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Model Checking LTL using Net Unfoldings ?Frank WallnerInstitut f�ur Informatik, Technische Universit�at M�unchenArcisstr.21, D-80290 M�unchen, Germanyemail: wallnerf@in.tum.deAbstract. Net unfoldings are a well-studied partial order semantics forPetri nets. In this paper, we show that the �nite pre�x of an unfolding,introduced by McMillan, is suited for model checking linear-time tempo-ral properties. The method is based on the so-called automata-theoreticapproach to model checking. We propose a technique to treat this ap-proach within the framework of safe Petri nets, and give an e�cientalgorithm for detecting the system runs violating a given speci�cation.1 IntroductionLinear-time Temporal Logic (LTL) is an adequate formalism for specifying be-havioural properties of distributed systems, including safety and liveness prop-erties. Deciding whether a given system � satis�es a speci�cation ' is called themodel checking problem.The automata-theoretic approach to model checking translates this probleminto an automata-theoretic problem. This approach assumes that � can be rep-resented as an automaton A with L(A) being the set of its runs. The systemsatis�es ' i� L(A) is a subset of the language L' of words satisfying '.Vardi, Wolper et al. [20,22] observed that for every formula ' it is possible toconstruct a B�uchi automaton A' that accepts L'. Since negation of a formula' is equivalent to complementing the corresponding language L', the actualproblem is to decide if there is a system run accepted by A:'. De�ning anadequate product automaton Ap of A and A:' that accepts the intersection ofL(A) and L:', the problem is �nally transformed to an emptiness-problem onautomata: the system satis�es ' i� Ap is empty (accepts no word).Checking emptiness of Ap requires the detection of accepting cycles, i.e.,cycles containing an accepting state. There exist e�cient algorithms for thisissue [1,9] with time complexity linear in the size of the product automaton.However, this size is often enormous, due to the well-known state explosionproblem: representing concurrency as interleaving may let A, and consequentlyAp, grow exponentially in the size of the system. Several partial order methods[10,16{19] have been suggested to palliate this problem by reducing the statespace according to the partial order semantics of the system, i.e., by discardingall the states and transitions not relevant for satisfying '.? This work was supported by the SFB 342 (subproject A3) of the DFG.



In contrast to these approaches, we will not reduce the state space, but ratherdirectly use a partial-order representation of the behaviour of the distributedsystem under consideration. We assume � to be given as a safe Petri net, andexplore its behaviour by unfolding the net to McMillan's �nite pre�x [14,7] ofthe branching process of �. This pre�x contains every reachable state of thesystem. It was already observed by Esparza in [5] that the �nite pre�x can beused for model checking S4 (the modal logic based on the reachability relationof the global state space), which is strictly less expressive than LTL.We show in this paper how to construct the product of a given Petri net anda B�uchi automaton, yielding B�uchi nets, i.e. nets with acceptance capabilities.We investigate, for which construction the pre�x remains small, in some cases\exponentially compact" compared with the interleaving model. The main con-tribution, however, is a method for checking emptiness of a B�uchi net using its�nite pre�x.The paper is structured as follows. Section 2 brie
y formalizes the automata-theoretic approach. In Section 3, Petri nets and unfoldings are introduced, andwe show how the �nite pre�x of a B�uchi net can be used to decide its empti-ness. Section 4 describes an adequate product construction and the entire modelchecking procedure. Section 5 concludes the paper and refers to related work.2 The automata-theoretic approachLet us brie
