
OMIS | On-line Monitoring Interface Speci�cation 1Version 1.0http://wwwbode.informatik.tu-muenchen.de/�omis/email: omis@informatik.tu-muenchen.deThomas Ludwig, Roland Wism�uller,Vaidy Sunderam�, Arndt BodeLehrstuhl f�ur Rechnertechnik und RechnerorganisationInstitut f�ur Informatik (LRR-TUM)Technische Universit�at M�unchenD-80290 M�unchen, Germanytel.: +49-89-2105-2042 or -8164 or -8240fax: +49-89-2105-8232email: fludwig,wismuell,bodeg@informatik.tu-muenchen.de�Emory UniversityMathematics & Computer ScienceAtlanta, Georgia 30322tel.: +1-404-727-5926, fax: +1-404-727-5611email: vss@mathcs.emory.eduFebruary 1, 1996
1This work is partly funded by the German Science Foundation, Contract: SFB 342, TP A1

AbstractThe On-line Monitoring Interface Speci�cation (OMIS) aims at de�ning an openinterface for connecting on-line software development tools to parallel programs run-ning in a distributed environment. Interactive tools like debuggers and performanceanalyzers and automatic tools like load balancers are typical representatives of theconsidered class of tools.The current situation is characterized by the fact that tools either follow the o�-lineparadigm by only having access to trace data and not to the running program orelse they are on-line oriented but su�er from the following de�ciencies: they do notsupport interoperability in the sense that di�erent tools can be used simultaneously| not even tools from the same developer. Furthermore, no uniform environmentexists where the same tools can be used for parallel programs running on di�erenttarget architectures.A reason for this situation can be found in a lack of systematic development of moni-toring systems, i.e. systems which provide a tool with necessary runtime informationabout the application programs and make it possible to even manipulate the programrun.The goal of the OMIS project is to specify an interface which is appropriate for alarge set of di�erent tools. Having an agreed on on-line monitoring interface facili-tates the development of tools in the way that tool implementation and monitoringsystem implementation are now decoupled. Bringing n tools to m systems (consist-ing of hardware, operating system, programming libraries etc.) will be reduced incomplexity from n�m to n+m. In addition, it will eventually be possible to simulta-neously use tools of di�erent developers and to compose uniform tool environments.In addition to producing the speci�cation, the research group at LRR-TUM willimplement an OMIS compliant monitoring system for the PVM programming modelrunning on a network of workstations. Several interactive and automatic tools willbe connected to this concrete system.The present document de�nes the goals of the OMIS project and lists necessaryrequirements for such a monitoring system. We will describe the system model OMISis primarily intended for and give an outline of available services of the interface. Aspecial section will give details on how to extend OMIS, as this is an indispensablefeature for future tool development.We would appreciate to get feedback on the design of OMIS. If you would like tosee special issues incorporated into this speci�cation document you are invited tocontact the authors (omis@informatik.tu-muenchen.de).

ContentsI The OMIS Project 91 Motivation 112 Project Goals 142.1 Background : 142.2 Goals : 153 Requirements 17II Structure of the Monitoring Interface 214 The System Model 235 A Basic Outline of Available Services 255.1 Classi�cation of Monitoring Services : 255.2 Syntactical Structure of Monitoring Services : 275.2.1 Service Requests : 275.2.2 Service Replies : 285.3 Examples : 295.3.1 Performance Analysis : 295.3.2 Debugging : 295.4 Interface Procedures : 305.5 Remarks : 316 Extending OMIS 326.1 Types of Extensions : 326.2 The Method of Extending OMIS : 33III Services of the Monitoring Interface 357 Formal Syntax of Service Requests and Replies 377.1 Service Requests : 377.2 Service Replies : 378 Speci�cation of Available Basic Services 398.1 System Objects : 418.1.1 Processes : 418.1.2 Messages : 498.1.3 Hardware : 525

8.1.4 Enhancement: Parallel I/O : 548.2 Monitor Objects : 558.2.1 Asynchronous Service Requests : 558.2.2 User De�ned Events : 558.2.3 Miscellaneous : 56IV Concepts for an Implementation 599 The Software Module Structure 6110 The Monitor/Program-Interface 6411 Time Schedule of Implementation 65V Diverse 6712 Requests for Comments 6913 Known Problems 72Glossary 74History 76References 76

6

Preface to this Document VersionThis document version is an extensive reorganisation and improvement of previous releases.Part I describes motivation, project goals, and requirements of the project. Part II comprisesa description of the structure of the monitoring interface. It describes the underlying systemmodel, what services are, and how to extend OMIS. Part III gives a detailed description ofservices provided by the monitoring interface. Part IV describes concepts for the implementationof an OMIS compliant monitoring system.We would like to encourage people to send us feedback on the \Requests for Comments" andalso maybe on \Known Problems". Any further ideas, comments, criticism etc. are also welcome(omis@informatik.tu-muenchen.de).Please see also chapter History for the document history.

7

8

Part IThe OMIS Project

9

10

Chapter 1MotivationParallel processing is a key technology for the 21th century both for commercial/industrialapplications and for research. Current needs of computational power can only be satis�edby using parallel and distributed architectures like multiprocessor and multicomputer systems.For already several years also networks and clusters of workstations (NOWs, COWs) play animportant role, as their aggregate power can often meet user requirements. We can distinguishsystems by their architectural concepts like e.g. coupling of processing elements (busses, switchesetc.) or memory organization (distributed memory, shared memory). Various programmingparadigms can be used for implementing software for these systems, message passing and usageof shared memory segments being the most popular amongst them.The approach presented in this document will in its �rst phase concentrate on systemswith distributed memory architecture and programs being implemented with message passinglibraries. Developing these programs on such systems is usually considered to be the machinelanguage level of parallel programming; it might exploit a high potential of the system's theoret-ical computational power but exhibits also a great complexity with respect to coding, debuggingand performance optimization.In order to reduce this complexity we need powerful tools. The goal of the OMIS1 project isto provide a viable basis for better tools with respect to integration of the individual tools intoa single environment. Future work will transfer the concepts to shared memory architectures.The available support for parallel programming in environments with distributed memoryvaries considerably in quality and quantity. Results of the Second PasadenaWorkshop on SystemSoftware and Tools for High Performance Computing Environments [SMP95] show that mainproblems are a lack of sophisticated tools and the almost complete absence of any interoperabilityof tools of di�erent origin. Also there are no uniform environments at all, where the developercould use the same tools for di�erent types of hardware or parallel programming libraries.On most systems we can �nd simple tools for debugging and runtime management likee.g. processor allocation. More powerful tools or special tools like for example load balancingfacilities or support for fault tolerance mechanisms do rarely exist. In addition, only veryfew tool environments support design, implementation, and maintenance of parallel softwarein a consistent manner. Finally, tools of di�erent vendors do not interoperate because theyare based on e.g. di�erent monitoring techniques or trace data formats or just use proprietaryprogramming libraries or special adaptions of publicly available programming libraries. Usually,the programmer can use only one tool at a time or even must specially adapt his program beforeapplying another tool.Tools which support an investigation of the running parallel program can be divided into on-line and o�-line tools. O�-line tools exclusively support post-mortem inspection of the program1The acronym OMIS stands for On-line Monitoring Interface Speci�cation.11

behavior. The drawback of this approach is its lack of interactive program manipulation facili-ties and its delay between problem recognition and problem correction. On-line tools, however,support interactive program manipulation with an immediate feedback to the user thus short-ening the time spent for debugging and performance analysis. In addition, special automatictools like e.g. load balancer systems, must necessarily interact with the running program. Ano�-line concept is not feasible for them.Both tool approaches are based on di�erent classes of information which are collected bydi�erent mechanisms. O�-line tools typically o�er information which was collected during aprogram run (trace data) or after program completion (core dump). Trace data is gathered witha monitor component being introduced into the program, the runtime libraries, the operatingsystem, or even the hardware. The monitor's task is restricted to only collecting informationabout the system behavior and forwarding it to a �le for storage. In addition, as we do notknow in advance which information the user would like to evaluate, all possibly interesting datahave to be transferred to this �le. We prefer to call this mechanism \recording" instead of\monitoring". For long program runs or �ne grained information this is not a feasible approachas it requires to collect an enormous amount of data.With on-line tools the situation is more complex. In addition to the above mentioned data(trace data, core dump) we need information about the current program state. Moreover, asthe user evaluates this data immediately, additional tasks have to be added to the monitor'sresponsibility: First, it must be adaptable in the sense that new evaluations can be activatedwhile others will be stopped. (This, however, decreases dramatically the amount of data whichhas to be transferred to the tools.) Second, the monitor must be able to manipulate the program,e.g. to stop a task or to force it to single step mode. A software component which supplies thisclass of functionality will be called on-line monitor. The goal of this paper is to lay the basisfor the design (and also the implementation) of on-line monitors for parallel environments withdistributed memory.Currently, several on-line tools are already available for the above mentioned environments,but most of them are proprietary solutions of parallel computer manufacturers. Public domainor copy-left tools are for the most part only available for programming libraries like e.g. PVMor implementations of MPI. Any activity in this �eld is hindered by the fact that for every newtool, for every new hardware, and for every new implementation of a programming library anew monitoring system has to be developed.The monitoring system is the software layer which connects the running program system(consisting of hardware, operating system, and application program processes) to the tool en-vironment and guarantees on-line capabilities. Caused by its intermediate position it has twointerfaces: one to the tools and one to the running program. Up to now, besides OMIS, thereare hardly any approaches undertaken to standardize at least the tool/monitor-interface. With-out a reasonable standard, however, new tools must also have new monitoring systems evenif their functionality is not completely disjunct to already existing tools. Finally, the missingstandard makes the integral use of a set of tools impossible as they are currently always basedon di�erently implemented monitoring concepts which are incompatible to each other. For mostof the on-line tools the monitoring system itself is the software layer which poses the greatestimplementation di�culties as it controls a spatially distributed environment by means of a cen-tralized interface. The monitoring system is by itself a distributed software system and wouldalready require sophisticated tools for its implementation.If we compare di�erent tools we will �nd that they use a considerable part of the monitorinterface which is identical for all of the tools. For some tools like e.g. an interactive performanceanalyzer and an automatic load balancer system the functionality might even coincide. For thatreason it is desirable to design a monitor system which can be adapted to di�erent underlyinghardware/software environments and can be expanded for connecting it to new tools. The goal12

of this paper is to present a monitoring concept with a high degree of
exibility and extendibility.Having an agreed on on-line monitoring interface, di�erent tool developer groups could de-sign and implement new interactive and automatic on-line tools whereas other groups could doimplementations of the monitors for various hardware/software environments. The amount ofe�ort for having n tools on m systems (being composed of hardware, operating system, andruntime library of the programming environment) would be reduced from n�m to n+m thusbringing more tools onto more parallel systems which �nally would ease software developmenton these architectures. A further implication of having OMIS compliant monitoring systems isthat �nally we will reach the goal of having uniform environments, i.e. tools which are identicalfor a variety of target architectures.

13

Chapter 2Project Goals2.1 BackgroundThe OMIS project being described in this paper has not been started as an isolated projectalthough there might be a real necessity for such an approach. It is embedded into researchand development activities at the Lehrstuhl f�ur Rechnertechnik und Rechnerorganisation atTechnische Universit�at M�unchen (LRR-TUM). Before going into details with OMIS let us givesome information on the background.During the last eight years the parallel processing group at LRR-TUM has been workingin the �eld of interactive and automatic on-line tools for parallel programming. Starting pointwas the Topsys project which was funded by a special research grant of the German ScienceFoundation. Topsys stands for TOols for Parallel SYStems; for detailed information pleaserefer to [Bod94, BBB+90, BB91, Lud93b].Within the framework of Topsys we developed a set of tools for Intel iPSC hypercubecomputers. A debugger [BW95], a performance analyzer [BHL90], and a program
ow visual-izer [BB92] were the main interactive components. In addition, we investigated tools for auto-matic load balancing [Lud93a]. The environment was based on our proprietary programmingmodel MMK (multiprocessor multitasking kernel) [BL90]. Tools were using on-line monitoringsystems which were realized with identical functionality in both, hardware and software [BLT90].Already in parallel to Topsys we designed and implemented tools within the frameworks ofother projects and direct industry cooperations. Examples are an adaption of Topsys to work-station clusters (cooperation with SUN Microsystems), adaptions of the performance analysistool in the Esprit project PREPARE (an on-line version) and the Esprit project HAMLET (ano�-line version) as well as smaller cooperations with e.g. INTEL, Siemens, Genias, and others.(For more details please refer to the annual report of LRR-TUM1.)For already several years a very important cooperation links LRR-TUM and PARSYTEC,a German vendor of parallel supercomputers and embedded systems. Within that project wedesigned and implemented versions of our debugging and performance analysis tools especiallyadapted for PARSYTEC parallel systems [Han94, OW95, HKOW96]. Both tools are successorsof former Topsys tools and became an integral part of the PARIX parallel programming systemfor PowerXplorer systems in 1994. Currently we adapt both tools to the new CC systems runningEPX, a special version of PARIX for embedded systems. Again, the main e�ort concerns anappropriate port of the underlying monitoring system to the now used AIX operating system.In the last years a change in paradigm took place: multiprocessors systems are no longerthe only vehicles of parallel processing. In addition, workstation clusters enjoy an increasingpopularity. The style of programming (with respect to message-passing) did not change signi�-1http://wwwbode.informatik.tu-muenchen.de/archiv/diverses/jber94/jb.ps.gz14

