T UM

INSTITUT FUR INFORMATIK

Generating User Interfaces with the
FUSE-System

Frank Lonczewski
Siegfried Schreiber

TUM-19612
Februar 1996

TECHNISCHE UNIVERSITATMUNCHEN

TUM-INFO-02-1996-19612-200/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1996 MATHEMATISCHES INSTITUT UND
INSTITUT FUR INFORMATIK
TECHNISCHE UNIVERSIAT MUNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut fir Informatik der
Technischen Universiit Minchen

Generating User Interfaces with the
FUSE—-System

Frank Lonczewski
Siegfried Schreiber

Institute of Computer Science, Munich University of Technology,
Arcisstr. 21, 80290 Munich, Germany
email: {lonczews schreibs}@informatik.tu-muenchen.de
WWW: http: //www2.informatik.tu-muenchen.de /research /ui/ui.html

Abstract

With the FUSE(Formal User interface Specification Environment)-System we
present a methodology and a set of integrated tools for the automatic generation
of graphical user interfaces. FUSE provides tool-based support for all phases
(task—, user—, problem domain analysis, design of the logical user interface, design
of user interface in a particular layout style) of the user interface development
process. Based on a formal specification of dialogue— and layout guidelines, FUSE
allows the automatic generation of user interfaces out of specifications of the task—,
problem domain— and user—-model. Moreover, the FUSE-System incorporates a
component for the automatic generation of powerful help— and user guidance com-
ponents. In this paper, we describe the FUSE-methodology by modeling user
interfaces of an ISDN phone simulation. Furthermore, the two major components
of FUSE (BOSS, PLUG-IN) are presented: The BOSS—System supports the de-
sign of the logical user interface and the formal specification of layout guidelines.
PLUG-IN (PLan-based User Guidance for Intelligent Navigation) generates task—
based help— and user guidance components.

1 Introduction

Even with the most advanced layout oriented user interface construction tools (UI-
toolkits, Ul-builders, Ul-Management Systems) the task-based and user—oriented de-
velopment of graphical user interfaces remains a time—consuming and difficult process.
Therefore tools for the formal specification and automatic generation of user interfaces
(model based Ul-tools) have gained rising research interest. Regarding the evolution of
model based tools from the early approaches (e.g. MIKE, MIKEY, HIGGENS) to the

most recent ones (e.g. MASTERMIND, TRIDENT, TADEUS) we recognize that more
and more phases of the user interface development process are supported.

The FUSE (Formal User interface Specification Environment)-System described in this
paper belongs to this new generation of model based interface tools. The main goals
and properties of the FUSE-System are:

e Tool-based support for all phases (task—, user—, problem domain—analysis, design
of the logical user interface, design of user interfaces in a particular layout style)
of the user interface development process

e Generation of working prototypes in early phases of the development process

e Standardization of user interfaces by formal specification of user interface
styleguides

e Generation of powerful help— and user guidance components

The paper is organized as follows: In section 2 we describe the overall methodology
and architecture of the FUSE-System. In section 3 we discuss related work in the area
of automatic Ul generation. In section 4 we discuss the capabilities of FUSE for the
generation of user interfaces in different layout styles and of help— and user guidance
components by using the example of an ISDN phone simulation. Section 5 describes the
stages in the development process of the ISDN interface using the FUSE-System. In
section 6 we discuss practical experience with FUSE and directions of further research.

2 The FUSE-Methodology: An Overview

The overall architecture of the FUSE-System is shown in figure 1. The FUSE-System
[15] consists of the four components BOSS (BedienOberflichenSpezifikationsSystem, the
german translation of “user interface specification system” [20, 21]), FLUID (FormalL
User Interface Development, [3]), PLUG-IN (PLan—based User Guidance for Intelligent
Navigation [14, 13]) and FIRE (Formal Interface Requirements Engineering). Each of
these tools may also be used independently of the FUSE-System.

The user interface development process with FUSE consists of the phases requirements
analysis, design and evaluation. For the user interface part of an interactive application
no implementation phase is needed, as FUSE generates running user interfaces from
design—level specifications. Some activities in the development process have to be carried
out only once for a whole class of user interfaces. As these activities mainly refer to the
definition of software—ergonomic guidelines (dialogue— and layout guidelines, see figure
1), they belong to the “Guideline Definition Layer” (GDL). The other activities have
to be carried out in each user interface development process. As these activities consist
mainly of the application of the Guidelines defined in the GDL, they belong to the
“Guideline Application Layer” (GAL).

WIYSAS-—S N Y} JO 9INIONYIIY [[RIIA() T 9InS1,]

Phase in
Development
Process

Analysis

Dialogue
Design

Layout
Design

Evaluation

-
Dialog

Guideline
Designer

(S

Layout

Guideline Application Layer (GAL)

Applikation Analyst
1

\

Formal Specification
Problem Domain Model
(Application Interface)

Applikation Analyst
1

\

Formal Specification
User Model

Applikation Analyst

\

Formal Specification
Task Model

Formal, constructive
Specification of
Dialogue Guidelines
(Dialogue Style d)

Guideline
Designer

ﬁ%—»

Formal, constructive
Specification of
Layout Guidelines
(Layout Style 11)

(Layout Style In)

Elaboration
by Hand

[/

FLUID
» Formal User
| o Interface
1 Development
1
| l
1
1
! Formal Specification
& - -
! v > of logical User Interface
: ialogue Designer (Dialogue Style d)
|
|
|
! v
|
|
| BOSS PLUG-IN
> BedienOberflachen PLan-based User

! SperzifikationsSystem Guidance for
| Intelligent Navigation
1
1
1
1
1
1
1
1
1
: Interactive Application ‘ \ 4
|) .
| Eunctional Core _ User Interface Onllne_ Documentation,

icati (Dialogue Style d, Layout User Guidance Component
| of Application ’ N " y s
| Styles 11, ..., In) with Simulation and Animation
|
|
|

Formal Generated
Specification Generator Program

In the analysis phase of the process, an application analyst defines the requirements
for the user interface by setting up the formal specification of three models. The spec-
ification of the task model describes the task—hierarchy of the interactive application.
The problem domain model (application interface) consists of an algebraic specifica-
tion of the functions and data structures of the Ul-relevant part of the functional core
of the interactive application. The user model is a description of static and dynamic
properties of user groups and individual users which influence not only the generation
process of the user interface, but also the kind and depth of the help offered by the user
guidance component on a 'per user’ basis. To support the requirements analysis phase
the FUSE-System contains a component called FIRE (not shown in figure 1). FIRE
provides graphical editors for setting up the task—, problem domain— and user model
and a tool for the generation of a very-first UI prototype.

