. The identifier of an operation is the index of the
operation in the table. Within the table the server stores the following information on an I/O
operation.

State of I/O identifier: The server keeps track of the state of a pending I/O operation with this
entry. An identifier may be unused, the I/O operation may be pending, ready to be carried
out, or finished.

Type of operation: An I/O identifier may be assigned to read or write operation. In this field
the server stores information what kind of operation is associated with this identifier.

Error code: If an error occurs during the execution of the operation the server stores information
on the error, which will be sent to the client when it checks the state of the operation.

30

3.3 IMPLEMENTATION

Sequence number of the operation: As described above the server assigns a sequence number
to every I/O operation. It is used to find matching I/O operations of other client processes
in I/O modes M SYNC and M GLOBAL.

Issued before last setiomode(): If the I/O operation identified by this I/O identifier was not
finished before the last setiomode() call or the user did not wait for its termination,
this flag will be set for this operation during the setiomode() call. If this flag is set
the I/O operation will not be considered if the server looks for an operation with matching
sequence number in I/O mode M SYNC and M GLOBAL.

File position: The server sets the file position for this operation as soon as it is possible. In
I/O mode M SYNC it is set when all I/O operations with the same sequence number are
available. In other modes the file position can be set immediately. Hence, the private or
shared file pointer may be updated and used for the next I/O operation as if the operation
already terminated.

Number of bytes: The number of bytes to transfer in the operation is used to check the input
parameter in I/O mode M GLOBAL and to calculate the file positions of matching oper-
ations in I/O mode M SYNC. Additionally, it is used to inform I/O daemons about the
number of bytes to transfer in the operation.

iowait() is pending: If a client called the iowait() function with this identifier before the
operation terminated the PFSLib server sets this flag. The client will be informed as soon
as the operation has completed.

I/O daemon identifier: The server immediately assigns an I/O daemon to an I/O operation. It
send the address of the I/O daemon with the I/O identifier to the client. Thus, the client
or its child process can connect to the I/O daemon to carry out the operation. The I/O
daemon on the other hand will delay the operation until it receives a matching request as
described above. The I/O daemon identifier is used to send the request to the I/O daemon.

3.3.5 PFSLib Client Data Structures

A PFSLib client holds very little information on a PFSLib file according to its statelessness. A
table of open PFSLib files as show in figure 3.5 contains only the file handle which is used to
identify a file at the PFSLib server. This file handle will be passed to the server in every RPC.
A file handle consists of the index of the server’s file table, the number of clients accessing the
file, and the ordinal number of this client.

In order to distinguish between ordinary Unix files and PFSLib files the file descriptor
returned by the open() call is the index of the file in the client’s file table increased by the
length of the Unix file table. Hence, the file descriptor for a PFSLib file is an integer value as
in Unix but can be distinguished form a Unix file descriptor. This is necessary for functions
like lseek() which have different semantics on PFSLib files compared to Unix files. Since a
constant value is added to the file table index the PFSLib file handle can be found with constant
low overhead.

31

3 CONCEPTS OF PFSLIB

Client file table

Index of server’s file table
Number of clients
Ordinal number of client

Figure 3.5: File table entry of PFSLib clients

In order to administer asynchronous I/O operations a PFSLib client maintains a table of
I/O identifiers shown in figure 3.6. Some of the entries in this table comprise the equivalent
in the corresponding I/O identifier table at the server side. Despite the desired statelessness of
the client the I/O identifier table is necessary to implement asynchronous and overlapping I/O
operations. An element of the client’s I/O identifier table contains the following entries.

I/O identifier table

State of I/O identifier
Server’s index of I/O identifier
File descriptor
Type of operation
Number of bytes
Buffer pointer
Shared memory id
Process id of child process
Exit status of child process

Figure 3.6: I/O identifier table of PFSLib clients

State of I/O identifier: In case of an asynchronous operation, the client keeps track of the
progress of the child process by setting different states for an I/O identifier. An I/O
operation is pending if the child process was created but did not terminate. If the child
process terminated the state of the I/O operation is set to “done” for the client side. If
the application calls the iowait() or iodone() functions, the client checks first,
whether the client side terminated and then checks the PFSLib server. If an I/O operation
terminated the state of the associated identifier is set back to “unused”.

File descriptor: The file descriptor returned by a PFSLib open operation identifies the file
which is used in the I/O operation.

Server’s I/O identifier: Since client and server have different tables for I/O identifiers the
client stores the server’s I/O identifier in this field. Requests concerning the state of an
I/O operation sent to the server use this value.

32

3.3 IMPLEMENTATION

Type of operation: This entry specifies whether the operation reads or writes data. A child
process uses this information to either send data to or receive data to from an I/O daemon.

Number of bytes: This field specifies the number of bytes to be transfered in the operation.

Buffer pointer: The pointer to the user’s buffer supplied in the read or write call is stored in
this field.

Shared memory id: PFSLib uses Unix System V IPC shared memory to transfer data in asyn-
chronous read operations form the child process to the PFSLib client. The Unix system
call which is used to allocated a shared memory segment returns an identifier. Subsequent
calls to access and administer the shared memory segment use this identifier.

Process id of the child process: A PFSLib client may have more than one pending asyn-
chronous I/O operation. The Unix process id is used to identify which I/O operation
proceeded if a child process terminates.

Exit status of the child process: If an error occurs during the execution of the child process it
exits with a status indicating the error.

3.3.6 Three Phase I/O Operations

Asynchronous I/O operations in Intel’s PFS are divided in two phases. First, the asynchronous
I/O operations iread() or iwrite() themselves return an identifier for the I/O operation.
Second, the call iowait() waits for the termination of an asynchronous I/O operation or the
call iodone() checks for termination of an asynchronous I/O operation. Both of the latter
calls free the identifier if the operation terminated so that it can be used again. In PFSLib the
iread() or iwrite() operation itself consists of two phases. Hence, in PFSLib a single
asynchronous I/O operation is divided in three phases as shown in the condition–event–system
in figure 3.7.

Phase I: Initialization of an I/O operation

(1) After a program called an asynchronous I/O operation the PFSLib library
(2) allocates a free I/O identifier described in 3.3.5. Then, it sends a remote procedure call to
the PFSLib server to request an I/O identifier on the server side. The RPC contains the type of
the operation and the number of bytes to be transfered in the operation.
(3) The server assigns a sequence number to the I/O operation, allocates an I/O identifier
described in 3.3.4 and assigns an I/O daemon to the operation. If the I/O mode of the file
is M UNIX, M LOG, or M RECORD the server sets the file position for this operation and
increases the private or shared file pointer depending on the mode. Then, it sends a request
for an I/O operation to the appropriate I/O daemon. If the I/O mode of the file is M SYNC or
M GLOBAL the server cannot set the file position for the operation or increase the file pointer
until all processes issued the call. In M SYNC the position depends on the the size of the
operation of matching operations of processes with lower number. In M GLOBAL the server

33

3 CONCEPTS OF PFSLIB

13

12

11

109

8

7

6

5

4

memory
get shared

31

to I/O daemon

4

2

1

PFSLib Server

I/O operation
perform

I/O operation
receive result of receive reply

Ph
as

e
I

Ph
as

e
II

Ph
as

e
II

I

PFSLib Client
User level Library level

receive
exit status

copy shared
memory

check state

get
I/O identifier

program
user

iowait()

fork

read/write file

iwrite()
iread()

free
I/O identifier

Child Process

set file position

get
I/O identifier

update file pointer
send request

free
I/O identifier

iodone()

I/O Daemon

from I/O daemon

Figure 3.7: Three Phase I/O operation

34

3.3 IMPLEMENTATION

has to check whether all processes use the same size in the operation. The server searches for
I/O operations with the same sequence number issued after the last setiomode() call. If all
processes called the operation, the PFSLib server sets the file positions for each process and
sends requests for I/O operations to the appropriate I/O daemons. In any case the RPC returns
immediately with the address of the I/O daemon and the servers I/O identifier for this operation.
(4) If the asynchronous operation is a read operation, the data has to be transfered from a forked
child process to the client. Hence, the client process requests a shared memory segment with
the size of the operation. Later, the child process reads the data into this segment and the client
can copy it to the buffer supplied in the read operation.

Phase II: Data transfer

(5) The client process forks a child process which carries out the data transfer.
(6) The iread() or iwrite() call returns an I/O identifier for the operation and the user
program continues its execution while the child process concurrently transfers the data.
(7) The child process performs the I/O operation by sending a RPC to the I/O daemon. In case
of a write operation the data is an argument of the RPC.
(8) If the I/O daemon already received the matching request for this operation from the PFSLib
server, it reads or writes the data from or to the file starting at the position supplied by the server
with the request. If the matching request is not available, the operation will be delayed until the
request arrives.
(9) The child process receives the result of the RPC. In case of a read call it contains the data
requested in the operation.
(10) The I/O daemon sends a reply for the I/O operation to the PFSLib server indicating whether
the operation was successful or not.

Phase III: Free I/O Identifier

(11) As in Intel’s PFS the application program has to free the identifier for an I/O operation by
calling iowait() or iodone().
(12) In case of an iowait() call the client process waits for the child process to exit. If
iodone() is called the client returns immediately if the child process is still running. If the
call read data from a file it is now copied form the shared memory segment to the user’s buffer.
Then, the client sends a RPC request to the PFSLib server checking the global state of the I/O
operation.
(13) The server delays the RPC in case of an iowait() call until the I/O daemon sent the
reply for the operation. After the reply arrived and the client checked the state of the operation,
the server frees the I/O identifier and replies to the RPC.
(14) Finally the client process frees its own I/O identifier and the iowait() or iodone()
call returns.

The decomposition of asynchronous I/O operations in two major parts allows to decouple
initialization of an I/O operation, the file pointer update, and the data transfer. Hence, a process

35

3 CONCEPTS OF PFSLIB

may have more than one unfinished asynchronous I/O operation on the same or different files.
The process graph of the condition–event–system shown in figure 3.8 illustrates this behavior.
The process graph considers only the client and its child processes and does not show the PFSLib
server and I/O daemon.

6 6 11
54

7

21

9

Client 12 14
1

11

9

2
12

7

14
4 5

Process
Child

Process
Child

PFSLib

Figure 3.8: Process Graph of two Asynchronous Operations

The client process issues two subsequent asynchronous I/O operation. Each of the operations
leads to the creation of a child process which concurrently carries out the data transfer. The
reading and writing to the file is serialized only by the PFSLib server. It will not take place until
the server sends a request for the operation to the appropriate I/O daemon. Since the PFSLib
server updates the current file position during the initialization of an I/O operation, the two
operations may overlap.

