TUM

INSTITUT FUR INFORMATIK

Some Results on Basic Parallel Processes
Richard Mayr

TUM-19616
Marz 96

TECHNISCHE UNIVERSITAT MUNCHEN

TUM-INFO-03-96-19616-200/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©96 FAKULTAT FUR MATHEMATIK UND
INSTITUT FUR INFORMATIK
TECHNISCHE UNIVERSIAT MUNCHEN

Druck: Fakult at f ur Mathematik und
Institut f ur Informatik der
Technischen Universit at Munchen

Some Results on Basic Parallel Processes

Richard Mayr*
TU Miinchen'

Abstract

Basic Parallel Processes (BPP) are a very natural subclass of the class of CCS
processes. They are a simple model for the description of infinite state concurrent
systems. BPPs are closely related to communication-free Petri nets, a special class
of labeled Petri nets, where every transition has exactly one place in its preset.
Unlike for general Petri nets, it is decidable if a BPP and a finite state labeled
transition system are weakly bisimulation equivalent. This is the first time that
weak bisimulation equivalence to a finite state labeled transition system is proved
decidable for a non-trivial model of infinite state concurrent systems.

While language equivalence is undecidable for communication-free nets and so
far only non-primitive recursive algorithms exist for deciding strong bisimulation
equivalence, in the subcase of one-to-one labeled communication-free nets the strong
bisimulation /language equivalence problem is decidable in polynomial time.

For communication-free nets a model checking problem for a weak branching
time temporal logic is shown to be PSPACE-complete. Moreover, subproblems of
this model checking problem for communication-free nets are complete for the n-th
order of the polynomial time hierarchy.

Keywords: Basic Parallel Processes, communication-free Petri nets, bisimulation, model
checking.

1 Introduction

Finite state concurrent systems have been extensively studied within the theory of process
calculi, often by making use of results from standard formal language theory. For these
systems all standard behavioral equivalences are decidable, so many automated tools
have been designed for their analysis.

Recently, questions regarding the decidability of process equivalences on several classes
of infinite state systems have been studied. As a well-known theorem from formal lan-
guage theory states that language equivalence is undecidable even for context-free pro-
cesses [5], stronger notions of equivalence are regarded. These stronger equivalences are
designed to take into account the notions of deadlock, livelock and causality. As all the

*Research supported by “Graduiertenkolleg Kooperation und Ressourcenmanagement in verteilten
Systemen”, TU Miinchen

T Address: Institut fiir Informatik, Technische Universitit Miinchen, Arcisstr. 21, D-80290 Miinchen,
Germany; e-mail: mayrri@informatik.tu-muenchen.de

standard behavioral equivalences except strong bisimulation equivalence are undecidable
over context-free processes [4], while strong bisimulation equivalence is in fact decidable
for context-free processes [9], bisimulation equivalence has become a central notion in
concurrency theory. Therefore it is an important question for which classes of processes
it is decidable whether two processes are bisimulation equivalent and if there is a decision
procedure which is efficient.

One of the most common languages for describing parallel processes is the Calculus of
Communicating Systems (CCS) introduced by Milner [8]. In CCS processes are built from
a set of atomic actions by the operations of action prefix, sequential composition, parallel
composition, nondeterministic choice and process synchronization. There are some very
natural subsets of CCS: the Basic Parallel Processes (BBP) that are built by the opera-
tions of nondeterministic choice and parallel composition and the Basic Process Algebra
(BPA) whose operations are nondeterministic choice and sequential composition. The el-
ements of the BPA are called context free processes, because they correspond naturally to
context free grammars. Basic Parallel Processes correspond to communication-free nets,
which are the Petri nets where every transition has exactly one place in its preset and the
arc from this place to the transition is labeled by 1. A special case of BPP/BPA are the
normed BPP/BPA, which are exactly the BPP/BPA-processes that in every reachable
state have at least one terminating computation. In the process algebra PA, which is a
superset of BPA and BPP, process terms are built by nondeterministic choice, sequential
composition and parallel composition.

While bisimulation equivalence is known to be undecidable for CCS [8], it is decidable
for BPP and BPA [12]. It is an open problem whether it is decidable for PA. For the
deterministic case bisimulation equivalence coincides with language equivalence. In the
nondeterministic case language equivalence is undecidable for all these process algebras
[12].

There are other important equivalences which respect the intuition that actions of
internal communication should not be externally observable. These are weak bisimula-
tion equivalence and weak bisimulation congruence [8]. All these equivalences define a
semantics for the processes. Although BPPs are a model for infinite state concurrent
systems it is possible that a BPP is semantically equivalent to a finite state system. Sec-
tion 3 contains a decidability result for this problem for the case of weak bisimulation
equivalence.

In section 2 process algebras, labeled transition systems and Basic Parallel Processes
are defined and the notion of strong and weak bisimulation equivalence is motivated. Sec-
tion 3 describes an algorithm that decides if a given BPP and a finite state labeled transi-
tion system are weakly bisimulation equivalent. In section 4 a polynomial time algorithm
is described that decides if two one-to-one labeled communication-free nets are strongly
bisimulation equivalent. In section 5 it is shown that model checking communication-free
nets with a weak branching time temporal logic is a PSPACE-complete problem. The
paper closes with some remarks on open problems and on related work.

2 Preliminaries

2.1 Strong and weak bisimulation

The following notions of labeled transition system (for short: LTS), strong and weak
bisimulation are important for the definition of the semantics of Petri nets and process
algebras.

Definition 2.1 A labeled transition system T over a set of Actions Act consists of a
(possibly infinite) set of states S and a binary relation -+C S x S for each a € Act. The
system is called rooted it it has a distinguished initial state sy € S. A path of T is either
an infinite sequence s; = s, — s3... or a finite sequence s; — ... ‘23' 5, such that s,
has no successors. A run is a path that starts at the initial state. The language of a
rooted LTS T is the set of all finite and infinite sequences of actions obtained from the
runs of T.

Definition 2.2 A binary relation R over the states of an LTS is a strong bisimulation
(often simply called bisimulation) iff

Vs, 80 € S s.tusiRsy Va € Act. (51 = 5] = dsy = sh. s]Rsh) A
@ / @ / / /
(s9 — 85 = ds; — s7. s Rs})

Two states s, and sy are strongly bisimulation equivalent if there is a strong bisimulation R
such that s; Rsy. This definition can be extended to states in different transition systems
by putting them ‘side by side’ and considering them as a single transition system. It
is not difficult to see that there always exists a largest strong bisimulation which is an
equivalence relation and is called strong bisimulation equivalence. It is denoted by

There is another elegant characterization: Let 0,(s) := {s’ | s = s’}. An equivalence
relation R on S is a strong bisimulation iff

Vs €S Vae Act. 0,([s]r) C[0.(5)]r

In process algebras processes are described by process terms. There are syntactical
definitions of how these terms are built from a set of atomic actions and some opera-
tors. The dynamical behavior of the processes is described by transition rules of the form
t % t', where t and t' are processes and a is an atomic action. Basically this means that
process t can perform the action @ and become t'. So a process expression determines
a labeled transition system (LTS) whose states are labeled with process expressions and
whose arcs are labeled with atomic actions. The semantics of the processes is given by
defining an equivalence relation over the term algebra. The equivalence classes then rep-
resent the intended processes. It follows that the dynamical rules describe unambiguously
the dynamics of the quotient algebra, only if the chosen equivalence on the term algebra
is a bisimulation. This is a main reason why bisimulation equivalence is the preferred
choice for process equivalence.

However strong bisimulation equivalence is sometimes to strict. Processes can contain
silent internal actions (labeled by 7) which should not be externally visible. Therefore
another equivalence called weak bisimulation equivalence is defined that treats these 7-
actions accordingly.

a

Definition 2.3 Let =:= (5)* % (5)* for every a € Act and

&L %, %fa;«éT
(=), fa=r

A binary relation R over the states of an LTS is a weak bisimulation if

Vs, 80 € S s.tusiRsy Va € Act. (51 = 5] = sy Yy s5. sy Rsy) A
(s2 = s} = s = s]. 5| Rs})

Two states sy and sy are weakly bisimulation equivalent if there is a weak bisimulation
R such that sy Bsy. Again this can be extended to states in different transition systems.
There always exists a largest weak bisimulation which is an equivalence relation and is
called weak bisimulation equivalence. It is denoted by ~. It is clear that ~Cr for
every LTS.

2.2 Bisimulation games

Another approach to bisimulation is via bisimulation games. A game consists of a triple
(7, s1,52), where T is an LTS and sy, sy are states, and two players A (Attacker) and
D (Defender). It is the aim of player A to prove that s; and s are not bisimulation
equivalent, while player D attempts to frustrate this. A turn in the game goes like this:

1. Player A chooses an i € {1,2}, an action a and a move s; — s!. If it is impossible
to make any move in s; or s, then player D wins.

2. Then player D takes the j € {1,2} s.t. ¢ # j and tries to imitate the move, i.e.
find a s/ s.t. s N s;. If this is impossible then player A wins.

