T UM

INSTITUT FUR INFORMATIK

A Formal Approach to Specifying the
Functionality of Software System Families

Alexander Harhurin and Judith Hartmann

TUM-I0720
Oktober 07

TECHNISCHEUNIVERSITAT MUNCHEN

TUM-INFO-10-I0720-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2007

Druck: Institut fur Informatik der
Technischen Universitat Munchen

Abstract. Addressing the challenges faced today during the develop-
ment of multi-functional system families, we suggest a service-oriented
approach to formally specifying the functionality and, particularly, the
functional variability already in the requirement engineering phase. In
this paper, we present and precisely define the underlying concepts, such
as the notion of individual services, the combination of services, and
variability. Thereby, in contrast to prevalent approaches, we especially
focus on ezplicitly modeling behavioral (functional) commonalities and
differences between alternative variants.

1 Introduction

Today, innovative functions — mainly realized by software — are one of the key
potentials for competitive advantage in various application domains, e.g. the au-
tomotive domain. Increasing complexity due to a multitude of different functions
and their extensive interaction as well as a rising number of different product
variants are just some of the challenges that are faced during the development
of multi-functional system families.

Because of complex interactions between different functionalities there is a
need for adequate modeling techniques for functional requirements. The func-
tional specification where a system is seen only according to its user-visible func-
tionality is the appropriate abstraction level to start with a formal description
and analysis of a system. The prevalent approaches to modeling functional re-
quirements (e.g. UML Use Cases, FODA [1]) lack a precise semantics in general.
However, in order to assure the consistency of a specification, a precise seman-
tics of the modeling techniques is inevitable. Based on such a formal foundation,
discrepancies between conflicting functionalities can be detected and resolved
already in the early phases of the development process. Consecutively, we focus
on the formal definitions of system functionalities and relations between them,
and show how the upcoming service-oriented paradigm is used to handle the
aforementioned functional intricacy. Our notation technique, the Service Dia-
gram introduced in [2] and [3] describes the system as a set of (formally related)
functionalities (services) and aims at understanding how these services depend
on and interfere with each other.

Regarding product families, we enlarge our approach by variability concepts
which allow for the formal specification of functional variability in the require-
ment engineering phase. Approaches like FODA only provide a two-valued vari-
ability, i.e. a functionality might be present or not present in a system. “As a
consequence, these approaches focus on the analysis of dependencies, however
abstracting away from the causes for these dependencies” [4]. We, however, in-
troduce the semantics of a product line as the behavior that can be delivered by
at least one of its variants. Aiming at a consistent specification of the product
line, we additionally introduce a further variability specification, the common
specification. This specification allows to identify and explicitly specify behav-
ioral commonalities of variants and greatly helps to reduce the effort to analyze

requirements on a product line. Thus, our definitions of variability focus on ex-
plicitly modeling behavioral (functional) commonalities and differences between
variants, i.e. what behavior different variants have in common, and what behav-
ior is individual for a specific variant.

All in all, given these formal foundations, our approach can be used for an
automated analysis of the functional requirements and, particularly, for detecting
functional conflicts between different variants in a product line efficiently.

Running Example The concepts introduced in the remainder of the paper will
be illustrated by a simplified example of a seat heating system (cp. Figure 1).
There exist two variants of the heating system, a manual and an automatic one.
The functionalities of the manual heating are as expected, e.g. turning the system
on/off and setting the desired seat temperature. The automatic version provides
an interface to a further sensor to receive the current seat temperature. Based on
these data, the controller calculates the necessary instructions for the heating
device. Additionally, there is a child seat controller for detecting a child seat
mounted on the front seat. Among others, this controller influences the heating
sub-systems. All relevant details will be described at the appropriate places.

Outline The rest of this paper is organized as follows: In Section 2 the se-
mantics of the Service Diagram is presented. In particular, we introduce the
formal specification of a single system functionality by services in Section 2.1.
Subsequently, in Section 2.2 and 2.3 we concentrate on concepts for structuring
the services and modeling their dependencies. In Section 2.4 our approach is
enlarged by variability concepts in order to specify variation points in a product
line. Contributions of our approach are listed in Section 3. Finally, we compare
our service model to related approaches in Section 4 before we conclude the
paper in Section 5.