y recall the essential ideas and notions that underlie the automata-theoretic approach to model checking linear-time temporal properties.Linear-time Temporal Logic. Let � be a �nite set of atomic propositions.The set of LTL-formulae over � is de�ned inductively as follows: if ' = � 2 �then ' is a formula; if ' and  are formulae then ' ^  ; :'; X', and 'U areformulae. The other operators of propositional logic are de�ned as usual, and wede�ne 3' := trueU' , and 2' := :3:'. The set of propositions appearing in' is written as h'i.A formula is interpreted on !-words � over the alphabet 2� . An !-word over2� is an in�nite sequence � = x0x1 : : : with xi22� for all i � 0. The elements of2� are meant to assign truth values to � in the obvious manner: the proposition� holds at xi i� �2xi. We de�ne �(i) := xi, and �(i) is the su�x of � startingat xi. We write � j= ' to denote that � satis�es '. By L' we denote the set of!-words satisfying '. The relation j= is inductively de�ned as follows.� j= � i� � 2 �(0)� j= :' i� � 6j= '� j= ' ^  i� � j= ' and � j=  � j= X' i� �(1) j= '� j= 'U i� 9 i � 0: �(i) j=  and �(j) j= ' for all j < iB�uchi automata. A B�uchi automaton over the alphabet 2� is a quadrupleA = (Q; q0; �;F), where Q is a �nite set of states, including the initial state q0,2



� � Q� 2� �Q is the transition relation, and F � Q a set of accepting states.A run of A on an !-word � over 2� is an in�nite sequence � = q0q1 : : : suchthat (qi; �(i); qi+1) 2 � for all i � 0. A run � is accepting if an accepting stateoccurs in�nitely often in �, and the automaton A accepts the word � i� there isan accepting run of A on �. L(A) denotes the set of all !-words accepted by A.Theorem 1 ([20,22]). Let ' be an LTL formula. There exists a B�uchi automa-ton A' such that L(A') = L'.E�cient methods for how to build the automaton A' from a given formula 'can be found in [21,8].The automata-theoretic approach assumes the system to be given as an au-tomatonA over an alphabet Act of actions, and a valuation v from the transitionsof A to subsets of �. In action-based semantics, v is determined by the action as-sociated with the transition, in a state-based setting by the state that enables thetransition. Given the system A and the automatonA:' for the negation of ', anadequate product automaton Ap is de�ned. The basic idea is that (hs; qi; hs0; q0i)becomes a transition of Ap if there is a transition (s; a; s0) of the system evalu-ated to �0, and (q;�0; q0) is a transition of A:'. The accepting states of Ap arethe states hs; qi where q ia an accepting state of A:'. For this construction itholds that the product Ap is empty i� it contains no cycle including an acceptingstate i� the system automaton A satis�es the property '.3 Petri nets and unfoldingsLet us begin with a glance on Petri nets and their unfoldings. We will then showhow to use McMillan's pre�x for deciding the existence of accepting runs.Petri nets. Let P and T be disjoint sets of places and transitions. The elementsof P [T are called nodes. A net is a triple N = (P; T; F ) with a 
ow relation F ,given by its characteristic function F : (P � T ) [ (T � P )! f0; 1g.The preset of the node x is de�ned as �x := fy 2 P [ T j F (y; x) = 1g andits postset as x� :=fy2P [ T j F (x; y)=1g. The preset (postset) of a set X ofnodes is given by the union of the presets (postsets) of all nodes in X. By �x wedenote the set �x n x�, and analogously x� := x� n �x.A marking of a net is a mapping P!N0. We call � = (N;M0) a net systemwith initial marking M0 if N is a net and M0 a marking of N . A marking Menables the transition t ifM (p) � 1 for each p2 �t. In this case the transition canoccur, leading to the new markingM 0, given byM 0(p) = M (p)+F (t; p)�F (p; t)for every place p. We denote this occurrence byM t�!M 0. If there exists a chainM0 t1�!M1 t2�! : : : tn�!Mn , the sequence 
 = M0t1M1t2 : : : tnMn is called acomputation. A computation of in�nite length is called a run. A marking Mis reachable if there exists a computation 
 such that M appears in 
. Thereachable markings will also be called the (reachable) states of the system.We will exclusively regard safe systems, in which all reachable states map eachplace to 0 or 1. So every state can be identi�ed with the set of places it maps3



to 1, i.e., M � P for every reachable state M . Note that this is no restriction.Often safe nets are used for modelling distributed systems because they can beseen as a composition of several components which are given as �nite automata.Furthermore, so-called high-level net systems like coloured or algebraic nets canautomatically be transformed into equivalent safe net systems.Net system semantics for LTL. We de�ne an adequate LTL semantics forsafe net systems, distinguishing state and action oriented settings.In a state-based interpretation, the atomic propositions � are identi�ed withthe set P of places. A proposition p holds at state M i� M (p) = 1. Sinceevery state can be expressed as a Boolean combination of marked and unmarkedplaces, any set of propositions on states can be encoded using places as theonly propositions. Formulae are interpreted on marking sequences: a run 