After this turn the resulting state is (7, s;, s5). Player D is the winner of any infinite
game.

s; and sy are strongly bisimulation equivalent up to n if there is a strategy for player
D to defend (i.e. prevent player A from winning) for at least n turns. This is denoted
as s ~, S. It is easy to see that ~, is an equivalence relation for every n € IN. If the
graph of 7 is finitely branching, then s; ~ sy & Vn € IN.s; ~,, s, because in this case
=y

Weak bisimulation up to n (denoted by a,) is defined in the same way, except that
player D makes moves s; =8 s instead of s 4 si. It follows immediately that ~,C~s,.
Unlike for strong bisimulation the relation &, is not an equivalence relation in general.
Also ~# N2, ~,, because N, ~,¢Z ~. The other inclusion ~C ()., =, holds

however.

2.3 Basic Parallel Processes

The Basic Parallel Processes (BPP) were introduced by Christensen in his Ph.D. dis-
sertation [1] as a very natural subclass of the class of CCS processes [8]. They are
a simple model of infinite state concurrent systems. Assume a countably infinite set
of atomic actions Act = {a,b,¢c,...} and a countably infinite set of process variables

Var = {X, Y, Z,...}. The class of BPP expressions is defined by the following abstract
syntax [1, 10]:

E =0 inaction
X process variable
al action prefix
FE + F choice
FE||E merge (parallel composition)
a, 3,7, ... denote merges of process variables. A BPP is defined by a family of recursive
equations

where the X; are distinct and the F; are BPP expressions at most containing the variables
{Xy,..., X, }. It will be assumed that every variable occurrence in the F; is guarded, i.e.
appears within the scope of an action prefix. The variable X is singled out as the
leading variable and and X; = FEj is called the leading equation. Any finite family of
BPP equations determines a labeled transition system. For every a € Act the transition
relation - is the least relation satisfying the following inference rules:

. E- E ESE ESE F F
aE—> a a a (X::E) a a
E4+FSE E|FSE|F XS E E+F % F' E||F S E|F

Remark 2.4 BPP processes generale finitely branching transition graphs, i.e. {F | E 5
F} is finite for each E and a. This would not be true if unguarded expressions were al-
lowed. For example, the process X := a+a||X generates an infinitely branching transition
graph.

A BPP is in normal form, if every expression F; at the right hand side of an equation is
of the form oy + ...+ a,a,. It is shown in [1] that every BPP is strongly bisimulation
equivalent to a BPP in normal form (i.e. the leading variables are strongly bisimulation
equivalent).

Definition 2.5 A Basic Parallel Process Algebra is described by a pair <@“, A), where
Var .= {X/ - X" | my,...,m, € N}

is the commutative algebra generated by Var, whose elements are finite multisets of
process variables. Such a multiset represents a BPP in normal form and the multiset
union corresponds to the merge operator. A is a set of transition rules of the form X % a,
where o € Var. These transition rules are constructed from the defining equations. For
every definition X := ajoq + ... + a,a, transition rules X 5 a,...,.X 5 a, are
introduced. These rules determine a more general transition relation by

Xp N aff
if X 5 o is a transition rule.

So a BPP in normal form can be translated into a labeled Petri net by introducing
a place for each process variable and a transition for each transition rule. For a rule
X 5 V™ ... Y™ introduce a transition ¢ labeled by a, an arc labeled with 1 leading

from place X to t and arcs labeled by n; leading from ¢ to places Y;. It is important to
note that in these nets every transition has exactly one input place with an arc labeled
by 1. Such Petri nets will be called communication-free nets. Communication-free nets
will be denoted by N and their markings by ¥. Translating a communication-free net N
back into a BPP-algebra is analogous. Any marking > of N can then be translated into
a BPP in this algebra. So there is a one-to-one correspondence between BPP-algebras
and communication-free nets, as well as between elements of the algebra and markings
of the net. Therefore they can be used interchangeably.

For labeled Petri nets there is a labeling function L : T — Aect that assigns actions
to the transitions. The labeling function L is extended to sequences of transitions in the
standard way. If a sequence of transitions o is firable at a marking ¥ and leads to a new
marking ¥/ this is denoted by ¥ % ¥'. A sequence ¢’ is called a subsequence of o if its
Parikh-vector is smaller (componentwise) than the one of o. In this case o is called a
supersequence of o’.

Definition 2.6 For a Petrinet N = (S, T, W) with W : T'x SUS x T — IN the subnet
generated by a subset of places S” C S is defined as the net

N = (8,-5" 08", Wsrxsusixs))

The definition of a subnet generated by a subset of transitions 7' C T is analogous.

3 Weak bisimulation equivalence between a BPP
and a finite state labeled transition system

Jancar [7] proved that strong bisimulation equivalence is undecidable for general Petri
nets, while Milner [8] showed that it is undecidable for CCS. It is however decidable,
if a Petri net is strongly bisimulation equivalent to a finite state LTS [6, 7]. For BPP
the decidability of strong bisimulation equivalence was proved by Hirshfeld, Christensen
and Moller [10]. The subclass of normed BPP consists of those BPP which in every
reachable state have a terminating computation. For normed context free processes
strong bisimulation equivalence is decidable in polynomial time [12]. Also for normed
BPP strong bisimulation equivalence is decidable in polynomial time [11]. On the other
hand language equivalence is undecidable for BPP [12].

All these equivalence relations define a semantics for the processes. A process with
an infinite state space can still be semantically equivalent to a finite state process. The
question is now for which models of infinite state concurrent systems and which seman-
tic equivalences it is decidable if an infinite state process and a finite state system are
equivalent. It is clear that if strong bisimulation equivalence is undecidable for a system,
then weak bisimulation equivalence is undecidable as well. Although it is decidable if a
general Petri net is strongly bisimulation equivalent to a finite state LTS [6], the same
problem is undecidable for weak bisimulation equivalence [7]. It will be shown now that
it is decidable if a BPP and a finite state LTS are weakly bisimulation equivalent.

First recall a general lemma that is very useful for decidability problems about Petri
nets.

Lemma 3.1 (Dickson’s lemma) Given an infinite sequence of vectors My, My, Ms, . ..
in IN* there are i < j s.t. M; < M; (< taken componentwise).

Unlike for CCS, weak bisimulation equivalence is a congruence for BPP.

Lemma 3.2 Weak bistmulation equivalence is a congruence for BPP, i.e. a ~ [=
ay ~ By.

Lemma 3.3 Let R be an LTS with m states. Let v, € R be states of R. Then

TRy o T RG22, T2

Proof As R has a finite number of states the relation =% is finitely branching for any
a € Act. Therefore 1 ~ r, < Vn € Nory &, ro. So if 1 % ry then there must be an
i € IN and a strategy for player A, such that he can win every bisimulation game in < ¢
steps. A bisimulation game is described by a sequence of pairs (r,7') € R x R. There
are at most m* — m different such pairs (7, r’) with r # r’. So there must be such an ¢
with i < m? — m, and therefore ry % r, = 1| %,,2_,, 7. The other direction is trivial. O

Definition 3.4 The size of a communication-freenet N = (S, T', W) is the space needed
to describe it. This means that if n is the size of N then N has < n places (|S| < n), < n
transitions (|T| < n) and Vt € T Vs € S.W(t,s) < 2", where W is the weight function
that assigns weights to the arcs in the net. The size of a marking of the net is defined
as the number of tokens. The size of a BPP-algebra is the size of the corresponding
communication-free net. The size of a BPP is the size of the corresponding marking of
the communication-free net.

Definition 3.5 In a communication-free net tokens can move freely through the net,
because every transition has only one place in its preset and the arc leading from this
place to the transition is labeled by 1. When a transition fires it takes a token form
the place in its preset and puts some tokens on the places in its postset. One can freely
choose any of these tokens and call it the continuation of the original token. All the
others will be called spin-offs. Assume a firing sequence o. A subsequence ¢’ of o that
does nothing but move a token back to its original place, generating some spin-offs on the
way 1s called a cycle. When a cycle is possible it can be repeated an arbitrary number
of times, because the resulting marking is bigger than the original one. A cycle does not
change a marking, except that it generates some new tokens (the spin-offs).

Lemma 3.6 Let (N,X) be a communication-free net with marking . Let n be the size

of the net N and x the number of tokens in Y. Let o be a firing sequence starting in X

2”2_”—1
2" -1

Proof Any non-cyclic path in N has a length of at most n — 1. As there are no cycles
a token can move at most n — 1 steps. The firing of a transition increases the number of
tokens in the net by at most 2" — 1. So the sequence ¢ has a maximal length of

and not containing any cycle o' as subsequence. Then length(c) <

2

n—2 N 1_(272)72—1 gni-n _ |
D T
1=0

Definition 3.7 Let N be a Petri net and S the set of its places. For every & € IN the
relation <, on the set of markings of N is defined by

Y< Y e ELCY A
Vs e S. N(s) £ X (s) = X(s) >z

For every x the relation <, is a partial order.

