Operational Semantics of UML 2.0 Interactions

Maria Victoria Cengarleand Alexander Knagp

! Technische Universit Miinchen
cengarle@in.tum.de
2 Ludwig-Maximilians-Universiait Miinchen
knapp@pst.ifi.Imu.de

Abstract. An operational semantics for UML 2.0 Interactions is defined that
for finite traces is compliant with the trace-based denotational semantics of a
previous work. To this end, the notion of interactions in the classical sense is used.
That is, the operational semantics of UML 2.0 Interactions is given by composing
their translation into interactions in the classical sense and the reduction relations
below.

1 Preliminaries

We briefly review the basic definitions on partially ordered, labelled multisets as intro-
duced by Pratt [3] for modelling concurrency. In particular, we define sequential and
parallel composition operators and the notion of traces and processes.

A partially ordered, labelled multiset, ppmsetis the isomorphism clagéX, <y,
Ax)] of a labelled partial ordefX, <, Ax) w.r.t. monotone, label-preserving maps.
A trace is a pomset whose ordering is total. We writg for all possible linearisa-
tions of a pomsep, i.e., all traces that extend the orderingpof[(X’, <x/,Ax/)] €
[(X, <x, Ax)]l if, and onIy if X' =X, Axr = Ax, and<x C <y, wherez; <y’ zo
orzy, <y xzqforall zy,z5 € X'.

Theemptypomset, represented K, 0, 0), is denoted by. Letp = [(X, <x,Ax)]
andq = [(Y, <y, Ay)] be pomsets such that N Y = (). Theconcurrenceof p andq,
written asp|| ¢, is given by[(X UY, <x U<y, Ax UAy)]. Theconcatenatiorf p andg,
written asp; g, is given by[(X UY, (<x U<y U(X xY))*, Ax UAy)]. Given a binary,
symmetric relations on labels, thes-concatenatiomf p andg, written asp; < q, is given
by (X UY, (Sx U<y U{(z,y) € X xY | Ax(z) = Ay (y)})*, Ax UAy)]. We write
p" for then-fold iteration of pomset concatenation witha natural number, i.ep? = ¢
andp™™! = p; p". Furthermore we lgt* denote| J, -, p™. Analogously, we write"=
for then-fold iteration ofs-concatenation with= = ¢ andp" 1= = p;, p™=. Note
that concatenation and-concatenation are associative, and concurrence is associative
and commutative.

A processs a set of pomsets. Am-ary functionf on pomsets is lifted to processes

Py, ..., P, bydefiningf(P1,...,P.) ={f(p1,...,pn) | P1 € P1,...,pn € Pp}.

2 Abstract Syntax

We define the abstract syntax of a fragment of the language of UML 2.0 interactions
of [2]. We assume two primitive domains fmstanced andmessagebl. An evente is

Interaction ::= None | Empty

Basic

CombinedFragment
strict(Interaction Interactior)
seq(Interaction Interaction)
par(Interaction Interaction
loop(Nat, (Nat | o), Interactior)
ignore(Messagednteractior)
restr(Instanceslnteractior)
alt(Interaction Interaction
not(Interaction)

CombinedFragment:

Table 1. Abstract syntax of interactions (fragment).

either of the formend(s, r, m) or of the formrcv(s, r, m), representing the dispatch and
the arrival of message: from senderinstances to receiverinstancer, respectively.
The setE comprises all events ovdrand M. The message of an evenis denoted

by u(e). We say that the instanceis active for snd(s, r,m) and, similarly, that the
instancer is activefor rcv(s, r, m); the (singleton) set of instances active for an event
e is denoted bya(e). We define a binary, symmetrizonflict relation 2 on events:
exe < ale)Nale) #0.

A basicinteraction is given by an event-labelled pomEet, <g, Ag)] such that
conflicting events do not occur concurrently, i.egifes € F with Ag(e1) 3 Ag(es),
thenal <pgpey0rey <pej.