2 Service Diagram

In this section, we concentrate on the formal specification of the functionality
of a system. First, we focus on specifying individual system functionalities and,
subsequently, on structuring the functionalities and modeling their dependencies.
This results in an hierarchical structure of the system functionality, the Service
Diagram, where the overall functionality is subdivided in sub-services with de-
fined relations between them. Thereby, the Service Diagram gives a specification
of the system behavior as observable from the environment viewing the system
as a black-box, i.e. the behavior is specified as a causal relation between input
and output messages. Both, the individual services offered by a system and the
user visible relations between them are specified. However, we do not consider
the architecture of the system, i.e. the decomposition into components.
Formally, a Service Diagram consists of hierarchically subdivided services
and three kinds of relationships between them, namely aggregation, functional

dependency, and alternative relation (cp. Figure 1). These concepts will be in-
troduced in the following subsections.

Seat

Child Seat Heatin
Detection [™——_ — 9

Automatic Manual

Switch Temp Switch | | Temp

/\ Aggregation A Alternative \—~ Dependency

Fig. 1. Service Diagram

2.1 Single Service Specifications

The Service Diagram is based on the notion of a service as fundamental concept
of the model. Intuitively, a service represents a piece of functionality by specifying
a relation between certain inputs and outputs. Because this does not require any
implementation details, a service precisely specifies the black-box behavior of a
functionality. The definition of a service is based on the idea of timed streams
as introduced in [5]. Mathematically, a service is a (partial) stream-processing
function which maps streams of input messages to corresponding streams of
output messages. Here, a stream s can be thought of as a (possibly infinite)
ordered sequence of elements of type Data, or more precisely as a function

s: N — Data.

The ordering corresponds to the progressing time in which certain messages are
received or sent by a service.

Syntactic Interface Every service has a syntactic interface (I » O), which
consists of a set I of typed input ports and a set O of typed output ports.

In our example, the service Manual (cp. Figure 1), the manual version of
the seat heating controller, has two input ports switch and request to receive
messages from the switch button and from the “desired seat temperature” button
as well as an output port heater to send control messages to the physical heating
unit. The type of all these ports is defined by type(p) = NU {e} — each message
can be a natural number or £. Note that no interaction is explicitly modeled by
the empty message €.

With each port we associate a stream representing the communication over
this port. Formally, we model the mapping from ports to streams by introducing
the notion of a port history. For a given set of ports P, a port history is a mapping
which associates a stream of the appropriate type to each port:

h: P — (N — Data).

H(P) denotes the set of all histories and h € H(P) a possible history.

To be prepared for the definitions in the following sections, we introduce the
notion of a history projection. Let P and P’ be sets of typed ports with P’ C P.
We define for the history h € H(P) its projection

h|P' € H(P')

to be the history containing only streams which are attached to the ports in P’.
Furthermore, we use h[p] to denote the stream associated with the port p by the
history h, i.e. h[p] = h(p). Then, the term h[p](¢) denotes the message contained
in the stream h[p] on the port p within the time interval ¢ € N. In the rest of
the paper, we briefly say that a service S receives/sends a message m through
port p in time interval ¢ to express that there exists a history h € H(Ig U Og)
with h[p](t) = m.

In our example, one of the possible port histories of the service Manual with
the ports switch, request, and heater is given by the mapping h;:

switch 11 1010..
hy : request | — [101010 10 10 10 ...
heater 20 20 20 20 20 20 ...

hi[switch] = (111010...) results in the corresponding stream of the switch but-
ton, and hq[switch](0) = 1 denotes that the switch button is turned on in the
first time interval.