Lemma 3.8 Let N be a communication-free net with n places and two markings ¥ and
Yo such that Y1 <, Xy for an x > n. Then for any sequence Yy = Y5 st Lio) e trar®
there is a subsequence o' s.t. L(o') € t%at*, ¥y L ¥ and XY <[pyu 5.

Proof The only difference between o and the subsequence ¢’ are the moves of tokens
starting in places s s.t. X1(s) # ¥a(s). For such places ¥1(s) > z. By a sequence of
T-moves in o a token starting in s is either moved to a place s’ (possibly doing cycles on
the way, and generating spin-offs) or finally vanishes (by a transition that has no places
in its postset). In o’ some, but not necessarily all (at most [#/n]) of these moves are
imitated. As ¥1(s) > « there are enough tokens to move up to [¢/n] tokens to any place
s’ reachable from s, if necessary. If ¥,(s) > [2/n] then keep [¢/n] tokens on s, otherwise
move further tokens away, s.t. ¥5(s) = ¥} (s). All the cycles in o are imitated in ¢’. This
is no problem, since cycles just generate new tokens. The single a-move is also imitated.

So one gets a ¥} that on any place either has the same number of tokens as ¥}, or at
least [z/n]. Thus ¥} <pu . 3. 0

Lemma 3.9 Let N be a communication-free net with n places and two markings ¥ and
Yy such that ¥y <, ¥y for an @ > n. Then for any sequence ¥ > ¥ st Lio) € trar®

there is a supersequence o' of o s.t. L(o') € T%at™, ¥y L 35 and Xy <oy .

Proof Again the only difference between o and o’ are the moves of tokens starting in
places s s.t. Yq(s) # Ya(s). For such places ¥1(s) > «. By a sequence of 7-moves in
o a token starting in s is either moved to a place s’ (possibly doing cycles on the way,
and generating spin-offs) or finally vanishes (by a transition which has no places in its
postset). As ¥1(s) > « at least one of the following conditions must be satisfied:

1. There is a path in the net going only through r-transitions that leads from s to
some place s’ such that in o tokens are moved from s to s' s.t. Xi(s') > [¢/n].
(Note that it is possible that s = s').

2. There is a path in the net going only through 7-transitions that have only one place
in their postset leading from s to a 7-transition ¢ with ¢- = {}. (Tokens on s can
vanish by a sequence of 7-moves).

In o’ first imitate all the moves of o. If ¥{(s) < [#/n] then do the following, depending
on which of the conditions is satisfied.

1. If the first condition is satisfied then track the moves of a token that moves from
s to ¢/ in o. Imitate these moves in ¢’ for the all extra tokens on place s in X,
until the same number of tokens on s is reached as in ¥}. The result may be that

Y5(s") > ¥i(s"), but still ¥{(s") > [¢/n].

2. In this case let the extra tokens on s in the marking ¥, vanish by sequences of
T-moves as described in the second condition, and get ¥ (s) = ¥/ (s).

Adding these extra T-moves to o yields a ¢’ s.t. ¢’ is a supersequence of o, ¥ 2, Y and
Xy Z[e/a) - O

Remark: Lemma 3.8 and Lemma 3.9 do not hold for general Petri nets, not even for
Petri nets where all arcs are labeled by 1.

The relation U'_,(-=)" is also denoted by T=4) Let

(S0 8557588 ifa#tT

(S e =

fa=r

AE, a,l) = {

Y

Lemma 3.10 Let N be a communication-free net and ¥ a marking of N. Let R be a
finite state system and r € R a state of R. Let n be the size of the net N, x the number
of tokens in X and m the number of states in R. There is a function [: N> — IN such
that

Yar ArSsy = EIEEA(Z,@,Z(n,m,:I:)) st N~

Proof From r % ' and ¥ = r it follows that there exists a ¥/ s.t. ¥ =% ¥/ and Y/ a2 1.
Let o be the sequence leading form ¥ to /. It is possible to construct a subsequence
o that is exactly the same as o, except that it possibly contains fewer cycles. So one
obtains a new marking ¥ 2, %) such that & < m2om X' (see Def. 3.7).

What is the maximal number of cycles in o that are needed to reach such a ¥ ?
m*=m new tokens need be produced per
cycles are needed in ¢’. In every cycle
m*=m+1 new tokens are produced. So at most
x4 (2" —1) % n™ =™+ tokens are in the net for moves without cycles. By Lemma 3.6 at

most

Cycles just generate new tokens, and at most n
place in N. So at most n % pmi=m — pmP-mtl

< n transitions are fired, so < (2" — 1) % n

A

2r — 1
non-cyclic moves can be made. This does not necessarily mean that the cycles are done
first, and the non-cyclic moves afterwards. Moves belonging to cycles and non-cyclic

(x4 (2" —1)= nm2_m+1) *

moves can occur in any order.
So altogether at most

oni-n _ 1

U m,) o= 0™ 72 (a4 (20— D™) S

moves need to be made in a & to reach a 3 with 3 < m2em X

It remains to prove that Y. As Y a~ rand ¥ 3 Y there must be a 7 € R s.t.
Y &~ 7. Because of Lemma 3.3 it now suffices to prove that r’ = ,2_,, 7. So it suffices to
prove that in the bisimulation game player D can defend against any attack for at least

m? — m steps. By Lemma 3.8 and Lemma 3.9 Figure 1 shows a strategy for player D. O

Definition 3.11 Let A be a finite set of pairs of the form (r,«), where r is a state in
a finite state system R with m states and « an element of a BPP-algebra of size n. Let

[:IN* = IN be the function from Lemma 3.10.
A set A’ is a weak expansion of A if:

Figure 1: Strategy for player D (Defender) to defend for at least m* — m steps

(M- VU S VS r (A~ RS VR D YRS r
T* T*
T* e T* e
Fk
T* T*
a a subseq. — |a a a a4 + superseq. |¢ @
Lemma 3.8 Lemma 3.9
T* T*
T* T*
7_* 7_* T* T*
* lT*
R XN 2y AR EECID Y- Y DR 1

e For every pair (r,a) € A and every step r - 7’ there is a step a L o with

(r,a') e A

e For every pair (r,a) € A and every step a > ' there is a step r L 1 with
(r,a') e A

e A’ is minimal; no proper subset of A’ satisfies these two properties.

A’ is a bounded weak expansion of A if:

e For every pair (r,a) € A and every step r — 7/ there is an o’ € A(a, a,l(n, m, 7))
with (1, ') € A’, where z is the size of a.

e For every pair (r,a) € A and every step a - o' thereis an r' € A(r, a, m — 1) with
(r';a’) € A’. Note that unlike in the previous case this is no restriction, because R
has only m states.

e A’ is minimal; no proper subset of A’ satisfies these two properties.

The bounded weak expansions of A are denoted by bwexp(A). Note that bwexp(A) is
finite if A is finite.

Lemma 3.12 Let A be a finite set of pairs of the form (r,«), where r is a state in a
finite state system and « is a BPP and r ~ «. Then there is a bounded weak expansion
A" € bwexp(A) s.t. Y(r' o) € Al & o

Proof directly from Definition 3.11 and Lemma 3.10, because of the one-to-one corre-
spondence between BPPs and communication-free nets. a

Theorem 3.13 [t is decidable if a BPP X and a finite state transition system R with
initial state v are weakly bisimulation equivalent.

Proof The general outline of the proof has some similarities to Hirshfelds proof of the
decidability of strong bisimulation equivalence for BPP [10].

There is a BPP algebra Ay := (Var;, A1) s.t. X is the leading variable. Let m
be the number of states in R and m’ the number of arcs. Construct a BPP algebra
Ay = (Vary, Ag) for R. Vary is a set of m new variables Yy,..., Y, s.t. Varyn Vary, = {}.

10

Fach of these variables Y; represents a state r; in B. For every arc r; — r; in R there
is a rule V; & Y, in A,. V) is the leading variable, corresponding to the initial state
ry of R. Define a new BPP algebra As = (Vars, As) := (Var, U Varg, Ay U Ay) with the
leading variable X. Let n be the size of the BPP algebra As.

Now construct a modified bounded weak bisimulation tree, which will be finite. The
nodes in the tree are labeled by finite sets of pairs of the form (V;, a) s.t. Y; € Vary and
a is a BPP in As, i.e. a merge of process variables from Vars. The root node is labeled
by the singleton set {(Y1, X)}. The sons of a node are constructed as follows:

For every pair (Y;,«) in the node there is a finite number of steps, which will be
called questions. Questions can be of two forms:

o o % . There are < n different questions of this form. This is because the
communication-free net corresponding to A; has at most n transitions.

o V, 5 Y;. There are < m’ different ones.

An answer to a question is a step = in the other component of the pair. An answer

a@ . a . .
; = Y; to a question o — ¢« is called correct answer if Y; =~ o« and Y; ~ o/. For
. a . .
uestions Y; — Y it is analogous.
j

e For questions of the first type there are < m possible different answers Y; =8 Y;.
If there is a correct answer then it must be among them.

e For questions of the second type there may be an infinite number of different an-
swers, but Lemma 3.10 yields that if any correct answer exists, then there must be
a correct answer o = o/ s.t. o € A, a,l(n, m,x)), where z is the size of a. So
only regard the finite number of answers in A(a, a,l(n, m,z)).