As mentioned above, in I/O modes M SYNC and M GLOBAL I/O operations may not be
performed until all processes called the operation. The number of bytes read or written in the
operation by every process has to be available before the file access can take place. In I/O mode
M GLOBAL the PFSLib server has to make sure that all processes transfer the same amount
of data in the corresponding operations. In I/O mode M SYNC the position in the file for an
operation depends on the corresponding operations of processes with lower ordinal number.
Additionally, the server cannot calculate the new file pointer position until all operations with
the same sequence number are available. On the other hand, the PFSLib server is able to return
an I/O identifier for the operation immediately without waiting for all corresponding operations.
Thus, a client process may continue with the user’s program if a child process transfers the
data. Figure 3.9 shows the process graph of an asynchronous I/O operation of two processes
in I/O mode M SYNC including the PFSLib server and two I/O daemons and illustrates the
cooperation and concurrent execution of the different processes.

The PFSLib server updates the file pointer and sends the request for the I/O operation to the
I/O daemons while it handles the second RPC (3). Hence, the I/O daemon delays the execution
(8) of the I/O operation until the second client process issued the call. On the other hand, the
asynchronous I/O call of the first client process returns immediately. The client process forks
a child process (5) and continues the execution of the user’s program (6). If it calls additional
asynchronous I/O operations, the calls will be handled the same way. Hence, the client process
itself, will never be blocked in an asynchronous operation.

36

3.3 IMPLEMENTATION

Child

12

10

7

13

14

10

6

13

14

4 5

1 2

2

7

4

8I/O Daemon

5 6

9

11

9

8

12

1 11

33

Client

Client

Server

PFSLib

PFSLib

PFSLib

Process

Child
Process

I/O Daemon

Figure 3.9: Process Graph of File Access in I/O Mode M SYNC

3.3.7 Synchronization

As mentioned above several combinations of I/O modes and I/O operations exist causing
the server to synchronize the clients. A function that always synchronizes the clients is
setiomode(). Thus the server must provide a mechanism which manages this operation.
The problem of synchronization in the special case of parallel I/O can be described as follows:
the server first needs the arguments sent with the requests by all clients to check whether they
are valid. Afterwards, it can execute the procedure and send back the results to all clients again.
For example the clients must agree in the I/O mode which should be set at a certain position in
the file. If an error occurs within one request all other clients must be notified.

to all clients
Send results

PFSLib Client

received
All requests

Receive and

of all client request
store parameter

and calculate results
Handle request

for all clients

Request Reply

PFSLib Server

PFSLib Client PFSLib Client PFSLib Client

Figure 3.10: Synchronization of clients

Figure 3.10 shows the synchronization of the clients. The following steps are executed:

37

3 CONCEPTS OF PFSLIB

1. The PFSLib server receives a request by an arbitrary client which indicates that all clients
have to be synchronized. The arguments are stored within an internal data structure of the
server and first checks are performed. The requested procedure will not be executed and
the response to the client is delayed. An internal synchronization counter is initialized.

2. The following requests performed by the remaining PFSLib clients are handled the same
way. If necessary, the arguments are checked against the already existing arguments from
other clients. The counter is increased with every receiving request.

3. The arrival of the last request is indicated by the synchronization counter. When this
happens and all checks were performed successfully the requested procedure is executed
once for all clients. The final step of the server is to send the responses back to the clients.

To implement the synchronization operation several steps have to be performed. First,
the server skeleton produced by rpcgen has to be patched to avoid the standard one-to-one
request/reply behavior. The function call svc sendreply() is substituted by a new function
pfs sendreply() which can switch between the original behavior for sending replies and
the case of synchronizing the clients. In case of a synchronizing call, the RPC procedure returns
without sending a reply and the server waits for the next request. If all requests are present the
procedure replies to all clients after handling the request.

Due to their lack of internal state PFSLib clients are not aware that the following request
might be a synchronizing one. Two conflicting issues arise in this situation. On the one hand,
a timeout value is necessary for checking a possible error on server side. Thus we take the
default timeout value of 25 seconds in case of a non-synchronizing call. On the other hand, the
timeout is increased when the server handles a synchronizing call because the period of time
within requests of clients arrive might exceed this default value. This means that the clients must
first ask the server whether the following request is a synchronizing one and if so increase the
timeout. The major disadvantage of this approach is that every client request must be preceded
by another request, thus the runtime of a single service request is nearly doubled. Two avoid
this overhead every client keeps information of the actual I/O mode of each shared file.

38

4 Future Work

PFSLib will be integrated into other research projects of the parallel processing group at LRR-
TUM. Most important, it is an integral part of THE TOOLS-SET project which aims at providing an
environment of interoperable tools for PVM running on networks of workstations [28]. PFSLib
provides the parallel file system being added to the PVM programming environment. As for
the tools this implies an extension of their functionalities in order to cope with the additional
facilities provided by PFSLib. However, it also allows to investigate tool functionality which is
based on I/O activities.

The user interface of PFSLib includes function calls which evoke an internal synchronization
of all processes of an application. Using these calls increases the danger of deadlock situations.
Therefore, a debugger must support this new situation. Already available functionality which
deals with messages and message passing could for example be adapted to files and file I/O
operations: inspection of files, modification of files, breakpoints being triggered on conditions
like specific values in a file, on processes entering or exiting I/O calls provided by PFSLib.

The same holds for the program flow visualizer [1]. Currently, it shows interactions between
active objects (PVM tasks) by means of communication (message passing, collective operations,
barrier synchronization). The same principles can be applied to file I/O operations. The user
is interested in observing how a PFSLib operation in a specific I/O mode influences the logical
behavior of the parallel application program with respect to serialization, deadlocks, degree of
parallelism and other aspects.

With parallel I/O being an integral part of parallel applications we have to deal with new
problems concerning program tuning. The performance analyzer of THE TOOL-SET environment
will be enhanced by I/O related functionality. We will measure I/O performance on three levels
of abstraction: the level of the virtual machine, of the individual node, and of the active
program object. On machine level the performance analyzer will offer functionality to evaluate
measures like the total number of accessed parallel files, number of bytes read and written,
total time spent in I/O calls etc. At node level we will already be able to distinguish between
node local disks and non-local disks (accessed via e.g. NFS). Functionality will be provided
to investigate which processes on a node access a specific file during what period of time.
Finally, the process level provides a detailed view on a single process’ I/O activities. Already
existing functionality which allows an automatic focusing of active measurements onto nodes
with critical or interesting behavior will be extended to be triggered by I/O performance values.
Thus, the performance analyzer will be able to automatically show the user values of particular
interest.

39

4 FUTURE WORK

From the point of view of all these interactive development tools, files are just a new type of
objects which have to be observed. Technically this will be achieved by adapting the monitoring
system which provides the set of tools with means to observe and manipulate the system. As the
latter is now enhanced by a parallel I/O facility also monitoring has to be enhanced in accordance
to that.

THE TOOL-SET will be based on an OMIS (open monitoring interface specification) compliant
monitoring system which currently is designed and implemented at LRR-TUM [29]. The
integration of PFSLib into the parallel programming environment will be the first test case for
exploiting extendibility mechanisms described in the OMIS document.

Besides a necessary integration of PFSLib into existing tool functionality it will also provide
THE TOOL-SET with new capabilities. PFSLib can be used to implement a parallel trace man-
agement facility which will be attached as one special tool to the monitoring system. Having
PFSLib eliminates further development of tracing tools for the monitors. It provides mecha-
nisms to write trace files from various points of our virtual machine and to read the same file
from e.g. the central point of control of a trace driven development tool.

Furthermore, PFSLib will be integrated with the checkpointing system CoCheck [32]. It
allows a more efficient management of global checkpoints which is a prerequisite for using
checkpointing for purposes of improved cyclic debugging or performance analysis. An efficient
handling of checkpoints will allow us to store several sets of checkpoints and to reset programs
to positions preceding suspicious situations. Starting from these positions we can activate any
tool of THE TOOL-SET and investigate program behavior.

In order to optimally support our plans of integration it is inevitable to further improve the
performance and efficiency of PFSLib. Two major issues have to be covered both of which are
related to the lack of parallelism in the current implementation of PFSLib.

First of all, file distribution has to be integrated. For the moment being, all data is written
to a single disk which is located somewhere in the system. It is up to the user’s responsibility
to ensure efficient access to that disk by e.g. selecting a local disk of the node where the
PFSLib server resides. An increase in performance can mainly be achieved by increasing
locality in disk access. Every file must be separated into pieces where the pieces are located
on the local disks of those nodes which frequently access them. This so called file distribution
technique will be integrated into PFSLib. Appropriate algorithms will be taken from literature
and will be compared with respect to performance. Future research oriented work will combine
file distribution and load balancing strategies: single segments will be treated as migrate-able
objects and will be transferred to disks where a higher degree of locality can be achieved.
Migration decisions will be based on I/O performance metrics measured by the monitoring
system of THE TOOL-SET.

Finally, PFSLib will be used by the application programmers group at LRR-TUM. Not only
will we evaluate the adequance of the user interface of PFSLib but also will we investigate the
question which additional access modes might be of interest for particular application classes.
In the end, the user interface will be enhanced to meet specialized user requirements.

40

Acknowledgements

We would like to thank the Intel Foundation for their support of this project. The long lasting
cooperation with Intel and research grants from the Intel Foundation made it possible not only do
develop the parallel file system PFSLib but also the programminglibrary NXLib. Both packages
together provide the user with an Intel Paragon supercomputer emulator running on a network
of workstations.

Furthermore, we would like to thank Norman Thomson for his work within the framework
of this project, especially for implementation of improvements and for extensive testing of the
code.

41

Bibliography

[1] P. Braun and R. Wismüller. Visualization of parallel program execution. In A. Bode,
T. Ludwig, V. Sunderam, and R. Wismüller, editors, Workshop on PVM, MPI, Tools, and
Applications, pages 33–43. Technische Universität München, November 1995.

[2] Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. Technical Report RC
19998, IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598,
USA, March 1995.

[3] Peter F. Corbett, Dror G. Feitelson, Jean-Pierre Prost, and Sandra Johnson Baylor. Parallel
access to files in the Vesta file system. In Robert Werner, editor, Supercomputing ’93, pages
472–481, Portland, November 1993. IEEE Computer Society Press, Los Alamitos.

[4] Peter F. Corbett, Sandra Johnson Baylor, and Dror G. Feitelson. Overview of the Vesta
parallel file system. ACM SIGARCH Computer Achitecture News, 21(5):7–14, December
1993.

[5] Peter Corbett, Dror Feitelson, Yarsun Hsu, Jean-Pierre Prost, Marc Snir, Sam Fineberg,
Bill Nitzberg, Bernhard Traversat, and Parkson Wong. MPI-IO: A parallel I/O interface for
MPI version 0.2. Technical Report RC 19841 (87784), IBM T.J. Watson Research Center,
Yorktown Heights, NY 10598, USA, November 1994.