Service Behavior There are several equivalent techniques to specify the behav-
ior of a service, i.e. to specify the characteristic mapping from inputs to outputs.
For our purpose, we use an assumption/guarantee notation (A/G) which con-
sists of two formulas, namely, an assumption and a guarantee. The assumption
(a predicate over inputs) specifies the domain of a service. Thus, we do not re-
quire that a service can react to every possible input, i.e. there may be inputs
which are not explicitly covered by the service specification. The guarantee (a
predicate over inputs and outputs) characterizes the reaction of a service to its
inputs if and only if the inputs are in accordance with the assumption. Formally,

A H(I) — Bool,
G : H(I) x H(O) — Bool.

A service S with the syntactic interface (I » O) is defined as a relation from
the set of input port histories (according to the assumption) to the powerset of

output port histories (according to the guarantee):

S H(I) — P(H(O))
S(x) = {ylAs(z) A Gs(z,y)}-

Thus, a service is a restrictive specification which restricts the set of all syntac-
tically correct histories to a subset of walid histories. Note, if an input history
is not in accordance with the assumption, the service behavior is not defined
(S(z) = 0) — no output history can be classified as correct or not. Further-
more, by mapping to the powerset P(H(O)) we explicitly allow a service to have
non-deterministic behavior.

In our example, the service Switch (a sub-service of Manual, to turn the
heating on/off) has only one input port switch. It assumes one of the following
messages on this port: 0 for off or 1 for on. The guarantee of this service specifies
that there must be an empty message on the output port heater if a 0 is received
on the port switch and any nonempty output if 1 is received. Formally, with
x € H(switch) and y € H(heater):

A(x) =Vt € N: x[switch](t) € {0,1}
G(z,y) =Vt € N: z[switch|(t) = 0 = y[heater](t + 1) =€ A
x[switch](t) = 1 = ylheater|(t + 1) # e.

Thus, (1 110) is a valid but (3 110) an invalid input history for the
service Switch. The I/O-pair (1 110) , (e 303030¢) is one possible be-
havior defined by the service.

The service Temp (the second sub-service of Manual, to control the seat tem-
perature) can accept a natural number between 10 and 40 as a desired temper-
ature request on the port request (req) and guarantees that either the same
number or ¢ is sent through the port heater within the next time interval':

A(x) =Vt € N: xfreq|(t) € [10..40]
G(z,y) =Vt € N: ylheater](t + 1) € {z[req(t),e}.

2.2 Aggregation

The aggregation relation allows to arrange individual services into a service
hierarchy. It directly reflects the idea that the functionality offered by a system
can be subdivided into several sub-functionalities. A service composed of several
sub-services is called a compound service. The semantics of a compound service
is defined as being a container of all concurrently operating sub-services. We do
not specify the compound service explicitly, because its behavior can be derived
from its sub-services using the well-defined semantics of the aggregation relation.

! We explicitly allow to send e in order to ensure that the services Temp and Switch
can be combined without conflicts (cp. Section 2.2).

The interface (Ic » O¢) of a compound service C' composed of a set of
sub-services S aggregates all I/O ports of all its sub-services:

IcE UIS, OCEUOs-

seS seS

A compound service is defined for all inputs for which all its sub-services
yield a defined output as well. It is not defined for an input history, if there
exists at least one sub-service, which is not defined for the corresponding history
projection. Furthermore, the guarantees of all sub-services must hold in the
compound service. Thus, the behavior of a compound service is defined as:

Ac(x) = /\ As(z|I5),
ses
Gc(x, y) = /\ Gs(xu.sv y|03)7
ses
where z € H(I¢), y € H(O¢), z|I, € H(I;), y|Os € H(Oy).

In our example, the service Manual can be obtained from its sub-services
Switch and Temp. The compound service receives messages on its input ports
switch (sw) and request (req) and sends corresponding messages through its
output port heater (h):

Ax) =Vt € N: z[sw](t) € {0,1} A z[req](t) € [10..40]
G(z,y) =Vt e N:z[sw](t) =0=y[h]t+1) =€ A
z[sw](t) =1 = y[h|(t + 1) = z[reg|(t).