The abstract syntax of interactions is given by the grammar in Tab. 1. ThBesit,
ranges over the basic interactioh&®tranges over the natural numbekéessagesver
the subsets d¥l, andinstancesver the subsets df

Note that the interaction constamtene andEmpty as well as the interaction oper-
atorsrestr andnot are not part of the specification of UML 2.0 interactions as defined
in [2]. The operatonot results from the translation of UML 2.0 interactions (including
the negative operatorgg andassert) into “interactions in the classical sense”; see [1].
The operatorestr and the constantsone andEmpty simplify the definition of the op-
erational semantics. Interactions of the faseg(alt(B;, Bs), B2) motivate the operator
restr, where B, are the basic interactiodsnd(s;, r;, m;) < rev(s;, i, m;)} (i = 1,2)
with m; # ma. In case the second operand of the weak sequencing opssqtarakes
progress by sending the message from instances; to instance,, then the first op-
erator of theseq, which is a disjunction, may only choose its first operator; we call that
progress aon-local choice

3 Denotational Semantics

3.1 Semantic Domains

The domainP comprises all basic interactions. The subdonigiof P comprises all
pomsets ifP that are traces. In particular, the empty pomsgt in T; also all events

can be identified with traces of length one. The notion of the set of active instances of
an evenk € E is extended to an event-labelled pomset [(X, <x, Ax)] by setting
a(p) = Uyex o(Ax(2)).

For a pomsep = [(X,<x,Ax)] € P and an event € E we writee € minp, if
there is ane € X with z € min<,, X andAx(z) = e; note thatz is unique defined, if
it exists. Ife € min p, we writep\ {e} for [(X\ {z}), <x N(X\{z})% Ax (X \{z})]
with € min< , X andAx (z) = e.

On pomsets if® and for a set of messag#$, thefiltering relationfilter (M) : P —
pP removes some elements of a pomset whose labels show a mesddgMiore pre-
cisely, we first defindilter (M) on event-labelled sets: Léf be asetand : X — E
a labelling function; thenX’ € filter(M)(X,\) if X’ C X and, ifz € X \ X/,
thenp(A(z)) € M. For an event-labelled partial ordeX, <x, Ax) we set(X’, <x N
(X' x X", Ax|X") € filter(M)(X,<x,Ax) if X' € filter(M)(X, x). Finally,
we extend these definitions to event-labelled pomsets by séftfig<x, Ax/)] €
filter (M) ([(X, <x,Ax)]) if (X', <x7,Ax/) € filter(M)(X,<x,Ax), which is ob-
viously well-defined. For a pomset € P, we write p(M) for filter(M)~ (p); and,
consequently, for a proce$sC P, we write P(M) for filter(M)~1(P).

Finally, on processes iplP and for a set of instances, the restriction function
restr(L) : pP — pP removes all those pomsets from a process which show an event
that is active for an instance ib, i.e., restr(L)(P) = {p € P | a(p) N L = 0}. We
also writeP[L] for restr(L)(P).

The process building operators are transferred to traces using the following identi-
ties:

Lemmal. Let P, P;, P, C P be processesy/ C M a set of messages, addC I a
set of instances.

PuU PQ) = (Pll) U (PQL)

Nooghrwnhk

3.2 Trace-Based Semantics

The trace-based, denotational semantics of the authors [1] can be rendered as a function
& . Interaction— T defined as follows:

PNone = ()

PEmpty = {¢}

PB = B|

Pstrict(S, S') = 28 ; 25’
Pseq(S,9') = (P8 ;5 25|

Ppar(S,S") = (2S || 25|

Ploop(m, 7, S) = U, <jenr (£259)=)]
Pignore(M, S) = (ZS)(M))]
Prestr(L, S) = (£ 5)[L]

Palt(S, 8y = 2Su LS’

Zno(S) =T\ £S5

whereS and S’ are interactions) C M, L C I, andm a natural number or infinity,
whereco + 1 = oo

In particular, a traceis positivefor an interactiorS, writtent =, .S if, and only if,
te #S.