[6] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg, Prost Jean-Pierre,
Marc Snir, Bernard Traversat, and Parkson Wong. Overview of the MPI-IO parallel I/O
interface. In Ravi Jain, John Werth, and J.C. Browne, editors, 3rd Annual Workshop on
Input/Output in Parallel and Distributed Systems at 9th International Parallel Processing
Symposium, pages 1–15, Santa Barbara, April 1995.

[7] Peter Corbett, Dror Feitelson, Yarsun Hsu, Jean-Pierre Prost, Marc Snir, Sam Fineberg, Bill
Nitzberg, Bernhard Traversat, and Parkson Wong. MPI-IO: A parallel I/O interface for MPI
version 0.3. NAS Technical Report NAS–95–002, NASA Ames Research Center, Moffett
Field, CA 94035-1000, USA, January 1995.

[8] Peter F. Corbett, Dror G. Feitelson, Jean-Pierre Prost, George S. Almasi, Sandra John-
son Baylor, Anthony S. Bolmarcich, Yarsun Hsu, Julian Satran, Marc Snir, Robert Colao,
Brian D. Herr, Joe Kavaky, Thomas R. Morgan, and Anthony Zlotek. Parallel file system for
the IBM SP computer. IBM Systems Journal, 34(2):222–248, 1995.

42

BIBLIOGRAPHY

[9] Thomas W. Crockett. File concepts for parallel I/O. In Supercomputing ’89, pages 574–579.
acm Press, New York, November 1989.

[10] Erik DeBenedictis and Juan Miguel del Rosario. nCUBE parallel I/O software. In 11th
Annual IEEE International Phoenix Conference on Computers and Communications, pages
0117–0124, Scottsdale, April 1992. IEEE Computer Society Press, New York.

[11] Erik P. DeBenedictis and Juan Miguel del Rosario. Modular scalable I/O. Journal of
Parallel and Distributed Computing, 17:122–128, 1993.

[12] Juan Miguel del Rosario. A guide to striped files and parallel I/O in nCUBE system
software, release 3.1. Technical Report nCUBE-TR002-920615, nCUBE, 919 East Hillsdale
Boulevard, Foster City, CA 94404, June 1992.

[13] Juan Miguel del Rosario. High performance parallel I/O on the nCUBE 2. IEICE Trans-
action (English Edition), August 1992.

[14] Peter C. Dibble and Michael L. Scott. Beyond striping: The bridge multiprocessor file
system. Computer Architecture News, 17(5):32–39, September 1989.

[15] Peter C. Dibble and Michael L. Scott. The parallel interleaved file system: A solution
to the multiprocessor I/O bottleneck. under Revision for IEEE Transactions on Parallel and
Distributed Systems, April 1990.

[16] Peter C. Dibble, Michael L. Scott, and Carla Schlatter Ellis. Bridge: A high-performance
file system for parallel processors. In 8th International Conference on Distributed Computer
Systems, pages 154–161, June 1988.

[17] Dror G. Feitelson, Peter F. Corbett, and Jaen-Pierre Prost. Performance of the Vesta
parallel file system. Technical Report RC 19760, IBM Research Division, T.J. Watson
Research Center, Yorktown Heights, NY10598, USA, September 1994.

[18] Dror G. Feitelson, Peter F. Corbett, and Jean-Piere Prost. Performance of the Vesta parallel
file system. In 9th International Parallel Processing Symposium, pages 150–158, Santa
Barbara, April 1995. IEEE Computer Society Press.

[19] N. Galbreath, W. Gropp, and D. Levine. Applications-driven parallel I/O. In Robert Werner,
editor, Supercomputing ’93, pages 462–471, Portland, November 1993. IEEE Computer
Society Press, Los Alamitos.

[20] Andrew S. Grimshaw and E. Loyot Jr. ELFS: Object–oriented extensible file systems.
Computer Science Report TR-91-14, University of Virginia, Charlottesville, VA 22903-2442,
USA, April 1991.

[21] Andrew S. Grimshaw and Jeff Prem. High performance parallel file objects. In 6th
Distributed Memory Computing Conference, pages 720–723. IEEE Computer Society Press,
April 1991.

43

BIBLIOGRAPHY

[22] A. S. Grimshaw. The Mentat run-time system: Support for medium grained parallel com-
putation. In 5th Distributed Memory Computing Conference, pages 1064–1073, Charleston,
April 1990.

[23] A. S. Grimshaw. An introduction to parallel object-oriented parallel programming with
Mentat. Computer Science Report TR-91-07, University of Virginia, 1991.

[24] Sandra Johnson Baylor and C. Eric Wu. Parallel I/O workload characteristics using Vesta.
Research Report RC 19940, T.J. Watson Research Center, IBM Research Division, Yorktown
Heights, NY 10598, USA, February 1995.

[25] Sandra Johnson Baylor and C. Eric Wu. Parallel workload characteristics using Vesta. In
Ravi Jain, John Werth, and J. C. Browne, editors, 3rd Annual Workshop on Input/Output in
Parallel and Distributed Systems at 9th International Parallel Processing Symposium, pages
16–29, Santa Barbara, April 1995.

[26] John F. Karpowich, Andrew S. Grimshaw, and James C. French. Extensible file systems
(ELFS): An object–oriented approach to high performance file I/O. Computer Science Tech-
nical Report CS-94-28, University of Virginia, Department of Computer Science, Thornton
Hall, Charlottesville, VA 22903-2442, USA, July 1994.

[27] David Kotz. Multiprocessor file system interfaces. In 2nd International Conference on
Parallel and Distributed Information Systems, pages 194–201, 1993.

[28] T. Ludwig and R. Wismüller. THE TOOL-SET environment. In A. Bode, T. Ludwig,
V. Sunderam, and R. Wismüller, editors, Workshop on PVM, MPI, Tools, and Applications,
pages 28–32. Technische Universität München, November 1995.

[29] T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. OMIS — On-line Monitoring Inter-
face Specification. Technical Report TUM-I9609, SFB-Bericht Nr. 342/05/96 A, Technische
Universität München, Munich, Germany, February 1996.

[30] Steven A. Moyer and V. S. Sunderam. PIOUS: An architecture for parallel I/O in distributed
computing environments. ftp://ftp.scri.fsu.edu/pub/cluster-workshop.93/PIOUS.ps.Z, De-
cember 1993.

[31] Steven A. Moyer and V. S. Sunderam. PIOUS for PVM Version 1.2 User’s Guide and
Reference Manual. Department of Mathematics and Computer Science, Emory University,
Atlanta, GA 30322, USA, May 1995.

[32] Georg Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Proceedings
of the International Parallel Processing Symposium, pages 526–531, Honolulu, HI, April
1996. IEEE Computer Society Press, 10662 Los Vaqueros Circle, P.O. Box 3014, Los
Alamitos, CA 90720-1264.

[33] Richard W. Stevens. Unix Network Programming, chapter 18 Remote Procedure Calls,
pages 692–719. Prentice-Hall, 1990.

44

BIBLIOGRAPHY

[34] Richard W. Stevens. Unix Network Programming, chapter 3.8 System V IPC, pages
121–126. Prentice-Hall, 1990.

[35] Sun Microsystems. RPC: Remote Procedure Call, Protocol Specification, Version 2, June
1988. RFC 1057.

[36] Sun Microsystems. XDR: External Data Representation Standard, June 1988. RFC 1014.

[37] Andrew Witkowski, Kumar Chandrakumar, and Greg Macchio. Concurrent I/O system
for the hypercube multiprocessor. In Geoffrey Fox, editor, 3rd Conference on Hypercube
Concurrent Computers and Applications, pages 1398–1407. acm Press, New York, January
1988.

45

BIBLIOGRAPHY

46

Manual

MANUAL

pfsd (1 PFSLib) pfsd (1 PFSLib)

Name

pfsd — PFSLib file access management server

Synopsis

pfsd [number of I/O daemons]

Paramters

number of I/O daemons pfsd starts the specified number of basic I/O daemons. If no
argument is specified pfsd starts 8 basic I/O daemons by default.

Description

pfsd is PFSLib’s file access management server. pfsd coordinates file access to files
using PFSLib. Additionally, it handles basic I/O operation with an amount of data up to a
specified or default threshold. It starts basic I/O daemons iod which handle I/O operations
above the treshold. Application processes connect to pfsd using Sun’s RPC facility with
AUTH UNIX authentication.

Environment

The PATH environment variable is used to located the iod binary.

See also

iod(8 PFSLib)

Bugs

Currently, the user id of the application processes must be identical to the user id of pfsd.
Hence, a single pfsd cannot serve more than one user.

Since PFSLib uses the portmapper facility two or more pfsd processes cannot run on a
single machine.

1

MANUAL

pfsdexit (1 PFSLib) pfsdexit (1 PFSLib)

Name

pfsdexit — tell the PFSLib file access management server to exit

Synopsis

pfsdexit pfsd host

Paramters

pfsd host Host name the pfsd is running on.

Description

pfsdreset sends a RPC to a pfsd which causes the process to terminate all forked iod
process and itself.

See also

open(3 PFSLib), gopen(3 PFSLib), pfsd(1 PFSLib), iod(8 PFSLib)

Bugs

The RPC call might return with an error if the pfsd exits before the pfsdexit program
received the RPC reply.

2

MANUAL

pfsdreset (1 PFSLib) pfsdreset (1 PFSLib)

Name

pfsdreset — reset the PFSLib file access management server

Synopsis

pfsdreset pfsd host [filename : : :]
Paramters

pfsd host Host name the pfsd is running on.

filename Name of files to reset. The file name must be identical to the name used in the
open() or gopen() call.

Description

pfsdreset resets the internal data structures of a pfsd for all files or specified files.

See also

open(3 PFSLib), gopen(3 PFSLib), pfsd(1 PFSLib)

3

MANUAL

pfsdstat (1 PFSLib) pfsdstat (1 PFSLib)

Name

pfsdstat — Tell the PFSLib file access management server to print status information

Synopsis

pfsdstat pfsd host [-f filename] [-i] [-v]

Paramters

pfsd host Host name the pfsd is running on.

-f filename Makes the pfsd and/or iod print status information for the specified file name
only.

-i Tells iod processes to print status information as well.

-v Verbose flag. Makes pfsd print all its internal data structures no matter if they
are currently used or not.

Description

pfsdstat sends a RPC request to a pfsd located an the machine called pfsd host which
makes the pfsd print internal status information to stdout. By default the pfsd only
prints information on data structures which are in use. This command is intended for
debugging purposes.

See also

pfsd(1 PFSLib), iod(8 PFSLib)

Bugs

The status information will not be printed by the pfsdstat program but by the pfsd and
iod programs.