) 1100 ..
Thus, the pair (30 3030 30 ...

by the service Manual.
Note that the nondeterminism (underspecification) of the sub-services is often
eliminated (in parts) in the compound service. Thus, the introduced nondeter-
minism of the sub-service Temp (cp. Section 2.1) is eliminated in combination
with the sub-service Switch.
In the same way the automatic variant Automatic can be specified. It re-
ceives identical messages on its input ports switch (sw) and request (req) and,
additionally, the current temperature of the seat on the port measure (m). Im-
mediately after turning on, it sends the requested temperature through its port
heater (h) and afterwards it adapts this instruction according to the difference
between the actual and the desired seat temperature within each time interval.
0111..

Exemplarily, the pair | 23232323 ... | , (5 €232423) is a valid behavior
21212223 ...

specified by the service Automatic.

) ,(€3030ee...) is a valid behavior specified

2.3 Dependencies

By dependencies, we mean relations between services in a way that the behavior
of one service influences the behavior of another one. Although, there are a lot

of methodological significant dependencies like enables, modifies or needs, the
scope of this paper is to approach a way of specifying of these relations rather
than to enumerate them.

As our approach aims at a specification of the user-visible behavior dur-
ing the requirements engineering phase, only these dependencies are specified
which are observable at the overall system boundaries. Thereby, the interfaces
of the affected services are not changed (no additional ports are added) nor
is the communication between them characterized (no additional channels are
added). Dependencies modify the user observable behavior of the influenced ser-
vices without explicitly modifying their modular specifications. They specify a
mapping from the original output port histories (specified by the modular A/G
specification) to new ones. Depending on the original I/O port histories of all
affected services the output port history of the influenced service is modified.
Formally, a dependency d between an influencing service S; and an influenced
service S is a function of the form

d: H(Isl) X H(Osl) X H(Isz) X H(Osz) — P(H(Osz))

To simplify matters, we limited the definition to dependencies between two ser-
vices. However, the extension to n : 1 dependencies is straightforward.

In our example, among other not further specified functionalities, the service
Child Seat Detection (CSD) modifies the behavior of each variant of the service
Heating. The specification requires that whenever the CSD detects a child seat
mounted on the front seat, both heating variants are prevented from heating
the front seat according to their modular specifications. The CSD permanently
receives a message (1 or 0) from the environment through its port in whether
a child seat is mounted or not. This results in the dependency formally defined
by the following function:

d(xcsp,Yosp, TH, YH) = Yy with
vVt € N: (zesplin](t) = 0 = yy[heater](t + 1) = ypu|heater]|(t + 1)) A
(zcsplin)(t) = 1 = yiy[heater](t + 1) = ¢),

where y%; denotes the modified output stream of the service Heating.

Aggregation with Dependency In Section 2.2 we introduced the aggregation
of sub-services without any dependencies between them. Now, we enlarge this
concept by the dependencies introduced so far.

The guarantee of a compound service aggregating two services S; and Sy
with a dependency d in-between (57 influences S3) is defined as follows. In the
compound service the guarantee of the influencing service S; must hold. Addi-
tionally, for a valid output history y of the compound service there must exist
an output history 3’ that fulfills the guarantee of S, such that 3’ is transformed

to y|Os, by the dependency d.

G(z,y) =3y € H(Os,) :
GSl (13|151) y|051) A G52 (x|IS2) yl)
A y|032 = d(x|IS17y|OS17x|ISwyl)'

Since a dependency does not influence input port histories of a service, the
assumption of the compound service is not modified.

Consistent Specification The basic idea of our approach is that the overall spec-
ification is the combination of modularly specified sub-functionalities. Thereby,
the modular specifications can overlap, i.e. different services might be defined
over the same in- or output ports. Thanks to the formal definitions of the inter-
service relations (aggregation and dependency), we can detect conflicts between
functional requirements automatically and, thus, assure the consistency of a
specification. A specification of a single product is consistent if there is no con-
flict between any services of this specification. There is a conflict between two
services if their assumptions require different messages on a common input port
or if they send different messages through a common output port in the same
time interval. Formally, there is an input conflict between two sub-services if
there is no valid input history for their common compound service C":

{r e H(Ic) | Ac(2)} =0,

and there is an output conflict if there exists a valid input history for which no
valid output history is defined by their common compound service C":

Jz e H(Ip) : Ac(z) Ay €e H(O¢) | Go(z,y)} =0

2.4 Variability

The Service Diagram as introduced so far can only be used to specify a single
software system. Now, we enlarge our approach by the concept of variability
aiming at the explicit modeling of commonalities and differences of alternative
services. In contrast to other approaches, e.g. FODA, which do not specify the
behavior but only the presence or absence of certain features, we focus on ex-
plicitly modeling behavioral variability.

