
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Description Techniques for Data
in the SYSLAB Method

R. Hettler

������
TUM-I9632

Oktober 1996

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N



TUM-INFO-10-1996-I9632-350/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
1996 MATHEMATISCHES INSTITUT UND
INSTITUT F ÜR INFORMATIK
TECHNISCHE UNIVERSIT̈AT M̈UNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut für Informatik der
Technischen Universität München



Description Techniques for Datain the SysLab Method
R. HettlerForschungsinstitut f�urAngewandte Software-Technologie (FAST) e.V.,Arabellastr. 17,D-81925 M�unchenEmail: rhe@fast.deOctober 8, 1996





AbstractThe SysLab method [Pae95], which is currently under development at the Tech-nische Universit�at M�unchen, provides description techniques for the early phasesof software engineering (requirements analysis, requirements de�nition and de�ni-tion of the logical architecture). This report presents the techniques provided bythe method for describing data. It considers the motivation for these techniquesas well as their speci�c syntax and formal semantics.





Contents1 Introduction 11.1 The SysLab Project . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Description Techniques for Data . . . . . . . . . . . . . . . . . . . 22 Abstract Data Types 22.1 Informal Description of Mini-Spectrum . . . . . . . . . . . . . . 42.1.1 Using Primitive Speci�cations . . . . . . . . . . . . . . . . 42.1.2 De�ning Signatures . . . . . . . . . . . . . . . . . . . . . . 52.1.3 Specifying Properties . . . . . . . . . . . . . . . . . . . . . 82.1.4 Built-In Speci�cation . . . . . . . . . . . . . . . . . . . . . 92.2 Example Speci�cations . . . . . . . . . . . . . . . . . . . . . . . . 102.2.1 Natural Numbers . . . . . . . . . . . . . . . . . . . . . . . 102.2.2 Polymorphic Finite Sets . . . . . . . . . . . . . . . . . . . 112.3 Semantics of Mini-Spectrum . . . . . . . . . . . . . . . . . . . . 122.3.1 Translation Mini-Spectrum �! Spectrum . . . . . . . 132.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Extended Entity-Relationship Modeling 163.1 Entity-Relationship Diagram Name . . . . . . . . . . . . . . . . . 163.2 Entity Types and Attributes . . . . . . . . . . . . . . . . . . . . . 173.3 Relationship Types . . . . . . . . . . . . . . . . . . . . . . . . . . 173.4 Static Integrity Constraints . . . . . . . . . . . . . . . . . . . . . 173.4.1 Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.4.2 Cardinalities . . . . . . . . . . . . . . . . . . . . . . . . . . 183.4.3 General Constraints . . . . . . . . . . . . . . . . . . . . . . 183.4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.5 Semantics of the Extended Entity-Relationship Model . . . . . . . 213.5.1 Translating Extended Entity-Relationship Schemata intoMini-Spectrum . . . . . . . . . . . . . . . . . . . . . . . 213.5.2 Motivation of Semantics De�nition . . . . . . . . . . . . . 233.5.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Mapping to System Model 25i



5 Describing the State of System Components 255.1 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275.2 Component States . . . . . . . . . . . . . . . . . . . . . . . . . . 275.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 Conclusion 31

ii



1 Introduction1.1 The SysLab ProjectThe SysLab project carried out at the TU M�unchen aims at a scienti�callybased approach for software- and system development. The emphasis in SysLabis on the early stages of software engineering: requirements analysis, requirementsde�nition and logical design of systems, including prototyping.In the course of the project a methodology (the SysLab method) is to be de-�ned, which supports the development stages mentioned above. As usual, thismethodology consists of a process model, which leads the developer through thedi�erent development stages, and a set of description techniques, which allow thedeveloper to describe di�erent views of the intended system, as required by theprocess model.The description techniques provided by the SysLab method all possess a com-plete formal foundation, which is given in a very characteristic way. The formal-ization of all description techniques is based on a so-called mathematical systemmodel [RKB95]. This system model formalizes the term system, as it is under-stood in SysLab. A system is seen as a set of components communicating mes-sages with each other and the system environment via directed channels. Eachcomponent has itself the characteristics of a system, i.e. it can be subdivided intoa set of subcomponents. The system model contains a notion of discrete time.Components have an internal state. The output of a component is determined bythe communication history on its input channels and by its internal state. Thesystem model is called mathematical because it is de�ned in a completely formalway, mainly based on the theory of stream processing functions [BDD+93].As usual in software engineering methods, none of the provided description tech-niques is suited to describe the intended system as a whole. Rather, each ofthem concentrates on a certain view of the system. The description of the wholesystem consists therefore of a set of di�erent documents, each of them describinga certain aspect of the system. As the semantics of each description technique isde�ned based on the mathematical system model, the contribution of the tech-nique to the description of the whole system is made clear in a formal (and thusunambiguous) way. This approach allows formal reasoning about the followingtopics:Expressiveness The question to be answered here is whether a given set ofdescription techniques (e.g. all description techniques provided by themethod) is su�cient to completely describe all aspects of the system asde�ned by the system model.Consistency The views on the system which are provided by the descriptiontechniques are usually not disjoint. Often several description techniques1



contribute to the speci�cation of a certain aspect of the system. An exam-ple is the description of the data of a system. When describing this staticview (for example by drawing an entity-relationship diagram) one expressescertain consistency constraints for the data (such as cardinalities of rela-tionship types). The speci�cation of those consistency constraints has sidee�ects on the dynamic behaviour of the system, however, because all thesystem functions must ensure not to violate the data consistency.The approach taken in SysLab allows to formally identify such redun-dancies and provides thus a scienti�c basis for de�ning consistency andplausibility checks between di�erent description techniques.1.2 Description Techniques for DataIn the report at hand we deal with the data oriented part of the SysLab method.We present the description techniques provided by SysLab to specify the dataof a system. For each description technique we will give� an informal motivation,� a de�nition of the syntax, and� a formal semantics based on an algebraic speci�cation language.In a separate section the description techniqes will then be related to the math-ematical system model.2 Abstract Data TypesMany description techniques refer to primitive data elements, which are not fur-ther de�ned in the technique itself. Examples for such primitive data elements areattributes in entity-relationship modeling or messages exchanged between systemcomponents. In order to describe the domains of those primitive data elements,the SysLab method provides a description technique for abstract data types. Anabstract data type provides data sorts and their characteristic operations througha well-de�ned interface. There are a lot of possible notations to specify abstractdata types. The description techniqueMini-Spectrum chosen in SysLab stemsfrom the tradition of algebraic speci�cation languages which started some twentyyears ago [GTWW75, Gut75]. Mini-Spectrum is characterized by the followingmain features: 2



