OMIS — On-line Monitoring Interface Specification !

Version 1.0

http://wwwbode.informatik.tu-muenchen.de/~omis/

emall: omis@informatik.tu-muenchen.de

Thomas Ludwig, Roland Wismiiller,
Vaidy Sunderam™, Arndt Bode

Lehrstuhl fir Rechnertechnik und Rechnerorganisation
Institut fiir Informatik (LRR-TUM)
Technische Universitat Minchen
D-80290 Minchen, Germany
tel.: +49-89-2105-2042 or -8164 or -8240
fax: +49-89-2105-8232

email: {ludwig,wismuell,bode}@informatik.tu-muenchen.de

*Emory University
Mathematics & Computer Science
Atlanta, Georgia 30322
tel.: +1-404-727-5926, fax: +1-404-727-5611

email: vss@mathcs.emory.edu

February 1, 1996

!This work is partly funded by the German Science Foundation, Contract: SFB 342, TP Al






Abstract

The On-line Monitoring Interface Specification (OMIS) aims at defining an open
interface for connecting on-line software development tools to parallel programs run-
ning in a distributed environment. Interactive tools like debuggers and performance
analyzers and automatic tools like load balancers are typical representatives of the
considered class of tools.

The current situation is characterized by the fact that tools either follow the off-line
paradigm by only having access to trace data and not to the running program or
else they are on-line oriented but suffer from the following deficiencies: they do not
support interoperability in the sense that different tools can be used simultaneously
— not even tools from the same developer. Furthermore, no uniform environment
exists where the same tools can be used for parallel programs running on different
target architectures.

A reason for this situation can be found in a lack of systematic development of moni-
toring systems, i.e. systems which provide a tool with necessary runtime information
about the application programs and make it possible to even manipulate the program
run.

The goal of the OMIS project is to specify an interface which is appropriate for a
large set of different tools. Having an agreed on on-line monitoring interface facili-
tates the development of tools in the way that tool implementation and monitoring
system implementation are now decoupled. Bringing n tools to m systems (consist-
ing of hardware, operating system, programming libraries etc.) will be reduced in
complexity from n xm to n+m. In addition, it will eventually be possible to simulta-
neously use tools of different developers and to compose uniform tool environments.

In addition to producing the specification, the research group at LRR-TUM will
implement an OMIS compliant monitoring system for the PVM programming model
running on a network of workstations. Several interactive and automatic tools will
be connected to this concrete system.

The present document defines the goals of the OMIS project and lists necessary
requirements for such a monitoring system. We will describe the system model OMIS
is primarily intended for and give an outline of available services of the interface. A
special section will give details on how to extend OMIS, as this is an indispensable
feature for future tool development.

We would appreciate to get feedback on the design of OMIS. If you would like to
see special issues incorporated into this specification document you are invited to
contact the authors (omis@informatik.tu-muenchen.de).






Contents

I The OMIS Project
1 Motivation

2 Project Goals
2.1 Background . . . . .. oL
2.2 Goals . .

3 Requirements

IT Structure of the Monitoring Interface
4 The System Model

5 A Basic Outline of Available Services

5.1 Classification of Monitoring Services . . . . . . ... .. ... .. ... ...
5.2 Syntactical Structure of Monitoring Services . . . . . . . . . ... L.
5.2.1 Service Requests . . . . . . . . . L
5.2.2 Service Replies . . . . . . . . e
5.3 Examples . . .. .o
5.3.1 Performance Analysis . . . . . . . ... L
5.3.2 Debugging . . . . . . . L
5.4 Interface Procedures . . . . . . . . . ..
5.0 Remarks . . . . o oL
6 FExtending OMIS
6.1 Types of Extensions . . . . . . . .. oL e
6.2 The Method of Extending OMIS . . . .. ... ... ... ... .. ...,

IIT Services of the Monitoring Interface

7 Formal Syntax of Service Requests and Replies
7.1 Service Requests . . . . . . . . e
7.2 Service Replies . . . . . . L

8 Specification of Available Basic Services

8.1 System Objects . . . . . . . oL
8.1.1 Processes . . . . . . .
8.1.2 Messages . . . . . . . e e e e e
8.1.3 Hardware . . . . . . . . . . e e

11

14
14
15

17

21

23

25
25
27
27
28
29
29
29
30
31

32
32
33

35

37
37
37



8.2

8.1.4 Enhancement: Parallel /O . . .. ... ... ... o L.
Monitor Objects . . . . . . . o o e e e
8.2.1 Asynchronous Service Requests . . . . . . .. ... ..o .
8.2.2 User Defined Events . . . . . . .. . ..
8.2.3 Miscellaneous . . . . . . . .o L e

IV  Concepts for an Implementation

9 The

10 The

Software Module Structure

Monitor/Program-Interface

11 Time Schedule of Implementation

V Diverse

12 Requests for Comments

13 Known Problems

Glossary

History

References

59
61
64

65

67
69
72
74
76

76



Preface to this Document Version

This document version is an extensive reorganisation and improvement of previous releases.
Part I describes motivation, project goals, and requirements of the project. Part II comprises
a description of the structure of the monitoring interface. It describes the underlying system
model, what services are, and how to extend OMIS. Part III gives a detailed description of
services provided by the monitoring interface. Part IV describes concepts for the implementation
of an OMIS compliant monitoring system.

We would like to encourage people to send us feedback on the “Requests for Comments” and
also maybe on “Known Problems”. Any further ideas, comments, criticism etc. are also welcome
(omis@informatik.tu-muenchen.de).

Please see also chapter History for the document history.






Part 1

The OMIS Project



10



Chapter 1

Motivation

Parallel processing is a key technology for the 21th century both for commercial/industrial
applications and for research. Current needs of computational power can only be satisfied
by using parallel and distributed architectures like multiprocessor and multicomputer systems.
For already several years also networks and clusters of workstations (NOWs, COWs) play an
important role, as their aggregate power can often meet user requirements. We can distinguish
systems by their architectural concepts like e.g. coupling of processing elements (busses, switches
etc.) or memory organization (distributed memory, shared memory). Various programming
paradigms can be used for implementing software for these systems, message passing and usage
of shared memory segments being the most popular amongst them.

The approach presented in this document will in its first phase concentrate on systems
with distributed memory architecture and programs being implemented with message passing
libraries. Developing these programs on such systems is usually considered to be the machine
language level of parallel programming; it might exploit a high potential of the system’s theoret-
ical computational power but exhibits also a great complexity with respect to coding, debugging
and performance optimization.

In order to reduce this complexity we need powerful tools. The goal of the OMIS! project is
to provide a viable basis for better tools with respect to integration of the individual tools into
a single environment. Future work will transfer the concepts to shared memory architectures.

The available support for parallel programming in environments with distributed memory
varies considerably in quality and quantity. Results of the Second Pasadena Workshop on System
Software and Tools for High Performance Computing Environments [SMP95] show that main
problems are a lack of sophisticated tools and the almost complete absence of any interoperability
of tools of different origin. Also there are no uniform environments at all, where the developer
could use the same tools for different types of hardware or parallel programming libraries.

On most systems we can find simple tools for debugging and runtime management like
e.g. processor allocation. More powerful tools or special tools like for example load balancing
facilities or support for fault tolerance mechanisms do rarely exist. In addition, only very
few tool environments support design, implementation, and maintenance of parallel software
in a consistent manner. Finally, tools of different vendors do not interoperate because they
are based on e.g. different monitoring techniques or trace data formats or just use proprietary
programming libraries or special adaptions of publicly available programming libraries. Usually,
the programmer can use only one tool at a time or even must specially adapt his program before
applying another tool.

Tools which support an investigation of the running parallel program can be divided into on-
line and off-line tools. Off-line tools exclusively support post-mortem inspection of the program

!The acronym OMIS stands for On-line Monitoring Interface Specification.

11



behavior. The drawback of this approach is its lack of interactive program manipulation facili-
ties and its delay between problem recognition and problem correction. On-line tools, however,
support interactive program manipulation with an immediate feedback to the user thus short-
ening the time spent for debugging and performance analysis. In addition, special automatic
tools like e.g. load balancer systems, must necessarily interact with the running program. An
off-line concept is not feasible for them.

Both tool approaches are based on different classes of information which are collected by
different mechanisms. Off-line tools typically offer information which was collected during a
program run (trace data) or after program completion (core dump). Trace data is gathered with
a monitor component being introduced into the program, the runtime libraries, the operating
system, or even the hardware. The monitor’s task is restricted to only collecting information
about the system behavior and forwarding it to a file for storage. In addition, as we do not
know in advance which information the user would like to evaluate, all possibly interesting data
have to be transferred to this file. We prefer to call this mechanism “recording” instead of
“monitoring”. For long program runs or fine grained information this is not a feasible approach
as it requires to collect an enormous amount of data.

With on-line tools the situation is more complex. In addition to the above mentioned data
(trace data, core dump) we need information about the current program state. Moreover, as
the user evaluates this data immediately, additional tasks have to be added to the monitor’s
responsibility: First, it must be adaptable in the sense that new evaluations can be activated
while others will be stopped. (This, however, decreases dramatically the amount of data which
has to be transferred to the tools.) Second, the monitor must be able to manipulate the program,
e.g. to stop a task or to force it to single step mode. A software component which supplies this
class of functionality will be called on-line monitor. The goal of this paper is to lay the basis
for the design (and also the implementation) of on-line monitors for parallel environments with
distributed memory.

Currently, several on-line tools are already available for the above mentioned environments,
but most of them are proprietary solutions of parallel computer manufacturers. Public domain
or copy-left tools are for the most part only available for programming libraries like e.g. PVM
or implementations of MPI. Any activity in this field is hindered by the fact that for every new
tool, for every new hardware, and for every new implementation of a programming library a
new monitoring system has to be developed.

The monitoring system is the software layer which connects the running program system
(consisting of hardware, operating system, and application program processes) to the tool en-
vironment and guarantees on-line capabilities. Caused by its intermediate position it has two
interfaces: one to the tools and one to the running program. Up to now, besides OMIS, there
are hardly any approaches undertaken to standardize at least the tool/monitor-interface. With-
out a reasonable standard, however, new tools must also have new monitoring systems even
if their functionality is not completely disjunct to already existing tools. Finally, the missing
standard makes the integral use of a set of tools impossible as they are currently always based
on differently implemented monitoring concepts which are incompatible to each other. For most
of the on-line tools the monitoring system itself is the software layer which poses the greatest
implementation difficulties as it controls a spatially distributed environment by means of a cen-
tralized interface. The monitoring system is by itself a distributed software system and would
already require sophisticated tools for its implementation.

If we compare different tools we will find that they use a considerable part of the monitor
interface which is identical for all of the tools. For some tools like e.g. an interactive performance
analyzer and an automatic load balancer system the functionality might even coincide. For that
reason it is desirable to design a monitor system which can be adapted to different underlying
hardware/software environments and can be expanded for connecting it to new tools. The goal

12



of this paper is to present a monitoring concept with a high degree of flexibility and extendibility.

Having an agreed on on-line monitoring interface, different tool developer groups could de-
sign and implement new interactive and automatic on-line tools whereas other groups could do
implementations of the monitors for various hardware/software environments. The amount of
effort for having n tools on m systems (being composed of hardware, operating system, and
runtime library of the programming environment) would be reduced from n X m to n + m thus
bringing more tools onto more parallel systems which finally would ease software development
on these architectures. A further implication of having OMIS compliant monitoring systems is
that finally we will reach the goal of having uniform environments, i.e. tools which are identical
for a variety of target architectures.

13



Chapter 2

Project Goals

2.1 Background

The OMIS project being described in this paper has not been started as an isolated project
although there might be a real necessity for such an approach. It is embedded into research
and development activities at the Lehrstuhl fiir Rechnertechnik und Rechnerorganisation at
Technische Universitdt Miinchen (LRR-TUM). Before going into details with OMIS let us give
some information on the background.

During the last eight years the parallel processing group at LRR-TUM has been working
in the field of interactive and automatic on-line tools for parallel programming. Starting point
was the ToPsYs project which was funded by a special research grant of the German Science
Foundation. Topsvys stands for TQols for Parallel SYStems; for detailed information please
refer to [Bod94, BBB+90, BB91, Lud93b].

Within the framework of Toprsys we developed a set of tools for Intel iPSC hypercube
computers. A debugger [BW95], a performance analyzer [BHL90], and a program flow visual-
izer [BB92] were the main interactive components. In addition, we investigated tools for auto-
matic load balancing [Lud93a]. The environment was based on our proprietary programming
model MMK (multiprocessor multitasking kernel) [BL90]. Tools were using on-line monitoring
systems which were realized with identical functionality in both, hardware and software [BLT90].

Already in parallel to TopPsys we designed and implemented tools within the frameworks of
other projects and direct industry cooperations. Examples are an adaption of Topsys to work-
station clusters (cooperation with SUN Microsystems), adaptions of the performance analysis
tool in the Esprit project PREPARE (an on-line version) and the Esprit project HAMLET (an
off-line version) as well as smaller cooperations with e.g. INTEL, Siemens, Genias, and others.
(For more details please refer to the annual report of LRR-TUM!.)