4

MANUAL

close() (3 PFSLib) close() (3 PFSLib)

Name

close() — Closes a single accessed or a shared file

Synopsis

#include <pfslib.h>

int pfslib close (int FileDescriptor)

#define close pflsib close

Paramters

FileDescriptor File descriptor of a single accessed or shared file.

Description

The pfslib close() function disconnects the process from the shared file or from a regular
UNIX file. The pfslib close() call in PFSLib behaves identically to the standard UNIX
close() call for files.

For compatibility reasons to Intel’s PFS, close is defined inpfslib.h as a C preprocessor
macro to overlay the C-library call.

Return Values

On success close returns 0. On failure it returns -1 and sets errno to indicate the error.

Errors

If the pfslib close function fails, errno may be set to one of the error code values set by
the standard Unix close() function of the following value.

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access the
pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not a valid PFSLib file
descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incorrect.

EPFSLMIXIO PFSLib: Mixed file operations. At least one of the processes issued a
different synchronizing operation.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib perror() to
print the appropriate error message.

See also

close(2), open(3 PFSLib), gopen(3 PFSLib), pfslib perror(3 PFSLib)

5

MANUAL

cread() (3 PFSLib) cread() (3 PFSLib)

Name

cread() — Reads from a shared file and blocks the calling process until the read com-
pletes. (Synchronous read)

Synopsis

#include <pfslib.h>

void cread (int FileDescriptor,
char * Buffer,
unsigned int NBytes)

long cread (int FileDescriptor,
char * Buffer,
unsigned int NBytes)

#include <uio.h>
#include <pfslib.h>

void creadv (int FileDescriptor,
struct iovec * iov,
int iovCount)

long creadv (int FileDescriptor,
struct iovec * iov,
int iovCount)

Paramters

FileDescriptor File descriptor of a shared file.

Buffer Pointer to the buffer in which to store the data after it is read form the file.

NBytes Number of bytes to read from the file.

iov Pointer to an array of iovec structures that identifies the buffers
into which the data read is placed. The iovec structure is defines in
sys/uio.h.

iovCount Number of iovec structures pointed to by the iov parameter.

6

MANUAL

Description

Other than the return values and additional errors, the cread() and creadv() functions are
identical to the read() and readv() functions, respectively.

These are synchronous calls. The calling process waits (blocks) until the read completes.
Use the iread() and ireadv() functions to read from a file without blocking the calling
process.

Reading past the end of a file causes an error. You can do one of the following to prevent
end-of-file errors.� Use the iseof() function to detect end-of-file before calling the cread() function.� Use the lseek() function to determine the length of a file before calling cread().� Use the cread() or creadv() function to detect end-of-file or that the number of

bytes read is less than the number of bytes requested.

Return Values

Upon successful completion, the cread() and creadv() functions return control to the
calling process without returning a value. Otherwise cread() and creadv() print an error
message to standard error and cause the calling process to terminate.

On success cread() and creadv() return the number of bytes read. On failure cread()
and creadv() return -1 and set errno to indicate the error. These functions return 0 (zero)
if end-of-file is reached.

Errors

If the cread or creadv functions fail, errno may be set to one of the error code values
set by the standard Unix close(), lseek(), open(), and read() functions or to the following
values.

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access
the pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not a valid PFSLib
file descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incor-
rect.

EPFSLBADID PFSLib: Bad I/O id. The I/O id sent to the server is incorrect.

EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSLIOLEN PFSLib: Too large I/O operation. The number of bytes in the
operation is higher than PFSLib’s maximum value.

EPFSLMIXIO PFSLib: Mixed file operations. At least one of the processes
issued a different synchronizing operation.

7

MANUAL

EPFSLMREQUEST PFSLib: Too many outstanding request. There is no free I/O id
left.

EPFSLNBYTES PFSLib: Read or written to few data. The call read less bytes than
requested.

EPFSLNOIOD PFSLib: Couldn’t get an I/O daemon. The server could not find
an iod for the job.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib perror()
to print the appropriate error message.

See also

cwrite(3 PFSLib), iread(3 PFSLib), iseof(3 PFSLib), iwrite(3 PFSLib),
setiomode(3 PFSLib), lseek(3 PFSLib), open(3 PFSLib), read(2)

8

MANUAL

cwrite() (3 PFSLib) cwrite() (3 PFSLib)

Name

cwrite() — Writes to a shared file and blocks the calling process until the write com-
pletes. (Synchronous write)

Synopsis

#include <pfslib.h>

void cwrite (int FileDescriptor,
char * Buffer,
unsigned int NBytes)

long cwrite (int FileDescriptor,
char * Buffer,
unsigned int NBytes)

#include <uio.h>
#include <pfslib.h>

void cwritev (int FileDescriptor,
struct iovec * iov,
int iovCount)

long cwritev (int FileDescriptor,
struct iovec * iov,
int iovCount)

Paramters

FileDescriptor File descriptor of a shared file.

Buffer Pointer to the buffer containing the data to be written.

NBytes Number of bytes to write to the file.

iov Pointer to an array of struct iovec structures that identifies the
buffers containing the data to be written. The iovec structure is defines in
sys/uio.h.

iovCount Number of iovec structures pointed to by the iov parameter.

9

MANUAL

Description

Other than return values and additional error, the cwrite() and cwrite() functions are
identical to the write() and writev() functions, respectively.

These are a synchronous calls. The calling process waits (blocks) until the write completes.
Use the iwrite() and iwritev() functions to write to a file without blocking the calling
process.

Return Values

Upon successful completion, the cwrite() and cwritev() functions return control to the
calling process without returning a value. Otherwise cwrite() and cwritev() print an error
message to standard error and cause the calling process to terminate.

On success cwrite() and cwritev() return the number of bytes written. On failure
cwrite() and cwritev() return -1 and set errno to indicate the error.

Errors

If the cwrite or cwritev functions fail, errno may be set to one of the error code values
set by the standard Unix close(), lseek(), open(), and write() functions or to the following
values.

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access
the pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not a valid PFSLib
file descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incor-
rect.

EPFSLBADID PFSLib: Bad I/O id. The I/O id sent to the server is incorrect.

EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSLIOLEN PFSLib: Too large I/O operation. The number of bytes in the
operation is higher than PFSLib’s maximum value.

EPFSLMIXIO PFSLib: Mixed file operations. At least one of the processes
issued a different synchronizing operation.

EPFSLMREQUEST PFSLib: Too many outstanding request. There is no free I/O id
left.

EPFSLNBYTES PFSLib: Read or written to few data. The call wrote less bytes
than requested.

EPFSLNOIOD PFSLib: Couldn’t get an I/O daemon. The sever could not find an
iod for the job.

EPFSLREMOTE PFSLib: An error occured on the server side. Use pfslib perror()
to print the appropriate error message.

10

MANUAL

See also

cread(3 PFSLib), iread(3 PFSLib), iseof(3 PFSLib), iwrite(3 PFSLib),
setiomode(3 PFSLib), lseek(3 PFSLib), open(3 PFSLib), write(2)

11

MANUAL

gopen() (3 PFSLib) gopen() (3 PFSLib)

Name

gopen() — Performs a global open of a file for reading or writing, sets the I/O mode of
the file, and performs a global synchronization.

Synopsis

#include <fcntl.h>
#include <sys/types.h>
#include <pfslib.h>

int gopen (char * FileName,
int OpenFlags,
int IOMode,
mode t Mode)

int gopen (char * FileName,
int OpenFlags,
int IOMode,
mode t Mode)

Paramters

FileName Pointer to a pathname of the file to be opened or created.

OpenFlags Specifies the type of access, special open processing, the type of update, and
the initial state of the open file. See open().

IOMode I/O mode to be assigned to the file. See setiomode().

Mode Specifies the permissions of the file to be created. If the file already exists,
this parameter is ignored. See open().

Description

The gopen() function performs a global open call which synchronizes the processes; all
processes opens the same file without issuing multiple I/O requests.

If the parameter FileName of a shared file does not begin with ’/’ (slash), the path name of
the current working directory as returned by getcwd is prepended to the file name which
is used by the pfsd.

Warning!
Be aware that a shared file will be opened by the pfsd program on the machine
it is located on. If you use an absolute path name make sure it is accessible
on the pfsd’s machine. If you use a file name which does not begin with ’/’
(slash), make sure the pathname returned by getcwd(), is accessible on the
psfd’s machine.

12

MANUAL

Return Values

On success gopen() and gopen() return a file descriptor of the shared file. On failure
gopen() will print an error message to standard error and cause the calling process to
terminate; gopen() returns -1 and sets error to indicate the error.

Errors

If the gopen() function fails, errno may be set to one of the error code values set by
the standard Unix fstat(), getcwd(), lseek(), malloc(), and open() functions or to the
following values.

ENAMETOOLONG Length of the file name string exceeds its maximum.

EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSLNDELAY PFSLib: O NDELAY is not supported. PFSLib does not support
non-blocking I/O using the O NDELAY flag. Use asynchronous
I/O operations (e.g. iread()).

EPFSLMFILE PFSLib: Too many open files. The sever has no more space left
in its file table.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib perror()
to print the appropriate error message.

See also

close(3 PFSLib), getcwd(3), open(2), open(3 PFSLib), setiomode(3 PFSLib)

Bugs

As file descriptors of shared files are inherited by a process created with the fork() system
call, file access might lead to errors since parent and child process use the same socket
connection to the PFSLib daemon process.

13

MANUAL

iodone() (3 PFSLib) iodone() (3 PFSLib)

Name

iodone() — Determines whether an asynchronous read or write operation is complete.

Synopsis

#include <pfslib.h>

long iodone (long IOIdentifier)

long iodone (long IOIdentifier)

Paramters

IOIdentifier Non-negative I/O id returned by an asynchronous read or write library call
(e.g. iread() or iwrite()).

Description

The iodone() function determines whether the asynchronous read or write operation
associated with the the IOIdentifier parameter is complete.

Return Values

On success iodone and iodone() return 1 if the read or write operation is complete. If
the operation is not yet complete they return 0 (zero). On failure iodone() prints an error
message to standard error causes the calling process to terminate; iodone() returns -1 and
sets errno to indicate the error.

Errors

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access
the pfsd.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incor-
rect.

EPFSLBADID PFSLib: Bad I/O id.

EPFSLCHLDEXIT PFSLib: Asynchronous I/O process terminated unsuccessfuly.

EPFSLCHLDSIG PFSLib: Asynchronous I/O process terminated by signal.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib perror()
to print the appropriate error message.

See also

iowait(3 PFSLib), iread(3 PFSLib), iwrite(3 PFSLib)

14

MANUAL

iomode() (3 PFSLib) iomode() (3 PFSLib)

Name

iomode() — gets the I/O mode of a file.

Synopsis

#include <pfslib.h>

long iomode (int FileDescriptor)

long iomode (int FileDescriptor)

Paramters

FileDescriptor File descriptor of a shared file.

