
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Generating User Interfaces with the
FUSE–System

Frank Lonczewski
Siegfried Schreiber

������
TUM-I9612

Februar 1996

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-02-1996-I9612-200/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c1996 MATHEMATISCHES INSTITUT UND
INSTITUT F ÜR INFORMATIK
TECHNISCHE UNIVERSIT̈AT M̈UNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut für Informatik der
Technischen Universität München

Generating User Interfaces with theFUSE{SystemFrank LonczewskiSiegfried SchreiberInstitute of Computer Science, Munich University of Technology,Arcisstr. 21, 80290 Munich, Germanyemail: flonczews,schreibsg@informatik.tu-muenchen.deWWW: http://www2.informatik.tu-muenchen.de/research/ui/ui.htmlAbstractWith the FUSE(Formal User interface Speci�cation Environment){System wepresent a methodology and a set of integrated tools for the automatic generationof graphical user interfaces. FUSE provides tool{based support for all phases(task{, user{, problem domain analysis, design of the logical user interface, designof user interface in a particular layout style) of the user interface developmentprocess. Based on a formal speci�cation of dialogue{ and layout guidelines, FUSEallows the automatic generation of user interfaces out of speci�cations of the task{,problem domain{ and user{model. Moreover, the FUSE{System incorporates acomponent for the automatic generation of powerful help{ and user guidance com-ponents. In this paper, we describe the FUSE{methodology by modeling userinterfaces of an ISDN phone simulation. Furthermore, the two major componentsof FUSE (BOSS, PLUG{IN) are presented: The BOSS{System supports the de-sign of the logical user interface and the formal speci�cation of layout guidelines.PLUG{IN (PLan{based User Guidance for Intelligent Navigation) generates task{based help{ and user guidance components.1 IntroductionEven with the most advanced layout oriented user interface construction tools (UI{toolkits, UI{builders, UI{Management Systems) the task{based and user{oriented de-velopment of graphical user interfaces remains a time{consuming and di�cult process.Therefore tools for the formal speci�cation and automatic generation of user interfaces(model based UI{tools) have gained rising research interest. Regarding the evolution ofmodel based tools from the early approaches (e.g. MIKE, MIKEY, HIGGENS) to the

most recent ones (e.g. MASTERMIND, TRIDENT, TADEUS) we recognize that moreand more phases of the user interface development process are supported.The FUSE (Formal User interface Speci�cation Environment){System described in thispaper belongs to this new generation of model based interface tools. The main goalsand properties of the FUSE{System are:� Tool{based support for all phases (task{, user{, problem domain{analysis, designof the logical user interface, design of user interfaces in a particular layout style)of the user interface development process� Generation of working prototypes in early phases of the development process� Standardization of user interfaces by formal speci�cation of user interfacestyleguides� Generation of powerful help{ and user guidance componentsThe paper is organized as follows: In section 2 we describe the overall methodologyand architecture of the FUSE{System. In section 3 we discuss related work in the areaof automatic UI generation. In section 4 we discuss the capabilities of FUSE for thegeneration of user interfaces in di�erent layout styles and of help{ and user guidancecomponents by using the example of an ISDN phone simulation. Section 5 describes thestages in the development process of the ISDN interface using the FUSE{System. Insection 6 we discuss practical experience with FUSE and directions of further research.2 The FUSE-Methodology: An OverviewThe overall architecture of the FUSE{System is shown in �gure 1. The FUSE{System[15] consists of the four components BOSS (BedienOber�achenSpezi�kationsSystem, thegerman translation of \user interface speci�cation system" [20, 21]), FLUID (FormaLUser Interface Development, [3]), PLUG{IN (PLan{based User Guidance for IntelligentNavigation [14, 13]) and FIRE (Formal Interface Requirements Engineering). Each ofthese tools may also be used independently of the FUSE{System.The user interface development process with FUSE consists of the phases requirementsanalysis, design and evaluation. For the user interface part of an interactive applicationno implementation phase is needed, as FUSE generates running user interfaces fromdesign{level speci�cations. Some activities in the development process have to be carriedout only once for a whole class of user interfaces. As these activities mainly refer to thede�nition of software{ergonomic guidelines (dialogue{ and layout guidelines, see �gure1), they belong to the \Guideline De�nition Layer" (GDL). The other activities haveto be carried out in each user interface development process. As these activities consistmainly of the application of the Guidelines de�ned in the GDL, they belong to the\Guideline Application Layer" (GAL). 2

Formal Specification
Problem Domain Model
(Application Interface)

Formal Specification
User Model

Formal Specification
Task Model

Phase in
Development
Process

Guideline Definition Layer (GDL)

Analysis

Design

Evaluation

Layout
Guideline
Designer

Formal, constructive
Specification of

Dialogue Guidelines
(Dialogue Style d)

PLUG-IN
PLan-based User

Guidance for
Intelligent Navigation

Dialog
Guideline
Designer

Formal, constructive
Specification of

Layout Guidelines
(Layout Style l1)

(Layout Style ln)

Applikation Analyst Applikation Analyst Applikation Analyst

FLUID
FormaL User

Interface
Development

Formal Specification
of logical User Interface

(Dialogue Style d)Dialogue Designer

BOSS
BedienOberflächen

SpezifikationsSystem

Guideline Application Layer (GAL)

User Interface
(Dialogue Style d, Layout

Styles l1, ... , ln)