For already several years a very important cooperation links LRR-TUM and PARSYTEC,
a German vendor of parallel supercomputers and embedded systems. Within that project we
designed and implemented versions of our debugging and performance analysis tools especially
adapted for PARSYTEC parallel systems [Han94, OW95, HKOW96]. Both tools are successors
of former ToOPSYS tools and became an integral part of the PARIX parallel programming system
for PowerXplorer systems in 1994. Currently we adapt both tools to the new CC systems running
EPX, a special version of PARIX for embedded systems. Again, the main effort concerns an
appropriate port of the underlying monitoring system to the now used AIX operating system.

In the last years a change in paradigm took place: multiprocessors systems are no longer
the only vehicles of parallel processing. In addition, workstation clusters enjoy an increasing
popularity. The style of programming (with respect to message-passing) did not change signifi-

'http://wwwbode.informatik.tu-muenchen.de/archiv/diverses/jber94/jb.ps.gz

14



cantly. However, the environment structure increases complexity: time sharing replaces or adds
to space sharing, thus making it necessary to have appropriate development tools. The main
difference is the step from single user/single program environments to multiuser/multiprogram
environments.

As a reaction to that, the parallel processing group at LRR-TUM started two new projects
in 1995 namely the OMIS project and THE TOOL-SET project (see [LWB+95]). Before going
into details with the project goals of OMIS let us give a quick overview on the latter project.
Its global goal is to design and implement an integrated environment of various tools to make
cluster computing easier. All implementations will initially be based on PVM which represents
the current de facto standard for parallel programming. The PVM library and runtime environ-
ment is available for all major workstation brands as well as for all important multiprocessor
and multicomputer systems. PVM supports the main aspects of distributed computing: work
distribution (by process management mechanisms) and cooperation (by message passing mecha-
nisms). In the first project phase, THE T0oOL-SET will be made available for workstation clusters
only. Adaption to genuine parallel architectures might follow in the future. THE ToOOL-SET will
comprise a set of interactive and automatic on-line tools such as a debugger, a performance
analyzer, a program flow visualizer, a tool for deterministic program execution, a dynamic load
balancer, a consistent check-pointing facility, and a trace data comparison tool.

2.2 Goals

From the above paragraphs we see that the monitoring system is a main issue for every tool
environment with on-line tools like e.g. THE ToOOL-SET and the CC series tools. As already
mentioned earlier, it must offer the following functionality:

o It must be able to extract data describing the current state of the HW /SW-system (hard-
ware, operating system, application programs) on request and on a regular basis.

e It must be adaptable in the sense that the user can define which data should be monitored
(e.g. the occurrence of user-specified conditions).

e It must be able to modify and influence the HW /SW-system (e.g. assign values to variables,
stop and restart process execution)

The central goal of the on-line monitoring interface specification OMIS is to define a standard-
ized tool/monitor-interface and to provide means to efficiently design and implement monitoring
systems which fulfill the above mentioned requirements. With an OMIS compliant monitoring
system being connected to a running HW/SW system, several tools from possibly different de-
velopers can concurrently watch and manipulate the execution of application programs. Tool
interoperability and integration of future tools into existing environments are the most impor-
tant features OMIS will be able to support. In addition, we will reach the goal of having uniform
environments where identical tools exist for a variety of target architectures.

The detailed list of goals comprises research oriented issues, design and implementation
issues, and standardization issues. The project will be driven by people who were already
involved in the design of Torsys thus making it possible to take profit of existing long year
experiences in that field.

The central research topic is to investigate on-line monitoring methodologies for parallel
systems and to achieve a deeper understanding of the issues involved in tool interfaces for
parallel and distributed computing. Especially the interaction of the monitor with all other
components of the system (hardware, operating system, application programs) and its possible
and necessary interconnections with them will be carefully studied. Furthermore, adaptability

15



is a big concern. Although the project will lead to a realization for a concrete set of tools,
programming libraries, and operating systems, we will concentrate on the question of how to
keep the interface specification abstract enough to guarantee its applicability to various other
environments.

The major objective is to define a tool/monitor-interface which meets two main requirements:
First, it should be extensive and complete in the sense that the functionality of all common types
of tools (including of course THE TooL-SET) will be guaranteed. Second, as there will be new
tool functionalities in the future or even completely new tools, the interface must be extendible
in a well defined manner. Also other research groups must be able to use the approach and
adapt it to their needs.

A first version of the specification can be found in Parts II and III of this document and
will be published in newsgroups and at workshops. We expect to get feedback from other
tool designer groups giving us details what type of interface is necessary to meet their special
requirements. From that we will produce a refinement of OMIS.

Starting from a sophisticated specification document two further goals have to be achieved.
First, we will implement an OMIS compliant monitoring system which serves as a basis for THE
TooL-sET. In more detail this means to eventually have an on-line monitor for PVM running
on workstation clusters where tools developed at LRR-TUM and at other sites can be used
concurrently with the same application programs.

Second, if the approach proves to be powerful enough and proves to be a viable basis for
making tool design and implementation easier and less time consuming, we will support OMIS
to become a new standard in the world of tools for parallel systems. The parallel processing
group at LRR-TUM will coordinate extensions to OMIS being brought in by other research
groups. Thus a reliable standard will exist, for which other groups can do both, develop tools
and implement compliant monitoring systems for specific parallel architectures.

The project policy will be to release all software products being developed by LRR-TUM
in the framework of OMIS and THE TooL-SET under GNU license conditions to provide a
maximum profit to the user community.

We would like to strongly encourage other researchers working in the field of parallel pro-
gramming environments and tools to participate in this project by discussing with us their
special needs or wishes and making critical comments to this proposal.

16



Chapter 3

Requirements

The design of the monitoring interface imposes several requirements which the specification will
have to meet. This chapter will summarize the most important of them. Requirements can be
divided into the following categories:

e functional requirements
e conceptional requirements

o efficiency requirements.

Their scope is limited to the tool/monitor-interface as this is what we would like to specify.
Further requirements will arise for the implementation of an OMIS compliant monitoring system
dedicated to a given system architecture. However, they will not influence the tool/monitor-
interface but the monitor’s internal structure and the monitor/program-interface.

A general requirement standing above these three categories is derived from the goals of the
project itself. The monitoring interface must be powerful enough to give on-line tools an efficient
access to the programming system. The sum of its functions and its conception will have to
allow the integrated application of different tools at the same time. Also it must guarantee
future adaptability to more sophisticated tools (e.g. problem domain oriented tools).

Functional Requirements

Functional requirements can be summarized as follows: the monitoring interface should be
versatile enough to allow all possible tools to observe and manipulate all objects of the running
program (e.g. processes, messages, variables etc.). Obviously, we can not state requirements
for tools which might be of interest in the future. Therefore, the requirement list primarily
addresses well known tool types like debuggers, performance analyzers, program flow visualizers,
checkpointing facilities, and load balancing components.

In order to achieve the desired degree of versatility it is not sufficient that the monitor
interface just offers a set of services which can be requested. It should rather support any service
request complexity. This is attained by service request composition. Service request composition
will be used for more complex operations, e.g. measurement activation in dependence of the
system activity. Also this feature supports new and more abstract functions to be realized in
a tool. Depending on the application type a tool might want to measure performance values
related to semantical constructs like e.g. iterations of a numerical algorithm or transactions in
a database system. Service request composition will guarantee the usability of the monitoring
interface for future tools.

Concerning objects types which we might like to monitor we can state the following re-
quirements: As implementations of monitoring systems will be realized for distributed memory

17



environments we will definitely be interested in processes and messages. Functions of the inter-
face should give access to these object types on several levels of abstraction: e.g. with processes
we might want to look at procedures or even individual statements of its code, with messages we
would like to know, from which primitive data types they are composed. Furthermore, interac-
tive tools require these objects not only to be observable but also need manipulation functions,
e.g. for stopping of process execution.

In addition to this we also need access to hardware objects of the system. Inquiry functions
might want to have information on the amount of available or used main memory or on some
architecture characteristics like e.g. technology of installed network devices. These are observed
objects which can not be manipulated by the monitor.

Finally, the existence of the monitor creates also new objects, i.e. monitor objects, which a
tool must be able to interact with. Especially routines for monitor-monitor interaction or filter
mechanisms must be accessible. New objects will appear with extensions of the tool/monitor-
interface. These user defined objects have to be specified separately and will not be integrated
into the main part of OMIS!. Later chapters will however show, how to introduce these exten-
sions.

Any of the tools will finally interact with all of these objects in one or the other way. The
interface’s task is just to provide an appropriate means for this interaction. Let us give some
examples which types of functionality is required by individual tools, using THE TOOL-SET as
an example:

e THE DEBUGGER?
Show process status information

Set breakpoints on reception of a message

¢ THE PERFORMANCE ANALYZER
Measure node idle time and process CPU utilization

Include process into measurement if certain criteria are met

o THE VISUALIZER

Show dynamically created objects

e THE LoAD BALANCER

Evaluate system’s load distribution and trigger process migration

These examples should make it evident that the design of a versatile functionality of the
tool/monitor-interface is of crucial importance.

Conceptional Requirements

As we neither know the complete functionality of the tools in advance nor the types of tools
themselves we have to require that the monitoring interface offers enough extendibility for future
developments. This conceptional requirement will be fulfilled with our specification by designing
means of how to enhance the specification.

!Obviously, an object oriented approach for implementing a monitoring system seems to be favorable. Soft-
ware objects like ’processes’, ’PVM tasks’, ’threads’ can be handled by classes derived from some abstract class
’computingObject’. Methods can be similar for all derived classes.

2For a brief description of what the functionality of the following four TOOL-SET-components will be, please
refer to [LWB+95]

18



A second conceptional requirement is imposed by the variety of tools which will use this
interface. We can distinguish tools with and without a graphical user interface. The first group
will usually have a single point of control, e.g. a tool environment on a workstation. From that
single point of control the tool will communicate with the monitoring system, i.e. the individual
monitors on the nodes. On the other hand we will have tools without a user interface which
reside in the system in a centralized or decentralized version. Decentralized tools are for example
load balancer systems. The monitoring system must be flexible enough to serve all these different
types together with their different spatial distribution of control.

Efficiency Requirements

Finally, we have efficiency requirements. Although it might seem to be an improper approach
to discuss interface specifications in terms of the efficiency of their potential implementations
we will see that there are good reasons to look at this issue here. Interaction between a monitor
and a tool must be handled by a kind of communication mechanism (e.g. message passing or
RPCs). In order to keep the overhead minimal it is necessary to have powerful basic services
and a possibility of composing service requests into a single request.

In addition to being a functional requirement composite service requests are necessary for
efficiency reasons. They combine a sequence of requests of available basic services into a single
request. E.g. to get an overview over the system utilization the tool could ask each monitor for
the idle time percentage. Instead, it will ask one monitor which sends requests to all others and
returns a collective response to the calling tool. These types of composite services are of special
interest in situations where the requested information is logically a computation of information
from different computing nodes. In this case the monitor itself can do some pre-calculation in
order to reduce message passing overhead.

In order to avoid delays due to communication, the monitoring system should also be able to
handle certain kinds of events occuring in the application program without interacting with the
tool. If for example a performance analysis system wants to measure the mean time between
sending a message and receiving the reply, it would be prohibitively expensive to inform the tool
on each event occurrence. Instead, the monitoring system should be able to start and stop a
timer autonomously. Service request composition can also support this situation.

19



20



Part 11

Structure of the Monitoring
Interface

21



22



Chapter 4

The System Model

This chapter describes the model of the target systems for which OMIS is primarily designed
for and also the embedding of an OMIS compliant monitoring system into such a system. In
our example, the environment is composed of a parallel programming library and an additional
specialized runtime library (e.g. for handling parallel I/O operations). Programs consist of a
collection of tasks which usually spawns over a set of nodes.

Thus, this paper does not only present an interface specification, but also specifies the kind
of environment that can be handled by the interface. Although the specification exhibits a
high degree of flexibility, we can not expect to be able to integrate it in every architectural
environment, especially if it differs considerably from those found with the message passing
paradigm.

Let us now look at the components participating in such an environment. Figure 4.1 shows an
abstract view where individual nodes of the parallel system are not yet visible. The application
programs consist of a certain number of tasks which communicate by mechanisms provided by
the parallel programming library (e.g. message passing between nodes, shared memory on one
node). Task management and other organizational work is performed by special modules of
the programming environment (e.g. daemons). It might for example be based on the parallel
programming library PVM and the specialized runtime library PFSLib'. Technically, this means
that there might be libraries and daemons with which the program works together. The complete
complex runs on top of the operating system and the hardware.

As soon as we add tools to this ensemble (either interactive or automatic tools) we need
additional layers. The part which joins the tools to the running program is the monitoring
system. Its role is to establish the tool/program-interaction. Consequently, this layer is located
between the application program and the tool.