cantly. However, the environment structure increases complexity: time sharing replaces or addsto space sharing, thus making it necessary to have appropriate development tools. The maindi�erence is the step from single user/single program environments to multiuser/multiprogramenvironments.As a reaction to that, the parallel processing group at LRR-TUM started two new projectsin 1995 namely the OMIS project and The Tool-set project (see [LWB+95]). Before goinginto details with the project goals of OMIS let us give a quick overview on the latter project.Its global goal is to design and implement an integrated environment of various tools to makecluster computing easier. All implementations will initially be based on PVM which representsthe current de facto standard for parallel programming. The PVM library and runtime environ-ment is available for all major workstation brands as well as for all important multiprocessorand multicomputer systems. PVM supports the main aspects of distributed computing: workdistribution (by process management mechanisms) and cooperation (by message passing mecha-nisms). In the �rst project phase, The Tool-set will be made available for workstation clustersonly. Adaption to genuine parallel architectures might follow in the future. The Tool-set willcomprise a set of interactive and automatic on-line tools such as a debugger, a performanceanalyzer, a program
ow visualizer, a tool for deterministic program execution, a dynamic loadbalancer, a consistent check-pointing facility, and a trace data comparison tool.2.2 GoalsFrom the above paragraphs we see that the monitoring system is a main issue for every toolenvironment with on-line tools like e.g. The Tool-set and the CC series tools. As alreadymentioned earlier, it must o�er the following functionality:� It must be able to extract data describing the current state of the HW/SW-system (hard-ware, operating system, application programs) on request and on a regular basis.� It must be adaptable in the sense that the user can de�ne which data should be monitored(e.g. the occurrence of user-speci�ed conditions).� It must be able to modify and in
uence the HW/SW-system (e.g. assign values to variables,stop and restart process execution)The central goal of the on-line monitoring interface speci�cation OMIS is to de�ne a standard-ized tool/monitor-interface and to provide means to e�ciently design and implement monitoringsystems which ful�ll the above mentioned requirements. With an OMIS compliant monitoringsystem being connected to a running HW/SW system, several tools from possibly di�erent de-velopers can concurrently watch and manipulate the execution of application programs. Toolinteroperability and integration of future tools into existing environments are the most impor-tant features OMIS will be able to support. In addition, we will reach the goal of having uniformenvironments where identical tools exist for a variety of target architectures.The detailed list of goals comprises research oriented issues, design and implementationissues, and standardization issues. The project will be driven by people who were alreadyinvolved in the design of Topsys thus making it possible to take pro�t of existing long yearexperiences in that �eld.The central research topic is to investigate on-line monitoring methodologies for parallelsystems and to achieve a deeper understanding of the issues involved in tool interfaces forparallel and distributed computing. Especially the interaction of the monitor with all othercomponents of the system (hardware, operating system, application programs) and its possibleand necessary interconnections with them will be carefully studied. Furthermore, adaptability15

is a big concern. Although the project will lead to a realization for a concrete set of tools,programming libraries, and operating systems, we will concentrate on the question of how tokeep the interface speci�cation abstract enough to guarantee its applicability to various otherenvironments.The major objective is to de�ne a tool/monitor-interface which meets twomain requirements:First, it should be extensive and complete in the sense that the functionality of all common typesof tools (including of course The Tool-set) will be guaranteed. Second, as there will be newtool functionalities in the future or even completely new tools, the interface must be extendiblein a well de�ned manner. Also other research groups must be able to use the approach andadapt it to their needs.A �rst version of the speci�cation can be found in Parts II and III of this document andwill be published in newsgroups and at workshops. We expect to get feedback from othertool designer groups giving us details what type of interface is necessary to meet their specialrequirements. From that we will produce a re�nement of OMIS.Starting from a sophisticated speci�cation document two further goals have to be achieved.First, we will implement an OMIS compliant monitoring system which serves as a basis for TheTool-set. In more detail this means to eventually have an on-line monitor for PVM runningon workstation clusters where tools developed at LRR-TUM and at other sites can be usedconcurrently with the same application programs.Second, if the approach proves to be powerful enough and proves to be a viable basis formaking tool design and implementation easier and less time consuming, we will support OMISto become a new standard in the world of tools for parallel systems. The parallel processinggroup at LRR-TUM will coordinate extensions to OMIS being brought in by other researchgroups. Thus a reliable standard will exist, for which other groups can do both, develop toolsand implement compliant monitoring systems for speci�c parallel architectures.The project policy will be to release all software products being developed by LRR-TUMin the framework of OMIS and The Tool-set under GNU license conditions to provide amaximum pro�t to the user community.We would like to strongly encourage other researchers working in the �eld of parallel pro-gramming environments and tools to participate in this project by discussing with us theirspecial needs or wishes and making critical comments to this proposal.

16

Chapter 3RequirementsThe design of the monitoring interface imposes several requirements which the speci�cation willhave to meet. This chapter will summarize the most important of them. Requirements can bedivided into the following categories:� functional requirements� conceptional requirements� e�ciency requirements.Their scope is limited to the tool/monitor-interface as this is what we would like to specify.Further requirements will arise for the implementation of an OMIS compliant monitoring systemdedicated to a given system architecture. However, they will not in
uence the tool/monitor-interface but the monitor's internal structure and the monitor/program-interface.A general requirement standing above these three categories is derived from the goals of theproject itself. The monitoring interface must be powerful enough to give on-line tools an e�cientaccess to the programming system. The sum of its functions and its conception will have toallow the integrated application of di�erent tools at the same time. Also it must guaranteefuture adaptability to more sophisticated tools (e.g. problem domain oriented tools).Functional RequirementsFunctional requirements can be summarized as follows: the monitoring interface should beversatile enough to allow all possible tools to observe and manipulate all objects of the runningprogram (e.g. processes, messages, variables etc.). Obviously, we can not state requirementsfor tools which might be of interest in the future. Therefore, the requirement list primarilyaddresses well known tool types like debuggers, performance analyzers, program
ow visualizers,checkpointing facilities, and load balancing components.In order to achieve the desired degree of versatility it is not su�cient that the monitorinterface just o�ers a set of services which can be requested. It should rather support any servicerequest complexity. This is attained by service request composition. Service request compositionwill be used for more complex operations, e.g. measurement activation in dependence of thesystem activity. Also this feature supports new and more abstract functions to be realized ina tool. Depending on the application type a tool might want to measure performance valuesrelated to semantical constructs like e.g. iterations of a numerical algorithm or transactions ina database system. Service request composition will guarantee the usability of the monitoringinterface for future tools.Concerning objects types which we might like to monitor we can state the following re-quirements: As implementations of monitoring systems will be realized for distributed memory17

environments we will de�nitely be interested in processes and messages. Functions of the inter-face should give access to these object types on several levels of abstraction: e.g. with processeswe might want to look at procedures or even individual statements of its code, with messages wewould like to know, from which primitive data types they are composed. Furthermore, interac-tive tools require these objects not only to be observable but also need manipulation functions,e.g. for stopping of process execution.In addition to this we also need access to hardware objects of the system. Inquiry functionsmight want to have information on the amount of available or used main memory or on somearchitecture characteristics like e.g. technology of installed network devices. These are observedobjects which can not be manipulated by the monitor.Finally, the existence of the monitor creates also new objects, i.e. monitor objects, which atool must be able to interact with. Especially routines for monitor-monitor interaction or �ltermechanisms must be accessible. New objects will appear with extensions of the tool/monitor-interface. These user de�ned objects have to be speci�ed separately and will not be integratedinto the main part of OMIS1. Later chapters will however show, how to introduce these exten-sions.Any of the tools will �nally interact with all of these objects in one or the other way. Theinterface's task is just to provide an appropriate means for this interaction. Let us give someexamples which types of functionality is required by individual tools, using The Tool-set asan example:� The Debugger2Show process status informationSet breakpoints on reception of a message� The Performance AnalyzerMeasure node idle time and process CPU utilizationInclude process into measurement if certain criteria are met� The VisualizerShow dynamically created objects� The Load BalancerEvaluate system's load distribution and trigger process migrationThese examples should make it evident that the design of a versatile functionality of thetool/monitor-interface is of crucial importance.Conceptional RequirementsAs we neither know the complete functionality of the tools in advance nor the types of toolsthemselves we have to require that the monitoring interface o�ers enough extendibility for futuredevelopments. This conceptional requirement will be ful�lled with our speci�cation by designingmeans of how to enhance the speci�cation.1Obviously, an object oriented approach for implementing a monitoring system seems to be favorable. Soft-ware objects like 'processes', 'PVM tasks', 'threads' can be handled by classes derived from some abstract class'computingObject'. Methods can be similar for all derived classes.2For a brief description of what the functionality of the following four Tool-set-components will be, pleaserefer to [LWB+95] 18

A second conceptional requirement is imposed by the variety of tools which will use thisinterface. We can distinguish tools with and without a graphical user interface. The �rst groupwill usually have a single point of control, e.g. a tool environment on a workstation. From thatsingle point of control the tool will communicate with the monitoring system, i.e. the individualmonitors on the nodes. On the other hand we will have tools without a user interface whichreside in the system in a centralized or decentralized version. Decentralized tools are for exampleload balancer systems. The monitoring system must be
exible enough to serve all these di�erenttypes together with their di�erent spatial distribution of control.E�ciency RequirementsFinally, we have e�ciency requirements. Although it might seem to be an improper approachto discuss interface speci�cations in terms of the e�ciency of their potential implementationswe will see that there are good reasons to look at this issue here. Interaction between a monitorand a tool must be handled by a kind of communication mechanism (e.g. message passing orRPCs). In order to keep the overhead minimal it is necessary to have powerful basic servicesand a possibility of composing service requests into a single request.In addition to being a functional requirement composite service requests are necessary fore�ciency reasons. They combine a sequence of requests of available basic services into a singlerequest. E.g. to get an overview over the system utilization the tool could ask each monitor forthe idle time percentage. Instead, it will ask one monitor which sends requests to all others andreturns a collective response to the calling tool. These types of composite services are of specialinterest in situations where the requested information is logically a computation of informationfrom di�erent computing nodes. In this case the monitor itself can do some pre-calculation inorder to reduce message passing overhead.In order to avoid delays due to communication, the monitoring system should also be able tohandle certain kinds of events occuring in the application program without interacting with thetool. If for example a performance analysis system wants to measure the mean time betweensending a message and receiving the reply, it would be prohibitively expensive to inform the toolon each event occurrence. Instead, the monitoring system should be able to start and stop atimer autonomously. Service request composition can also support this situation.

