
T U M
I N S T I T U T F Ü R I N F O R M A T I K

The Universal B-Tree for multidimensional
Indexing

Rudolf Bayer

ABCDEFGHIJKLMNO
TUM-I9637

November 96

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-11-96-I9637-350/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c1996

Druck: Fakult ät f ür Mathematik und
Institut f ür Informatik der
Technischen Universit ät M ünchen

The Universal B-Tree for multidimensional Indexing1Rudolf BayerInstitut f�ur InformatikLehrstuhl Datenbanksysteme, WissensbasenTechnische Universit�at M�unchenbayer@informatik.tu-muenchen.deSeptember, 1996

1Patent pending: Deutsches Patentamt Nr. 196 35 429.3

AbstractToday almost all database systems use B-trees as their main access method. One of the maindrawbacks of the classical B-tree is, however, that it works well only for one-dimensional data.In this paper we present a new access structure, called UB-tree (for universal B-tree) for multi-dimensional data. The UB-tree is balanced and has all the guaranteed performance characteristicsof B-trees, i.e. it requires linear space for storage and logarithmic time for the basic operations ofINSERT FIND DELETE. In addition the UB-tree has the fundamental property, that it preservesclustering of objects w.r. to Cartesian distance. Therefore, the UB-tree shows its main strengths formultidimensional data. It has very high potential for parallel processing. With the new method, asingle UB-tree can replace an arbitrary number of secondary indexes. For updates this means thatonly one UB-tree must be managed instead of several secondary indexes. This reduces runtime andstorage requirements substantially. For queries and in particular range queries the UB-tree has mul-tiplicative complexity instead of the additive complexity of multiple secondary indexes. This resultsin dramatic performance improvements over secondary indexes.The UB-tree is obviously useful for geometric databases, datawarehousing and datamining ap-plications, but even more for databases in general, where multiple secondary indexes are widespread,which can all be replaced by a single UB-tree index.

1 IntroductionIn this paper the UB-tree (universal B-tree) access structure is described, a method to organize theobjects populating an n-dimensional space (called the "universe") in such a way, that they can bestored on, managed on, retrieved from and deleted from peripheral storage very e�ciently.Methods known so far to handle this problem [1], [2], [3] have de�ciencies either w. r. toperformance guarantees or w.r. to the handling of dynamic datasets.So far methods with good performance guarantees were only known for 1-dimensional (or linear)spaces. The best known and the most widely used methods - particularly for database systems - areseveral variants of the B- Tree coinvented by the author.Performance guarantees for UB-trees are given for all basic operations required to managediskstorage for multidimensional data. Also guarantees can be given for the utilization of spaceand the regaining of unused space on disk storage.Since the performance guarantees for processing time are logarithmic in the number of objectsin the dataspace, the method is particularly suitable and robust for very large applications. It hasexcellent performance over an extremly large range of dataspace sizes, in other words, it scales verywell to very large problems as they arise e.g. in applications of geographical databases as well asdatamining and datawarehousing applications. A further important advantage of the new method is,that it can be implemented on top of any database system or even on top of just an index-structure,like e.g. a classical B-tree implementation, by a preprocessing technique. The basic property makingthis possible is the fact, that multidimensional space is mapped to a linear ordered space in sucha way, that the multidimensional clustering is preserved by this mapping and is reected in theone-dimensional clustering of the pages of disk-storage-architecture. Therefore it is easy and coste�ective to extend existing database systems to take advantage of the UB-tree data organization andaccess method.2 Basic ConceptsWe de�ne the formal concept of an Area as follows:Def. 2.1 Partition a cube C of dimension n into 2n subcubes numberedsc(i) for i = 1; 2; : : : 2nby partitioning C w.r. to each dimension in the middle. Then recursively de�ne:AreaC(k) := [ki=1sc(i) for k = 0; 1; : : : 2n � 1AreaC(k:j) := AreaC(k) [Areasc(k+1)(j)where Areasc(k+1)(j) is a nonempty Area of sc(k + 1), i.e. j � 1Def. 2.2: An address � is a sequencei1:i2 : : : il whereij � 0; 1; : : : 2n � 1 for j � 0; 1; 2; : : : l � 1il � 1; 2; : : : 2n � 1Lemma 2.1: Addresses are ordered lexicographically, we denote this order by <�; ��; :=; : : :Areas are ordered by set inclusion denoted by �;�; : : :Let �; � be addresses, thenArea(�) � Area(�), � <� �Area(�) = Area(�), � = �
1

Lemma 2.2: The orders on areas and addresses are isomorphic with the following correspondences<� corresponds to ��� �:= =Following are four examples of Areas and their addresses;In the following �gure the shaded Area A has address 0.3, we write alpha(A) = 0:3.