Interactive tools usually reside on a host machine which is connected with the target system?.
With automatic tools like e.g. load balancers, the situation is different. They exist in a dis-
tributed manner on the target nodes only. We will therefore call them distributed tools. Two
further modules are of interest®. The distributed tool extension (DTE) is a set of user supplied
functions to perform certain manipulations outside of the centralized tool (e.g. calculate certain
performance metrics, write traces to local disks, etc.). Finally, we might have monitor extensions
(ME). These are extensions of the monitoring system and its specification which are dedicated
to a new software component like e.g. a parallel file system (PFSLib). It highly depends on the
concrete tool environment which of these three additional components are available in a given
system. However, if there is an interactive tool then there will also be in almost any case a

'PFSLib is a parallel file system for workstation cluster environments. See [LL95] for details.

2Note, that with many modern parallel computers and with workstation clusters the host may actually be part
of the target machine.

®Please refer also to chapter 6 for more details on these additional components.

23



tool B

tool A distributed tool tool €
————————— tool/monitor-interface ----------
T ! distributed tool monitor
| extension extension
| (DTE) (ME)

on-line nonitoring interface

monitoring system

——— - noni tor/programinterface ------ --

application program

parallel specialized
programming runtime
library library

operating system

hardware

Figure 4.1: System model: embedding an OMIS compliant monitoring system into an environ-
ment with tools and a parallel programming library

distributed tool extension because many activities can be handled more efficiently directly on
the nodes and not in the central tool (e.g. preprocessing of information data).

How do the individual layers of figure 4.1 inter-operate? The monitoring system has two
interfaces: one for interaction with the different tools (tool/monitor-interface), a second one for
interaction with the program and all underlying layers which keep the program running. For
simplicity reasons we will call the latter the monitor/program-interface, although it comprises
interface parts to different modules of the system (program code, libraries, operating system).
Activities at this level are restricted to low-level inspection and manipulation requests. Obviously
we will have to handle different information types depending on the low-level module with which
we inter-act. Details will be discussed in later chapters.

The tool/monitor-interface is what the developer of a tool finally will use. However, OMIS
makes a specification of semantics only for the on-line monitoring interface. In addition, means
are designed to extend this interface. We end up with a definition of the tool/monitor-interface
where the native services provided by the on-line monitoring interface are defined with their syn-
tax and semantics whereas all of the extensions are only defined with respect to their syntactical
structure.

The interaction between tools and the monitoring system is handled via asynchronous remote
procedure calls. The tool invokes a service request and either waits for results coming back from
the monitoring system or specifies a call-back to be invoked when results are available.

The interaction between the monitoring system and the additional monitor extensions and
distributed tool extensions happens via function calls and activation of call-back functions.

24



Chapter 5

A Basic Outline of Available Services

Since a central idea of OMIS is to provide an interface that allows complex requests to be
built by combining primitive ones, the tool/monitor-interface is based on strings in order to
achieve the needed flexibility. Thus, the tool/monitor-interface conceptually consists of only a
single procedure that can be invoked by both centralized tools and distributed tool components.
This procedure receives a string as an input parameter, interprets this string, and returns a
result which again is a string'. The individual monitoring functions available by invoking this
procedure are called services; the string that is passed to the procedure (requesting the activation
of a service) is called service request, the result is called service reply.

In order to meet the efficiency requirements stated in Chapter 3, the structure of a service
request follows the event-action-paradigm, allowing the monitoring system to quickly react on
state changes in the monitored system without having to communicate with the tool. A service
request can consist of an event definition X associated with an action list Y, meaning “whenever
an event of type X occurs invoke the actions in Y, passing some relevant information of the event
occurrence to these actions”. If no event definition is present, the service request is unconditional
and all actions are invoked immediately and exactly once.

The interface procedure accepts requests for all monitors in the monitoring system; therefore,
a distributed tool component can request services not only for its local node, but also for any
other node. Likewise, the actions associated with an event can be requests for services on nodes
different from the one where the event occurs. The monitoring system automatically takes care
of forwarding the requests to the proper nodes. In fact, requesting a service for a remote node
is exactly the way how monitor/monitor communication is used. In addition, we allow services
that are global, i.e. that involve more than one monitor.

The next section introduces the different classes of services available at the tool/monitor-
interface; Section 5.2 provides a basic outline of the mechanisms and the syntax used in this
interface. Section 5.3 presents two examples giving an impression of the interface’s expressive-
ness. A detailed description of the interface procedures is contained in Section 5.4. Section 5.5
finally presents some additional remarks on the tool/monitor-interface.

5.1 Classification of Monitoring Services

The services that are offered by the tool/monitor-interface can be classified according to three
different properties:

o First, we have to distinguish between basic services and composite services. Basic services
are those monitoring functions that are built into the monitor and form the building blocks

!To support efficient usage there should be a utility library containing functions to assemble and parse these
strings. However, the specification of such a library is not part of this document.

25



for the (composite) service requests that can be sent to the tool/monitor-interface. As
stated above, a service request is composed of an event definition and associated actions.
Here, the event definition and each of the actions are basic services, while the whole
service requested is composite. However, when the meaning is clear from the context, we
will simply speak of a service in this document.

e Further, we can classify basic services according to their input/output behavior:

1. Manipulation services. These services receive some input parameters from the
caller, but will not have a result, except for an acknowledge or an error code. Thus,
their only effect is to change the state of the monitored system by manipulating
objects in the application or in the monitor itself. Examples are “stop a process”,
“set a variable of a process to a given value” or “raise a user defined event”.

2. Synchronous services. These services receive some input parameters and imme-
diately return a result exactly once. The result will contain information about the
current state of the monitored system (including the monitoring system itself). Ex-
amples are “return the list of valid task identifiers on a node” or “return the CPU
time of a process”.

3. Asynchronous services. In contrast to the two classes above, asynchronous services
can have an arbitrary number of replies. Usually, neither the number of replies nor
the time when replies will be returned is known when the service request is issued.
The asynchronous services offered by OMIS are all of the type: “detect the occurrence
of an event X” (e.g. detect that a process receives a message).

The description of basic services in Section 8 is structured according to these classes.

The input/output behavior of composite services depend on the types of basic services
they are composed from. Composite manipulation services can only be composed of ba-
sic manipulation services; composite synchronous services may be built from both basic
manipulation and/or synchronous services.

Composite asynchronous service requests always consist of a basic asynchronous service
(event definition) and a list of basic manipulation/synchronous services (action definition).
They are mainly used to monitor the occurrence of the defined event in the application,
since they trigger the execution of services (the actions) without tool interaction. An
example is a request to stop a task whenever it tries to send a message.

Basic asynchronous services only detect occurrences of events, i.e. conditions when certain
activities have to be invoked, but they do not define what has to be done when the events
occur in the system. Therefore, in contrast to basic manipulation/synchronous services, a
basic asynchronous service cannot be used in isolation, but only in combination with an
action definition, forming a composite asynchronous servicerequest.

Since all the basic asynchronous services defined by OMIS are event definitions, we will
use the terms “event definition” and “basic asynchronous service” interchangeably. In
addition, we will simply speak of an event when the context makes clear whether we mean
an event definition or an event occurrence.

¢ Basic services can further be classified according to the type of objects they refer to. On
the first level, we distinguish between system objects and monitor objects. System objects
are those objects being part of the monitored application or of the hardware the application
is executed on. Currently, three different types are supported:

1. processes, e.g. PVM tasks,

26



2. messages, including synchronization objects, and

3. hardware, i.e. the parallel or distributed computing system.

More specialized system objects, such as groups and barriers in PVM, are not yet included
in this specification. We will add them in a later stage of the OMIS project in form of
a monitor extension. In Part III, we will use parallel I/O as an example for this kind of
extension of the monitoring interface that aims at observing additional objects.

Monitor objects are those objects that are introduced by the monitoring system itself. For
example, each asynchronous service request is a monitor object, since it has to be stored in
the monitoring system and can be manipulated using other services. Other monitor objects
are user-defined events or timers and counters, although the latter are not included in the
basic specification.

Since this classification of the monitored system into a hierarchy of objects is a natural
way of structuring the monitoring services, we are thinking towards the future use of an object
oriented paradigm for the tool/monitor-interface instead of the current procedural one. By
exploiting inheritance, object oriented techniques could also provide a way to define the interface
at an abstract level independent of the supported programming library. Services specific to
a programming library could then be realized by an extension to the generic monitor that
implements object classes (e.g. PVM task) derived from the interface’s base classes (e.g. abstract
process). See item 1 in our requests for comments (Chapter 12).

5.2 Syntactical Structure of Monitoring Services

This section is intended to give an impression of how the syntax of service requests and service
replies looks like and how basic service requests can be combined to more complex ones. For a
complete formal description of the request and reply syntax, please refer to Section 7.

5.2.1 Service Requests
Basic Service Requests

A basic service request is a string that complies with the following syntax:
basic_request = request_id ’’ receiver_nodes '’ service_name (" input_parameters’)’

The request_id is an arbitrary integer number defined by the tool. It will be sent back to the
tool with every reply to this service request, so that the tool can uniquely associate the replies
with the corresponding requests when several basic service requests are combined to a composite
request.

An arbitrary list of nodes in the monitored system can be specified in receiver_nodes. The
request will be sent to every node in the specified list. If the list is empty, the request will be
broadcast to all nodes. The sending of requests will make use of an atomic multicast protocol to
ensure that the monitoring system always remains in a globally consistent state. If two requests
are sent from different sources to a common set of destination nodes, this protocol ensures that
each node in the set will receive them in the same order. Thus, if a request for a global stop
(i.e. stop all processes), and another one for a global continue (i.e. resume all processes) are
issued nearly simultaneously, then as a result either all processes are stopped or all processes
are running.

27



In order to simplify the handling of nodes within tools and within the monitoring system,
nodes are identified by numbers instead of host names. There is a service list_nodes that
provides the correspondence between node numbers and host names.

The service_name is a string identifying the requested basic service. The monitoring system
uses an internal table to map the service names to the functions that actually implement the
services. This mapping table is the key to the interface’s extendibility (see Chapter 6). Thus,
service_name may identify both a basic service defined in this document and a basic service
coming from an extension.

The input_parameters are defined by a list of values where each value is either an integer, a
floating point number, a quoted string, a special $-variable (see below) or a lists of these items.
The number, the types and the meaning of these parameters depend on the basic service being
requested. Chapter 8 contains a complete description.

Composite Service Requests

The basic service requests defined above can be combined to more powerful, composite requests
using the event-action paradigm. The general syntax of such a combined request is:

request n= [ event’’ ] action_list

action_list = action’) action’) ... | action’; action’; ...
event = basic_request

action = basic_request

Each composite service request consists of an optional event definition and a list of actions.
Actions can only be basic manipulation services or basic synchronous services, while event
must always be a basic asynchronous service. The separator used in the action list defines
whether these actions may be executed in parallel (comma) or have to be executed sequentially
(semicolon). The semicolon enforces sequential execution even in the case where the actions are
executed on different nodes.

If no event definition is present, the action list is executed immediately and a list of results
are sent back to the requester. Otherwise, we have an asynchronous service request that is stored
as an explicit object within the monitoring system. Special services then allow to manipulate
(i.e. enable, disable or delete) these requests. Initially, asynchronous service requests are in a
disabled state, i.e. they are not yet considered by the monitoring system. Once the request
has been enabled — either directly by the tool or as a result of executing the actions of another
asynchronous service — the monitoring system is looking for event occurrences matching the
event definition contained in that request. Whenever a matching event occurrence is detected,
the request’s action list is executed and and a list of replies is sent to the requester. The
monitoring system ensures that the local state of the object (e.g. the process) that triggered the
event will not change until all actions are executed, i.e. each action has access to the state at the
time the event occured. In addition, each event definition provides a set of output parameters
containing information on the actual event occurrence. These parameters can be passed to the
actions in the action list using a $-notation. The string $1 refers to the event’s first output
parameter, $2 to the second one, and so on. The symbol $0 always refers to the number of the
node where the event occured.

5.2.2 Service Replies

The replies of services are strings having a syntax very similar to that of service requests:

basic_reply ::= request_id ’ sender_nodes ’’

reply

service_name '(’ result_parameters ’)’

basic_reply ’;’ basic_reply ;" ...

28



Thus, a reply is a list of results, each being assorted with the request_id of the proper basic
service request, the node number(s) of the sender(s), the basic service’s name, and its result
parameters. For each action in a composite service request there will be one or more basic_replys,
depending on the number of nodes the action is executed on. Identical results on different nodes
may be unified; in this case sender_nodes contains the list of all nodes that produce the given
result. If each node generates a different result, there is one basic_reply per node.

The data types that can occur in the result parameters are the same as with input parameters:
integers, floating point numbers, strings, and lists.

5.3 Examples

In the following two subsections we will present short examples that will show how the moni-
toring interface supports different tools, namely a performance analysis system and a debugger.
Although the basic services will not be defined until later in this document, their semantics
should be intuitively clear in the examples, whose primary goal is to give an impression of the
interface’s structure and expressiveness, rather than its concrete services.