In the design phase of the UI development process, software-ergonomic guidelines are
formally specified by human factors experts in the roles of dialogue— and layout guide-
line designers. Dialogue guidelines describe the transformation of the task—, problem
domain— and user models of interactive applications into formal specifications of logical
user interfaces in a particular dialogue style. At the abstraction level of logical user
interfaces, static and dynamic properties of interfaces are described without considering
presentation issues. Layout guidelines describe the transformation from specifications
of logical user interfaces into specifications of user interfaces in a particular layout style.
The formal specifications of dialogue— and layout guidelines, which can be regarded
as the formal specification of a user interface styleguide, belong to the GDL-layer in
the development process, as they have to be carried out once for a whole class of user
interfaces.

Within the FUSE—-architecture, the FLUID-System plays the role of an automatic dia-
logue designer. From the specifications of dialogue guidelines for a dialogue style d and
the specifications of task—, problem domain— and user model of an interactive applica-
tion, FLUID generates the specification of static and dynamic properties of a logical user
interface in the dialog style d. This specification may be modified by a human dialogue
designer. For the representation of the design of the logical user interface, FUSE employs
a specification technique called HIT (Hierarchic Interaction graph Templates), which is
based on attribute grammars and dataflow diagrams. Besides the automatic generation
with the FLUID-System, a human dialogue designer can elaborate the specification of
the logical user interface by hand.

From the specifications of layout guidelines for the layout styles [y, ..., [, and the speci-
fication of a logical user interface (generated automatically by FLUID or specified by a
human dialogue designer) in a dialogue style d the BOSS-System generates an imple-
mentation of a user interface in the dialogue style d, in which the end—user can switch
at run—time between the layout styles [y, ..., [,. For the formal specification of the layout
guidelines the BOSS-System also uses the HIT specification technique. The separation
between logical Uls and interfaces in particular layout styles in the design phase (see

figure 1), which is typical for model based UI tools, can be found also in related research
domains like document architecture (see e.g. [5, 22]).

Based on the specification of the task—model and the specification of the dynamics of the
logical user interface generated by FLUID the PLUG-IN-System generates a component
for intelligent user guidance, which is bound (i.e. “plugged in”) to the user interface
implementation generated by BOSS. This user guidance component supports the end—
user during his work with the user interface by context—sensitive hypertext help—pages.
These provide information about the current state of the user interface. Moreover,
the generated user guidance component uses animation sequences to demonstrate how
complex tasks can be accomplished by the user.

3 Related Work

MIKE [18] (Menu Interaction Kontroll Environment) und MIKEY [19] generate user in-
terfaces with menus and dialog boxes based on a description of the functions (argument—
and result parameters) and the data structures in the application interface. In
HIGGENS [10] a semantic data model of the application interface is used as the base
for deriving views as abstract descriptions of the user interface layout.

The ITS (Interactive Transaction System)-System [24] offers a frame-based language
for the specification of user interfaces in its logical structures (“dialogue content”).
Moreover, I'TS allows the specification of style rules, which describe the mapping between
logical user interfaces and user interfaces in a particular style.

In the UIDE-System (User Interface Design Environment) [8], the UI development pro-
cess consists of the description of two models. In the application model, the logical user
interface is described in terms of application objects and —tasks. The Ul-model describes
the coupling of the application model to a user interface layout by linking application
tasks to interface tasks, interaction techniques and —objects. The links between the
models are used by a runtime engine to provide animated help.

HUMANOID [16] divides the Ul-development process into the activities application
design, dialogue sequencing, action side effects, presentation design and manipulation
design. In the first three design dimensions the logical structure of a user interface is
described in terms of the structure and the behaviour of so called application objects.
The mapping of the state of the application objects in an logical user interface to a
Ul-layout is described in the design dimensions presentation— and manipulation de-
sign through presentation and manipulation templates. Based on the model described
above, HUMANOID is able to provide textual help. Recently the research on UIDE and
HUMANOID was joint in the MASTERMIND project.

In the ADEPT-System [12], a process—algebra—like specification technique (TKS, task
knowledge structures) is used for the specification of the task model of an interactive
application. In the design phase of the Ul-development process, the task model is

transformed into the specification of the so called AIM (abstract interface model), which
corresponds to the term “logical user interface” in figure 1. Based on design rules in a
user model, the ADEPT-System derives a concrete interface model (CIM) from the AIM
by replacing the abstract interaction objects in the AIM by the appropriate concrete
interaction objects in the CIM.

The GENIUS-System (GENerator for user Interfaces Using Software Ergonomic Rules)
[11] generates user interfaces for data—base oriented applications. In GENIUS, the prob-
lem domain model is represented by an ERA (entity—relationship—attribute) diagram.
Based on this ERA-diagram static aspects of the logical user interface are described in
terms of so called views, which can be regarded as abstract representations of user inter-
face windows. For the representation of the dynamics of the logical interface, GENIUS
employs a petri-net—like specification technique (“dialogue-nets”). For each view in the
logical user interface, the static Ul-layout is generated by applying software—ergonomic
guidelines, which are described as decision tables (e.g. for the selection of interaction
objects).

In the TADEUS-System (TAsk based DEvelopment of User interface Software) [6], the
Ul-development process is divided into the phases requirements analysis, dialogue design
and realisation. During the phase requirements analysis, a task model (hierarchic goal
structure), a problem domain model (class hierarchy) and an user model is specified. In
the phase dialogue design, static and dynamic aspects of the logical user interface are
described in terms of views and dialogue-graphs (an extension of the dialogue-nets of
GENIUS). In the phase realisation, the logical user interface is transformed into an user
interface description for an UIMS by applying software—ergonomic guidelines specified
through decision tables.

The TRIDENT(Tools foR an Interactive Development ENvironmenT)-System [4] con-
sists of a methodology and a support environment for developing Uls for business—
oriented interactive applications. TRIDENT uses ERA-diagrams for the description of
the problem domain model. For the representation of the task model TRIDENT pro-
vides a data—flow—graph-like specification technique (activity chaining graphs, ACGs).
Each ACG is structured into presentation units. From these presentation units, the
static user interface layout can be generated by applying rules for the selection of ab-

stract interaction objects (AIO), rules for mapping AIO to concrete interaction objects
(CIO) and rules for the placement of CIO.

The JANUS-System [2] uses OOA (Object—Oriented Analysis) for describing the prob-
lem domain model (i.e. application interface) of a database-oriented interactive applica-
tion. Moreover, JANUS allows the specification of software—ergonomic guidelines, which
describe the mapping between OOA-models to the Ul-description language of a UIMS.
JANUS does not provide means for the explicit specification of the Ul-dynamics.

PLUS [7] is a task-oriented help system for domain-specific interactive applications. It
uses a database of hierarchical plans described by an application analyst. With this
database the system reasons about the hypothetical tasks the user currently performs.