The sons of a node are labeled by the different bounded weak expansions of the set of
pairs at the node. A bounded weak expansion represents a possible set of answers to all
questions. Lemma 3.10 yields that if a set of correct answers to all questions exists then
it is among the bounded weak expansions. As there are only finitely many of them the
tree is finitely branching.

Now the newly constructed son-nodes are modified by the following procedure: One
can assume that all ancestor-nodes have already been modified. Let (Y;,) be a pair in
the son-node.

1. If a is a merge of process variables from Vary then « represents a finite state system.
It follows that it can be decided if Y; ~ «.

e If V; ~ «a then remove the pair (Y;,) from the son-node.

o If YV, % « then this branch of the modified bounded weak bisimulation tree
has failed and is not developed further.

2. Otherwise « contains at least one process variable from Vary. If the pair (V;, «)
dominates some pair in an ancestor-node, i.e. o = ajaz and (Y;, «q) occurs in
an ancestor-node, then replace the pair (Y, «) by (Vi Yiaz). If this pair still
dominates a pair in an ancestor-node then repeat this step. As the ancestor-node
has already been modified and still contains the pair (Y;, 1), a3 must contain at

11

least one variable from Var;. So the number of variables form Var; in the second
component decreases with every step. Finally either a pair is reached that does not
dominate a pair occurring in an ancestor-node or no variable from Var, is left in
the second component and case 1 applies.

So the constructed tree is finitely branching and no pair in a node dominates a pair that
occurs in an ancestor-node. By Dickson’s Lemma (3.1) the tree is finite.

A successful branch is one that ends with a leaf that is labeled by the empty set. Now
X is weakly bisimulation equivalent to Y7 iff there is a successful branch in the modified
bounded weak bisimulation tree whose root is labeled with the singleton set {(X, Y7)}.

= If X ~ Y; then by Lemma 3.12 there is a path {(X, Y1)} = Ay, Aa,... in the tree
s.b. ViiAiy1 = mod(Bit1) AN Biy1 € bwexp(A;), where the function mod de-
scribes the modifications of newly constructed nodes that were described earlier
and ViV(Y,a) € A;.Y &~ «a. As by Lemma 3.2 the relation & is a congruence for
BPP the modifications by mod do not change this property. (If Y; &~ ajay and
Y: & g then Yiay & ajay &~ VY;.) So by the finiteness of the tree the sequence
must be finite and end with the empty set. Thus there is a successful branch.

< If there is a successful branch, then the smallest congruence containing all the pairs
from the nodes of the path from the root to the successful leaf is a weak bisimulation.
Again this is due to the fact that ~ is a congruence for BPP and thus Y; & oy A Y, =
Yiaa = opaz &~ Yiay &~ Y;. This congruence contains (X, Y;) and therefore

X%Yl.

As the modified weak bisimulation tree is finite and can be effectively constructed it can
be decided if it has a successful branch. O

Remark: The proof of termination of the algorithm relies on Dickson’s lemma, so the
algorithm is not primitive recursive.

4 Deciding strong bisimulation equivalence for one-
to-one labeled communication-free nets

One-to-one labeled Petri nets are nets where the labeling function that assigns actions to
the transitions is injective. This means that every transition is uniquely determined by
its label. For one-to-one labeled Petri nets strong bisimulation equivalence coincides with
language equivalence. Janc¢ar [6, 7] showed that for general one-to-one labeled Petri nets
this problem is decidable but has the same complexity as the reachability problem, which
means that it is EXPSPACE-hard. For one-to-one labeled communication-free nets the
situation is different. While for these nets the reachability problem is NP-complete ([3]
or as a corollary from Theorem 5.6), strong bisimulation equivalence can be decided in
quadratic time.

Definition 4.1 Let N be a communication-free net and S the set of places of N. For
every s € 5 let

Reach(s):=([{M | M CSAseMAVYs e MVtes-.t-C M}

12

For a marking ¥ let
Reach(Y) := U Reach(s)

X(s)>0

This means that for every place s
YEO >0) & s € Reach(Y)
It is clear that Reach(¥) can be computed in quadratic time.

A place s in a Petri net N with initial marking ¥ is dead if it can never become
marked, i.e. if ¥ = O(s = 0). A transition ¢ is dead if it can never fire. This means that
in a communication-free net a transition is dead iff the one place in its preset is dead.

For every place s in a communication-free net N with marking ¥ it follows from Def. 4.1
that
sis dead < s ¢ Reach(Y)

Definition 4.2 A place is called useless if it is dead or has no transitions in its postset.
A transition is useless if it is dead.

Proposition 4.3 All useless places and transitions and the corresponding arcs can be
removed from a communication-free net N with initial marking ¥ in quadratic time.

Proposition 4.4 Let N, N, be one-to-one labeled communication-free nets and i, X
their initial markings. Let N{, N, be the nets that result if the useless places and transi-
tions are removed. Then

(thl) ~ (N2722) = (Nllvzl) ~ (N2/722)

Definition 4.5 Let N;, N, be two one-to-one labeled communication-free nets without
useless places and transitions with initial markings ¥y, >5. Let 51,5, be the sets of places
of Ny, Ny and Ti, T, the sets of transitions. Let L; : T; — Act be the labeling functions.
The presets (postsets) of a place or transition z in the net N; are denoted by pre;(z)
(post;(x)).

A bitrap BT = (My, My) € Sy x Sy is defined by

o Vs e M. {s}is atrap in N

Vs € My.{s} is a trap in N,

Vs € MiVt € posty(s)3s’ € My3t' € posty(s'). L1(t) = La(t)

Vs € MyVt € posty(s)Is’ € Myt € posti(s'). Lay(t) = Li(t)
e BT is minimal, i.e. no proper subset of BT satisfies these properties.

Proposition 4.6 Let Ny, N, be two one-to-one labeled communication-free nets without
useless places and transitions with initial markings Y1, Y34, The bitraps of this system can
be computed in quadratic time.

Proposition 4.7 For every place s € S; there is at most one bitrap (My, My) s.t. s € M;.

13

Lemma 4.8 Let Ny, Ny be two one-to-one labeled communication-free nets without use-
less places and transitions with initial markings X1,%,. L: TYU Ty — Act is the labeling
function that assigns actions to the transitions in Ty and Ty. (N1, 3q) ~ (Ny, Xo) iff the
following conditions hold:

A For every place s in N;, i = 1,2 s.t. {s} is not a trap in N; there is a place s’ in N;
s.t. i % j and

o Yi(s) = X;(5)
o The subnets of N;, N; generated by the places s, s" are equal.

B For every place s in N;, i = 1,2 s.t. {s} is a trap in N; there is a bitrap (My, M) s.t.
s € M; and

Proof

o Fither

— Y1 marks all places in My and

— Yo marks all places in M

o Or

— No place in My, My is marked by X1, Y5 and
— Vie{l,2}.Vs',s" € M;.pre;,(s') = pre;(s”) and
= L(prei(My)) = L(prea(M)

= A If {s} is not a trap in N; then there is a transition ¢t € post;(s) s.t. s & post;(t).

There must be a transition ¢’ in N; with L(¢) = L(t'), because there are no
dead transitions. Let s’ be the one place in the preset of ¢'. As the nets
are one-to-one labeled it follows that s and s’ must always contain the same
number of tokens. Therefore ¥;(s) = X;(s’). Also the subnets generated by
s and s’ must be equal, because there are no useless places and the nets are
one-to-one labeled.

B Now {s} is a trap in ;. Assume that s is not contained in any bitrap BT.

Then one of the following conditions must hold:

L. L(Ty) # L(Ty). As there are no useless transitions in N;, Ny it follows
that (Np, 1) % (Mg, X2), a contradiction.

2. There are transitions ¢ € Ty and ¢/ € Ty s.t. L(t) = L(t') and prei(t) is a
trap and prex(t) is no trap or vice versa. As there are no useless places it

follows that (N, ¥1) % (Ny, ¥g), a contradiction.

So s must be contained in a bitrap (M, My). At every state in a bisimulation
game either all places in M; U My must be marked or all must be empty.
It they are all marked at the beginning they will always be marked. Now
consider the case where no place in My, M; is marked by ¥, ¥5. As there are
no useless places they can all eventually become marked. So it must be made
sure that they all become marked at the same time (i.e. the same step in the
bisimulation game). As there are no useless transitions the second and third
condition follows.

14

< Assume that a transition ¢ is enabled in (N;, ¥;). If pre;(?) is not a trap in N; then
a transition t’ is enabled in (N;,¥;) s.t. L(t) = L(t'), because of condition A. If
pre;(t) is a trap in N; then the same holds because of condition B. Firing both
transitions yields two new systems (N, ¥7), (N;, X}) that still satisfy the conditions
A and B. Therefore (N, ¥;) ~ (N;, X}).

a

Theorem 4.9 Let Ny, Ny be two one-to-one labeled communication-free nets with initial

markings Y1, Y. It can be decided in quadratic time if (N1, 1) ~ (Ng, 3s).

