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Abstract

We present a tool for preparing reasoning under incomplete probabilistic knowledge. This
tool is used within our system PIT (Probability Induction Tool) but can as well be used for
other purposes, whenever an efficient representation of probabilistic knowledge is useful.
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Chapter 1

Introduction

1.1 Background

Reasoning under incomplete knowledge is one of the most expanding research topics in
the last few years. In general, there are three major problems that have to be solved:

e First, we have to find an appropriate language to represent and handle our knowl-
edge. This representation should allow us to express all we need and should be easy
to read or change.

e Second, we have to use a well-founded theory of decisions under incomplete knowl-
edge which avoids to introduce any personal bias when completing the knowledge.

e Third, we have to derive the answers to our questions from the completed knowledge
and make it readable for the user.

We are convinced that probability theory, supported by well-known additional principles
like indifference, independence and the method of Maximum Entropy will defend its strong
position within those tasks. Its justification (and many examples for modelling common
sense reasoning) is described in [GREINER & SCHRAMM, 1994]. We therefore present a
tool for preparing reasoning under incomplete probabilistic knowledge.

We call this tool 'tabl’ which stands for ’tabular compiler’. It is used within our system
PIT! (Probability Induction Tool) but can as well be used for other purposes, whenever
an efficient representation of probabilistic knowledge is useful.

Basically we transform a knowledge-database that contains probabilistic constraints into
a (underdeterminated) system of linear equations with additional constraints for the so-
lution. Any solution of this system fulfils the demands of the original database. The task
of tabl is to produce a minimal, easy to solve system of equations by using indifference
principles.

In the following subsection we shortly recall the necessary technical concepts.

'see [ERTEL ET AL., 1996, SCHRAMM & ScHULZ, 1996].
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1.2 Technical Terms

In this section we will give a short introduction to the concepts of probabil-
ity models on propositional interpretations. For a more formal description we refer
to [GREINER & SCHRAMM, 1994, GREINER & TINHOFER, 1996] or any introduction
to reasoning with probabilities.

Let R = {a;...a,} be a finite set of propositional variables (atoms, attributes) and
let Form(R) be the set of propositional formulas in these variables (using e.g. the
operators {—, A,V,—} for not, and, or and the material implication). A literal is ei-
ther an atom or a negated atom. An interpretation of the variables is a mapping
I : R — {true, false}, so there are 2" interpretations. An interpretation can be extended
to a function I : Form(R) — {true, false} by the usual rules for the application of the
operators. We also call an interpretation a possible world and denote it by the unique
full conjunction? of literals that evaluates this interpretation to true. A propositional spec-
ification S is a set of formulas. An interpretation that evaluates all formulas from S to
true is called a propositional model of S.

Now let Q = {wq,...,wn} be a finite set of disjoint elementary events (i.e. only one
of the w; can occur at any one time or situation). A probability measure on  is a
function P : 22 — [0, 1] with

Y Pw)=1 and P(A):=) P(w)for Ae€2?.

weN w€EA

A linear?® probabilistic constraint (or simply constraint from here on) is a state-
ment of the form P(A) € J (unconditional constraint) or P(A|B) € J (conditional
constraint), where A, B C Q and J is a subinterval of [0, 1]}. A probability model (P-
Model) for a set of constraints DB is a probability measure which fulfils the constraints
from DB.

We now choose the interpretations for a set of propositional variables as the elemen-
tary events of a probability measure. We can then identify a propositional formula with
the set of its (propositional) models. Thus, probabilistic constraints can be written as
(conditional) probabilities on propositional formulas. Probabilistic constraints with the
probability 0 or 1 still act like purely propositional statements. We call them logical
constraints.

If we have a unique P-Model for a set of constraints, we can easily compute the probability
of a proposition by summing the probabilities of its models. We can also calculate a
conditional probability P(a|b) by comparing the total probability of the models of a A b
to the probability of models of b (a,b € Form(R)). Unfortunately, in most cases the
constraints of a specification do not, without further principles, determine a unique P-
Model, but rather a (infinite) set of P-Models. In the PIT-environment we select a single,
representative model from this set by applying the principle of maximum entropy
(MaxEnt).

2A full conjunction is a conjunction of literals where each atom from R appears either in atomic
form or in negated form.

3see Section 2.1.

tWe write P(...) = p for the special case of J = [p,p].
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1.3 Notation

The theory and notation used further on is based on the two already published reports
[GREINER & SCHRAMM, 1994] and [GREINER & SCHRAMM, 1995]. All important the-
orems and proofs can be found there. To simplify the reading of this report we repeat the
necessary theory where it is needed without giving a detailed description or proof.

To distinguish between normal and special text we use different fonts:

e The input source-text and the output of the compiler is written in typewriter
font. Following symbols are declared (a,b € Form(R)):

- :  p(-a) meaning p(—a).

Tk : p(axb) meaning p(a A b).

T+ : p(a+b) meaning p(a V b).

T :  p(a->b) meaning p(—a V b), respectively p(a — b).

Tl p(alb) meaning p(a|b).

> : p(a =I> b) meaning p(b|a).

T . lines beginning with # are ignored (comments).
"pe),p(£f) 7 : the default events e and f are used in all error messages.

e Text with a special meaning like commands or semantic information is written in
emphasised font.

Within the next sections the following variables are used:

a,b,c,d formulas, whereas formulas are all expressions ’e’ or ’e |d’ or 'e=|>d’
with e,d € Form(R).

Yy interval borders.

r number of attributes (respectively variables) in the database.

[ number of constraints in the database.

n number of unknown variables of the system of equations (n < 27,
i.e. size of vector p).

i d; € [x,y]. Variable for the interval-constraint of row i.

A unmodified matrix.

* variable x after applying the 'weak’ indifference principle.

* variable x after applying the ’'strong’ indifference principle.

1.4 A first Example

In order to illustrate the general proceeding we start with a small example.
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1.4.1 Database

Default-Knowledge:

e normally animals do not fly.
e birds are animals.

e normally birds fly.

Desired conclusion:

Animals, which are no birds, normally do not fly.

1.4.2 Probabilistic Modelling
Regarding the events (over the reference space of all beings)

e an = ’beings that are animals’
e bi = ’beings that are birds’
e f1 = ’beings that can fly’

we can model this information in a probabilistic way in a format that is accepted by tabl
as follows:

hverbose # ADD COMMENTS IN THE QUTPUT FILE
J%noindif # STRONG INDIFFERENCE OFF (EXPLANATION LATER)

# EVENTS: BEINGS THAT ARE ANIMALS OR BIRDS OR CAN FLY
var an,bi,fl;

# CONSTRAINTS:
# normally animals do not fly
P( an -|> -f1 ) = (0.5,1.0];
# birds are animals
P(bi -[>an ) = 1.0;
# normally birds fly
P( bi -I>fl1) = (0.5,1.0];

# QUERY: DO MOST ANIMALS, WHICH ARE NOT BIRDS, FLY ?
QC an * -bi -|> f1 )=(0.5,1];

We say that in a given P-Model a query is true, if its probability lies within the given
interval (in this case between 0.5 and 1.0).

With the definitions given in Section 1.2 we are able to perform the transformation of the
first example.
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1.4.3 Transformation

In the first example holds R := {an,bi, f1} and therefore Q consists of eight elements:

Q2 :={(an,bi, f1) = wy, (an, bi, 7fl) = wo,..., (—-an, 7bi, 7fl) = wg}

Please note, that this enumeration defines also an implicit ordering of the full conjunc-
tions.