In the task description knowledge about application— and user interface specific knowl-
edge is combined. Therefore the given help is tailored to a predefined layout style. If
the application functionality or layout guidelines are changed, the database has to be
changed accordingly by hand.

The differences between FUSE and the approaches presented above include the flexibil-
ity of the WWW-based help— and user guidance components generated by PLUG-IN.
Moreover, FUSE achieves a high degree of integration and tool-based support over
the whole Ul-development process. The use of an encompassing, intuitive specification
technique (HIT) in the UI design phase (see figure 1) eases the use of the FUSE-System.

4 User Support for an ISDN Phone with FUSE

In this section we present examples of different ISDN phone user interfaces generated
with the BOSS system. The ISDN phone simulation is an interactive application for the
simulation of main operations that are possible with a real ISDN telephone simulation
described in [1]. Furthermore we look onto the problems that the user can possibly have
when using one or more of these user interfaces. We also show the various kinds of help
that PLUG-IN provides for the ISDN phone simulation.

4.1 User Interfaces of an ISDN Phone

With the ISDN phone simulation the user can accomplish a number of tasks with differ-
ent complexity. An example of a simple task is CreatelstConnection. This task can be
decomposed into the subtasks StartlstConnection and DialTelephone Number. If the
user at the other end responds, the two parties are connected to each other afterwards.
Other example tasks of the ISDN phone simulation are: DefineDirectCall Button,
EstablishCon ference and EstablishConnectionBetweenOther Parties.

In figure 2 and figure 3 we can see two different user interfaces of the ISDN phone
simulation. In figure 3 the direct manipulation interface is displayed. The elements of

Basic Functions Advanced Functions Phone Book,
Hhart iab Commobion
Terminate 1st (‘uﬂnne-::tinn Line 1 Line ?

L3

Figure 2: menu interface

= toplevelshers 0000000000000 [l

Thu Feb 9 15:45:28 1995 ‘

‘Namq Num_ _g ‘Namq Num_ _g
‘Namq Num, _E ‘Namq Num_ _E
‘Namq Num_ __é ‘Namq Num_ ___é
‘Namq Num, _E ‘Namq Num_ _E

Mwmjwwmjwwwj Inquiry ;
Hand Oveﬂ

Conferenceg

§ Terminateg

handset
on hook

[,

Figure 3: direct manipulation interface

the user interface are a handset button, a liquid crystal display, eight direct call buttons
(each one with name and phone number label), a digit block and five special function
buttons. A phone number can be entered by using the digit block or one of the direct
call buttons. If a direct call button is used, a predefined phone number associated with
the button is dialed. Figure 2 displays a functional equivalent menu interface for the
phone simulation. Both user interfaces are generated with the BOSS system. The user
can change the layout between the two styles presented above during runtime.

The alternative user interface of the ISDN phone simulation in figure 2 consists
of a menupane with three menus named BasicFunctions, AdvancedFunctions and
PhoneBook. In the first one the basic phone functions (e.g. to start a phone call) are
listed, whereas the more complex functions (e.g. to create a connection to a second party
while already connected to a first one) can be found in the second menu. With the third
menu the phonebook of the ISDN simulation can be administered. In comparison to the
direct manipulation interface the menu interface displays the state of the phone simu-
lation more explicitly by displaying icons under the three labels ExternalLine, Line 1
and Line 2. These are helpful for the user as the state of the phone simulation can

be deduced from them. As a smiling face is displayed for Line 1, the user is currently
connected to a party on the first of two available phone lines. If the state of the phone
simulation changes, the displayed icons change accordingly (e.g. if the user terminates
the phone call, the smiling face will disappear).

One of the more complex functions of the ISDN phone simulation is StartCon ference.
In an ISDN phone conference the three participating parties can talk and hear each other
simultaneously. Despite of the fact that a C'on ference button is available on the direct
manipulation user interface (and similarly a StartCon ference menu entry in the menu
AdvancedFunctions of the menu interface), it is a complex task to establish a conference
with the phone. As the interactive phone application simulates the behaviour of a real
ISDN phone [1], it is not as easy as just pressing the conference button on the user
interface. If the phone is not in an appropriate state, only the message “Conference not
possible” is shown on the LCD. In this situation the user would look into the reference
guide of the phone trying to find out how to establish the conference. While working
with an interactive simulation, a user guidance component can offer even more than an
on-line reference guide in hypertext form.

PLUG-IN supports the user of interactive applications by dynamical on-line help and
task-based user guidance. For this purpose all interactions of the user are observed.

4.2 Task—Based User Support with PLUG-IN

For the task-based user guidance PLUG-IN tries to determine the current tasks of the
user while she is working with an interactive application. If the observed interactions
can be matched with parts of a task valid in the current state, a way is searched to
solve the identified task. A task can be accomplished if its task—goal can be reached.
Typically a unique (sub)state of the user interface is associated with each task goal. If
the task can be performed in the current state, the user guidance component helps the
user by:

e generating an animation sequence (upon user request) that simulates the necessary
user interactions to accomplish the given task

e updating and visualizing a list of tasks that the user is currently performing out
of the view of the user guidance component

To provide the task-oriented help, an application analyst first describes the tasks that
can be performed with the interactive application by creating the task model. It contains
a layout independent description of the tasks that the user can accomplish with the
application. A task description of the ISDN phone simulation is presented in section 5.1.

A list of ISDN phone tasks is shown in figure 4. If the user selects a task from the list,
the necessary interaction sequences are simulated on the user interface. Entries of the
list are highlighted if PLUG-IN has identified a corresponding task as currently being
performed by the user.

Define Direct Call Button |
Create First Connection |

Create Two Simultaneous Connections
Establish Connection Between Two Other Parties
Establish Conference With Two Other Parties

Figure 4: task list for ISDN phone simulation

4.3 Dynamical On-Line Help with PLUG-IN

The dynamical on-line help is based on the various possible states and state transitions
of the interactive application. As not all possible application states and transitions are
interesting from the user’s point of view, only those relevant for the user support are
taken into account. This subset can be derived by using the information coded into the
task—, problem domain— and application—-model and can be represented as a set of finite
state automatons. The information contained in these can be used to:

e generate help pages (see below)
e visualize the set of finite state automatons as State Transition Diagrams (STDs)

e generate animation sequences that simulate the necessary user interactions to
change the state of the application to another state selected by the user.

The task-based and the dynamical on-line help are closely coupled. Both of them are
used for the provision of the dynamical on-line help.