Proof First remove the useless places and transitions from both nets. By Proposi-
tion 4.3 this takes quadratic time, and by Proposition 4.4 it does not affect the result.
By Proposition 4.6 computing all bitraps of the system takes quadratic time. As checking
the conditions A and B can be done in quadratic time as well the result follows from
Lemma 4.8. O

Figure 2: ({z,y},{z',y'}) is a bitrap.

5 A model checking problem for communication-
free nets

Model checking is a very successful technique for verifying temporal properties of con-
current systems, which is viewed as being essentially algorithmic. The corresponding
standard algorithms fall into two classes: the iterative algorithms and the tableaux-
based algorithms. The iterative algorithms compute all the states of the system which
have the desired property, and usually yield higher efficiency in the worst case. The
tableaux-based algorithms are designed to check whether a particular expression has a

15

temporal property. This is called local model checking which avoids the investigation of
for the verification irrelevant parts of the process being verified. Therefore this method
is applicable for the verification of systems with infinite state spaces. In local model
checking the proof system is developed in a goal directed fashion (top down). A property
holds iff there is a proof tree with a successful leaf which witnesses this truth.

The algorithm for the following problem is essentially a tableaux-based algorithm
which decides the truth of a formula for an infinite state concurrent system by examining
only finitely many states.

A weak branching time temporal logic is used to describe properties of a Petri-net N.
The syntax of the calculus is as follows:

Gu=s>k | s<k | 7® | APy | OP

where s ranges over the places of N and k£ € IN. For convenience disjunction and another
quantifier O can be added by defining O := =0 As a convention assume that for a net
of size n every constant k occurring in a subterm of the form s > k/s < k of a formula
satisfies k& < O(2n2).

Let F be the set of all formulas. Let € be the set of all markings of N. The denotation
||®]| of a formula ® is the set of markings of N inductively defined by the following rules:

[s = k|| = {X]X(s) 2k}

[s < k[l = {X]X(s) <k}

[~ @] = Q-]

[@1 A Dof| = [@4 N[

|OP| = {¥]3ILS Y e}

The property ¥ € ||®|| is also denoted by ¥ |= ®. An instance of the model checking
problem is a net N with a marking ¥ and a formula ®. The question is if ¥ = ®.
While this problem is undecidable for general Petri nets [2] it is in fact decidable for
communication-free nets [2]. However, the exact complexity of the problem was unknown
so far. It will be shown now that this model checking problem for communication-free

nets is PSPACE-complete.

Definition 5.1 F; C F is defined as the set of all formulas with a nesting depth of
quantifiers & of at most d. (It follows that formulas in Fy contain no quantifiers.)

Lemma 5.2 Let N be a communication-free net of size n and Xy and Xy two markings
of N. Let & € F; and k be the mazimal k occurring in a subterm of the form s > k/s <k
of . If ¥4 §(7€+1)nd Y9 then

21 |: (I) A= 22 |: (I)
Proof by induction on d.

1. If d =0 then ® doesn’t contain any quantifiers and ¥ §(Yo. Let £ < .

k41)
o If ¥i(s) > k then Ya(s) > k as ¥y > ¥y

o If ¥i(s) <k then Yao(s) = Xq(s), because k <]%, and therefore ¥5(s) < k.
o If ¥5(s) > k then ¥4(s) = Ya(s) > k, because k < .

16

o If ¥y(s) <k then ¥y(s) < k, because ¥y < X,

It follows that for all places s Yi(s) 2k & Ya(s) > kand Ei(s) <k & YNi(s) < k
for any £ < k. By induction on the structure of terms the result follows.

2. Now d > 0. For any subterm v of ® s.t. ¢» € F;_; the induction hypothesis yields
Y1 E¢v & ¥ E . Now it only remains to prove that ¥y ¢ & X, | ¢ for
the minimal subterms @ of ® s.t. v € F; — F;_1. These subterms are of the form
= Cp forap € Fyq.

= I ¥, | Oy then there is a sequence o s.t. ¥y = %} and ¥/ |= ¢. By Lemma 3.9

there is a supersequence o’ s.t. ¥y = X} and X <(h41)yald=D) ¥%. By induction

E+1)
hypothesis ¥} = ¢ and therefore ¥y = O

< If ¥, = Oy then there is a sequence o s.t. ¥y = Y} and XY = . By Lemma 3.8
there is a subsequence o’ s.t. ¥; = X! and ¥} <(h41)nta-n 25. By induction
hypothesis ¥ = ¢ and therefore ¥ | O

a

Lemma 5.3 Let N be a communication-free net of size n and X a marking of size x.
Let ® € Fy and k be the mazimal k occurring in a subterm of the form s > k/s <k of
&. Then i

NEOP & IR LN NS E® A length(s) < O((x + k)2%)

Proof There must be a sequence o s.t. ¥ % ¥/ and X = ®. Now let & be a subsequence
of o, possibly containing fewer cycles. How many cycles are at most needed in & in

order to reach a ¥ s.t. ¥ <(h+1)nd ¥ 7 At most n * (]Ac + 1)n? = (]Ac + D)l new

tokens need to be generated. Therefore at most (]Ac + 1)n(d+1) cycles are needed. So at
most (]Ac + 1)nl*Y) x5 % (2% — 1) new tokens are produced in the cycles. So at most
x+ (]Ac + 1)n(d+2) (2" — 1) tokens are in the net for moves without cycles. By Lemma 3.6
at most ,
|

2r — 1
non-cyclic moves can be made. This does not necessarily mean that the cycles are done
first, and the non-cyclic moves afterwards. Moves belonging to cycles and non-cyclic
moves can occur in any order. So altogether at most

*

(z + (k + DnlF2 4 (2" — 1))

. . 2n2—n -1
(k4 Dn'*? 4 (2 4 (k+ D)nl*D 5 (2" — 1)) « TR

transitions need to be fired in &. So ¥ KR 3, length(d) < O((«x —|—]%)2“2) and by Lemma 5.2
Y | ®. The other direction is trivial. O

The model checking problem for formulas with a nesting depth of quantifiers bounded
by d is complete for the d-th order of the polynomial time hierarchy.

17

Lemma 5.4 Let N be a communication-free net, ¥ a marking of N s.t. x := size(¥) <
0(2"") and ® € Fy. The problem X = O® can be solved in Y-

Proof by induction on d.

1. If d = 0 then ® doesn’t contain any quantifiers. By Lemma 5.3 it suffices to look
for a ¥ 5 N s.t. length(6) < O((x +]%)2”2) and E ®. As k< 0(2”2) and
r < 0(2”2) the Parikh-vector of & can be written in polynomial space. Esparza [3]
showed that for communication-free nets it is decidable in polynomial time if there
is a firable sequence of transitions with a given Parikh-vector. (Let P be the Parikh-
vector and M the matrix describing the net. There is a firable sequence o with
vector P iff ¥4+ M - P > 0 and every nonempty siphon of the subnet generated
by the transitions occurring in P is marked by ¥.) Now guess a Parikh-vector and

check in polynomial time if there is a ¢ with this Parikh-vector s.t. X % Y and
Y E ®. It only takes polynomial time to compute the resulting marking 3 and to

check if ¥ = ®. So the problem can be solved in NP = ¥?.

2. Now d > 0. Again guess a Parikh-vector of polynomial size, check in polynomial
time if there is a firable sequence & with this Parikh-vector s.t. ¥ -5 ¥ and compute
Y in polynomial time. As size(¥) = « and length(6) < O((x +]%)2“2) one can
assume that size(i) < O(x+2"((x+l%)2n2)) = O((:r—l—]%)2”2). As size(¥) < O(2n2)
and k < 0(2”2) it follows that size(X) < O(2n2). Therefore it is possible to apply
the induction hypothesis and check if 3. E & in polynomial time with the help of a

Y -oracle. Therefore the problem can be solved in NP¥i = Y

a

Lemma 5.5 Let N be a communication-free net, ¥ a marking of N and ® € F;. The
problem X = O® is XY -hard.
Proof The problem of the bounded quantified boolean formulae (BQBF) can be reduced

to this model checking problem. This is best illustrated by an example: For the formula
JeyVagdas. (a9 A —ap A—as) V (22 A s) the following communication-free net is constructed.

i 2 T3

@ & @2 k2 @3 3 It is easy to see that

deyVaydas. (a0 A g A —as) V(a2 A 1) <
<>($N2 >0/\D($~3:0\/<>(($1 >0 A 2y >0/\fg>0)\/($2 >0/\$3>0))))

O
Note that this hardness result even holds for communication-free nets with a finite state
space. The lemma remains true if the logic is restricted to statements of the form s > 0

instead of s > k/s < k. Esparza [2] proved PSPACE-hardness for a simpler logic and
BPPs.