The first database entry (db-constraint) ’P(an -|> -f1)=(0.5,1.0]" (meaning
'P(—fl|an) = 6;” and ’§; € (0.5,1.0]") can be seen as a linear equality depending on
the elementary probabilities P(wy), ..., P(ws):

P(~fllan) =6, &  P(=flnan)=8P(fl) &

w; €anN—£fl wj€annfl
together with the I(nterval)-condition §; € (0.5,0.1].

With this transformation and the commitment *P(a) = P(a|Q)’ for all a € Form(R)
the database (consisting of [ = 3 db-constraints) can be written as a linear (generally
underdeterminated) system of equations:

A-p==z , AeR¥! and 2=(0,...,0), p=(P(w),...,P(ws)) (1.2)

Adding the normalisation constraint 'S°2 , P(w;) = 1.0’ any solution of (1.2) that fulfils
the I-conditions is a possible P-Model.

1.4.4 Output

tabl basically performs the transformation of the database. So the expected output of the
first example would be:

w;: (This section does not appear in the output of tabl !)
w1: w9: w3: Wy: Wy Wwe: wr: wy:
an an an an —an —an —an —an
bi bi —bi —bi bi bi —bi —bi
fl —-fl fl -fl fl -fl fl —-fl
P(wy) P(ws) P(ws) P(ws) P(ws) P(ws) Pwr) P(wg) | = | I-condition
A: %
1 1 1 1 1 1 1 1 1
—01 1-6; -0 1-6; 0 0 0 0 0 |d € (05, 1]
1—369 1 —09 0 0 —0d9 —d9 0 0 0| dy=1.0
1—43 —03 0 0 1—43 —d3 0 0 0 | d3 € (0.5, 1]
Query:
0 0 1-4, —6q 0 0 0 0 0 | 04 € (0.5,1]
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The first line of A represents the normalisation constraint, the following three lines are
the linear equations of the db-constraints. The query itself is also represented as a linear
equation.

We want to emphasise that the result of this representation includes all information of the
original database. Any solution (P-Model) of the underdeterminated system of equations
(1.2) fulfilling the I-conditions implies an (correct) answer to the query. The query is true
in a chosen P-Model if its probability lies within the given I-constraint of d,. (This still
leaves the problem to select one of the possible P-Models).

The possibilities of the unmodified transformation are limited. A major problem of this
representation is caused by the exponential growth of the Matrix A to the number of
attributes  (O(2") * O(l))*. Therefore the calculation of databases consisting of 25 or
more attributes exceed the capabilities of the current (and possibly future) computers by
far.

An improvement of this situation is to distinguish only between these sets of possible
worlds? that are structural different. This idea is strongly motivated by the widely
known principle of indifference, that we quote in an informal description from
[JAYNES, 1978]: “as far as the available evidence gives us no reason to consider the
proposition a either more or less likely than b, then the honest way to describe that state
of knowledge is: P(a) = P(b)”.

If we demand this principle in our representation, we can see immediately that w; and
wg fulfil a sufficient condition for indifference, because their corresponding columns in
A are equal (further on the equality of columns within A will be denoted as ’weak’
indifference)

We can reduce the system of equations (1.2) by one column by setting the indifferent
probabilities P(w7) and P(wsg) equal. In our representation the equality can be expressed
by adding the column of P(wg) to the column of P(w7) and deleting the column of P(ws).
This merging is also possible for three or more equal columns.

The most simple way to express the summation of (equal) columns within A (indifferent
from the query-lines, that always have to be added) is to note the multiplication factor
in a separate vector called multiplicator-line®.

A further diminishing of A is possible by analysing logical constraints. Regarding the
third row of A as its linear equation

—P(ws) — P(wg) =0 (1.3)

leads to the conclusion that *P(ws) = P(wg) = 0°. In other words, the 5th and 6th column
of the system of equations can be deleted and the resulting row of the logical constraint

(consisting only of zero entries) holds no further information and can also be removed
from A.

1O denotes the Landau-symbol.
4see Section 1.2.
% Another reason for the multiplicator-line lies in the use of BDDs (see Section 3.1).
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The unmodified transformation combined with the two possible simplifications (merging
columns by indifference and deleting rows and columns by logical constraints) generates
the final matrix A° together with the corresponding query-line:

P(w;) P(ws) P(wy) P(ws) P(wz) | = | I-condition
P(ws)
multiplicator-line:
2 1 1 1 1
A: z:
1 1 1 1 1 1
0 -0 —01 1—61 1—611]0 16 € (0.5, 1]
0 0 1—43 0 —d3 | 0 | d3 € (0.5,1]
Query:
0 1 -4, 0 dq 0 0 | 04 € (0.5,1]

Please note, that the order of columns does not influence the result, as long as the each
matrix column stays consistent with the corresponding column of the queries.

Now we regard the real output of tabl:

# CREATED 10.12 AT 14:35 (MET)

# NUMBER OF: COLUMNS ROWS KOMPLEX GRID SQP-POINT SQP-INT QUERIES
5 3 0 0 1 2 1

# EPS: 0.00000000

# ORDER:DB-CONSTRAINT ’:’ SUM,RANK,LOWER-BOUND,UPPER-BOUND,TYPE{NUMBER}
# MATRIX-ELEMENTS : (n,m) = n*x1 + mxdelta_i

# L_CONSTRAINTS FROM INPUT-LINE-NUMBERS : 11

# MULTIPLICATOR-LINE:
211 1 1

# NORMALISATION CONSTRAINT:

(1,0) (1,0) (1,00 (1,0) (1,0) : 1 0 -1.00000000 -1.00000000 S
# RESULT FROM INPUT-LINE-NUMBER 9 :
(0,0) (0,-1) (0,-1) (1,-1) (1,-1) : 0 1 0.50000000 1.00000000 S
# RESULT FROM INPUT-LINE-NUMBER 13 :
(0,0) (0,0) (1,-1) (0,0) (0,-1) : 0 2 0.50000000 1.00000000 S

# QUERY FROM INPUT-LINE-NUMBER 16 :
(0,0) (1,-1) (0,0) (0,-1) (0,0) : 0 -1 0.00000000 1.00000000 Q

6respectively the final system of equations A-p=3.
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Ignoring the first few lines that contain only informations about sizes (e.g. the matrix
size for later applications) and comments the result of the transformation starts with the
multiplicator-line after the comment '# MULTIPLICATOR-LINE:’. The next lines represent
the actual matrix A. Each line is constructed the following way (here for the second row):

0,0 (0,-1) (0,-1) (1,-1) (1,-1): 0_ 1 0.50000000 1.00000000, S  (1.4)
matrix row Zp rank d2€[0.5,1] type

tabl encodes the expression 'm -1+ m - 4;" as '(n,m)’. 2, denotes the second element
of the vector Z. Ignoring the entries 'rank’ and ’type’ the output equals the expected
transformation.

1.5 Results

The unmodified 8 x 4 Matrix has been reduced to a 5 x 3 Matrix. This effect increases
for larger databases, especially if another, ’strong’ indifference demand is used.

The idea behind tabl is to perform the transformation very efficiently. In the first example
we calculated the matrix A by subsequently reducing A as far as possible. Further on
we make an entirely different approach. We create A directly by ‘unfolding’ only this
columns of A that are not 'weak’ indifferent. This is efficiently possible by using Binary
Decision Diagrams (BDDs) for the internal representation of different worlds. Therefore
the growth of A is influenced only by the content of information in the database. In a
database consisting of propositional logic constraints tabl acts as a theorem prover.