Online Documentation,
User Guidance Component

with Simulation and Animation

Functional Core
of Application

Interactive Application

Dialogue
Design

Layout
Design

Elaboration
by Hand

Formal
Specification Generator Generated

Program

Figure1:OverallArchitectureoftheFUSE{System
3

In the analysis phase of the process, an application analyst de�nes the requirementsfor the user interface by setting up the formal speci�cation of three models. The spec-i�cation of the task model describes the task{hierarchy of the interactive application.The problem domain model (application interface) consists of an algebraic speci�ca-tion of the functions and data structures of the UI{relevant part of the functional coreof the interactive application. The user model is a description of static and dynamicproperties of user groups and individual users which inuence not only the generationprocess of the user interface, but also the kind and depth of the help o�ered by the userguidance component on a 'per user' basis. To support the requirements analysis phasethe FUSE{System contains a component called FIRE (not shown in �gure 1). FIREprovides graphical editors for setting up the task{, problem domain{ and user modeland a tool for the generation of a very{�rst UI prototype.In the design phase of the UI development process, software{ergonomic guidelines areformally speci�ed by human factors experts in the roles of dialogue{ and layout guide-line designers. Dialogue guidelines describe the transformation of the task{, problemdomain{ and user models of interactive applications into formal speci�cations of logicaluser interfaces in a particular dialogue style. At the abstraction level of logical userinterfaces, static and dynamic properties of interfaces are described without consideringpresentation issues. Layout guidelines describe the transformation from speci�cationsof logical user interfaces into speci�cations of user interfaces in a particular layout style.The formal speci�cations of dialogue{ and layout guidelines, which can be regardedas the formal speci�cation of a user interface styleguide, belong to the GDL{layer inthe development process, as they have to be carried out once for a whole class of userinterfaces.Within the FUSE{architecture, the FLUID{System plays the role of an automatic dia-logue designer. From the speci�cations of dialogue guidelines for a dialogue style d andthe speci�cations of task{, problem domain{ and user model of an interactive applica-tion, FLUID generates the speci�cation of static and dynamic properties of a logical userinterface in the dialog style d. This speci�cation may be modi�ed by a human dialoguedesigner. For the representation of the design of the logical user interface, FUSE employsa speci�cation technique called HIT (Hierarchic Interaction graph Templates), which isbased on attribute grammars and dataow diagrams. Besides the automatic generationwith the FLUID{System, a human dialogue designer can elaborate the speci�cation ofthe logical user interface by hand.From the speci�cations of layout guidelines for the layout styles l1; :::; ln and the speci-�cation of a logical user interface (generated automatically by FLUID or speci�ed by ahuman dialogue designer) in a dialogue style d the BOSS{System generates an imple-mentation of a user interface in the dialogue style d, in which the end{user can switchat run{time between the layout styles l1; :::; ln. For the formal speci�cation of the layoutguidelines the BOSS{System also uses the HIT speci�cation technique. The separationbetween logical UIs and interfaces in particular layout styles in the design phase (see4

�gure 1), which is typical for model based UI tools, can be found also in related researchdomains like document architecture (see e.g. [5, 22]).Based on the speci�cation of the task{model and the speci�cation of the dynamics of thelogical user interface generated by FLUID the PLUG{IN{System generates a componentfor intelligent user guidance, which is bound (i.e. \plugged in") to the user interfaceimplementation generated by BOSS. This user guidance component supports the end{user during his work with the user interface by context{sensitive hypertext help{pages.These provide information about the current state of the user interface. Moreover,the generated user guidance component uses animation sequences to demonstrate howcomplex tasks can be accomplished by the user.3 Related WorkMIKE [18] (Menu Interaction Kontroll Environment) und MIKEY [19] generate user in-terfaces with menus and dialog boxes based on a description of the functions (argument{and result parameters) and the data structures in the application interface. InHIGGENS [10] a semantic data model of the application interface is used as the basefor deriving views as abstract descriptions of the user interface layout.The ITS (Interactive Transaction System){System [24] o�ers a frame{based languagefor the speci�cation of user interfaces in its logical structures (\dialogue content").Moreover, ITS allows the speci�cation of style rules, which describe the mapping betweenlogical user interfaces and user interfaces in a particular style.In the UIDE{System (User Interface Design Environment) [8], the UI development pro-cess consists of the description of two models. In the application model, the logical userinterface is described in terms of application objects and {tasks. The UI{model describesthe coupling of the application model to a user interface layout by linking applicationtasks to interface tasks, interaction techniques and {objects. The links between themodels are used by a runtime engine to provide animated help.HUMANOID [16] divides the UI{development process into the activities applicationdesign, dialogue sequencing, action side e�ects, presentation design and manipulationdesign. In the �rst three design dimensions the logical structure of a user interface isdescribed in terms of the structure and the behaviour of so called application objects.The mapping of the state of the application objects in an logical user interface to aUI{layout is described in the design dimensions presentation{ and manipulation de-sign through presentation and manipulation templates. Based on the model describedabove, HUMANOID is able to provide textual help. Recently the research on UIDE andHUMANOID was joint in the MASTERMIND project.In the ADEPT{System [12], a process{algebra{like speci�cation technique (TKS, taskknowledge structures) is used for the speci�cation of the task model of an interactiveapplication. In the design phase of the UI{development process, the task model is5

transformed into the speci�cation of the so called AIM (abstract interface model), whichcorresponds to the term \logical user interface" in �gure 1. Based on design rules in auser model, the ADEPT{System derives a concrete interface model (CIM) from the AIMby replacing the abstract interaction objects in the AIM by the appropriate concreteinteraction objects in the CIM.The GENIUS{System (GENerator for user Interfaces Using Software Ergonomic Rules)[11] generates user interfaces for data{base oriented applications. In GENIUS, the prob-lem domain model is represented by an ERA (entity{relationship{attribute) diagram.Based on this ERA{diagram static aspects of the logical user interface are described interms of so called views, which can be regarded as abstract representations of user inter-face windows. For the representation of the dynamics of the logical interface, GENIUSemploys a petri{net{like speci�cation technique (\dialogue{nets"). For each view in thelogical user interface, the static UI{layout is generated by applying software{ergonomicguidelines, which are described as decision tables (e.g. for the selection of interactionobjects).In the TADEUS{System (TAsk based DEvelopment of User interface Software) [6], theUI{development process is divided into the phases requirements analysis, dialogue designand realisation. During the phase requirements analysis, a task model (hierarchic goalstructure), a problem domain model (class hierarchy) and an user model is speci�ed. Inthe phase dialogue design, static and dynamic aspects of the logical user interface aredescribed in terms of views and dialogue{graphs (an extension of the dialogue{nets ofGENIUS). In the phase realisation, the logical user interface is transformed into an userinterface description for an UIMS by applying software{ergonomic guidelines speci�edthrough decision tables.The TRIDENT(Tools foR an Interactive Development ENvironmenT){System [4] con-sists of a methodology and a support environment for developing UIs for business{oriented interactive applications. TRIDENT uses ERA{diagrams for the description ofthe problem domain model. For the representation of the task model TRIDENT pro-vides a data{ow{graph{like speci�cation technique (activity chaining graphs, ACGs).Each ACG is structured into presentation units. From these presentation units, thestatic user interface layout can be generated by applying rules for the selection of ab-stract interaction objects (AIO), rules for mapping AIO to concrete interaction objects(CIO) and rules for the placement of CIO.The JANUS{System [2] uses OOA (Object{Oriented Analysis) for describing the prob-lem domain model (i.e. application interface) of a database{oriented interactive applica-tion. Moreover, JANUS allows the speci�cation of software{ergonomic guidelines, whichdescribe the mapping between OOA{models to the UI{description language of a UIMS.JANUS does not provide means for the explicit speci�cation of the UI{dynamics.PLUS [7] is a task-oriented help system for domain-speci�c interactive applications. Ituses a database of hierarchical plans described by an application analyst. With thisdatabase the system reasons about the hypothetical tasks the user currently performs.6