18

Theorem 5.6 Lel N be a communication-free net, X a marking of N and ® € F;. The
problem X = O® is XY, -complete.

Proof directly from Lemma 5.4 and Lemma 5.5. O

Corollary 5.7 Let N be a communication-free net, ¥ a marking of N and ® € F. The
problem Y = ® is PSPACE-complete.

This solves an open problem stated in [2] about the computational complexity of this
model checking problem.

While model checking for communication free nets/BPP is decidable for this weak
branching time temporal logic it is undecidable for the more expressive modal p-calculus
and several other logics [2]. On the other hand model checking context free processes
with the modal p-calculus has been proved decidable by reduction to the monadic second
order theory of n successors. However there remains the problem of finding a tableau
method.

6 Conclusion

Basic Parallel Processes are a weak model of computation. It can be argued that any
decent model of concurrent computation should be at least as powerful as BPP. What
makes them interesting is that they are a model for infinite state concurrent systems that
seems to lie just on the “border of decidability”. This means that some properties that are
undecidable for more powerful notions of concurrency are still decidable for BPP. These
include strong bisimulation equivalence [10], weak bisimulation equivalence to a finite
state LTS (see section 3) and model checking with the weak branching time temporal
logic of section 5. On the other hand BPP are powerful enough to make some properties
undecidable. Those properties include model checking with the modal p-calculus [2] and
language equivalence [12].

Some problems for BPP are still open. We conjecture that not only weak bisimulation
equivalence between a BPP and a finite state LTS is decidable (as proved in section 3)
but that weak bisimulation equivalence between two BPPs is decidable as well. Another
problem is that although some problems about bisimulation equivalence for BPP have
been proved decidable the algorithms are not primitive recursive. This does not necessar-
ily mean that these problems are unsolvable in practice, as there are no hardness results
yet.

References

[1] S. Christensen. Decidability and Decomposition in Process Algebras. PhD thesis,
Edinburgh University, 1993.

[2] Javier Esparza. Decidability of model checking for infinite-state concurrent systems.
Acta Informatica, 1995.

[3] Javier Esparza. Petri nets, commutative context-free grammars and basic parallel
processes. In Horst Reichel, editor, Fundamentals of Computation Theory, number

965 in LNCS. Springer Verlag, 1995.

19

[4]

[5]

[10]

[11]

[12]

J. F. Groote and H. Hiittel. Undecidable equivelences for basic process algebra.
Information and Computation, 1994.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison Wesley, 1979.

P. Jancar. Decidability questions for bisimilarity of petri nets and some related

problems. Technical Report ECS-LFCS-93-261, Edinburgh University, April 1993.

P. Jancar. Undecidability of bisimilarity for petri nets and related problems. Theo-
retical Computer Science, 1995.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

H. Hiittel S. Christensen and C. Stirling. Bisimulation equivelence is decidable for
all context-free processes. In W.R. Cleaveland, editor, Proceedings of CONCUR 92,
number 630 in LNCS. Springer Verlag, 1992.

Y. Hirshfeld S. Christensen and F. Moller. Bisimulation equivalence is decidable for
basic parallel processes. In E. Best, editor, Proceedings of CONCUR 93, number 715
in LNCK. Springer Verlag, 1993.

Y. Hirshfeld S. Christensen and F. Moller. Decomposability, decidability and ax-
iomatisability for bisimulation equivalence on basic parallel processes. In Proceedings

of LICS93. IEEE Computer Society Press, 1993.

M. Jerrum Y. Hirshfeld and F. Moller. A polynomial algorithm for deciding bisimu-
lation of normed context free processes. Technical report, LFCS report series 94-286,

Edinburgh University, 1994.

20

SEFB 342:

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A
342/1/90 A
342/2/90 A

342/3/90 A

342/4/90 A

342/5/90 A
342/6/90 A
342/7/90 A
342/8/90 A

342/9/90 A

342/10/90 A
342/11/90 A

342/12/90 A
342/13/90 A
342/14/90 A

342/15/90 A
342/16/90 A
342/17/90 A

342/18/90 A

Robert Gold, Walter Vogler: Quality Criteria for Partial Order Se-

mantics of Place/Transition-Nets, Januar 1990

Reinhard Féfimeier: Die Rolle der Lastverteilung bei der numeri-
schen Parallelprogrammierung, Februar 1990

Klaus-Jorn Lange, Peter Rossmanith: Two Results on Unambi-
guous Circuits, Februar 1990

Michael Griebel: Zur Lésung von Finite-Differenzen- und Finite-
Element-Gleichungen mittels der Hierarchischen Transformations-

Mehrgitter-Methode

Reinhold Letz, Johann Schumann, Stephan Bayerl, Wolfgang Bibel:
SETHEO: A High-Performance Theorem Prover

Johann Schumann, Reinhold Letz: PARTHEO: A High Performan-
ce Parallel Theorem Prover

Johann Schumann, Norbert Trapp, Martin van der Koelen: SE-
THEO/PARTHEO Users Manual

Christian Suttner, Wolfgang Ertel: Using Connectionist Networks
for Guiding the Search of a Theorem Prover

Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hubert Ertl, Olav
Hansen, Joset Haunerdinger, Paul Hofstetter, Jaroslav Kremenek,
Robert Lindhof, Thomas Ludwig, Peter Luksch, Thomas Treml:
TOPSYS, Tools for Parallel Systems (Artikelsammlung)

Walter Vogler: Bisimulation and Action Refinement

Jorg Desel, Javier Esparza: Reachability in Reversible Free- Choice
Systems

Rob van Glabbeek, Ursula Goltz: Equivalences and Refinement
Rob van Glabbeek: The Linear Time - Branching Time Spectrum

Johannes Bauer, Thomas Bemmerl, Thomas Treml: Leistungsana-
lyse von verteilten Beobachtungs- und Bewertungswerkzeugen

Peter Rossmanith: The Owner Concept for PRAMs
G. Bockle, S. Trosch: A Simulator for VLIW-Architectures

P. Slavkovsky, U. Riide: Schnellere Berechnung klassischer Matrix-
Multiplikationen

Christoph Zenger: SPARSE GRIDS

Reihe A

342/19/90 A
342/20/90 A
342/21/90 A

342/22/90 A

342/23/90 A

342/24/90 A

342/25/90 A

342/26/90 A

342/27/90 A
342/28/90 A

342/29/90 A

342/30/90 A
342/31/90 A

342/32/90 A
342/33/90 A
342/1/91 A
342/2/91 A
342/3/91 A

342/4/91 A

Michael Griebel, Michael Schneider, Christoph Zenger: A combina-

tion technique for the solution of sparse grid problems

Michael Griebel: A Parallelizable and Vectorizable Multi- Level-
Algorithm on Sparse Grids

V. Diekert, E. Ochmanski, K. Reinhardt: On confluent semi-

commutations-decidability and complexity results

Manfred Broy, Claus Dendorfer: Functional Modelling of Opera-
ting System Structures by Timed Higher Order Stream Processing
Functions

Rob van Glabbeek, Ursula Goltz: A Deadlock-sensitive Congruence
for Action Refinement

Manfred Broy: On the Design and Verification of a Simple Distri-
buted Spanning Tree Algorithm

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Peter
Luksch, Roland Wismiiller: TOPSYS - Tools for Parallel Systems

(User’s Overview and User’s Manuals)

Thomas Bemmerl, Arndt Bode, Thomas Ludwig, Stefan Tritscher:

MMK - Multiprocessor Multitasking Kernel (User’s Guide and
User’s Reference Manual)

Wolfgang Ertel: Random Competition: A Simple, but Efficient Me-
thod for Parallelizing Inference Systems

Rob van Glabbeek, Frits Vaandrager: Modular Specification of Pro-
cess Algebras

Rob van Glabbeek, Peter Weijland: Branching Time and Abstrac-
tion in Bisimulation Semantics

Michael Griebel: Parallel Multigrid Methods on Sparse Grids

Rolf Niedermeier, Peter Rossmanith: Unambiguous Simulations of
Auxiliary Pushdown Automata and Circuits

Inga Niepel, Peter Rossmanith: Uniform Circuits and Exclusive
Read PRAMs

Dr. Hermann Hellwagner: A Survey of Virtually Shared Memory
Schemes

Walter Vogler: Is Partial Order Semantics Necessary for Action
Refinement?