19

20

Part IIStructure of the MonitoringInterface

21

22

Chapter 4The System ModelThis chapter describes the model of the target systems for which OMIS is primarily designedfor and also the embedding of an OMIS compliant monitoring system into such a system. Inour example, the environment is composed of a parallel programming library and an additionalspecialized runtime library (e.g. for handling parallel I/O operations). Programs consist of acollection of tasks which usually spawns over a set of nodes.Thus, this paper does not only present an interface speci�cation, but also speci�es the kindof environment that can be handled by the interface. Although the speci�cation exhibits ahigh degree of
exibility, we can not expect to be able to integrate it in every architecturalenvironment, especially if it di�ers considerably from those found with the message passingparadigm.Let us now look at the components participating in such an environment. Figure 4.1 shows anabstract view where individual nodes of the parallel system are not yet visible. The applicationprograms consist of a certain number of tasks which communicate by mechanisms provided bythe parallel programming library (e.g. message passing between nodes, shared memory on onenode). Task management and other organizational work is performed by special modules ofthe programming environment (e.g. daemons). It might for example be based on the parallelprogramming library PVM and the specialized runtime library PFSLib1. Technically, this meansthat there might be libraries and daemons with which the programworks together. The completecomplex runs on top of the operating system and the hardware.As soon as we add tools to this ensemble (either interactive or automatic tools) we needadditional layers. The part which joins the tools to the running program is the monitoringsystem. Its role is to establish the tool/program-interaction. Consequently, this layer is locatedbetween the application program and the tool.Interactive tools usually reside on a host machine which is connected with the target system2.With automatic tools like e.g. load balancers, the situation is di�erent. They exist in a dis-tributed manner on the target nodes only. We will therefore call them distributed tools. Twofurther modules are of interest3. The distributed tool extension (DTE) is a set of user suppliedfunctions to perform certain manipulations outside of the centralized tool (e.g. calculate certainperformance metrics, write traces to local disks, etc.). Finally, we might have monitor extensions(ME). These are extensions of the monitoring system and its speci�cation which are dedicatedto a new software component like e.g. a parallel �le system (PFSLib). It highly depends on theconcrete tool environment which of these three additional components are available in a givensystem. However, if there is an interactive tool then there will also be in almost any case a1PFSLib is a parallel �le system for workstation cluster environments. See [LL95] for details.2Note, that with many modern parallel computers and with workstation clusters the host may actually be partof the target machine.3Please refer also to chapter 6 for more details on these additional components.23

$Id: sys-model.fig,v 1.3 1996/02/13 10:43:08 ludwig Exp $

tool/monitor-interface

monitor/program-interface

hardware

operating system

tool A
tool B

tool Cdistributed tool

on-line monitoring interface

distributed tool
extension

(DTE)

monitor
extension

(ME)

task
task parallel

programming
library

application program

specialized
runtime
library

monitoring system

Figure 4.1: System model: embedding an OMIS compliant monitoring system into an environ-ment with tools and a parallel programming librarydistributed tool extension because many activities can be handled more e�ciently directly onthe nodes and not in the central tool (e.g. preprocessing of information data).How do the individual layers of �gure 4.1 inter-operate? The monitoring system has twointerfaces: one for interaction with the di�erent tools (tool/monitor-interface), a second one forinteraction with the program and all underlying layers which keep the program running. Forsimplicity reasons we will call the latter the monitor/program-interface, although it comprisesinterface parts to di�erent modules of the system (program code, libraries, operating system).Activities at this level are restricted to low-level inspection and manipulation requests. Obviouslywe will have to handle di�erent information types depending on the low-level module with whichwe inter-act. Details will be discussed in later chapters.The tool/monitor-interface is what the developer of a tool �nally will use. However, OMISmakes a speci�cation of semantics only for the on-line monitoring interface. In addition, meansare designed to extend this interface. We end up with a de�nition of the tool/monitor-interfacewhere the native services provided by the on-line monitoring interface are de�ned with their syn-tax and semantics whereas all of the extensions are only de�ned with respect to their syntacticalstructure.The interaction between tools and the monitoring system is handled via asynchronous remoteprocedure calls. The tool invokes a service request and either waits for results coming back fromthe monitoring system or speci�es a call-back to be invoked when results are available.The interaction between the monitoring system and the additional monitor extensions anddistributed tool extensions happens via function calls and activation of call-back functions.24

Chapter 5A Basic Outline of Available ServicesSince a central idea of OMIS is to provide an interface that allows complex requests to bebuilt by combining primitive ones, the tool/monitor-interface is based on strings in order toachieve the needed
exibility. Thus, the tool/monitor-interface conceptually consists of only asingle procedure that can be invoked by both centralized tools and distributed tool components.This procedure receives a string as an input parameter, interprets this string, and returns aresult which again is a string1. The individual monitoring functions available by invoking thisprocedure are called services; the string that is passed to the procedure (requesting the activationof a service) is called service request, the result is called service reply.In order to meet the e�ciency requirements stated in Chapter 3, the structure of a servicerequest follows the event-action-paradigm, allowing the monitoring system to quickly react onstate changes in the monitored system without having to communicate with the tool. A servicerequest can consist of an event de�nition X associated with an action list Y, meaning \wheneveran event of type X occurs invoke the actions in Y, passing some relevant information of the eventoccurrence to these actions". If no event de�nition is present, the service request is unconditionaland all actions are invoked immediately and exactly once.The interface procedure accepts requests for all monitors in the monitoring system; therefore,a distributed tool component can request services not only for its local node, but also for anyother node. Likewise, the actions associated with an event can be requests for services on nodesdi�erent from the one where the event occurs. The monitoring system automatically takes careof forwarding the requests to the proper nodes. In fact, requesting a service for a remote nodeis exactly the way how monitor/monitor communication is used. In addition, we allow servicesthat are global, i.e. that involve more than one monitor.The next section introduces the di�erent classes of services available at the tool/monitor-interface; Section 5.2 provides a basic outline of the mechanisms and the syntax used in thisinterface. Section 5.3 presents two examples giving an impression of the interface's expressive-ness. A detailed description of the interface procedures is contained in Section 5.4. Section 5.5�nally presents some additional remarks on the tool/monitor-interface.5.1 Classi�cation of Monitoring ServicesThe services that are o�ered by the tool/monitor-interface can be classi�ed according to threedi�erent properties:� First, we have to distinguish between basic services and composite services. Basic servicesare those monitoring functions that are built into the monitor and form the building blocks1To support e�cient usage there should be a utility library containing functions to assemble and parse thesestrings. However, the speci�cation of such a library is not part of this document.25

for the (composite) service requests that can be sent to the tool/monitor-interface. Asstated above, a service request is composed of an event de�nition and associated actions.Here, the event de�nition and each of the actions are basic services, while the wholeservice requested is composite. However, when the meaning is clear from the context, wewill simply speak of a service in this document.� Further, we can classify basic services according to their input/output behavior:1. Manipulation services. These services receive some input parameters from thecaller, but will not have a result, except for an acknowledge or an error code. Thus,their only e�ect is to change the state of the monitored system by manipulatingobjects in the application or in the monitor itself. Examples are \stop a process",\set a variable of a process to a given value" or \raise a user de�ned event".2. Synchronous services. These services receive some input parameters and imme-diately return a result exactly once. The result will contain information about thecurrent state of the monitored system (including the monitoring system itself). Ex-amples are \return the list of valid task identi�ers on a node" or \return the CPUtime of a process".3. Asynchronous services. In contrast to the two classes above, asynchronous servicescan have an arbitrary number of replies. Usually, neither the number of replies northe time when replies will be returned is known when the service request is issued.The asynchronous services o�ered by OMIS are all of the type: \detect the occurrenceof an event X" (e.g. detect that a process receives a message).The description of basic services in Section 8 is structured according to these classes.The input/output behavior of composite services depend on the types of basic servicesthey are composed from. Composite manipulation services can only be composed of ba-sic manipulation services; composite synchronous services may be built from both basicmanipulation and/or synchronous services.Composite asynchronous service requests always consist of a basic asynchronous service(event de�nition) and a list of basic manipulation/synchronous services (action de�nition).They are mainly used to monitor the occurrence of the de�ned event in the application,since they trigger the execution of services (the actions) without tool interaction. Anexample is a request to stop a task whenever it tries to send a message.Basic asynchronous services only detect occurrences of events, i.e. conditions when certainactivities have to be invoked, but they do not de�ne what has to be done when the eventsoccur in the system. Therefore, in contrast to basic manipulation/synchronous services, abasic asynchronous service cannot be used in isolation, but only in combination with anaction de�nition, forming a composite asynchronous servicerequest.Since all the basic asynchronous services de�ned by OMIS are event de�nitions, we willuse the terms \event de�nition" and \basic asynchronous service" interchangeably. Inaddition, we will simply speak of an event when the context makes clear whether we meanan event de�nition or an event occurrence.� Basic services can further be classi�ed according to the type of objects they refer to. Onthe �rst level, we distinguish between system objects and monitor objects. System objectsare those objects being part of the monitored application or of the hardware the applicationis executed on. Currently, three di�erent types are supported:1. processes, e.g. PVM tasks, 26

2. messages, including synchronization objects, and3. hardware, i.e. the parallel or distributed computing system.More specialized system objects, such as groups and barriers in PVM, are not yet includedin this speci�cation. We will add them in a later stage of the OMIS project in form ofa monitor extension. In Part III, we will use parallel I/O as an example for this kind ofextension of the monitoring interface that aims at observing additional objects.Monitor objects are those objects that are introduced by the monitoring system itself. Forexample, each asynchronous service request is a monitor object, since it has to be stored inthe monitoring system and can be manipulated using other services. Other monitor objectsare user-de�ned events or timers and counters, although the latter are not included in thebasic speci�cation.Since this classi�cation of the monitored system into a hierarchy of objects is a naturalway of structuring the monitoring services, we are thinking towards the future use of an objectoriented paradigm for the tool/monitor-interface instead of the current procedural one. Byexploiting inheritance, object oriented techniques could also provide a way to de�ne the interfaceat an abstract level independent of the supported programming library. Services speci�c toa programming library could then be realized by an extension to the generic monitor thatimplements object classes (e.g. PVM task) derived from the interface's base classes (e.g. abstractprocess). See item 1 in our requests for comments (Chapter 12).5.2 Syntactical Structure of Monitoring ServicesThis section is intended to give an impression of how the syntax of service requests and servicereplies looks like and how basic service requests can be combined to more complex ones. For acomplete formal description of the request and reply syntax, please refer to Section 7.5.2.1 Service RequestsBasic Service RequestsA basic service request is a string that complies with the following syntax:basic request ::= request id ' ' receiver nodes ' ' service name '(' input parameters ')'The request id is an arbitrary integer number de�ned by the tool. It will be sent back to thetool with every reply to this service request, so that the tool can uniquely associate the replieswith the corresponding requests when several basic service requests are combined to a compositerequest.An arbitrary list of nodes in the monitored system can be speci�ed in receiver nodes . Therequest will be sent to every node in the speci�ed list. If the list is empty, the request will bebroadcast to all nodes. The sending of requests will make use of an atomic multicast protocol toensure that the monitoring system always remains in a globally consistent state. If two requestsare sent from di�erent sources to a common set of destination nodes, this protocol ensures thateach node in the set will receive them in the same order. Thus, if a request for a global stop(i.e. stop all processes), and another one for a global continue (i.e. resume all processes) areissued nearly simultaneously, then as a result either all processes are stopped or all processesare running. 27

In order to simplify the handling of nodes within tools and within the monitoring system,nodes are identi�ed by numbers instead of host names. There is a service list nodes thatprovides the correspondence between node numbers and host names.The service name is a string identifying the requested basic service. The monitoring systemuses an internal table to map the service names to the functions that actually implement theservices. This mapping table is the key to the interface's extendibility (see Chapter 6). Thus,service name may identify both a basic service de�ned in this document and a basic servicecoming from an extension.The input parameters are de�ned by a list of values where each value is either an integer, a
oating point number, a quoted string, a special $-variable (see below) or a lists of these items.The number, the types and the meaning of these parameters depend on the basic service beingrequested. Chapter 8 contains a complete description.Composite Service RequestsThe basic service requests de�ned above can be combined to more powerful, composite requestsusing the event-action paradigm. The general syntax of such a combined request is:request ::= [event ':'] action listaction list ::= action ',' action ',' ... j action ';' action ';' ...event ::= basic requestaction ::= basic requestEach composite service request consists of an optional event de�nition and a list of actions.Actions can only be basic manipulation services or basic synchronous services, while eventmust always be a basic asynchronous service. The separator used in the action list de�neswhether these actions may be executed in parallel (comma) or have to be executed sequentially(semicolon). The semicolon enforces sequential execution even in the case where the actions areexecuted on di�erent nodes.If no event de�nition is present, the action list is executed immediately and a list of resultsare sent back to the requester. Otherwise, we have an asynchronous service request that is storedas an explicit object within the monitoring system. Special services then allow to manipulate(i.e. enable, disable or delete) these requests. Initially, asynchronous service requests are in adisabled state, i.e. they are not yet considered by the monitoring system. Once the requesthas been enabled { either directly by the tool or as a result of executing the actions of anotherasynchronous service { the monitoring system is looking for event occurrences matching theevent de�nition contained in that request. Whenever a matching event occurrence is detected,the request's action list is executed and and a list of replies is sent to the requester. Themonitoring system ensures that the local state of the object (e.g. the process) that triggered theevent will not change until all actions are executed, i.e. each action has access to the state at thetime the event occured. In addition, each event de�nition provides a set of output parameterscontaining information on the actual event occurrence. These parameters can be passed to theactions in the action list using a $-notation. The string $1 refers to the event's �rst outputparameter, $2 to the second one, and so on. The symbol $0 always refers to the number of thenode where the event occured.5.2.2 Service RepliesThe replies of services are strings having a syntax very similar to that of service requests:basic reply ::= request id ' ' sender nodes ' ' service name '(' result parameters ')'reply ::= basic reply ';' basic reply ';' ...28