� It is a declarative language. The language for specifying the properties ofsorts1 and functions is mainly �rst order predicate logic which is expressiveenough to give abstract and problem-oriented declarative speci�cations. Ofcourse, speci�cations in this language are not necessarily executable in thesense of programs.� It has a loose semantics, which makes it possible to work with underspec-i�cation. Underspeci�cation means that it is not necessary to specify anabstract data type completely in one step. Instead it is possible to give aspeci�cation of an abstract data type which �xes only few important prop-erties of the type and leaves the rest unspeci�ed. The consequence is thatfor such a speci�cation several di�erent implementations (models) are pos-sible. The set of possible implementations can later be restricted by makingthe speci�cation more detailed, for instance by adding new properties of thetype.Mini-Spectrum is closely related to the algebraic speci�cation language Spec-trum [BFG+93a, BFG+93b, GN94]. In fact, it can be seen as a sublanguage ofSpectrum in the sense that all the concepts present in Mini-Spectrum canalso be found in Spectrum. Mini-Spectrum is not as expressive as Spec-trum, but has, on the other hand, the advantage of being much easier to learnand more comfortable to use. We consider Mini-Spectrum to be powerfulenough for almost all applications which can be modeled in the SysLab method.However, if an experienced user of the method should �nd it necessary to specifyan abstract datatype which is too complex to be adequately described usingMini-Spectrum, he can use Spectrum for this task. This is due to the factthat Spectrum is used as the formal foundation for specifying abstract datatypes and Mini-Spectrum is introduced simply as sublanguage thereof.In the next sections we will �rst present the syntax23 and (informally) the meaningof the language constructs of Mini-Spectrum together with some examples, andthen de�ne the semantics of the language formally by giving a translation intoSpectrum, which itself has of course a formal semantics.1The term 'sort' is in the �eld of algebraic speci�cation techniques used for what is usuallycalled 'type' in programming languages, which is a name for a set of elements. This is done inorder not to confuse sorts with abstract data types, which often are also simply called types.2The syntax of the language is given in EBNF (Extended Backus-Naur Form). We considerthis notation to be self-explanatory. A description can be found in [BFG+93b], where thesyntax of Spectrum is de�ned.3We will not present the lexical syntax (legal identi�ers, comments, . . . ) of the languagehere. This is de�ned to be the same as the lexical syntax of Spectrum (see [GN94]). Presentingthe lexical syntax here as well would not contribute to understanding the concepts of Mini-Spectrum. 3



2.1 Informal Description of Mini-Spectrumhspeci�cationi ::= hspec-idi = [ [henrichesi] hsignaturei haxiomsi ]In order to be able to distinguish them from Spectrum speci�cations, speci�-cations in Mini-Spectrum are enclosed in square brackets (instead of braces).Each Mini-Spectrum speci�cation has a unique name (hspec-idi) and consistsof three parts:� an optional imports section (henrichesi), in which the signatures of primitivespeci�cations can be imported,� a signature section (hsignaturei), in which new sort and function symbolscan be introduced, and� a properties section (haxiomsi), in which the properties of the introducedsorts and functions are logically speci�ed.2.1.1 Using Primitive Speci�cationshenrichesi ::= enriches hspecimpi f+ hspecimpig�hspecimpi ::= hspec-idi [[ fhidenti // ,g+ ]]hidenti ::= hidi to hidij hinf-idi to hinf-idij hsidi to hsidiMini-Spectrum speci�cations can be hierarchically based on otherMini-Spec-trum speci�cations, which are then called primitive speci�cations. All the prim-itive speci�cations of a Mini-Spectrum speci�cation are listed in its importssection. This makes the symbols (sorts and functions) de�ned in the primitivespeci�cations accessible in the current speci�cation. Those primitive symbols are,however, not added to the signature and are thus not exported by the speci�ca-tion. 4



2.1.2 De�ning Signatureshsignaturei ::= fhsorti j hfunctioni j hconstrig�hsorti ::= sort hsortconi fhsortvarig�j data hsortconi fhsortvarig� = fhproducti // jg+hproducti ::= hidij hopni ( f[hidi :] hsortexpi // ,g+)hfunctioni ::= hopnsi : hsortexpihsortexpi ::= hsortexp1ij hsortexp1i ! hsortexpihsortexp1i ::= hsortexp2ij hsortexp2i f� hsortexp2ig+hsortexp2i ::= hasortij hsortconi fhasortig�hasorti ::= hsortvarij ( hsortexpi )hconstri ::= hsortconi fhsortvarig� generated by hopnsihopni ::= hidij .hidi.hopnsi ::= fhopni // ,g+The signature section of aMini-Spectrum speci�cation allows to introduce newsorts (or rather sort constructors) and functions. Function symbols are introducedtogether with their functionality. Furthermore, some of the introduced functionscan be distinguished to be constructor functions for the newly introduced sorts.Sorts Mini-Spectrum provides a polymorphic sort system very similar to thatknown from functional programming languages. Sorts are interpreted as sets ofelements. Mini-Spectrum allows to de�ne sort constructors in its signaturepart. Sort constructors are functions on the sort level. Hence they yield sortswhen applied to sorts. Sort constructors can have arbitrary arity. A sort con-structor of arity 0 corresponds to a sort. With this concept of sort constructorsit is for example possible to introduce a sort (0-ary sort constructor) Nat and aunary sort constructor Set � (The symbol � is a formal parameter and indicatesthat the sort constructor Set is of arity 1). We can now build new sorts byapplying the sort constructor Set: Set Nat, Set(Set Nat), . . . 44Note that inMini-Spectrum sort variables must not be instantiated with functional sorts.The sort expression Set(Nat �! Nat) is thus forbidden. This restriction in polymorphism is5



Sort constructors can be introduced either with the sort construct or with thedata construct of Mini-Spectrum. The sort construct simply introduces thesort constructor symbol without specifying any properties of this constructor atall. This means that the properties of the sort constructor have to be speci�ed viathe properties of functions operating on sorts constructed with this constructor.The data construct, on the other hand, introduces a new sort constructor and al-ready completely �xes its properties. Sort constructors introduced with the dataconstruct construct so-called free data types as known from functional languages.The data construct therefore corresponds for example closely to the datatypeconstruct provided by the functional programming language ML [HMM86]. Us-ing the data construct we can for example specify a sort constructor List which,when applied to an arbitrary sort �, yields the sort of all �nite sequences ofelements of sort �:data List � = empty j cons(first:�, rest:List �);This line introduces� The unary sort constructor List.� Constructor functions empty and cons for sorts constructed with this sortconstructor. For those two functions the following properties hold:1. All elements of the sort can be represented by a constructor term (i.e.a term which contains only applications of the constructor functions).2. Di�erent constructor terms denote di�erent elements (lists).� Selector functions first and rest which allow to access the two compo-nents of lists constructed with cons.Functions The second kind of symbols which can be introduced in the sig-nature part are function identi�ers. Functions de�ned in Mini-Spectrum arestrict5 by de�nition. They are not necessarily total6, although the axiomatizationin the properties part can imply totality, of course.For each function symbol its functionality is de�ned, �xing the sorts of its argu-ments and the sort of its result. For example, the functiondue to the speci�c selection of the part of Spectrum which constitutes Mini-Spectrum. Thealternative to this decision would be to introduce some kind of class system over sorts whichwould make the whole language considerably more complex.5A strict function yields an unde�ned value whenever one of its arguments is unde�ned. Thenotion of unde�nedness is introduced in Mini-Spectrum to model diverging calculations, i.e.nontermination. In Mini-Spectrum each sort contains therefore one distinguished element ?which represents the unde�ned value.6A total function always yields a de�ned result when its arguments are de�ned.6



add : Nat � Nat �! Nattakes two elements of sort Nat as arguments and yields a result which is also ofsort Nat. Note that there are also functions of arity 0, which represent constants.If a function has exactly two arguments, it may be de�ned to be an in�x functionby enclosing it between dots which symbolize the argument positions:.+. : Nat � Nat �! NatIn Mini-Spectrum, functions may be higher order. This means that they mayhave functions as arguments or result. Thus, a functionality like the following isallowed:f : (Nat �! Nat) �! (Nat �! Nat)Functions may furthermore be polymorphic, making use of the concept of sortconstructors explained above. For example, the functionlength : List � �! Natcan be applied to any sort constructed with the sort constructor List. In Mini-Spectrum, greek letters are used to denote sort variables. The function lengthhas a functionality which contains a sort variable �. It is therefore generic inthe sense that it can applied to arguments of any sort which can be obtained byinstantiating the sort variable with a speci�c sort.Constructor Functions Mini-Spectrum allows to distinguish a set of func-tions to be constructors of a given sort. This means that every element of thesort can be denoted by a closed term which contains only functions from theconstructor set. We can, for example, specify the constructors of the naturalnumbers byNat generated by 0, succ;This means that every natural number can be constructed by applying only thefunctions 0 and succ7.7If a sort is introduced with the data construct, the constructor functions are already de-termined by this construct. In this case, there is no need to give an additional generated bystatement. 7