The second task of tabl consists of checking the input for (eventually hidden) contradictory
constraints in the database. Additionally tabl produces a diversity of useful warnings that
help to understand the results of the database-transformation.

As a final result it can be said, that the complexity (size and time) of the output produced
by tabl depends only on the ‘complexity’ of the input and not on the number of attributes
or number of constraints used. Our tests for real problems show that up to 25 attributes
and 100 (non-logical) constraints (logical constraints are ’good-natured’ in most of the
cases) are solvable within reasonable time.

The output of tabl contains all important information of the original database and all
information that is needed for further processing.

Our processing of A within PIT selects the (unique) P-Model P* that has maximum
entropy. P* can also be seen as the unique solution that adds only minimal additional
information to the database. The output of tabl allows to find P* even in huge examples
(80 to 100 constraints) within a few seconds.

tabl is designed as a tool that provides the information contained in a (probabilistic)
database in a very efficient way by using the principle of indifference. Other applications
that need a way to process a probabilistic database can use this output as a database-
representation as well.
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Chapter 2
The Input

2.1 General Structure

The tabl input-format is similar to a procedural programming language (like Pascal). The
precise EBNF input-format description for syntactical correct databases can be found in
Appendix A.1.

A tabl input-file consists of 5 separate successive parts:

1. options

Right now the following options are available:

%verbose : given this option the output will contain comments for each output-line.
%noindif : this option switches off the strong indifference check.
%eps=precision : declares the precision of open intervals'2.

%filename : filename specifies the output-filename3.

2. variable-declaration

All used variables (complies the ’attributes’ of Section 1.4.2) of the database have
to be declared here. Up to 69 different variables can be used.

Example:
var smoker,miner,die_early;

declares the variables: 'smoker’, 'miner’ and ’die_early’.

3. database

The database-part contains the actual probabilistic information (i.e. constraints).
The general way to express a constraint is:

P(formula) = interval ;

Any well formed formula* containing variables, *=*, "*’, "+, ’=> 7( )’.’|” and - |>’
(respecting the natural operator precedence) can be used. The symbols ’|” and "= >’

Isee Section 2.3.
2default value: 0.0 .
3default: stdout.
4see Section 1.3.
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can only be used once per formula.
For interval any rational number or any (open, half-closed or closed) sub-interval
(in this case =" denotes "€’) between 0.0 and 1.0 is possible.

Examples:

P( smoker ) = 0.7 ;
P( die_early | smoker ) = (0.7,1.0] ;
P( die_early | -smoker * -miner) = (0.1,0.3) ;

. ’conclusion’ and ’queries’

The (only) 'conclusion’ and the ’queries’ are formalised the same way as probabilistic
constraints®. The conclusion is noted as: 'C(formula) = interval ;’® and the queries
are noted as 'Q(formula) = interval ;.

For example we may ask, if most of the people that die early are smokers:

Q( smoker | die_early ) = (0.5,1.0] ;

. end of database

The token ’.” indicates the end of the database.

Now we can regard the complete input-file ’ezample.tabl’®:

© 00 NO O WN -

NN R B R e
= O O 00 ~NO Ok W NP+~ O

# NON MONOTONIC REASONING ON THE HEALTH OF SMOKERS AND MINERS
# THE TRANSFORMATION FROM LANGUAGE TO INTERVALS IS JUST FOR DEMONSTRATION.

%verbose # COMMENTS ON
Y%noindif # STRONG INDIFFERENCE OFF

var smoker,miner,die_early;

# 70% OF THE PEOPLE ARE SMOKERS

P( smoker ) = 0.7 ;

# SMOKERS (GENERALLY) DIE EARLY

P( die_early | smoker ) = (0.7,1.0] ;

# HEALTHY PEOPLE (GENERALLY) DO NOT DIE NOT EARLY
P( die_early | -smoker * -miner) = (0.1,0.3) ;

# ARE MOST PEOPLE THAT DIE EARLY SMOKERS 7
Q( smoker | die_early ) = (0.5,1.0] ;
# ARE MOST PEOPLE THAT DIE EARLY MINERS ?
Q( miner | die_early ) = (0.5,1.0] ;

5The differences between conclusion and query are described in Section 2.5.
6°C(formula);’ if no interval is needed.

TQ(formula);’ if no interval is needed.

8The leading line-numbers of all following examples are just for documentation-purposes.
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With this general introduction it should be possible to formalise most of the needed infor-
mation. Additionally tabl offers some more sophisticated constructions that are described
the following sections.

2.2 Rank Concept

In some situations it may be necessary to determine that two different formulas ( a and
b ) have exactly the same probability 'P(a) = d,, P(b) = &, 0, = d,’. We can express this
information in tabl as follows:

# P(a) AND P(b) ARE EQUAL AND BETWEEN (0.5,1]
P(a)= P(b)= (0.5,11;

tabl assigns every matrix-row a special (primary different) number called rank®. The fact
that two probabilities are equal is expressed in the output by equal rank-numbers of the
corresponding matrix rows.

The rank concept leads to a few additional consequences for the consistency of databases
that are described in Section 4.1.2. Using the rank concept we recommend to switch off the
strong indifference algorithm!®, because we have it not yet adapted to the rank-concept.

2.3 Interval Borders

In the database-input any combination of open or closed (probability) intervals is allowed.
An open interval (z,y) is treated as a closed interval [x + ¢,y — €] (analogous for half-open
intervals). By default € is 0.0 (so there is no difference between open and closed intervals)
but in some applications it may be necessary not to reach the open interval-border. There-
fore the option "Yeps=number’ changes open interval-borders by adding (subtracting) the
amount, number from the given border-value.

Example: The input
%eps=0.001

var a;
p(a)=(0.3,0.7);

produces the following result:

2 001 1 O0

1 1

(1,00 (1,0 : 1 0 -1.00000000 -1.00000000 S
(0,-1) (1,-1) : 0 1 0.30100000 0.69900000 S
9see (1.4).

10ysing the ’%noindif’-option.
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2.4 Compilation

The general installation guidance of tablis provided in Appendix C. To compile the input-
file of Section 2.1, ’example.tabl’, (which does not include an output-filename-option) into
a file "example.dat’ we would type:

> tabl example.tabl example.dat

WELCOME TO THIS VERSION V2.17 04.12.96
INTERNAL31
WORKING. ..

TASK COMPLETED
CU

tabl creates a file example.dat with this content:

# CREATED 10.12 AT 14:40 (MET)

# NUMBER OF: COLUMNS ROWS KOMPLEX GRID SQP-POINT SQP-INT QUERIES
5 4 0 0 2 2 2

# EPS: 0.00000000

# ORDER:DB-CONSTRAINT’:’SUM,RANK,LOWER-BOUND,UPPER-BOUND,TYPE{NUMBER}
# MATRIX-ELEMENTS : (n,m) = n*l + mxdelta_i

# MULTIPLICATOR LINE:
2 11 2 2

# NORMALISATION CONSTRAINT:

(1,00 (1,00 (1,00 (1,00 (1,0)
# RESULT FROM INPUT-LINE-NUMBER 11 :
(0,-1) (0,-1) (0,-1) (1,-1) (1,-1) : O 1 0.70000000 0.70000000 S
# RESULT FROM INPUT-LINE-NUMBER 13 :

(0,00 (0,0) (0,0) (0,-1) (1,-1) : O 2 0.70000000 1.00000000 S
# RESULT FROM INPUT-LINE-NUMBER 14 :

(0,0) (0,-1) (1,-1) (0,0) (0,0) : O 3 0.10000000 0.30000000 S

-
o
|
-

.00000000 -1.00000000 S

# QUERY FROM INPUT-LINE-NUMBER: 18
(0,-1) (0,0) (0,-1) (0,0) (2,-2) : O -1 0.50000000 1.00000000 Q
# QUERY FROM INPUT-LINE-NUMBER: 20
(1,-1) (0,0) (0,-1) (0,0) (1,-2) : O -1 0.50000000 1.00000000 Q
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2.5 PIT - Instructions

In this section we shortly describe some input-instructions that are used within the PIT-
environment.