Figure 1:From now on we omit the period in the notation for addresses.In the �gure 2 the shaded Area B has address 132 and we write alpha(B) = 132

Figure 2:In the following �gure 3 the shaded Area C has address alpha(C) = 2331.The following �gure 4 shows the 3 - dimensional Area E with address 541.To understand the de�nition of areas intuitively, imagine that areas are built up successively byadding subcubes in the order of subcube numbering or by adding smaller subcubes within the next2

Figure 3:subcube etc. An area is de�ned uniquely by the last subcube included in it. The address of thissubcube is identical to the address of this area.Def. 2.3: A region is the di�erence of two areas:if � <� � thenregion(�; �) = Area(�)� Area(�)where � means "set di�erence"Def. 2.4: A page is a �xed size byte container, e.g. a main-memory page or a disk-page. Pages�t into main-memory slots and also into disk-slots.Note: We will arrange and maintain areas in such a way, that the objects (or better the identi�ersof objects) in a region between two successive areas �t into a page. The content of a page pcan then be speci�ed by two addresses:content(P) = the set of objects in region(�; �):Def. 2.5: the address of a pixel is identical to the address of the area de�ned by including thepixel as the last and smallest subcube contained in this area. A pixel is the smallest possiblesubcube and the limit of the resolution, but the resolution may be chosen as �ne as desired.Lemma 2.3: There is a one-to-one map between Cartesian coordinates (x1:x2; : : : xn) of a n-dimensional pixel and its address � implicitely de�ned by the above addressing scheme. Weuse the following notations for these maps:alpha(x1; x2; : : : xn) = �cart(�) = (x1; x2; : : : xn)Since the two maps are inverses of each other we getcart(alpha(x1; x2; : : : xn)) = (x1; x2; : : : xn)alpha(cart(�)) = �cart(�):i is the ith-coordinate of cart(�).If we have a set of areas we can order them according to their addresses. Since a region is thedi�erence of two succesive areas in this ordered set this also implies an order on the regionsand therefore the corresponding pages. 3

Figure 4:We assume that we have a universe U of pixels. For simplicity we assume that U has pix = 2rpixels per dimension wich are numbered 0; 1; 2; : : :2r � 1. Arbitrarily sized spaces are simplyconsidered as a subset of a suitable cube-shaped universe.Since addresses are linearly ordered, by <�, they can be treated as the keys of any variant ofa B-tree. New point-type objects lie exactly between two area addresses and therefore in aunique region. The identi�ers (Ids) of new objects are entered into their proper region, i.e.stored (inserted) into the page of their region.3 The UB-Tree Access StructureThe UB-tree is a variant of a B-tree, in which the keys are addresses of regions ordered by <�. Figure5 illustrates this data-structure:Idm1 are the identi�ers of objects in region (0; 1) and Idni are the identi�ers of objects in region(i�1i). Instead of storing identi�ers Idmi in leaf-pages the objects could be stored there directly.3.1 Insertion AlgorithmPoints: Points to be inserted into the universe U are speci�ed by their Cartesian coordinates(x1; x2; : : : xn) and their addres = alpha(x1; x2; : : : xn). They belong to the unique region(�; �)with the condition � <� �� �. They are inserted into the leaf-page corresponding to thatregion, which is found by a point query, see section 4.Extended Objects: An extended object, which is not just a single point, may intersect severalregions. In that case, the object is inserted into each region which it intersects properly. Morespeci�cally, if object O intersects region (�; �) and region (; �) the identi�er Id(O) is insertedinto both pages page (�; �) and page (; �) . This may cause either or both pages to overowand to trigger region-splits and corresponding page-splits.4

correspond to regions of the universe U.