In the task description knowledge about application{ and user interface speci�c knowl-edge is combined. Therefore the given help is tailored to a prede�ned layout style. Ifthe application functionality or layout guidelines are changed, the database has to bechanged accordingly by hand.The di�erences between FUSE and the approaches presented above include the exibil-ity of the WWW{based help{ and user guidance components generated by PLUG{IN.Moreover, FUSE achieves a high degree of integration and tool{based support overthe whole UI{development process. The use of an encompassing, intuitive speci�cationtechnique (HIT) in the UI design phase (see �gure 1) eases the use of the FUSE{System.4 User Support for an ISDN Phone with FUSEIn this section we present examples of di�erent ISDN phone user interfaces generatedwith the BOSS system. The ISDN phone simulation is an interactive application for thesimulation of main operations that are possible with a real ISDN telephone simulationdescribed in [1]. Furthermore we look onto the problems that the user can possibly havewhen using one or more of these user interfaces. We also show the various kinds of helpthat PLUG-IN provides for the ISDN phone simulation.4.1 User Interfaces of an ISDN PhoneWith the ISDN phone simulation the user can accomplish a number of tasks with di�er-ent complexity. An example of a simple task is Create1stConnection. This task can bedecomposed into the subtasks Start1stConnection and DialTelephoneNumber. If theuser at the other end responds, the two parties are connected to each other afterwards.Other example tasks of the ISDN phone simulation are: DefineDirectCallButton,EstablishConference and EstablishConnectionBetweenOtherParties.In �gure 2 and �gure 3 we can see two di�erent user interfaces of the ISDN phonesimulation. In �gure 3 the direct manipulation interface is displayed. The elements of

Figure 2: menu interface7

Figure 3: direct manipulation interfacethe user interface are a handset button, a liquid crystal display, eight direct call buttons(each one with name and phone number label), a digit block and �ve special functionbuttons. A phone number can be entered by using the digit block or one of the directcall buttons. If a direct call button is used, a prede�ned phone number associated withthe button is dialed. Figure 2 displays a functional equivalent menu interface for thephone simulation. Both user interfaces are generated with the BOSS system. The usercan change the layout between the two styles presented above during runtime.The alternative user interface of the ISDN phone simulation in �gure 2 consistsof a menupane with three menus named BasicFunctions, AdvancedFunctions andPhoneBook. In the �rst one the basic phone functions (e.g. to start a phone call) arelisted, whereas the more complex functions (e.g. to create a connection to a second partywhile already connected to a �rst one) can be found in the second menu. With the thirdmenu the phonebook of the ISDN simulation can be administered. In comparison to thedirect manipulation interface the menu interface displays the state of the phone simu-lation more explicitly by displaying icons under the three labels ExternalLine, Line 1and Line 2. These are helpful for the user as the state of the phone simulation can8

be deduced from them. As a smiling face is displayed for Line 1, the user is currentlyconnected to a party on the �rst of two available phone lines. If the state of the phonesimulation changes, the displayed icons change accordingly (e.g. if the user terminatesthe phone call, the smiling face will disappear).One of the more complex functions of the ISDN phone simulation is StartConference.In an ISDN phone conference the three participating parties can talk and hear each othersimultaneously. Despite of the fact that a Conference button is available on the directmanipulation user interface (and similarly a StartConference menu entry in the menuAdvancedFunctions of the menu interface), it is a complex task to establish a conferencewith the phone. As the interactive phone application simulates the behaviour of a realISDN phone [1], it is not as easy as just pressing the conference button on the userinterface. If the phone is not in an appropriate state, only the message \Conference notpossible" is shown on the LCD. In this situation the user would look into the referenceguide of the phone trying to �nd out how to establish the conference. While workingwith an interactive simulation, a user guidance component can o�er even more than anon-line reference guide in hypertext form.PLUG-IN supports the user of interactive applications by dynamical on-line help andtask-based user guidance. For this purpose all interactions of the user are observed.4.2 Task{Based User Support with PLUG-INFor the task-based user guidance PLUG-IN tries to determine the current tasks of theuser while she is working with an interactive application. If the observed interactionscan be matched with parts of a task valid in the current state, a way is searched tosolve the identi�ed task. A task can be accomplished if its task{goal can be reached.Typically a unique (sub)state of the user interface is associated with each task goal. Ifthe task can be performed in the current state, the user guidance component helps theuser by:� generating an animation sequence (upon user request) that simulates the necessaryuser interactions to accomplish the given task� updating and visualizing a list of tasks that the user is currently performing outof the view of the user guidance componentTo provide the task-oriented help, an application analyst �rst describes the tasks thatcan be performed with the interactive application by creating the task model. It containsa layout independent description of the tasks that the user can accomplish with theapplication. A task description of the ISDN phone simulation is presented in section 5.1.A list of ISDN phone tasks is shown in �gure 4. If the user selects a task from the list,the necessary interaction sequences are simulated on the user interface. Entries of thelist are highlighted if PLUG-IN has identi�ed a corresponding task as currently beingperformed by the user. 9