The PIT-environment allows a worst case analysis of a (unique) sentence (called con-
clusion) on a set of MaxEnt Models (obtained by choosing points in the intervals of the
constraints''). While the queries (the questions of the user) have the format 'Q(formula)’,
the conclusion has the format 'C(formula)’. It is demanded that if a conclusion exists it
has to stand before the first question in the input-file.

The worst case analysis runs on two different optimisation algorithms; each algorithm uses
its own constraints. These two different types of constraints are distinguished by marking
the equality sign with an additional 'K’ if the constraint is used for the worst case analysis.

The difference between conclusion and query (respectively between normal- and kom-
plex-constraint) in the output of tabl consists only in the different types'? ’C’ and 'Q’
(respectively 'S’ and 'K’) at the end of the row.

Example:
var a,b,c;

p(a) =K (0.5,1.0];
p(atb) = (0.5,1.0];

c(b -I> -a) =(0.5,1.01;
q(b -1> -a) =(0.5,1.0];
q(a*c -|> b)=(0.5,1.0];

produces:

(0,-1) (0,-1) (1,-1) 1 0.50000000 1.00000000 K
(1,0) (1,00 (1,0) 1 0 -1.00000000 -1.00000000 S
(0,-1) (1,-1) (1,-1) 2 0.50000000 1.00000000 S
(0,0) (2,-2) (0,-2) : 0 -1 0.50000000 1.00000000 C
(0,00 (2,-2) (0,-2) 0 -1 0.50000000 1.00000000 Q
(0,0) (0,0) (1,-2) 0 -1 0.50000000 1.00000000 Q

Please note, that the output lists at first the komplex-constraints and then all other
constraints followed by the conclusion and the queries.

Hdescribed in [SCHRAMM & ScHULZ, 1996].
2see (1.4)
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Chapter 3
Generating the Output Matrix

3.1 The 'weak’ Indifference Principle

As described in Section 1.4 the transformation (1.2) of the original matrix A by demanding

A

the principle of indifference leads to a new matrix A that consists only of different columns.

The mathematical representation of a constraint
Pbla)=6 < [1—=4]-Planb)+[=6]-Plan-b)+[0]-P(-a)=0 (3.1)

splits the space €2 into three disjoint sets of elementary events, which differ by their factors
(i.e. matrix-entries) in the representation of the system of equations (3.1):

wi €anNb = matrix-entry [1 — ¢]
w; €aN=-b = matrix-entry [—0]
w; € a = matrix-entry [0]

tabl creates the matrix A by building up a tree T starting with the root (see Figure
3.1). Each constraint increases the height of T by splitting every leaf ¢ in a maximum
of three different sets (¢t N ab,t N a—b,t N —a) representing the different matrix-entries
([1 =0],[=4],[0]). Empty sets can be deleted, because they represent the impossible event.
The internal representation of sets is efficiently possible by using BDDs* !. Therefore the
list of matrix-entries along the path from the root to a leaf represents one column of A.
(In fact we need to store only the leafs of T together with their list of matrix-entries).

A further simplification is possible by regarding logical constraints. We know that a logical
constraint does not add a row to A, but only leads to deleting columns.

case 1: P(b|la)=0 < P(anb)=0
case 2: P(bla)=1 < Plan-b)=0 (3.2)

As a consequence of this we need to cut all leaves of T' with =(anb) (respectively —(an—b)).

The fact that a logical constraint does not increase the number of leaves in 7', an uncondi-
tional constraint increases the number of leafs by at most two and a conditional constraint

tsee [BRYANT, 1986].
!'The BDD-software-package used is written by David E. Long (see Appendix C).
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Tree T':

P(bla) =0 QN =(anb) =

logical constraints

(un)conditional constraints

U, N-c

Result: leafs with list of matrix-entries

. . R
| o1 ®o| 15 . S| [1-6
oy ) o e i

Figure 3.1: Creation of the tree T

increases the number of leafs by at most three, suggests a sorting of constraints. To min-
imize the number of necessary cuts between the sets we keep the growth of T" as small
as possible by first applying the logical constraints on 7', followed by the unconditional
constraints and at last the conditional constraints. The multiplicator-line entry M; for
each column i equals the number of elementary events? |®;|*.

The factor F; of the column ¢ of a query 'Q(d|c)=...” can be calculated by counting the
number of elementary events for each of the factors [1 — d,] and [—d,] :

Fi=|®;0(cnd)|-[1 -8, +|®; 0 (cn—d)| - [5,] (3.3)

The worst case complexity of the growth of leafs in T is therefore O(3!) (which always
has to be smaller then 27). Our results show that in 'realistic’ databases the growth factor
is smaller then O(1.5).

2i.e. full conjunctions.
!The precision is limited due to the internal representation as the C-type float.
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3.2 The ’strong’ Indifference Principle

The equality of columns is a sufficient condition for indifference (fl therefore contains only
different columns). But the demand of the principle of indifference is more far-reaching
then this simple equality.

We use an algorithm that is able to detect another type of indifference in the system of
equations. We call this type of indifference ’strong’ indifference. A detailed description
and proof can be found in Appendix D.

In short terms, we look for a set of rows o, > 1 and a set of columns o, > 1 within A for
that we can show, that there always exists an indifferent® solution in which the rows of
o, are equal*. Analogous to the weak indifference, the ’strong’ indifferent columns can be
merged (considering the multiplicator-line).

Another requirement for the indifference of the rows® ¢ and j consists in the equality of

the intervals for d; and ¢;. If the strong indifference between two rows fails due to unequal
intervals a warning is displayed. Before applying the strong indifference algorithm it is
necessary to ‘normalise’® the matrix A by changing some of the db-constraints into the
db-constraints of their reverse event, which however does not influence the content of
information in the database.

The result of the strong indifference algorithm is the final output-matrix A.

If the application of the ’'strong’ indifference is not wished, it can be switched off by the
Jnoindif-option in the input-file.

3.3 Results

The combined two indifference principles can lead to an extreme simplification of the
system of equations. For demonstration we present a result from the PIT-environment:

To evaluate the performance of tabl we used the tool in a medical expert-system for
perceiving poisons’. The database consisted of 20 variables and 123 constraints. The
output-matrix had the size 2125 x 40 (reduced from a worst case 1048576 x 123 matrix
and a weak indifferent 8353 x 70 matrix).

The compilation was done in about half a minute (using a Linux Pentium-133 PC).

meaning indifferent in the set of columns (respectively the events corresponding to the columns) o..
so we can reduce o, to one representing constraint in A.

respectively constraints.

see footnote in Section 4.2.

3
4
5
6
“see Appendix E.
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Chapter 4
Checks, Errors & Warnings

4.1 Consistency Checks

One task of tabl is to detect inconsistencies in the database. In the following sections, we
shortly describe the checks that are performed by tabl. The error- and warning-messages
that are displayed should help the user to find the reason(s) of the detected inconsistencies.