As an example a STD for the ISDN telephone application is shown in figure 5. The
highlighted node NoConnection describes the current state of the phone. The actions
that the user can perform in the different states are denoted by directed arcs. In the
current state the user can only start a phone call. PLUG-IN uses the set of state
transition diagrams to generate dynamical on-line help pages and animation sequences.
In contrast to other approaches to user guidance [7, 17], PLUG-IN generates dynamical
on-line help pages in HTML format that can be inspected with a World Wide Web
browser like Netscape or NCSA Mosaic. One dynamical on-line help page is displayed
in figure 6.

Each dynamical on-line help page is typically divided into four regions and contains:

e information about the current state of the application from the user’s point of
view

10

Start
Inguirg

Linel Dial) Line2
Connection Telephone Line1 Terminate Connection
Being Number Active 2ndConnection Being
Established A Established

Tenminate Tenninate

Tenninate - - Dial
1s3tConnection AL LI D) EEs Telephone —
HNumber

Start
1ztConnection

Conference

T
Connections
Line? Active

Start
Conference

Start
Tenninate Conference
2ndConnection

Eind
T1stConnectio

Hao -
Connection Switch
Connections
Cnn:e‘::'t]iuns Switch
Line1Actice Connections
- '
- | .

Figure 5: STD for ISDN phone simulation

e information about the set of possible actions the user can perform in the current
state

e for each of the possible actions: information about the necessary user interactions
to perform the action.

e information about further documentation material, e.g. references to a hypertext
version of the user manual of the application

As all operations the user can perform on the original user interface can also be triggered
through the WWW browser, it can be regarded as an alternative user interface of the
application. In contrast to the original user interface the goal of the WWW-based user
interface is to guide the user during the work with the application. The information
displayed helps the user to accomplish a given task. Furthermore, the user can learn
how to interact with the original user interface through the means of the simulation
capabilities of PLUG-IN.

Depending on the current state of the application and the chosen layout style for the
user interface, PLUG-IN generates different on-line help pages on the fly. The generated
on-line help page corresponding to the current state of the phone’s user interface shown
in figure 3 is displayed in figure 6. If the user selects the light bulb icon on the page, the

11

File Options Navigate Annotate News Documents

Help

ISDN Telephone System.........ccocoovvevnnececanane Friday, 26.01.1996 17:54

generated online help

Current state of the application from the user’s point of view:
& NoConnection

Mo cormecton established yet.

Action that can be performed from the user’s point of view:
e StartlstConnection

With this action a conversation will be started.

Description of interaction sequences used:
A description of the necessary interacton steps to perform the acton is shown below,
e StartlstConnection

O Move the mouse pointer to the button with the label "Handset enhook’,
O Select the button by clicking with the left mouse button.

Related topics

user manual ISDM Telephone Systern, graphical representaton of telephone, descripton of

telephone—elernents

Cr-Ben)

[«

| Homel Reload| 0pen...| Save As...| Clone| Tew Wind0w| Close Wind0w|

Figure 6: one dynamical on-line help page generated by PLUG-IN

12

described user interactions are animated on the user interface. In this example PLUG-
IN would take control over the mouse pointer, then changes the shape of the mouse
pointer to provide visual feedback for the user. Afterwards it moves the mouse pointer
to the handset button on the user interface and selects the button by simulating a click

with the left mouse button. Finally, a new on-line help page is generated and displayed
with the WWW browser.

The user can also interact with the displayed STD. Here he simply selects a state node
and PLUG-IN searches a path to the selected node. If a path can be found, the corre-
sponding user interaction are animated on the displayed user interface.

PLUG-IN has the capability to deal with different user interface layouts with regard
to the generated on-line help pages and animation sequences. If the layout style of the
user interface changes during runtime, the description of the necessary interaction steps
on the dynamical on-line help pages are altered correspondingly. Also the generated
animation sequences are tailored to the new layout style. It would be very hard to build
a help system by hand that provides the various kinds of help offered by PLUG-IN,
because the designer has not only to take into account the various possible states of the
interactive application, but also the various layout styles that can be changed during
runtime. The approach used within PLUG-IN is very flexible, because the help offered
adapts itself automatically to the runtime context.

It is worth to be mentioned that PLUG-IN can be used independently of the FUSE-
System. In this case, PLUG-IN provides a comfortable environment (e.g. a graphical
editor) for creating the required STDs. Within FUSE the FLUID-System [3] will pro-
vide the automatic generation of these STDs by using the information from the task—,
problem domain— and user model.

5 Modeling the ISDN User Interface with FUSE

In the following we describe the systematic development of the ISDN user interfaces
described in section 4. In section 5.1 we demonstrate how the task— and problem domain
models are represented during the requirements analysis. In section 5.2 we focus on the
design of the ISDN Uls using the BOSS—System. In this context we show how the
logical ISDN UI is designed by a human dialogue designer “by hand” without using the
FLUID-System. The use of the FLUID-System for generating an initial design of the
logical ISDN UI can be found in [3].

5.1 Defining the requirements for the ISDN UI

During the phase “requirements analysis” in the Ul-development process (see figure 1)
the application analyst defines the requirements for the Ul in terms of a problem
domain—, task— and user model.

In the FUSE-System, the conceptual objects and functions of the problem domain model
(Application Interface, AI) are represented as an algebraic specification Speca; =<
Yar, Axsr >. The signature part X ,4; consists of the definitions of sorts with associ-
ated constructor— and selector functions for the description of the conceptual problem—
domain objects. Furthermore ¥ ,4; describes the functionality (argument— and result

13

parameters) of the so called interface functions, i.e. functions which end—users apply to
conceptual objects.

Figure 7 shows the sorts, constructor- and selector functions of the problem do-

ISDNStateType DigitType PhoneNumberType PhoneBookType

\ \
ISDNState CHAR[1'...’9",’07 STRING[1'...'9", 0]

PhoneBoo‘kEntryType

PhoneBookEntry

ExternalLine

Name Number
ExternalConnectionStateType ConnectionStateType ConnectionStateType
STRING PhoneNumberType
Idle Waiting Idle Dialing, Active, Waiting
PhoneNumber PhoneNumber
PhoneNumberType PhoneNumberType

/[\ tuple (i.e. record) alternative " list Constructor, Selector Functions

Figure 7: Sorts, Constructor— and Selector Functions for the ISDN Phone

main model of the ISDN phone in the graphical notation used in the FUSE-System.
The sort ISDN StateType describes the set of possible states of an ISDN phone.
ISDNStateType is defined as a tuple with the components ExternalLine (state of
the external line), Linel and Line2 (state of the two internal lines). The sort Con-
nectionStateType describes the possible states (Idle, Dialing, Active, Waiting) of an
internal line. The sort PhoneBookType describes the phone book, an abstraction of
the direct call buttons, as a list of elements of the sort PhoneBookEntryType (tuple
with components Name and PhoneNumber). The sort PhoneNumberType defines
phone numbers as strings out of the ordered character set '1’.../9’.0’. This character
set, is also described by the sort DigitType. The functionality of the interface functions
in the problem domain model of the ISDN phone is shown in figure 8. The function
start_1st_connection is used to start a phone call on line 1. The argument parameter sb
(state before) denotes the state of the phone before, the result parameter sa (state after)
the state after calling start_1st_connection. The function terminate_1st_connection is
used to terminate phone calls on line 1. With the function dial_with_db the user enters
a digit (argument parameter d) of the phone number. With the function dial_with_dcb
a complete phone number (argument parameter n) is entered with one of the direct call
buttons.