Figure 4: task list for ISDN phone simulation4.3 Dynamical On-Line Help with PLUG-INThe dynamical on-line help is based on the various possible states and state transitionsof the interactive application. As not all possible application states and transitions areinteresting from the user's point of view, only those relevant for the user support aretaken into account. This subset can be derived by using the information coded into thetask{, problem domain{ and application{model and can be represented as a set of �nitestate automatons. The information contained in these can be used to:� generate help pages (see below)� visualize the set of �nite state automatons as State Transition Diagrams (STDs)� generate animation sequences that simulate the necessary user interactions tochange the state of the application to another state selected by the user.The task-based and the dynamical on-line help are closely coupled. Both of them areused for the provision of the dynamical on-line help.As an example a STD for the ISDN telephone application is shown in �gure 5. Thehighlighted node NoConnection describes the current state of the phone. The actionsthat the user can perform in the di�erent states are denoted by directed arcs. In thecurrent state the user can only start a phone call. PLUG-IN uses the set of statetransition diagrams to generate dynamical on-line help pages and animation sequences.In contrast to other approaches to user guidance [7, 17], PLUG-IN generates dynamicalon-line help pages in HTML format that can be inspected with a World Wide Webbrowser like Netscape or NCSA Mosaic. One dynamical on-line help page is displayedin �gure 6.Each dynamical on-line help page is typically divided into four regions and contains:� information about the current state of the application from the user's point ofview 10

Figure 5: STD for ISDN phone simulation� information about the set of possible actions the user can perform in the currentstate� for each of the possible actions: information about the necessary user interactionsto perform the action.� information about further documentation material, e.g. references to a hypertextversion of the user manual of the applicationAs all operations the user can perform on the original user interface can also be triggeredthrough the WWW browser, it can be regarded as an alternative user interface of theapplication. In contrast to the original user interface the goal of the WWW-based userinterface is to guide the user during the work with the application. The informationdisplayed helps the user to accomplish a given task. Furthermore, the user can learnhow to interact with the original user interface through the means of the simulationcapabilities of PLUG-IN.Depending on the current state of the application and the chosen layout style for theuser interface, PLUG-IN generates di�erent on-line help pages on the y. The generatedon-line help page corresponding to the current state of the phone's user interface shownin �gure 3 is displayed in �gure 6. If the user selects the light bulb icon on the page, the11

Figure 6: one dynamical on-line help page generated by PLUG-INdescribed user interactions are animated on the user interface. In this example PLUG-IN would take control over the mouse pointer, then changes the shape of the mousepointer to provide visual feedback for the user. Afterwards it moves the mouse pointerto the handset button on the user interface and selects the button by simulating a click12

with the left mouse button. Finally, a new on-line help page is generated and displayedwith the WWW browser.The user can also interact with the displayed STD. Here he simply selects a state nodeand PLUG-IN searches a path to the selected node. If a path can be found, the corre-sponding user interaction are animated on the displayed user interface.PLUG-IN has the capability to deal with di�erent user interface layouts with regardto the generated on-line help pages and animation sequences. If the layout style of theuser interface changes during runtime, the description of the necessary interaction stepson the dynamical on-line help pages are altered correspondingly. Also the generatedanimation sequences are tailored to the new layout style. It would be very hard to builda help system by hand that provides the various kinds of help o�ered by PLUG-IN,because the designer has not only to take into account the various possible states of theinteractive application, but also the various layout styles that can be changed duringruntime. The approach used within PLUG-IN is very exible, because the help o�eredadapts itself automatically to the runtime context.It is worth to be mentioned that PLUG{IN can be used independently of the FUSE{System. In this case, PLUG{IN provides a comfortable environment (e.g. a graphicaleditor) for creating the required STDs. Within FUSE the FLUID{System [3] will pro-vide the automatic generation of these STDs by using the information from the task{,problem domain{ and user model.5 Modeling the ISDN User Interface with FUSEIn the following we describe the systematic development of the ISDN user interfacesdescribed in section 4. In section 5.1 we demonstrate how the task{ and problem domainmodels are represented during the requirements analysis. In section 5.2 we focus on thedesign of the ISDN UIs using the BOSS{System. In this context we show how thelogical ISDN UI is designed by a human dialogue designer \by hand" without using theFLUID{System. The use of the FLUID{System for generating an initial design of thelogical ISDN UI can be found in [3].5.1 De�ning the requirements for the ISDN UIDuring the phase \requirements analysis" in the UI{development process (see �gure 1)the application analyst de�nes the requirements for the UI in terms of a problemdomain{, task{ and user model.In the FUSE{System, the conceptual objects and functions of the problem domain model(Application Interface, AI) are represented as an algebraic speci�cation SpecAI =<�AI ; AxAI >. The signature part �AI consists of the de�nitions of sorts with associ-ated constructor{ and selector functions for the description of the conceptual problem{domain objects. Furthermore �AI describes the functionality (argument{ and result13

parameters) of the so called interface functions, i.e. functions which end{users apply toconceptual objects.Figure 7 shows the sorts, constructor{ and selector functions of the problem do-
ISDNStateType

ISDNState

ConnectionStateType

Idle Dialing, Active, Waiting

PhoneNumberType

PhoneNumber

ExternalConnectionStateType

Idle Waiting

PhoneNumberType

PhoneNumber

ConnectionStateType

Line1 Line2ExternalLine

PhoneNumberType

STRING[’1’ ... ’9’, ’0’]

DigitType

CHAR[’1’ ... ’9’, ’0’]

PhoneBookType

PhoneBookEntryType

PhoneBookEntry

Name Number

STRING PhoneNumberType

tuple (i.e. record) alternative Constructor, Selector FunctionslistFigure 7: Sorts, Constructor{ and Selector Functions for the ISDN Phonemain model of the ISDN phone in the graphical notation used in the FUSE{System.The sort ISDNStateType describes the set of possible states of an ISDN phone.ISDNStateType is de�ned as a tuple with the components ExternalLine (state ofthe external line), Line1 and Line2 (state of the two internal lines). The sort Con-nectionStateType describes the possible states (Idle;Dialing; Active;Waiting) of aninternal line. The sort PhoneBookType describes the phone book, an abstraction ofthe direct call buttons, as a list of elements of the sort PhoneBookEntryType (tuplewith components Name and PhoneNumber). The sort PhoneNumberType de�nesphone numbers as strings out of the ordered character set 010:::090;0 00. This characterset is also described by the sort DigitType. The functionality of the interface functionsin the problem domain model of the ISDN phone is shown in �gure 8. The functionstart 1st connection is used to start a phone call on line 1. The argument parameter sb(state before) denotes the state of the phone before, the result parameter sa (state after)the state after calling start 1st connection. The function terminate 1st connection isused to terminate phone calls on line 1. With the function dial with db the user entersa digit (argument parameter d) of the phone number. With the function dial with dcba complete phone number (argument parameter n) is entered with one of the direct callbuttons.The semantic part AxAI of the algebraic speci�cation SpecAI of the ISDN problemdomain model describes the semantics of the interface functions in terms of pre{ andpostconditions. E.g. for the function start 1st connection we demand the preconditionis Idle(Line1(sb)) ^ is Idle(Line2(sb)),14