For easier understanding we use simple examples that show the idea behind each check.
The interesting parts of the input-files (with line-numbers) and compiler-messages are
printed for each example.

4.1.1 Reverse Events

If the database includes information about an event a, it automatically includes infor-
mation about the event —a. For example 'p(a) € [0.8,1.0]" implies 'p(—a) € [0.0,0.2]". If
the database contains the additional information 'p(—a) € [0.0,0.1]” it would change the
former probability-interval of a to p(a) = [0.9,1.0]". tabl searches for reverse events in the
database and adapts their intervals. Afterwards one of the two events is deleted. An error
occurs if the intersection between the intervals is empty.

Example:

5 p(a) =(0.8,1.0];
6 p(-2)=(0.3,1.0];

produces:

[WARNING] LINE 5 AND 6 ARE REVERSE EVENTS (NOW EQUAL)
[ERROR 1] SEMERROR : CONTRADICTORY CONSTRAINTS,
LINE 5 AND 6 ARE EQUAL EVENTS, BUT HAVE DIFFERENT PROBABILITIES

4.1.2 Rank Consequences

The rank concept makes it possible to assign two or more events exactly the same proba-
bility. As a further consequence it may be necessary to merge primary different ranks to
a new one.
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Example 1:
5 p(a) =
6 p() = (0.5,1];
7
8 p(-a)=
9 p(c) = (0.3,11;
produces:

[WARNING] LINE 5 AND 8 ARE REVERSE EVENTS (NOW EQUAL)
[WARNING] LINE 5 AND 8 ARE EQUAL EVENTS

So this output equals the output of the following database:

5 p(a)=
6 p(b)=
7 p(c)=(0.5,0.71;

Another aspect is the equality of reverse events, e.g. 'p(a) = p(—a)’ leads to 'p(a) =
p(—a) == 0.5".

Example 2:
5 p(a) =
6 p(-a) = [0.5,1.0];
7
8 p()=
9 p(b) =0.3;
produces':

[WARNING] LINE 5 AND 6 ARE REVERSE EVENTS WITH p(e)=0.5

[WARNING] LINE 5 AND 6 ARE EQUAL EVENTS

[ERROR 1] p(e)==p(-e) => p(e)==0.5 IS NOT IN INTERVAL
LINE 8 AND 9 ARE REVERSE EVENTS WITH p(e)=0.5

!The error- and warning-messages always use the default event ’e’ and ’f’ indifferent from the real
variable-name.
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4.1.3 Logical Constraints

Logical constraints can influence the probability of other constraints as well. tabl detects
those influences that change other constraints into logical constraints.

Example 1:
5 p(a =1.0;
6 p(b) = 1.0;
7  p(c -1> -a) =[0,0.5);
8 p(c -I> a*b)=[0,0.5);

produces:

[WARNING] LINE 7 HAS PROBABILITY O
[ERROR 1] SEMERROR : p(e) WITH PROBABILITY 1 FOUND, WHERE 1 IS NOT IN
INTERVAL
ERROR IN LINE : 8

4.1.4 Undefined Constraints

We define a conditional constraint as undefined if the condition has the probability 0.
tabl detects undefined constraints in the database and stops with an error. If a conclusion
or query is undefined, tabl displays a warning. An undefined conclusion or query consists
only of ’(0,0)’ matrix-entries in the output-file.

Example 1:

5 p(a)=1.0;
6 p( | -a)=(0,0.5];

produces:

[ERROR 1] SEMERROR : p(e-|>f) FOUND, WHERE p(e)=0
ERROR IN LINE : 6

Example 2:
5 p(a)=1.0;
6

7 q( | -a)=(0,0.5];
produces:

[WARNING] SEMERROR : p(e-|>f) FOUND, WHERE p(e)=0
UNDEFINED QUERY IN LINE 7
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4.1.5 Contradictory Constraints

tabl also checks for some more sophisticated integrity conditions:

Example 1:
5 p(Cax b) =0;
6 p( ax-b) =0;
7 p(-a*x b) =0;
8 p(-a*-b) =0;
produces:

[MATRIX ERROR] CONTRADICTORY CONSTRAINT NEAR LINE 8

Example 2:
5 p(Ca*x b) =0;
6 p( ax-b) =0;
7 p(-a*x b) =0;
8 p(-ax-b) =[0,0.5];

produces:

[ERROR 1] SEMERROR : p(e) WITH PROBABILITY 1 FOUND, WHERE 1 IS NOT IN
INTERVAL
ERROR IN LINE : 8

This ability is limited to logical constraints. For example tabl does not detect the following
contradiction:

p( a * b)=[0,0.1];
p( a *-b)=[0,0.1];
p(-a * b)=[0,0.11;
p(-a *-b)=[0,0.1];

0 N O O

However the PIT-environment is able to detect this contradiction immediately.

4.2 Strong Indifference Warnings

The strong indifference searches for indifferent columns due to a number of rows given
in the database. An additional precondition for merging two rows i and j by strong
indifference consists in the equality of the intervals of ; and ¢;.
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If the strong indifference fails due to the inequality? of the two intervals, tabl displays a
warning.

Example:

5 p(a*b)=(0.3,1.0];
6 p(a *-b)=(0.4,1.0];

produces this message:
LINES 5 AND 6 COULD POSSIBLY BE EQUAL !

and this output:

2 1 1

(1,0) (@1,0) (1,0) : 1 0 -1.00000000 -1.00000000 S
(0,-1) (0,-1) (1,-1) 0 1 0.30000000 1.00000000 S
(0,-1) (1,-1) (0,-1) : 0 2 0.40000000 1.00000000 S

Now we modify the example by adapting the two intervals:

5 p(a*b)=(0.3,1.0];
6 p(a*-b)=(0.3,1.0];

and are getting this output:

2 1
(1,0) (2,0) : 1 0 -1.00000000 -1.00000000 S
(0,-1) (1,-2) : 0 1 0.30000000 1.00000000 S

This adaption allows tabl to merge the two constraints due to strong indifference. In many
cases such a modification leads to a significant reduction of the system of equations.

4.3 Operation Order

tabl performs a number of consistency-checks during the creation of the output-file. The
order of these checks is very important for the efficiency of the compilation. The following
operations are performed:

2The intervals are normalised before comparison. This is necessary because p(a) and p(—a) describe
the same event. Therefore the normalisation selects the (unique) representation (either p(a) or p(—a)) for
each db-constraint 'p(a) = ¢;” in which the upper interval-border of §; has the bigger value.
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~

A

|

check for logical constraints
check for undefined constraints
check for consistency

Y
apply the strong indifference

l

new logical constraints ?

[ check conclusion and questions]

'

A

Figure 4.1: Operation order

e check for logical constraints

Searches for rows ¢ that imply logical constraints®. If a logical constraint is found and
its probability 0 (respectively 1) lies in the probability-interval of ¢; the necessary
columns and the row i are removed from the system of equations*.

Worst case complexity of this check: O(# - 1)5.

e check for undefined constraints

Searches for undefined constraints (p(b|a) with p(a) = 0) in the current system of
equations and in the removed (logical) constraints. For logical constraints we check
if there exists at least one event (i.e. full conjunction) within the condition a that
does not have probability 0. For all rows of the matrix we just have to verify that
there exists at least one column that does not have a ’(0,0)” entry.