 =M0t1M1t2M2 : : : satis�es ' i� the !-word �(
) = M0M1M2 : : : belongs to L'.In an action-based interpretation, we assume a valuation v : T ! 2� ,and we interpret formulae on sequences of transition occurrences: a run 
 =M0t1M1t2M2 : : : satis�es ' i� the !-word �(
) = v(t1)v(t2) : : : belongs to L'.We say that the system � satis�es ' i� every run of � satis�es '.B�uchi nets. A B�uchi net is a net with acceptance capabilities, i.e., a tuple�p = (�;F) where � = (P; T; F;M0) is a �nite, safe net system and F � Pa set of accepting places. A run 
 of �p is accepting if an accepting transitiont2 �F appears in�nitely often in 
, and �p is empty if it has no accepting run.A B�uchi net will be the product of a safe net system and a B�uchi automaton,de�ned in the next section.Net unfoldings. The partial-order representation of the behaviour of safe netsystems is based on net unfoldings, also known as branching processes. We brie
yrecall the main de�nitions and results of [4].Two nodes x; x0 of the net N = (P; T; F ) are in con
ict, denoted x#x0, ifthere exist two distinct transitions t; t0 with �t \ �t0 6= ; such that (t; x) and(t0; x0) belong to the re
exive transitive closure of the 
ow relation F . If x#x,we say x is in self-con
ict.An occurrence net [15] is a net N 0=(B;E; F ) where the irre
exive transitiveclosure of F is well-founded and acyclic (and thus a strict partial order, writtenas � ), where furtheron j �bj � 1 for every b 2 B, and no element e 2 E is inself-con
ict. The elements of B and E are called conditions and events, respec-tively. The re
exive closure � of � is a partial order called causality relation.By Min(N 0) we denote the minimal elements of N 0 w.r.t. �.Given two nets N1 and N2, the mapping h : N1 ! N2 is a homomorphismif h(P1) � P2, h(T1) � T2, and if for each t 2 T1 the restriction of h to �t is abijection between �t and �h(t), and similarly for t� and h(t)�.A branching process of a net system �=(N;M0) is a pair �=(N 0; h) whereN 0= (B;E; F ) is an occurrence net and h : N 0 ! N is a homomorphism thatbijectively mapsMin(N 0) onto M0, and that satis�es: if h(e)=h(e0) and �e= �e0then e=e0, for all events e; e02E. In a word, we unfold the net N to an occurrencenet N 0 such that each node x of N 0 refers to a node h(x) of N .4



The branching processes �1 and �2 are isomorphic if there exists a bijectivehomomorphism h : N 01 ! N 02, such that the composition h2 � h equals h1. If his an injection that bijectively maps Min(N 01) onto Min(N 02), and B1 �B2 andE1�E2, we call �1 a pre�x of �2. Notice that a pre�x is uniquely determined byits set of events. In [4] it is shown that each net system � has a unique maximalbranching process up to isomorphism, called unfolding of � and denoted byUnf� = (N 0; h). Note that N 0 is in�nite i� � has in�nite computations.Con�gurations and Cuts. For the remainder of the section, let Unf� =(N 0; h) and N 0 = (B;E; F ) be �xed. A con�guration C of N 0 is a causallydownward-closed, con
ict-free set of events, i.e., for each e 2 C : if e0 � e thene02C, and for all e; e0 2 C : :(e#e0).Two nodes of N 0 are concurrent if they are neither in con
ict nor causallyrelated. A set B0 of conditions of N 0 is called a co-set if all elements of B0 arepairwise concurrent. A co-set is called a cut if it is maximal w.r.t. set inclusion.For a �nite con�guration C, the set Cut(C) := (Min(N 0) [ C�)n�C of conditionsis a cut. The set h(Cut(C)) of places is a reachable marking of �, called themarking Mark(C) of C. Conversely, for every reachable state M of � thereexists a �nite con�guration C in Unf� such that M is the marking of C. Often,a con�guration C is identi�ed with the state Mark(C).An essential observation on con�gurations is that their continuations aredetermined by their markings: let "C�B [ E be de�ned as the set of nodes x,such that x 2 "C i� x � b for some b2Cut(C) and :(b#x) for all b2Cut(C).By FC (resp. hC ) we denote the restriction of the 