Thus, a reply is a list of results, each being assorted with the request id of the proper basicservice request, the node number(s) of the sender(s), the basic service's name, and its resultparameters. For each action in a composite service request there will be one or more basic replys,depending on the number of nodes the action is executed on. Identical results on di�erent nodesmay be uni�ed; in this case sender nodes contains the list of all nodes that produce the givenresult. If each node generates a di�erent result, there is one basic reply per node.The data types that can occur in the result parameters are the same as with input parameters:integers,
oating point numbers, strings, and lists.5.3 ExamplesIn the following two subsections we will present short examples that will show how the moni-toring interface supports di�erent tools, namely a performance analysis system and a debugger.Although the basic services will not be de�ned until later in this document, their semanticsshould be intuitively clear in the examples, whose primary goal is to give an impression of theinterface's structure and expressiveness, rather than its concrete services.5.3.1 Performance AnalysisAssume that a performance analysis tool wants to measure the time spent by task 4178 (locatedon node 1) in the pvm send call. In addition, the tool may want to know the total amount ofdata sent by this task, and it may want to store a trace of all barrier events. Then it may sendthe following service requests to the monitoring system:10 [1] start_lib_call([4178],"pvm_send"): 11 [1] start_integrator(1), \12 [1] add_counter(2,$4)13 [1] end_lib_call([4178],"pvm_send"): 14 [1] stop_integrator(1)15 [] start_lib_call([],"pvm_barrier"): 16 [$0] trace("barrier0",$0,$1,$2,$3)17 [] end_lib_call([],"pvm_barrier"): 18 [$0] trace("barrier1",$0,$1,$2)19 [1] enable(10), 20 [1] enable(13), 21 [] enable(15), 22 [] enable(17)The numbers 10 : : :22 are the request identi�ers that will be included in the monitoring system'sreplies. However, in this example there will be no replies, except on error conditions, becauseonly manipulation services are used as actions. While the events used in the example are basicservices de�ned by this document, all the actions (with the exception of enable) come froma distributed tool extension. Thus the performance analyzer can use its own semantics forintegrators and counters, and it can also use its own trace format. The trace action simply hasto write its parameters to the trace �le in the proper format. The string $0 that is used asreceiver node of the trace action results in each node writing a local trace �le, since it will bereplaced by the number of the node where the event took place. If you want a single trace �le forall nodes, all you have to do is replacing the $0 by a �xed node number, say 0. The monitoringsystem then takes care of sending the data to that node.5.3.2 DebuggingThe following example shows how the basic service requests de�ned by this document can beused during debugging. The debugger wants to know the task id, the procedure stack, and thecontents of all general purpose registers, each time task 1123 (assumed to be located on node 1)starts sending a message, or task 1234 (on node 2) reaches instruction address 0xfe08. This canbe achieved by using a user de�ned event: 29

10 [1,2] define_user_event(5)11 [1] start_lib_call(1123,"pvm_send"): 12 [$0] raise_event(5,[$1])13 [2] breakpoint(1234,0xfe08): 14 [$0] raise_event(5,[$1])15 [1,2] user_event(5): 16 [$0] print([$1]); \17 [$0] stack_backtrace($1); \18 [$0] read_int_regs($1,0,32)20 [1] enable(11), 21 [2] enable(13), 22 [1,2] enable(15)First, the user de�ned event #5 is declared on nodes 1 and 2. This event is then raised onthe local node whenever task 1123 sends a message or task 1234 reaches the breakpoint. Theparameter passed to raise event is the task id. Whenever user de�ned event #5 occurs, the taskid passed as parameter is sent to the debugger (print([$1])), followed by the task's procedurestack backtrace (stack backtrace($1)) and its register contents (read int regs($1,0,32)).After the actions have been executed, the task continues execution. To stop the task with theoccurrence of the event, simply add19 [$0] stop($1)to the action list.When the breakpoint is hit, a possible reply would look like16 [2] print(1234); 17 [2] stack_backtrace(...); 18 [2] read_int_regs(...)where, of course, the proper stack backtrace and register contents are returned instead of thedots.5.4 Interface ProceduresAlthough the concept of the tool/monitor-interface requires only a single interface procedure,for reasons of convenience there are two of them. The �rst one, called OMIS request blockblocks its caller until the service reply is available. Although simple to use, this procedure isnot suited for asynchronous service requests, since they will result in an arbitrary number ofreplies. Therefore there is a second
avour of the interface procedure, called OMIS request.This procedure takes an additional call-back function as a parameter. This call-back will then beinvoked once for each service reply, allowing to process the replies in a completely asynchronousfashion. The ANSI-C prototypes of these two interface procedures are:char * OMIS_request_block(char *request);void OMIS_request(char * request,void (* callback)(char * reply, void * param),void * callback_param);The �rst procedure accepts a string containing a service request that must be conformingto the syntax de�ned above and returns the request's reply as a dynamically allocated stringthat should be deallocated by the caller using the free library call. Since this function blocksuntil the reply is available, it is normally not useful for asynchronous services. However, formanipulation services or synchronous services it is convenient to use, since the reply is alreadyaccessible when the function returns.Requesting a service without blocking until its results are available can be done with thesecond procedure. In addition to the request, you have to pass a pointer to a function and anarbitrary argument pointer. When the service returns a reply, the call-back function will be30

invoked. It will get the the reply string in the reply parameter, and the argument pointer asits param parameter. Again, the reply string is allocated dynamically and must be deallocatedin the call-back, using free. Note that this procedure can be used for all kinds of services(manipulation, synchronous and asynchronous ones) where the caller should not be blockedwhile waiting for a reply.5.5 RemarksThere are some general remarks about the monitoring interface that should be mentioned here:� In principle, the interface is asynchronous. This means that with the OMIS requestprocedure there is no guarantee that you will receive replies in the same order in whichyou have sent the requests. However, there is one exception. If you send requests formanipulation services or synchronous services to a single node where they can be handledlocally, you will receive the replies in the expected order, since the monitors will have toprocess incoming requests in a FIFO fashion.� Parameters of services must be either constants, or (in case of an action) output parametersof the corresponding event (i.e. $0, $1, etc.). They cannot themselves be actions or events.Thus no recursion is possible with service requests.� Events are either prede�ned (e.g. task starts sending a message) or user-de�ned. Userde�ned events can be raised by a special service.� Only one event is allowed in a service request. Combinations of events can be implementedby means of user de�ned events, the disable and enable services described in Section 8.2.1,and distributed tool extensions.For example, the or operator can be implemented by a user de�ned event. Assume thataction list A(x) shall be executed on node 1, when event E1 occurs on node 1 or eventE2 occurs on node 2. The following sequence of commands will achieve this:10 [1] define_user_event(5)11 [1] E1: 12 [1] raise_event(5, [$1])13 [2] E2: 14 [1] raise_event(5, [$1])15 [1] user_event(5): A($1)16 [1] enable(11), 17 [2] enable(13), 18 [1] enable(15)A simple kind of distributed event detection can be realized by using the enable serviceas an action. If you want to execute an action list A when event E2 (on node 2) occursafter event E1 (node 1), the following requests will achieve this:10 [2] E2: 11 [2] A12 [1] E1: 13 [2] enable(10)14 [1] enable(12)Other combinations (e.g. an and operator) can be realized in a distributed tool extensionas a service that triggers a user-de�ned event when the proper conditions are ful�lled.� The interface o�ers no direct way of passing the result parameters of one action to theinput parameters of another action. If you need this, you have to code a new service in adistributed tool extension library that calls the actions and passes the parameters betweenthem. 31

Chapter 6Extending OMISAs we have already stated before, it is not possible to de�ne a monitoring interface that o�ers allservices that may be needed by any existing or future tool. Therefore, it is of utmost importanceto provide a means of extending the interface. OMIS thus includes provisions that allow newservices to be added to the basic monitoring system by any research or development groupusing the monitor, not just by the one that implemented it. The additional services can beimplemented as a library of C or C++ functions that is linked with the monitor libraries.6.1 Types of ExtensionsThere are three situations where linking additional code to the basic monitoring system ispro�table or even necessary:1. A tool may want to observe new objects within an application, which are not covered bythis document. These objects may come from specialized runtime libraries. For instance,if an application uses a parallel I/O library, a tool may want to observe I/O objects.The code linked to the monitoring system, that provides these new services is called amonitor extension (ME).2. Usually, di�erent tools use very di�erent methods to process events in the monitoredapplication. For instance, one performance analyzer is based on event traces, thus it wantsto write events to a �le in its own proprietary trace format. Another performance analyzeris based on distributed on-line analysis. It will therefore need services that perform thisanalysis, e.g. counting some values, starting or stopping interval timers, and so on.Therefore, it is desirable to de�ne new services for this kind of tool-speci�c data processing.We will call these distributed tool extensions (DTE). They can also include specialized,more complex services that are based on the basic services de�ned by this document.3. Finally, there are also fully distributed tools without a central user interface component,e.g. a load balancer. For performance reasons it is pro�table that the components of sucha tool can access the monitoring interface on their local node via simple procedure callswithout the need for interprocess communication.We call this kind of \extension" a distributed tool (DT).Of course, a single library can contain code of all these categories.32

6.2 The Method of Extending OMISOnce we have decided to allow new services to be linked to the monitoring system, the question ishow to make these services accessible at the monitoring interface. The approach we are using isas follows: Each service is addressed indirectly by a unique service name, i.e. a unique identi�erstring passed to the tool/monitor-interface, which is mapped to the implementing function usinga mapping table. Now we have a couple of requirements that must be ful�lled:� The service names used by di�erent extensions must be disjunct, otherwise we will not beable to use several extensions at the same time. Being able of having multiple extensionsis extremely important, since a single version of the monitoring system should be able tosupport all of the tools available in a certain environment.� The name of a service must not change with di�erent versions of the monitoring system.When a group of researchers extends the monitor by providing new services, they musthave the same name in every version of the monitoring system, independent of whether ornot other extensions are present.� Besides having unique service names, also the function names and other externally visiblenames in the code of the extension libraries must be disjunct, since di�erent extensionlibraries may be linked to the monitor.� It must be possible to generate and use the monitoring system both with and without anyextension.� The coordination necessary to meet the above requirements should be as light weight aspossible. Developers should be able to provide extensions without being forced to knowabout all other extensions and without being forced to apply for every new service at acentral location.We have decided to use the following strategy for extensions:� Each service name and each externally visible name in the code of an extension libraryhas a pre�x that separates it from the names in all other extensions and from the ones inthe basic monitor.� A research group that wants to make extensions to the monitoring system is assigned anew pre�x on request. Then this pre�x is reserved exclusively for that group; thus, nofurther coordination is required. Developers can assign arbitrary service names, providedthat they start with the assigned pre�x.� In order to realize the above strategy, the table mapping service names to the functionsthat implement the services cannot be built statically, but must be expanded dynamicallyby each extension linked to the base monitor. Therefore, each extension library mustcontain an initialization function whose name is \register", prepended by the extension'spre�x. This routine will then register all services provided by the corresponding extension.When a new pre�x is requested, the basic monitoring system will be modi�ed in such away that it invokes this initialization routine in the startup phase.� In addition, an empty routine with the same name will be created in a dummy library.This library is linked to the monitor as the last library. Thus no unde�ned symbols occurwhen some extensions are currently not linked to the monitor.33

The procedure of requesting a new pre�x has to be done only once by those groups that planto extend the monitoring system. We will try to make this procedure fully automatic, e.g. byusing a WWW form or a mail server.Services from extensions may possibly get included into the documentation of OMIS, if theyare of public interest. But in order to keep the implementation modular, they will neverthelessbe implemented in a separate library.

34

Part IIIServices of the Monitoring Interface

35

36

Chapter 7Formal Syntax of Service Requestsand Replies7.1 Service RequestsA service request is a string that complies with the following syntax:request ::= [event ':'] action listaction list ::= seq action list j par action listseq action list ::= action j action ';' seq action listpar action list ::= action j action ',' par action listevent ::= basic requestaction ::= basic requestbasic request ::= request id ' ' receiver nodes ' 'service name '(' parameters ')'request id ::= integerreceiver nodes ::= nodesnodes ::= '[' node list ']' j '[]'node list ::= node j node ',' node listnode ::= integer j '$' integerservice name ::= identi�erparameters ::= parameter list j �parameter list ::= parameter j parameter ',' parameter listparameter ::= integer j
oating j string j list j '$' integerlist ::= '[' parameters ']'The symbols integer,
oating, string, and identi�er represent (32-bit) integers, (double pre-cision)
oating point numbers, quoted strings, and identi�ers with a syntax compatible to thelanguage C. list denotes an (untyped) list of entities; the $-notation can be used in actions torefer to the output parameters of an event. $i refers to the i-th output parameter. The symbol$0 always refers to the node where an event occured.The semantics of the input parameter list depends on the concrete service and is speci�ed inChapters 8.1 and 8.2.7.2 Service RepliesA service reply has a structure similar to that of a service request. The general syntax is:37

reply ::= reply listreply list ::= basic reply j basic reply ';' reply listbasic reply ::= request id ' ' sender nodes ' ' service name '(' result parameters ')'sender nodes ::= nodesresult parameters ::= parametersAgain, the exact semantics of the result parameters depends on the service and is speci�edin Chapters 8.1 and 8.2.