// ... start and terminate connections on the first line

start_1st_connection: ISDNStateType sb -> ISDNStateType sa
terminate_1st_connection: ISDNStateType sb -> ISDNStateType sa

// ... dial with the digit block (db) or the direct call buttons (dcb)

dial_with_db: ISDNStateType sb, DigitType d -> ISDNStateType sa
dial_with_dcb: ISDNStateType sb, PhoneNumberType n -> ISDNStateType sa

// ... receive connection request

receive_request: ISDNStateType sb, PhoneNumberType n -> ISDNStateType sa

// ... start and terminate inquiries and conferences

start_inquiry: ISDNStateType sb -> ISDNStateType sa
start_conference: ISDNStateType sb -> ISDNStateType sa
terminate_conference: ISDNStateType sb -> ISDNStateType sa
hand_over: ISDNStateType sb -> ISDNStateType sa
terminate_2nd_connection: ISDNStateType sb -> ISDNStateType sa
switch_connections: ISDNStateType sb -> ISDNStateType saFigure 8: Functionality of ISDN interface functionsi.e. the phone is not in use. After calling start 1st connection, line 1 of the phoneshould be in the state Active, if there was a phone call request on the external line.If there is no such request, line 1 should be in the state Dialing. This behaviour isexpressed by the axioms8n 2 PhoneNumberType :start 1st connection(ISDNState(Waiting(n); Idle(); Idle())) = ISDNState(Idle(); Active(n); Idle())start 1st connection(ISDNState(Idle(); Idle(); Idle())) = ISDNState(Idle(); Dialing(<>); Idle())In a similar way, the semantics of the other interface functions is described. Overall, thealgebraic speci�cation SpecAI of the ISDN problem domain model describes the statetransition diagram shown in �gure 5.While the problem domain model de�nes the requirements for the user interface fromthe view of the application functionality, the task model describes the UI{requirementsfrom the view of potential end{users. Its content, the task{space, is a decompositionof tasks into subtasks, actions and associated functions of the application interface. Anexample is shown in �gure 9.The task EstablishConference can be decomposed into the subtasks Cre-ate1stConnection, MakeInquiry and the action StartConference. The subtasks and theaction have to be performed in the order given from left to right, therefore the sequencesymbol () is displayed above the task EstablishConference. Links from actions ofthe task space to functions of the application interface are denoted by the symbol .Besides the sequence other constructs de�ne temporal relations in the task space. Foreach node pre- and postconditions refering to a particular system state can be used tode�ne the context in which a task or an action is applicable. The task DialTelepho-neNumber (�gure 9) uses the choice{ construct (). Here the user can choose todial with the digit block or one of the direct call buttons.15

Figure 9: excerpts from task space of phone simulationIn the property sheet of �gure 10 the preconditionISDNStateBefore = ISDNState(Idle(); Idle(); Idle())states the fact that this task can be only performed if the phone is not in use. Otherproperties of the sheet de�ne the behaviour of the user guidance component duringruntime.The requirements analysis phase is completed by de�ning the static and dynamic prop-erties of the user model. With the static properties of the user model various userstereotypes are modeled. Examples for static properties are \user's motivation", \user'sapplication knowledge" and \user's task knowledge". All of these properties can haveone value of the set flow, medium, highg and are prede�ned by the application ana-lyst for a whole user class. In contrast to the static properties the dynamic propertiesare obtained during runtime. In this way it is possible to give help that is adapted tothe user's individual interaction behaviour. One example of a dynamic property is the16

Figure 10: property sheet of example task\frequency of already solved tasks". With this property it is possible to reason abouttasks still unknown to the user. Furthermore the property can be exploited to orderthe task-based on-line help with respect to the measured task frequency. Overall, thevarious properties de�ned in the user model control the behaviour of the user guidancecomponent during runtime.As mentioned in section 2 the FUSE{System provides a support environment calledFIRE, which supports the speci�cation of the three models in the requirements analysis.17

FIRE contains not only the graphical editors shown in �gures 9 and 10, but also aprototyping tool which generates a very �rst UI{prototype. This prototype is a directrepresentation of the task{ and problem domain model in terms of menus and dialogue{boxes and provides a good base for discussing the results of the requirements analysiswith end{users. Overall the functionality provided by the FIRE{System is similar tothe ADEPT{System (see section 3).5.2 Design of the ISDN UI with BOSSWithin the FUSE{architecture, the BOSS{System is the main tool for supporting thedesign{phase in the UI{development process. During this design process, BOSS is usedby an automatic (i.e. the FLUID{System, see [3]) or a human (the scenario we assumein this paper) dialogue designer for the speci�cation of user interfaces in its logicalstructures and by a human layout guideline designer for the speci�cation of layoutguidelines.Important properties of BOSS include:� BOSS uses an encompassing speci�cation technique (HIT, Hierarchic InteractionGraph Templates) for the speci�cation of user interfaces in its logical structures,user interfaces in a particular layout style and layout guidelines. The HIT spec-i�cation technique is based on two well{known software construction methods:Dynamic Attribute Grammars (DAG) and Dataow Diagrams (DFD).� The HIT speci�cation technique allows to create very modular speci�cations: Thespeci�cation of the logical user interface can be composed of reusable buildingblocks representing single tasks or groups of related tasks (\views") of the taskmodel. Moreover, these building blocks can be stored in libraries for reuse indi�erent projects.� BOSS o�ers an integrated, graphical Development Environment (IDE) for workingout HIT{speci�cations in a visual-programming-like manner. HIT{speci�cationscan be transformed into e�cient C++ { programs using standard techniques fromcompiler generation.In the following we give a brief introduction into the HIT speci�cation technique (section5.2.1). In sections 5.2.2 and 5.2.3 we show how HIT is used for modeling logical userinterfaces and layout guidelines.5.2.1 The HIT speci�cation technique: An OverviewThe HIT speci�cation technique extends a well{known technique in compiler construc-tion, Dynamic Attribute Grammars (DAG) [9], by timing{ and event{ concepts. AHIT speci�cation consists of a set of basic data type and function de�nitions and aset of templates called HITs (Hierarchic Interaction graph Templates). HITs serve as18