The basic concept to model variability are variation points (VP). Intuitively,
a VP is a super-service composed of some alternative and/or optional sub-
services (both are also called wariants). By describing the behavior of a VP,
we pay special attention to the following two topics. Firstly, we want to assure
the consistency of service specifications of product families. The specification of
a product family is consistent if each possible configuration? is consistent, i.e.

2 By configuration we mean an instance of a product family specification where all
VPs are resolved, i.e. certain variants are selected.

there are no conflicts between the services of the respective configuration. Sec-
ondly, we want to specify the interplay between the system under consideration
and its environment, i.e. what the system demands and guarantees in the in-
teraction with the surrounding systems. We specify how the environment must
behave to correctly interact with all or with at least one of the configurations.

VPs can be seen as a special kind of services themselves, so that the same
concepts can be used for their definition. In the following, we describe the syn-
tactic interface and, subsequently, the behavior of a VP. Since an optional service
can be transfered into an alternative VP, we only show the specification of VPs
comprising alternative sub-services.

Syntactic interface An alternative VP comprising a set of mutually alternative
services Sy has the set-valued interface

Iyp = {(Ig | 2 Os)|s S Sv}

Only the histories which alternatively conform to the interface of one of the
variants are syntactically valid inputs/outputs of the VP.
In our example, the VP Heating has the following set-valued interface:

Treating = {(Zas » Oas), (Ins » Oums)} = {({switch, measure} » {heater}),
({switch, measure, request} » {heater})}.

Thus, in combination with the aggregation relation, we are able to specify the
interface of a product line. The mandatory and optional ports of a system can
be easily identified by means of the set-theoretical operations over the set-valued
interfaces.

Furthermore, to provide the syntactical basis for the semantical specifica-
tions, we introduce the mazimum interface (Inaz ™ Omaz) to describe the sum
of all possible ports of a VP and the minimum interface (I » Omin) to de-
scribe the common ports of its variants. For a set Sy of alternative services they
are defined as follows:

ImaxE U 137 Oma:c = U Os

SESy SESy
IminE ﬂ 137 Omin = ﬂ Os-
SESy sESy

Behavioral Semantics The behavioral specification of a VP is the disjunction
of the specifications of its variants. Before we give a precise definition of the
behavior of a VP, we informally describe the set of histories defined by it.

The assumption of a VP describes all input histories which are valid for
at least one variant. An input history is in accordance with the assumption
of the VP if at least one projection to the interface of a sub-service fulfills
the assumption of this sub-service. In terms of sets, this assumption describes
the union of the enlarged sets of input histories of all variants. Thereby, an

enlarged set is defined over the maximum interface and contains histories which
projections to the original interface of a variant satisfy the assumption of this
variant, while the projections to the other ports of the maximum interface are
not subject to any restrictions. Formally, the set specified by the assumption of
a VP is defined as J,c g, {7 € H(lnaz) | As(@|Ls)}.

The guarantee of a VP describes all I/O history pairs which are valid for at
least one variant. An I/O history pair is in accordance with the guarantee of
a VP if there exists at least one variant which assumption and guarantee are
fulfilled by the projected I/O history pair. In terms of sets, the guarantee of a
VP describes the union of the enlarged sets of I/O history pairs of all variants:
Usesy 1@ y) € H(lmaz) X H(Omaz) | As(2|Ls) A Gs(2|Ls,y|O5)}

Thus, the specification of a VP combining a set Sy of alternative services
is defined over the maximum interface (z € H(Iynqe,) and y € H(Opqz)) by the
following formula:

Ayp(z)= \/ A(|L)
seSy

\/ (Au(@lL,) A G, (2], 4]0.)).