The semantic part Az 4; of the algebraic specification Specy; of the ISDN problem
domain model describes the semantics of the interface functions in terms of pre— and
postconditions. E.g. for the function start_1st_connection we demand the precondition

is_Idle(Linel(sb)) A is_Idle(Line2(sb)),

14

/I ... start and terminate connections on the first line

start_1st_connection: ISDNStateType sb -> ISDNStateType sa
terminate_1st_connection: ISDNStateType sb -> ISDNStateType sa

/I ... dial with the digit block (db) or the direct call buttons (dcb)

dial_with_db: ISDNStateType sb, DigitType d -> ISDNStateType sa
dial_with_dcb: ISDNStateType sb, PhoneNumberType n -> ISDNStateType sa

/I ... receive connection request
receive_request: ISDNStateType sb, PhoneNumberType n -> ISDNStateType sa
/I ... start and terminate inquiries and conferences

start_inquiry: ISDNStateType sb -> ISDNStateType sa
start_conference: ISDNStateType sb -> ISDNStateType sa
terminate_conference: ISDNStateType sb -> ISDNStateType sa
hand_over: ISDNStateType sb -> ISDNStateType sa
terminate_2nd_connection: ISDNStateType sb -> ISDNStateType sa
switch_connections: ISDNStateType sb -> ISDNStateType sa

Figure 8: Functionality of ISDN interface functions

i.e. the phone is not in use. After calling start_1st_connection, line 1 of the phone
should be in the state Active, if there was a phone call request on the external line.
If there is no such request, line 1 should be in the state Dialing. This behaviour is
expressed by the axioms

Vn € PhoneNumberType :
start_1st_connection(ISDN State(W aiting(n), Idle(),Idle())) = ISDNState(Idle(), Active(n),Idle())
start_1st_connection(ISDN State(Idle(), Idle(), Idle())) = ISDNState(Idle(), Dialing(<>), Idle())
In a similar way, the semantics of the other interface functions is described. Overall, the
algebraic specification Specs; of the ISDN problem domain model describes the state
transition diagram shown in figure 5.

While the problem domain model defines the requirements for the user interface from
the view of the application functionality, the task model describes the Ul-requirements
from the view of potential end—users. Its content, the task—space, is a decomposition
of tasks into subtasks, actions and associated functions of the application interface. An
example is shown in figure 9.

The task FEstablishConference can be decomposed into the subtasks Cre-
atelstConnection, Makelnquiry and the action StartConference. The subtasks and the
action have to be performed in the order given from left to right, therefore the sequence
symbol (™) is displayed above the task EstablishConference. Links from actions of
the task space to functions of the application interface are denoted by the symbol .
Besides the sequence other constructs define temporal relations in the task space. For
each node pre- and postconditions refering to a particular system state can be used to
define the context in which a task or an action is applicable. The task DialTelepho-
neNumber (figure 9) uses the choice— construct (). Here the user can choose to
dial with the digit block or one of the direct call buttons.

15

AN
L | Ehone Stmiation TIIT/|
DialTelephone Humber
/\ A\

ISDNTask

DialWith TgitBluck Dial¥ith DirertCallButtun / \

A A Estahlish Conference Connet
el el
dial_with_dh dial_with_dch
] /z_“ll“p\

CreatelstConnection Make Ingquiry StartCanerem::e

StarﬂstTnnectjun DialTelephone Mumber St:atrtlrt:|uir'_o,|r DialTelephoneMumber start_conference

[l
u
"
"
"
D

e]
start_1st_connection start_inquiry

hdh

Figure 9: excerpts from task space of phone simulation

In the property sheet of figure 10 the precondition

ISDNStateBefore = ISDN State(Idle(), Idle(), Idle())

states the fact that this task can be only performed if the phone is not in use. Other
properties of the sheet define the behaviour of the user guidance component during
runtime.

The requirements analysis phase is completed by defining the static and dynamic prop-
erties of the user model. With the static properties of the user model various user
stereotypes are modeled. Examples for static properties are “user’s motivation”, “user’s
application knowledge” and “user’s task knowledge”. All of these properties can have
one value of the set {low, medium, high} and are predefined by the application ana-
lyst for a whole user class. In contrast to the static properties the dynamic properties
are obtained during runtime. In this way it is possible to give help that is adapted to
the user’s individual interaction behaviour. One example of a dynamic property is the

16

| Task Form: Establish Conference |

Enter values for properties of task

sequence |fl.
Task Type: choice
optional 7
o o
Task Complexity: e medium

-# high

Precondition for Task: |ISDNStatEEIefure=ISDNState{ldle[),

FPostcondition for Task: |ISDNState.ﬁ.ﬂer=I5DN5tate(IdIeC|,.ﬂ.

Conceptual Objects Used:

ISONStateBefore : ISONStateType A
ISDNStatedfter: ISONStateType
PhoneEook : BhoneBookType

~L_

Short Task Descrption:

|Establish Conference With Two Other Parties

~ L~

Long Task Description:

The goal of this task is to establish a phone N
conference between you and two other .J
£

participating parties. In a phone conference
the three participating parties can hear and

Figure 10: property sheet of example task

“frequency of already solved tasks”. With this property it is possible to reason about
tasks still unknown to the user. Furthermore the property can be exploited to order
the task-based on-line help with respect to the measured task frequency. Overall, the
various properties defined in the user model control the behaviour of the user guidance
component during runtime.

As mentioned in section 2 the FUSE-System provides a support environment called
FIRE, which supports the specification of the three models in the requirements analysis.

17

FIRE contains not only the graphical editors shown in figures 9 and 10, but also a
prototyping tool which generates a very first Ul-prototype. This prototype is a direct
representation of the task— and problem domain model in terms of menus and dialogue—-
boxes and provides a good base for discussing the results of the requirements analysis
with end—users. Overall the functionality provided by the FIRE-System is similar to
the ADEPT-System (see section 3).