prototypes for creating objects (HIT{instances) maintaining their own state, reactingin response to external messages and being connected with other objects in an objectstructure. A de�nition of a HIT consists of a structural (syntactic) and a semanticpart. The structural de�nition describes how a HIT h is constructed from \simpler"HITs h1; :::; hn using operators like construction of tuples (i.e. \parallel" composition,h = (h1; :::; hn)) or alternatives h = h1 j ::: j hn. As in attribute grammars thestructural description is enriched by semantic information. Associated with a HIT arevarious kinds of data ow constraints between the following entities:� slots (in the context of attribute grammars named attributes) storing the state ofa HIT instance. Certain slots of a HIT are distinguished: Through its argument{, argument/result{ and result{ parameter slots a HIT instance shares part ofits state with related HIT instances in an object structure. Input slots may bemodi�ed by an external entity (e.g. a human user), the values of output slots arerelevant to the environment (and have to be visualized by the user interface).� message ports for receiving events from external entities and for the distributionof messages across a structure of HIT{instances. Like slots message ports mayserve as parameters of a HIT or may be used for receiving (input message ports)and sending (output message ports) messages to external entities.� rules de�ning either a directed equation in a \spreadsheet{like" manner (i.e. one{way constraints which should hold at every time) or a transaction caused by anexternal entity (e.g. an application function called by a user).Input slots, input message ports and transactions rules may have preconditions. Eachalternative hi of an alternative HIT h = h1 j ::: j hn is assigned an applicabilitycondition depending on the argument parameter slots of hi. Creating an instance of analternative HIT h = h1 j ::: j hn with argument parameter values a1; :::; anh results increating an instance of one of those alternatives with satis�ed applicability condition.When a tuple HIT h = (h1; :::; hn) is instantiated, instances for each component HIThi are created.5.2.2 Speci�cation of the Logical ISDN UIDesigning the logical UI consists of designing views which contain user interactions,system interactions and problem domain objects for a single task or a group of logi-cally related tasks. In our example we follow the goal of designing a logical UI whichis similar to the real ISDN phone. Therefore we introduce four views. By the viewBasicFunctions users gain access to the basic functionality of the ISDN phone for start-ing and terminating phone calls on line 1 (i.e. interface functions start 1st connection,terminate 1st connection, see �gure 8). The view AdvancedFunctions provides accessto the advanced functions of the ISDN phone dealing with inquiries and conferences(i.e. application functions start inquiry; :::; switch connections, see �gure 8). The view19

DialPhoneNumberTask corresponds to the task DialPhoneNumber (see �gure 9) al-lowing users to dial phone numbers directly digit by digit or to select phone numbers fromthe phone book. Finally the view LogicalISDNUI describes the entire logical ISDNUI, i.e. LogicalISDNUI contains the views BasicFunctions, AdvancedFunctions andDialPhoneNumberTask. Moreover the view LogicalISDNUI should present the stateof the ISDN phone and allow users to add and remove entries from the phone book.The views of the logical ISDN UI can be easily represented in the HIT speci�cationtechnique. Figure 11 shows how the logical ISDN UI is represented as a tuple{HIT
LogicalISDNUI

Basic-
Functions

ISDNState:
ISDNStateType

DialPhone-
NumberTask

ISDNState:
ISDNStateType

PhoneBook:
PhoneBookType

Advanced-
Functions

ISDNState:
ISDNStateType

RequestForConnection:
PhoneNumberType

receive_request

a a r

ISDNState:
ISDNStateType

PhoneBook:
PhoneBookType

ISDNState(Idle(),Idle(),Idle()) r

init_state

handle_request

h

hnh1 . . .

Definition
of Tuple-HIT

Slot Name:
Slot Type Definition of Slot

Port Name:
Port Type

Definition of Message Port

Argument Parameter

Argument/Result -

Result -

Output
Slot/Message Port

Input
Slot/Message Port

argument

result
function RuleFigure 11: View LogicalISDNUI of logical ISDN UILogicalISDNUI. The component HITs BasicFunctions, AdvancedFunctions andDialPhoneNumberTask represent the views in the logical ISDN UI described above.Through its argument message port RequestForConnection the HIT LogicalISDNUIreceives phone calls on the external line. The slot ISDNState stores the current stateof the ISDN phone. As the user should be permanently informed about the state ofthe phone, ISDNState is declared as an output slot. The slot PhoneBook stores thephone book. As the user should be able to add and remove entries from the phonebook, PhoneBook is declared as an input slot. To indicate that the state ISDNStatecan be alterated by user interactions in the views BasicFunctions, AdvancedFunctions20

and DialPhoneNumberTask, the slot ISDNState is connected to the correspondingargument/result{parameter slots of the component HITs. The slot ISDNState is ini-tialized by the rule init state to the initial state ISDNState(Idle(); Idle(); Idle()) ofthe phone. A message in the argument message port RequestForConnection triggersthe rule handle request, which causes an update on the state of the ISDN phone (valueof the slot ISDNState) according to the semantics of the receive request function.Figure 12 shows the HIT{representation of the view BasicFunctions. It groups user
Basic FunctionsISDNState:

ISDNStateType

tr_Start1StConnection

start_1st_connection

a r

tr_Terminate1StConnection

terminate_1st_connection

a r

precondition:
 is_Idle(Line1(ISDNState)) &&
 is_Idle(Line2(ISDNState))

precondition:
 is_Dialing(Line1(ISDNState)) ||
 is_Active(Line1(ISDNState))

a r

Transaction RuleFigure 12: View BasicFunctions of logical ISDN UIinteractions related to start and terminate connections on line 1. As these interactionsalter the state of the phone, the HIT BasicFunctions has an argument/result{parameterslot ISDNState. Through the transaction rule tr Start1stConnection the user startsa phone call on line 1 by applying the interface function start 1st connection (see �gure8) to the current state ISDNState of the phone. As the UI should prevent users fromcalling applications functions with parameters violating the function's precondition, thetransaction rule tr Start1stConnection is guarded by the precondition of the functionstart 1st connection, which is taken directly from the algebraic speci�cation of theproblem domain model. By triggering the transaction rule tr T erminate1stConnectionthe user can terminate a connection on line 1.In Figure 13 we show how the view DialPhoneNumberTask (which correspondsto the task DialPhoneNumber in the task model, see �gure 9) is representedby a corresponding HIT. Like the HITs BasicFunctions and AdvancedFunctionsDialPhoneNumberTask has an argument/result{parameter slot ISDNState to indi-cate that the state of the ISDN phone is accessed and altered by user interactions.Through the argument parameter slot PhoneBook the phone book is passed. As the user21