2.1.3 Specifying Propertieshaxiomsi ::= axioms [hvarlisti] fhformulai ;g� endaxiomshvarlisti ::= 8 hopdeclsi inhopdeclsi ::= ffhidi // ,g+: hsortexpi // ,g+j fhidi // ,g+hformulai ::= f8 j 9g hopdeclsi . hform1ihform1i ::= haformij : haformij haformi) hform1ij haformi, hform1ij haformi ^ hform1ij haformi _ hform1ihaformi ::= hexpi = hexpij ( hformulai )hexpi ::= hexp1ij hexp1i == hexp1ihexp1i ::= hexp2ij hexp2i hidi hexp2i (In�x Function Application)hexp2i ::= haexpij hexp2i haexpi (Pre�x Function Application)haexpi ::= hopnij ?j if hexpi then hexpi else hexpi endifj ( hexpi ) (Grouping)j ( hexpi f, hexpig+ ) (Tuples)
The properties part of aMini-Spectrum speci�cation serves for �xing the prop-erties of the symbols introduced in the signature part. The language providedfor this purpose is mainly typed �rst-order predicate logic. The properties aregiven as a set of logical formulae between the keywords axioms and endax-ioms, which have to be true in all models (and also for all implementations) ofthe speci�cation. The optional variable list (hvarlisti) gives a set of all-quanti�edvariables, the scope of which is the whole set of formulae. This is simply a short-hand notation. We could as well repeat this all-quanti�cation in front of everysingle formula. 8



Formulae Logical formulae are built in Mini-Spectrum from predicates overexpressions using the quanti�ers 8 and 9 as well as the logical combinators :,_, ^ and ). The only predicate provided by Mini-Spectrum is the so-calledstrong equality =, which is nonstrict, because it yields a de�ned value (true orfalse) even for unde�ned arguments8.Expressions Atomic expressions in Mini-Spectrum are function identi�ersand the special symbol ? which denotes the unde�ned element. More complexexpressions can be built from those using:Function Application: Applying an expression of a function sort to argumentexpressions of sorts matching the parameter sorts yields an expression ofthe result sort of the function expression..Weak Equality: For every sort except those involving the function sort con-structor �! there is a Boolean function called weak equality and denotedby .==., which is a strict and decidable equality predicate.Case Distinction: For expressing case distinction Mini-Spectrum providesan if. . . then. . . else. . . endif construct.Tuple Constructors: Tuple expressions can be built by grouping expressionsusing parentheses.2.1.4 Built-In Speci�cationA sort representing Boolean values and functions operating on those values isprede�ned inMini-Spectrum. They can be used in any Mini-Spectrum spec-i�cation without the need for explicitly giving an enriches command. The def-inition of this abstract data type of Boolean values can itself be expressed inMini-Spectrum notation and is given below.Bool = [data Bool = true j false;not : Bool �! Bool;.and., .or., .impl. : Bool � Bool �! Bool;8Readers familiar with Spectrummay notice thatMini-Spectrum clearly distinguishes thelevel of formulae from the level of terms. In Spectrum, on the contrary, this distinction is notmade. This mixing of levels in Spectrum leads to a somewhat complex and sometimes clumsylooking three-valued logic. Mini-Spectrum therefore rather adopts the classical distinctionbetween terms and formulae. 9



axioms 8 x,y : Bool innot(true) = false;not(false) = true;x and y = y and x;true and x = x;false and x = false;x or y = y or x;true or x = true;false or x = x;true impl x = x;false impl x = true;endaxioms]2.2 Example Speci�cationsIn the following we give two example Mini-Spectrum speci�cations in orderto illustrate the language de�nition given in the previous sections. We will giveshort explanations together with the speci�cations, although we believe them tobe well understandable.2.2.1 Natural NumbersNat = [data Nat = 0 j succ(pred:Nat);.+., .-., .*., .div., .mod. : Nat � Nat �! Nat;.�., .<. : Nat � Nat �! Bool;axioms 8 x,y : Nat in0 � x = true;succ(x) � succ(y) = x � y;succ(x) � 0 = false;x < y = (x � y) and not(x == y);x + 0 = x; 10



x + succ(y) = succ(x + y);x - 0 = x;succ(x) - succ(y) = x - y;0 - succ(x) = ?;x * 0 = 0;x * succ(y) = (x * y) + x;x div 0 = ?;x mod 0 = ?;(x mod succ(y)) < succ(y);x = ((x/succ(y)) * succ(y)) + (x mod succ(y));endaxioms]Nat speci�es the well-known concept of natural numbers. It �rst introduces thesort Nat using the data construct. This construct not only introduces the sort,but also its constructor functions 0 and succ and the selector function pred asthe inverted function of succ.The properties part then gives all the well-known properties of the functionsworking on natural numbers.2.2.2 Polymorphic Finite SetsSet = [sort Set �;; : Set �;add, del : � � Set � �! Set �;.2. : � � Set � �! Bool;Set � generated by ;, add;axioms 8 x,y : �, s : Set � inadd(x,add(x,s)) = add(x,s);add(x,add(y,s)) = add(y,add(x,s));x 2 ; = false;x 2 add(y,s) = (x == y) or (x 2 s);11



x 2 del(x,s) = false;not(x==y) ) x 2 del(y,s) = x 2 s;endaxioms]The most remarkable aspect about the speci�cation Set is that it is polymorphic.Hence, using the unary sort constructor Set � de�ned in this speci�cation, wecan build set sorts over arbitrary sorts (except functional sorts). The functions; and add are de�ned as set constructors. This indicates that all sets can bedescribed using terms over those two functions. The properties part describesthe properties characteristic for �nite sets in a polymorphic way. This is possiblebecause the characteristics of �nite sets are independent of the element sort. The�rst two formulae give the typical set properties (elements cannot occur more thanonce in a set and the order of insertion of elements into a set is irrelevant). Theremaining formulae describe the characteristics of the non-constructor functions.2. and del.A further aspect worth noting is that the sort constructor Set � could not havebeen speci�ed using the data construct of Mini-Spectrum. Sort constructorsspeci�ed using data are so-called free data types, which means that di�erentconstructor terms always denote di�erent semantic elements. This is not the casewith sets, as can be seen from the the �rst two axioms in the properties part ofthe speci�cation.2.3 Semantics of Mini-SpectrumAs explained above, Mini-Spectrum constitutes a sublanguage of the algebraicspeci�cations language Spectrum. It is a proper subset of Spectrum in thefollowing sense:� The language for speci�cation in the large is restricted compared to Spec-trum. Mini-Spectrum provides the concept of hierarchically basing aspeci�cation on primitive speci�cations (including renaming of signatureelements), but it has no notion for hiding signature elements and for param-etrization of speci�cations.� Mini-Spectrum has, in contrast to Spectrum, no system of sort classes.� Spectrum's language for specifying in the small provides a lot of conceptswhich are, for the sake of simplicity, not present in Mini-Spectrum: sortsynonyms, let- and letrec-expressions, lambda abstraction, a built-in �xpoint operator, built-in mix�x syntax for lists, . . .12