seSy

GVP(xv y)

In our example, the specification of the VP Heating specifies I/O histories
which can be accepted/produced if either the manual Manual or the automatic
Automatic heating is chosen:

AHeating (LL') = Aman (x|Iman) V Aaut (x|Iaut)
GHeating (SC, y) = (Aman(x|-[man) A Gman(x|Imana y|0man))\/
(Aaut (xuaut) A Gaut(xllautv y|0aut))-

1100 ..
E.g., the pair | 30303030 ... | , (5 3030e¢e) fulfills the specification of
70 70 70 70 ...
the VP Heating because its projection to the interface of the service Manual
(first two lines) fulfills the specification of Manual. However, it is not in accor-
dance with the specification of Automatic since it does not fulfill the correspond-
000 ..
ing assumption (third line: z[m](t) = 70 ¢ [0..50]). The pair [303030 ... | ,
70 70 70 ...
(e € 30 30) does not fulfill the specification of the VP — no variant of the
heating is allowed to send a nonempty output if it is off.

The specification of a VP defines the history set which exactly contains the
histories that can be accepted/produced by at least one of the variants. The con-
sistency of this specification assures the consistency of the specification of each
single configuration. Also, this specification defines the maximum requirements
on the environment to correctly interact with all configurations of the system.
These requirements are sufficient to guarantee that the environment can handle
the output of any configuration. However, this specification identifies no com-
monalities between variants. Thus, to focus on commonalities between variants

10

and to perform consistency checks more efficiently, we introduce the common
specification of a VP.

Common Specification The common specification is designed to derive proper-
ties for a VP independently from a concrete configuration. It defines the behav-
ior that all alternative variants have in common, i.e. the behavior that can be
definitively expected from a VP. This specification defines input histories that
can be accepted by all variants. The defined output histories are only specified
within time intervals in which all variants produce the same message. In all
other intervals as well as on non-common ports o’ € O,,;, the VP has a totally
non-deterministic behavior. Thus, this specification only defines a part of the
behavior — the common behavior.

Note that the common specification is defined over the maximum interface
(Imaz » Omaz)- This is necessary because the histories on different ports are not
independent in general. The assumption of a variant s € Sy with Iy D I,,;, might
specify dependencies between histories on input ports ¢ € I, and histories on
input ports ¢’ & I,;,. The same goes for the guarantees. By regarding only the
common ports these dependencies might get lost.

The common assumption specifies the set of input histories which can be
processed by all variants. The set defined by this assumption is the intersection
of the enlarged sets of input histories of each alternative sub-service. Thereby,
the set of input histories of a variant is enlarged equivalently to the disjunctive
assumption: the messages on the ports originally not present in the interface of
a sub-service are not subject to any restrictions. Formally, the set specified by
the common assumption is defined as (g {7 € H(/maa)|As(w]15)}

The common guarantee assures the common behavior of all variants for cer-
tain time intervals. Given a valid input history, it guarantees an unambiguous
reaction for each common output port o € O,,;, and each time interval in which
all variants cause the same reaction. As the common specification focuses on
modeling commonalities rather than differences, this guarantee assures nothing
(i.e. totally non-deterministic behavior) on a port o € Oy, for a time interval
in which two variants specify different reactions. Thus, the valid output histories
of a VP are only predefined within time intervals in which all variants produce
the same message. The messages within other time intervals as well as the his-
tories of o' ¢ O, are not subject to any restrictions. Formally, the common
behavior of a VP combining a set Sy of different alternative services is defined
for x € H(I,n42) and y € H(Oaz) by

félcom/m(x)E /\ AS(x|IS)

sESy
Geomm/ (2,y) =Vt € N, 0 € Opin, :
ylo](t) € {v € type(o) | Vs € Sy : Jys € s(z|ls) : ys[o](t) = v}.
Whenever an input history is in accordance with this assumption, the projection

to the interface of any variant is a valid input history for this variant. Whenever
all variants produce the same message on a common output port within a time

11

interval, also the common guarantee assures this message on this port within this
interval. Otherwise, the behavior is totally non-deterministic. As a consequence,
no projection of an I/O history pair that violates the common guarantee of a VP,
fulfills the guarantee of one of its variants. Thus, inconsistencies of the common
specification and, consequently, of the specifications of each single configuration
can be detected and the consistency of the common behavior can be assured.
Additionally, the common specification defines the minimum requirements that
the environment must necessarily fulfill to be able to process the outputs of all
possible configurations. However, these requirements are not sufficient to assure
the correct interplay with all variants.