DialPhoneNumberTaskISDNState:
ISDNStateType

PhoneBook:
PhoneBookType

&

Digit:
DigitType

OneFromListSelectionTaskRef:
REFERENCE

List:
LIST

dial_with_db

a

a r

dial_with_dcb

a

a r

precondition:
 is_Dialing(Line1(ISDNState)) ||
 is_Dialing(Line2(ISDNState))

precondition:
 is_Dialing(Line1(ISDNState)) ||
 is_Dialing(Line2(ISDNState))

Number

a

r

PhoneBookEntry:
PhoneBookEntryType

&

Reference

handle_db handle_dcb

Figure 13: View DialPhoneNumberTask of logical ISDN UIis allowed to enter the phone number digit by digit, the HIT DialPhoneNumberTaskcontains an input message port Digit. A message (i.e. a digit of the phone number)in the Digit message port triggers the rule handle db, which alters the state of theISDN phone according to the semantics of the dial with db function. To allow users toselect a phone number directly from the phone book, we introduce an input messageport PhoneBookEntry. A message (i.e. a selected entry of the phone book) in thePhoneBookEntry message port triggers the rule handle dcb, which updates the stateof the phone according to the semantics of the dial with dcb interface function. Thepreconditions of Digit and PhoneBookEntry ensure that user interactions with thesemessage ports are enabled only in appropriate states of the phone. The selection fromthe phone book is modeled through a HIT OneFromListSelectionTask, whose argu-ment parameter slots are supplied with a reference to the PhoneBookEntry messageport (the selection should cause a message in PhoneBookEntry) and with the valueof the PhoneBook slot (the list from which the item should be selected). As the userinteraction \selection from a list" appears in many logical user interfaces, the BOSS{System provides a standard library containing HITs like OneFromListSelectionTaskfor the representation of standard interaction tasks.The BOSS{System provides a very comfortable, integrated development enviroment22

(IDE) which allows to draw speci�cations in the graphical notation shown in �gures 11{13. Assuming a given set of layout guidelines, all the steps from the speci�cation of thelogical user interface to a \running" UI implementation are performed automatically bythe BOSS{System.5.2.3 Speci�cation of Layout GuidelinesLayout guidelines describe the mapping from logical UIs to interfaces in particular layoutstyles by de�ning the representation of the states and state transitions of the logical UIin terms of interaction objects and events of an abstract or concrete UI{toolkit.In BOSS the HIT speci�cation technique is used both for the representation of the log-ical UI and the UI in a particular layout style. Consequently, as shown in �gure 14,layout guidelines in BOSS model the transformation from the HIT{speci�cation of a
BOSS

Presentation
Templates

Refinement
Templates

(Layout Guidelines Style l1)

(Layout Guidelines Style ln)

. . .

HIT-specification of logical UI (containing a HIT h)

HIT-specification of UI in Layout Styles l1, ..., ln (containing refined HITs from logical UI and presentation templates)

h.

UserModel:
UserModelType

CurrentStateLayoutStyle_ln:
AbstractInteractionObjectType

CurrentStateLayoutStyle_l1:
AbstractInteractionObjectTypehStyle_l1_..._ln.

. . .

Figure 14: Layout Guidelines in the BOSS{Systemlogical UI into the HIT{speci�cation of a UI in the layout styles described by theguidelines. Given layout guidelines for the styles l1; :::; ln a HIT h in the speci�ca-tion of the logical UI is re�ned into a HIT hStyle l1 ::: ln. hStyle l1 ::: ln contains anadditional argument parameter slot UserModel and additional result parameter slotsCurrentStateLayoutStyle l1; :::; CurrentStateLayoutStyle ln. The result parameterslot CurrentStateLayoutStyle li contains the layout of the current UI state (repre-sented in terms of abstract interactions objects) for the layout style li depending on the23

properties of the user model passed in the argument parameter slot UserModel. Thisarchitecture results in a high exibility of the generated UI: As hStyle l1:::ln containslayout information for each style, it's possible to switch the layout style at runtime.The speci�cations of layout guidelines for a style li consists of a set of presentationtemplates and a set of re�nement templates. For each element in the HIT speci�cationlanguage dealing with user interaction (input{,output slots, input{, output messageports, transaction rules) a specialized presentation template is de�ned (e.g. a templatePresentOutputSlotStateStyle li for the presentation of the value of output slots). There�nement templates describe the re�nement from HITs without layout information(e.g. h) to HITs with layout information (e.g. hStyle l1 ::: ln). This re�nement isdone by attaching the appropriate presentation templates to the interactive parts of aHIT. E.g. in the HIT LogicalISDNUI, which describes the main view on the logicalISDN UI, a PresentOutputSlotStateStyle li presentation template is attached to theoutput slot ISDNState. In the BOSS{System, presentation{ and re�nement templatesare de�ned in the HIT speci�cation technique itsself. E.g. the presentation templatePresentOutputSlotStateStyle li is de�ned as a HIT with argument parameter slotsUserModel (the user model) and OutputSlotState (i.e. the value of the output slot)and a result parameter slot OutputSlotStateLayout, which delivers a layout in terms ofabstract interaction objects. The HIT speci�cation technique is well{suited for repre-senting such presentation templates, as the typical decision{tree{like structure can beexpressed easily through nested alternative HITs.As the HIT speci�cation technique allows modular speci�cations, the speci�cations ofguidelines for di�erent layout styles di�er only in a few presentation and re�nement tem-plates. Furthermore, it is possible to combine general{purpose guidelines with guidelinesfor a speci�c problem domain. For the generation of the ISDN interfaces shown in �gures3 and 2 we combined a general{purpose styleguide with a specialized ISDN styleguidecontaining a few specialized presentation templates e.g. for presenting objects of thesort ConnectionStateType as \smilies".6 Conclusion and further researchThe BOSS{System has been implemented in C++ on top of UNIX/X11R6. It currentlysupports the Athena and the OSF/Motif toolkits. The animation component of PLUG{IN is based on Tcl/Tk. The context{sensitive help{component of PLUG{IN is basedon the WWW browser Mosaic. The FLUID{System, whose theoretical foundations arepresented in [3], is currently under development. The FUSE methodology and toolshave been applied successfully to a number of examples (ISDN phone simulation, userinterface for a literature retrieval system, user interface for a home banking system,formula editor for LATEX). Important parts of the FUSE development environment (e.g.the subsystem FIRE, see [23]) have been speci�ed with BOSS. In the future we planto increase the level of compatibility of the FUSE development environment to other24