We make use of the following syntactical identifications:

strict(Empty, S) =

seq(Empty, S) = S

par(Empty, S) = par(S, Empty) = S
loop(0, 0, S) = Empty

restr(L, Empty) = Empty

ignore(), Empty) = Empty
alt(Empty, Empty) = Empty

4 Processes

For a process® C P and an event € E, we define thdeft quotientP / e of P by
e to be the procesép € P | e; p € P}. This operation is right-adjoined to prefixing
pomsets by with respect to set inclusion, as P C P’ if,andonly if P C P’ / e.

Lemma 2. Let P, P, P, C IP be processes, € E an eventM C M a set of messages,
and L C I a set of instances.

1L (PsP)/e=((Pr/e); P)U((Prn{e}); (P2] €))
2. (Pri= P) [e=((P1/ €)= P2) U (Pila(e)] 5 (P2 / €))
3. (Pl P)/e=((Pi/e)| P)U(P | (P2/))

4. (P(M)) /e = (P/e)(M)U{e | ule) € M}; P(M)

5. (P[L]) /Je={e|a(e)NL=0};(P/e)lL]

g- EP1UP2)/€— (P1/e)U(P/e)

P\P)/e=P\(P/e)
Proof. By calculation, we have:
1) (P P2)/e

={p|3p1,p2. ;1 €PL AP € PaNe;p=pi;p2}
={p| 3pl,p2.e;p) € PLApPs € Py Ap=7p);p2

V3pi,py.e =p1 € PLAe;py € PaAp=pi1;ps}
=(P1/e); PU(Pin{e}); (P2 /e)

(2) (Pr3;x P2) /e
={p|3p1,p2.p1 € PLAps € Py Ne;p=pi1;=pa}
={pl 3plp2-e;pi €EPLAPs € PaAp=1pl;xpa

V3p,ph.pr € PrAa(pr) Nafe) =0 Ae;py € PoAp=p1ixps}
=(P1/ €)= P U(Pia(e)] ;= (P2 / €))

@) (AlP)/e
={p|3p1,p2.p1 € L Ap2 € P ANe;p=p1| p2}
={p| Fl,p2.e;pi € PLApae PaAp=1)|pe

V3pi,py.p1 € PrAespy € PaAp=p1 | ph}
=((P/e) | P)U (P (P2 /€)

@) (P(M) /e
={p| 3 .e;p e PArpep (M)

VpeP(M)Au(e) e M}
= (P/e){M)U{e | ple) € M}; P(M)

6) (PlL)) /e
={p|3I.e;pePnra@)nall)y=0Aale)Na(L)=0Ap=7p'}
—{elale)nL="0};(P/ o)L

(6) (PLUP) /e
={ple;pe P}U{p|e;pe P}
=(P1/e)U(P/e)

@ (P\P)/e
={p|-(e;peP)}
=P\ (P/e)

The following lemma summarises an obvious characterisation of when the empty
pomset can result from a process expression:

Lemma 3. Let P, P, P, C PP be processesy/ C M a set of messages, addC I a
set of instances.

(Pl,PQ) <~ (EGPl)/\(EEPQ)
(Pl)3 PQ) < (8 € Pl) N (8 S PQ)
(Pl || PQ) <~ (E € Pl) AN (E € PQ)
€(P(M)) < c€P
€(P[L]) <= c€P
(P1 UP2 S (E € Pl) V (E S Pg)
€(P\P) «= ¢ P

.\‘.@.U".b.‘*’!\’!—‘

Process expressions satisfy some obvious monotonicity conditions:

Lemma4. LetP, P, P,, P/, P5, Py C P be processes\f, M’ C M a set of messages,
andL, L’ C I sets of instances.