ow relation F (resp. of thehomomorphism h ) of Unf� onto "C. We de�ne the continuation of C as thebranching process �(C) := (NC ; hC), where NC := ("C \ B; "C \ E;FC). It iseasy to see that for two �nite con�gurations C;C0 with equal marking it holdsthat �(C) and �(C 0) are isomorphic.The set of predecessors of each event e is a con�guration, called local con�g-uration of e, given by [e] := fe02E j e0 � eg. We call two events e; e0 equivalent ifthe markings of their local con�gurations coincide, i.e., Mark([e]) = Mark([e0]).The �nite pre�x. In [14], K.L. McMillan de�ned a �nite pre�x of the unfoldingof a �nite-state net system, in which every state is represented by some cut. Theidea is that if the pre�x contains two equivalent events then the continuationsof their local con�gurations are isomorphic and thus only one of them needs tobe explored further, while the other one becomes a cut-o� event. Formally, anevent e is a cut-o� event if there exists an event e0 equivalent to e such thatj[e0]j < j[e]j. If there are several such events e0 for the cut-o� e, we �x one ofthem and refer to it as the corresponding event cor(e) of e. By o�(e0) we denotethe set of cut-o�s, such that e0 is their corresponding event.The �nite pre�x Fin� is de�ned as the unique pre�x of Unf� with EFin�Eas set of events, where e 2 EFin i� no event e0 � e is a cut-o� event. Let O�(Cor) denote the set of all cut-o� (corresponding) events of Fin� .It is easy to prove that Fin� is �nite for net systems with �nitely many states.Usually, Fin� is much smaller than the state space of the system. However,5



sometimes it is larger. In [7] it is shown how to construct a storage-optimalpre�x, essentially by determining cut-o�s not by comparison of the size of theirlocal con�gurations, but another well-founded, strict partial order instead. Inthe pre�x constructed by the improved algorithm [7], it is always the case thattwo non-cut-o� events have di�erent markings. Therefore, the number of non-cut-o� events never exceeds the number of reachable states of the system, andso Fin� never is larger than the state space (up to a small constant).Cycle-detection in the pre�x. As indicated, the model checking problemrequires the detection of a cycle containing an accepting transition. Let Ta = �Fbe the set of accepting transitions of the B�uchi net �p = (�;F). The goal is to�nd a run 
 such that in�nitely often a transition t 2 Ta appears in 
.The problem is solved in two steps: �rst we will construct a directed graphG = (V;Edg) where V = O� is the set of cut-o� events of the pre�x, andEdg�V�V a set of edges. An edge e! e0 indicates that from state [e] the state[e0] is reachable. Some of the edges will be labelled by a. Intuitively, e a�! e0means that on the partial computation leading from [e] to [e0] an acceptingtransition occurs. Since every (local) con�guration of the pre�x is reachable,every node in G can be seen as being initial. The graph G is constructed by thealgorithm given in Fig. 1, with Ta as the input parameter.The second step is to apply a standard algorithmon G for detecting a stronglyconnected component [1] or a cycle [9] containing an a-labelled edge.The key idea of the algorithm for constructing the graph G is as follows.Let e1; e01 be a cut-o� and its corresponding event. Since �([e1]) and �([e01]) areisomorphic, every state that is reachable from [e01] is also reachable from [e1].Thus, if e01 � e2 for some other cut-o� e2, an edge e1 ! e2 is added to G. If[e2] n [e01] contains an accepting event then the edge is labelled by a.The other case is a bit more involved. Let e02 be the corresponding event ofe2, and assume e01 � e02. This means that from state [e01] (equivalent to [e1]) thestate [e02] (equivalent to [e2]) is reachable, and so an edge e1 ! e2 is added. Butwhen and how has such an edge to be labelled? Clearly, if [e02] n [e01] contains anaccepting event, the edge must be labelled. However, this is not the only case.Additionally, there may exist a state of the system (possibly not correspondingto a local con�guration) where concurrently [e01] and [e2] are reachable. In thiscase, we have to consider the set E21 := [e2] n [e01]. If e01 and e2 are concurrent,and the set E21 contains an accepting event, we label the edge e1 ! e2 with a.In the algorithm, let � (e01; e2) denote the function computing the set of theseevents: � (e01; e2) := E21, if e01 and e2 are concurrent, and the empty set else.Proposition 2. Ta � T contains a transition that in�nitely often can occur in� i� there exists a cycle in the graph G, containing an a-labelled edge.4 The automata-theoretic approach for Petri netsWe now want to lift the automata-theoretic approach to the framework of safenet systems. We show two di�erent methods for constructing a product B�uchi6