Worst case complexity: O(n - ()

3i.e. all rows ¢ whose columns j contain either only ’k; ;j%(0,1)" entries (probability 0) or only

ki j*(1,-1)" entries (probability 1), k; ; € N
4Naturally this also happens to rows that have equal rank.
§The dimension of the matrix A is: width A < 2" and height ig l.
!This operation uses the internal BDD-representation.
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e check for consistency

Checks for equal® (respectively reverse®) events in the matrix. If such an equality is
found, tabl adapts the probability-intervals and ranks. All but one of the equal rows
are removed from the system of equations.

Worst, case complexity: O( - [?).

e apply the strong indifference’

Worst, case complexity: O(n? - [2).

The most expensive operation is the calculation of the strong indifference matrix. To make
the input for this algorithm as small as possible, all other operations (which can reduce
the system of equations) are performed before.

The consistency check as well as the strong indifference algorithm produces a matrix
A’ that could contain new logical constraints. These logical constraints again cause a
reduction of columns and rows within A" which eventually leads to new strong indifferent
columns.

Therefore it is necessary to repeat this cycle of operations until A’ contains no more logical
constraints.

Example: (*b4.tabl’®)

1 Yverbose

2 %b4.dat

3

4 var qu,re,pa,po,ha;

5

6 p(pa -1> -ha) = 1;

7 p(qu -1> pa ) = (0.5,11;
8 p(re -1> ha ) = (0.5,1];
9 p(pa -1> po ) = (0.5,11;
10 p(ha -|> po ) = (0.5,1];
11

12 g(qux-re -|> pa) = (0.5,1];
13 .

5The two rows of the matrix simply have to be identical.

6The representation of the reverse event of a row can easily be calculated and then compared with all
other rows of the matrix.

"see Appendix D.

8taken from [GREINER & SCHRAMM, 1994].
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When compiled with the verbose® option ’tabl -v b4.tabl’, these messages are displayed:

WELCOME TO THIS VERSION V2.17 05.12.96
INTERNAL31
WORKING. ..

CALCULATED TREE HEIGHT: 4

CALCULATING BDD-TREE

WORKING ON LINE : 6 TREE-WIDTH:
WORKING ON LINE : 7 TREE-WIDTH:
WORKING ON LINE : 8 TREE-WIDTH:
WORKING ON LINE : 9 TREE-WIDTH:
WORKING ON LINE : 10 TREE-WIDTH: 14
EXIT TREE-WIDTH: 20

0 W+~ =

WORKING ON INTEGER-MATRIX
WORKING ON QUESTIONS

WORKING ON INDIFFERENCE
CHECKING MATRIX
NORMALISATION
CHECKING INTERVALS
CHECKING RECURSIVE
COLUMNS REDUCED FROM 20 TO 11

CHECKING CONCLUSION AND QUESTIONS

WORKING ON OUTPUT

TASK COMPLETED AND WROTE INTO b4.dat
CU

9tabl -v’ prints the current status during compilation.
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And the file ’b4.dat’ with this content is created:

# CREATED 5.12 AT 18:28 (MET)

# NUMBER OF: COLUMNS ROWS KOMPLEX GRID SQP-POINT SQP-INT QUERIES
11 3 0 0 1 2 1

# EPS: 0.00000000

# ORDER: DB-CONSTRAINT ’:° SUM,RANK,LOWER-BOUND,UPPER-BOUND,TYPE {NUMBER}
# MATRIX-ELEMENTS : (n,m) = n*x1 + mxdelta_i

# L_CONSTRAINTS FROM INPUT-LINE-NUMBERS : 6

# MULTIPLICATOR LINE:
2111 11 1 1 2 1 1

# NORMALISATION CONSTRAINT:

(1,0) (2,00 (2,0) (4,0) (2,00 (2,00 (2,0) (2,0) (1,00 (2,0) (2,0
1 0 -1.00000000 -1.00000000 S

# RESULT FROM INPUT-LINE-NUMBER 7 :

(0,0) (0,0) (0,0) (0,-2) (0,-1) (0,-1) (1,-1) (1,-1) (0,-1) (1,-2) (1,-2)
0 1 0.50000000 1.00000000 S

# RESULT FROM INPUT-LINE-NUMBER 9 :
(0,0) (0,-1) (1,-1) (0,00 (0,-1) (1,-1) (0,-1) (1,-1) (0,0) (0,-1) (1,-1)
0 2 0.50000000 1.00000000 S

# QUERY FROM INPUT-LINE-NUMBER: 12
(0,0) (0,0) (0,0) (0,-2) (0,-1) (0,-1) (1,-1) (1,-1) (0,0) (0,0) (0,0)
: 0 -1 0.50000000 1.00000000 Q
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Appendix A
Input & Output Format

The syntax is described in EBNF-like notation:

* means

’as many as you want’.

[]

[ ]+ means ’at least once’.

[ means ‘repeat i times’.

[ means ‘optional’.

{} is used for grouping.

4 means 'character(s) c is(are) expected’.

comment means 'verbal (not formalised) comment’.

A.l

Input Format

The well formed tabl input is defined as :

TABL_INPUT := [OPTION [+

VAR_DEF

[ CONSTRAINT |+

[ CONCLUSION | [ QUERY |« .’
OPTION = ’Yverbose’ | }noindif’ |

%eps’ ’=> P_.NUMBER | *output-filename’
VAR_DEF = ’var’ VARNAME |’ VARNAME |« ’;’
VARNAME = letter | letter | digit |«
CONSTRAINT := [P_EXPR |+ [LTYPE | RESULT ’;’
P_EXPR = {'P’|’p’}’C FORMULA )’ ’=’
FORMULA = any well formed ’formula’ containing:

variables O - + x -> | -|>
I_TYPE = {K|%}|{¢]|’% }’C NNUMBER ’)’
N_NUMBER = [’0°)1°]’2°|’3’’4°|’5°|’6°|’7°|’8°|'9’|’8°|'9’ |+
RESULT = INTERVAL | P.NUMBER
INTERVAL = {|’C} P.NUMBER ’, P.NUMBER {’)’|"]’}
P_NUMBER = {0’ }]|[’0.][0)1...]'9 |+ ]
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CONCLUSION == {’C’|’¢’} ’( FORMULA )’ =’ RESULT]’
QUERY = {°Q’|’q’} ’( FORMULA ’)’ "=’ RESULT)’y
COMMENTS = # comment-text proceeds until \n’

Additionally the following semantics have to be kept in mind:

FORMULA respects the natural order of '= * + -=> | —[>"."|" or ~|>’ can only be used
once per FORMULA. The output-filename can be any Unix-filename that contains no
special characters (like %$?7&) and no spaces. Each option is allowed only once. A maximum
of 69 variables is allowed. The name of a variable can have up to 32 characters and cannot
contain any special characters. Comments are allowed everywhere in the input.