All those simpli�cations make Mini-Spectrum a very lean and easy-to-use al-gebraic speci�cation language without a�ecting expressivity and 
exibility toomuch. Besides that Mini-Spectrum makes some semantic assumptions aboutsorts and functions which further simplify its use and which are not there inSpectrum where they have to be made explicit in the speci�cation.� All functions introduced in a Mini-Spectrum speci�cation are assumedto be strict. In Spectrum, strictness of a function has to be speci�edexplicitly.� All sorts except functional sorts are assumed to denote 
at domains. Inparticular, user-de�ned sort constructors can only de�ne 
at sorts. InSpectrum the requirement of denoting a 
at domain has to be expressedexplicitly, using the concept of sort classes (the sort class EQ represents theset of all 
at sorts in Spectrum).From the above it is clear that everything which can be expressed in Mini-Spectrum can also be expressed in Spectrum. The easiest way to de�ne thesemantics of Mini-Spectrum is therefore to give a translation fromMini-Spec-trum speci�cations to Spectrum speci�cation. Thus, the formal semantics ofSpectrum [GR94] is used to assign meaning to Mini-Spectrum speci�cations.2.3.1 Translation Mini-Spectrum �! SpectrumThe syntax of Mini-Spectrum is already very close to that of Spectrum.Therefore, in order to map a Mini-Spectrum speci�cation S into the corre-sponding Spectrum speci�cation, only the following modi�cations have to beapplied to S:1. The square brackets enclosing the speci�cation have to be replaced bybraces:SP = [...] ; SP = f...g2. Mini-Spectrum uses a shorter syntax for enrichment with renaming ofsignature elements than Spectrum:enriches ... [...] ... ; enriches rename ... by [...] ...3. Spectrum does not distinguish between the level of formulae and the levelof Boolean terms. The Boolean functions not, .and., .or. and .impl. aretherefore not prede�ned in Spectrum as they are in Mini-Spectrum.The prede�ned Boolean operators in Spectrum, however, can take the13



role of those symbols, because they are applicable on the level of formulaeas well as on the level of terms:not ; :.and. ; .^..or. ; ._..impl. ; .).4. In Mini-Spectrum all functions are assumed to be strict. In Spectrumthis property has to be demanded explicitly. This can be done by insertingthe keyword strict; anywhere in the speci�cation (but after the enrichessection):SP = [ enriches ...; ...];SP = f enriches ...; strict; ...gThis keyword demands strictness of all functions which are newly intro-duced in a Spectrum speci�cation except constructor functions de�nedwithin a data construct. For this kind of functions strictness has to be de-manded within the data construct by placing exclamation marks in frontof all argument positions in which the constructor function is to be strict:SP = [...data List � = nil j cons(first : �, rest : List �);...] ;SP = f...data List � = nil j cons(!first : �, !rest : List �);...g5. In Mini-Spectrum all sorts (except functional sorts) represent 
at do-mains. While this is implicit in Mini-Spectrum, it has to be explicitlydemanded in Spectrum. For this purpose, Spectrum provides the sortclass EQ. When translating aMini-Spectrum speci�cation to Spectrum,this means �rst of all that we have to specify the correct class member-ship along with each newly introduced sort constructor (no matter if it isintroduced via sort or data):sort Nat; ; sort Nat; Nat::EQ;data List � = ... ; data List � = ...; List::(EQ)EQ;Furthermore, all occurences of sort variables have to be restricted to theclass EQ using so-called contexts. This applies to the signatures of polymor-phic functions as well as to polymorphic sorts of variables in formulae:14



� f : � �! � ; f : �,�::EQ ) � �! �� Let �1, . . . , �n be the set of sort variables occurring in the propertiessection of a Mini-Spectrum speci�cation. Thenaxioms 8 ... in ... endaxioms;axioms �1,...,�n::EQ ) 8 ... in ... endaxioms2.3.2 ExampleThe Mini-Spectrum speci�cation of polymorphic �nite sets of Section 2.2.2translates according to the rules given above to the following Spectrum speci-�cation:Set = fsort Set �;Set::(EQ)EQ;; : �::EQ ) Set �;add, del : �::EQ ) � � Set � �! Set �;.2. : �::EQ ) � � Set � �! Bool;Set � generated by ;, add;axioms �::EQ ) 8 x,y : �, s : Set � inadd(x,add(x,s)) = add(x,s);add(x,add(y,s)) = add(y,add(x,s));x 2 ; = false;x 2 add(y,s) = (x == y) or (x 2 s);x 2 del(x,s) = false;not(x==y) ) x 2 del(y,s) = x 2 s;endaxioms;gThis speci�cation is used to give meaning to the Mini-Spectrum speci�cationof Section 2.2.2. This means that the model class of theMini-Spectrum speci�-cation is de�ned to be the same as the model class of the Spectrum speci�cationgiven here. 15



3 Extended Entity-Relationship ModelingInformation systems usually administer complexely structured mass data. Thetask of describing these data structures, normally called (conceptual) data model-ing, plays therefore an important role in information system modeling. In princi-ple, this task could be performed using a description technique for abstract datatypes, for example the language Mini-Spectrum presented in Section 2. It ishowever clear that such a technique is not very well suited to gain intellectualcontrol over very complex data structures which usually occur in data modeling.Software Engineering methods provide therefore speci�c, mostly graphical, de-scription techniques for this purpose, the most widespread and popular of whichis the entity-relationship model (ERM) [Che76].This description technique structures the data which are to be modeled intomeaningful9 units, called entities and classi�es these entities using entity types.An entity type is described using attributes. Attributes are identi�ers for data val-ues which are used to characterize entities of the respective type. Attributes canbe mandatory or optional. A mandatory attribute must always contain a value,while an optional attribute is allowed not to contain any value out of the givendomain. Entities can be related to other entities via relationships. Relationshipsare classi�ed using relationship types. A relationship type is characterized by theentity types of the entities which participate in relationships of that type. Theparticipation of an entity type in a relationship type is usually called role. En-tity types may participate in relationship types in more than one role. The datastructure consisting of entity types, attributes and relationship types is usuallydenoted graphically in an entity-relationship diagram (ERD).Since 1976 many di�erent variants of the original entity-relationhip model havebeen developed which di�er in their graphic representation as well as in theirexpressivity. In the following we present a variant of this technique tailored forthe SysLab project, which includes one extension of the technique which is notpresent in any of the other variants.3.1 Entity-Relationship Diagram NameIn our approach an every entity-relationship diagram has a unique name, whichis given on top of the diagram as a title. This name allows to refer to an ERDfrom other description techniques of the method.9Meaningful with respect to the application domain. Some piece of information may beconsidered a meaningful unit in one application, while in another it would never occur alonebut always as part of some other, larger block of information, which would be a meaningfulunit of information for this second application.16