5.2 Design of the ISDN UI with BOSS

Within the FUSE—-architecture, the BOSS—System is the main tool for supporting the
design—phase in the Ul-development process. During this design process, BOSS is used
by an automatic (i.e. the FLUID-System, see [3]) or a human (the scenario we assume
in this paper) dialogue designer for the specification of user interfaces in its logical
structures and by a human layout guideline designer for the specification of layout
guidelines.

Important properties of BOSS include:

e BOSS uses an encompassing specification technique (HIT, Hierarchic Interaction
Graph Templates) for the specification of user interfaces in its logical structures,
user interfaces in a particular layout style and layout guidelines. The HIT spec-
ification technique is based on two well-known software construction methods:
Dynamic Attribute Grammars (DAG) and Dataflow Diagrams (DFD).

e The HIT specification technique allows to create very modular specifications: The
specification of the logical user interface can be composed of reusable building
blocks representing single tasks or groups of related tasks (“views”) of the task
model. Moreover, these building blocks can be stored in libraries for reuse in
different projects.

e BOSS offers an integrated, graphical Development Environment (IDE) for working
out HIT-specifications in a visual-programming-like manner. HIT—specifications
can be transformed into efficient C++ — programs using standard techniques from
compiler generation.

In the following we give a brief introduction into the HIT specification technique (section
5.2.1). In sections 5.2.2 and 5.2.3 we show how HIT is used for modeling logical user
interfaces and layout guidelines.

5.2.1 The HIT specification technique: An Overview

The HIT specification technique extends a well-known technique in compiler construc-
tion, Dynamic Attribute Grammars (DAG) [9], by timing— and event— concepts. A
HIT specification consists of a set of basic data type and function definitions and a
set of templates called HITs (Hierarchic Interaction graph Templates). HITs serve as

18

prototypes for creating objects (HIT—instances) maintaining their own state, reacting
in response to external messages and being connected with other objects in an object
structure. A definition of a HIT consists of a structural (syntactic) and a semantic
part. The structural definition describes how a HIT A is constructed from “simpler”
HITSs hy, ..., h, using operators like construction of tuples (i.e. “parallel” composition,
h = (hi,...,hy)) or alternatives h = hy | ... | h,. As in attribute grammars the
structural description is enriched by semantic information. Associated with a HIT are
various kinds of data flow constraints between the following entities:

e slots (in the context of attribute grammars named attributes) storing the state of
a HIT instance. Certain slots of a HIT are distinguished: Through its argument—
, argument/result— and result— parameter slots a HIT instance shares part of
its state with related HIT instances in an object structure. Input slots may be
modified by an external entity (e.g. a human user), the values of output slots are
relevant to the environment (and have to be visualized by the user interface).

e message ports for receiving events from external entities and for the distribution
of messages across a structure of HIT-instances. Like slots message ports may
serve as parameters of a HIT or may be used for receiving (input message ports)
and sending (output message ports) messages to external entities.

e rules defining either a directed equation in a “spreadsheet-like” manner (i.e. one—
way constraints which should hold at every time) or a transaction caused by an
external entity (e.g. an application function called by a user).

Input slots, input message ports and transactions rules may have preconditions. Each
alternative h; of an alternative HIT h = hy | ... | h, is assigned an applicability
condition depending on the argument parameter slots of h;. Creating an instance of an
alternative HIT h = hy | ... | h, with argument parameter values ay, ..., a,, results in
creating an instance of one of those alternatives with satisfied applicability condition.
When a tuple HIT h = (hy, ..., h,) is instantiated, instances for each component HIT
h; are created.

5.2.2 Specification of the Logical ISDN UI

Designing the logical Ul consists of designing views which contain user interactions,
system interactions and problem domain objects for a single task or a group of logi-
cally related tasks. In our example we follow the goal of designing a logical UI which
is similar to the real ISDN phone. Therefore we introduce four views. By the view
BasicFunctions users gain access to the basic functionality of the ISDN phone for start-
ing and terminating phone calls on line 1 (i.e. interface functions start_1st_connection,
terminate_1st_connection, see figure 8). The view Advanced Functions provides access
to the advanced functions of the ISDN phone dealing with inquiries and conferences
(i.e. application functions start_inquiry, ..., switch_connections, see figure 8). The view

19

Dial Phone NumberTask corresponds to the task Dial Phone Number (see figure 9) al-
lowing users to dial phone numbers directly digit by digit or to select phone numbers from
the phone book. Finally the view Logical ISDNUI describes the entire logical ISDN
Ul i.e. LogicallSDNUI contains the views BasicFunctions, AdvancedFunctions and
Dial PhoneNumberTask. Moreover the view LogicalSDNUI should present the state
of the ISDN phone and allow users to add and remove entries from the phone book.

The views of the logical ISDN UI can be easily represented in the HIT specification
technique. Figure 11 shows how the logical ISDN UT is represented as a tuple-HIT

handle_request

receive_regdest

ay " a T

0 —_— PhoneBook:
’ ISDNState(Idle(), Idle(1dle()) ‘ r ‘ —p\\/ J N \/-> neBookType
/‘/" \

v
ISDNState: Basic- t ISDNState: Advanced- # ISDNState: * PhoneBook: DialPhone-
ISDNStateType Functions SDNStateType Functions SDNStateType PhoneBookType~ NumberTask

[Slot Name) -
L h | Slot Type Definition of Slot * Argument Parameter

‘ \ Definition t Argument/Result -
of Tuple-HIT > -
. grnt _l;l;pr:;e. Definition of Message Port T Result -

O \ Output argument
O-’vv Slot/Message Port function Rule

O result
Input
\& "O Slot/Message Port

Figure 11: View LogicalSDNUTI of logical ISDN UI

LogicalISDNUI. The component HITs BasicFunctions, AdvancedFunctions and
DialPhoneNumberTask represent the views in the logical ISDN UI described above.
Through its argument message port RequestForConnection the HIT LogicalISDNUI
receives phone calls on the external line. The slot ISDN State stores the current state
of the ISDN phone. As the user should be permanently informed about the state of
the phone, ISDN State is declared as an output slot. The slot PhoneBook stores the
phone book. As the user should be able to add and remove entries from the phone
book, PhoneBook is declared as an input slot. To indicate that the state I.S DN State
can be alterated by user interactions in the views BasicFunctions, Advanced Functions

20

and Dial PhoneNumberTask, the slot ISDN State is connected to the corresponding
argument /result-parameter slots of the component HITs. The slot I.SDN State is ini-
tialized by the rule init_state to the initial state I.SDN State(Idle(), Idle(), Idle()) of
the phone. A message in the argument message port RequestForConnection triggers
the rule handle_request, which causes an update on the state of the ISDN phone (value
of the slot ISDN State) according to the semantics of the receive_request function.