Manfred Broy, Frank Dederichs, Claus Dendorfer, Rainer Weber:
Characterizing the Behaviour of Reactive Systems by Trace Sets

Ulrich Furbach, Christian Suttner, Bertram Fronhofer: Massively
Parallel Inference Systems

Rudolf Bayer: Non-deterministic Computing, Transactions and Re-
cursive Atomicity

Reihe A

342/5/91 A
342/6/91 A

342/7/91 A

342/8/91 A
342/9/91 A

342/10/91
342/11/91
342/12/91

342/13/91

342/14/91
342/15/91

342/16/91

342/17/91
342/18/91
342/19/91
342/20/91

342/21/91

342/22/91

A

A

A

A

Robert Gold: Dataflow semantics for Petri nets
A. Heise; C. Dimitrovici: Transformation und Komposition von
P/T-Netzen unter Erhaltung wesentlicher Eigenschaften

Walter Vogler: Asynchronous Communication of Petri Nets and the
Refinement of Transitions

Walter Vogler: Generalized OM-Bisimulation

Christoph Zenger, Klaus Hallatschek: Fouriertransformation auf
diinnen Gittern mit hierarchischen Basen

Erwin Loibl, Hans Obermaier, Markus Pawlowski: Towards Paral-
lelism in a Relational Database System

Michael Werner: Implementierung von Algorithmen zur Kompak-
tifizierung von Programmen fiir VLIW-Architekturen

Reiner Miiller: Implementierung von Algorithmen zur Optimierung
von Schleifen mit Hilfe von Software-Pipelining Techniken

Sally Baker, Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hu-
bert Ertl, Udo Graf, Olav Hansen, Josef Haunerdinger, Paul Hof-
stetter, Rainer Knédlseder, Jaroslav Kremenek, Siegfried Langen-
buch, Robert Lindhof, Thomas Ludwig, Peter Luksch, Roy Milner,
Bernhard Ries, Thomas Treml: TOPSYS - Tools for Parallel Sy-

stems (Artikelsammlung); 2., erweiterte Auflage

Michael Griebel: The combination technique for the sparse grid
solution of PDE’s on multiprocessor machines

Thomas F. Gritzner, Manfred Broy: A Link Between Process Alge-
bras and Abstract Relation Algebras?

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Tho-
mas Treml, Roland Wismiiller: The Design and Implementation of
TOPSYS

Ulrich Furbach: Answers for disjunctive logic programs

Ulrich Furbach: Splitting as a source of parallelism in disjunctive
logic programs

Gerhard W. Zumbusch: Adaptive parallele Multilevel-Methoden

zur Losung elliptischer Randwertprobleme

M. Jobmann, J. Schumann: Modelling and Performance Analysis
of a Parallel Theorem Prover

Hans-Joachim Bungartz: An Adaptive Poisson Solver Using Hier-
archical Bases and Sparse Grids

Wolfgang Ertel, Theodor Gemenis, Johann M. Ph. Schumann, Chri-
stian B. Suttner, Rainer Weber, Zongyan Qiu: Formalisms and Lan-
guages for Specifying Parallel Inference Systems

Reihe A

342/23/91 A
342/24/91 A

342/25/91 A
342/26/91 A

342/27/91 A

342/28/91 A
342/29/91 A

342/30/91 A
342/31/91 A
342/32/91 A
342/1/92 A

342/2/92 A

342/2-2/92 A

312/3/92 A

342/4/92 A
342/5/92 A
342/6/92 A
342/7/92 A

312/8/92 A

Astrid Kiehn: Local and Global Causes
Johann M.Ph. Schumann: Parallelization of Inference Systems by
using an Abstract Machine

Eike Jessen: Speedup Analysis by Hierarchical Load Decomposition

Thomas F. Gritzner: A Simple Toy Example of a Distributed Sy-
stem: On the Design of a Connecting Switch

Thomas Schnekenburger, Andreas Weininger, Michael Friedrich: In-
troduction to the Parallel and Distributed Programming Language

ParMod-C

Claus Dendorfer: Funktionale Modellierung eines Postsystems

Michael Griebel: Multilevel algorithms considered as iterative me-
thods on indefinite systems

W. Reisig: Parallel Composition of Liveness

Thomas Bemmerl, Christian Kasperbauer, Martin Mairandres,
Bernhard Ries: Programming Tools for Distributed Multiprocessor
Computing Environments

Frank LeBlke: On constructive specifications of abstract data types
using temporal logic

L. Kanal, C.B. Suttner (Editors): Informal Proceedings of the
Workshop on Parallel Processing for Al

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: The Design of Distributed Systems
- An Introduction to FOCUS

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: The Design of Distributed Systems
- An Introduction to FOCUS - Revised Version (erschienen im Ja-
nuar 1993)

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: Summary of Case Studies in FO-

CUS - a Design Method for Distributed Systems

Claus Dendorfer, Rainer Weber: Development and Implementation
of a Communication Protocol - An Exercise in FOCUS

Michael Friedrich: Sprachmittel und Werkzeuge zur Unterstiit- zung
paralleler und verteilter Programmierung

Thomas F. Gritzner: The Action Graph Model as a Link between
Abstract Relation Algebras and Process-Algebraic Specifications

Sergei Gorlatch: Parallel Program Development for a Recursive Nu-
merical Algorithm: a Case Study

Henning Spruth, Georg Sigl, Frank Johannes: Parallel Algorithms
for Slicing Based Final Placement

Reihe A
342/9/92 A
342/10/92 A

342/11/92 A

342/12/92 A
342/13/92 A

342/14/92 A
342/15/92 A

342/16/92 A
342/17/92 A

342/18/92 A

342/19/92 A
342/20/92 A
342/21/92 A

342/22/92 A

342/23/92 A
342/24/92 A

342/25/92 A
342/26/92 A

342/1/93 A

342/2/93 A

Herbert Bauer, Christian Sporrer, Thomas Krodel: On Distributed
Logic Simulation Using Time Warp

H. Bungartz, M. Griebel, U. Riide: Extrapolation, Combination and
Sparse Grid Techniques for Elliptic Boundary Value Problems

M. Griebel, W. Huber, U. Riide, T. Stértkuhl: The Combination
Technique for Parallel Sparse-Grid-Preconditioning and -Solution
of PDEs on Multiprocessor Machines and Workstation Networks

Rolf Niedermeier, Peter Rossmanith: Optimal Parallel Algorithms
for Computing Recursively Defined Functions

Rainer Weber: Eine Methodik fiir die formale Anforderungsspezif-
kation verteilter Systeme

Michael Griebel: Grid— and point—oriented multilevel algorithms

M. Griebel, C. Zenger, S. Zimmer: Improved multilevel algorithms
for full and sparse grid problems

J. Desel, D. Gomm, E. Kindler, B. Paech, R. Walter: Bausteine

eines kompositionalen Beweiskalkiils fiir netzmodellierte Systeme

Frank Dederichs: Transformation verteilter Systeme: Von applika-
tiven zu prozeduralen Darstellungen

Andreas Listl, Markus Pawlowski: Parallel Cache Management of
a RDBMS

Erwin Loibl, Markus Pawlowski, Christian Roth: PART: A Parallel
Relational Toolbox as Basis for the Optimization and Interpretation
of Parallel Queries

Jorg Desel, Wolfgang Reisig: The Synthesis Problem of Petri Nets
Robert Balder, Christoph Zenger: The d-dimensional Helmholtz
equation on sparse Grids

[lko Michler: Neuronale Netzwerk-Paradigmen zum Erlernen von
Heuristiken

Wolfgang Reisig: Elements of a Temporal Logic. Coping with Con-
currency

T. Stortkuhl, Chr. Zenger, S. Zimmer: An asymptotic solution for
the singularity at the angular point of the lid driven cavity

Ekkart Kindler: Invariants, Compositionality and Substitution
Thomas Bonk, Ulrich Riide: Performance Analysis and Optimiza-
tion of Numerically Intensive Programs

M. Griebel, V. Thurner: The Efficient Solution of Fluid Dynamics
Problems by the Combination Technique

Ketil Stglen, Frank Dederichs, Rainer Weber: Assumption / Com-
mitment Rules for Networks of Asynchronously Communicating
Agents

Reihe A
342/3/93 A

342/4/93 A

342/5/93 A
342/6/93 A
342/7/93 A

342/8/93 A

342/9/93 A

342/10/93 A
342/11/93 A

342/12/93 A

342/13/93 A

342/14/93 A
342/15/93 A

342/16/93 A

342/17/93 A

342/18/93 A

342/19/93 A

Thomas Schnekenburger: A Definition of Efficiency of Parallel Pro-

grams in Multi-Tasking Environments

Hans-Joachim Bungartz, Michael Griebel, Dierk Réschke, Chri-
stoph Zenger: A Proof of Convergence for the Combination Techni-
que for the Laplace Equation Using Tools of Symbolic Computation

Manfred Kunde, Rolf Niedermeier, Peter Rossmanith: Faster Sor-
ting and Routing on Grids with Diagonals

Michael Griebel, Peter Oswald: Remarks on the Abstract Theory
of Additive and Multiplicative Schwarz Algorithms

Christian Sporrer, Herbert Bauer: Corolla Partitioning for Distri-
buted Logic Simulation of VLSI Circuits

Herbert Bauer, Christian Sporrer: Reducing Rollback Overhead in
Time-Warp Based Distributed Simulation with Optimized Incre-
mental State Saving

Peter Slavkovsky: The Visibility Problem for Single-Valued Surface
(z = {(x,y)): The Analysis and the Parallelization of Algorithms