Description

The iomode() functions determines the current I/O mode of the file identified by the
FileDescriptor parameter.

Return Values

On success iomode() and iomode() return the current I/O mode of the file identified by
the FileDescriptor parameter. On failure iomode() prints an error message to standard
error and causes the calling process to terminate; iomode() returns -1 and sets errno to
indicate the error.

Errors

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access the
pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not a valid PFSLib file
descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incorrect.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib perror() to
print the appropriate error message.

See also

gopen(3 PFSLib), setiomode(3 PFSLib)

15

MANUAL

iowait() (3 PFSLib) iowait() (3 PFSLib)

Name

iowait() — Waits (blocks) until an asynchronous read or write operation completes.

Synopsis

#include <pfslib.h>

void iowait (long IOIdentifier)

long iowait (long IOIdentifier)

Paramters

IOIdentifier Non-negative I/O id returned by an asynchronous read or write library call
(e.g. iread() or iwrite()).

Description

The iowait() function waits until an asynchronous read or write operation associated with
the the IOIdentifier parameter completes.

Return Values

Upon successful completion, the iowait() function returns control to the calling process
without returning a value. Otherwise iowait() prints an error message to standard error
and causes the calling process to terminate.

On success iowait() returns 0. On failure it returns -1 and sets errno to indicate the error.

Errors

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access
the pfsd.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incor-
rect.

EPFSLBADID PFSLib: Bad I/O id.

EPFSLCHLDEXIT PFSLib: Asynchronous I/O process terminated unsuccessfuly.

EPFSLCHLDSIG PFSLib: Asynchronous I/O process terminated by signal.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib perror()
to print the appropriate error message.

See also

iodone(3 PFSLib), iread(3 PFSLib), iwrite(3 PFSLib)

16

MANUAL

iread() (3 PFSLib) iread() (3 PFSLib)

Name

iread() — Reads from a shared file and returns immediately. (Asynchronous read)

Synopsis

#include <pfslib.h>

long iread (int FileDescriptor,
char * Buffer,
unsigned int NBytes)

long iread (int FileDescriptor,
char * Buffer,
unsigned int NBytes)

#include <uio.h>
#include <pfslib.h>

long ireadv (int FileDescriptor,
struct iovec * iov,
int iovCount)

long ireadv (int FileDescriptor,
struct iovec * iov,
int iovCount)

Paramters

FileDescriptor File descriptor of a shared file.

Buffer Pointer to the buffer in which to store the data after it is read form the file.

NBytes Number of bytes to read from the file.

iov Pointer to an array of iovec structures that identifies the buffers
into which the data read is placed. The iovec structure is defines in
sys/uio.h.

iovCount Number of iovec structures pointed to by the iov parameter.

Description

Other than the return values, additional errors, and the asynchronous behavior the iread()
and ireadv() functions are identical to the read() and readv() functions, respectively.

These calls are asynchronous calls. They return to the calling process immediately; the
calling process continues its execution while the read is being done. Use iowait() or
iodone() to determine whether the read operation completed.

Use the iseof() function to detect end-of-file.

17

MANUAL

Warning!
The number of available I/O ids is limited to 20 per process. If there are more
than 20 outstanding operations, the call will return with an error. Use iowait()
ot iodone() to free I/O ids of completed I/O operations.

Return Values

Upon successful completion, the iread(), iread(), ireadv(), and ireadv() functions return
and non-negative I/O id for use in iodone() and iowait(). On failure, iread() and ireadv()
print an error message to standard error and cause the calling process to terminate; iread()
and ireadv() return -1 and set errno to indicate the error.

Errors

If the iread or ireadv functions fail, errno may be set to one of the error code values
set by the standard Unix close(), fork(), lseek(), malloc(), open(), read(), and shmget()
functions or to the following values.

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access
the pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not a valid PFSLib
file descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incor-
rect.

EPFSLBADID PFSLib: Bad I/O id. The I/O id sent to the server is incorrect.

EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSLIOLEN PFSLib: Too large I/O operation. The number of bytes in the
operation is higher than PFSLib’s maximum value.

EPFSLMIXIO PFSLib: Mixed file operations. At least one of the processes
issued a different synchronizing operation.

EPFSLMREQUEST PFSLib: Too many outstanding request. There is no free I/O id
left.

EPFSLNOIOD PFSLib: Couldn’t get an I/O daemon. The sever could not find an
iod for the job.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib perror()
to print the appropriate error message.

See also

cread(3 PFSLib), cwrite(3 PFSLib), gopen(3 PFSLib), open(3 PFSLib),
iodone(3 PFSLib), iowait(3 PFSLib), iseof(3 PFSLib), iwrite(3 PFSLib),
setiomode(3 PFSLib)

18

MANUAL

iseof() (3 PFSLib) iseof() (3 PFSLib)

Name

iseof() — Determines whether the file pointer is at end-of-file.

Synopsis

#include <pfslib.h>

long iseof (int FileDescriptor)

long iseof (int FileDescriptor)

Paramters

FileDescriptor File descriptor of a shared file.

Description

Use the iseof() function to determine whether the file pointer is at end-of-file. This function
blocks until all asynchronous requests made by the process to the file are processed.

Return Values

Upon successful completion the iseof() and iseof() function returns 0 (zero) if the file
pointer is not at end-of-file or 1 if the file pointer is at end-of-file. On failure iseof() prints
an error message to standard error and causes the calling process to terminate.; iseof()
returns -1 and sets errno to indicate the error.

Errors

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access the
pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not a valid PFSLib file
descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incorrect.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib perror() to
print the appropriate error message.

See also

cread(3 PFSLib), cwrite(3 PFSLib), iread(3 PFSLib), iwrite(3 PFSLib), lseek(3 PFSLib)

19

MANUAL

iwrite() (3 PFSLib) iwrite() (3 PFSLib)

Name

iwrite() — Writes to a shared file and returns immediately. (Asynchronous write)

Synopsis

#include <pfslib.h>

void iwrite (int FileDescriptor,
char * Buffer,
unsigned int NBytes)

long iwrite (int FileDescriptor,
char * Buffer,
unsigned int NBytes)

#include <uio.h>
#include <pfslib.h>

void iwritev (int FileDescriptor,
struct iovec * iov,
int iovCount)

long iwritev (int FileDescriptor,
struct iovec * iov,
int iovCount)

Paramters

FileDescriptor File descriptor of a shared file.

Buffer Pointer to the buffer containing the data to be written.

NBytes Number of bytes to write to the file.

iov Pointer to an array of iovec structures that identifies the buffers contain-
ing the data to be written. The iovec structure is defines in sys/uio.h.

iovCount Number of iovec structures pointed to by the iov parameter.

Description

Other than the return values, additional errors, and the asynchronous behavior the iwrite()
and iwritev() functions are identical to the write() and writev() functions, respectively.

These calls are asynchronous calls. They return to the calling process immediately; the
calling process continues its execution while the write is being done. Use iowait() or
iodone() to determine whether the read operation completed.

20

MANUAL

Warning!
The number of available I/O ids is limited to 20 per process. If there are more
than 20 outstanding operations, the call will return with an error. Use iowait()
ot iodone() to free I/O ids of completed I/O operations.

Return Values

Upon successful completion, the iwrite(), iwrite(), iwritev(), and iwritev() functions
return and non-negative I/O id for use in iodone() and iowait(). On failure, iwrite() and
iwrite() print an error message to standard error and cause the calling process to terminate;
iwrite() and iwritev() return -1 and set errno to indicate the error.

Errors

If the iwrite or iwritev functions fail, errno may be set to one of the error code values
set by the standard Unix close(), fork(), lseek(), malloc(), open(), and write() functions
or to the following values.

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access
the pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not a valid PFSLib
file descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incor-
rect.

EPFSLBADID PFSLib: Bad I/O id. The I/O id sent to the server is incorrect.

EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSLIOLEN PFSLib: Too large I/O operation. The number of bytes in the
operation is higher than PFSLib’s maximum value.

EPFSLMIXIO PFSLib: Mixed file operations. At least one of the processes
issued a different synchronizing operation.

EPFSLMREQUEST PFSLib: Too many outstanding request. There is no free I/O id
left.

EPFSLNOIOD PFSLib: Couldn’t get an I/O daemon. The sever could not find an
iod for the job.

EPFSLREMOTE PFSLib: An error occured on the server side. Use pfslib perror()
to print the appropriate error message.

See also

cread(3 PFSLib), cwrite(3 PFSLib), gopen(3 PFSLib), open(3 PFSLib),
iodone(3 PFSLib), iowait(3 PFSLib), iseof(3 PFSLib), iread(3 PFSLib),
setiomode(3 PFSLib)

21

MANUAL

lseek() (3 PFSLib) lseek() (3 PFSLib)

Name

lseek() — Set the file pointer to the requested position.

Synopsis

#include <sys/types.h>
#include <pfslib.h>

off t pfslib lseek (int Filedescriptor,
off t Offset,
int Whence)

#define lseek pfslib lseek

Paramters

FileDescriptor File descriptor of a single accessed or shared file.

Offset The value, in bytes, to be used together with the Whence parameter to set
the file pointer position.

Whence Specifies how Offset affects the file position. The values for the Whence
parameter are as follows:

SEEK SET Sets the file position to Offset.

SEEK CUR Sets the file position to the current position plus Offset.

SEEK END Sets the file position to end-of-file plus Offset.

Description

The pfslib lseek() function sets the file position of a shared file or a regular Unix file.
Other than additional errors, it is identical to the standard lseek() system call with the
following exceptions when accessing a shared file.

If the I/O mode of the shared file is M GLOBAL, M RECORD, or M SYNC, pfs-
lib lseek() synchronizes the processes and the requested file position must be the same
for all processes.

For compatibility reasons to Intel’s PFS, lseek is defined as a C preprocessor macro to
overlay the C-library call.

Return Values

Upon successful completion pfslib leek() returns the new position of the file pointer as
measured in bytes from the beginning of the file. On failure it returns -1 and sets errno to
indicate the error.

22

MANUAL

Errors

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access the
pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not a valid PFSLib file
descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incorrect.

EPFSLMIXIO PFSLib: Mixed file operations. At least one of the processes issued a
different synchronizing operation.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib perror() to
print the appropriate error message.

See also

lseek(2)

23

MANUAL

lsize() (3 PFSLib) lsize() (3 PFSLib)

Name

lsize() — Increases the size of a file

Synopsis

#include <sys/types.h>
#include <pfslib.h>

long lsize (int Filedescriptor,
off t Offset,
int Whence)

long lsize (int Filedescriptor,
off t Offset,
int Whence)

Paramters

FileDescriptor File descriptor of a shared file.

Offset The value, in bytes, to be used together with the Whence parameter to
increase the file size.