Figure 12 shows the HIT-representation of the view BasicFunctions. It groups user

a r a | r
start_1st_connection 4—% terminate_1st_connection 4—%
< <
tr_Start1StConnection tr_Terminate1StConnection
precondition: precondition:
is_ldle(Line1(ISDNState)) && is_Dialing(Line1(ISDNState)) ||
is_ldle(Line2(ISDNState)) is_Active(Line1(ISDNState))

S

Transaction Rule

Figure 12: View BasicFunctions of logical ISDN UI

interactions related to start and terminate connections on line 1. As these interactions
alter the state of the phone, the HIT BasicFunctions has an argument /result—parameter
slot ISDN State. Through the transaction rule ¢r_StartlstConnection the user starts
a phone call on line 1 by applying the interface function start_1st_connection (see figure
8) to the current state IS DN State of the phone. As the UI should prevent users from
calling applications functions with parameters violating the function’s precondition, the
transaction rule tr_StartlstC'onnection is guarded by the precondition of the function
start_1st_connection, which is taken directly from the algebraic specification of the
problem domain model. By triggering the transaction rule tr_TerminatelstConnection
the user can terminate a connection on line 1.

In Figure 13 we show how the view DialPhoneNumberTask (which corresponds
to the task DialPhoneNumber in the task model, see figure 9) is represented
by a corresponding HIT. Like the HITs BasicFunctions and AdvancedFunctions
DialPhoneNumberTask has an argument/result—parameter slot I.SDN State to indi-
cate that the state of the ISDN phone is accessed and altered by user interactions.
Through the argument parameter slot PhoneBook the phone book is passed. As the user

21

|

| t ISDNState: PhoneBook: : !
| SDNStateType ‘ PhoneBookType D|aIPhoneNumberTask:
= /‘\ ““““ R

a [a | ¢
handle_db | dial_with_db dial_with_dcb | handle_dch
a

t

r

Number

@
N\, PhoneBookEntry:
Q" RhoneBookEntryType

‘”

precondition: (&) p_recopd_ition:_
is_Dialing(Line1(ISDNState)) || is_Dialing(Line1JSDNState)) ||
is_Dialing(Line2(ISDNState)) is_Dialing(Line2§ SDNState))

Y
Ref:) .
* REFERENCE * OneFromListSelectionTask

Reference

Figure 13: View Dial PhoneNumberTask of logical ISDN UI

is allowed to enter the phone number digit by digit, the HIT Dial Phone NumberT ask
contains an input message port Digit. A message (i.e. a digit of the phone number)
in the Digit message port triggers the rule handle_db, which alters the state of the
ISDN phone according to the semantics of the dial_with_db function. To allow users to
select a phone number directly from the phone book, we introduce an input message
port PhoneBookFEntry. A message (i.e. a selected entry of the phone book) in the
PhoneBook Entry message port triggers the rule handle_dcb, which updates the state
of the phone according to the semantics of the dial_with_dcb interface function. The
preconditions of Digit and PhoneBookFEntry ensure that user interactions with these
message ports are enabled only in appropriate states of the phone. The selection from
the phone book is modeled through a HIT OneFromlListSelectionTask, whose argu-
ment parameter slots are supplied with a reference to the PhoneBookEntry message
port (the selection should cause a message in PhoneBookEntry) and with the value
of the PhoneBook slot (the list from which the item should be selected). As the user
interaction “selection from a list” appears in many logical user interfaces, the BOSS—
System provides a standard library containing HITs like OneFromListSelectionT ask
for the representation of standard interaction tasks.

The BOSS-System provides a very comfortable, integrated development enviroment

22

(IDE) which allows to draw specifications in the graphical notation shown in figures 11—
13. Assuming a given set of layout guidelines, all the steps from the specification of the
logical user interface to a “running” UI implementation are performed automatically by
the BOSS—System.

5.2.3 Specification of Layout Guidelines

Layout guidelines describe the mapping from logical Uls to interfaces in particular layout
styles by defining the representation of the states and state transitions of the logical Ul
in terms of interaction objects and events of an abstract or concrete Ul-toolkit.

In BOSS the HIT specification technique is used both for the representation of the log-
ical UT and the UI in a particular layout style. Consequently, as shown in figure 14,
layout guidelines in BOSS model the transformation from the HIT-specification of a

HIT-specification of logical Ul (containing a HIT h)

|
hoooe !
|
|

BOSS Presentation Refinement
Templates Templates
<4

(Layout Guidelines Style I1)

(Layout Guidelines Style In)

HIT-specification of Ul in Layout Styles I1, ..., In (containing refined HITs from logical Ul and presentation templates)
X UserModel: hstvle 11 n ... urrentStateLayoutStyle_|1:
UserModelType e AbstractinteractionObjectType
CurrentStateLayoutStyle_In:
AbstractinteractionObjectType

Figure 14: Layout Guidelines in the BOSS-System

logical UI into the HIT-specification of a UI in the layout styles described by the
guidelines. Given layout guidelines for the styles [y,...,l,, a HIT A in the specifica-
tion of the logical Ul is refined into a HIT hStyle I1_....In. hStyle_l1_..._In contains an
additional argument parameter slot UserModel and additional result parameter slots
CurrentState LayoutStyle_l1, ..., CurrentState Layout Style_In. The result parameter
slot CurrentStateLayoutStyle_li contains the layout of the current UI state (repre-
sented in terms of abstract interactions objects) for the layout style /; depending on the

23

properties of the user model passed in the argument parameter slot UserModel. This
architecture results in a high flexibility of the generated UI: As hStyle_I1 ..In contains
layout information for each style, it’s possible to switch the layout style at runtime.

The specifications of layout guidelines for a style [; consists of a set of presentation
templates and a set of refinement templates. For each element in the HIT specification
language dealing with user interaction (input—output slots, input—, output message
ports, transaction rules) a specialized presentation template is defined (e.g. a template
PresentOutputSlotStateStyle_li for the presentation of the value of output slots). The
refinement templates describe the refinement from HITs without layout information
(e.g. h) to HITs with layout information (e.g. hStyle_l1_....In). This refinement is
done by attaching the appropriate presentation templates to the interactive parts of a
HIT. E.g. in the HIT LogicalISDNUI, which describes the main view on the logical
ISDN U, a PresentOutputSlotStateStyle_li presentation template is attached to the
output slot ISDN State. In the BOSS—System, presentation— and refinement templates
are defined in the HIT specification technique itsself. E.g. the presentation template
PresentOutputSlotStateStyle_li is defined as a HIT with argument parameter slots
UserModel (the user model) and OutputSlotState (i.e. the value of the output slot)
and a result parameter slot QutputSlotState Layout, which delivers a layout in terms of
abstract interaction objects. The HIT specification technique is well-suited for repre-
senting such presentation templates, as the typical decision—tree-like structure can be
expressed easily through nested alternative HITs.