38

Chapter 8Speci�cation of Available BasicServicesIn the following subsections we will present a list of all basic services currently de�ned by OMIS.As you can see from the service descriptions, the goal of OMIS is to de�ne a basis for buildinghigher-level monitoring systems. For instance, OMIS does not include the generation of eventtraces, but it provides a very easy and powerful mechanism for the monitoring of events. So ifyou need some kind of event trace, you only have to provide the functions for writing the eventsto a peripheral, but you don't have to implement the event detection. Similar, OMIS servicesoperate on the machine level, i.e. they use addresses or pointers rather than symbolic names forreferring to programming objects. Thus, an OMIS compliant monitor is not forced to work witha symbol table generated during compilation of the monitored application. But, of course, it ispossible to add extensions that make use of these symbol tables.Throughout the service descriptions in Sections 8.1 and 8.2, we will use ANSI-C-like proto-types to de�ne the input and result parameters, since this type of description is much more clearthan presenting a grammar or BNF for the syntax of the request and reply strings. In additionto the types integer,
oating, and string, we will use the type-identi�er any which stands forany of these three types. To de�ne more complex parameters, we will use typedef's and/orC-struct's1. Lists of values are speci�ed by the type name followed by either a '+', denoting alist consisting of multiple (at least one) repetitions of that structure, or the name followed bya '*', denoting zero or more repetitions. The resulting string is then simply the linear layoutof a value having the speci�ed type. I.e. a struct corresponds to several values separated bycommas, while a list (indicated by '+' or '*') corresponds to several values of its component type,that are again separated by commas, but are enclosed in brackets ('[' and ']').A simple example will clarify this: Assume the following de�nition of a service:typedef struct {string name;integer state;integer priority;floating cpu_time;} Process_info;struct {integer status;Process_info* info;1These constructs are only used in this document to de�ne the structure of request and reply strings, they arenot part of the tool/monitor-interface itself. 39

}process_info (integer+ tid_list, integer flags);This says that process info has two input parameters, the �rst one is a non-empty list ofintegers, the second one is a single integer. It returns an integer and a list of 4n elements, whereelements 0,4,... are strings, elements 1,5,... and 2,6,... are integers and elements 3,7,... are
oating point numbers. Therefore, a correct request for this service could be:123 [1] process_info([231,345,654], 9)A valid reply could look like2:123 [1] process_info(0, ["foo",12,0,12.7, "bar",1,10,0.65,\"tst",9,-10,1.1e3])A few synchronous basic services return a result where some components are optional. In thiscase, the elements are placed in square brackets in the type de�nition. An input parameter ofthe service will then determine which components are actually present. The real process infoservice is of this type, i.e. the de�nition of this service really looks more like:typedef struct {[string name;] // present if bit 0 is set in flags[integer state;] // present if bit 1 is set in flags[integer priority;] // present if bit 2 is set in flags[floating cpu_time;] // present if bit 3 is set in flags} Process_info;struct {integer status;Process_info* info;}process_info (integer+ tid_list, integer flags);This means that all components of Process info are optional. The
ags parameter is a bit-vector that determines which of them will be present in the result. For example, the reply forthe request123 [1] process_info([231,345,654], 9)could be (since bits 0 and 3 are set in
ags):123 [1] process_info(0, ["foo",12.7, "bar",0.65, "tst",1.1e3])Asynchronous basic services have two di�erent types of results, namely the status value thatis returned as an immediate response to the service request, and the parameters that can beaccessed by the actions when the de�ned event occurs. Therefore, we need a further notationto de�ne the types of these results. It looks like this:integer some_event(integer param)--> struct {integer first_result_parameter;string second_result_parameter;integer third_result_parameter;}2Note that the reply always will be a single line, without any line break. The line break in the example(indicated by the 'n' at the end of the �rst line) is only for the sake of printing40

The type of data returned immediately as a response to the service request is given in the C-likeprototype (it is always integer, since it is only a return status). The parameters containinginformation on the occurrence of the de�ned event that are accessible to the actions via the$-notation are de�ned as a struct after the --> symbol. In the example, this means that$1 as a parameter of an action associated with some event will be replaced by the value of�rst result parameter, $2 by the value of second result parameter and so on. Note thatbasic asynchronous services never have optional components in their result parameters.8.1 System ObjectsSystem objects are those objects in the monitored system that do not belong to the monitoritself. Currently, we only make a very coarse grain classi�cation of these objects. We distinguishbetween� processes (Section 8.1.1),� messages (Section 8.1.2), and� hardware (Section 8.1.3).In Section 8.1.4 we introduce I/O objects as an example for a monitor extension.We are currently working towards a more re�ned classi�cation, that among others will alsoinclude light weight processes (threads). This will most probably also lead to an object orientedmonitoring interface (see item 1 in \Request for Comments", Chapter 12).8.1.1 ProcessesManipulation ServicesThe following services are provided to manipulate the behavior of application processes. Theresult of these services is a return value indicating whether or not the service could be executedcorrectly.1. start : start a process.integer start(string exec, string* argv)The start service starts a new process, e.g. a PVM task. exec is the executable's pathname, argv is the vector of command line arguments.2. stop : stop a process.integer stop(integer* tid_list)This service stops all processes speci�ed in the tid list by putting them into a special statethat ensures that the process no longer gets any CPU cycle. From this state, the processcan only be released with the continue service. If tid list is empty, all processes of themonitored application on the node(s) where the service request is sent to are stopped.3. continue : continue a process.integer continue(integer* tid_list)41

This service continues the processes speci�ed in the tid list that are in a stopped state.If tid list is empty, all processes of the monitored application on the node(s) where theservice request is sent to are continued.4. kill : send a signal to a process.integer kill(integer* tid_list, integer sig)Sends the signal sig to all processes in tid list. If tid list is empty, the signal will be sentto all processes of the monitored application on the node(s) the request is sent to.5. nice : change priority of a process.integer nice(integer* tid_list, integer val)Changes the scheduling priority of the processes in tid list to val. Again, an emptytid list denotes all application processes on the node(s) the request is sent to.6. write memory : write into the memory of a process.integer write_memory(integer tid, integer addr, integer+ val)Writes the 8-bit values in the integer list val into the memory cells at addr, addr+1, ...of process tid.7. write int registers : write into a process' integer registers.integer write_int_registers(integer tid, integer reg, integer+ val)Writes the values in val into registers reg, reg+1, ... of process tid. The register num-bers and their bit-length depend on the node architecture; they are de�ned in the nodeprocessor's ABI (Application Binary Interface).8. write fp registers : write into a process'
oating point registers.integer write_fp_registers(integer tid, integer reg, floating+ val)Writes the values in val into registers reg, reg+1, ... of process tid. The register num-bers and their bit-length depend on the node architecture; they are de�ned in the nodeprocessor's ABI (Application Binary Interface).9. goto : set the PC of a process.integer goto(integer tid, integer addr)Sets the program counter (PC) of process tid to the value addr. This has the e�ect ofexecuting a jump instruction to that address in the current context of the speci�ed process.10. prepare checkpoint : prepare a global checkpoint.integer prepare_checkpoint()Creates a globally consistent state for a checkpoint. This includes saving all receivablemessages in the processes' address space.11. migrate process : migrate a process to another node.integer migrate_process(integer tid, integer node)This service migrates the process tid to an other node, which is given by its node number,after a checkpoint has been prepared using prepare checkpoint().42

Synchronous ServicesThe following services can be used to obtain information on an application's processes:1. process info : get information on processes.typedef struct {integer tid; // the global id of this process,// e.g. the PVM task idinteger pid; // the local id of this process,// e.g. UNIX pid// present if bit 0 is set in flags[string* argv;] // the process' argument vector,// i.e. pathname and parameters// present if bit 1 is set in flags[integer scheduling_state;] // (running, sleeping, stopped, etc.)// present if bit 2 is set in flags[integer memory_size;] // the process' current memory size// present if bit 3 is set in flags[integer priority;] // the scheduling priority// present if bit 4 is set in flags[floating user_time;] // the process' current user time// present if bit 5 is set in flags[floating system_time;] // the process' current system time// present if bit 6 is set in flags// this list is not yet complete, more// information may be added, e.g. other// relevant data from the rusage structure} Process_info;struct {integer status;integer number_of_processes; // number of application processes on nodeProcess_info* processes;}process_info(integer* tid_list, integer flags)Detailed information about a set of processes can be obtained by the process info ser-vice. tid list de�nes the processes that have to be inspected; an empty list stands forall processes of the monitored application on the node(s) where the service request is sentto. The second parameter
ags is a bit set that allows to mask each kind of informationindividually. E.g. if
ags is equal to 10, the processes' argv vector (i.e. name and com-mand line parameters) and their memory size will be returned. So it is possible to get allrelevant process information with a single service request, but still the monitor only needsto retrieve the information that is really needed. For instance, the list of the tids of allapplication processes can be requested with process info([],0). In this case, the monitordoes not need to acquire any further information.We will also provide a mechanism that allows to get state information not only for the mon-itored application's processes, but also combined information for all the other processes.Most probably there will be a special tid representing 'all other processes'.43

2. stack backtrace : : : : : : : : : : : : : : : : : : : determine a process' procedure stack backtrace.typedef struct {integer pc;integer fp;} Stack_element;struct {integer status;Stack_element* stack;}stack_backtrace(integer tid)For debugging or performance analysis based on sampling, there is a service stack backtracethat returns the process' procedure stack backtrace. It consists of a list of pairs for eachactive procedure invocation. Each pair contains the procedure's frame pointer and thecurrent execution address in that procedure. The record for the most recent procedureinvocation is returned as the �rst element of the list.3. read memory : read the memory of a process.struct {integer status;integer* values;}read_memory(integer tid, integer addr, integer num)Reads num bytes from process tid's memory area, starting at address addr and returnstheir contents as a list of bytes.4. read int registers : read integer registers of a process.struct {integer status;integer* values;}read_int_registers(integer tid, integer reg, integer num)Reads num integer registers of process tid starting at register reg and returns theircontents. The register numbers and their bit-length depend on the node architecture; theyare de�ned in the node processor's ABI.5. read fp registers : read
oating point registers of a process.struct {integer status;floating* values;}read_int_registers(integer tid, integer reg, integer num)Reads num
oating point registers of process tid starting at register reg and returns theircontents. The register numbers and their bit-length depend on the node architecture; theyare de�ned in the node processor's ABI. 44

6. loader information : return the loader information of a process.typedef struct {string path_name; // The path name of that load modulestring member_name; // Member name, if module is an archiveinteger code_start; // Start address of code segmentinteger code_len; // Length of code segment in Bytesinteger data_start; // Start address of data segmentinteger data_len; // Length of data segment in Bytesinteger bss_start; // Start address of BSS segmentinteger bss_len; // Length of BSS segment in Bytes} Loader_info;struct {integer status;Loader_info* loader_info;}loader_information(integer tid)On some parallel computers, e.g. the Parsytec GC/PowerPlus, programs are relocatedwhen they are loaded by the operating system. Debuggers therefore need to know the startaddresses and the lengths of the program's segments. The service loader informationwill return this information for each load module of the process. This service may also beused with operating systems like AIX where code (e.g. libraries) can be loaded dynamically.Asynchronous ServicesThe following services notify the caller on certain process related events that occur in the mon-itored application. In all of these services, an empty tid list denotes \all application processeson the node(s) where the request is sent to".1. new process : A new process has been created.integer new_process()--> integer tid; // tid of the new processThis event is raised whenever a new process is created. The event is raised immediatelybefore the new process starts executing. The parameter passed to actions consist of thenew process' tid.2. process terminated : A process has terminated.integer process_terminated(integer* tid_list)--> integer tid; // tid of terminating processEvent process terminated is raised when a process in tid list has terminated. It passesthe tid of the terminated process to its actions.3. process signal : A process received a signal.integer process_signal(integer *tid_list, integer *sig_list)--> struct {integer tid; // process receiving the signalinteger sig; // signal number} 45

This event occurs whenever a process in tid list receives a signal in sig list. It will passthe tid and the signal number to its actions.4. process blocked : A process gets blocked.integer process_blocked(integer* tid_list)--> integer tid; // tid of process that got blockedThis event is raised when a process in tid list is blocked in a blocking communication orsynchronization call. It passes the process' tid to its actions.5. process unblocked : A process gets unblocked.integer process_unblocked(integer* tid_list)--> integer tid; // tid of process that got unblockedThis event is raised when the blocking condition (due to a communication or synchro-nization call) of a process in tid list is removed again. It passes the process' tid to itsactions.6. process stopped : : : : : : : : : : : : A process has been stopped by the monitoring system.integer process_stopped(integer* tid_list)--> integer tid; // tid of process that has been stoppedThis event is raised when a process in tid list is stopped by the monitoring system (usingthe stop service). It passes the process' tid to its actions.7. process continued : : : : : : : : A process has been continued by the monitoring system.integer process_continued(integer* tid_list)--> integer tid; // tid of process that has been continuedThis event is raised when a process in tid list is continued by the monitoring system(using the continue service). It passes the process' tid to its actions.8. scheduling : Process scheduling event.integer scheduling()--> struct {integer old_tid; // tid of process that has been descheduledinteger new_tid; // tid of process that is going to be scheduled}On machines where process scheduling is observable, the event scheduling will be raisedeach time process scheduling takes place. The parameters available for the actions containthe the tids of the descheduled and the scheduled processes. The tid is -1, if the processdoesn't belong to the monitored application.9. breakpoint : A process reaches a given code address.integer breakpoint(integer* tid_list, integer address)--> integer // tid of process that reached the breakpoint} 46