3.2 Entity Types and AttributesEntity types are characterized by their attributes. An attribute has a type (at-tribute type), which denotes the domain (the set of allowed values) of the at-tribute. Entity types are represented as labelled rectangular boxes in the entity-relationship diagram. An entity type is not further described in the ERD. Thedescription of an entity type is given in a so-called entity type description ta-ble. Examples of such tables are contained in the example data schema given inSection 3.4.4. For each entity type in the ERD there is exactly one entity typedescription table, which contains for every attribute of the type the followinginformation:� The name of the attribute.� The type of the attribute, which �xes the domain of the attribute's values.For the sake of completeness we require every attribute type to be speci�edas a sort in an abstract data type description10 (see Section 2).� Information about whether the attribute is mandatory or optional.� Information about whether the attribute is part of the entity type's key (cf.Section 3.4.1).3.3 Relationship TypesRelationship types in our approach may have an arbitrary arity n (n > 1). Arelationship type is depicted in the ERD as a labelled rhombus, which is connectedto the participating entity types via solid lines (cf. Section 3.4.4). Each linerepresents a role and can be labelled with a role identi�er. If an entity typeparticipates in a relationship type in more than one role, the roles have to belabelled.3.4 Static Integrity ConstraintsThe entity-relationship model allows to describe a data structure using entitytypes, attributes and relationship types. Besides the purely structural aspects,however, the ERM provides a notation for certain kinds of constraints which themodeled data have to obey. This kind of constraints is called static integrityconstraints, because they are used to specify data integrity and because theyhave a static nature, which means that they do not allow to express any re-strictions about data evolution over time. The classical ERM provides only two10If an attribute type T is not yet speci�ed by the developer in an abstract data type weassume it to be de�ned by the simple Mini-Spectrum speci�cation T = [ sort T; ].17



speci�c kinds of static integrity constraints: keys of entity types and cardinalitiesof relationship types. The entity-relationship model provided by SysLab goessigni�cantly beyond this level by providing the full expressive power of �rst-orderpredicate logic for specifying static data integrity.3.4.1 KeysA key is a subset of the attributes of an entity type, which su�ces to uniquelycharacterize the entities of that type. The constraint connected with a key istherefore that there must not exist two di�erent entities with identical key at-tribute values. The attributes forming the key of an entity type are in our notationmarked in the respective entity type description table (cf. Section 3.4.4).3.4.2 CardinalitiesCardinalities are constraints which restrict the participation of entities in rela-tionship types. There are several notations for cardinalities. A very commonnotation is to classify relationship types to be 1:1, 1:n or m:n. This classi�cationscheme only works for binary relationship types. It is not appropriate for the de-scription technique presented here. We therefore adopt the so-called (min,max)notation (cf. for example [SS83]) to express cardinalities. This notation works forrelationship types of arbitrary arity. In this notation, every role, i.e. every lineconnecting an entity type with a relationship type in the ERD, is annotated witha tuple (min,max) which speci�es the minimal and maximal number of partici-pations of entities of the given entity type relationships of the given relationshiptype in that speci�c role. The second component of this tuple may also be anasterisk � which indicates that there is no restriction concerning the maximumnumber of participations. For examples again see the ERD given in Section 3.4.4.3.4.3 General ConstraintsIn conceptual data modeling, one often �nds static integrity constraints for thedata to be modeled which cannot be expressed using key and cardinality con-straints. In order to record those more complex constraints, too, the SysLabvariant of the entity-relationship model o�ers the possibility to annotate theERD with logic formulae which express those constraints. It should be notedthat the above mentioned key and cardinality constraints can of course be ex-pressed as formulae, too. The notations for keys and cardinalities can thus beseen as graphic abbreviations for special kinds of formuale.As a language for those formulae we chose Mini-Spectrum. Hence we can usethe same kind of formulae to annotate an ERD as can be found in the properties18



section of a Mini-Spectrum speci�cation. The formulae are expressed over asignature which is generated from the ERD in the following way:� Entity types represent sorts (entity sorts).� Attributes are modeled as selector functions mapping entities to attributevalues.� Relationship types are seen as mathematical relations between entity typesand modeled as Boolean functions which represent the characteristic pred-icates of those relations.We do not go into further detail about this generated signature here. This topicwill occur again in Section 3.5. An example for a static integrity constraintexpressed as logic formula is contained in the entity-relationship schema given inSection 3.4.4, an example for a signature generated from an ERD can be foundin Section 3.5.3.3.4.4 ExampleThe entity-relationship schema of Figure 1 shows the data structure to be admin-istered by a very simplistic bibliographic information system (BIS). This systemallows to store and retrieve information about publications, their authors andpublishers. Furthermore the system has to keep record of the literature refer-ences contained in the publications, such that a user of the system can �nd outwhich publications are referenced by a certain publication. As a last feature thesystem incorporates a glossary of keywords used to characterize the publications,which means that each publication can be linked with one or more keywords andthat for each keyword a de�nition text is kept in the system.We believe the entity-relationship diagram and the entity type description ta-bles given in Figure 1 to be self-explanatory. We will therefore only explain theformula given under the headline 'Static Integrity' in this �gure. The schemaof our bibliographic information system contains a special kind of redundancyconcerning publishers. Information about publishers is modeled in our schemaas entity type which is connected to its publications via the relationship typepublishes. If a publication has an ISB-number, however, publisher information isalso contained in the ISBN (each ISBN contains a 3-digit code which identi�esthe publisher of the publication). For publications with an ISBN publisher in-formation is therefore contained twice in the schema. Of course, it is a necessarycondition that this redundant information is always consistent in the sense thatthe publisher code in the ISBN describes the same publisher as the publisherentity related to the publication entity via publishes. It is exactly this constraintwhich is expressed by the Mini-Spectrum formula in Figure 1. Informally, this19



Entity Type Publisher

Attribute Type Opt Part of Key

P_Name String ·

P_Address Adr

Entity Type Publication

Attribute Type Opt Part of Key

Title String ·

Year Nat ·

ISBN Isbn ·

Entity Type Author

Attribute Type Opt Part of Key

Name String ·

Dateofbirth Date ·

Address Adr

Entity Type Keyword

Attribute Type Opt Part of Key

Notion String ·

Description String

"P:Publisher,p:Publication.

   publishes(P,p)Þ ISBN(p)=NULL Ú consistent(P_Name(P), ISBN(p))

Structure:

Entity Type Descriptions:

Static Integrity:

Publisher

Publication

Author Keyword

cites

writes uses

publishes

citing

cited

(1,*)

(0,*)

(1,1)

(1,*)

(1,*) (1,*)

(0,*)

(0,*)

Primitive Data Types: Adr = {
data Adr = mkadr(!Country : String,
                 !City    : String,
                 !Street  : String,
                 !ZIP     : Nat);
}

Isbn = {
sort Isbn;
}

Date = {
data Date = mkdate(!Day   : Nat,
                   !Month : Nat,
                   !Year  : Nat);
}