PLCP/AP,CP)= (P ;) C (P ;P)
P CPIANP, CPy= (Py3x P2) C (P ;% Py)
PICPINP,CPy= (P || P) C (P || P)
PCP AMCM = (P(M)) C(P(M")
PC P ALDL = (P[L]) C (P'[L])
PLCP/AP,CP,= (PLUP,) C (P/UP})
PO P = (P\P)C (P\P)

NogrwhBE

All these observations can be extended straightforwardyte / e:

P Je=10

Pz Je = ((P/e) s P"=) U (Pla(e)] 1= (P™= /)
e€ P < (e€P)V(n=0)

P g P/ = Pn§ g P/n;s

5 Operational Semantics

We define the domaifi, of events and thsilent eventr asE U {r}. Analogously,
P is the domain of all pomsets labelled with events frim and T, the subdomain
comprising all pomsets i, that are traces. We define the set of active instances of
asa(r) = 0.

Based on the observations in Lemma 3, we define a predi¢ateon interactions
which determines whether an interaction contains the empty trace:

¢(None) < ff
Empty) < tt

m

(

(
¢(B) <= B=¢
e(strict(S, S")) <= &(S) Ae(S)
£(seq(S, 5) < e(S) ne(S)
e(par($, 8")) <= £(9) Ae(S)
c(loop(m, 7, 8)) <= =()V (m = 0)
e(ignore(M, S)) < <(95)
e(restr(L, S)) < e(9)
e(alt(s,8")) < (9) ve(s)
g(not(S)) < —e(9)

The operational semantics of interactions is given by two ternary relations between
interactionsS andS’ and an event € E,: Thepositivereduction relation, denoted by

S ip S’, is defined by the rules in Tab. 2. Thegativereduction relation, denoted

by S <., S, is defined by the rules in Tab. 3. In these rules, the variously decorated
meta-variables range as followS:over interactions3 over basic interactiong, over
E,, e overE, m over the natural numbers,over the natural numbers or infinity.

(basig) B %, B\ {e} ifecminB
S1 S St

strict(S1, S2) ip strict(S7, S2)

(stricty)

e ’
Sl —p Sl

seq(S1, S2) —p seq(S, Sa)

(seq)

€ /
SQ —p SQ

seq(S1, S2) ip seq(restr(a(€), S1), S3)

(seq)

51 S, S Sy S, S
(pars) ——r (pat) e
par(Si, S2) —p par(S1, S2) par(S1, S2) — par(S1, S3)
(loopy) loop(0, 7, S) —p, Empty

S5, 8

(Io0f) :
loop(m, . + 1, S) — seq(S’, loop(m — 1,7, S))

55,8
ignore(M, S) <>, ignore(M, S")

(ignoré,) ignore(M, Empty) —, Empty (ignore?)

(ignor€}) ignore(M, S) =, ignore(M, S) if u(e) € M

S5, 8 _
(restr,) — if a(e)NL =10
restr(L, S) —, restr(L, S")
S1 5y S Sy S S
(a|t11)) # (altf)) L‘LQ
alt(S1, S2) —p S alt(S1, S2) —p S5
55,9 .
(not}) —2Tme (not?) not(S) —p, Empty if —e(S)

not(.S) ip not(S’)

Table 2. Positive reduction relation of the operational semantics.