BuildGraph(Ta)1 V := O�; Edg := ;; Ea := fe2EFin j h(e)2Tag;2 forall e01 2 Cor do3 X := fe0 2 O� j e0 � e01g; Y := fe0 2 Cor j e0 � e01g;4 forall e2 2 X do5 forall e1 2 o�(e01) do6 if G contains no edge e1 ! e2 then add e1! e2 to Edg;7 if ([e2] n [e01]) \ Ea 6= ; then label e1! e2 with a;8 enddo9 enddo10 forall e02 2 Y do11 forall (e1; e2) 2 o�(e01) � o�(e02) do12 if G contains no edge e1! e2 then add e1! e2 to Edg;13 if ( ([e02] n [e01]) [ � (e01; e2) ) \ Ea 6= ; then label e1! e2 with a;14 enddo15 enddo16 enddo Fig. 1. Algorithm for constructing the graph G.net, corresponding to product automata of Section 2. This product is constructedas a synchronization or an observation on the net level.In the entire section, we assume the system net under consideration to bedeadlock-free, i.e., all of its computations are in�nite.Synchronization. We will �rst assume an action-based interpretation. In thiscase, the product net �p of the automaton A:' and of the system � under con-sideration is obtained by synchronizing the transitions according to the valuationv. Let A:' = (Q; q0; �;F) be �xed.The product net �p is an extension of � in the following sense: the states Qof the automaton are added to the set P of places of �, and initiallyM0 [ fq0gis marked. The accepting states F become the accepting places, and for eachtransition (q;�0; q0) 2 �, we add q to the preset and q0 to the postset of everytransition t of the system, with v(t) = �0.Proposition 3. Let �p be the synchronized product of � and A:' as de�nedabove. The system � satis�es ' in action-based semantics i� �p is empty.Observation. In a state-based interpretation, the automaton A:' can be seenas a process observing the marking sequences of �. Clearly, it su�ces to observeonly the places that appear as atomic propositions in ' as stated by Lemma 4below.Let � = M0M1 : : : be the in�nite marking sequence corresponding to a run
, and Q�P a set of places. By MQi :=Mi \Q we denote the restriction of Mionto the places in Q, and we de�ne �Q :=MQ0 MQ1 : : : .Lemma 4. If ' is an LTL formula and Q�P a set of propositions such thath'i�Q, then � j= ' i� �Q j= ' for every !-word � over 2P .7



We will construct �p in such a way that the automaton and the system alter-nate their moves. Intuitively, if (q; P 0; q0) is a transition of A:', the automatontests if the current marking is P 0. In this case it moves from q to q0 and enables� to make a move, which makes its move and again enables the automaton toobserve the current marking. The mutual enabling is implemented using two\scheduler" places sf ; ss. If sf (ss) is marked, then the automaton (the system)has to move next. The automaton must observe M0, so initially sf is marked.The testing of a marking is done by connecting the relevant places with thetransitions of the automaton. If d = (q; P 0; q0) is a transition of A:', we add allthe places in P 0 � P to the preset and to the postset of d. Thus, d can occurif all places in P 0 are marked, and after d occurred, again P 0 is marked. Ingeneral, however, this is insu�cient: the automaton changes from q to q0 onlyif the current marking is equal to P 0, in particular, if no proposition in P n P 0belongs to the marking. By simply adding P 0 to �d, the transition d can occur,no matter whether any place p =2 P 0 is marked or not. Therefore, we have topresuppose some complementary places in �.Let p; p2P . The place p is the complement of p, if p � = �p, �p = p�, andM0(p) = 1�M0(p). Thus, p2M i� p =2 M for every reachable state M . Dueto Lemma 4, only the propositions (places, here) that appear in ' are relevant.So, we have to extend � by a complementary place for every place in h'i. Notethat this extension has no in
uence on the system's behaviour. Let us denote byObs(') := fp; p j p2h'ig the set of observed places.The B�uchi net �p then is de�ned as follows: the places are P [Q[ fss; sfg,the transitions are T [ �, the initial marking is M0 [ fq0g [ fsfg, the acceptingplaces are F , and the 
ow relation is F , extended by{ (ss; t); (t; sf ) for all t2T , and (sf ; d); (d; ss) for all d2�;{ (q; d); (d; q0) for every d = (q; P 0; q0)2�, as well as (p; d); (d; p) and (r; d); (d; r)for all p 2 P 0 and r 2 h'i n P 0.The construction is sketched in Fig. 2 for a transition d = (q; fp1g; q0) of theautomaton A:' where h'i = fp1; p2g.Proposition 5. Let �p be the observation product of � and A:' as de�nedabove. The system � satis�es ' in state-based semantics i� �p is empty.Relaxing the observation. Since A:' behaves strictly sequentially, each ob-servation introduces causal dependency on observed transitions, which ruins thebene�ts of any partial-order representation. However, restricting ourselves tostutter-invariant properties, it is su�cient to observe only all the visible transi-tions [18]. A transition t is visible i� �t or t� contains some place of Obs(').In [13] it has been shown that stutter-invariant properties are expressed bythe \next-free" fragment of LTL, i.e., LTL without the next step operator X. Inthis fragment one cannot distinguish between the !-word � = x0x1 : : : and an!-word �0 similar to � except that any of the xi s are repeated �nitely often. Let�(�) denote the !-word where every maximal �nite subsequence xx : : :x in � issubstituted by x. Two !-words �; �0 are stutter-equivalent if �(�) = �(�0).8