In our example, the VP Heating comprises the alternatives manual heating
Manual and automatic heating Automatic (defined in Section 2.2). The pro-
jections of all enlarged input histories that fulfill the common assumption of
Heating fulfill the corresponding assumptions of Manual and Automatic. Re-
garding the guarantee, the manual and automatic specifications show the same
reaction

— if the switch is turned off,

— immediately after the switch is turned on, or

— if the switch is turned on and the instruction calculated by the automatic
variant equals the temperature requested by the manual variant.

In all other cases, both variants behave differently. Consequently, the common
specification requires nothing and consequently accepts any arbitrary message.
Thus, if an I/O history pair violates the common guarantee of Heating, its
projections neither fulfill the guarantee of Manual nor of Automatic. E.g., the
1100 1..
pair | 2525252525 ... |, (6 €25ee25) violates the common specification
2526 2523 23 ...
of the VP Heating (because of the second ¢ on the port heater) and, conse-
quently, each projection to the interface of the service Manual (first two lines) or
Automatic (all three lines) violates the specification of the respective sub-service.
Note that the specification of each variant is a behavioral refinement of the
common specification. We can easily integrate a new variant into this VP as long
as it does not violate the common specification, i.e. as long as the new variant
guarantees the common behavior. Since we demand no specific message if the
existing variants already behave differently, in this cases the new variant can
behave completely different to all existing variants.

Consistency As mentioned before, the specification of a product line is consis-
tent if each its possible configuration is consistent. However, the effort to perform
the consistency checks for all possible configurations separately would grow ex-
ponentially. Thus, we use the common specification to reduce the effort and
perform consistency checks more efficiently. Based on the common specification,
the consistency of the common behavior can be assured and must be checked
only once. If there is a conflict between the common specification of a VP and
another service, there is definitely a conflict between any variant of the VP and

12

the other service. However, since the common specification only describes the
common behavior, a conflict between a variant of the VP and the other service
might remain undetected based on this specification. Thus, the disjunctive be-
havioral specification is needed to assure the correctness of the whole product
line.

Assuring the consistency of product line specifications is one of the main
purpose of our approach and a major part of our current and future work.
However, due to space limitation we only present underlying concepts for this
analysis in this paper.

3 Contributions

Having introduced the formal foundation of the underlying concepts in the pre-
vious sections, we shortly sketch the potential of our approach in the following.

Formalization of requirements In contrast to pure informal approaches like
FODA, we introduce a formal model with a well-defined semantics for describing
the functionality already at an early stage of the development process. This has
several advantages: Firstly, a formal model which formalizes (functional) require-
ments allows an automatic analysis of the system already in the early phases of
the development process. By this, discrepancies between conflicting functional-
ities can be detected and resolved. Secondly, since implementation models will
build upon this functional specification, it supports bridging the formal gap be-
tween functional requirements and design models.

Modularity The complexity of multi-functional systems requires to design a sys-
tem in a modular fashion by splitting up the system into an appropriate set
of different sub-services and generating the overall system as a combination of
them. Consequently, for construction as well as for verification issues, this mod-
ularity can ease certain problems immensely.

Functional variability While traditional approaches mainly focus on structural
aspects, we give a detailed specification of the behavioral variability. The pre-
sented specifications of behavioral variability open up new possibilities, e.g.:

— predictions about a product line without knowing the concrete configuration,
— consistency checks/conflict detection between variants,

deriving unknown dependencies between variants based on their behavior,
seamless integration of new variants.