model based methodologies and tools. E.g. for setting up the problem domain model,we want to support OOA and ERA data models in addition to the currently supportedalgebraic speci�cation technique. In order to gain more practical experience with theFUSE{methodology and the related tools, we plan to organize a course in user interfacespeci�cation at the Munich University of Technology.7 AcknowledgementsThis work has been partially supported by Siemens Corporate Research and Develop-ment, Department of System Ergonomics and Interaction (ZFE ST SN 51). The authorswould like to thank Werner Schreiber for his useful comments and suggestions on draftversions of this report.References[1] Siemens AG. Telefon Bedienungsanleitung Hicom Standard 300, 1992.[2] H. Balzert. From OOA To GUI { The Janus System . In Proceedings Interact 95. IFIP , 7 1995.[3] B. Bauer. Generating User Interfaces from Formal Speci�cations of the Application.Submitted to DSV-IS'96 Workshop, Namur, Belgium , 1996.[4] F. Bodart, A.M. Hennebert, J.M. Leheureux, I. Provot, and J. Vanderdonckt.A Model{Based Approach to Presentation: A Continuum from Task Analysisto Prototype. In F. Paterno, editor, Proceedings Eurographics Workshop De-sign,Speci�cation,Veri�cation of Interactive Systems, Carrara, Italy Juni 8-10, 1994. Springer Focus on Computer Graphics Series , 1995.[5] J. Eickel. Logical and layout structures of documents. Computer Physics Commu-nication, 61:201{208, 1990.[6] T. Elwert and E. Schlungbaum. Modelling and Generation of Graphical UserInterfaces in the TADEUS Approach . In DSV-IS'95 Workshop Proceedings .Eurographics Association, 1995.[7] T. Fehrle, K. Kl�ockner, V. Sch�olles, F. Berger, M. Thies, and W. Wahlster. PLUS- Plan-based User Support. Technical report, DFKI-Report RR-93-15, 1993.[8] J.D. Foley. History, Resums and Bibliography of the User Interface Design En-vironment (UIDE), an Early Model-based System for User Interface Design andImplementation . In DSV-IS'94 Workshop Proceedings . Springer, 1995.25

[9] H. Ganzinger. Optimierende Erzeugung von �Ubersetzerteilen aus implementierung-sorientierten Sprachbeschreibungen. PhD thesis, Technische Universit�at M�unchen,1978.[10] S. Hudson and R. King. A generator of direct manipulation o�ce systems. ACMTransactions on Information Systems, 4(2):132{163, 1986.[11] C. Janssen, A. Weisbecker, and J. Ziegler. Generating User Interfaces from DataModels and Dialogue Net Speci�cations . In ACM Interchi 93 Proceedings . ACM,1993.[12] P. Johnsen, P. Markopoulos, and H. Johnsen. Task Knowledge Structures: Aspeci�cation of user task models and interaction dialogues . In Proceedings of 11thInterdiciplinary workshop on informatics and psychology , 6 1992.[13] F. Lonczewski. PLUG{IN: Using Tcl/Tk for Plan Based User Guidance. In Pro-ceedings of the Tcl/Tk Workshop, July 6-8 1995, Toronto. USENIX Association,ISBN 1-880446-72-3, 1995.[14] F. Lonczewski. Using a WWW{Browser as an alternative user interface for inter-active applications. In R. Holzapfel, editor, Poster Proceedings of the 3rd WorldWide Web Conference, Darmstadt, Germany. Fraunhofer Institute for ComputerGraphics , 1995.[15] F. Lonczewski and S. Schreiber. The FUSE{System: An Integrated User InterfaceDesign Environment. Submitted to DSV-IS'96 Workshop, Namur, Belgium , 1996.[16] P. Luo, P. Szekely, and R. Neches. Management of Interface Design in HUMANOID. In ACM Interchi 93 Proceedings . ACM, 1993.[17] R. Moriyon. Automatic Generation of Help from Interface Design Models. In CHI'94 Proceedings . ACM , 1994.[18] D. R. Olsen. MIKE: The Menu Interaction Kontrol Environment. ACM Transac-tions on Graphics, 5(4):318 { 344, 1986.[19] D. R. Olsen. A programming language basis for user interface managment. In ACMCHI 89 Proceedings. ACM, 1989.[20] S. Schreiber. Speci�cation and Generation of User Interfaces with the BOSS-System . In A. Cypher and J. Gornostaev, editors, Proceedings East-West Inter-national Conference on Human-Computer Interaction EWHCI'94 . ICSTI Moscow,8 1994. Also in: Human Computer Interaction, Selected Papers EWHCI'94 Con-ference, Springer LNCS 876 .
26

[21] S. Schreiber. The BOSS{System: Coupling Visual Programming with Model{Based Interface Design . In F. Paterno, editor, Proceedings Eurographics WorkshopDesign, Speci�cation, Veri�cation of Interactive Systems 1994, Carrara, Italy Juni8-10, 1994 . Springer Focus on Computer Graphics Series, ISBN 3-540-59480-9,1995.[22] W. Schreiber. Prosaische Logik f�ur Dichter und Denker { Textverarbeitung ma�-geschneidert . Forschung f�ur Bayern, (6), 1993.[23] R. Schwab. Generierung von Standardbedienober�achen aus Applikationsbeschrei-bungen . Master's thesis, Technische Universit�at M�unchen, 1995.[24] C. Wiecha. Generating highly interactive user interfaces. In CHI'89 Proceedings,1989.

27