5.3.1 Performance Analysis

Assume that a performance analysis tool wants to measure the time spent by task 4178 (located
on node 1) in the pvm_send call. In addition, the tool may want to know the total amount of
data sent by this task, and it may want to store a trace of all barrier events. Then it may send
the following service requests to the monitoring system:

10 [1] start_1ib_call([4178],"pvm_send"): 11 [1] start_integrator(1), \
12 [1] add_counter(2,$4)
13 [1] end_lib_call([4178],"pvm_send"): 14 [1] stop_integrator(1)
15 [] start_lib_call([],"pvm_barrier"): 16 [$0] trace('"barrier0",$0,$1,$2,$3)
17 [ end_1ib_call([],"pvm_barrier"): 18 [$0] trace("barrier1",$0,$1,$2)
19 [1] enable(10), 20 [1] enable(13), 21 [] enable(15), 22 [] enable(17)

The numbers 10 ...22 are the request identifiers that will be included in the monitoring system’s
replies. However, in this example there will be no replies, except on error conditions, because
only manipulation services are used as actions. While the events used in the example are basic
services defined by this document, all the actions (with the exception of enable) come from
a distributed tool extension. Thus the performance analyzer can use its own semantics for
integrators and counters, and it can also use its own trace format. The trace action simply has
to write its parameters to the trace file in the proper format. The string $0 that is used as
receiver node of the trace action results in each node writing a local trace file, since it will be
replaced by the number of the node where the event took place. If you want a single trace file for
all nodes, all you have to do is replacing the $0 by a fixed node number, say 0. The monitoring
system then takes care of sending the data to that node.

5.3.2 Debugging

The following example shows how the basic service requests defined by this document can be
used during debugging. The debugger wants to know the task id, the procedure stack, and the
contents of all general purpose registers, each time task 1123 (assumed to be located on node 1)
starts sending a message, or task 1234 (on node 2) reaches instruction address 0xfe08. This can
be achieved by using a user defined event:

29



10 [1,2] define_user_event(5)
11 [1] start_lib_call(1123,"pvm_send"): 12 [$0] raise_event(5,[$1])
13 [2] breakpoint(1234,0xfe08): 14 [$0] raise_event(5,[$1])
15 [1,2] user_event(5): 16 [$0] print([$1]1); \
17 [$0] stack_backtrace($1); \
18 [$0] read_int_regs($1,0,32)
20 [1] enable(11), 21 [2] enable(13), 22 [1,2] enable(15)

First, the user defined event #5 is declared on nodes 1 and 2. This event is then raised on
the local node whenever task 1123 sends a message or task 1234 reaches the breakpoint. The
parameter passed to raise_event is the task id. Whenever user defined event #5 occurs, the task
id passed as parameter is sent to the debugger (print([$1])), followed by the task’s procedure
stack backtrace (stack_backtrace($1)) and its register contents (read_int_regs($1,0,32)).
After the actions have been executed, the task continues execution. To stop the task with the
occurrence of the event, simply add

19 [$0] stop($1)

to the action list.
When the breakpoint is hit, a possible reply would look like

16 [2] print(1234); 17 [2] stack_backtrace(...); 18 [2] read_int_regs(...)

where, of course, the proper stack backtrace and register contents are returned instead of the
dots.

5.4 Interface Procedures

Although the concept of the tool/monitor-interface requires only a single interface procedure,
for reasons of convenience there are two of them. The first one, called OMIS _request_block
blocks its caller until the service reply is available. Although simple to use, this procedure is
not suited for asynchronous service requests, since they will result in an arbitrary number of
replies. Therefore there is a second flavour of the interface procedure, called OMIS _request.
This procedure takes an additional call-back function as a parameter. This call-back will then be
invoked once for each service reply, allowing to process the replies in a completely asynchronous
fashion. The ANSI-C prototypes of these two interface procedures are:

char * OMIS_request_block(char *request);

void  OMIS_request(char * request,
void (* callback)(char * reply, void * param),
void * callback_param);

The first procedure accepts a string containing a service request that must be conforming
to the syntax defined above and returns the request’s reply as a dynamically allocated string
that should be deallocated by the caller using the free library call. Since this function blocks
until the reply is available, it is normally not useful for asynchronous services. However, for
manipulation services or synchronous services it is convenient to use, since the reply is already
accessible when the function returns.

Requesting a service without blocking until its results are available can be done with the
second procedure. In addition to the request, you have to pass a pointer to a function and an
arbitrary argument pointer. When the service returns a reply, the call-back function will be

30



invoked. It will get the the reply string in the reply parameter, and the argument pointer as
its param parameter. Again, the reply string is allocated dynamically and must be deallocated
in the call-back, using free. Note that this procedure can be used for all kinds of services
(manipulation, synchronous and asynchronous ones) where the caller should not be blocked
while waiting for a reply.

5.5 Remarks

There are some general remarks about the monitoring interface that should be mentioned here:

e In principle, the interface is asynchronous. This means that with the OMIS_request
procedure there is no guarantee that you will receive replies in the same order in which
you have sent the requests. However, there is one exception. If you send requests for
manipulation services or synchronous services to a single node where they can be handled
locally, you will receive the replies in the expected order, since the monitors will have to
process incoming requests in a FIFO fashion.

e Parameters of services must be either constants, or (in case of an action) output parameters
of the corresponding event (i.e. $0, $1, etc.). They cannot themselves be actions or events.
Thus no recursion is possible with service requests.

e Events are either predefined (e.g. task starts sending a message) or user-defined. User
defined events can be raised by a special service.

¢ Only one event is allowed in a service request. Combinations of events can be implemented
by means of user defined events, the disable and enable services described in Section 8.2.1,
and distributed tool extensions.

For example, the or operator can be implemented by a user defined event. Assume that
action list A(x) shall be executed on node 1, when event E1 occurs on node 1 or event
E2 occurs on node 2. The following sequence of commands will achieve this:

10 [1] define_user_event(5)

11 [1] E1: 12 [1] raise_event(5, [$11)

13 [2] E2: 14 [1] raise_event(5, [$11)

15 [1] user_event(5): A($1)

16 [1] enable(11), 17 [2] enable(13), 18 [1] enable(15)

A simple kind of distributed event detection can be realized by using the enable service
as an action. If you want to execute an action list A when event E2 (on node 2) occurs
after event E1 (node 1), the following requests will achieve this:

10 [2] E2: 11 [2] A
12 [1] E1: 13 [2] enable(10)
14 [1] enable(12)

Other combinations (e.g. an and operator) can be realized in a distributed tool extension
as a service that triggers a user-defined event when the proper conditions are fulfilled.

e The interface offers no direct way of passing the result parameters of one action to the
input parameters of another action. If you need this, you have to code a new service in a
distributed tool extension library that calls the actions and passes the parameters between
them.

31



Chapter 6

Extending OMIS

As we have already stated before, it is not possible to define a monitoring interface that offers all
services that may be needed by any existing or future tool. Therefore, it is of utmost importance
to provide a means of extending the interface. OMIS thus includes provisions that allow new
services to be added to the basic monitoring system by any research or development group
using the monitor, not just by the one that implemented it. The additional services can be
implemented as a library of C or C++ functions that is linked with the monitor libraries.

6.1 Types of Extensions

There are three situations where linking additional code to the basic monitoring system is
profitable or even necessary:

1. A tool may want to observe new objects within an application, which are not covered by
this document. These objects may come from specialized runtime libraries. For instance,
if an application uses a parallel I/O library, a tool may want to observe I/O objects.

The code linked to the monitoring system, that provides these new services is called a
monitor extension (ME).

2. Usually, different tools use very different methods to process events in the monitored
application. For instance, one performance analyzer is based on event traces, thus it wants
to write events to a file in its own proprietary trace format. Another performance analyzer
is based on distributed on-line analysis. It will therefore need services that perform this
analysis, e.g. counting some values, starting or stopping interval timers, and so on.

Therefore, it is desirable to define new services for this kind of tool-specific data processing.
We will call these distributed tool extensions (DTE). They can also include specialized,
more complex services that are based on the basic services defined by this document.

3. Finally, there are also fully distributed tools without a central user interface component,
e.g. a load balancer. For performance reasons it is profitable that the components of such
a tool can access the monitoring interface on their local node via simple procedure calls
without the need for interprocess communication.

We call this kind of “extension” a distributed tool (DT).

Of course, a single library can contain code of all these categories.

32



6.2

The Method of Extending OMIS

Once we have decided to allow new services to be linked to the monitoring system, the question is
how to make these services accessible at the monitoring interface. The approach we are using is
as follows: Each service is addressed indirectly by a unique service name, i.e. a unique identifier
string passed to the tool/monitor-interface, which is mapped to the implementing function using
a mapping table. Now we have a couple of requirements that must be fulfilled:

The service names used by different extensions must be disjunct, otherwise we will not be
able to use several extensions at the same time. Being able of having multiple extensions
is extremely important, since a single version of the monitoring system should be able to
support all of the tools available in a certain environment.

The name of a service must not change with different versions of the monitoring system.
When a group of researchers extends the monitor by providing new services, they must
have the same name in every version of the monitoring system, independent of whether or
not other extensions are present.

Besides having unique service names, also the function names and other externally visible
names in the code of the extension libraries must be disjunct, since different extension
libraries may be linked to the monitor.

It must be possible to generate and use the monitoring system both with and without any
extension.

The coordination necessary to meet the above requirements should be as light weight as
possible. Developers should be able to provide extensions without being forced to know
about all other extensions and without being forced to apply for every new service at a
central location.

We have decided to use the following strategy for extensions:

Each service name and each externally visible name in the code of an extension library
has a prefix that separates it from the names in all other extensions and from the ones in
the basic monitor.

A research group that wants to make extensions to the monitoring system is assigned a
new prefix on request. Then this prefix is reserved exclusively for that group; thus, no
further coordination is required. Developers can assign arbitrary service names, provided
that they start with the assigned prefix.

In order to realize the above strategy, the table mapping service names to the functions
that implement the services cannot be built statically, but must be expanded dynamically
by each extension linked to the base monitor. Therefore, each extension library must
contain an initialization function whose name is “register”, prepended by the extension’s
prefix. This routine will then register all services provided by the corresponding extension.
When a new prefix is requested, the basic monitoring system will be modified in such a
way that it invokes this initialization routine in the startup phase.

In addition, an empty routine with the same name will be created in a dummy library.
This library is linked to the monitor as the last library. Thus no undefined symbols occur
when some extensions are currently not linked to the monitor.

33



The procedure of requesting a new prefix has to be done only once by those groups that plan
to extend the monitoring system. We will try to make this procedure fully automatic, e.g. by
using a WWW form or a mail server.

Services from extensions may possibly get included into the documentation of OMIS, if they
are of public interest. But in order to keep the implementation modular, they will nevertheless
be implemented in a separate library.

34



Part 111

Services of the Monitoring Interface

35



36



Chapter 7

Formal Syntax of Service Requests
and Replies

7.1 Service Requests

A service request is a string that complies with the following syntax:

request n= [ event’’ ] action_list

action_list = seq_action_list | par_action_list

seq_action_list = action | action’; seq_action_list

par_action_list ::= action | action’) par_action_list

event = basic_request

action = basic_request

basic_request = request_id ’ receiver_nodes
service_name (" parameters’)’

request_id = integer

receiver_nodes 1= nodes

nodes = ["nodelist’] | T[]

node_list = node | node’, node_list

node = integer | % integer

service_name = identifier

parameters = parameter_list | €

parameter_list ::= parameter | parameter’, parameter_list

parameter = integer | floating | string | list | S integer

list = [ parameters’]’

The symbols integer, floating, string, and identifier represent (32-bit) integers, (double pre-
cision) floating point numbers, quoted strings, and identifiers with a syntax compatible to the
language C. list denotes an (untyped) list of entities; the $-notation can be used in actions to
refer to the output parameters of an event. $i refers to the i-th output parameter. The symbol
$0 always refers to the node where an event occured.

The semantics of the input parameter_list depends on the concrete service and is specified in
Chapters 8.1 and 8.2.

7.2 Service Replies

A service reply has a structure similar to that of a service request. The general syntax is:

37



reply 2= reply_list

reply_list = basic_reply | basic_reply '3’ reply_list

basic_reply = request_id ’’ sender_nodes '’ service_name ’(’ result_parameters )’
sender_nodes = nodes

result_parameters = parameters

Again, the exact semantics of the result_parameters depends on the service and is specified
in Chapters 8.1 and 8.2.

38



Chapter 8

Specification of Available Basic
Services

In the following subsections we will present a list of all basic services currently defined by OMIS.
As you can see from the service descriptions, the goal of OMIS is to define a basis for building
higher-level monitoring systems. For instance, OMIS does not include the generation of event
traces, but it provides a very easy and powerful mechanism for the monitoring of events. So if
you need some kind of event trace, you only have to provide the functions for writing the events
to a peripheral, but you don’t have to implement the event detection. Similar, OMIS services
operate on the machine level, i.e. they use addresses or pointers rather than symbolic names for
referring to programming objects. Thus, an OMIS compliant monitor is not forced to work with
a symbol table generated during compilation of the monitored application. But, of course, it is
possible to add extensions that make use of these symbol tables.