Breakpoints for debugging purposes also are asynchronous services, since they can bereached arbitrarily often. The breakpoint event will occur each time a process in tid listreaches the speci�ed address. The result parameter for actions is the tid of the process.10. step : Single step a process (step into calls).integer step(integer tid)--> // no result parametersThis service resumes the stopped process tid for the execution of one machine statement.It will invoke its actions after the single step has �nished. This is an asynchronous service,since the process may block during the single step, so there is no guaranteed response time.11. next : Single step a process (step over calls).integer next(integer tid)--> // no result parametersThis service resumes the stopped process tid for the execution of one machine statement,treating subroutine calls as a single statement. It will invoke its actions after the singlestep has �nished. This is an asynchronous service, since the process may block during thesingle step, so there is no guaranteed response time.12. �nish : Finish current procedure.integer finish(integer tid)--> // no result parametersThis service continues process tid until it leaves the currently active procedure. Again,this is an asynchronous service, since the process may block.13. call procedure : call a procedure in a process.integer call_procedure(integer tid, integer addr, any* params)This service will call the procedure at address addr with parameters params in thecurrent context of process tid. The result will be the same as if the process had calledthe procedure at the point where it was stopped when this service has been invoked. Thismeans, the parameters will be written to the proper locations, the return address willbe saved, the process' PC will be set to the speci�ed address, and the process will becontinued until the procedure returns. Again, since the procedure may block, this is anasynchronous service.14. ready to migrate : A process is going to be migrated.integer ready_to_migrate(integer* tid_list)--> struct {integer tid; // tid of process that will be migratedinteger dest_node; // destination node of migration}This event will be raised when the system is going to migrate a process in tid list. Theresult parameters passed to actions include the process' tid and its destination node.47

15. migration �nished : : : : : : : : : : : : : : : : : : A process has been migrated to another node.integer migration_finished(integer* tid_list)--> integer; // tid of migrated processThis event is raised on a node, when a process in tid list has been migrated to that node.The information available for actions if the process' tid.16. start lib call : : : : : : : : : : : : : : : : : : A process invokes a call to the programming library.end lib call : : : : : : : : : : : : : : A process returns from a call to the programming library.integer start_lib_call(integer* tid_list, string lib_call_name)--> struct {integer tid; // process doing the library call... // the following results are the input parameters of// the library call}integer end_lib_call(integer* tid_list, string lib_call_name)--> struct {integer tid; // process doing the library call... // the following results are the result parameters of// the library call}These events are raised whenever a process in tid list is calling the speci�ed routine of theparallel programming library (e.g. PVM). start lib call is raised just after the routine isentered, while end lib call occurs just before the call returns. The services are providedfor all routines in the programming library; the value of the lib call name parameterspeci�es the routine's name. In addition to the tid of the calling process, the values ofthe input or output parameters of the library call are passed to the actions. The numberand the types of these parameters depend both on the programming library used and theselected library call. They will be de�ned later in an extra part of this document.The reason for this two-step approach is to avoid dependencies between the on-line moni-toring interface speci�cation and the supported programming library. It clearly separatesthe real task of these services, namely to detect calls to the programming library, fromlibrary speci�c aspects. Moreover, we will work towards an automatic generation of theseservices for a speci�c programming library from a speci�cation of the library's functionprototypes (see known problem no. 4 in Chapter 13).
48

8.1.2 MessagesManipulation ServicesThe services in this group will allow to modify message queues and single messages. They returna status value indicating whether or not the service could be executed correctly.1. insert message : Insert a message into a process' message queue.integer insert_message(integer tid, integer* msg, integer pos)For debugging message passing errors, it may be pro�table to have a service insert messagethat allows to insert a message at a given position pos in a process tid's message queue.The message is speci�ed as a list of bytes.2. remove message : : : : : : : : : : : : : : : : Remove a message from a process' message queue.integer remove_message(integer tid, integer pos)This service will delete the message at position pos in process tid's message queue. Itmay be most useful for debugging message passing errors.3. tag message : Add a tag to a messageinteger tag_message(integer tid, integer msg_ptr, integer tag)To support debugging of message passing programs, OMIS de�nes services that operateon a special message tag. This tag is independent of any message tag de�ned by theprogramming model. In fact, it is invisible for both the programming library and theapplication. However, there are monitoring services to set this tag, to read its value andto trigger some actions when a message with a given monitor tag is received by a process.These tags may be used for di�erent purposes. For example, during debugging, the usermay be interested in how a message that is sent by a process is processed by anotherone. By tagging the message, the monitor can stop the receiving process, when it receivesthat message, regardless of the number of preceding messages in the receiver's messagequeue. When the receiver is stopped, the user can examine how the message is processed,e.g. by single stepping. In addition, tags can also be used to implement distributed eventdetection.The tag message service must be called immediately before process tid issues a messagesend operation. It will then put the speci�ed tag into the message being sent. msg ptris the pointer to the message bu�er.Synchronous ServicesCurrently, this group contains only two services:1. queue info : Return information on a process' message queue.typedef struct {[integer sender;] // tid of process that sent this message// present if bit 0 is set in flags[integer msgtag;] // the PVM message tag// present if bit 1 is set in flags49

[integer size;] // size of the message// present if bit 2 is set in flags[integer* contents;] // the message buffer as a list of bytes// present if bit 3 is set in flags[integer tagged_by_monitor;] // is the message tagged by the monitoring// system// present if bit 4 is set in flags[integer monitor_tag;] // the tag added by the monitoring system// present if bit 4 is set in flags} Message_info;struct {integer status;integer queue_length; // number of messages in queueMessage_info* messages;}queue_info(integer tid, integer flags)This service will return information on the message queue of process tid. In analogy toprocess info we provide a bit set mechanism allowing to select the kind of information tobe retrieved. A component in Message info will only be returned, if the correspondingbit in
ags is set.2. message bu�er : : : : : : : : : : : : : : : Get the address of a process' current message bu�er.struct {integer status;integer buffer_address; // address of message bufferinteger buffer_size; // length of message in buffer}message_buffer(integer tid)The service message bu�er will return the address of a process' current message bu�erand its length. It will mainly be used by debugging tools.Asynchronous ServicesThe following events are provided especially for the monitoring of message passing. Other events,such as start and end of send or receive calls, can be monitored using the start lib call andend lib call services (see Section 8.1.1).1. message arrived : A message is inserted into a message queue.integer message_arrived(integer *tid_list)--> struct {integer tid; // process where message is inserted// into queueinteger sender; // tid of process that sent this messageinteger msgtag; // the PVM message taginteger tagged_by_monitor; // is the message tagged by the monitoring// systeminteger monitor_tag; // the tag added by the monitoring system} 50

We will provide a service message arrived that reports when a message is inserted intothe message queue of a process in tid list. This event is essential if you want to build atool based on event traces that needs information on the size or contents of the messagequeue.2. tagged message recv : A process receives a tagged message.integer tagged_message_recv{integer* tid_list, integer monitor_tag}--> struct {integer tid; // process receiving the messageinteger sender; // tid of process that sent the messageinteger msgtag; // the PVM message tag}This service reports the receipt of a message by a process in tid list, i� the messagecontains the given monitor tag.

51

8.1.3 HardwareManipulation ServicesSince the hardware usually cannot be manipulated, there are no services in this category.Synchronous ServicesThese services return static and dynamic information on an application's current node set, i.e.the part of a parallel computer or a distributed computing environment currently used by themonitored application:1. number of nodes : : : : : : : : : : : : Determine number of nodes in the monitored system.struct {integer status;integer num_nodes;}number_of_nodes()This service returns the number of processing nodes in the monitored application's currentnode set, regardless to which node the service request is sent.2. list nodes : Return node names and numbers.typedef struct {integer node_number; // node numberstring node_name; // the node's machine name} Host_info;struct {integer status;Host_info* nodes; // list of nodes}list_nodes()This service returns a list of the names of all nodes in the monitored application's node settogether with their assigned node numbers, regardless to which node the service requestis sent.3. node info : Return hardware information on a node.typedef struct {[string architecture;] // architecture type (as in pvmgetarch)// present if bit 0 is set in flags[integer number_of_cpus;] // number of available CPUs// present if bit 1 is set in flags[integer used_cpus;] // number of CPUs used by the application// present if bit 2 is set in flags[integer avail_memory;] // available amount of main memory// present if bit 3 is set in flags[integer used_memory;] // main memory used by application// present if bit 4 is set in flags[integer avail_disk;] // available disk space52

// present if bit 5 is set in flags[integer cpu_speed;] // relative speed of CPU// present if bit 5 is set in flags... // more information not yet specified} Node_info;struct {integer status;Node_info info;}node_info(integer flags)Detailed information on nodes is provided by the node info service. As with the otherinformation services, the bit-vector
ags de�nes which kind of information has to beretrieved. In addition to the data speci�ed above, we currently think towards providingdetailed information on the communication network:� number of links to other nodes and their estimated or measured speed,� link usage,� type of network, e.g. ATM, Ethernet, etc.,� network topology, e.g. bus, 2D-grid, etc.Asynchronous ServicesSince the number of nodes in an application's node set may be dynamic (as in PVM), themonitoring system will adapt itself to such changes. This means that if a new node is added tothe node set, a monitor will be started on that node just before the application starts to use thatnode. Likewise, if a node is removed, the monitor on that node will terminate. The monitoringinterface provides two events giving notice on these situations:1. new node() : : : : : : : : : : : : : : : : : : : A new node has been added to the current node set.integer new_node()--> integer node_number; // node number assigned to the new nodeThe service new node will report that a new node has been added to the monitoredapplication's current node set. The event will be raised on any node where it is de�ned,just after the monitor on the new node has been initialized. It returns the number of thenew node, so the event's actions can be redirected to the new node by specifying $1 intheir node list.2. node removed : A node is removed from the current node set.integer node_removed()--> integer node_number; // number of the node that will be removedThis service will give notice that a node is removed from the monitored application'scurrent node set. Like new node, this event will be raised on any node where it has beende�ned. It is raised just before the monitor on the node to be removed terminates, soactions can still be executed on that node.53

8.1.4 Enhancement: Parallel I/OIn contrast to message passing interfaces, which are rather standardized now, parallel I/O isstill an active research issue. It is not only di�cult to implement parallel I/O e�ciently, but itis still not decided which features a parallel I/O system must have, and how the programminginterface must look like. Therefore, it is not possible at the moment to specify a standard forthe corresponding monitoring services. This is one reason why the monitoring of parallel I/O isde�ned as an extension to OMIS.The other reason, which is related to the one above, is of more practical nature: Since thereis no agreement on the functionality of parallel I/O systems, there are di�erent I/O libraries thatcan be used with various programming libraries. Examples are PIOUS and PFSLib. De�ningthe monitoring services for parallel I/O as an extension to OMIS leaves everyone free to providethe services most appropriate for a speci�c I/O library.In the following sections we will present some basic considerations for these services.Manipulation ServicesIt is not yet clear, which manipulation services could be needed by di�erent kinds of tools, ifthey are needed at all. Similar to processes, a service for migrating parts of a �le from one diskto another could be useful for load balancing strategies.Synchronous ServicesThese services could provide additional information about �les, that are not available via theprogramming interface of the parallel I/O system. Examples of this kind of information include:� The way, how a given �le is distributed across di�erent disks.� The amount of disk space used by a �le on the di�erent disks.Typically, a parallel I/O system is used because it hides the distribution from the programmer.However, if you want to do performance analysis (of either the application or the I/O system),you will be interested in this kind of information.Asynchronous ServicesThere are two levels of events related to I/O that should be observable using the monitoringsystem:1. For the higher level, there will be extensions to the basic services start lib call andend lib call that report the start and end of each I/O related library call. These exten-sions support debugging, visualization and performance analysis of an application withrespect to I/O.2. However, we may also want to use the monitoring system for performance analysis of theI/O system itself, or for an automatic performance improvement (e.g. some kind of loadbalancing for �les). For this purpose, there should also be services that report lower levelevents, e.g. access to local and remote disks during the execution of an I/O request for adistributed �le. 54