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��p1p2p1 q0qdsfsystem � automaton A:'p2 ssFig. 2. The observation construction.Lemma 6 ([13]). If ' is a next-free LTL formula and �; �0 are stutter-equivalent!-words then � j= ' i� �0 j= '.In the construction of the product this means, that only the visible systemtransitions and all transitions of the automaton are strictly alternating, while allconcurrency among the non-visible transitions is preserved. The reduced product�r thus is de�ned like �p, except that for every non-visible transition t, the arcs(ss; t) and (t; sf ) are discarded.Unfortunately, with this construction it is possible that some run 
 satis�es:', but it is not accepting. This is the case if only �nitely many visible transitionsoccur in 
. Then the place ss remains marked forever and thus no transition ofthe automaton will occur anymore. However, we have:Proposition 7. Let 
 = M0t1M1t2 : : : be a run of �r , and tij the jth occurrenceof a transition of � in 
. For each state Mj of 
, let Pj :=Mj\P the restrictionof Mj onto system places. The projection of 
 onto system nodes then is de�nedas Proj(
) := P0ti1Pi1ti2Pi2 : : :1. If 
 is a run of �r then its projection Proj(
) onto system nodes is a run of�, and 
 j= :' i� Proj(
) j= :'.2. For every run 
0 of � satisfying :' , there exists a run 
 of �r , such that
0 = Proj(
) is the projection of 
 onto system nodes, and 
 j= :'.3. If 
 is a run of �r containing in�nitely many visible transitions then theprojection Proj(
) of 
 satis�es :' i� 
 is accepting.Model checking LTL. The fact that acceptance requires in�nitely many visibletransition occurrences may look like a drawback. To cope with this problem, wehave to apply a 2-phase model checking procedure (\mc unf"):Phase 1. We construct the reduced product �r of � and A:', and computeits �nite pre�x Fin�r . Now we build the graph G, applying BuildGraph(Ta)(Fig. 1), where Ta is the set of accepting transitions of A:'. Additionally weapply BuildGraph(Tb), where Tb is the set of all the automaton transitions, notonly the accepting ones. The edges of the graph now may be labelled with aand/or b. Now, Tarjan's depth�rst search algorithm [1] determines the maximalstrongly connected components (scc) of G. Each scc containing an a-labelled9



edge represents an accepting run. If such an scc is found then we reconstruct thecorresponding violating run of the system and stop, else consider Phase 2.Phase 2. We discard each scc containing an a- or b- or a; b-labelled edge. Theremaining sccs correspond to in�nite runs of �r containing only �nitely manyoccurrences of automaton (and, consequently, of visible) transitions. This means,that after �nitely many steps, M (p) remains unchanged for all observed placesp2Obs('). Since each cut-o� e in a remaining scc can be considered as beinginitial in G, each e in scc refers to a certain set of runs. All these e-runs havea unique, last reached automaton state qe in common, determined by qe =Mark([e]) \Q. That is, in all possible e-runs of �r, the automaton get stuck instate qe. Further note that the set Pe := Mark([e]) \Obs(') of observed placesis the last, forever-unchanged, \relevant" submarking in all these runs.Thus, for each cut-o� e in all the remaining sccs, we have to determine qe andPe, and have then to investigate if Pe allows an accepting cycle of the automatonstarting at qe. If so, the corresponding violating run of � can be reconstructed.Note that the Phase 2 needs only a fraction of the veri�cation e�ort since A:'is usually small compared with the size of the product.Experimental results. A prototype implementation of the proposed method,using the very e�cient unfolding procedure of [7], yielded promising results.Mainly, we observed that even large systems, synchronized with small automata,e.g. for (the negation of) the usual liveness property 2(p ) 3q), result in rea-sonably small pre�xes. Liveness (resp. non-liveness) of Peterson's, Dekker's