αi-1 p
i
1

.....α11
1pα

0
αi

γ p
j γ

1
.... γ p

i
j γ

i
... γ

0 1 i-1

Id
1

1
Id ... Id

i i
k1l

1
... Id ...

p(p(γ , γ γ
0 1

) γ
i-1

,
i

)

root of UB -Tree

This is the index-part of the UB-Tree,

similar to the Index-part of a B* -tree.

only leaf-pages of the UB-Tree

....

leaf pages for regions:

l

Figure 5:Splitting Algorithm: Since pages can store only a maximum number M of Ids or objects, pagesmay overow and split like in B-trees. If a region is de�ned by � and , the region is split byintroducing a new area with address � such that � <� � <� .The region (�;) is partitioned by � into region (�; �) and region (�;) . The objects inpage (�;) are distributed onto page (�; �) and page (�;) accordingly. � is constructed byincreasing area � as follows: Add to area (�) subcubes from region (�;) in increasing orderuntil12M � � � number of objects in region (�; �) � 12M + �If the next subcube in this process contains too many objects, it is recursively subdivided untilthe condition can be met.Lemma 3.1: If a cube has a resolution of pix pixels in each dimension, then addresses have alength of at most dlog2(pix)e. If we have a universe U with pix = 2r pixels in each dimension,then the addresses have a length of at most r.Example: Taking a map of Bavaria with about 512 km length of a side, then addresses of length16 yield a resolution of 8 meters per pixel.Example of the Splitting process:If M = 5, the shaded region (1.1, 2.3.2) in �gure 6 is split into the two di�erently shaded regionsregion(1.1, 2.0.3) and region (2.0.3, 2.3.2) by the splitting address 2.0.3 as soon as the sixth objectis inserted into region (1.1, 2.3.2) 5

Figure 6:3.2 Deletion- and Merging-AlgorithmWhen objects are deleted from a region (�; �), their corresponding Ids are removed from the page(�; �). If after this deletion page (�; �) has < 12M � � Elements, then page (�; �) is merged withthe following page (�;) and the region (�;) disappears. If the resulting page (�;) overows, itis split again "in the middle" by introducing a new area with address � 0 and regions: region (�; � 0),region (� 0;) with the corresponding pages page (�; � 0), page (� 0;) respectively. This �nal split ofregions and pages is analogous to the underow technique between pages of B-trees[4].4 Query ProcessingWe treat two types of queries:� point queries and� m-dimensional interval queries, also called region queries or range queries.We describe query processing for the general case, but illustrate it graphically only for the planarcase, i.e. for 2-dimensional data.4.1 Point QueriesPoint Queries are also called "exact match queries". They are speci�ed by the Cartesian coordinates(y1; y2; : : : yn) of the point P . Usually additional information about P is of interest, e.g. temperature,height, time or monetary value. Such additional information may be stored as additional attributeswith the point P , but separately from the index structure. It might also simply be added to theindex structure, thereby increasing the dimensionality of the space and allowing queries on theseadditional attributes.In databases this problem is usually solved by constructing a new secondary index; with UB-treesit is handled by increasing the dimension of the searchable object space.To �nd P we compute its address �: 6

� := alpha(y1; y2; : : : ; yn)Then we �nd the unique region (�i�1; �i) with the property:� <� � �� �iand fetch the page page(�i�1; �i).This is achieved by searching the UB-tree, using address � as the search key.Page (�i�1; �i) must contain point P with the additional information or the identi�er Id(P)which is used as a reference to P .Lemma 4.1: P can be found in O(logkN) time, where N is the number of objects in our universeU and k = 12M .Proof: UB-trees are balanced and searched exactly like the variant of B-tree used as the underlyingdata structure for the UB-tree.4.2 Range QueriesRange Queries are a fundamental problem for all database systems. The query is speci�ed by aninterval for each dimension. No speci�catin for a dimension formally means the interval (�1;+1).The query is the Cartesian product of the intervals for all dimensions, called the query box q.The answer to the query q is the set of point-objects in q or the set of extended objects intersectingq. We denote the query interval w. r. to the ith dimension by [qli : qhi] (for low and high value), ofcourse qli � qhiWe describe the search algorithm for the n-dimensional case but illustrate it only for the 2-dimensional case.The query box q for 2 dimensions is shown in Fig. 7
ql

qh

qh

ql

1

(qh , qh)