Throughout the service descriptions in Sections 8.1 and 8.2, we will use ANSI-C-like proto-
types to define the input and result parameters, since this type of description is much more clear
than presenting a grammar or BNF for the syntax of the request and reply strings. In addition
to the types integer, floating, and string, we will use the type-identifier any which stands for
any of these three types. To define more complex parameters, we will use typedef’s and/or
C-struct’s'. Lists of values are specified by the type name followed by either a '+’, denoting a
list consisting of multiple (at least one) repetitions of that structure, or the name followed by
a '*’, denoting zero or more repetitions. The resulting string is then simply the linear layout
of a value having the specified type. l.e. a struct corresponds to several values separated by
commas, while a list (indicated by '+’ or '*”) corresponds to several values of its component type,
that are again separated by commas, but are enclosed in brackets (’[" and ’]’).

A simple example will clarify this: Assume the following definition of a service:

typedef struct {
string name;
integer state;
integer priority;
floating cpu_time;

} Process_info;

struct {
integer status;
Process_info* info;

!These constructs are only used in this document to define the structure of request and reply strings, they are
not part of the tool/monitor-interface itself.

39



¥

process_info (integer+ tid_list, integer flags);

This says that process_info has two input parameters, the first one is a non-empty list of
integers, the second one is a single integer. It returns an integer and a list of 4n elements, where
elements 0,4,... are strings, elements 1,5,... and 2.6,... are integers and elements 3,7,... are
floating point numbers. Therefore, a correct request for this service could be:

123 [1] process_info([231,345,654], 9)
A valid reply could look like?:

123 [1] process_info(0, ["fo00'",12,0,12.7, "bar",1,10,0.65,\
"tst'",9,-10,1.1e3])

A few synchronous basic services return a result where some components are optional. In this
case, the elements are placed in square brackets in the type definition. An input parameter of
the service will then determine which components are actually present. The real process_info
service is of this type, i.e. the definition of this service really looks more like:

typedef struct {
[string name;] // present if bit 0 is set in flags
[integer state;] // present if bit 1 is set in flags
[integer priority;] // present if bit 2 is set in flags
[floating cpu_time;] // present if bit 3 is set in flags
} Process_info;
struct {
integer status;
Process_info* info;

¥

process_info (integer+ tid_list, integer flags);

This means that all components of Process_info are optional. The flags parameter is a bit-
vector that determines which of them will be present in the result. For example, the reply for
the request

123 [1] process_info([231,345,654], 9)
could be (since bits 0 and 3 are set in flags):

123 [1] process_info(0, ["foo",12.7, "bar",0.65, "tst",1.1e3])

Asynchronous basic services have two different types of results, namely the status value that
is returned as an immediate response to the service request, and the parameters that can be
accessed by the actions when the defined event occurs. Therefore, we need a further notation
to define the types of these results. It looks like this:

integer some_event(integer param)
--> struct {
integer first_result_parameter;
string second_result_parameter;
integer third_result_parameter;

¥

?Note that the reply always will be a single line, without any line break. The line break in the example
(indicated by the ’\’ at the end of the first line) is only for the sake of printing

40



The type of data returned immediately as a response to the service request is given in the C-like
prototype (it is always integer, since it is only a return status). The parameters containing
information on the occurrence of the defined event that are accessible to the actions via the
$-notation are defined as a struct after the --> symbol. In the example, this means that
$1 as a parameter of an action associated with some_event will be replaced by the value of
first_result_parameter, $2 by the value of second_result_parameter and so on. Note that
basic asynchronous services never have optional components in their result parameters.

8.1 System Objects

System objects are those objects in the monitored system that do not belong to the monitor
itself. Currently, we only make a very coarse grain classification of these objects. We distinguish
between

e processes (Section 8.1.1),
e messages (Section 8.1.2), and
o hardware (Section 8.1.3).

In Section 8.1.4 we introduce I/O objects as an example for a monitor extension.

We are currently working towards a more refined classification, that among others will also
include light weight processes (threads). This will most probably also lead to an object oriented
monitoring interface (see item 1 in “Request for Comments”, Chapter 12).

8.1.1 Processes

Manipulation Services

The following services are provided to manipulate the behavior of application processes. The
result of these services is a return value indicating whether or not the service could be executed
correctly.

L. start e start a process.
integer start(string exec, string+* argv)

The start service starts a new process, e.g. a PVM task. exec is the executable’s path
name, argv is the vector of command line arguments.

2 S O stop a process.
integer stop(integer* tid_list)

This service stops all processes specified in the tid_list by putting them into a special state
that ensures that the process no longer gets any CPU cycle. From this state, the process
can only be released with the continue service. If tid_list is empty, all processes of the
monitored application on the node(s) where the service request is sent to are stopped.

3. COMbINUE . continue a process.

integer continue(integer* tid_list)

41



10.

11.

This service continues the processes specified in the tid_list that are in a stopped state.
If tid_list is empty, all processes of the monitored application on the node(s) where the
service request is sent to are continued.

7 1 send a signal to a process.

integer kill(integer* tid_list, integer sig)

Sends the signal sig to all processes in tid_list. If tid _list is empty, the signal will be sent
to all processes of the monitored application on the node(s) the request is sent to.

B 1 = S A change priority of a process.

integer nice(integer* tid_list, integer val)

Changes the scheduling priority of the processes in tid_list to val. Again, an empty
tid_list denotes all application processes on the node(s) the request is sent to.

. WEPIE_MEIMOTY . .\ttiiitteiieiiiieeennnnns write into the memory of a process.

integer write_memory(integer tid, integer addr, integer+ val)

Writes the 8-bit values in the integer list val into the memory cells at addr, addr+1, ...
of process tid.

. write_int_registers .............. ... ... ... write into a process’ integer registers.

integer write_int_registers(integer tid, integer reg, integer+ val)

Writes the values in val into registers reg, reg+1, ... of process tid. The register num-
bers and their bit-length depend on the node architecture; they are defined in the node
processor’s ABI (Application Binary Interface).

. write_fp_registers ..................... write into a process’ floating point registers.

integer write_fp_registers(integer tid, integer reg, floating+ val)

Writes the values in val into registers reg, reg+1, ... of process tid. The register num-
bers and their bit-length depend on the node architecture; they are defined in the node
processor’s ABI (Application Binary Interface).

L BOtO set the PC of a process.

integer goto(integer tid, integer addr)

Sets the program counter (PC) of process tid to the value addr. This has the effect of
executing a jump instruction to that address in the current context of the specified process.

prepare_checkpoint ............. ... ...l prepare a global checkpoint.
integer prepare_checkpoint()

Creates a globally consistent state for a checkpoint. This includes saving all receivable
messages in the processes’ address space.

Migrate Process ..............iiiiiiiiiiiaiia.. migrate a process to another node.
integer migrate_process(integer tid, integer node)

This service migrates the process tid to an other node, which is given by its node number,
after a checkpoint has been prepared using prepare_checkpoint().

42



Synchronous Services

The following services can be used to obtain information on an application’s processes:

1. processinfo ... . ... . get information on processes.

typedef struct {

integer tid; // the global id of this process,
// e.g. the PVM task id
integer pid; // the local id of this process,

// e.g. UNIX pid

// present if bit 0 is set in flags
[string* argv;] // the process’ argument vector,

// i.e. pathname and parameters

// present if bit 1 is set in flags
[integer scheduling_state;] // (running, sleeping, stopped, etc.)

// present if bit 2 is set in flags

[integer memory_size;] // the process’ current memory size
// present if bit 3 is set in flags
[integer priority;] // the scheduling priority
// present if bit 4 is set in flags
[floating user_time;] // the process’ current user time

// present if bit 5 is set in flags
[floating system_time;] // the process’ current system time
// present if bit 6 is set in flags

// this list is not yet complete, more
// information may be added, e.g. other
// relevant data from the rusage structure
} Process_info;
struct {
integer status;
integer number_of_processes; // number of application processes on node
Process_info* processes;
+

process_info(integer* tid_list, integer flags)

Detailed information about a set of processes can be obtained by the process_info ser-
vice. tid_list defines the processes that have to be inspected; an empty list stands for
all processes of the monitored application on the node(s) where the service request is sent
to. The second parameter flags is a bit set that allows to mask each kind of information
individually. E.g. if flags is equal to 10, the processes’ argv vector (i.e. name and com-
mand line parameters) and their memory size will be returned. So it is possible to get all
relevant process information with a single service request, but still the monitor only needs
to retrieve the information that is really needed. For instance, the list of the tids of all
application processes can be requested with process_info([],0). In this case, the monitor
does not need to acquire any further information.

We will also provide a mechanism that allows to get state information not only for the mon-
itored application’s processes, but also combined information for all the other processes
Most probably there will be a special tid representing ’all other processes’.

43



2. stack_backtrace ................... determine a process’ procedure stack backtrace.

typedef struct {
integer pc;
integer fp;

} Stack_element;

struct {
integer status;
Stack_element* stack;

¥

stack_backtrace(integer tid)

For debugging or performance analysis based on sampling, there is a service stack_backtrace
that returns the process’ procedure stack backtrace. It consists of a list of pairs for each
active procedure invocation. FEach pair contains the procedure’s frame pointer and the
current execution address in that procedure. The record for the most recent procedure
invocation is returned as the first element of the list.

3. read _MemoOry ... read the memory of a process.

struct {
integer status;
integer* values;

¥

read_memory(integer tid, integer addr, integer num)

Reads num bytes from process tid’s memory area, starting at address addr and returns
their contents as a list of bytes.

4. read_int_registers .......... ... i, read integer registers of a process.

struct {
integer status;
integer* values;

¥

read_int_registers(integer tid, integer reg, integer num)

Reads num integer registers of process tid starting at register reg and returns their
contents. The register numbers and their bit-length depend on the node architecture; they
are defined in the node processor’s ABI.

5. read _fp_registers ........ .. .. .. oo read floating point registers of a process.

struct {
integer status;
floating* values;

¥

read_int_registers(integer tid, integer reg, integer num)
Reads num floating point registers of process tid starting at register reg and returns their

contents. The register numbers and their bit-length depend on the node architecture; they
are defined in the node processor’s ABI.

44



6. loader_information ..................... return the loader information of a process.

typedef struct {

string path_name; // The path name of that load module
string member_name; // Member name, if module is an archive
integer code_start; // Start address of code segment
integer code_len; // Length of code segment in Bytes
integer data_start; // Start address of data segment
integer data_len; // Length of data segment in Bytes
integer bss_start; // Start address of BSS segment
integer bss_len; // Length of BSS segment in Bytes

} Loader_info;

struct {

integer status;
Loader_info* loader_info;
}

loader_information(integer tid)

On some parallel computers, e.g. the Parsytec GC/PowerPlus, programs are relocated
when they are loaded by the operating system. Debuggers therefore need to know the start
addresses and the lengths of the program’s segments. The service loader_information
will return this information for each load module of the process. This service may also be
used with operating systems like AIX where code (e.g. libraries) can be loaded dynamically.

Asynchronous Services

The following services notify the caller on certain process related events that occur in the mon-
itored application. In all of these services, an empty tid_list denotes “all application processes
on the node(s) where the request is sent to”.

1. NeW _Process ......iiiiiiiii i A new process has been created.

integer new_process()
--> integer tid; // tid of the new process

This event is raised whenever a new process is created. The event is raised immediately
before the new process starts executing. The parameter passed to actions consist of the
new process’ tid.

2. process_terminated ......... ... ... i, A process has terminated.

integer process_terminated(integer* tid_list)
--> integer tid; // tid of terminating process

Event process_terminated is raised when a process in tid_list has terminated. It passes
the tid of the terminated process to its actions.

3. process_signal ... L A process received a signal.

integer process_signal(integer *tid_list, integer *sig_list)

--> struct {
integer tid; // process receiving the signal
integer sig; // signal number

45



This event occurs whenever a process in tid_list receives a signal in sig_list. It will pass
the tid and the signal number to its actions.

. process_blocked ... A process gets blocked.

integer process_blocked(integer* tid_list)
--> integer tid; // tid of process that got blocked

This event is raised when a process in tid _list is blocked in a blocking communication or
synchronization call. It passes the process’ tid to its actions.

. process_unblocked .................... i, A process gets unblocked.

integer process_unblocked(integer* tid_list)
--> integer tid; // tid of process that got unblocked

This event is raised when the blocking condition (due to a communication or synchro-
nization call) of a process in tid_list is removed again. It passes the process’ tid to its
actions.

. process_stopped ............ A process has been stopped by the monitoring system.

integer process_stopped(integer* tid_list)
--> integer tid; // tid of process that has been stopped

This event is raised when a process in tid_list is stopped by the monitoring system (using
the stop service). It passes the process’ tid to its actions.

. process_continued ........ A process has been continued by the monitoring system.

integer process_continued(integer* tid_list)
--> integer tid; // tid of process that has been continued

This event is raised when a process in tid_list is continued by the monitoring system
(using the continue service). It passes the process’ tid to its actions.

.scheduling ... ... Process scheduling event.

integer scheduling()
--> struct {
integer old_tid; // tid of process that has been descheduled
integer new_tid; // tid of process that is going to be scheduled
b

On machines where process scheduling is observable, the event scheduling will be raised
each time process scheduling takes place. The parameters available for the actions contain
the the tids of the descheduled and the scheduled processes. The tid is -1, if the process
doesn’t belong to the monitored application.

. breakpoint .............. ...l A process reaches a given code address.

integer breakpoint(integer* tid_list, integer address)
--> integer // tid of process that reached the breakpoint
b

46



10.