8.2 Monitor ObjectsCurrently, we have de�ned two types of objects in the monitoring system: user de�ned eventsand asynchronous service requests. The latter are monitor objects, since they have to be storedin the monitoring system, and they can be manipulated by other services. Other monitor objectsmay be added by distributed tool extensions, e.g. timers, counters, etc.In addition, there are some services that cannot be associated with a speci�c monitor object.They are introduced in Section 8.2.3.8.2.1 Asynchronous Service RequestsManipulation Services1. enable : Enable a previously de�ned event.disable : Disable a previously de�ned event.integer enable(integer request_id)integer disable(integer request_id)These services will enable or disable the monitoring of an event previously de�ned with thespeci�ed request identi�er request id in an asynchronous service request. Since eventsalways are initially disabled, they must be enabled explicitly. The services can also beused for temporarily disabling breakpoints or performance measurements. Since they canbe used as actions, it is possible to start and stop monitoring of an event based on theoccurrence of another event. In this way, the detection of complex distributed events ispossible.2. delete : Delete a previous request for an asynchronous service.integer delete(integer request_id)This service deletes the event-action de�nition with the speci�ed request identi�er re-quest id.8.2.2 User De�ned EventsManipulation Services1. de�ne user event : Create a user de�ned event.integer define_user_event(integer event_no)The monitoring system will allow to use user de�ned events via this service. The parameterevent no speci�es the number which is used to address this event in the other services.2. raise event : Raise a user de�ned event.integer raise_event(integer event_no, any* params)This service will raise the user de�ned event event no that must have been created pre-viously using the de�ne user event service. params is a list of parameters that willbe passed to the event's actions. The size of this list, i.e. the number of parameters isarbitrary. 55

3. destroy user event : Destroy a user de�ned event.integer destroy_user_event(integer event_no)This service is used to destroy a used de�ned event event no when it is no longer needed.In addition, all asynchronous service requests using this event will be deleted.Asynchronous Services1. user event : A user de�ned event has been raised.integer user_event(integer event_no)--> ... // parameters specified in the call to raise_eventThe service user event gives notice that the speci�ed user event has been raised usingraise event service. It passes all parameters speci�ed in the invocation of raise event toits actions. Thus, an action can refer to the �rst element in the params list of raise eventvia $1, to the second one via $2, and so on.For instance, user de�ned events can be used to realize action lists that can be triggeredby di�erent events, without having to de�ne the action list twice. If you want to trigger alist A(x) of actions with event E1 or event E2, you can specify3:define_user_event(5)E1: raise_event(5, [$1])E2: raise_event(5, [$1])user_event(5): A($1)In addition, user de�ned events allow to chain actions. For instance, you could providesome service �lter(var, val, event no) in a distributed tool extension that raises a userde�ned event, i� var == val. If we assume that the second parameter returned by thestart lib call(tid list, "pvm send") service is the destination tid, then in the followingsituationdefine_user_event(6)start_lib_call([12], "pvm_send"): filter($2, 15, 6)user_event(6): A()action A() will be executed, i� process 12 sends to process 15.Finally, user de�ned events can of course also be used for additional code instrumentation.8.2.3 MiscellaneousSynchronous Services1. print : Return arguments.struct {integer status;any* args;}print(any* args)3For clearness reasons, we don't show the request identi�ers and the receiver node lists in this example56

Sometimes a tool wants to be directly noti�ed about an event occurrence and its param-eters. For this purpose, the service print is available. It simply returns its arguments inits result structure.2. extensions : Return a list of available extensions.struct {integer status;string* extension; // the prefix used for this extension}extensions()This service allows to ask which monitor extensions or distributed tool extensions areavailable in a monitor. It will return the list of the pre�xes used for the services of theavailable extensions. Thus, tools can decide whether the necessary extensions are available,and they may handle the cases where less important extensions are missing.

57

58

Part IVConcepts for an Implementation

59

60

Chapter 9The Software Module StructureThis chapter is intended for readers who are interested in details on an implementation of anOMIS compliant monitoring system which is integrated with an already existing parallel pro-gramming environment. People interested exclusively in the speci�cation part of the documentor in just using OMIS for connecting tools to it may skip this chapter.We will show a potential cooperation of all components in an environment for workstationclusters where we use PVM as parallel programming library and PFSLib as parallel I/O library.In contrast to the system model presented in Chapter 4 we �nd things to be more complex, asthe monitoring system turns out to be at least partially integrated with many other modules.Let us have a closer look at these modules and the way they cooperate. PVM at the softwaremodule level consists of one daemon per node (pvmd) and a PVM library being linked to eachtask of the application. The same holds for PFSLib and may be true for many other runtimesupport components. The situation is even worse for the monitoring system itself: besideshaving stand-alone components as (at least) one main monitor process per node we have tointegrate monitoring components in form of libraries into all other software components fromwhich we want to have information which can not directly be accessed. Integrating parts ofthe monitor with other software is called instrumentation. We need an instrumentation of thelibrary codes and of all daemons involved in the running system1. With the operating systemwe have to choose other means, as instrumentation without vendor support is not feasible here.The integration of a monitoring system into an existing HW/SW-system is a complex task.Therefore, any concept for a monitoring system must also discuss the consequences for all othercomponents of the system.Figure 9.1 shows the software module structure for our approach. On the top we can see themonitor process. It consists of a base monitor being linked together with the libraries of monitorextensions, distributed tool extensions, and distributed tool components. The reason for havingat least one process for the monitor lies in the necessity for the monitor to react autonomously.It must accept commands and invoke actions concurrently to other activities in the system. Thevisible part of it serves for communication with other modules; thus, all information
ow goesthrough a communication library where calls and answers are transferred to message exchange2.We identify three data and control
ow paths from the monitor/program-interface to othercomponents. With task and daemon processes this interface is integrated directly into thecomponents. The thick solid line between them and the monitor process denotes monitor internalcommunication between this process and some monitor libraries. The real monitor/program-interface in these two cases is the interface between the monitor libraries and the rest of thetask or daemon process. The situation is still di�erent for the third case, the cooperation with1It would be possible to access all library related information via the operating system. However, this path ismuch too ine�cient with respect to overhead evoked. Thus, special library instrumentation is inevitable.2See Known Problems, Chapter 13, item 2. 61

$Id: sw-structure.fig,v 1.6 1996/01/22 13:48:44 ludwig Exp $

ME library ME library
DTE library

tool A
debugger performance analyzer

tool B

DTE library

DTC library
DTE library
ME library

com
m

unication
task/task-

com
m

unication
m

onitor/m
onitor-

workstation mtool/monitor-communication

library
PVM

library
PFSLib

library
PVM

library
PFSLib

monitor library monitor library

node jnode i

task S task T

hardware / operating system

monitor
pvmd

monitor
pfsd

monitor process

communication library

Figure9.1:SoftwaremodulestructureofanenvironmentwithtoolsandPVMasabasicpro-
gramminglibrarylayerandPFSLibasaparallelI/Olibrary62

the operating system. Here we can only use what is directly provided. In more detail thismeans that we will use system-calls, access to special �le-systems (/proc) or special devices(/dev/kmem) to collect necessary information. No instrumentation of the operating system willbe done. Although this would be a nice feature, e.g. to supervise scheduling activities, it wouldnevertheless ruin the portability of the approach.Let us come back to the connection between the monitor process and the PVM daemon.Two aspects are important. First, the monitoring system will take pro�t of the already providedtasker/hoster interface of PVM. As these interfaces allow only one third party software productto connect to the daemon, it is inevitable to mirror this functionality at the tool/monitor-interface. Whenever it will be used by some extensions of PVM their activities can now also bemonitored by tools.A second source of information is a monitor library integrated into the PVM daemon. Itspurpose is to yield data about the daemon's internal state, such as state of message queues andcurrent message transfer, process group informations, etc. Thus, this monitor library will mainlybe realized by access functions which can read the appropriate informations in the daemon'saddress space. The design of this interface is of importance not only for the OMIS projectbut also for other tool developers as it will give them easy access to PVM daemon runtimeinformations. This is useful for designing their own tools, not necessarily on-line tools, e.g.management facilities for traces or batch jobs.The �nal components to be discussed are the processes which represent the tasks of theapplication program. These tasks include as regular components their own code as well as allnecessary libraries for execution: the PVM library and as an example of an extension also thePFSLib library for parallel �le access. In addition we need a monitor component in order tosurvey and manipulate the task's execution. All activities could also be handled directly in themonitor process but the splitting into several components increases e�ciency. Manipulationscan be done directly during task code execution. In several cases no context switch and nocommunication appears when the monitor has to react to a certain condition (e.g. incrementingsome event counter). This block includes functionality which can also be found in the monitorprocess: a monitor library and occasionally a monitor extension library and a DTE library. All ofthese entities, from which only the monitor library is imperative, serve for providing the monitorprocess with the necessary details. The libraries will contain routines that wrap around PVM(or PFSLib etc.) functions, in order to get events upon entry and exit of these functions and inorder to invoke task manipulations. They may also contain routines implementing actions thatshould be called in the context of the task raising an event. For instance, if we want to measurethe mean time spent in a PVM function, it is prohibitive to make a UNIX context switch just forreading the clock and updating an integrating counter. This has to be done in the application'scontext. The data exchange between these parts of the monitor and the monitor process will beimplemented via a shared memory block, in order to be e�cient. If asynchronous noti�cation isnecessary, UNIX signals will be used.
63

Chapter 10The Monitor/Program-InterfaceThe monitor/program-interface will be subdivided into three di�erent parts: one collectinginformation from the program itself, another one being in contact with the PVM daemon, and�nally an access path to operating system and hardware related informations.The functionality of this three-partite interface is not yet speci�ed. However, it is clearthat the lowest level information and manipulation routines will take pro�t of the ptrace andsystem-call interface to UNIX. The design of the interface to the PVM daemon is of crucialimportance but will be deferred until the functionality of the tool/monitor-interface is �xed.Finally, the interface part to the monitor library which gets linked to the application tasks hasto be de�ned. As this interface does not interfere with other people's software products we willmake a speci�cation only when making plans for the implementation of the monitoring system.

64

Chapter 11Time Schedule of ImplementationOMIS Version 1.0: February 1, 1996The �rst version of OMIS serves as a basis for the design of an OMIS compliant monitoringsystem and for adaption of OMIS based tools.Start of design phase: January, 1996A group of six researchers and students at LRR-TUM is currently designing an OMIS compliantmonitoring system based on PVM as programming paradigm and networks of workstations astarget architecture. Implementation will start mid of 1996.

65

66

Part VDiverse

67

68

Chapter 12Requests for CommentsIn this chapter we summarize important open questions of the OMIS project. We would liketo encourage any reader of this document to send us his/her comments, ideas, suggestions etc.Please refer to open questions by indicating their number.1 Should the tool/monitor-interface be designed in an object oriented manner? This couldhave several advantages:{ By de�ning a hierarchy of observable objects, the interface is structured much moreclearly. The hierarchy also de�nes an abstract model for the kind of system observableby the monitoring system. A �rst idea of such an object model together with someof the available methods (services) is shown in Fig. 12.1.{ The on-line monitoring interface speci�cation could be de�ned in terms of abstractobject classes. The actual object classes needed for a speci�c parallel programminglibrary would then be derived from these ones and inherit their methods (i.e. services).For instance, we could have abstract processes with services like stop, continue,user time, and so on. A UNIX process, derived from this abstract process class,would inherit these services and could de�ne additional ones, e.g. kill or nice. APVM task could be derived from a UNIX process and provide additional servicessuch as message bu�er.This scheme would make it possible to separate OMIS into a large part that is in-dependent of any concrete programming library and a small extension for each suchlibrary (e.g. PVM, MPI). It would also make tools more portable, since for instancea debugger could start and stop processes no matter whether they are PVM tasks orMPI processes.{ Finally, using object oriented techniques for the monitors' implementation could in-crease portability with respect to di�erent programming libraries. If a signi�cant partof the code for a concrete object could be inherited from the abstract base classes,support for di�erent programming libraries could be implemented in relatively smallmonitor extensions.2 Should we consider to provide OMIS also for shared memory architecture environments?It might be not very di�cult to do so.3 Should we have a more powerful request language? At the moment, we only provide thecombination of events and actions, and concurrent and serial execution of action lists. Alot of other constructs could be useful, e.g.:{ a mix of parallel and serial execution within one action list,69

Xyz Derived object

Base objectXyz

Methods(x; y; z)
x = manipulation services
y = synchronous services
z = asynchronous services

Monitored System

Hardware

Node

Processor

Link

Software

Application

Process

Network

Memory

Devices

Thread

Register

Stack

Frame

Address Space

Executable

Segment

Message

Message Buffer

Sync. Object

Monitor

Request

User Event

(; load; scheduling)

(; name, architecture, load, applications, processes, messages; new_process, del_process)

(; size, used;)

(; topology;)

(; load, wait_processes, bandwidth;)

(start_application; ;)

(stop, continue; ;)

(stop, continue, goto; state, time; terminated, step, breakpoint)

(write; read, type;)

(write; read, function; finish)

(write; read, size; breakpoint)

(; pathname;)

(write; read, start_address, size, type;)

(; sender, receiver, monitor_tag; received)

(delete_msg, insert_msg; size, messages; msg_added)

(; waiting_threads; thread_blocked, thread_unblocked)

PVM Task

UNIX Process

PVM Message

PVM Barrier

PVM Group

Derived from

Contains one

Contains any number of

additional async. services: object_added, object_removed

Legend

additional sync. services: number and list of contained objects

(kill, nice; pid, argv; signal)

(; tag, data_types, contents;)

(; group, num_sync;)

(; size, tasks; task_joined, task_left)

(init, print; extensions;)

(stop, continue, migrate; state, time; terminated, stopped, continued)

(; tid, receive_queue, current_message_buf;)

(enable, disable, delete; ; enabled, disabled, deleted)

(define, raise, destroy; ; triggered)

Figure 12.1: A possible object scheme for an on-line monitor. The inheritance relation betweenthe base objects is not shown. 70

{ de�nition of asynchronous services as an action, i.e. when an event occurs, de�ne anew event-action pair, where the de�nition may use output parameters of the �rstevent.{ parameter passing between actions.However, each of these features adds signi�cant complexity to the request parser, therebyincreasing the monitor's intrusiveness. Thus, we have to �nd a suitable compromise.