(ql , ql)

2

1 2

2

2

1
1

Figure 7:The smallest point of q has Cartesian coordinates (ql1; ql2; : : : ; qln) and lies in the well de�nedregion reg(�j�1; �i) with the property�j�1 <� � �� �jwhere � = alpha(ql1; ql2; : : : ; qln) 7

A search in the UB-tree yields page (�j�1; �j) which contains all objects (or their identi�ers)properly intersecting region reg(�j�1; �j). We fetch these objects and check their intersection with q.Region reg(�j�1; �j) itself consists of a sequence of subcubes, which are ordered by their addresses.Let � be the address of the last subcube of reg(�j�1; �j) which intersects q. Let � have the form� 0 : l.After processing all of reg(�j�1; �j) we must �nd the next region intersecting q. To do this,consider the situation of subcube � w.r. to q and w.r. to father (�), i.l. the next larger subcube ofwhich � is an partition:
q

β

Figure 8:We call all subcubes of level s of a cube at level s� 1 brothers, those with a smaller or a largeraddress than � younger or older brothers resp.The next objects, which intersect q and were not found yet, must intersect an older brother of �(thus exhausting father �) or an ancestor of �.In the following �gure we illustrate some situations for the 2-dimensional case and a subcubewith address � of the form � 0 : 2.If no older brother of � intersects q (i.e. the last in Figure 9), then father(�) cannot containany objects, that were not yet found, but intersect q. Therefore we must check, whether the olderbrothers of father (�) intersect q (this exhausts the grandfather (�)), then the older brothers ofgrandfather (�), etc., This process must eventually cover all of q, at the latest, when the wholeuniverse has been checked, and all objects intersecting q are found.For the performance analysis observe that if subcube (�) is at level s, we may go to the next higherlevel at most s times. At each level we must check at most 2n�1 older brothers for intersection withq . In addition, s � ld(pix), and to switch to the father and check its older brothers for intersectionwith q involves only address calculations, but no I/O. Therefore, this method to �nd the next subcubeintersecting q is extremely fast and can be ignored in the overall performance analysis.After �nding according to this method the �rst subcube w intersecting q, we compute the Carte-sian coordinates of the smallest point of intersection (the solid small squares in Figure 9), whichworks as follows: Let w have the low and high coordinates xli and xhi; w.r. to dimension i.The condition that wT q is empty is:9 i : xhi < qli or xli > qhiThe condition that w intersects q is the negation of this formula:not 9 i : xhi < qli or xli > qhiwhich is equivalent to:8 i : xhi � qli and xli � qhi 8

father

grandfather

Query-Box q

β .2 β .2

β .3

β .2

β .4

(β)

(β)

, ,

,

, ,

Figure 9:Then the coordinates of the smallest point sp of intersection with q are for the ith dimension:if xli > qhi then spi := xli else spi := qliThe intersection point sp then has the Cartesian coordinates sp = (sp1; sp2; : : : ; spn) and itsaddress is :� := alpha (sp1; sp2; : : : ; spn)Note that up until now the determination of � did not require any disk-accesses.Now we have to �nd the unique region, in which the point sp lies. This is a point-query in theUB-tree with search key � exactly as described above, requiring at most O(logkN) disk accesses andtime.This means for the performance analysis:To answer range queries we have to do real work - i.e. to perform I/O - only for those regions whichproperly intersect q. For each such region the cost in O(logkN), i.e. a total cost of r � O(logkN),if r regions intersect q.It can be shown, that the number r of regions intersecting q is in the averager � 2 � Q=(12 � M) = 4 �Q=Mwhere q contains Q objects.Lemma 4.2:Answering a range query q costs r �O(logkN) disk-accesses and time, if r regions intersect q .In addition for point object datar � 4 �Q=M 9