A.2 Output Format

The general output syntax of tabl without the ’verbose’-option is:

TABL_OUTPUT

INFO

N_COLUMNS
N_ROWS
N_KOM
N_GRID
N_SQP_P
N_SQP_I
N_QUERIES

MULT_LINE

MATRIX_LINE
CONCLUSION
QUERY

LINE
z_1

N_INTERVAL
T_INTERVAL

,:E’ |

INFO

MULT_LINE

[ MATRIX_LINE |N-ROWS
[ CONCLUSION |

[ QUERY ]N_QUERIES

N_COLUMNS N_ROWS N_KOM N_GRID
N_SQP_P N_SQP N_QUERIES

column size of A

row size of A

number of komplex-constraints

number of grid-constraints (not yet needed)
number of sqp-point-constraints

number of sqp-interval-constraints

number of queries

[ N_NUMBER ]N—COLUMNS

LINE N_INTERVAL RANK { ’s’ | X’ | { '’ N.NUMBER } }

LINE T INTERVAL ’C’
LINE T INTERVAL °Q’

[’C NANUMBER ’,’ +’|’-’] N.NUMBER )’ |N-COLUMNS
'z

’1’ for the normalisation constraint, else ’0’
P_NUMBER P_NUMBER

N_INTERVAL | { ’-1.0°°0’]x ’-1.0°[0"]+ }
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RANK := N_NUMBER

N_NUMBER T [ 70’|’17|72’|’37|74’|’57|76’|’77|78’|’97|78’|’97 ]_|_
P_NUMBER := {01’} |{°’0.[’0’|’1’|...|’9" |+ }
COMMENTS := ’# comment-text proceeds until \n’

The only output ":E’ indicates that ’an error has occurred’. The INFO-line specifies the
size of the following output-text. In LINE the expression ’(n,m)’ represents the matrix
element 'n * 1 + m % §;’. The matrix A is ordered by first komplex-constraints followed by
all sqp-point-constraints and at last all sqp-interval-constraints!. The interval-borders of
the normalisation constraint are set to '=1.0’. The interval of all queries or the conclusion
that have no RESULT are set to the interval [0.0, 1.0]. If the %verbose-option is specified
in the input-file every output line has a comment. Therefore further programs can ignore
all lines beginning with "# or consisting of "\n’.

Isee Section 2.5.
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Appendix B
Errors & Warnings

Whenever an error occurs the compilation of the input file cannot be completed. Warnings
are used to inform the user about any irregularities or compiler-caused changes in the
database.

If possible the line number at which the error or warning has (probably) occurred is
printed.

B.1 Errors

B.1.1 Syntax Errors

e general syntax-error

If no well-formed! input file is given the compiler stops with:
PARSER-ERROR LINE line parse error

Hint: The absence of the ’.’ token at the end of the input-file also causes this error.

e output-filename

If the output-filename is declared twice in the input file the compiler stops with:

OUTPUT-FILE ALREADY DECLARED : filename

e variable-declaration
If used variables are declared twice or not declared at all or miss-spelled, the compiler
stops with:

VARIABLE ALREADY DECLARED : wariable
VARIABLE NOT DECLARED : wariable

e interval-borders

If a given probability is no valid subinterval of [0, 1] the compiler stops with:

INTERVAL : LOWER BOUND > UPPER BOUND
INTERVAL : LOWER BOUND < O
INTERVAL : UPPER BOUND > 1
PROBABILITY OUT OF LIMITS

Isee Appendix A.1.
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Please remember the influence of the %eps-option which changes open interval bor-
ders.

B.1.2 Semantic Errors

Semantic errors are mostly caused by contradictory information in the database. A de-
tailed description of some semantic errors can be found in Section 4.1. If a semantic error
occurs, the output-file consists only of the token *:E’.

e contradictory constraints

CONTRADICTORY CONSTRAINTS

CONTRADICTORY CONSTRAINTS NEAR LINE line_1

CONTRADICTORY CONSTRAINTS, LINE line_1 AND line_2 ARE EQUAL EVENTS
BUT HAVE DIFFERENT PROBABILITIES

e rank consequences?

p(e)==p(-e) -|> p(e)==0.5 IS NOT IN INTERVAL, LINE line_1 AND line 2 ARE
REVERSE EVENTS WITH p(e)=0.5
p(e) WITH PROBABILITY 0/1 FOUND, WHERE 0/1 IS NOT IN INTERVAL
e undefined probabilities

p(e-I>f) FOUND, WHERE p(e)=0

B.2 Warnings

e new logical constraints

LINE lZne HAS PROBABILITY 0/1

e rank consequences

LINE line_1 AND line_2 ARE EQUAL EVENTS
LINE line_1 AND line 2 ARE REVERSE EVENTS WITH p(e)=0.5
LINE line_1 AND line 2 ARE REVERSE EVENTS (NOW EQUAL)

e conclusion and queries

CONCLUSION HAS PROBABILITY 0/1
UNDEFINED CONCLUSION

QUERY IN LINE line HAS PROBABILITY 0/1
UNDEFINED QUERY IN LINE lzne

e ’strong’ indifference?

LINES l<ne_1 AND line_2 COULD POSSIBLY BE EQUAL !

2The error- and warning-messages always use the default event ’e’ and ’f’ indifferent from the real
variable-name.
3see Appendix D.
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Appendix C

Software-Installation

C.1 General

tabl should run on all Unix systems that support the GNU C/C++ compiler version 2.6.3
or higher. In fact the program should run with every C/C++ compiler that supports
templates (preconfigured however is the GNU-Compiler).

Already tested platforms are:

e Linux 1.2.13, gcc 2.6.3
e Linux 2.0.11, gecc 2.7.2

e SUN Solaris 5.4 & 5.5, gce 2.7.2

C.2 Additional Software Needed

tabl relies on this additional software-packages:

e LEDA-R-3.3.c (not included)

is a software package (free for academic research and teaching) consisting of useful
datatypes and algorithms.

Available under: ftp.mpi-sb.mpg.de /pub/LEDA

e BDD library (included)
is a software package for Binary Decision Diagrams written by David E. Long, email:
long@research.att.com .

e lex and yacc (not included)

This two programs (or compatible software) should be available on every Unix sys-
tem.
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C.3 Getting Started

1. Check if LEDA is installed on your system.
2. Go to the tabl main directory.
3. Check the user defined entries in the file work/Makefile.

4. Type make.

C.4 Installation

tabl consists mainly of four different programs:

tabl_bdd an Unix-filter (for up to 31 variables)
tabl_bdd_int an Unix-filter (for up to 69 variables)
tabl a shell script for using the filters.
tabl_count  counts variables in a input-file.

The easiest way is to copy or link this four programs in your local or system bin-directory
(f.e. In -s tabl = /bin).

The second possibility is to set the TABL_PATH environment variable to the tabl-source
directory (f.e. ’exzport TABL_PATH="/src/tabl’ for the korn-shell).

C.5 Commands

e tabl [ -v | -h ] input-file [output-file]

compiles the input-file and writes the result in a file named output-file (if no
"%file-name’ option is given in the input-file). Options: '-v’ switches on the ver-
bose mode and '-h’ prints a small help-file.

o tabl_bdd [ -v | -h ]| < input-file > output-file

can be used as a filter that reads its input from stdin and writes the output to
stdout. It uses a fast integer type and can handle up to 31 variables.

e tabl_bdd_int [ -v | -h | < input-file > output-file
analogous to tabl_bdd, but can handle up to 69 variables.

o tabl_count input-file

returns the number of variables in the input-file.
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Appendix D
The ’'strong’ Indifference Algorithm

D.1 Proof

We will now

1. introduce a special partition on the columns and rows of the matrix A. With the
help of this partition we define the principle of strong indifference. The application
of this principle leads us a new system of equations (D.1).

A-p=72 (D.1)

2. show the consistency of the system (D.1) by explicitly constructing a solution p from
any solution p of the old system of equations.