BIS

Figure 1: Example Entity-Relationship Schema20



formula says: For every pair of a publisher entity P and a publication entity pwhich are related via publishes the ISBN attribute is either NULL11 or it is con-sistent with the publisher entity P. The consistency check itself takes place in anauxiliary function consistent, which is not speci�ed here.3.5 Semantics of the Extended Entity-Relationship ModelFor the di�erent variants of the ERM there are already many semantics de�ni-tions, informal ones (given in natural language) as well as mathematical ones,for example by translating entity-relationship schemas to the relational calculus.As most of those ER variants do not possess the extension described above, theirsemantics de�nitions also do not discuss this extension12.In the following we sketch the de�nition of a formal semantics for the extendedentity-relationship approach presented in this paper. A thorough discussion ofthis way of giving a formal semantics to the ERM can be found in [Het95].In this approach an entity-relationship schema is viewed as the de�nition of anabstract data type. This is done by giving translation rules which allow to assigna Mini-Spectrum speci�cation13 to each ER schema. The abstract data typedescribed by this speci�cation is then de�ned to be the semantics of the ERschema, too.3.5.1 Translating Extended Entity-Relationship Schemata into Mini-SpectrumIn the following we present the de�nition of a translation schema for translatingERDs intoMini-Spectrum speci�cations. A discussion of this topic in full detailis out of the scope of this paper. Instead, we present the main aspects of thisschema and illustrate them by an example. For further information we refer to[Het95].Signature As we have already stated in Section 3.4.3, an entity-relationshipdiagram can be seen as graphical de�nition of a signature, where entity typesmodeled as sorts, attributes as selector functions on entity sorts and relation-ship types as mathematical relations. The signature re
ecting the structure of11The special value NULL is used to model the fact that an optional attribute carries node�ned value.12There are, however, some approaches to entity-relationship modeling which contain ex-tensions similar to the one given here and which possess a formal semantics de�nition (cf.[JRP91a, JRP91b, Gog94, Hoh93]).13[Het95] uses the language Spectrum for this purpose, but the sublanguage of Spectrumcomprised by Mini-Spectrum su�ces. 21



the schema of the bibliographic information system presented in Section 3.4.4 isshown in the speci�cation given in Section 3.5.3 and certainly su�ces to illustratethe idea behind the generation of signatures from entity-relationship schemata.Properties The signature of the generated speci�cation re
ects the structureof the data modeled by the corresponding schema. The static integrity constraintsare consequently represented by the axioms in the properties part of the speci-�cation, thus giving the restrictions which the signature elements have to obey.Concerning the semantics of static integrity constraints, we have to distinguishthree cases:� Key constraints are in the presented approach given in the entity typedescription tables. Their meaning can, of course, be also expressed asMini-Spectrum formulae over the above signature.Suppose an entity type E with attributes a1, . . . , an, where a1, . . . , ak(k � n) are the key attributes. The key constraint connected with this keyis then expressed by the Mini-Spectrum formula8e1,e2:E. a1(e1)=a1(e2) ^ ... ^ ak(e1)=ak(e2) , e1=e2This formula expresses exactly the constraint that two entities are equalwhenever their key attribute values are equal.� Cardinality constraints, which are used to require minimal and maximalnumbers of participations of entities in relationships (in speci�c roles), aregiven as (min;max) annotations to the lines representing the roles in theERD.Assume a n-ary relationship type R between the entity types E1, . . . , Enand let the role in which E1 participates in R be annotated with the tuple(min,max). The semantics of this cardinality constraint is then expressedby the formula8e1:E1.9s:Set(E1�...�En).8e2:E2,...,en:En.((e1,...,en)2s=true , R(e1,...,en)=true) ^min�card(s)=true ^ card(s)�max=true;If the min component of the tuple is 0 or the max component is �, thisformula can of course be simpli�ed accordingly.� General constraints, i.e. all static integrity constraint except keys andcardinalities, are already expressed as Mini-Spectrum formulae over thegenerated signature. They can therefore simply be taken over into theproperties part of the speci�cation.22



3.5.2 Motivation of Semantics De�nitionIn our approach we assign a formal semantics to the entity-relationship modelby assigning a speci�cation of an abstract data type to each entity-relationshipschema. In the following we will give a short explanation on why this way ofsemantics de�nition is sensible.Informally, we can understand an entity-relationship schema as the de�nition ofan abstract entity-relationship database. The schema then de�nes1. the structure of the database (entities, attributes, relationships), and2. integrity constraints which every state of the database has to obey.This means that the schema can be seen as the de�nition of a set of allowed statesof a (hypothetic) entity-relationship database.The generated speci�cation, on the other hand, is given its semantics as a set of�-algebras. These are algebras having a structure which represent the speci�ca-tion's signature (which itself re
ects the structure of the data in terms of entitytypes, relationship types and attributes). The set of all algebras, which ful�llthe properties demanded in the properties part of the speci�cation14, form thesemantics of the speci�cation. The formulae in the properties part re
ect exactlythe static integrity constraints.It is therefore obvious that the model class of the generated speci�cation repre-sents the set of all allowed states of the entity-relationship database mentionedabove. There is a bijection between the allowed database states described by theentity-relationship schema and the model class of the generatedMini-Spectrumspeci�cation.3.5.3 ExampleThe following speci�cation is generated from the example schema given in Section3.4.4 according to the above rules and thus de�nes the formal semantics of thisschema. It is hierarchically based on some auxiliary speci�cations (Opt, Set)and on the speci�cations de�ning the attribute sorts. This example is meant toillustrate the translation rules given above. More detailed information can befound in [Het95].BIS = [ enriches Opt + Set + Nat + String + Date + Adr + Isbn;-- Sorts representing entity typessort Author, Keyword, Publication, Publisher;14This set is often called the model class of the speci�cation.23



-- Selector functions representing attributesName : Author �! String;Dateofbirth : Author �! Date;Address : Author �! Adr;Notion : Keyword �! String;Description : Keyword �! String;Title : Publication �! String;Year : Publication �! Nat;ISBN : Publication �! Opt Isbn;P Name : Publisher �! String;P Address : Publisher �! Adr;-- Predicates representing relationship typescites : Publication � Publication �! Bool;publishes : Publisher � Publication �! Bool;uses : Publication � Keyword �! Bool;writes : Author � Publication �! Bool;axioms-- Key constraints8a1,a2:Author. Name(a1)=Name(a2) ^Dateofbirth(a1)=Dateofbirth(a2) ) a1=a2;8k1,k2:Keyword. Notion(k1)=Notion(k2) ) k1=k2;8p1,p2:Publication. Title(p1)=Title(p2) ^ Year(p1)=Year(p2) ) p1=p2;8p1,p2:Publisher. P Name(p1)=P Name(p2) ) p1=p2;-- Cardinality constraints8a:Author.9s:Set(Author�Publication).8p:Publication.((a,p)2s=true , writes(a,p)=true) ^ 1�card(s)=true;8k:Keyword.9s:Set(Publication�Keyword).8p:Publication.((p,k)2s=true , uses(p,k)=true) ^ 1�card(s)=true;8p:Publication.9s:Set(Publication�Publisher).8pp:Publisher.((pp,p)2s=true , publishes(pp,p)=true) ^ 1=card(s);8p:Publication.9s:Set(Author�Publication).8a:Author.((a,p)2s=true , writes(a,p)=true) ^ 1�card(s)=true;8pp:Publisher.9s:Set(Publisher�Publication).8p:Publication.((pp,p)2s=true , publishes(pp,p)=true) ^ 1�card(s)=true;-- Additional constraints8pp:Publisher,p:Publication.publishes(pp,p)=true ) ISBN(p)=NULL _ consistent(P Name(pp),ISBN(p))=true;endaxioms;] 24