where q contains Q point objects.Algorithm for range queriesAfter these considerations and analysis we now present the algorithm to answer range queries foran n-dimensional data-universe and an n-dimensional query box q with coordinates qli and qhi fori = 1; 2; : : : ; n as described above:Initialize:sigma := alpha(ql1; ql2; : : : ; qln); Answer = empty;RegionLoop: begin co for every region which properly intersects q oc�nd by searching in the UB-tree the region reg(�j�1; �j)containing sigma, i.e. with condition �j�1 <�sigma �� �j;fetch page(�j�1; �j);ObjectLoop: for all objects o on page page(�j�1; �j); doif o intersects q then o is part of the answer:Answer := Answer [ood ObjectLoop;�nd the last subcube with address � of reg(�j�1; �j)such that Subcube(�) intersects q;if (qh1; qh2; : : : ; qhn) contained in Subcube(�) then co �nished oc goto Exit elseFatherLoop: begin co let � be of the form � = � 0:i oci := tail(�);BrotherLoop: for k := i+ 1 to 2ndo if Subcube(� 0 : k) intersects q thenbegin sp := smallest intersectionwith q;sigma := alpha(sp);goto RegionLoopco both loops will be left here,since q is not �nished yet ocend BrotherLoopod co for all larger brothers of � intersection with q is empty oc;� := father(�);goto FatherLoopend FatherLoop;end RegionLoop;Exit: co end of program, variable Answer contains the query result oc4.3 Management of general extended objectsNow let us consider general extended objects o instead of just point objects, as e.g. a lake in thefollowing �gure of a geographical map. First we surround such objects with a bounding box bb(o).From now on we call such extended objects simply objects.For an object o we store only an identi�er Id(o) with every region, which o intersects properly. oitself is in general stored outside of the UB-tree. Note the o can only intersect regions which are alsointersected by bb(o) . This is a necessary but not a su�cient condition which we exploit in order tospeed up the algorithms substantially.We now present the abstract algorithm to insert an object o into the UB-tree:Step 1: compute bb(o) . For most methods to represent o this is a simple matter.10

Step 2: for all regions R which intersect bb(o) doif R intersects o then insert Id(o) into Rco this may cause splits of R ocNote To �nd the regions R which intersect bb(o) one treats bb(o) exactly like a query box q. Thisleads to the following detailed algorithm:
bb(O)

MA P

object O

Figure 10:Insertion algorithm for object o with bounding box bb(o):Initialize:compute bb(o);q := bb(o);sigma := alpha(ql1; ql2; : : : ; qln);RegionLoop: begin co for every region intersecting q oc�nd by search in UB-tree the region reg(�j�1; �j)containing sigma i.e. with �j�1 <� sigma �� �j;fetch page(�j�1; �j);if o intersectsR then insert Id(o) into R, i.e.:if number of objects intersecting R is � Mthen store Id(o) on page(�j�1; �j)else split R and page(�j�1; �j) as described in section 3.1;�nd last subcube with Address � of reg(�j�1; �j)such that Subcube(�) intersects q;if (qh1; qh2; : : : ; qhn) contained in Subcube(�) then co �nished ocgoto Exit elseFatherLoop:begin co let � have the form � = � 0:i oci := tail (�);BrotherLoop:for k = i + 1 to 2n 11

do if Subcube(� 0 : k) intersects q thenbegin sigma := alpha(sp);goto RegionLoopco FatherLoop and BrotherLoop will be left here,since q is not �nished yet ocendod co for all larger brothers of �intersection with q is empty oc;� := father(�);goto FatherLoopend FatherLoop;end RegionLoop;Exit: co end of insertion algorithm ocDeletion To delete o we again use bb(o) to �nd all regions which might intersect o . Id(o) is storedon exactly those pages whose regions intersect o (not just bb(o)). Id(o) is removed from thosepages and the corresponding regions. This may of course result in the merging of regions andthe corresponding pages, as described above in section 3.2.Searching in dataspaces with extended objects:To �nd extended objects which intersect a query box q or are completely contained in it oneproceeds as follows: �nd all regions and retrieve the corresponding pages exactly as in usualrange query. The pages contain the identi�ers Id(o) of all objects o which intersect thoseregions. For all the Id(o) thus found check, whether o intersects q.5 Performance AnalysisIn this section we assume that our data universe contains N objects at the time the operations areperformed. Let k = 1=2M . Let Q be the number of objects intersecting the querybox q. Let r bethe number of regions intersecting q.5.1 Point-Query:The cost of a point query is stated in Lemma 4.1 and isO(logkN)5.2 Range QueryThe cost of a range query is stated in Lemma 4.2 and isr � O(logkN)For data spaces containing point objects only this can be estimated as(4 �QM �O(logkN)or in other words: for a given universe the cost depends directly on the size of the answer.5.3 Point InsertionTo insert an object requires a point search to locate the proper region and page. This costsO(logkN) 12