Ay
1 2 3
AL D -\
S f— |
1 | |
Ay Py (@i, ef )| Paf(ele, 210)|  Pugs (z13,213)
1 2 N :;1) 2 ! 1 2 N
,,,,, Wroma) eyt 0 sy
e
2 PN 5 ! :
A )\y P, (93%,17 935,1)1 Ps 2 (mé,m m%g)l Py (mé,ay m§3)
Yy | |
T Ty T N R S e
(y2,1,92,1) ;(y2,2, y§,2) ! (y2,3,¥2,3)
A (Pai )wsa,a3a) Pad(ws, 232)( Pag (253,733)
y 1 2 Vo1 2 i 1 2
(y3,17 y3,1) :(y3,2, y3,2) ! (y3,3,y3,3)

Figure D.1: Example for a 3 x 3 partition of A (sorted by partitions into sub-matrices P; ;).

ad 1:

Starting with the system of equations

~

Ap=2 (D.2)

(leaving out the normalisation constraint and remembering the multiplicator-line) we look
for a partition A, into sets of columns and a partition A, into sets of of rows having the
following properties (see Figure D.1):
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e For each set of columns A\, € A, and each set of rows A\, € A, holds:

(xiz’ky, xiz’ky) = A(j,i) is identical for all i€ ), (D.3)

(y}\m/\y,y?\m/\y) = A(j,7) is identical for all j € A, (D.4)

JEN
i€XAn
e The number of sets in the partitions A, and A, is minimal, respectively the number

of columns in each set of a partition A\, € A, and the number of rows in each set of
a partition A\, € A, is maximal.

Now we consider the system of equations A- p’ = Z which originates if we set the probabil-
ities of the events w; within each set \, € A, equal (meaning p'(@;) := py, for alli € A\, %).
We get a new (equivalent) system of equations (D.5) from this system by merging' equal
columns (i.e. the columns within each set A\, € A;). The resulting rows within each set of
rows A\, € A, have to be identical, so we can confine us to one representation per partition
Ay

The system of equations of the example in Figure D.1 is therefore:

1 2 1 2 1 2
~ Tig — x1,151 Tio — x1,251 T3 — x1,351 D, 0
S 2 172 2 _
A-p= To1 1’2,152 T30 %,252 T3 1’2,352 Prv | =10 (D.5)
1 2 1 2 1 2
T31— $3,153 Tgo — x3,253 T33 — $3,353 DPis 0

We can see immediately that each solution of (D.5) fulfils (D.2).
ad 2:

By the demand of the principle of indifference indifferent events have the same probability.
Therefore we construct for each solution py of (D.2) a new solution pj of (D.2) in which the
columns 7 (respectively the corresponding events w;) of each set A\, € A, are considered
indifferent:

Do (@) := Al ™" Y po(@p)for all i € A5 (D.6)
kEXz
Now we have to show that for each pj (and for each py which represents the solution pj
in (D.5)? ) holds:
o A-py =3 (The strong indifferent (merged) P-Model py is a solution of the strong
indifferent equation-system A - p = 2).

o A-ply =2 (The strong indifferent P-Model pj is a solution of the weak indifferent
equation-system A - p = %). This has to be true due to ad 1.

15'(;) denotes the i-th element of p;.

! Analogous to the 'merging’ of Section 1.4.4, we have to add the corresponding columns.
§This assignment also equals the MaxEnt-distribution within \,.

2see Figure D.2.
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o —71 > 'weak’ indifferent P-Models

\. — ’strong’ indifferent P-Models

Figure D.2: Construction py from py.

To simplify the proof, we regard only the first set of the example in Figure D.1 (consisting
of the sub-matrices Py, Py, and P, 3).

If we add all rows of the partition )\31/ we get a new constraint that is valid for all P-Models

A

D

Zke)\; (y},la y%1) plwr) + -+ ZkeAg(yim y%3) - p(wr) =0
g (y%,lay%,l) : |)‘§;| : ﬁ > okex ALP plwr) +... + (?J%:&ay% 3) |)‘3| : ﬁ Zke)\g plwr) =0
g (yilay%,l) RHE ' (@Oar) + + (y1 37?J13 A3 - P (Wz) =0
g (517},1@%,1) : |)‘;| p(@ar) + - (x},:sa x%3) |)‘1| P (Wxz) =0
g (1‘%,1?1‘%,1) ' (@Oar) + (:L‘i?), 1’%,3) P'(@xs) =0

So we have proofed that the strong indifferent solution pj, (respectively py) fulfils (D.5)
and likewise (D.2).

From now on we can confine us to the strong indifferent P-Models represented by the
solutions of (D.5) because we know that for each P-Model py of (D.2) we can construct
another P-Model p; that fulfils the demand of the principle of indifference better and is
a P-Model of (D.5).
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D.2 Remarks

all P-Models, that fulfill the db-constraints
‘weak’ indifferent P-Models
‘permutation’ indifferent P-Models

‘strong’ indifferent P-Models

MaxEnt P-Model

Figure D.3: Hierarchy of possible P-Models

The strong indifference algorithm includes the weaker condition that any permutation of
rows followed by a permutation of columns that leaves the matrix unchanged is sufficient
for indifference (’permutation’ indifference) of the set of permutated rows and columns
(without proof).

Figure D.3 shows the hierarchy of the possible P-Models along the diminishing of the
system of equations.

3see [GREINER & SCHRAMM, 1995].
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Appendix E

A Medical Expert-System Database
(excerpt)

The physician determinated the probability of about 100 rules by using 7 qualitative
steps (from ’almost never’ up to ’almost always’). From this statements, the following file
was generated. The questions are e.g. whether a patient with a number of symptoms is
intoxicated with the poison ’adt’ or with ’carbamate’. Symptoms with 3 possible values
are mapped onto the combinations of two two-valued variables, where the 4th value is
known to be zero.

% database.dat

var FC1, FC2, PAS1, PAS2, QRSIsnormal, QTIsnormal, ROTIsbrisk,
adt, alc, bar, ben, car, patientIscalm, pupilsl, pupils?2,
regardIsnormal, templ, temp2, tonusIshypertonia, urinelsyes, phe;

#adjusting 3 valued variables

p( —templ * -temp2 ) = 0;

... (more rules follow here)

# specific Rules

P(tonusIshypertonia * -ROTIsbrisk * PAS1 * PAS2 -|> adt) = [0.65, 1];

... (more rules follow here)

# Rules under the condition of only adt
p( adt*-alc*-bar*-ben*-car*-phe —|> tonusIshypertonia ) = [0.75, 1.0];
p( adt*-alc*-bar*-ben*-car*-phe —|> urinelsyes ) = [0.75, 1.0];

... (more rules follow here)

# Rules under the condition of only carbamate
p( —adt*-alc*-barx-ben*car*-phe -|> patientIscalm ) = [0.95, 1.0];
p( —adt*-alc*-bar*-ben*car*-phe —-|> -ROTIsbrisk) = [0.75, 1.0];

... (more rules follow here)
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# Queries

# Is the patient with the given symptoms intoxicated with adt 7

q( templ * temp2 * patientIscalm * pupilsl * pupils2 * -tonusIshypertonia *
-ROTIsbrisk * PAS1 *x -PAS2 * FC1 * -FC2 * QRSIsnormal * -QTIsnormal *
urinelsyes -|> adt) ;

# Is the patient with the given symptoms intoxicated with carbamate 7

q( templ * temp2 * patientIscalm * pupilsl * -pupils2 * -tonusIshypertonia *

ROTIsbrisk * -PAS1 x PAS2 * FC1 * -FC2 * QRSIsnormal * QTIsnormal =*
urinelsyes -|> car) ;