4 Mapping to System ModelIn Section 1.1 we explained that all description techniques available in SysLabare formally based on the SysLab system model. In Sections 2.3 and 3.5, how-ever, the algebraic speci�cation language Spectrum is used for (indirectly) de-scribing the formal semantics of those the introduced description techniques. Thisis possible because of the fact that the notion of �-Algebras, which is used in thesemantics de�nition of Spectrum, is also present in the SysLab system model(cf. [GKR96]). This situation is depicted in Figure 2.The semantics of the speci�cation language Spectrum is de�ned algebraically,which means that speci�cations are interpreted by �-Algebras.The semantics of Mini-Spectrum is given by a translation � from Mini-Spec-trum speci�cations to Spectrum speci�cations. The semantics of aMini-Spec-trum speci�cation SP (MODminispec[SP ]) is de�ned to be semantics of thecorresponding Spectrum speci�cation (MODspec[�[SP ]]).EER diagrams are understood as a graphical notation for a special kind of Mini-Spectrum speci�cations, which means that there is a translation � from EERdiagrams to Mini-Spectrum speci�cations. The semantics of an EERD E isthen de�ned to be the semantics MODminispec[�[E]] of the corresponding Mini-Spectrum speci�cation �[E].Figure 2 explains that it is justi�ed to use �-Algebras for de�ning the semanticsof the introduced description techniques. It does, however, not explain how thosedescription techniques contribute to the description of a system in the sense ofthe SysLab system model. This topic will be dealt with in the next section.5 Describing the State of System ComponentsAs described in [RKB95] and [GKR96], a system in SysLab consists of a setof hierarchically structured, communicating components. Data appear in thissystem view in two di�erent contexts:� Data are communicated as messages between system components.� Data are stored in components as component states.In the following we will deal with the question how the description techniquesintroduced in this paper can be applied for specifying the types of messages andthe structure of component states. 25



EER Diagrams

MINI-SPECTRUM

Specifications

SPECTRUM

Specifications

S-Algebras

SYSLAB System Model

S
 y

 n
 t
 a

 x
S

e
m

a
n
ti
c
s

Syntax Transformation

Syntax Transformation

Interpretation Function
(Assignment of Meaning)

Figure 2: Mapping of Description Techniques to System Model
26



5.1 MessagesThe type of messages sent over a communication channel is de�ned by associatinga sort with the channel. The sort is provided by one of the �-Algebras containedin the system speci�cation15 (cf. [GKR96, Section 6.7]). The assignment ofchannels with sorts is done in the description technique for component classeswhich is not yet �xed.5.2 Component StatesIn [GKR96, Section 6.6] the state of a basic16 component is de�ned to be a tripleconsisting of an input message bu�er, an output message bu�er, and a data state:Statec = (Inc ! D�)�Datac � (Outc ! D�)The two message bu�ers are used in the system model to code the control stateof the component. The only part of a component state, which a user of SysLabmethod wants to specify, is the data state Datac. [GKR96, Section 6.7] statesthat this data state is associated with a sort provided by a �-Algebra.The situation with data states is, however, not as simple as with messages. Thedata state of a component is likely to be a complex unit of information consistingof several parts17. We can distinguish two di�erent kinds of data �elds:Simple Fields contain data elements of a sort provided by the speci�ed ADTs.A simple �eld is thus associated with a sort contained in one of the existing�-Algebras.Database Fields are used to store mass data described using EER diagrams.The state space described by an EERD, however, is given according toSection 3.5 as the semantics of a Mini-Spectrum speci�cation associatedwith the diagram. This means that the state space is a set of �-Algebras.In order to associate the state space with a database �eld an interpretationof this state space in the form of a sort (database sort) is needed. Thereis a formal transition between those two representations of the state space,which is de�ned and analysed in [Het95]. We will not present the details ofthis transition (which in [Het95] is called internalization) here. The result15Note that these �-Algebras can be the interpretation of Mini-Spectrum speci�cations aswell as of EER diagrams. This means that entities can be communicated over channels.16The state of a hierarchically decomposed component is completely determined by the statesof its subcomponents and its communication medium.17These parts of the data state will in the following be called �elds. We avoid the termcomponent here in order to not confuse these data �elds with system components.27



of this transition is a speci�cation of a database sort which describes the setof all possible (according to the EERD) database states. A database statecontains a set of entities for each entity type and a set of tuples of entitiesfor each relationship type. Selector functions for those sets are provided.Of course, the speci�cation allows to distinguish between database states,which are statically integer, and `forbidden databases states, which violatestatic integrity. The example of Section 5.3 is meant to give an impressionof what the speci�cation of the database sort looks like.hdatastatei ::= datastate( hcomponenti ) = [ fh�eldi // ,g+ ]h�eldi ::= hidi : fhprim-sorti j hdb-sortigFigure 3: Description Technique for Data State of System ComponentsFigure 3 gives the syntax of a description technique which allows to specify the�elds of a data state and to associate those �elds with sorts. A data state speci-�cation of the formdatastate(c) = [ field1 : sort1,...fieldn : sortn ]is interpreted as Mini-Spectrum speci�cation of a record sort which is, accord-ing to [GKR96], associated with the data state Datac of a component c:cstate = [ enriches ...data cstate = mkcstate(field1 : sort1, ..., fieldn : sortn);]The sort cstate then is the sort which is assigned to the data state Datac of thebasic component c.5.3 ExampleAs an example we assume that we implement the bibliographic information sys-tem mentioned in the previous sections as a system built around one centraldatabase component. The state of this database component is therefore struc-tured according to the EERM shown in Figure 1. With the notation de�nedabove we can express this as:datastate(DB-Component) = [ Database : BIS ]28



Informally, this statement says that the database component DB-Component con-sists of one �eld (a database �eld), which is described by the entity-relationshipdiagram identi�ed by 'BIS'.The formal meaning of the statement is de�ned by the followingMini-Spectrumspeci�cations:DB-Componentstate = [ enriches BIS;data DB-Componentstate = mkstate(Database : BIS);]BIS = [ enriches Opt + Set + Nat + String + Date + Adr + Isbn;-- Sorts representing entity typessort Author, Keyword, Publication, Publisher;-- Selector functions representing attributesName : Author �! String;Dateofbirth : Author �! Date;Address : Author �! Adr;Notion : Keyword �! String;Description : Keyword �! String;Title : Publication �! String;Year : Publication �! Nat;ISBN : Publication �! Opt Isbn;P Name : Publisher �! String;P Address : Publisher �! Adr;-- Sort representing database structuredata BIS s = mkBIS s [sel'Author : Set Author,sel'Keyword : Set Keyword,sel'Publication : Set Publication,sel'Publisher : Set Publisher,cites : Set (Publication � Publication),publishes : Set (Publisher � Publication),uses : Set (Publication � Keyword),writes : Set (Author � Publication)];-- Predicate to check static integrityOK : BIS s �! Bool;-- Database sort (only statically integer states)sort BIS;BIS s2BIS : BIS s �! BIS; 29