11.

12.

13.

14.

Breakpoints for debugging purposes also are asynchronous services, since they can be
reached arbitrarily often. The breakpoint event will occur each time a process in tid_list
reaches the specified address. The result parameter for actions is the tid of the process.

=Y o Single step a process (step into calls).

integer step(integer tid)
--> // no result parameters

This service resumes the stopped process tid for the execution of one machine statement.
It will invoke its actions after the single step has finished. This is an asynchronous service,
since the process may block during the single step, so there is no guaranteed response time.

NEXt e e Single step a process (step over calls).

integer next(integer tid)
--> // no result parameters

This service resumes the stopped process tid for the execution of one machine statement,
treating subroutine calls as a single statement. It will invoke its actions after the single
step has finished. This is an asynchronous service, since the process may block during the
single step, so there is no guaranteed response time.

finish ... Finish current procedure.

integer finish(integer tid)
--> // no result parameters

This service continues process tid until it leaves the currently active procedure. Again,
this is an asynchronous service, since the process may block.

call_procedure ........... ... ... ... call a procedure in a process.
integer call_procedure(integer tid, integer addr, any* params)

This service will call the procedure at address addr with parameters params in the
current context of process tid. The result will be the same as if the process had called
the procedure at the point where it was stopped when this service has been invoked. This
means, the parameters will be written to the proper locations, the return address will
be saved, the process’” PC will be set to the specified address, and the process will be
continued until the procedure returns. Again, since the procedure may block, this is an
asynchronous service.

ready to_migrate .......... ... .. ... ... A process is going to be migrated.

integer ready_to_migrate(integer* tid_list)

--> struct {
integer tid; // tid of process that will be migrated
integer dest_node; // destination node of migration

¥

This event will be raised when the system is going to migrate a process in tid_list. The
result parameters passed to actions include the process’ tid and its destination node.

47



15. migration_finished .................. A process has been migrated to another node.

integer migration_finished(integer* tid_list)
--> integer; // tid of migrated process

This event is raised on a node, when a process in tid_list has been migrated to that node.
The information available for actions if the process’ tid.

16. start lib_call .................. A process invokes a call to the programming library.
end lib_call .............. A process returns from a call to the programming library.

integer start_lib_call(integer* tid_list, string 1lib_call_name)
--> struct {
integer tid; // process doing the library call
// the following results are the input parameters of
// the library call

integer end_lib_call(integer* tid_list, string lib_call_name)
--> struct {
integer tid; // process doing the library call
// the following results are the result parameters of
// the library call
+

These events are raised whenever a process in tid_list is calling the specified routine of the
parallel programming library (e.g. PVM). start_lib_call is raised just after the routine is
entered, while end_lib_call occurs just before the call returns. The services are provided
for all routines in the programming library; the value of the lib_call name parameter
specifies the routine’s name. In addition to the tid of the calling process, the values of
the input or output parameters of the library call are passed to the actions. The number
and the types of these parameters depend both on the programming library used and the
selected library call. They will be defined later in an extra part of this document.

The reason for this two-step approach is to avoid dependencies between the on-line moni-
toring interface specification and the supported programming library. It clearly separates
the real task of these services, namely to detect calls to the programming library, from
library specific aspects. Moreover, we will work towards an automatic generation of these
services for a specific programming library from a specification of the library’s function
prototypes (see known problem no. 4 in Chapter 13).

48



8.1.2 Messages
Manipulation Services

The services in this group will allow to modify message queues and single messages. They return
a status value indicating whether or not the service could be executed correctly.

1. insert_message .................... Insert a message into a process’ message queue.
integer insert_message(integer tid, integer* msg, integer pos)

For debugging message passing errors, it may be profitable to have a service insert_message
that allows to insert a message at a given position pos in a process tid’s message queue.
The message is specified as a list of bytes.

2. remove_message  ................ Remove a message from a process’ message queue.
integer remove_message(integer tid, integer pos)

This service will delete the message at position pos in process tid’s message queue. It
may be most useful for debugging message passing errors.

3. tag message ... Add a tag to a message
integer tag_message(integer tid, integer msg_ptr, integer tag)

To support debugging of message passing programs, OMIS defines services that operate
on a special message tag. This tag is independent of any message tag defined by the
programming model. In fact, it is invisible for both the programming library and the
application. However, there are monitoring services to set this tag, to read its value and
to trigger some actions when a message with a given monitor tag is received by a process.

These tags may be used for different purposes. For example, during debugging, the user
may be interested in how a message that is sent by a process is processed by another
one. By tagging the message, the monitor can stop the receiving process, when it receives
that message, regardless of the number of preceding messages in the receiver’s message
queue. When the receiver is stopped, the user can examine how the message is processed,
e.g. by single stepping. In addition, tags can also be used to implement distributed event
detection.

The tag_message service must be called immediately before process tid issues a message
send operation. It will then put the specified tag into the message being sent. msg_ptr
is the pointer to the message buffer.

Synchronous Services

Currently, this group contains only two services:

1. queue_info ............ ... .. ... Return information on a process’ message queue.

typedef struct {

[integer sender;] // tid of process that sent this message
// present if bit 0 is set in flags
[integer msgtag;] // the PVM message tag

// present if bit 1 is set in flags

49



[integer size;] // size of the message
// present if bit 2 is set in flags
[integer* contents;] // the message buffer as a list of bytes
// present if bit 3 is set in flags
[integer tagged_by_monitor;] // is the message tagged by the monitoring

// system
// present if bit 4 is set in flags
[integer monitor_tag;] // the tag added by the monitoring system

// present if bit 4 is set in flags
} Message_info;
struct {
integer status;
integer queue_length; // number of messages in queue
Message_info* messages;
by

queue_info(integer tid, integer flags)

This service will return information on the message queue of process tid. In analogy to
process_info we provide a bit set mechanism allowing to select the kind of information to
be retrieved. A component in Message_info will only be returned, if the corresponding
bit in flags is set.

2. message buffer ............... Get the address of a process’ current message buffer.
struct {
integer status;
integer buffer_address; // address of message buffer
integer buffer_size; // length of message in buffer
b

message_buffer(integer tid)

The service message_buffer will return the address of a process’ current message buffer
and its length. It will mainly be used by debugging tools.
Asynchronous Services

The following events are provided especially for the monitoring of message passing. Other events,
such as start and end of send or receive calls, can be monitored using the start_lib_call and
end_lib_call services (see Section 8.1.1).

1. message arrived .............. ... ..., A message is inserted into a message queue.

integer message_arrived(integer *tid_list)

--> struct {

integer tid; // process where message is inserted
// into queue

integer sender; // tid of process that sent this message

integer msgtag; // the PVM message tag

integer tagged_by_monitor; // is the message tagged by the monitoring
// system

integer monitor_tag; // the tag added by the monitoring system

50



We will provide a service message_arrived that reports when a message is inserted into
the message queue of a process in tid_list. This event is essential if you want to build a
tool based on event traces that needs information on the size or contents of the message
queue.

2. tagged_message_recv  ......... ...l A process receives a tagged message.

integer tagged_message_recv{integer* tid_list, integer monitor_tag}

--> struct {
integer tid; // process receiving the message
integer sender; // tid of process that sent the message
integer msgtag; // the PVM message tag

b

This service reports the receipt of a message by a process in tid_list, iff the message
contains the given monitor_tag.

51



8.1.3 Hardware
Manipulation Services

Since the hardware usually cannot be manipulated, there are no services in this category.

Synchronous Services

These services return static and dynamic information on an application’s current node set, i.e.
the part of a parallel computer or a distributed computing environment currently used by the
monitored application:

1. number_of_ nodes ............ Determine number of nodes in the monitored system.

struct {
integer status;
integer num_nodes;

¥

number_of_nodes()

This service returns the number of processing nodes in the monitored application’s current
node set, regardless to which node the service request is sent.

2. listnodes ... Return node names and numbers.

typedef struct {
integer node_number; // node number

string node_name; // the node’s machine name
} Host_info;
struct {

integer status;

Host_info* nodes; // list of nodes

¥
list_nodes()

This service returns a list of the names of all nodes in the monitored application’s node set
together with their assigned node numbers, regardless to which node the service request
is sent.

3. node_info ... Return hardware information on a node.

typedef struct {
[string architecture;] // architecture type (as in pvmgetarch)
// present if bit 0 is set in flags
[integer number_of_cpus;] // number of available CPUs
// present if bit 1 is set in flags

[integer used_cpus;] // number of CPUs used by the application

// present if bit 2 is set in flags
[integer avail_memory;] // available amount of main memory

// present if bit 3 is set in flags
[integer used_memory;] // main memory used by application

// present if bit 4 is set in flags
[integer avail_disk;] // available disk space

52



// present if bit 5 is set in flags

[integer cpu_speed;] // relative speed of CPU
// present if bit 5 is set in flags
. // more information not yet specified
} Node_info;
struct {

integer status;

Node_info info;

¥

node_info(integer flags)

Detailed information on nodes is provided by the node_info service. As with the other
information services, the bit-vector flags defines which kind of information has to be
retrieved. In addition to the data specified above, we currently think towards providing
detailed information on the communication network:

e number of links to other nodes and their estimated or measured speed,
o link usage,

o type of network, e.g. ATM, Ethernet, etc.,

¢ network topology, e.g. bus, 2D-grid, etc.

Asynchronous Services

Since the number of nodes in an application’s node set may be dynamic (as in PVM), the
monitoring system will adapt itself to such changes. This means that if a new node is added to
the node set, a monitor will be started on that node just before the application starts to use that
node. Likewise, if a node is removed, the monitor on that node will terminate. The monitoring
interface provides two events giving notice on these situations:

1. newnode() ................... A new node has been added to the current node set.

integer new_node()
--> integer node_number; // node number assigned to the new node

The service new_node will report that a new node has been added to the monitored
application’s current node set. The event will be raised on any node where it is defined,
just after the monitor on the new node has been initialized. It returns the number of the
new node, so the event’s actions can be redirected to the new node by specifying $1 in
their node list.

2. node_removed ....................... A node is removed from the current node set.

integer node_removed()
--> integer node_number; // number of the node that will be removed

This service will give notice that a node is removed from the monitored application’s
current node set. Like new_node, this event will be raised on any node where it has been
defined. It is raised just before the monitor on the node to be removed terminates, so
actions can still be executed on that node.

53



8.1.4 Enhancement: Parallel I/0O

In contrast to message passing interfaces, which are rather standardized now, parallel 1/0 is
still an active research issue. It is not only difficult to implement parallel 1/O efficiently, but it
is still not decided which features a parallel I/O system must have, and how the programming
interface must look like. Therefore, it is not possible at the moment to specify a standard for
the corresponding monitoring services. This is one reason why the monitoring of parallel I/0 is
defined as an extension to OMIS.

The other reason, which is related to the one above, is of more practical nature: Since there
is no agreement on the functionality of parallel I/O systems, there are different I/O libraries that
can be used with various programming libraries. Examples are PIOUS and PFSLib. Defining
the monitoring services for parallel I/O as an extension to OMIS leaves everyone free to provide
the services most appropriate for a specific I/O library.

In the following sections we will present some basic considerations for these services.

Manipulation Services

It is not yet clear, which manipulation services could be needed by different kinds of tools, if
they are needed at all. Similar to processes, a service for migrating parts of a file from one disk
to another could be useful for load balancing strategies.

Synchronous Services

These services could provide additional information about files, that are not available via the
programming interface of the parallel I/O system. Examples of this kind of information include:

e The way, how a given file is distributed across different disks.
e The amount of disk space used by a file on the different disks.

Typically, a parallel I/O system is used because it hides the distribution from the programmer.
However, if you want to do performance analysis (of either the application or the I/O system),
you will be interested in this kind of information.

Asynchronous Services

There are two levels of events related to 1/O that should be observable using the monitoring
system:

1. For the higher level, there will be extensions to the basic services start_lib_call and
end_lib_call that report the start and end of each 1/O related library call. These exten-
sions support debugging, visualization and performance analysis of an application with
respect to 1/0.

2. However, we may also want to use the monitoring system for performance analysis of the
I/0 system itself, or for an automatic performance improvement (e.g. some kind of load
balancing for files). For this purpose, there should also be services that report lower level
events, e.g. access to local and remote disks during the execution of an 1/O request for a

distributed file.

54



8.2 Monitor Objects

Currently, we have defined two types of objects in the monitoring system: user defined events
and asynchronous service requests. The latter are monitor objects, since they have to be stored
in the monitoring system, and they can be manipulated by other services. Other monitor objects
may be added by distributed tool extensions, e.g. timers, counters, etc.

In addition, there are some services that cannot be associated with a specific monitor object.
They are introduced in Section 8.2.3.

8.2.1 Asynchronous Service Requests
Manipulation Services
1. enable ... ... .. .. Enable a previously defined event.

disable .......... ... .. Disable a previously defined event.

integer enable(integer request_id)
integer disable(integer request_id)

These services will enable or disable the monitoring of an event previously defined with the
specified request identifier request_id in an asynchronous service request. Since events
always are initially disabled, they must be enabled explicitly. The services can also be
used for temporarily disabling breakpoints or performance measurements. Since they can
be used as actions, it is possible to start and stop monitoring of an event based on the
occurrence of another event. In this way, the detection of complex distributed events is
possible.