6 Correctness

€ €: _n H z n
If S 5, 81, 81 2, So, ooy Sy 5, S, we write S —,, ', wherel =
e1;ex;---;e, € T, is a finite trace possibly containing one or more occurrences of

(empty,) Empty —,, None (none,) None <, None
(basi¢) B %, B\ {e} ifec minB (basi¢) B %, None if e ¢ min B
S1 Sn 81 Sz Sou S}

Strict(S1, Sa) —n alt(strict(S}, So), strict(restr(L, S1), S%))

(strict,)

€ , € ,
Sl —n Sl S2 —n SQ

(seq) -
seq(S1, S2) —n alt(seq(S1, S2), seq(restr(a(e), S1), S))

e e
Sl ——n Si S2 ~—n Sé

par(S1, Sa) —n alt(par(S;, Sz), par(Si, S5))

(par,)

(loopt) loop(0, 00, S) =, not(None)

S 5. S loop(m = 1,7, S) = S”

(loop}?)

loop(m, 7@ + 1, S) > alt(seq(S’, loop(m — 1,7, S)), seq(restr(a(e), S), S"))
S5, 8

ignor if eM
(ig e;) ignore(M, S) =, alt(ignore(M, S’), ignore(M, S)) ue)

55,
ignore(M, S) —, ignore(M, S")

(ignore?) ife=7Vvu@E) ¢M

55,9
restr(L, S) >y, restr(L, S')

(restr;) if ae)NL =0

(rest?) restr(L, S) <>, None if a(e) N L # 0
81 Sn S So s, Sh
alt(St, Sa) > alt(S}, S%)

(alta)

s5, 8

(noty) —= 22—
not(S) =, not(S’)

Table 3. Negative reduction relation of the operational semantics.

the silent event. Given a traceé € T, we let|t| denote the trace obtained franby
removing every occurrence of the silent event

The above introduced operational semantics of interactions is correct w.r.t. the de-
notational one, that is, given an interaction, traces that lead the interactiomptg are
positive for the interaction:

Lemma5. Let S, S’ be interactions and € E.

1. 1f S 5, 8 then?S' C 25/ e.
2.1f S 5, 9, then®S’ C 2S.
3.1fS 5, 8, then?s’ D PS] e.

4. 18 5, S then®S O #8S.

Proof. Claims (1) and (3) follow immediately from Lemma 2, claims (2) and (4) from
Lemma 4.

Proposition 6. Let S be an interaction and be a trace inT,. If S ip Empty, then

[o S

Proof. From Lemma 5, and by induction on the length dbllows that if S ip Empty,
then|¢] ; ZEmpty C £S,i.e.,|t] € 2(9).

7 Completeness

Lemma 7. LetS be an interaction an@d € E. Then

1 (25)) e=Ul2(5) | 5 7%, 5}
_(T\@S)/ezﬂ{;]r\,@(s’)|S—e>ns’}
3.6€ 25 «— S, Empty

Proof. Claims (1) and (2) follow by mutual induction on the term structure of the inter-
actionS from Lemma 2.

Claim (3) follows by induction on the term structure of the interacttbfiom the
syntactical identifications, the definition of—) and ther-rules.

Proposition 8. Let S be an interaction and € T be a finite trace. It € £(S), then
thereisat € T, witht = |¢] and S i>p Empty.

Proof. From Lemma 7(1) and by induction follows that for every finite trace T
and for every interactior with t € 4(S5), there are & € T, with ¢ = [t] and

an interactionS; such thatS Lp S; ande € #£S;. Thus, by Lemma 7(3), for an
interactionS and a finite trace € T, there is & € T, with ¢t = [¢] andS i>p Empty.

References

1. Maria Victoria Cengarle and Alexander Knapp. UML 2.0 Interactions: Semantics and Refine-
ment. In Jan idrjens, Eduardo B. Fernandez, Robert France, and Bernhard Rumpe, editors,
Proc. 3¢ Int. Wsh. Critical Systems Development with UML (CSDUML'@8ges 85—99.
Technical Report TUM-10415, Instituiif Informatik, Technische Universit Miinchen, 2004.

2. Object Management Group. UML 2.0 Superstructure Specification. Final adopted specifica-
tion, OMG, 2003.http://www.omg.org/cgi-bin/doc?ptc/03-08-02

3. Vaughan Pratt. Modeling Concurrency with Partial Orderbkit. J. Parallel Program
15(1):33-71, 1986.