BIS2BIS s : BIS �! BIS s;BIS generated by BIS s2BIS;axioms 8 B : BIS s inOK(B) ,-- Referential integrity(8p1,p2:Publication.(p1,p2)2cites(B)=true ,p12sel'Publication(B)=true ^ p22sel'Publication(B)=true) ^(8p1:Publisher,p2:Publication.(p1,p2)2publishes(B)=true ,p12sel'Publisher(B)=true ^ p22sel'Publication(B)=true) ^(8p:Publisher,k:Keyword.(p,k)2uses(B)=true ,p2sel'Publisher(B)=true ^ k2sel'Keyword(B)=true) ^(8a:Author,p:Publication.(a,p)2writes(B)=true ,a2sel'Author(B)=true ^ p2sel'Publication(B)=true) ^-- Key constraints(8a1,a2:Author.a12sel'Author(B)=true ^ a22sel'Author(B)=true )Name(a1)=Name(a2) ^ Dateofbirth(a1)=Dateofbirth(a2) ) a1=a2) ^(8k1,k2:Keyword.k12sel'Keyword(B)=true ^ k22sel'Keyword(B)=true )Notion(k1)=Notion(k2) ) k1=k2) ^(8p1,p2:Publication.p12sel'Publication(B)=true ^ p22sel'Publication(B)=true )Title(p1)=Title(p2) ^ Year(p1)=Year(p2) ) p1=p2) ^(8p1,p2:Publisher.p12sel'Publisher(B)=true ^ p22sel'Publisher(B)=true )P Name(p1)=P Name(p2) ) p1=p2) ^-- Cardinality constraints(8a:Author.a2sel'Author(B)=true )(9s:Set(Author�Publication).8p:Publication.p2sel'Publication(B)=true )((a,p)2s=true , (a,p)2writes(B)=true) ^ 1�card(s)=true)) ^(8k:Keyword.k2sel'Keyword(B)=true )(9s:Set(Publication�Keyword).8p:Publication.p2sel'Publication(B)=true )((p,k)2s=true , (p,k)2uses(B)=true) ^ 1�card(s)=true)) ^(8p:Publication.p2sel'Publication(B)=true )(9s:Set(Publication�Publisher).8pp:Publisher.pp2sel'Publisher(B)=true )((pp,p)2s=true , (pp,p)2publishes(B)=true) ^ 1=card(s))) ^(8p:Publication.p2sel'Publication(B)=true )(9s:Set(Author�Publication).8a:Author.a2sel'Author(B)=true )((a,p)2s=true , (a,p)2writes(B)=true) ^ 1�card(s)=true)) ^(8pp:Publisher.pp2sel'Publisher(B)=true )(9s:Set(Publisher�Publication).8p:Publication.p2sel'Publication(B)=true )((pp,p)2s=true , (pp,p)2publishes(B)=true) ^ 1�card(s)=true)) ^-- Additional constraints(8pp:Publisher,p:Publication.pp2sel'Publisher(B)=true ^ p2sel'Publication(B)=true )((pp,p)2publishes(B)=true )ISBN(p)=NULL _ consistent(P Name(pp),ISBN(p))=true));30



BIS s2BIS(B) 6= ? , OK(b)=true;OK(b)=true ) BIS2BIS s(BIS s2BIS(B))=B;endaxioms;]Remark In the speci�cation given above the sort BIS is introduced in two steps.First, a sort BIS s de�nes the structure of the database without considering staticintegrity. The sort BIS is thereafter de�ned as a restriction of BIS s such that itcomprises exactly the statically integer database states, which are distinguishedby the OK predicate.6 ConclusionIn the paper at hand we have presented description techniques for data in theSysLab method, thus covering the method's data oriented system view. Follow-ing the basic principle of the SysLab project, these description techniques weregiven a formal semantics and were related to the SysLab system model. Thenon-data oriented system views of the SysLab method are currently being dealtwith in the SysLab project in a similar way.From the point of view of data there is another interesting aspect in modelinginformation systems, which has not been dealt with in this paper. It is thetreatment of dynamic integrity constraints. They can be used to specify thesystem behaviour from a data oriented point of view. In the object-orientedmethod Fusion [CAB+94], for example, they appear in the form of so-calledlifecycles. In SSADM [DCC92], the notion of entity life histories deals withdynamic data integrity. In the context of the SysLab project this is an interestingtopic for further research.References[BDD+93] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, andR. Weber. The Design of Distributed Systems: An Introduction toFocus | Revised Version. Technical Report TUM-I9202-2, Technis-che Universit�at M�unchen, Institut f�ur Informatik, 1993.[BFG+93a] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hu�mann, D. Nazareth,F. Regensburger, O. Slotosch, and K. St�len. The Requirement andDesign Speci�cation Language Spectrum. An Informal Introduc-tion. Version 1.0. Part I. Technical Report TUM-I9311, TechnischeUniversit�at M�unchen. Institut f�ur Informatik, May 1993.31



[BFG+93b] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hu�mann, D. Nazareth,F. Regensburger, O. Slotosch, and K. St�len. The Requirement andDesign Speci�cation Language Spectrum. An Informal Introduc-tion. Version 1.0. Part II. Technical Report TUM-I9312, TechnischeUniversit�at M�unchen. Institut f�ur Informatik, May 1993.[CAB+94] D. Coleman, P. Arnold, S. Bodo�, C. Dollin, H. Gilchrist, F. Hayes,and P. Jeremaes. Object-Oriented Development | The FusionMethod. Prentice Hall, Englewood Cli�s, New Jersey, 1994.[Che76] P. Chen. The entity-relationship model | toward a uni�ed view ofdata. ACM Trans. on Database Systems, 1(1):9{36, 1976.[DCC92] Ed Downs, Peter Clare, and Ian Coe. Structured Systems Analysisand Design Method | Application and Context. Prentice Hall, 1992.[GKR96] R. Grosu, C. Klein, and B. Rumpe. Enhancing the SysLab Sys-tem Model with State. Technical Report TUM-I9631, TechnischeUniversit�at M�unchen, Institut f�ur Informatik, 1996.[GN94] Radu Grosu and Dieter Nazareth. The Speci�cation LanguageSpectrum - Core Language Report V1.0. TUM-I 9429, TechnischeUniversit�at M�unchen, 1994.[Gog94] M. Gogolla. An Extended Entity-Relationship Model. Fundamentalsand Pragmatics, volume 767 of Lecture Notes in Computer Science.Springer, 1994.[GR94] R. Grosu and F. Regensburger. The Logical Framework of Spec-trum. Technical Report TUM-I9402, Technische Universit�atM�unchen, 1994.[GTWW75] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. G. Wright.Abstract Data-Types as Initial Algebras and Correctness of DataRepresentations. In Proceedings Conference on Computer Graphics,Pattern Recognition and Data Structure, 1975.[Gut75] J. V. Guttag. The Speci�cation and Application to Programming ofAbstract Data Types. PhD thesis, Department of Computer Science,University of Toronto, 1975.[Het95] R. Hettler. Entity/Relationship Datenmodellierung in axiomatischenSpezi�kationssprachen. TECTUM, Marburg, 1995.[HMM86] R.W. Harper, D.B. MacQueen, and R.G. Milner. Standard ML.Technical Report ECS-LFCS-86-2, Univ. Edinburgh, 1986.32



[Hoh93] U. Hohenstein. Formale Semantik eines erweiterten Entity-Relationship-Modells, volume 4 of Teubner-Texte zur Informatik.Teubner, 1993.[JRP91a] M. B. Josephs and D. Redmond-Pyle. Entity-Relationship ModelsExpressed in Z: A Synthesis of Structured and Formal Methods.Technical Report PRG-TR-20-91, Oxford University ProgrammingResearch Group, 1991.[JRP91b] M. B. Josephs and D. Redmond-Pyle. A Library of Z Schemas foruse in Entity-Relationship Modelling. Technical Report PRG-TR-21-91, Oxford University Programming Research Group, 1991.[Pae95] B. Paech. A Methodology Integrating Formal and Informal SoftwareDevelopment. In M. Wirsing, editor, ICSE-17 Workshop on For-mal Methods in Software Engineering Practice, pages 61{68, Seattle,Washington, 1995.[RKB95] B. Rumpe, C. Klein, and M. Broy. Ein strombasiertes mathematis-ches Modell verteilter informationsverarbeitender Systeme - SyslabSystemmodell -. Technical Report TUM-I9510, Technische Univer-sit�at M�unchen, Institut f�ur Informatik, March 1995.[SS83] G. Schlageter and W. Stucky. Datenbanksysteme: Konzepte undModelle. Teubner, Stuttgart, 1983.

33