Whence Specifies how Offset affects the file size. The values for the Whence
parameter are defined in pfslib.h as follows:

SIZE SET Sets the file size to the greater of the current size or Offset.

SIZE CUR Sets the file size to the greater of the current size or the
current location plus Offset.

SIZE END Sets the file size to the greater of the current size or the
current size plus Offset.

Description

The lsize() function increases the size of the file according to the Offset and Whence
parameters.

This functions is merely included for compatibility with Intel’s PFS.

Return Values

On success, lsize() and lsize() return the new size of the file. On failure, lsize prints an
error message to standard error causes the calling process to terminate; lsize() returns -1
and sets errno to indicate the error.

24

MANUAL

Errors

If the lsize function fails, errno may be set to one of the error code values set by the
standard Unix ftruncate() function or to the following values.

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access the
pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not a valid PFSLib file
descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incorrect.

EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib perror() to
print the appropriate error message.

See also

lseek(3 PFSLib)

25

MANUAL

open() (3 PFSLib) open() (3 PFSLib)

Name

open() — Opens or creates a local or shared file for reading or writing

Synopsis

#include <fcntl.h>
#include <sys/types.h>
#include <pfslib.h>

int pfslib open (char * FileName,
int OpenFlags,
mode t Mode)

int pfslib open (char * FileName,
int OpenFlags,
mode t Mode,
int IOMode,
int NumberOfClients,
int MyNumber,
int GlobalFlag)

#define open pfslib open

Paramters

FileName Pointer to a pathname of the file to be opened or created.

OpenFlags Specifies the type of access, special open processing, the type of update,
and the initial state of the open file. See open().

Mode Specifies the permissions of the file to be created. If the file already
exists, this parameter is ignored. See open().

IOMode I/O mode to be assigned to the file. See setiomode().

NumberOfClients Number of processes accessing the shared files.

Mynumber The calling process’ number within the accessing processes.

GlobalFlag Flag which specifies whether the call is synchronizing.

Description

The pfslib open() is identical to the standard open() function except for addition features.

If the pattern ’###’ matches somewhere in the FileName parameter a local file for the
requesting process will be opened. The pattern ###’ will be substituted by the number (and
leading zeros) of the process within the parallel application as specified in pfslib init().

26

MANUAL

For example opening "myfile.###" will open "myfile.000" for process 0, "myfile.001" for
process 1, and so on. Subsequent file operations must be standard Unix calls.

If the pattern ’###’ is not within the filename and ’pfs’ is a substring in FileName a file for
parallel access will be opened. Subsequent file operations will be handled by PFSLib. If
’pfs’ is not a substring in FileName a standard Unix open will be called and all subsequent
file operations must be standard Unix calls. Use gopen() to open a shared file which does
not contain ’pfs’ in FileName.

The pfslib open() function allows opening shared files with other NumberOfClients and
MyNumber parameters than specified in pfslib init. The IOMode parameter only has effect
if GlobalFlag is not equal 0 (zero). If GlobalFlag is not equal 0 (zero) pfslib open() is
a synchronizing call. gopen and pfslib open() are both based on pfslib open().

If the parameter FileName of a shared file does not begin with ’/’ (slash), the path name of
the current working directory as returned by getcwd is prepended to the file name which
is used by the pfsd.

Warning!
Be aware that a shared file will be opened by the pfsd program on the machine
it is located on. If you use an absolute path name make sure it is accessible
on the pfsd’s machine. If you use a file name which does not begin with ’/’
(slash), make sure the pathname returned by getcwd(), is accessible on the
psfd’s machine.

For compatibility reasons to Intel’s PFS, open is defined as a C preprocessor macro to
overlay the C-library call.

Return Values

On success pfslib open() return a file descriptor of a shared or local file; pfslib open()
returns a file descriptor to a shared file.

On failure the functions return -1 and set errno to indicate the error.

Errors

If the pfslib open or pfslib open functions fail, errno may be set to one of the error code
values set by the standard Unix fstat(), getcwd(), lseek(), malloc(), and open() functions
or to the following values.

ENAMETOOLONG Length of the file name string exceeds its maximum.

EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSLNDELAY PFSLib: O NDELAY is not supported. PFSLib does not support
non-blocking I/O using the O NDELAY flag. Use asynchronous
I/O operations (e.g. iread()).

EPFSLMFILE PFSLib: Too many open files. The sever has no more space left
in its file table.

27

MANUAL

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib perror()
to print the appropriate error message.

See also

pfslib init(3 PFSLib), open(2), getcwd(3), gopen(3 PFSLib), setiomode(3 PFSLib)

Bugs

As file descriptors of shared files are inherited by a process created with the fork() system
call, file access might lead to errors since parent and child process use the same socket
connection to the PFSLib daemon process.

28

MANUAL

pfslib init() (3 PFSLib) pfslib init() (3 PFSLib)

Name

pfslib init() — Initializing parallel file access

Synopsis

#include <pfslib.h>

void pfslib init (char * PfsdHostName,
int NumberOfClients,
int MyNumber)

void pfslib init (char * PfsdHostName,
int NumberOfClients,
int MyNumber,
int SeverThreshold,
int ClientThreshold)

Paramters

PfsdHostName Name of the host the pfsd resides on.

NumberOfClients Number of processes in the application accessing the shared files.

Mynumber The calling process’ number within the application.

ServerThreshold Number of bytes up to which the I/O operation will be handled by the
pfsd. I/O operations with higher amount of data will be handled by an
iod.

ClientThreshold Number of bytes up to which the I/O operation will always be syn-
chronous on the client side. Asynchronous I/O operations with higher
amount of data will be handled by a forked child process.

Description

With pfslib init() a process of an application using PFSLib initializes parallel file access
and connects itself as a client to pfsd. Due to the independence of any parallel pro-
gramming environment the process has to identify itself uniquely within the processes of
the application by the MyNumber parameter. It must be in the range of 0 to NumberOf-
Clients�1.

Warning!
Every process has to call this function before any other PFSLib operation can
be executed.

29

MANUAL

With pfslib init the user can specify other than the default server and client thresholds
for asynchronous operations.

Return Values

On success pfslib init, and pfslib init return control to the calling process, otherwise the
calling process will be terminated.

See also

pfsd(1 PFSLib)

30

MANUAL

pfslib perror() (3 PFSLib) pfslib perror() (3 PFSLib)

Name

pfslib perror() — Print an error message explaining an subroutine error.

Synopsis

#include <pfslib.h> #include <pfslib errno.h>

void pfslib perror (char * String)

Paramters

String A string to be printed in the error message.

Description

The pfslib perror() subroutine writes a message on the standard error output that describes
the last error encountered by a system call or library call. The error message includes the
String parameter followed by a : (colon), a blank, the message, and a new-line character.
The error number is taken from the global variable errno. If the error code is within the
range of standard errors pfslib perror behaves like perror. If the error code is within the
range of PFSLib errors, the description of the error will be printed. If an error occured
on the pfsd or iod side, this will be stated and a description of the remote error will be
printed. Due to the heterogeneity of PFSLib, the error number of the remote error is not
available since it may differ from system to system.

See also

perror(3)

31

MANUAL

setiomode() (3 PFSLib) setiomode() (3 PFSLib)

Name

setiomode() — Sets the I/O mode of a shared file.

Synopsis

#include <pfslib.h>

void setiomode (int FileDescriptor,
int IOMode)

void setiomode (int FileDescriptor,
int IOMode)

Paramters

FileDescriptor File descriptor of a shared file.

IOMode I/O mode to be set. Values of IOMode are as follows:

M UNIX Each process has its own file pointer, file operations are
performed in first-come, first-serve basis, and access is
unrestricted. This mode is set by default.

M LOG All processes share a single file pointer, file operations are
performed in first-come, first-serve basis.

M SYNC All processes share a single file pointer, file operations are
performed in order by node number. Records may have
variable length. File operations are synchronizing.

M RECORD Each process has its own file pointer, file operations
are performed in first-come, first-serve basis. However,
records are stored in the file in order by node number.
Records must be of a fixed length.

M GLOBAL All processes share a single file pointer and must perform
the same operations in the same order. Data of a write
operations will be written only once. In a read operation
all processes will read the same data. File operations are
synchronizing.

Description

The setiomode() function changes the I/O mode of a shared file. It must be performed by
all processes with the same parameters and synchronizes the processes.

See the Intel’s Paragon Manual for a detailed description.

32

MANUAL

Return Values

On success setiomode() returns control to the calling process. Otherwise it prints an error
message to standard error and causes the calling process to terminate.

Upon successful completion setiomode() behaves identically to setiomode(). On failure
setiomode() returns -1 and sets errno to indicate the error.

Errors

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access the
pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not a valid PFSLib file
descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incorrect.

EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSLMIXIO PFSLib: Mixed file operations. At least one of the processes issued a
different synchronizing operation.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib perror() to
print the appropriate error message.

See also

cread(3 PFSLib), cwrite(3 PFSLib), iread(3 PFSLib), iwrite(3 PFSLib),
iomode(3 PFSLib)

33

MANUAL

iod (8 PFSLib) iod (8 PFSLib)

Name

iod — PFSLib basic I/O server

Synopsis

iod

Description

The iod programm will be started by the pfsd program. It is not intended to be executed
by the user.