2. delete ................. ... Delete a previous request for an asynchronous service.

integer delete(integer request_id)

This service deletes the event-action definition with the specified request identifier re-
quest_id.

8.2.2 User Defined Events
Manipulation Services

1. define_user_event ........ ... ... ... .. ... Create a user defined event.
integer define_user_event(integer event_no)

The monitoring system will allow to use user defined events via this service. The parameter
event_no specifies the number which is used to address this event in the other services.

2. TAISE_EVENT ...ttt Raise a user defined event.
integer raise_event(integer event_no, any* params)

This service will raise the user defined event event_no that must have been created pre-

viously using the define_user_event service. params is a list of parameters that will

be passed to the event’s actions. The size of this list, i.e. the number of parameters is
arbitrary.

55



3. destroy_user_event .......... .. ..o, Destroy a user defined event.
integer destroy_user_event(integer event_no)

This service is used to destroy a used defined event event_no when it is no longer needed.
In addition, all asynchronous service requests using this event will be deleted.

Asynchronous Services

1. user_event ......... .. A user defined event has been raised.

integer user_event(integer event_no)
-—> ... // parameters specified in the call to raise_event

The service user_event gives notice that the specified user event has been raised using
raise_event service. It passes all parameters specified in the invocation of raise_event to
its actions. Thus, an action can refer to the first element in the params list of raise_event
via $1, to the second one via $2, and so on.

For instance, user defined events can be used to realize action lists that can be triggered
by different events, without having to define the action list twice. If you want to trigger a
list A(x) of actions with event E1 or event E2, you can specify”:

define_user_event(5)
El: raise_event(5, [$1])
E2: raise_event(5, [$1])
user_event(5): A($1)

In addition, user defined events allow to chain actions. For instance, you could provide
some service filter(var, val, event_no) in a distributed tool extension that raises a user

defined event, iff var == wval. If we assume that the second parameter returned by the
start_lib_call(tid_list, ”pvm_send”) service is the destination tid, then in the following
situation

define_user_event(6)
start_1lib_call([12], "pvm_send"): filter($2, 15, 6)
user_event(6): AQ)

action A() will be executed, iff process 12 sends to process 15.

Finally, user defined events can of course also be used for additional code instrumentation.

8.2.3 Miscellaneous
Synchronous Services

L PrINt e Return arguments.

struct {
integer status;
any* args;

b

print(any* args)

*For clearness reasons, we don’t show the request identifiers and the receiver node lists in this example

56



Sometimes a tool wants to be directly notified about an event occurrence and its param-
eters. For this purpose, the service print is available. It simply returns its arguments in

its result structure.

L eXEeNSIONS ottt Return a list of available extensions.
struct {
integer status;
string* extension; // the prefix used for this extension
¥

extensions()

This service allows to ask which monitor extensions or distributed tool extensions are
available in a monitor. It will return the list of the prefixes used for the services of the
available extensions. Thus, tools can decide whether the necessary extensions are available,
and they may handle the cases where less important extensions are missing.

57



58



Part IV

Concepts for an Implementation

59



60



Chapter 9

The Software Module Structure

This chapter is intended for readers who are interested in details on an implementation of an
OMIS compliant monitoring system which is integrated with an already existing parallel pro-
gramming environment. People interested exclusively in the specification part of the document
or in just using OMIS for connecting tools to it may skip this chapter.

We will show a potential cooperation of all components in an environment for workstation
clusters where we use PVM as parallel programming library and PFSLib as parallel I/O library.
In contrast to the system model presented in Chapter 4 we find things to be more complex, as
the monitoring system turns out to be at least partially integrated with many other modules.

Let us have a closer look at these modules and the way they cooperate. PVM at the software
module level consists of one daemon per node (pvmd) and a PVM library being linked to each
task of the application. The same holds for PFSLib and may be true for many other runtime
support components. The situation is even worse for the monitoring system itself: besides
having stand-alone components as (at least) one main monitor process per node we have to
integrate monitoring components in form of libraries into all other software components from
which we want to have information which can not directly be accessed. Integrating parts of
the monitor with other software is called instrumentation. We need an instrumentation of the
library codes and of all daemons involved in the running system!'. With the operating system
we have to choose other means, as instrumentation without vendor support is not feasible here.
The integration of a monitoring system into an existing HW/SW-system is a complex task.
Therefore, any concept for a monitoring system must also discuss the consequences for all other
components of the system.

Figure 9.1 shows the software module structure for our approach. On the top we can see the
monitor process. It consists of a base monitor being linked together with the libraries of monitor
extensions, distributed tool extensions, and distributed tool components. The reason for having
at least one process for the monitor lies in the necessity for the monitor to react autonomously.
It must accept commands and invoke actions concurrently to other activities in the system. The
visible part of it serves for communication with other modules; thus, all information flow goes
through a communication library where calls and answers are transferred to message exchange?.

We identify three data and control flow paths from the monitor/program-interface to other
components. With task and daemon processes this interface is integrated directly into the
components. The thick solid line between them and the monitor process denotes monitor internal
communication between this process and some monitor libraries. The real monitor/program-
interface in these two cases is the interface between the monitor libraries and the rest of the
task or daemon process. The situation is still different for the third case, the cooperation with

Tt would be possible to access all library related information via the operating system. However, this path is
much too inefficient with respect to overhead evoked. Thus, special library instrumentation is inevitable.
2See Known Problems, Chapter 13, item 2.

61



¢9

Arexqrr /1 1o[reded ® se qri§{d pue IeAe] ATelql] Suruwrers

-o1d Jiseq € se JNAJ PUe S[00} [Jim jUoWUOIIAUS Ue JO 2IN)ONI)S o[npoull alemlJog 16 a.mﬁg&

tool A
debugger

J

tool B
performance analyzer

J communication library

tool/monitor-communication

workstation m

ME library -
DTE library
| DTC library
S
monitor process %
3
[
=
task S task T 8
____________________________ o
monitor library monitor library >
ME library = ME library - = - -

DTE library DTE library g
____________________________ 3
3
PVM PFSLib PVM PFSLib S
library library library library g
=
monitor | | _monitor -

“““ pvmd pfsd T T

nodei

hardware/ operating system

-10}1UOW/J0} lUoW

|

|
sl B
~—

|

-yseypser |




the operating system. Here we can only use what is directly provided. In more detail this
means that we will use system-calls, access to special file-systems (/proc) or special devices
(/dev/kmem) to collect necessary information. No instrumentation of the operating system will
be done. Although this would be a nice feature, e.g. to supervise scheduling activities, it would
nevertheless ruin the portability of the approach.

Let us come back to the connection between the monitor process and the PVM daemon.
Two aspects are important. First, the monitoring system will take profit of the already provided
tasker/hoster interface of PVM. As these interfaces allow only one third party software product
to connect to the daemon, it is inevitable to mirror this functionality at the tool/monitor-
interface. Whenever it will be used by some extensions of PVM their activities can now also be
monitored by tools.

A second source of information is a monitor library integrated into the PVM daemon. Its
purpose is to yield data about the daemon’s internal state, such as state of message queues and
current message transfer, process group informations, etc. Thus, this monitor library will mainly
be realized by access functions which can read the appropriate informations in the daemon’s
address space. The design of this interface is of importance not only for the OMIS project
but also for other tool developers as it will give them easy access to PVM daemon runtime
informations. This is useful for designing their own tools, not necessarily on-line tools, e.g.
management facilities for traces or batch jobs.

The final components to be discussed are the processes which represent the tasks of the
application program. These tasks include as regular components their own code as well as all
necessary libraries for execution: the PVM library and as an example of an extension also the
PFSLib library for parallel file access. In addition we need a monitor component in order to
survey and manipulate the task’s execution. All activities could also be handled directly in the
monitor process but the splitting into several components increases efficiency. Manipulations
can be done directly during task code execution. In several cases no context switch and no
communication appears when the monitor has to react to a certain condition (e.g. incrementing
some event counter). This block includes functionality which can also be found in the monitor
process: a monitor library and occasionally a monitor extension library and a DTE library. All of
these entities, from which only the monitor library is imperative, serve for providing the monitor
process with the necessary details. The libraries will contain routines that wrap around PVM
(or PFSLib etc.) functions, in order to get events upon entry and exit of these functions and in
order to invoke task manipulations. They may also contain routines implementing actions that
should be called in the context of the task raising an event. For instance, if we want to measure
the mean time spent in a PVM function, it is prohibitive to make a UNIX context switch just for
reading the clock and updating an integrating counter. This has to be done in the application’s
context. The data exchange between these parts of the monitor and the monitor process will be
implemented via a shared memory block, in order to be efficient. If asynchronous notification is
necessary, UNIX signals will be used.

63



Chapter 10

The Monitor /Program-Interface

The monitor/program-interface will be subdivided into three different parts: one collecting
information from the program itself, another one being in contact with the PVM daemon, and
finally an access path to operating system and hardware related informations.

The functionality of this three-partite interface is not yet specified. However, it is clear
that the lowest level information and manipulation routines will take profit of the ptrace and
system-call interface to UNIX. The design of the interface to the PVM daemon is of crucial
importance but will be deferred until the functionality of the tool/monitor-interface is fixed.
Finally, the interface part to the monitor library which gets linked to the application tasks has
to be defined. As this interface does not interfere with other people’s software products we will
make a specification only when making plans for the implementation of the monitoring system.

64



Chapter 11

Time Schedule of Implementation

OMIS Version 1.0: February 1, 1996

The first version of OMIS serves as a basis for the design of an OMIS compliant monitoring
system and for adaption of OMIS based tools.

Start of design phase: January, 1996

A group of six researchers and students at LRR-TUM is currently designing an OMIS compliant
monitoring system based on PVM as programming paradigm and networks of workstations as
target architecture. Implementation will start mid of 1996.

65



66



Part V

Diverse

67



68



Chapter 12

Requests for Comments

In this chapter we summarize important open questions of the OMIS project. We would like
to encourage any reader of this document to send us his/her comments, ideas, suggestions etc.
Please refer to open questions by indicating their number.

1 Should the tool/monitor-interface be designed in an object oriented manner? This could
have several advantages:

— By defining a hierarchy of observable objects, the interface is structured much more
clearly. The hierarchy also defines an abstract model for the kind of system observable
by the monitoring system. A first idea of such an object model together with some
of the available methods (services) is shown in Fig. 12.1.

— The on-line monitoring interface specification could be defined in terms of abstract

object classes. The actual object classes needed for a specific parallel programming
library would then be derived from these ones and inherit their methods (i.e. services).
For instance, we could have abstract processes with services like stop, continue,
user_time, and so on. A UNIX process, derived from this abstract process class,
would inherit these services and could define additional ones, e.g. kill or nice. A
PVM task could be derived from a UNIX process and provide additional services
such as message_buffer.
This scheme would make it possible to separate OMIS into a large part that is in-
dependent of any concrete programming library and a small extension for each such
library (e.g. PVM, MPI). It would also make tools more portable, since for instance
a debugger could start and stop processes no matter whether they are PVM tasks or
MPT processes.

— Finally, using object oriented techniques for the monitors’ implementation could in-
crease portability with respect to different programming libraries. If a significant part
of the code for a concrete object could be inherited from the abstract base classes,
support for different programming libraries could be implemented in relatively small
monitor extensions.

2 Should we consider to provide OMIS also for shared memory architecture environments?
It might be not very difficult to do so.

3 Should we have a more powerful request language? At the moment, we only provide the
combination of events and actions, and concurrent and serial execution of action lists. A
lot of other constructs could be useful, e.g.:

— a mix of parallel and serial execution within one action list,

69



Monitored System
—= Hardware

——= Monitor

—== Node (;

name, architecture, load, applications, processes, messages; new_process, del_process)

—== Processor (; load; scheduling)
—= Memory (; size, used; )
—== Devices
L= Network (; topology; )
Link  (; load, wait_processes, bandwidth; )
L= Software (start_application; ;)
—== Application (stop, continue; ;)

—== Process (stop, continue, migrate; state, time; terminated, stopped, continued)

UNIX Process  (kill, nice; pid, argv; signal)
~ PVM Task (; tid, receive_queue, current_message_buf; )
Thread (stop, continue, goto; state, time; terminated, step, breakpoint)
—== Register (write; read, type; )
—= Stack
|9> Frame (write; read, function; finish)

—= Address Space (write; read, size; breakpoint)

. Executable (; pathname; )
Segment  (write; read, start_address, size, type; )

== Message (; sender, receiver, monitor_tag; received)

PVM Message (; tag, data_types, contents; )

—== Message Buffer (delete_msg, insert_msg; size, messages; msg_added)
== Sync. Object (; waiting_threads; thread_blocked, thread_unblocked)

PVM Barrier  (; group, num_sync; )

== PVM Group (; size, tasks; task_joined, task_left)

(init, print; extensions; )

—== Request (enable, disable, delete; ; enabled, disabled, deleted)
== User Event (define, raise, destroy; ; triggered)

Legend
| Contains any number of Xyz | Baseobject
Las additional sync. services: number and list of contained objects |~~~ — "~~~ " T T T T T T 7
[ additional async. services: object_added, object_removed Xyz 1 Derived object
e i L o L T
L__ ! Containsone xy:z)! Methods
L _ _: _________________________ : X = manipulation services
. y = synchronous services
~ : Derived from : z = asynchronous services

Figure 12.1: A possible object scheme for an on-line monitor. The inheritance relation between

the base objects is not

shown.