andLamport's mutex-algorithms were checked within less than two seconds.We also considered (the reactive version of) a leader election algorithm for aring topology, described in [3]. The modelling is due to Stephan Melzer [6].Essentially, the system consists of n processes, connected via a token ring.Each of the processes can be identi�ed by its unique process number. The algo-rithm (in the reactive version) strives for repeated determination of a designatedprocess, i.e., the one with the maximal number. We considered the liveness prop-erty 23(elected = true), expressing that in�nitely often a designated process isfound. The results are presented in Table 1. They are extremely positive, sincefor all n, the pre�x contained only one cut-o� event. The complementary prop-erty 32(elected = false) was shown to be not valid both by Spin [11] and ourimplementation in a second. All experiments were done within the PEP-tool [2].� �r Fin time (sec.)n jP j jT j jP j jT j jBj jEj mc unf Spin5 88 84 94 88 179 93 0.8 2.26 110 106 116 110 215 113 0.9 9.37 142 138 148 142 251 133 0.9 39.48 160 156 166 160 287 153 0.9 |1Table 1. Results and comparison with SPIN for leader election.1 64 MB main memory are exceeded. 10



5 ConclusionDiscussion. We have presented a method for model checking LTL in the frame-work of safe Petri nets, adopting the well-known automata-theoretic approach.We have shown how the �nite pre�x can be used for detecting the emptinessof a net with acceptance capabilities, and how to construct the product net ofa given net system and a B�uchi automaton, exhibiting enough concurrency totake pro�t from the partial order representation of behaviour.How e�cient is the proposed method? If one suppose a setting where onlya small fraction of the behaviour in
uences the speci�cation (i.e. there are fewvisible transitions), the \degree" of concurrency will remain high enough toexploit the advantages of net unfoldings, which are in some cases exponentiallysmaller than the global state space.However, until now there is no better way to handle fairness constraints thanincluding them into the formula, i.e., checking \'fair ) '". This may increasethe number of visible transitions, and so possibly a larger part of the behaviourwill be sequentialized. A more e�cient method for treating fairness is desirable.For a fast detection of violating runs when dealing with systems under de-velopment, we want to investigate an on-the-
y construction of the graph G:whenever a new cut-o� event is detected during the unfolding procedure, the(partial) graph has to be \updated" and searched for an accepting cycle. If sucha cycle is found, the unfolding needs not to be constructed further.Related work. A closely related approach recently has been investigated in[6], also considering a product of a given safe net system and a B�uchi automaton.There, a semidecision test is considered, that is a procedure which may answer\yes", in which case � satis�es the speci�cation, or \don't know". The procedureworks without ever constructing the state space, but uses structural net theory.The common idea of the partial order methods proposed so far [10,16{19],bases on the observation that the order of execution of concurrent actions inmany cases is irrelevant for the checked property '. Intuitively, when severalconcurrent actions are enabled at a state, only some of them are selected, suchthat certain computation sequences and states may be discarded, yielding areduced system. Since 'may be sensitive to certain interleavings of visible actions[18], all concurrent visible actions are considered to be causally dependent.So-called on-the-
y methods are investigated in [10,17,19]. There, the B�uchiautomaton is incorporated in the construction of a reduced product. That is,instead of �rst reducing the system and then building the product, the B�uchiautomaton is used to guide the further exploration of concurrently enabled tran-sition sets. In some cases, it is possible to detect accepting cycles during theconstruction, and thus not the entire product needs to be built.In [12] it was shown that the visibility of actions (and thus the need toconsider them dependent) may diminish during the construction of the reducedproduct, sometimes resulting in even better reduction.Acknowledgments. I'd like to thank Stephan Melzer and Javier Esparza formany fruitful discussions. Special thanks to Stephan Melzer for the support withthe implementation and the experiments.11
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