4 Related Work

The approach presented in this paper introduces a formal model for specifying
functionality and functional variability of system families. Thus, our related

13

work can be found in the area of the formalization of feature models — the main
method to formalize the variability in product lines.

The definition of a formal semantics for feature models is not new. In [6],
Batory and O’Malley use grammars to specify feature models. In [7], Czarnecki
et al. argue that cardinality-based feature models can be interpreted as a special
class of context-free grammars. Sun et al. define a formal semantics for the fea-
ture modeling language using first-order logic in [8]. The formalization of feature
models with propositional formulas goes back to the work by Mannion [9], in
which logical expressions can be developed for the model, using propositional
connectives to model dependencies between requirements. Another approach
to specifying multi-functional systems is introduced by van Lamsweerde et al.
In [10] they propose formal techniques and heuristics for detecting conflicts from
specifications of goals (requirements) and their interactions specified in LTL.

The main deficit of these approaches is a disregard for the behavior of single
features. In [11], Czarnecki and Antkiewicz recognize that features in a feature
model are “merely symbols”. They propose an approach to mapping feature mod-
els to other models, such as behavior or data specifications, in order to give them
semantics. However, this approach only focuses on assets like software compo-
nents and architectures. Our work focuses on formalizing user requirements and
their analysis in the early phases of the development process.

The closest approach to our work is a theoretical framework introduced by
Broy [5] where the notion of a service behavior is formally defined. This frame-
work provides several techniques to specify and to combine services based on
their behaviors. However, this approach does not cover several relevant issues
such as techniques for the specification of functional variability and of inter-
service dependencies.

To summarize, to the best of our knowledge, there is no approach to specify a
product line, by formally describing the behavioral variability in requirements.

5 Conclusion and Future Work

The presented concepts can be roughly summarized as follows. We introduced
and formally founded the underlying concepts of our service specification, which
focuses on the modeling and structuring of functional requirements without any
further technical details. Thereby, the concept of a service is used to model
single functionalities in a modular fashion. Together with a well-defined meaning
for inter-service relations we are able to reduce the specification of the overall
system behavior to the specification of individual sub-functionalities. This helps
to master the complexity of multi-functional systems.

With respect to product lines, we integrated the concept of behavioral vari-
ability which makes the Service Diagram suitable to formally capture the func-
tional requirements of a system family. Thereby, we focused on explicitly mod-
eling behavioral commonalities and differences between variants.

The formal description of the functionality and the behavioral variability
already at an early stage of the development process allows to perform a formal

14

(and therefore automatic) analysis of the functional requirements, i.e. to detect
conflicting functionalities. Inter-service conflicts and consistency checks as well
as the analysis of interactions between different variants are in the focus of our
approach and major part of our current and future work.

An other concern of our future work is the development of a user-friendly

syntax for the semantics introduced in this paper.

References

10.

11.

. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain

analysis (FODA) feasibility study. Technical report, SEI, CMU, Pittsburgh (1990)
Gruler, A., Harhurin, A., Hartmann, J.: Modeling the functionality of multi-
functional software systems. In: Proceedings of ECBS07. (2007)

Gruler, A., Harhurin, A., Hartmann, J.: Development and configuration of service-
based product lines. In: Proceedings of SPLC07. (2007)

. Schétz, B.: Combining product lines and model-based development. In: Proceed-

ings of Formal Aspects of Component Systems (FACS 2006). (2006)

Broy, M.: Service-oriented systems engineering: Modeling services and layered
architectures. In: FORTE. (2003) 4861

Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. ACM Trans. Softw. Eng. Methodol. 1 (1992)
Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice 10
(2005) 729

Sun, J., Zhang, H., Wang, H.: Formal semantics and verification for feature mod-
eling. In: Proceedings of ICECCS05. (2005) 303-312

Mannion, M.: Using first-order logic for product line model validation. In: SPLC.
(2002) 176-187

van Lamsweerde, A., Letier, E., Darimont, R.: Managing conflicts in goal-driven
requirements engineering. IEEE Trans. Softw. Eng. 24 (1998) 908-926
Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach
based on superimposed variants. In: GPCE. (2005) 422-437

15