As the HIT specification technique allows modular specifications, the specifications of
guidelines for different layout styles differ only in a few presentation and refinement tem-
plates. Furthermore, it is possible to combine general-purpose guidelines with guidelines
for a specific problem domain. For the generation of the ISDN interfaces shown in figures
3 and 2 we combined a general-purpose styleguide with a specialized ISDN styleguide
containing a few specialized presentation templates e.g. for presenting objects of the
sort C'onnectionStateType as “smilies”.

6 Conclusion and further research

The BOSS—System has been implemented in C++ on top of UNIX/X11R6. It currently
supports the Athena and the OSF /Motif toolkits. The animation component of PLUG—
IN is based on Tcl/Tk. The context-sensitive help-component of PLUG-IN is based
on the WWW browser Mosaic. The FLUID-System, whose theoretical foundations are
presented in [3], is currently under development. The FUSE methodology and tools
have been applied successfully to a number of examples (ISDN phone simulation, user
interface for a literature retrieval system, user interface for a home banking system,
formula editor for IXTEX). Important parts of the FUSE development environment (e.g.
the subsystem FIRE, see [23]) have been specified with BOSS. In the future we plan
to increase the level of compatibility of the FUSE development environment to other

24

model based methodologies and tools. E.g. for setting up the problem domain model,
we want to support OOA and ERA data models in addition to the currently supported
algebraic specification technique. In order to gain more practical experience with the
FUSE-methodology and the related tools, we plan to organize a course in user interface
specification at the Munich University of Technology.

7 Acknowledgements

This work has been partially supported by Siemens Corporate Research and Develop-
ment, Department of System Ergonomics and Interaction (ZFE ST SN 51). The authors
would like to thank Werner Schreiber for his useful comments and suggestions on draft
versions of this report.

References

[1] Siemens AG. Telefon Bedienungsanleitung Hicom Standard 300, 1992.

[2] H. Balzert. From OOA To GUI — The Janus System . In Proceedings Interact 95
. IFIP | 7 1995.

[3] B. Bauer. Generating User Interfaces from Formal Specifications of the Application.
Submitted to DSV-IS’96 Workshop, Namur, Belgium , 1996.

[4] F. Bodart, A.M. Hennebert, J.M. Leheureux, I. Provot, and J. Vanderdonckt.
A Model-Based Approach to Presentation: A Continuum from Task Analysis
to Prototype. In F. Paterno, editor, Proceedings Furographics Workshop De-
sign, Specification, Verification of Interactive Systems, Carrara, Italy Juni 8-10, 199/
. Springer Focus on Computer Graphics Series , 1995.

[5] J. Eickel. Logical and layout structures of documents. Computer Physics Commu-
nication, 61:201-208, 1990.

[6] T. Elwert and E. Schlungbaum. Modelling and Generation of Graphical User
Interfaces in the TADEUS Approach . In DSV-15°95 Workshop Proceedings .
Eurographics Association, 1995.

[7] T. Fehrle, K. Klockner, V. Schélles, F. Berger, M. Thies, and W. Wahlster. PLUS
- Plan-based User Support. Technical report, DFKI-Report RR-93-15, 1993.

[8] J.D. Foley. History, Resums and Bibliography of the User Interface Design En-
vironment (UIDE), an Early Model-based System for User Interface Design and
Implementation . In DSV-15°94 Workshop Proceedings . Springer, 1995.

25

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

H. Ganzinger. Optimierende Erzeugung von Ubersetzerteilen aus implementierung-
sorientierten Sprachbeschreibungen. PhD thesis, Technische Universitdt Miinchen,
1978.

S. Hudson and R. King. A generator of direct manipulation office systems. ACM
Transactions on Information Systems, 4(2):132-163, 1986.

C. Janssen, A. Weisbecker, and J. Ziegler. Generating User Interfaces from Data
Models and Dialogue Net Specifications . In ACM Interchi 93 Proceedings . ACM,
1993.

P. Johnsen, P. Markopoulos, and H. Johnsen. Task Knowledge Structures: A
specification of user task models and interaction dialogues . In Proceedings of 11th
Interdiciplinary workshop on informatics and psychology , 6 1992.

F. Lonczewski. PLUG-IN: Using Tcl/Tk for Plan Based User Guidance. In Pro-
ceedings of the Tel/Tk Workshop, July 6-8 1995, Toronto. USENIX Association,
ISBN 1-880446-72-3, 1995.

F. Lonczewski. Using a WWW-Browser as an alternative user interface for inter-
active applications. In R. Holzapfel, editor, Poster Proceedings of the 3rd World
Wide Web Conference, Darmstadt, Germany. Fraunhofer Institute for Computer
Graphics , 1995.

F. Lonczewski and S. Schreiber. The FUSE-System: An Integrated User Interface
Design Environment. Submitted to DSV-IS'96 Workshop, Namur, Belgium , 1996.

P. Luo, P. Szekely, and R. Neches. Management of Interface Design in HUMANOID
. In ACM Interchi 93 Proceedings . ACM, 1993.

R. Moriyon. Automatic Generation of Help from Interface Design Models. In CHI’
94 Proceedings . ACM , 1994.

D. R. Olsen. MIKE: The Menu Interaction Kontrol Environment. ACM Transac-
tions on Graphics, 5(4):318 — 344, 1986.

D. R. Olsen. A programming language basis for user interface managment. In ACM
CHI 89 Proceedings. ACM, 1989.

S. Schreiber. Specification and Generation of User Interfaces with the BOSS-
System . In A. Cypher and J. Gornostaev, editors, Proceedings East-West Inter-
national Conference on Human-Computer Interaction EWHCI’94 . ICSTI Moscow,
8 1994. Also in: Human Computer Interaction, Selected Papers EWHCI’94 Con-
ference, Springer LNCS 876 .

26

[21] S. Schreiber. The BOSS—System: Coupling Visual Programming with Model—
Based Interface Design . In F. Paterno, editor, Proceedings Furographics Workshop
Design, Specification, Verification of Interactive Systems 1994, Carrara, Italy Juni
8-10, 199/ . Springer Focus on Computer Graphics Series, ISBN 3-540-59480-9,
1995.

[22] W. Schreiber. Prosaische Logik fiir Dichter und Denker — Textverarbeitung maf-
geschneidert . Forschung fiir Bayern, (6), 1993.

[23] R. Schwab. Generierung von Standardbedienoberflichen aus Applikationsbeschrei-
bungen . Master’s thesis, Technische Universitat Miinchen, 1995.

[24] C. Wiecha. Generating highly interactive user interfaces. In CHI’89 Proceedings,
1989.

27