70




— definition of asynchronous services as an action, i.e. when an event occurs, define a
new event-action pair, where the definition may use output parameters of the first
event.

— parameter passing between actions.

However, each of these features adds significant complexity to the request parser, thereby
increasing the monitor’s intrusiveness. Thus, we have to find a suitable compromise.

71



Chapter 13

Known Problems

In this chapter we summarize important known problems of the OMIS project, which mostly
concern the implementation of an OMIS compliant monitoring system. We would like to en-
courage any reader of this document to send us his/her comments, ideas, suggestions etc. Please
refer to known problems by indicating their number.

1 The monitor must be able to work together with several applications either of one or
several users (e.g. for load balancing). It is not yet clear how to design this.

2 Both the communication between a tool and the monitor and the monitor/monitor commu-
nication could be based on either the communication mechanism provided by the parallel
programming library (e.g. PVM), TCP sockets, or other mechanisms like RPCs. Using
PVM communication may raise several complications. E.g., we have to separate moni-
tor/monitor communication from task/task communication (PVM doesn’t have the com-
municator concept of MPI). Another problem is that the tool must be a PVM task, but
must not be included into the monitored set of tasks.

On the other hand, socket communication is much more difficult to use, and it is system
dependent. It is also not yet known whether we can use both PVM and socket communi-
cation within one process.

3 For efficiency reasons, some actions (e.g. updating a timer that measures the time a task
spends in a receive call) must be executed within the context of the observed task. If
we introduce a UNIX process switch here, the overhead would make useless the whole
measurement. But, some actions can not be executed in the task that produces an event,
e.g. most actions related to debugging that are based on the ptrace system call.

In summary, there are four possible combinations:

— An event can be detected either in an application task or in the monitor process.

— An action can be executed either in the application task or in the monitor process.

It is not fully clear yet how to support all combinations with a uniform and orthogonal
interface.

One solution would be to have additional flags for the registration of a new service. One
of these flags must specify whether the service is an event (asynchronous basic service) or
an action (synchronous or manipulation basic service). For an event, another flag could
indicate whether it is detected in the monitor process or in the application process. For
an action, the flags could indicate whether it has to be executed in the monitor process or
in the application process, or can be executed in both of them. The base monitor could
then automatically pass the event to another process, if necessary.

72



4 The start_lib_call and end _lib_call services should be generic, in order to reduce the
dependency between the monitoring systemand the parallel programming library. We
plan to have a description file containing ANSI-C prototypes of all observable library calls.
This file must also define which parameters are input and which are output parameters.
In addition, it has to specify, how the values of these parameters are translated into the
data types available in OMIS. This file could look like:

int pvm_recv(int tid, int msgtag) // C prototype

start { // parameters passed to actions of
integer tid; // start_lib_call
integer msgtag;

+

end { // parameters passed to actions of
integer pvm_recv; // end_lib_call (result of function)

+

int pvm_...

This file could also contain routines for translation of parameters, or for providing ex-
tra information on implicit parameters of the library calls (e.g. the message buffer in
pvim_send).

We intend to have some kind of translator that automatically generates the wrapping
functions containing the instrumentation, and inserts them into the PVM library. In
addition, the translator could also generate information for the monitoring process that
could allow to monitor these library calls using traps, e.g. if an instrumented library is not
available when debugging an application.

It is not yet known, whether these goals can be achieved and how this generic scheme can
be implemented.

5 In order to make an OMIS compliant monitor compatible with other tools using the hoster
and tasker interfaces of PVM (e.g. resource managers), we have to mirror these interfaces.
It is not yet known, how this can be achieved. A possible way would be to intercept the
calls to pvim_reg_hoster and pvim_reg_tasker. In this way, the monitor knows to which
tasks it must forward the information on new hosts or tasks.

73



Glossary

Throughout the text of the specification we will use the following technical terms.

Asynchronous Service A service that signals the occurrence of a specific condition. It may
have have any number of responses, occurring at unpredictable points in time.

Basic Service A service of an OMIS compliant monitoring system that is defined in Part 111
of this specification or by a monitor extension. Basic services are the building blocks from which
service requests are constructed.

Composite Service Request A service request of an OMIS compliant monitoring system
that is composed from several basic service requests. As an example, “detect a send event in
process x” and “stop all processes” are basic services, while “stop all processes, when a send
event is detected in process x” is a composite service.

Distributed Tool (DT) A distributed tool is spread over all nodes of our node set and
usually has no user interface.

Distributed tool extension (DTE) Part of a centralized interactive tool which is replicated
and runs on every node involved in direct cooperation with the monitor on that node. Used for
preprocessing of data or organization of special distributed functionalities.

Manipulation Service A service that only returns an acknowledge or an error message. Its
effect is to manipulate objects in the application or the monitoring system.

Monitor We call a (single) monitor that part of the monitoring system which is located on a
single node of the parallel system (either a workstation or a node of a parallel machine). It may
be composed of processes and libraries linked to various other software modules. Interaction
between these parts may use all available mechanisms.

Monitor Extension (ME) An extension to a monitoring system offering new services for
the monitoring of system objects not yet considered in that monitoring system.

Monitoring System A monitoring system is the collection of all software parts in a dis-
tributed system which observe and modify the program execution, the underlying operating
system, and the hardware and communicate with one or more tools.

Monitor/monitor-communication Interaction between monitors on separate nodes of the
system.

74



Monitor/program-interface This is the interface of a monitor with the object it should
observe. For simplicity reasons this is called monitor/program-interface. However, the monitor
interacts not only with the program but with all of the hardware/software instances which get
the program running, i.e. the parallel programming library (e.g. PVM), the operating system,
and the hardware. Access to specialized runtime libraries like e.g. PFSLib for parallel file access
is controlled via monitor extensions.

OMIS The On-line Monitoring Interface Specification.

Service The functions offered by an OMIS compliant monitoring system, i.e. the commands
that can be invoked at the tool/monitor-interface.

Service Reply String sent back from the monitoring systemrepresenting an answer to a service
request.

Service Request String sent to the monitoring system requesting the execution of a service.

Synchronous Service A service that returns exactly one result within a (at least theoreti-
cally) predictable response time.

Tool/monitor-interface The tool/monitor-interface is responsible for interaction between
tools and monitors. This interface is the main subject of the on-line monitoring interface speci-
fication.

75



History

Version 1.0: February 1, 1996
Current version. Published as a technical report at TUM [LWSB96].

Pre-Version 0.9 beta: November 30, 1995

Second draft version which served as a dicussion basis for a birds-of-a-feather meeting at the
Supercomputing’95 conference in San Diego, California, USA, December 1995. The session was
moderated by Arndt Bode and Vaidy Sunderam.

Pre-Version 0.9 alpha: August 31, 1995

First draft version which served as a discussion basis for a birds-of-a-feather meeting at the
European PVM Users’ Group Meeting in Lyon, September 1995. The session was moderated
by Roland Wismiiller.

Kick-off meeting: July, 1995
Initiators: Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismiiller

76



Bibliography

[BBI1]

[BBY2]

[BBB+90]

[BHL90]

[BLY0]

[BLT90]

[Bod94]

[BW95]

[Han94]

T. Bemmerl and A. Bode. An Integrated Environment for Programming Distributed
Memory Multiprocessors. In A. Bode, editor, Distributed Memory Computing - 2nd
Furopean Conference, EDMCC2, volume 487 of LNCY, pages 130-142, Miinchen,
April 1991. Springer-Verlag. Lecture Notes in Computer Science, XXX.

Arndt Bode and Peter Braun. Monitoring and Visualization in TOPSYS. In G. Kot-
sis and G. Haring, editors, Proc. of Workshop on Monitoring and Visualization of
Parallel Processing Systems, pages 97 — 118, Moravany nad Vdhom, CSFR, 1992.
Elsevier, Amsterdam (1993).

H.J. Beier, T. Bemmerl, A. Bode, et al. TOPSYS - Tools for Parallel Systems.
Research report SFB 342/9/90 A, Technische Universitdt Miinchen, January 1990.

T. Bemmerl, O. Hansen, and T. Ludwig. PATOP for Performance Tuning of Paral-
lel Programs. In H. Burkhart, editor, Proceedings of the CONPAR 90 - VAPP IV
Joint International Conference on Vector and Parallel Processing, Zurich, Switzer-
land, pages 840-851, Berlin, September 1990. Springer. Lecture Notes in Computer
Science, 457.

T. Bemmerl and T. Ludwig. MMK — A Distributed Operating System Kernel
with Integrated Dynamic Loadbalancing. In H. Burkhart, editor, Proceedings of
the CONPAR 90 - VAPP IV Joint International Conference on Vector and Parallel
Processing, Zurich, Switzerland, pages 744-755, Berlin, September 1990. Springer.
Lecture Notes in Computer Science, 457.

T. Bemmerl, R. Lindhof, and T. Treml. The Distributed Monitor System of TOP-
SYS. In H. Burkhart, editor, Proceedings of the CONPAR 90 — VAPP IV Joint
International Conference on Vector and Parallel Processing, Zurich, Switzerland,
volume 457 of Lecture Notes in Computer Science, pages 756-765, Berlin, Septem-
ber 1990. Springer. Lecture Notes in Computer Science, 457.

A. Bode. Parallel Program Analysis and Visualization. In J. Dongarra and
B. Tourancheau, editors, Fnvironments and Tools for Parallel Scientific Computing,
pages 246-253. STAM, 1994.

T. Bemmerl and R. Wismiiller. On-line Distributed Debugging on Scalable
Multiprocessor Architectures. Future Generation Computer Systems, (11):375-385,

November 1995.
http://wwwbode. informatik.tu-muenchen.de/ "wismuell/publications/fgcs95.ps.gz.

O. Hansen. A Tool for Optimizing Programs on Massively Parallel Computer Ar-
chitectures. In High-Performance Computing and Networking, Volume II, volume
797 of Lecture Notes in Computer Science, pages 350 - 356, Miinchen, April 1994.
Springer Verlag.

7



[HKOW96] O. Hansen, J. Krammer, M. Oberhuber, and R. Wismiiller. A Scalable Tool En-

[LL95]

[Lud93a]

[Lud93b]

[LWB-+95]

[LWSB96]

[OW95]

[SMPO5]

vironment for Observing the Runtime Behavior of Massively Parallel Applications.
Parallel Computing, To appear in Q1 1996.
http://wwwbode. informatik.tu-muenchen.de/“wismuell/publications/pc95.ps.gz.

T. Ludwig and S. Lamberts. PFSLib — A Parallel File System for Workstation
Clusters. In Victor Malyshkin, editor, Parallel Computing Technologies — Proceed-
ings of the Third International Conference, PaC'T-95, St. Petersburg, Russia, pages
246-251, Berlin, sep 1995. Springer. Lecture Notes in Computer Science, 964.

T. Ludwig. Load Management on Multiprocessor Systems. In A. Bode and M. Dal
Cin, editors, Parallel Computer Architectures — Theory, Hardware, Software, Ap-
plications, pages 87-101. Springer, Berlin, 1993. Lecture Notes in Computer Science,
732.

T. Ludwig. UPAS — Universally Programmable Architecture and Basic Software.
In P. P. Spies, editor, Furo-ARCH °93, Munich, Germany, pages 660-671, Berlin,
1993. Springer. Informatik aktuell.

T. Ludwig, R. Wismiiller, R. Borgeest, S. Lamberts, C. Roder, G. Stellner, and
A. Bode. THE ToOL-SET — An Integrated Tool Environment for PVM. In Second
Furopean PVM Users’ Group Meeting, Lyon, France, September 1995.

http://wwwbode. informatik.tu-muenchen.de/ "wismuell/publications/europvm95.ps.

gz.

T. Ludwig, R. Wismiiller, V. Sunderam, and A. Bode. OMIS — On-line Monitoring
Interface Specification (Version 1.0). Technical Report TUM-19609, SFB-Bericht
Nr. 342/05/96 A, Technische Universitdt Miinchen, Munich, Germany, February
1996.

http://wwwbode.informatik.tu-muenchen.de/ omis/OMIS/Version-1.0/version-1.0.
ps.gz.

M. Oberhuber and R. Wismiiller. DETOP - An Interactive Debugger for PowerPC
Based Multicomputers. In P. Fritzson and L. Finmo, editors, Parallel Programming

and Applications, pages 170-183. I0S Press, May 1995.

http://wwwbode. informatik.tu-muenchen.de/ "wismuell/publications/zeus95.ps.gz.

T. Sterling, P. Messina, and J. Pool. Findings of the Second Pasadena Workshop
on System Software and Tools for High Performance Computing Environments.
Technical report, Center of Excellence in Space Data and Information Sciences,

NASA Goddard Space Flight Center, Greenbelt, Maryland, 1995.

78