If splits are triggered by the insertion they are restricted to the search path in the UB-tree and donot increase the order of the cost.5.4 Insertion of an Extended ObjectWe assume that the object is inserted into each region it intersects and thereby into the correspondingpage. This requires �nding all regions (and the corresponding pages) which the bounding box bb(o)of the object o intersects. Let that number be r. Then the cost isr � O(logkN)or in other words: The cost depends directly on the size of the bounding box of the inserted object.5.5 Point-DeletionAgain this requires a point search and costO(logkN)5.6 Deletion of an Extended ObjectThe object must be deleted from the page of each region it intersects. This requires a range searchwith the bounding box bb(O) as query and costr �O(logkN)6 Comparison with previous workThe limitations of R-Trees, Grid-�les and dd-trees were already mentioned before. The hB-tree of[5] allows good performance but requires complex hybrid datastructures and algorithms. The mostwidely used technique in databases to handle multidimensional data is to use a secondary index foreach dimension (relation-column) which is to be used in a multidimensional search. Compared tothe UB-tree this has the following disadvantages:� instead of maintaining a single index structure like in the case of the UB-tree a total of nindexes must be managed and updated upon insertion and deletion of objects.� multidimensional searching with several indexes has additive behaviour instead of multiplica-tive behaviour for UB-trees. More precisely we mean the following: assume that pi% of thevalues lie in the query interval of q w.r. to dimension i. Then via the secondary index fordimension i a total of N � pi% of the data must be fetched. This adds up to fetchingN � p1%+N � p2%+ : : :+N � pn% = N � (p1%+ p2%+ : : :+ pn%)of the data or at least object identi�ers from the disk and computing intersections betweenthese sets.With an UB-tree the amount of data to be fetched is proportional to the size of the query boxq, i.eN � (p1% � p2% � : : : � pn%) 13

In other words, the performance of multiple secondary indexes deteriorates with the number ofdimensions, whereas the performance of the UB-tree improves with the number of dimensions.Example:For an example calculation let us assume thatn = 4 and p1 = 2%; p2 = 5%; p3 = 4%; p4 = 10%Then p1 + p2 + p3 + pn = 21% = 21 � 10�2and p1 � p2 � p3 � pn = 4 � 10�6If our data universe contains 107 objects (N = 107), which would be only a medium size database,then using 4 secondary indexes retrieves 2.1 million objects from disk whereas the UB-tree techniquewould retrieve only about 80 objects from dik, i.e. an improvement by a factor of about 26.250.Further work:We are presently implementing and avaluating the UB-tree to determine its real performance forlarge, complex applications. We are also investigating architectural questions� how to incorporate the UB-tree by preprocessing techniques into applications� how to incorporate the UB-tree access structure into the kernel, the optimizer and the inter-preter of database systems.Literature:[1] Mehlhorn: Multidimensional Searching and computational Geometrie. Springer, Heidelberg 1984[2] Nievergelt, Hinterberger, Sevcik: The Grid File. ACM TODS, 9, 1, March 1984[3] Guttman: A dynamic Index Structure for spartial Searching. Proceedings ACM SIGMOD Intl.Conference on management of Data, 1984, pp. 47-57[4] Bayer, Mc Creight: Organization and Maintenance of large ordered Indexes. Acta Informatica,1, 1972, Springer Verlag, pp. 173-189[5] Lomet, Salzberg: The hB- Tree: A Multiattribute Indexing Method with Good GuaranteedPerformance. ACM TODS, 15, 4, 1990, pp. 625 - 658

14