71

Chapter 13Known ProblemsIn this chapter we summarize important known problems of the OMIS project, which mostlyconcern the implementation of an OMIS compliant monitoring system. We would like to en-courage any reader of this document to send us his/her comments, ideas, suggestions etc. Pleaserefer to known problems by indicating their number.1 The monitor must be able to work together with several applications either of one orseveral users (e.g. for load balancing). It is not yet clear how to design this.2 Both the communication between a tool and the monitor and the monitor/monitor commu-nication could be based on either the communication mechanism provided by the parallelprogramming library (e.g. PVM), TCP sockets, or other mechanisms like RPCs. UsingPVM communication may raise several complications. E.g., we have to separate moni-tor/monitor communication from task/task communication (PVM doesn't have the com-municator concept of MPI). Another problem is that the tool must be a PVM task, butmust not be included into the monitored set of tasks.On the other hand, socket communication is much more di�cult to use, and it is systemdependent. It is also not yet known whether we can use both PVM and socket communi-cation within one process.3 For e�ciency reasons, some actions (e.g. updating a timer that measures the time a taskspends in a receive call) must be executed within the context of the observed task. Ifwe introduce a UNIX process switch here, the overhead would make useless the wholemeasurement. But, some actions can not be executed in the task that produces an event,e.g. most actions related to debugging that are based on the ptrace system call.In summary, there are four possible combinations:{ An event can be detected either in an application task or in the monitor process.{ An action can be executed either in the application task or in the monitor process.It is not fully clear yet how to support all combinations with a uniform and orthogonalinterface.One solution would be to have additional
ags for the registration of a new service. Oneof these
ags must specify whether the service is an event (asynchronous basic service) oran action (synchronous or manipulation basic service). For an event, another
ag couldindicate whether it is detected in the monitor process or in the application process. Foran action, the
ags could indicate whether it has to be executed in the monitor process orin the application process, or can be executed in both of them. The base monitor couldthen automatically pass the event to another process, if necessary.72

4 The start lib call and end lib call services should be generic, in order to reduce thedependency between the monitoring systemand the parallel programming library. Weplan to have a description �le containing ANSI-C prototypes of all observable library calls.This �le must also de�ne which parameters are input and which are output parameters.In addition, it has to specify, how the values of these parameters are translated into thedata types available in OMIS. This �le could look like:int pvm_recv(int tid, int msgtag) // C prototypestart { // parameters passed to actions ofinteger tid; // start_lib_callinteger msgtag;}end { // parameters passed to actions ofinteger pvm_recv; // end_lib_call (result of function)}int pvm_...This �le could also contain routines for translation of parameters, or for providing ex-tra information on implicit parameters of the library calls (e.g. the message bu�er inpvm send).We intend to have some kind of translator that automatically generates the wrappingfunctions containing the instrumentation, and inserts them into the PVM library. Inaddition, the translator could also generate information for the monitoring process thatcould allow to monitor these library calls using traps, e.g. if an instrumented library is notavailable when debugging an application.It is not yet known, whether these goals can be achieved and how this generic scheme canbe implemented.5 In order to make an OMIS compliant monitor compatible with other tools using the hosterand tasker interfaces of PVM (e.g. resource managers), we have to mirror these interfaces.It is not yet known, how this can be achieved. A possible way would be to intercept thecalls to pvm reg hoster and pvm reg tasker. In this way, the monitor knows to whichtasks it must forward the information on new hosts or tasks.
73

GlossaryThroughout the text of the speci�cation we will use the following technical terms.Asynchronous Service A service that signals the occurrence of a speci�c condition. It mayhave have any number of responses, occurring at unpredictable points in time.Basic Service A service of an OMIS compliant monitoring system that is de�ned in Part IIIof this speci�cation or by a monitor extension. Basic services are the building blocks from whichservice requests are constructed.Composite Service Request A service request of an OMIS compliant monitoring systemthat is composed from several basic service requests. As an example, \detect a send event inprocess x" and \stop all processes" are basic services, while \stop all processes, when a sendevent is detected in process x" is a composite service.Distributed Tool (DT) A distributed tool is spread over all nodes of our node set andusually has no user interface.Distributed tool extension (DTE) Part of a centralized interactive tool which is replicatedand runs on every node involved in direct cooperation with the monitor on that node. Used forpreprocessing of data or organization of special distributed functionalities.Manipulation Service A service that only returns an acknowledge or an error message. Itse�ect is to manipulate objects in the application or the monitoring system.Monitor We call a (single) monitor that part of the monitoring system which is located on asingle node of the parallel system (either a workstation or a node of a parallel machine). It maybe composed of processes and libraries linked to various other software modules. Interactionbetween these parts may use all available mechanisms.Monitor Extension (ME) An extension to a monitoring system o�ering new services forthe monitoring of system objects not yet considered in that monitoring system.Monitoring System A monitoring system is the collection of all software parts in a dis-tributed system which observe and modify the program execution, the underlying operatingsystem, and the hardware and communicate with one or more tools.Monitor/monitor-communication Interaction between monitors on separate nodes of thesystem. 74

Monitor/program-interface This is the interface of a monitor with the object it shouldobserve. For simplicity reasons this is called monitor/program-interface. However, the monitorinteracts not only with the program but with all of the hardware/software instances which getthe program running, i.e. the parallel programming library (e.g. PVM), the operating system,and the hardware. Access to specialized runtime libraries like e.g. PFSLib for parallel �le accessis controlled via monitor extensions.OMIS The On-line Monitoring Interface Speci�cation.Service The functions o�ered by an OMIS compliant monitoring system, i.e. the commandsthat can be invoked at the tool/monitor-interface.Service Reply String sent back from the monitoring systemrepresenting an answer to a servicerequest.Service Request String sent to the monitoring system requesting the execution of a service.Synchronous Service A service that returns exactly one result within a (at least theoreti-cally) predictable response time.Tool/monitor-interface The tool/monitor-interface is responsible for interaction betweentools and monitors. This interface is the main subject of the on-line monitoring interface speci-�cation.

75

HistoryVersion 1.0: February 1, 1996Current version. Published as a technical report at TUM [LWSB96].Pre-Version 0.9 beta: November 30, 1995Second draft version which served as a dicussion basis for a birds-of-a-feather meeting at theSupercomputing'95 conference in San Diego, California, USA, December 1995. The session wasmoderated by Arndt Bode and Vaidy Sunderam.Pre-Version 0.9 alpha: August 31, 1995First draft version which served as a discussion basis for a birds-of-a-feather meeting at theEuropean PVM Users' Group Meeting in Lyon, September 1995. The session was moderatedby Roland Wism�uller.Kick-o� meeting: July, 1995Initiators: Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wism�uller

76

Bibliography[BB91] T. Bemmerl and A. Bode. An Integrated Environment for Programming DistributedMemory Multiprocessors. In A. Bode, editor, Distributed Memory Computing - 2ndEuropean Conference, EDMCC2, volume 487 of LNCS, pages 130{142, M�unchen,April 1991. Springer-Verlag. Lecture Notes in Computer Science, XXX.[BB92] Arndt Bode and Peter Braun. Monitoring and Visualization in TOPSYS. In G. Kot-sis and G. Haring, editors, Proc. of Workshop on Monitoring and Visualization ofParallel Processing Systems, pages 97 { 118, Moravany nad V�ahom, CSFR, 1992.Elsevier, Amsterdam (1993).[BBB+90] H.J. Beier, T. Bemmerl, A. Bode, et al. TOPSYS - Tools for Parallel Systems.Research report SFB 342/9/90 A, Technische Universit�at M�unchen, January 1990.[BHL90] T. Bemmerl, O. Hansen, and T. Ludwig. PATOP for Performance Tuning of Paral-lel Programs. In H. Burkhart, editor, Proceedings of the CONPAR 90 - VAPP IVJoint International Conference on Vector and Parallel Processing, Zurich, Switzer-land, pages 840-851, Berlin, September 1990. Springer. Lecture Notes in ComputerScience, 457.[BL90] T. Bemmerl and T. Ludwig. MMK | A Distributed Operating System Kernelwith Integrated Dynamic Loadbalancing. In H. Burkhart, editor, Proceedings ofthe CONPAR 90 - VAPP IV Joint International Conference on Vector and ParallelProcessing, Zurich, Switzerland, pages 744-755, Berlin, September 1990. Springer.Lecture Notes in Computer Science, 457.[BLT90] T. Bemmerl, R. Lindhof, and T. Treml. The Distributed Monitor System of TOP-SYS. In H. Burkhart, editor, Proceedings of the CONPAR 90 { VAPP IV JointInternational Conference on Vector and Parallel Processing, Zurich, Switzerland,volume 457 of Lecture Notes in Computer Science, pages 756-765, Berlin, Septem-ber 1990. Springer. Lecture Notes in Computer Science, 457.[Bod94] A. Bode. Parallel Program Analysis and Visualization. In J. Dongarra andB. Tourancheau, editors, Environments and Tools for Parallel Scienti�c Computing,pages 246-253. SIAM, 1994.[BW95] T. Bemmerl and R. Wism�uller. On-line Distributed Debugging on ScalableMultiprocessor Architectures. Future Generation Computer Systems, (11):375-385,November 1995.http://wwwbode.informatik.tu-muenchen.de/~wismuell/publications/fgcs95.ps.gz.[Han94] O. Hansen. A Tool for Optimizing Programs on Massively Parallel Computer Ar-chitectures. In High-Performance Computing and Networking, Volume II, volume797 of Lecture Notes in Computer Science, pages 350 - 356, M�unchen, April 1994.Springer Verlag. 77

[HKOW96] O. Hansen, J. Krammer, M. Oberhuber, and R. Wism�uller. A Scalable Tool En-vironment for Observing the Runtime Behavior of Massively Parallel Applications.Parallel Computing, To appear in Q1 1996.http://wwwbode.informatik.tu-muenchen.de/~wismuell/publications/pc95.ps.gz.[LL95] T. Ludwig and S. Lamberts. PFSLib | A Parallel File System for WorkstationClusters. In Victor Malyshkin, editor, Parallel Computing Technologies | Proceed-ings of the Third International Conference, PaCT-95, St. Petersburg, Russia, pages246-251, Berlin, sep 1995. Springer. Lecture Notes in Computer Science, 964.[Lud93a] T. Ludwig. Load Management on Multiprocessor Systems. In A. Bode and M. DalCin, editors, Parallel Computer Architectures | Theory, Hardware, Software, Ap-plications, pages 87-101. Springer, Berlin, 1993. Lecture Notes in Computer Science,732.[Lud93b] T. Ludwig. UPAS | Universally Programmable Architecture and Basic Software.In P. P. Spies, editor, Euro-ARCH '93, Munich, Germany, pages 660-671, Berlin,1993. Springer. Informatik aktuell.[LWB+95] T. Ludwig, R. Wism�uller, R. Borgeest, S. Lamberts, C. R�oder, G. Stellner, andA. Bode. The Tool-set { An Integrated Tool Environment for PVM. In SecondEuropean PVM Users' Group Meeting, Lyon, France, September 1995.http://wwwbode.informatik.tu-muenchen.de/~wismuell/publications/europvm95.ps.gz.[LWSB96] T. Ludwig, R. Wism�uller, V. Sunderam, and A. Bode. OMIS | On-line MonitoringInterface Speci�cation (Version 1.0). Technical Report TUM-I9609, SFB-BerichtNr. 342/05/96 A, Technische Universit�at M�unchen, Munich, Germany, February1996.http://wwwbode.informatik.tu-muenchen.de/~omis/OMIS/Version-1.0/version-1.0.ps.gz.[OW95] M. Oberhuber and R. Wism�uller. DETOP - An Interactive Debugger for PowerPCBased Multicomputers. In P. Fritzson and L. Finmo, editors, Parallel Programmingand Applications, pages 170-183. IOS Press, May 1995.http://wwwbode.informatik.tu-muenchen.de/~wismuell/publications/zeus95.ps.gz.[SMP95] T. Sterling, P. Messina, and J. Pool. Findings of the Second Pasadena Workshopon System Software and Tools for High Performance Computing Environments.Technical report, Center of Excellence in Space Data and Information Sciences,NASA Goddard Space Flight Center, Greenbelt, Maryland, 1995.
78