See also

pfsd(1 PFSLib)

34

SFB 342: Methoden und Werkzeuge für die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A

342/1/90 A Robert Gold, Walter Vogler: Quality Criteria for Partial Order Semantics
of Place/Transition-Nets, Januar 1990

342/2/90 A Reinhard Fößmeier: Die Rolle der Lastverteilung bei der numerischen
Parallelprogrammierung, Februar 1990

342/3/90 A Klaus-Jörn Lange, Peter Rossmanith: Two Results on Unambi-
guous Circuits, Februar 1990

342/4/90 A Michael Griebel: Zur Lösung von Finite-Differenzen- und Finite-
Element-Gleichungen mittels der Hierarchischen Transformations-
Mehrgitter-Methode

342/5/90 A Reinhold Letz, Johann Schumann, Stephan Bayerl, Wolfgang Bibel:
SETHEO: A High-Performance Theorem Prover

342/6/90 A Johann Schumann, Reinhold Letz: PARTHEO: A High Performance
Parallel Theorem Prover

342/7/90 A Johann Schumann, Norbert Trapp, Martin van der Koelen:
SETHEO/PARTHEO Users Manual

342/8/90 A Christian Suttner, Wolfgang Ertel: Using Connectionist Networks for
Guiding the Search of a Theorem Prover

342/9/90 A Hans-Jörg Beier, Thomas Bemmerl, Arndt Bode, Hubert Ertl, Olav
Hansen, Josef Haunerdinger, Paul Hofstetter, Jaroslav Kremenek,
Robert Lindhof, Thomas Ludwig, Peter Luksch, Thomas Treml: TOP-
SYS, Tools for Parallel Systems (Artikelsammlung)

342/10/90 A Walter Vogler: Bisimulation and Action Refinement
342/11/90 A Jörg Desel, Javier Esparza: Reachability in Reversible Free- Choice

Systems
342/12/90 A Rob van Glabbeek, Ursula Goltz: Equivalences and Refinement
342/13/90 A Rob van Glabbeek: The Linear Time - Branching Time Spectrum
342/14/90 A Johannes Bauer, Thomas Bemmerl, Thomas Treml: Leistungsanalyse

von verteilten Beobachtungs- und Bewertungswerkzeugen

Reihe A

342/15/90 A Peter Rossmanith: The Owner Concept for PRAMs
342/16/90 A G. Böckle, S. Trosch: A Simulator for VLIW-Architectures
342/17/90 A P. Slavkovsky, U. Rüde: Schnellere Berechnung klassischer Matrix-

Multiplikationen
342/18/90 A Christoph Zenger: SPARSE GRIDS
342/19/90 A Michael Griebel, Michael Schneider, Christoph Zenger: A combination

technique for the solution of sparse grid problems
342/20/90 A Michael Griebel: A Parallelizable and Vectorizable Multi- Level-

Algorithm on Sparse Grids
342/21/90 A V. Diekert, E. Ochmanski, K. Reinhardt: On confluent semi-

commutations-decidability and complexity results
342/22/90 A Manfred Broy, Claus Dendorfer: Functional Modelling of Operating

System Structures by Timed Higher Order Stream Processing Functions
342/23/90 A Rob van Glabbeek, Ursula Goltz: A Deadlock-sensitive Congruence for

Action Refinement
342/24/90 A Manfred Broy: On the Design and Verification of a Simple Distributed

Spanning Tree Algorithm
342/25/90 A Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Peter

Luksch, Roland Wismüller: TOPSYS - Tools for Parallel Systems
(User’s Overview and User’s Manuals)

342/26/90 A Thomas Bemmerl, Arndt Bode, Thomas Ludwig, Stefan Tritscher:
MMK - Multiprocessor Multitasking Kernel (User’s Guide and User’s
Reference Manual)

342/27/90 A Wolfgang Ertel: Random Competition: A Simple, but Efficient Method
for Parallelizing Inference Systems

342/28/90 A Rob van Glabbeek, Frits Vaandrager: Modular Specification of Process
Algebras

342/29/90 A Rob van Glabbeek, Peter Weijland: Branching Time and Abstraction in
Bisimulation Semantics

342/30/90 A Michael Griebel: Parallel Multigrid Methods on Sparse Grids
342/31/90 A Rolf Niedermeier, Peter Rossmanith: Unambiguous Simulations of

Auxiliary Pushdown Automata and Circuits
342/32/90 A Inga Niepel, Peter Rossmanith: Uniform Circuits and Exclusive Read

PRAMs
342/33/90 A Dr. Hermann Hellwagner: A Survey of Virtually Shared Memory

Schemes
342/1/91 A Walter Vogler: Is Partial Order Semantics Necessary for Action

Refinement?

Reihe A

342/2/91 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Rainer Weber: Char-
acterizing the Behaviour of Reactive Systems by Trace Sets

342/3/91 A Ulrich Furbach, Christian Suttner, Bertram Fronhöfer: Massively Par-
allel Inference Systems

342/4/91 A Rudolf Bayer: Non-deterministic Computing, Transactions and Recur-
sive Atomicity

342/5/91 A Robert Gold: Dataflow semantics for Petri nets
342/6/91 A A. Heise; C. Dimitrovici: Transformation und Komposition von P/T-

Netzen unter Erhaltung wesentlicher Eigenschaften
342/7/91 A Walter Vogler: Asynchronous Communication of Petri Nets and the

Refinement of Transitions
342/8/91 A Walter Vogler: Generalized OM-Bisimulation
342/9/91 A Christoph Zenger, Klaus Hallatschek: Fouriertransformation auf dünnen

Gittern mit hierarchischen Basen
342/10/91 A Erwin Loibl, Hans Obermaier, Markus Pawlowski: Towards Parallelism

in a Relational Database System
342/11/91 A Michael Werner: Implementierung von Algorithmen zur Kompakti-

fizierung von Programmen für VLIW-Architekturen
342/12/91 A Reiner Müller: Implementierung von Algorithmen zur Optimierung von

Schleifen mit Hilfe von Software-Pipelining Techniken
342/13/91 A Sally Baker, Hans-Jörg Beier, Thomas Bemmerl, Arndt Bode, Hu-

bert Ertl, Udo Graf, Olav Hansen, Josef Haunerdinger, Paul Hofstetter,
Rainer Knödlseder, Jaroslav Kremenek, Siegfried Langenbuch, Robert
Lindhof, Thomas Ludwig, Peter Luksch, Roy Milner, Bernhard Ries,
Thomas Treml: TOPSYS - Tools for Parallel Systems (Artikelsamm-
lung); 2., erweiterte Auflage

342/14/91 A Michael Griebel: The combination technique for the sparse grid solution
of PDE’s on multiprocessor machines

342/15/91 A Thomas F. Gritzner, Manfred Broy: A Link Between Process Algebras
and Abstract Relation Algebras?

342/16/91 A Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Thomas
Treml, Roland Wismüller: The Design and Implementation of TOPSYS

342/17/91 A Ulrich Furbach: Answers for disjunctive logic programs
342/18/91 A Ulrich Furbach: Splitting as a source of parallelism in disjunctive logic

programs
342/19/91 A Gerhard W. Zumbusch: Adaptive parallele Multilevel-Methoden zur

Lösung elliptischer Randwertprobleme
342/20/91 A M. Jobmann, J. Schumann: Modelling and Performance Analysis of a

Parallel Theorem Prover

Reihe A

342/21/91 A Hans-Joachim Bungartz: An Adaptive Poisson Solver Using Hierarchi-
cal Bases and Sparse Grids

342/22/91 A Wolfgang Ertel, Theodor Gemenis, Johann M. Ph. Schumann, Christian
B. Suttner, Rainer Weber, Zongyan Qiu: Formalisms and Languages for
Specifying Parallel Inference Systems

342/23/91 A Astrid Kiehn: Local and Global Causes
342/24/91 A Johann M.Ph. Schumann: Parallelization of Inference Systems by using

an Abstract Machine
342/25/91 A Eike Jessen: Speedup Analysis by Hierarchical Load Decomposition
342/26/91 A Thomas F. Gritzner: A Simple Toy Example of a Distributed System:

On the Design of a Connecting Switch
342/27/91 A Thomas Schnekenburger, Andreas Weininger, Michael Friedrich: Intro-

duction to the Parallel and Distributed Programming Language ParMod-
C

342/28/91 A Claus Dendorfer: Funktionale Modellierung eines Postsystems
342/29/91 A Michael Griebel: Multilevel algorithms considered as iterative methods

on indefinite systems
342/30/91 A W. Reisig: Parallel Composition of Liveness
342/31/91 A Thomas Bemmerl, Christian Kasperbauer, Martin Mairandres, Bernhard

Ries: Programming Tools for Distributed Multiprocessor Computing
Environments

342/32/91 A Frank Leßke: On constructive specifications of abstract data types using
temporal logic

342/1/92 A L. Kanal, C.B. Suttner (Editors): Informal Proceedings of the Workshop
on Parallel Processing for AI

342/2/92 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
F. Gritzner, Rainer Weber: The Design of Distributed Systems - An
Introduction to FOCUS

342/2-2/92 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
F. Gritzner, Rainer Weber: The Design of Distributed Systems - An
Introduction to FOCUS - Revised Version (erschienen im Januar 1993)

342/3/92 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
F. Gritzner, Rainer Weber: Summary of Case Studies in FOCUS - a
Design Method for Distributed Systems

342/4/92 A Claus Dendorfer, Rainer Weber: Development and Implementation of a
Communication Protocol - An Exercise in FOCUS

342/5/92 A Michael Friedrich: Sprachmittel und Werkzeuge zur Unterstüt- zung
paralleler und verteilter Programmierung

Reihe A

342/6/92 A Thomas F. Gritzner: The Action Graph Model as a Link between Ab-
stract Relation Algebras and Process-Algebraic Specifications

342/7/92 A Sergei Gorlatch: Parallel Program Development for a Recursive Nu-
merical Algorithm: a Case Study

342/8/92 A Henning Spruth, Georg Sigl, Frank Johannes: Parallel Algorithms for
Slicing Based Final Placement

342/9/92 A Herbert Bauer, Christian Sporrer, Thomas Krodel: On Distributed Logic
Simulation Using Time Warp

342/10/92 A H. Bungartz, M. Griebel, U. Rüde: Extrapolation, Combination and
Sparse Grid Techniques for Elliptic Boundary Value Problems

342/11/92 A M. Griebel, W. Huber, U. Rüde, T. Störtkuhl: The Combination Tech-
nique for Parallel Sparse-Grid-Preconditioning and -Solution of PDEs
on Multiprocessor Machines and Workstation Networks

342/12/92 A Rolf Niedermeier, Peter Rossmanith: Optimal Parallel Algorithms for
Computing Recursively Defined Functions

342/13/92 A Rainer Weber: Eine Methodik für die formale Anforderungsspezifkation
verteilter Systeme

342/14/92 A Michael Griebel: Grid– and point–oriented multilevel algorithms
342/15/92 A M. Griebel, C. Zenger, S. Zimmer: Improved multilevel algorithms for

full and sparse grid problems
342/16/92 A J. Desel, D. Gomm, E. Kindler, B. Paech, R. Walter: Bausteine eines

kompositionalen Beweiskalküls für netzmodellierte Systeme
342/17/92 A Frank Dederichs: Transformation verteilter Systeme: Von applikativen

zu prozeduralen Darstellungen
342/18/92 A Andreas Listl, Markus Pawlowski: Parallel Cache Management of a

RDBMS
342/19/92 A Erwin Loibl, Markus Pawlowski, Christian Roth: PART: A Parallel

Relational Toolbox as Basis for the Optimization and Interpretation of
Parallel Queries

342/20/92 A Jörg Desel, Wolfgang Reisig: The Synthesis Problem of Petri Nets
342/21/92 A Robert Balder, Christoph Zenger: The d-dimensional Helmholtz equa-

tion on sparse Grids
342/22/92 A Ilko Michler: Neuronale Netzwerk-Paradigmen zum Erlernen von

Heuristiken
342/23/92 A Wolfgang Reisig: Elements of a Temporal Logic. Coping with