Ulrich Riide: Multilevel, Extrapolation, and Sparse Grid Methods

Hans Regler, Ulrich Riide: Layout Optimization with Algebraic
Multigrid Methods

Dieter Barnard, Angelika Mader: Model Checking for the Modal

Mu-Calculus using Gauf} Elimination

Christoph Pflaum, Ulrich Riide: Gaufl’ Adaptive Relaxation for
the Multilevel Solution of Partial Differential Equations on Sparse
Grids

Christoph Pflaum: Convergence of the Combination Technique for
the Finite Element Solution of Poisson’s Equation

Michael Luby, Wolfgang Ertel: Optimal Parallelization of Las Vegas
Algorithms

Hans-Joachim Bungartz, Michael Griebel, Dierk Réschke, Chri-
stoph Zenger: Pointwise Convergence of the Combination Technique
for Laplace’s Equation

Georg Stellner, Matthias Schumann, Stefan Lamberts, Thomas
Ludwig, Arndt Bode, Martin Kiehl und Rainer Mehlhorn: Deve-
loping Multicomputer Applications on Networks of Workstations
Using NXLib

Max Fuchs, Ketil Stglen: Development of a Distributed Min/Max
Component

Johann K. Obermaier: Recovery and Transaction Management in
Write-optimized Database Systems

Reihe A

342/20/93 A

342/01/94 A

342/02/94 A

342/03/94 A

342/04/94 A

342/05/94 A

342/06/94 A
342/07/94 A
342/08/94 A
342/09/94 A
342/10/94 A
342/11/94 A

342/12/94 A

342/13/94 A

342/14/94 A
342/15/94 A

342/16/94 A
342/17/94 A

342/18/94 A

Sergej Gorlatch: Deriving Efficient Parallel Programs by Systema-
ting Coarsing Specification Parallelism

Reiner Hiittl, Michael Schneider: Parallel Adaptive Numerical Si-
mulation

Henning Spruth, Frank Johannes: Parallel Routing of VLSI Circuits
Based on Net Independency

Henning Spruth, Frank Johannes, Kurt Antreich: PHIroute: A Par-
allel Hierarchical Sea-of-Gates Router

Martin Kiehl, Rainer Mehlhorn, Matthias Schumann: Parallel Mul-
tiple Shooting for Optimal Control Problems Under NX/2

Christian Suttner, Christoph Goller, Peter Krauss, Klaus-Jérn Lan-
ge, Ludwig Thomas, Thomas Schnekenburger: Heuristic Optimiza-
tion of Parallel Computations

Andreas Listl: Using Subpages for Cache Coherency Control in Par-
allel Database Systems

Manfred Broy, Ketil Stglen: Specification and Refinement of Finite
Dataflow Networks - a Relational Approach

Katharina Spies: Funktionale Spezifikation eines Kommunika-
tionsprotokolls

Peter A. Krauss: Applying a New Search Space Partitioning Me-
thod to Parallel Test Generation for Sequential Circuits

Manfred Broy: A Functional Rephrasing of the Assumption/Com-
mitment Specification Style

Eckhardt Holz, Ketil Stglen: An Attempt to Embed a Restricted
Version of SDL as a Target Language in Focus

Christoph Pflaum: A Multi-Level-Algorithm for the Finite-
Element-Solution of General Second Order Elliptic Differential
Equations on Adaptive Sparse Grids

Manfred Broy, Max Fuchs, Thomas F. Gritzner, Bernhard Schétz,
Katharina Spies, Ketil Stglen: Summary of Case Studies in FOCUS
- a Design Method for Distributed Systems

Maximilian Fuchs: Technologieabhéngigkeit von Spezifikationen di-
gitaler Hardware

M. Griebel, P. Oswald: Tensor Product Type Subspace Splittings
And Multilevel Iterative Methods For Anisotropic Problems

Gheorghe Stefanescu: Algebra of Flownomials

Ketil Stglen: A Refinement Relation Supporting the Transition
from Unbounded to Bounded Communication Buffers

Michael Griebel, Tilman Neuhoeffer: A Domain-Oriented Multilevel

Algorithm-Implementation and Parallelization

Reihe A

342/19/94 A

342/20/94 A

342/01/95 A

342/02/95 A
342/03/95 A

342/04/95 A

342/05/95 A

342/06/95 A
342/07/95 A

342/08/95 A
342/09/95 A
342/10/95 A

342/11/95 A
342/12/95 A

342/13/95 A

342/14/95 A

342/15/95 A

342/16/95 A

342/17/95 A
342/18/95 A

Michael Griebel, Walter Huber: Turbulence Simulation on Sparse
Grids Using the Combination Method

Johann Schumann: Using the Theorem Prover SETHEO for verify-
ing the development of a Communication Protocol in FOCUS - A
Case Study -

Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse
Grids

Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of
Parallel Computers: Order Statistics and Amdahl’s Law

Lester R. Lipsky, Appie van de Liefvoort: Transformation of the
Kronecker Product of Identical Servers to a Reduced Product Space

Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Lief-
voort: Auto-Correlation of Lag-k For Customers Departing From
Semi-Markov Processes

Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids:

Applications to Multi-dimensional Schrédinger Problems
Maximilian Fuchs: Formal Design of a Model-N Counter

Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-
crosystem Technology

Alexander Pfaffinger: Parallel Communication on Workstation Net-
works with Complex Topologies

Ketil Stglen: Assumption/Commitment Rules for Data-flow Net-
works - with an Emphasis on Completeness

Ketil Stglen, Max Fuchs: A Formal Method for Hardware/Software
Co-Design
Thomas Schnekenburger: The ALDY Load Distribution System

Javier Esparza, Stefan Romer, Walter Vogler: An Improvement of

MecMillan’s Unfolding Algorithm

Stephan Melzer, Javier Esparza: Checking System Properties via
Integer Programming

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile Point-
to-Point Dataflow Networks

Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Com-
pute the Concurrency Relation of Free-Choice Signal Transition
Graphs

Bernhard Schéatz, Katharina Spies: Formale Syntax zur logischen
Kernsprache der Focus-Entwicklungsmethodik

Georg Stellner: Using CoCheck on a Network of Workstations

Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismiiller:
Workshop on PVM, MPI, Tools and Applications

Reihe A
342/19/95 A

342/20/95 A
342/21/95 A
342/22/95 A

342/23/95 A
342/24/95 A

342/01/96 A

342/02/96 A

342/03/96 A

342/04/96 A

342/05/96 A
342/06/96 A

342/07/96 A

Thomas Schnekenburger: Integration of Load Distribution into
ParMod-C

Ketil Stglen: Refinement Principles Supporting the Transition from
Asynchronous to Synchronous Communication

Andreas Listl, Giannis Bozas: Performance Gains Using Subpages
for Cache Coherency Control

Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded
Treewidth into Optimal Hypercubes

Petr Jancar, Javier Esparza: Deciding Finiteness of Petri Nets up
to Bisimulation

M. Jung, U. Riide: Implicit Extrapolation Methods for Variable
Coefficient Problems

Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic Mul-
tigrid Methods for the Solution of the Navier-Stokes Equations in
Complicated Geometries

Thomas Grauschopf, Michael Griebel, Hans Regler: Additive
Multilevel-Preconditioners based on Bilinear Interpolation, Matrix
Dependent Geometric Coarsening and Algebraic-Multigrid Coarse-
ning for Second Order Elliptic PDEs

Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Em-
beddings of Complete Binary Trees into Hypercubes

Thomas Huckle: Efficient Computation of Sparse Approximate In-
verses

Thomas Ludwig, Roland Wismiiller, Vaidy Sunderam, Arndt Bode:
OMIS — On-line Monitoring Interface Specification

Ekkart Kindler: A Compositional Partial Order Semantics for Petri
Net Components

Richard Mayr: Some Results on Basic Parallel Processes

SEFB 342 :

Reihe B

342/1/90 B
342/2/90 B
342/3/90 B
342/4/90 B
342/1/91 B
342/2/91 B
342/3/91 B
342/4/91 B
342/5/91 B

312/6/91 B

342/7/91 B
342/1/92 B

342/2/92 B
342/1/93 B
342/2/93 B

342/1/94 B

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

Wolfgang Reisig: Petri Nets and Algebraic Specifications
Jorg Desel: On Abstraction of Nets
Jorg Desel: Reduction and Design of Well-behaved Free-choice Sy-

stems

Franz Abstreiter, Michael Friedrich, Hans-Jiirgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler Pro-
gramime

Barbara Paechl: Concurrency as a Modality
Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox

-Anwenderbeschreibung

Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop
iiber Parallelisierung von Datenbanksystemen

Werner Pohlmann: A Limitation of Distributed Simulation Me-
thods

Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually
Shared Memory Scheme: Formal Specification and Analysis

Dominik Gomm, Ekkart Kindler: Causality Based Specification and
Correctness Proof of a Virtually Shared Memory Scheme

W. Reisig: Concurrent Temporal Logic

Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-
of-Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-
Support

Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-

ware, Software, Anwendungen

Max Fuchs: Funktionale Spezifikation einer Geschwindigkeits-
regelung

Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein
Literaturiiberblick

Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum
Entwurf eines Prototypen fiir MIDAS