Concurrency
342/24/92 A T. Störtkuhl, Chr. Zenger, S. Zimmer: An asymptotic solution for the

singularity at the angular point of the lid driven cavity

Reihe A

342/25/92 A Ekkart Kindler: Invariants, Compositionality and Substitution
342/26/92 A Thomas Bonk, Ulrich Rüde: Performance Analysis and Optimization

of Numerically Intensive Programs
342/1/93 A M. Griebel, V. Thurner: The Efficient Solution of Fluid Dynamics

Problems by the Combination Technique
342/2/93 A Ketil Stølen, Frank Dederichs, Rainer Weber: Assumption / Commit-

ment Rules for Networks of Asynchronously Communicating Agents
342/3/93 A Thomas Schnekenburger: A Definition of Efficiency of Parallel Pro-

grams in Multi-Tasking Environments
342/4/93 A Hans-Joachim Bungartz, Michael Griebel, Dierk Röschke, Christoph

Zenger: A Proof of Convergence for the Combination Technique for the
Laplace Equation Using Tools of Symbolic Computation

342/5/93 A Manfred Kunde, Rolf Niedermeier, Peter Rossmanith: Faster Sorting
and Routing on Grids with Diagonals

342/6/93 A Michael Griebel, Peter Oswald: Remarks on the Abstract Theory of
Additive and Multiplicative Schwarz Algorithms

342/7/93 A Christian Sporrer, Herbert Bauer: Corolla Partitioning for Distributed
Logic Simulation of VLSI Circuits

342/8/93 A Herbert Bauer, Christian Sporrer: Reducing Rollback Overhead in
Time-Warp Based Distributed Simulation with Optimized Incremental
State Saving

342/9/93 A Peter Slavkovsky: The Visibility Problem for Single-Valued Surface (z
= f(x,y)): The Analysis and the Parallelization of Algorithms

342/10/93 A Ulrich Rüde: Multilevel, Extrapolation, and Sparse Grid Methods
342/11/93 A Hans Regler, Ulrich Rüde: Layout Optimization with Algebraic Multi-

grid Methods
342/12/93 A Dieter Barnard, Angelika Mader: Model Checking for the Modal Mu-

Calculus using Gauß Elimination
342/13/93 A Christoph Pflaum, Ulrich Rüde: Gauß’ Adaptive Relaxation for the

Multilevel Solution of Partial Differential Equations on Sparse Grids
342/14/93 A Christoph Pflaum: Convergence of the Combination Technique for the

Finite Element Solution of Poisson’s Equation
342/15/93 A Michael Luby, Wolfgang Ertel: Optimal Parallelization of Las Vegas

Algorithms
342/16/93 A Hans-Joachim Bungartz, Michael Griebel, Dierk Röschke, Christoph

Zenger: Pointwise Convergence of the Combination Technique for
Laplace’s Equation

342/17/93 A Georg Stellner, Matthias Schumann, Stefan Lamberts, Thomas Ludwig,
Arndt Bode, Martin Kiehl und Rainer Mehlhorn: Developing Multi-
computer Applications on Networks of Workstations Using NXLib

Reihe A

342/18/93 A Max Fuchs, Ketil Stølen: Development of a Distributed Min/Max
Component

342/19/93 A Johann K. Obermaier: Recovery and Transaction Management in Write-
optimized Database Systems

342/20/93 A Sergej Gorlatch: Deriving Efficient Parallel Programs by Systemating
Coarsing Specification Parallelism

342/01/94 A Reiner Hüttl, Michael Schneider: Parallel Adaptive Numerical
Simulation

342/02/94 A Henning Spruth, Frank Johannes: Parallel Routing of VLSI Circuits
Based on Net Independency

342/03/94 A Henning Spruth, Frank Johannes, Kurt Antreich: PHIroute: A Parallel
Hierarchical Sea-of-Gates Router

342/04/94 A Martin Kiehl, Rainer Mehlhorn, Matthias Schumann: Parallel Multiple
Shooting for Optimal Control Problems Under NX/2

342/05/94 A Christian Suttner, Christoph Goller, Peter Krauss, Klaus-Jörn Lange,
Ludwig Thomas, Thomas Schnekenburger: Heuristic Optimization of
Parallel Computations

342/06/94 A Andreas Listl: Using Subpages for Cache Coherency Control in Parallel
Database Systems

342/07/94 A Manfred Broy, Ketil Stølen: Specification and Refinement of Finite
Dataflow Networks - a Relational Approach

342/08/94 A Katharina Spies: Funktionale Spezifikation eines Kommunika-
tionsprotokolls

342/09/94 A Peter A. Krauss: Applying a New Search Space Partitioning Method to
Parallel Test Generation for Sequential Circuits

342/10/94 A Manfred Broy: A Functional Rephrasing of the Assumption/Com-
mitment Specification Style

342/11/94 A Eckhardt Holz, Ketil Stølen: An Attempt to Embed a Restricted Version
of SDL as a Target Language in Focus

342/12/94 A Christoph Pflaum: A Multi-Level-Algorithm for the Finite-Element-
Solution of General Second Order Elliptic Differential Equations on
Adaptive Sparse Grids

342/13/94 A Manfred Broy, Max Fuchs, Thomas F. Gritzner, Bernhard Schätz, Katha-
rina Spies, Ketil Stølen: Summary of Case Studies in FOCUS - a Design
Method for Distributed Systems

342/14/94 A Maximilian Fuchs: Technologieabhängigkeit von Spezifikationen digi-
taler Hardware

342/15/94 A M. Griebel, P. Oswald: Tensor Product Type Subspace Splittings And
Multilevel Iterative Methods For Anisotropic Problems

Reihe A

342/16/94 A Gheorghe Ştefǎnescu: Algebra of Flownomials
342/17/94 A Ketil Stølen: A Refinement Relation Supporting the Transition from

Unbounded to Bounded Communication Buffers
342/18/94 A Michael Griebel, Tilman Neuhoeffer: A Domain-Oriented Multilevel

Algorithm-Implementation and Parallelization
342/19/94 A Michael Griebel, Walter Huber: Turbulence Simulation on Sparse Grids

Using the Combination Method
342/20/94 A Johann Schumann: Using the Theorem Prover SETHEO for verifying

the development of a Communication Protocol in FOCUS - A Case
Study -

342/01/95 A Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse Grids
342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of

Parallel Computers: Order Statistics and Amdahl’s Law
342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of the Kro-

necker Product of Identical Servers to a Reduced Product Space
342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liefvoort:

Auto-Correlation of Lag-k For Customers Departing From Semi-
Markov Processes

342/05/95 A Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids:
Applications to Multi-dimensional Schrödinger Problems

342/06/95 A Maximilian Fuchs: Formal Design of a Model-N Counter
342/07/95 A Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-

crosystem Technology
342/08/95 A Alexander Pfaffinger: Parallel Communication on Workstation Net-

works with Complex Topologies
342/09/95 A Ketil Stølen: Assumption/Commitment Rules for Data-flow Networks

- with an Emphasis on Completeness
342/10/95 A Ketil Stølen, Max Fuchs: A Formal Method for Hardware/Software

Co-Design
342/11/95 A Thomas Schnekenburger: The ALDY Load Distribution System
342/12/95 A Javier Esparza, Stefan Römer, Walter Vogler: An Improvement of

McMillan’s Unfolding Algorithm
342/13/95 A Stephan Melzer, Javier Esparza: Checking System Properties via Integer

Programming
342/14/95 A Radu Grosu, Ketil Stølen: A Denotational Model for Mobile Point-to-

Point Dataflow Networks
342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Compute

the Concurrency Relation of Free-Choice Signal Transition Graphs

Reihe A

342/16/95 A Bernhard Schätz, Katharina Spies: Formale Syntax zur logischen Kern-
sprache der Focus-Entwicklungsmethodik

342/17/95 A Georg Stellner: Using CoCheck on a Network of Workstations
342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismüller:

Workshop on PVM, MPI, Tools and Applications
342/19/95 A Thomas Schnekenburger: Integration of Load Distribution into ParMod-

C
342/20/95 A Ketil Stølen: Refinement Principles Supporting the Transition from

Asynchronous to Synchronous Communication
342/21/95 A Andreas Listl, Giannis Bozas: Performance Gains Using Subpages for

Cache Coherency Control
342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded

Treewidth into Optimal Hypercubes
342/23/95 A Petr Jančar, Javier Esparza: Deciding Finiteness of Petri Nets up to

Bisimulation
342/24/95 A M. Jung, U. Rüde: Implicit Extrapolation Methods for Variable Coeffi-

cient Problems
342/01/96 A Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic Multi-

grid Methods for the Solution of the Navier-Stokes Equations in Com-
plicated Geometries

342/02/96 A Thomas Grauschopf, Michael Griebel, Hans Regler: Additive
Multilevel-Preconditioners based on Bilinear Interpolation, Matrix De-
pendent Geometric Coarsening and Algebraic-Multigrid Coarsening for
Second Order Elliptic PDEs

342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Embed-
dings of Complete Binary Trees into Hypercubes

342/04/96 A Thomas Huckle: Efficient Computation of Sparse Approximate Inverses
342/05/96 A Thomas Ludwig, Roland Wismüller, Vaidy Sunderam, Arndt Bode:

OMIS — On-line Monitoring Interface Specification
342/06/96 A Ekkart Kindler: A Compositional Partial Order Semantics for Petri Net

Components
342/07/96 A Richard Mayr: Some Results on Basic Parallel Processes
342/08/96 A Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht
342/09/96 A P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher, F. Weimer,

H.-M. Windisch: Sprachkonzepte zur Konstruktion verteilter Systeme
342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian Röder, Arndt Bode: PFS-

Lib – A File System for Parallel Programming Environments

SFB 342 : Methoden und Werkzeuge für die Nutzung paralleler
Rechnerarchitekturen

Reihe B

342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Specifications
342/2/90 B Jörg Desel: On Abstraction of Nets
342/3/90 B Jörg Desel: Reduction and Design of Well-behaved Free-choice Systems
342/4/90 B Franz Abstreiter, Michael Friedrich, Hans-Jürgen Plewan: Das

Werkzeug runtime zur Beobachtung verteilter und paralleler Programme
342/1/91 B Barbara Paech1: Concurrency as a Modality
342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox -

Anwenderbeschreibung
342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop über

Parallelisierung von Datenbanksystemen
342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Methods
342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually Shared

Memory Scheme: Formal Specification and Analysis
342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Specification and

Correctness Proof of a Virtually Shared Memory Scheme
342/7/91 B W. Reisig: Concurrent Temporal Logic
342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-

Support
Christian B. Suttner: Parallel Computation of Multiple Sets-of-Support

342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hardware,
Software, Anwendungen

342/1/93 B Max Fuchs: Funktionale Spezifikation einer Geschwindigkeitsregelung
342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein Lit-

eraturüberblick
342/1/94 B Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum En-

twurf eines Prototypen für MIDAS

