
TECHNISCHE

UNIVERSIT�AT

M �UNCHEN

INSTITUT F�UR INFORMATIK

Sonderforschungsbereich ����
Methoden und Werkzeuge f�ur die Nutzung

paralleler Rechnerarchitekturen

A Formal Method
for Hardware�Software

Co�Design

Ketil St�len� Max Fuchs

TUM�I���	
SFB�Bericht Nr
��������� A

Mai ����

TUM�INFO�������I��������	�FI

Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c����� SFB ��� Methoden und Werkzeuge f�ur
die Nutzung paralleler Architekturen

Anforderungen an� Prof� Dr� A� Bode
Sprecher SFB ���
Institut f�ur Informatik
Technische Universit�at M�unchen
Arcisstr� �� 	 Postfach �
 �� �

D��
��
 M�unchen
 Germany

Druck� Fakult�at f�ur Informatik der
Technischen Universit�at M�unchen

�

A Formal Method for

Hardware�Software Co�Design

Ketil St�len� Max Fuchs

Institut f�ur Informatik� TU M�unchen� D������ M�unchen

email�stoelen	informatik
tu�muenchen
de

November �� ���

Abstract

This paper presents a formal method supporting hardware�software co�
design with respect to speci�cation and veri�cation� We introduce three dif�
ferent speci�cation formats� Two of these are intended for the speci�cation of
asynchronous software� the third is more suited for digital hardware applica�
tions� All three formats are based on the assumption�commitment paradigm�
We introduce a re�nement relation and formulate veri�cation rules for the paral�
lel composition of speci�cations� We apply the proposed method to specify and
decompose a timed FIFO queue which is partly to be implemented in hardware
and partly to be implemented in software�

� Introduction

The label �hardware	software co�design� is used to denote the simultaneous design of
both hardware and software to implement a desired function or speci�cation� Hard�
ware	software co�design is still a very new research area and is currently receiving
considerable interest� See for example �Buc����
The objective of this paper is to present a formal method supporting hardware	s�
oftware co�design� We �rst introduce a semantic framework based on streams and
pulse�driven functions� A simple composition operator is used to compose pulse�
driven functions into networks of pulse�driven functions � networks which
 when
observed from the outside
 themselves can be understood as pulse�driven functions�
Thus
 our model is fully compositional�
Speci�cations explicitly characterize the relationship between the complete commu�
nication histories of the input channels and the complete communication histories of
the output channels� Speci�cations can be written at several levels of abstraction�
We introduce three speci�cation formats� In each format a speci�cation is modeled
by a set of pulse�driven functions modulo a particular abstraction� We refer to this
set as the speci�cation�s denotation� The two �rst formats
 which we call respectively
time dependent and time independent
 are mainly intended for the speci�cation of
software components or
 more explicitly
 interfaces communicating asynchronously�
If real�time constraints are to be imposed then the time dependent format must be

�

employed� otherwise the time independent format should be chosen� The third for�
mat
 which we call synchronous
 is mainly intended for the speci�cation of hardware�
All three formats are based on the so�called assumption	commitment paradigm�
Since any speci�cation is modeled by a set of pulse�driven functions the composition
operator can be lifted from functions to speci�cations in a straightforward way� We
may then express system speci�cations containing component speci�cations of all
three formats�
A speci�cation is said to re�ne another speci�cation if its denotation is contained
in that of the latter� We give veri�cation rules for the composition of speci�cations
modulo this re�nement principle� We also explain how conversion rules can be used
to translate a speci�cation of one format into a speci�cation of another format�
Thus
 in our approach there is a uniform
 common semantic basis for speci�cation
formats
 composition and re�nement� Our method is compositional and well�suited
for top�down design� We can handle both synchronous and asynchronous communi�
cation� Real�time constraints can be speci�ed
 and we have specially designed rules
for the veri�cation of re�nement steps� This allows hardware	software co�design to
be conducted in a very elegant way�
We employ our approach to specify and decompose a timed FIFO queue which is
partly to be implemented in hardware and partly to be implemented in software�
The paper is organized as follows� Section � introduces the basic concepts and
notations� In Section � the three speci�cation formats are introduced� Re�nement
and re�nement rules are the subjects of Section �� Section � is devoted to the case�
study� Finally
 Section � contains a brief summary and relates our approach to other
approaches known from the literature�

� Semantic Model

We represent the communication histories of channels by timed streams� A timed
stream is a �nite or in�nite sequence of messages and time ticks� A time tick is
represented by �

p
�� The interval between two consecutive ticks represents the least

unit of time� A tick occurs in a stream at the end of each time unit�
An in�nite timed stream represents a complete communication history
 a �nite timed
stream represents a partial communication history� Since time never halts
 any
in�nite timed stream is required to have in�nitely many ticks� We do not want
timed streams to end in the middle of a time unit� Thus
 we insist that a timed
stream is either empty
 in�nite or ends with a tick�
Given a set of messages M
 then M�
 M� and M� denote respectively the set of
all in�nite timed streams over M
 the set of all �nite timed streams over M
 and
the set of all �nite and in�nite timed streams over M � We use N to denote the set
of natural numbers
 and N� to denote N � f�g� Given s � M� and j � N�
 s�j
denotes the pre�x of s characterizing the behavior until time j
 i�e�
 s�j denotes s if
j is greater than the number of ticks in s
 and the shortest pre�x of s containing j

ticks
 otherwise� Note that s�� � s� The operator is overloaded to tuples of timed
streams t in a point�wise style
 i�e�
 t�j denotes the tuple we get by applying �j to
each component of t�
A named stream tuple is a mapping � � a � M� from a set of channel identi�ers

�

to timed streams� Intuitively
 � assigns a �possibly partial� communication history
to each channel named by the channel identi�ers in a� The operator � is overloaded
to named stream tuples in the same point�wise style as for tuples of timed streams�
Given two named stream tuples

� � a�M�� � � b�M��

if a � b � � then � � � denotes the element of a � b�M� such that

c � a	 �� � ���c� � ��c�� c � b	 �� � ���c� � ��c��

Moreover
 for any set of identi�ers b
 �jb denotes the projection of � on b
 i�e�
 �jb is
the element of a � b�M� such that

c � a � b	 ��jb��c� � ��c��

A function

� � �i�M��� �o�M��

mapping named stream tuples to named stream tuples is pulse�driven i�

�� � � i�M� � j � N � ��j � ��j 	 ������j��� � ������j����

Pulse�drivenness means that the input until time j completely determines the output
until time j � �� In other words
 a pulse�driven function imposes a delay of at least
one time unit between input and output and is in addition �lazy� in the sense that
it can be �partially� computed based on partial input� We use the arrow

p� to
distinguish pulse�driven functions from functions that are not pulse�driven�
We model speci�cations by sets of pulse�driven functions� Each function or subset
of functions contained in such a set represents one possible implementation� For
example
 a speci�cation of a component
 whose input and output channels are named
by i and o
 respectively
 is modeled by a set of pulse�driven functions F such that

F � �i�M��
p� �o�M���

Pulse�driven functions can be composed into networks of functions � networks which
themselves behave as pulse�driven functions� For this purpose we introduce a com�
position operator �� It can be understood as a parallel operator with hiding� For
example
 the network pictured in Figure � consisting of the two functions

�� � �i� �M��
p� �o� �M��� �� � �i� �M��

p� �o� �M���

where i� � i� � o� � o� � i� � o� � i� � o� � �
 is characterized by ��� ��� Informally
speaking
 any output channel of �� and input channel of ��
 and any output channel
of �� and input channel of ��
 whose names are identical
 are connected and hidden
in the sense that they cannot be observed from the outside�

�

�

� �

�

�
�
�
�
�
�� �

T
T
T
T
T
TT�

�� ��

i� n o�

o� n i�

i� � o�i� � o�

i� n o�

o� n i�

Figure �� Network Characterized by �� � ��

Given that

i � �i� � i�� n �o� � o��� o � �o� � o�� n �i� � i���

then for all � � i�M�
 we de�ne

��� � ������ � �jo � �jo where � � ����ji� � �ji��� � � ����ji� � �ji���

Note that pulse�drivenness implies� that for any � there are unique �
 � such that

� � ����ji� � �ji��
 � � ����ji� � �ji���

Thus
 ����� is well�de�ned� It is also easy to prove that ����� is pulse�driven� This
implies

�� � �� � �i�M��
p� �o�M���

Given n � � pulse�driven functions

�j � �ij �M��
p� �oj �M���

such that ij � oj � �
 and j �� k 	 ij � ik � oj � ok � �
 then �n
j���j is a short�hand

for ��� � � �� �n� Note that the restrictions imposed on the identi�er sets imply that
� is associative � this explains why there are no brackets�
As will be shown below
 the composition operator � can be lifted from functions to
speci�cations in a straightforward way�

� Speci�cation

Based on the semantic model introduced in the previous section
 we may write spec�
i�cations at several levels of abstraction� Below we give three di�erent speci�cation

�As a consequence of Banach�s �x�point theorem �AdBKR���� since pulse�driven functions can
be understood as contracting functions in a complete metric space�

�

formats� However
 �rst we introduce some useful operators on streams�

��� Operators on Streams

We also use streams without ticks� We refer to such streams as untimed� Given a
set of messages M
 then M�
 M� and M� denote respectively the set of all in�nite
untimed streams over M
 the set of all �nite untimed streams over M
 and the set
of all �nite and in�nite untimed streams over M �
Given A � M � fpg
 �timed or untimed� streams r and s over M
 n � N� and
integer j�

� �r denotes the length of r
 i�e� � if r is in�nite
 and the number of elements
in r otherwise� Note that time ticks are counted� For example the length of a
stream consisting of in�nitely many ticks is ��

� r�j denotes the j�th element of r if � � j � �r�

� ha�� a�� ��� ani denotes the stream of length n whose �rst element is a�
 whose
second element is a�
 and so on� hi denotes the empty stream�

� A c�r denotes the result of removing all messages �ticks included� not in A
 i�e�

the projection of r on A� If A � fdg we write d c�r instead of fdg c�r� For
example

fa� bg c�ha� b�p� c�p� a�pi � ha� b� ai�

� rjj denotes hi if j �

 the pre�x of r of length j if
 � j � �r
 and r otherwise�
This means that rj� � r� This operator is overloaded to stream tuples in a
point�wise way� Note the di�erence with respect to ��

� r�s denotes the result of concatenating r to s� Thus
 hc� ci� ha� bi � hc� c� a� bi�
If r is in�nite then r�s � r�

� r v s holds i� r is a pre�x of s� Also this operator is overloaded to tuples of
streams in the obvious way�

� sy�r� holds i� r is a timed stream
 and exactly one message occurs between
two consecutive ticks
 i�e��
j � N �
 � j � �

p
c�r 	 �M c��r�j� � j� Any

stream r such that sy�r� is said to be synchronous�

� r denotes the result of removing all ticks in r� Thus
 ha�p� b�pi � ha� bi�

��� Time Dependent Speci�cations

To specify real�time components some explicit notion of time is required� We refer
to such speci�cations as time dependent� A time dependent speci�cation is written
in the form

S
td� �i � o� �� ass �A com �C

�

S is the speci�cation�s name� i is a �nite list of input identi�ers� o is a �nite list
of output identi�ers � i and o have no identi�er in common and are both without
repetitions in the sense that the same identi�er occurs only once� td is a label dis�
tinguishing time dependent speci�cations from other speci�cation formats� A and C

are formulas whose free variables are contained in i � o�� The identi�ers in i name
the input channels
 and the identi�ers in o name the output channels� We refer to
�i� o� as the speci�cation�s interface� In A and C each input and output identi�er
represents an in�nite timed stream� In the tradition of �Hoa���
 �Jon���
 �MC���
the formula A characterizes the assumptions about the environment in which the
speci�ed component is supposed to run� C
 on the other hand
 characterizes what
the component is committed to do whenever it is executed in an environment which
behaves in accordance with the assumption� Such speci�cations are normally called
assumption	commitment speci�cations� This is the motivation for the keywords ass
and com�
For simplicity
 in this section the input	output identi�ers are untyped� However

the introduction of types is a straightforward extension
 and this is exploited in the
examples�
For any formula P and mapping m � I � D such that the free variables in P are
contained in I and vary over D
 m j� P holds i� P evaluates to true whenever each
free variable i in P is interpreted as m�i��
For any formula P
 identi�er x and expression y
 P �xy � denotes the result of replacing
each occurrence of x in P by y� This substitution operator is generalized in the
obvious way for the case that x is a repetition free list of identi�ers and y is a list of
expressions of the same length as x�
For any formula P
 whose free variables vary over M�
 we use hP i to denote its
pre�x closure� hP i has the same free variables as P � However
 in hP i they vary over
M�� Formally
 if s is the list of free variables in P
 then hP i denotes s �M�
 �q �
M� � P �sq�
 s v q for some list of variables q disjoint from s� Note that hP i is not
necessarily a safety property� For example
 for in�nite timed streams P and hP i are
equivalent�
The denotation of a time dependent speci�cation S is the set of all pulse�driven
functions

� � �i�M��
p� �o�M��

such that

� � i�M� � j � N� � �� � �����j� j� hAi 	 �� � ������j���� j� hCi�

Thus

� �j � ��� if the environment always behaves in accordance with the assump�
tion
 then � always behaves in accordance with the commitment

� �j ���� if the environment behaves in accordance with the assumption until
time j
 then � behaves in accordance with the commitment until time j � ��

�Any list without repetitions can be represented as a totally ordered set� and the other way
around� We therefore often apply set operators to such lists without �rst conducting a conversion�

�

This one�step�longer�than semantics is closely related to the semantics of the
��

operator in �AL���� Note the way j� allows us to represent variables over domains
of streams �at the syntactic level� by named stream tuples �at the semantic level��
Throughout this paper
 for any speci�cation S
 we use �� S �� to represent its denota�
tion� Moreover
 for any assumption	commitment speci�cation S
 by AS and CS we
denote its assumption and commitment
 respectively�

INT
td� �x �M�� s � D�

�
� y � D�� r �M�

�� ��

ass �
sy�x�

m �M� � m v x	 ��� c�m� � ��D� c�m�

com �
sy�y�
D� c�y � D c�s
M c�r � M� c�x

Figure �� Speci�cation of an Interface Component

� � �

� � �

i x r

syo

HWQ SWQINT

Figure �� FIFO Queue�

Example � Speci
cation of an Interface Component�
To show the use of the time dependent format
 we specify an interface component
INT �see Figure ��� It is later used to connect a software queue SWQ to a hardware
queue HWQ �see Figure ��� The resulting network is supposed to behave as a FIFO
queue� HWQ is to be realized in hardware and has therefore only a bounded amount
of memory� The hardware queue is supposed to take advantage of the other two
components of the network when its memory gets �lled up� On the other hand
 SWQ
is to be implemented in software and is required to have an unbounded memory��
Since the hardware queue communicates in a synchronous manner and the software
queue communicates in an asynchronous manner
 we need the interface component
as a converter� INT forwards data elements and requests received on x �sent by the
hardware queue� along r �to the software queue�
 and forwards replies received on s

�from the software queue� along y �to the hardware queue��
Let D be some set such that
 � D and � �� D� We use M to denote D � f�g

D� to denote D n f
g
 and M� to denote M n f
g� We refer to D� as the set

�Of course� in practice also the software queue will only have a bounded amount of memory�
However� for simplicity we ignore this additional complication in this paper�

�

of data elements
 and to � as a request� The hardware queue communicates in a
synchronous manner� When no real message can be sent within a certain time unit

it outputs a default message denoted by
� Similarly
 INT forwards a
 along y when
it has nothing else to send within a certain time unit�
We now go through the speci�cation of the interface in Figure �� The �rst conjunct
of the assumption requires the input on x to be synchronous� This is a sensible
assumption since the hardware queue communicates in a synchronous manner� Note
that this conjunct expresses a real�time requirement� The second conjunct requires
that the number of requests received on x until some time j is always less than or
equal to the number of data elements received until time j�
The �rst conjunct of the commitment insists that the output along y is synchronous�
The second conjunct makes sure that any data element received on s eventually is
forwarded along y �and that no other data element is output along y�� If at a certain
point in time no data element can be sent
 the speci�ed component must forward a

� Finally
 the third conjunct requires that any data element or request received on
x eventually is forwarded along r �and that no other message is output along r�� �

The time dependent format does not allow the speci�er to �x the least unit of
time
 i�e�
 for instance to express that the least unit of time �the interval between
two consecutive ticks� is equal to � seconds� However
 this is a straightforward
generalization� It has been left out here because it is of little importance in the
examples below�

��� Time Independent Speci�cations

For many applications explicit timing is not really necessary for the simple reason
that there are no real�time constraints to be imposed� In those cases we want to
abstract from time ticks� We refer to such speci�cations as time independent� A
time independent speci�cation is written in the form

S
ti� �i � o� �� ass �A com �C

As in the previous case� S is the speci�cation�s name� i is a �nite list of input identi�
�ers �without repetitions�� o is a �nite list of output identi�ers �without repetitions
and disjoint from i�� ti is a label� A and C are formulas whose free variables are
contained in i � o� However
 contrary to the previous case
 in A and C each such
identi�er now represents an untimed stream� Moreover
 this untimed stream may be
�nite �since an in�nite timed stream with only �nitely many messages degenerates
to a �nite stream when the ticks are removed��
For any � � a � M� we use � to denote the element of a � M� such that

c � a � ��c� � ��c�� The pre�x operator is overloaded to formulas whose free
variables vary over M� in the obvious way� By hP io we denote the pre�x closure of
P with respect to the identi�ers in o�
The denotation of a time independent speci�cation S can then be de�ned as the set
of all pulse�driven functions

�

� � �i�M��
p� �o�M��

such that for all � � i�M� we have that

�� � ����� j� A	 �� � ����� j� C�

j � N � �� � �����j� j� hAio 	 �� � ������j���� j� hCio�

Because of the time abstraction
 the constraints for �nite and in�nite time cannot
easily be merged into one constraint as in the time dependent case� There is a close
relationship between time independent and time dependent speci�cations� For any
time independent speci�cation S
 we de�ne �S� to denote the speci�cation that can
be obtained from S by substituting the label td for ti and by
 for any input	output
identi�er v
 replacing any free occurrence of v in AS and CS by v� We then have
that �� S �� � �� �S� ��� Thus
 any time independent speci�cation can be translated into
an equivalent time dependent speci�cation in this way� A translation in the other
direction is of course normally not possible since the time dependent format is more
expressive�

SWQ
ti� �r �M�

�
� s � D�

�� ��

ass �

m �M� � m v r 	 ��� c�m� � ��D c�m�

com �
s � �D c�r�j��� c�r�

Figure �� Speci�cation of a FIFO Queue

Example � Software Queue�
To show the use of the time independent format
 we specify �see Figure �� the
software queue mentioned in Example �� It is supposed to work in a FIFO style� D�

and M� are de�ned as in Example �� � models a request
 and D� models the set of
data elements�
The assumption requires that the queue never receives a request when it is empty�
The commitment
 on the other hand
 insists that any request receives a reply
 and
that data elements are output in the correct FIFO manner� �

��� Synchronous Speci�cations

The two formats introduced above are intended for the speci�cation of components
communicating asynchronously� To specify components communicating in a syn�
chronous �pulsed� style
 like for example digital hardware components
 we introduce

��

a third format� We refer to the speci�cations written in this format as synchronous�
A synchronous speci�cation is of the form

S
sy��i � o� �� ass �A com �C

As before A and C are formulas whose free variables are contained in i�o� However

contrary to the previous cases
 in A and C each such free identi�er now represents
an in�nite untimed stream�
If � � a � M�
 then sy��� holds i�
c � a � sy���c��� The pre�x operator is
overloaded to formulas whose free variables vary over M� in the obvious way� The
denotation of a synchronous speci�cation can then be de�ned as the set of all pulse�
driven functions

� � �i�M��
p� �o�M��

such that

� � i�M� � j � N� �

sy���
 �� � �����j� j� hAi 	 �� � ������j���� j� hCi
 sy�������j�����

As in the time dependent case
 the constraints for �nite and in�nite time are merged�
This is easy
 since for synchronous streams
 we can still distinguish between partial
and total input after time abstraction� As in the time independent case
 there is a
close relationship between synchronous and time dependent speci�cations� For any
synchronous speci�cation S
 we de�ne �S� to denote the speci�cation that can be
obtained from S by substituting the label td for sy
 by adding a conjunct sy�i� to the
assumption for each input identi�er i
 by adding a conjunct sy�o� to the commitment
for each output identi�er o
 and by for any input	output identi�er v
 replacing any
free occurrence of v in AS and CS by v� We then have that �� S �� � �� �S� ��� Thus

any synchronous speci�cation can be translated into an equivalent time dependent
speci�cation in this way� A translation in the other direction is of course normally
not possible since the time dependent format is more expressive�

Example � Hardware Queue�
We once more specify �see Figure �� a FIFO queue
 namely the hardware queue
mentioned in Example ��
More precisely
 we want to specify a component HWQ which communicates with
INT of Example � and SWQ of Example � in accordance with Figure ��
The �rst conjunct of the assumption is similar to the previous cases� Clearly
 the
hardware queue can only be required to behave correctly as long as the rest of the
network behaves as a FIFO queue� This is stated by the second and third conjunct
of the assumption� The second states that what the component receives on y is what
it has already sent along x� The third states a liveness property
 namely that it
receives a data element on y for each request it sends along x�
The �rst conjunct of the commitment requires that the hardware queue will always
reply to a request and output data�elements in the right FIFO manner� In addition
we must make sure that the hardware queue uses the software queue correctly
 i�e�
 it

��

HWQ
sy��i �M�� y � D�

� o � D�� x �M�� ��

ass �

m �M� � m v i	 ��� c�m� � ��D� c�m�

j � N � D� c��yj�j���� v �D� c��xjj��j��� c��xjj��

��D� c�y� � ��� c�x�

com �
D� c�o � �D� c�i�j��� c�i�

m �M� � m v x	 ��� c�m� � ��D� c�m�

Figure �� Speci�cation of a Hardware Queue�

should only send requests when the software queue is not empty� This requirement
is stated by the second conjunct of the commitment� �

Synchronous speci�cations can be used to specify components communicating syn�
chronously in the sense that along each channel exactly one message is sent per unit
of time� Of course
 as in the time dependent case
 more general formats can be
formulated in which the speci�er himself can �x the pulse�frequency with respect to
the least unit of time�

��� Composing Speci�cations

Since the denotation of a speci�cation is a set of pulse�driven functions
 the operator
� can be lifted from pulse�driven functions to speci�cations in a straightforward way�
Let i� � i� � o� � o� � �
 i � �i� n o�� � �i� n o�� and o � �o� n i�� � �o� n i��� If S�
and S� are speci�cations whose interfaces are characterized by �i�� o�� and �i�� o��

respectively
 then �� S� � S� �� denotes the set of all � � �i � M��

p� �o � M��
such that

� � �i�M�� � ��� � �� S� ��� �� � �� S� �� � ���� � ��� � �������

Moreover
 the overall speci�cation has �i� o� as its external interface� Thus
 the
channels used to connect S� and S� are hidden� The operator �n

j�� can of course be
lifted accordingly�
For example the network pictured in Figure � is characterized by

HWQ� INT� SWQ�

��

Thus
 we may write speci�cations containing sub�speci�cations of all three formats�
This allows for example hardware	software co�design to be conducted in an elegant
way�

� Re�nement

A speci�cation formalism as introduced in the previous section is of little value on
its own� To take advantage of a speci�cation formalism we need to know exactly
what it means for a system to implement or satisfy a speci�cation� To move from an
abstract requirement speci�cation to a concrete realization in one step is very hard
� if at all possible� Instead we advocate a step�wise development in the sense that
the requirement speci�cation is gradually re�ned into its realization via a number
of intermediate speci�cations� In fact one may think of the �nal implementation as
just another speci�cation� What is needed is therefore a formalization of what it
means for a speci�cation to re�ne another speci�cation�
Clearly
 this re�nement relation should guarantee that any behavior of the more
concrete speci�cation is also a behavior of the more abstract speci�cation� Given
two speci�cations S� and S�
 we write S� � S� if S� is a re�nement of S�� Formally

S� � S� � �� S� �� � �� S� ���

Thus
 a speci�cation S� is said to re�ne a speci�cation S� i� they have the same
syntactic interface
 and any behavior of S� is also a behavior of S�� This re�nement
relation is re�exive
 transitive and a congruence modulo speci�cation composition�
Hence
 � admits compositional system development in the sense that

� Design decisions can be veri�ed at the point in a development where they are
taken
 i�e�
 independent of how the component speci�cations are implemented
later on�

� Once a speci�cation has been decomposed into a network of sub�speci�cations

and the correctness of this decomposition has been veri�ed
 any further re�ne�
ment of these sub�speci�cations can be carried out in isolation
 i�e�
 independent
of the other component speci�cations and their re�nements�

Because � allows the semantic behavior of a speci�cation to be re�ned
 this re�ne�
ment relation is normally referred to as behavioral re�nement� To simplify system
developments it is often helpful to also re�ne the syntactic interfaces of speci�ca�
tions� For that purpose a more general re�nement relation is needed
 namely what is
usually referred to as interface re�nement� In the tradition of �Hoa���
 interface re�
�nement is basically behavioral re�nement modulo a representation function relating
the concrete to the abstract interface� A detailed discussion of interface re�nement
is beyond the scope of this paper� Here we just want to point out that our approach
also supports this more general notion of re�nement�

The formulation of veri�cation rules for assumption	commitment speci�cations with
respect to a parallel operator like � is known to be a di�cult task� The main

��

reason is that the component speci�cations can be mutually dependent � a fact
which easily leads to circular reasoning� We now want to formulate such a rule
with respect to time dependent speci�cations� For this purpose we introduce the
following convention� P �a�j� and P �a�j � b�j� are short�hands for P �aa�j � and P �aa�j

b
b�j

�

respectively� Moreover
 we use �Pi�i�����n� as a short�hand for P�
 � � �
 Pn�
Given n time dependent speci�cations S�� S�� � � � � Sn� Let zi
 xi and yi be repetition
free lists consisting of respectively the input channels of Si that are connected to the
overall environment
 the input channels of Si that are connected to the other n� �
component speci�cations
 and the output channels of Si that are either connected
to the other n � � speci�cations or to the overall environment� We require that zi

xi and yi are mutually disjoint� We also require that	

i �� k 	 �zi � xi� � �zk � xk� � � � yi � yk�

This means we have point�to�point communication � the same channel is accessed
by only two components
 namely the �receiver� and the �sender��
Let z and y be repetition free lists such that z � �n

i��zi and y � �n
i��yi� It seems

sensible to base the rule on some sort of computational induction� This requires the
formulation of an induction hypotheses� This hypotheses must be constrained to
hold initially and to be maintained by each computation step as long as the overall
assumption remains valid� In the �eld of program veri�cation such an induction
hypotheses is normally referred to as an invariant� Let I be this invariant� We
assume that I is a formula whose free variables are contained in z�y� In each proof�
obligation below the elements of z and y are universally quanti�ed over in�nite timed
streams� Moreover
 any free occurrence of j is universally quanti�ed over N�
As already mentioned
 it must be shown that the invariant holds initially
 i�e�
 at
time
� This is secured through the following proof obligation

AS 	 I�y�
��

Secondly
 it must be shown that whenever the invariant holds at time j
 then it
also holds at time j � �� A correct implementation of a time dependent assump�
tion	commitment speci�cation is required to satisfy the commitment one step longer
than the environment satis�es the assumption� Thus
 we �rst have to make sure that
whenever the invariant holds at time j
 then the component assumptions have not
been falsi�ed� This is ensured through the following proof obligation

I�y�j�	 hASii�y�j�i�����n��

Given this proof�obligation
 the invariant is maintained by each computation step

if it can be shown that

I�y�j�
 hCSii�xi�j � yi�j���i�����n� 	 I�y�j����

We now have three proof obligations� Together they guarantee that the invariant

�We use set notation since there is a one�to�one mapping between repetition free lists and totally
ordered sets�

��

holds after any �nite number of computation steps� To make sure that the invariant
holds at in�nite time
 the following proof obligation is su�cient

k � N � I�y�k�	 I�

To guarantee the validity of the conclusion two things must be shown� Firstly
 it
must be shown that if the overall assumption AS has not been falsi�ed at some
�nite time j then the overall commitment CS holds at least one step longer� This is
ensured by reformulating the third proof obligation as below

I�y�j�
 hCSii�xi�j � yi�j���i�����n� 	 I�y�j���
 hCSi�y�j����

Secondly
 it must be shown that if the overall assumption AS holds at in�nite time
then the overall commitment CS holds at in�nite time� To guarantee this it is enough
to widen the scope of j in the second proof obligation from N to N� and to add the
following proof obligation

I
 �CSi�i�����n� 	 CS�

However
 we rather leave the second proof obligation as it is and replace the last
proof obligation by

I
 �ASi 	 CSi�i�����n� 	 CS�

We then get a stronger rule� The reason is that since the assumptions may contain
liveness properties
 it will often be the case that the invariant only implies some of
the component assumptions
 say AS� and ASn
 and that the remaining n� � can be
deduced from I
 CS�
 CSn � Thus
 we end up with the rule below

AS 	 I�y�
�
I�y�j�	 hASii�y�j�i�����n�
I�y�j�
 hCSii�xi�j � yi�j���i�����n� 	 I�y�j���
 hCSi�y�j���

k � N � I�y�k�	 I

I
 �ASi 	 CSi�i�����n� 	 CS

S � �n
i��Si

Remember that in each premise the elements of z and y are universally quanti�ed
over in�nite timed streams and that j is universally quanti�ed over N� Moreover

S
 S�� � � � � Sn are time dependent speci�cations� For soundness and completeness
results we refer to �St ����
Additionally
 we also need an adaptation rule� Let S and S� be time dependent spec�
i�cations of the same syntactic interface �i� o�� If these speci�cations have identical
assumptions
 then the following rule is valid

AS
 �
j � N� �
r � hASi�i�j �r� o�j�	 hCS�i�i�j �r� o�j����	 CS

S � S�

��

Similar rules can be formulated for time independent and synchronous speci�cations�
For example
 in the synchronous case
 it is enough to replace any occurrence of � by
j�
Given the two rules introduced above we may for example prove that

NET� HWQ� INT� SWQ�

where NET is given in Figure ��

NET
sy��i �M�

� o � D�� ��

ass �

m �M� � m v i	 ��� c�m� � ��D� c�m�

com �
D� c�o � �D� c�i�j��� c�i�

Figure �� Speci�cation of NET

Since

NET� �NET�� �HWQ�� �SWQ�� HWQ� SWQ�

and � is transitive and a congruence with respect to �
 it is enough to show that

�NET�� �HWQ�� INT� �SWQ��

By the adaptation rule we have that

INT� � �SWQ�� � INT� �SWQ��

where INT� denotes the result of strengthening the commitment of INT with the
following conjuncts

j � N � M c��r��j���� vM� c��x�j�
D� c��y��j���� v D c��s�j��

and �SWQ�� denotes the result of strengthening the commitment of �SWQ� with the
following conjunct

j � N � s��j��� v �D c�r�j��� c�r�j��

Thus
 the transitivity and congruence property enjoyed by � imply it is enough to
prove that

��

�NET�� �HWQ�� INT� � �SWQ���

The latter follows by the composition rule if I is chosen as below

hA�HWQ�i
AINT
A�SWQ��

� A Timed FIFO�Queue

In Section � we have already speci�ed a FIFO queue consisting of three components

namely a hardware queue HWQ
 a software queue SWQ
 and an interface INT
 where
the latter was responsible for the communication between the two queues� The �rst
of these was intended to be implemented in hardware� The other two were intended
to be implemented in software�
Contrary to earlier
 we now impose constraints on the response time of the FIFO
queue� We �rst give an overall speci�cation characterizing the requirements imposed
on the whole network� Since the queue�s external interface works in a synchronous
manner
 this speci�cation is written in the synchronous format� We assume that

� The FIFO queue has a required delay of l time units in the sense that the reply
is required to come exactly l time units after the request has been received�

We then decompose this overall speci�cation in accordance with Figure �� Clea�
rly
 the hardware queue should be speci�ed in the synchronous format
 and since
we impose real�time constraints
 both the software queue and the interface must be
speci�ed in the time dependent format� We assume that

� The hardware queue has a required delay of l time units in the same sense as
for the overall queue�

� The interface has a delay of not more than one time unit in the direction
from the hardware queue to the software queue� In the other direction it also
forwards the messages as soon as it can� However
 since the software queue
may produce more than one message within a time unit
 and the hardware
queue expects synchronous input
 the delay can be greater than one time unit�

� The interface and the software queue together have a maximal delay of k � �
time units in the sense that any reply will be provided within this time range�

It is beyond the scope of this paper to characterize the exact relationship between
the constants l and k� We just assume that k has been chosen in such a way that
the speci�cation HWQ is realizable in hardware�

��� Overall Speci�cation

The overall requirements are speci�ed in Figure �� As in earlier speci�cations the
assumption makes sure that no request is sent when the queue is empty� Remember
that
 is sent whenever no ordinary message can be sent within a time unit� With

��

T NET
sy��i �M�

� o � D�� ��

ass �

m �M� � m v i	 ��� c�m� � ��D� c�m�

com �

j � N� � let n � ��� c��ijj�� in i�j � � 	 o��j � l� � �D� c�i��n

Figure �� Overall Requirements

respect to the commitment
 for a given j
 n is the number of requests received until
time j� This means that if i�j is a request then o��j � l� is required to contain the
n�th data element received� Note that for any j such that i�j �� �
 nothing is said
about the component�s behavior at time j � l except that the message output at
time j � l is an element of D�

��� Speci�cation of the Software Queue

The software queue is speci�ed in the time dependent format �see Figure ��� The
assumption imposes the usual constraint on requests via its second conjunct� The
�rst conjunct makes sure that not more than one message is received per time unit�
This assumption is okay since the communication on x is synchronous and INT
forwards the messages it receives on x along r with a delay of exactly one time unit�
The �rst conjunct of the commitment states that the software queue replies in a
FIFO manner �if it replies at all�� The second conjunct insists that for any j
 the
number of requests in r until time j is less than or equal to the number of replies in
s until time j � k� This guarantees that any reply is received within k time units�
Note that if k � � this constraint does not restrict the component from replying in
less than k time units� This in contrast to the speci�cation T NET which requires
the reply to come after exactly l time units�
Note also that the �rst conjunct of the assumption together with the commitment
guarantee that if SWQ for example forwards two data elements within one time unit
then the last of these is forwarded with a delay of less than k time units� Due to
this fact we may prove that the software part of the network stays within the k � �
time units requirement�

��

SWQ
td� �r �M�

�
� s � D�

�� ��

ass �

j � N � �r��j��� � �r�j � �

m �M� � m v r 	 ��� c�m� � ��D c�m�

com �
D c�s v D c�r

j � N � ��� c��r�j�� � ��D c��s��j�k���

Figure �� Speci�cation of the Software Queue

��� Speci�cation of the Interface

INT
td� �x �M�� s � D�

�
� y � D�� r �M�

�� ��

ass �
sy�x�

m �M� � m v x	 ��� c�m� � ��D� c�m�

com �
sy�y�
D� c�y v D c�s

j � N � ��D� c��y�j�� � ��D c��s�j��	 y���j � �� � D�

r � hpi� �M� � fpg� c�x

Figure �� Speci�cation of the Interface

The interface INT is speci�ed in the time dependent format �see Figure ��� Since the
input along x comes from the hardware queue the communication history of x can
be assumed to be synchronous� This explains the �rst conjunct of the assumption�
Similarly
 since the output along y is to be received by the hardware queue
 it has to
be synchronous� Thus
 the �rst conjunct of the commitment is needed� The second
conjunct of the commitment ensures that only data elements received on s is output
along y�
The third conjunct of the commitment insists that the interface forwards the data
elements it receives from the software queue as fast as it can without breaking the
invariant imposed on y that not more than one data element is sent within the same
time unit� The second and third conjunct together guarantee that any data element
sent by SWQ eventually will reach HWQ�
Note that the third conjunct cannot be simpli�ed to

j � N � ��D� c��y��j����� � ��D c��s�j���

�

The reason is that the software queue may send more than one data element between
two consecutive ticks� Thus
 because the communication along y is required to be
synchronous
 if the interface receives three data elements between two consecutive
ticks on s
 then it needs at least four time units �remember that there is at least a
delay of one time unit� before all three data elements have been forwarded along y�
The fourth conjunct of the commitment makes sure that the data elements and
requests received on x are forwarded with a delay of exactly one time unit�

��� Speci�cation of the Hardware Queue

HWQ
sy��i �M�� y � D�

� o � D�� x �M�� ��

ass �

m �M� � m v i	 ��� c�m� � ��D� c�m�

D� c�y v D� c�x

j � N � ��� c��xjj�� � ��D� c��yj�j�k�����

com �

j � N� � let n � ��� c��ijj�� in i�j � � 	 o��j � l� � �D� c�i��n

m �M� � m v x	 ��� c�m� � ��D� c�m�

Figure �
� Speci�cation of the Hardware Queue

The hardware queue is speci�ed in the synchronous format �see Figure �
�� The �rst
conjunct of the assumption is similar to the previous cases� Clearly the hardware
queue can only be required to behave correctly as long as the software part behaves
as a FIFO queue� This is stated by the second and third conjunct of the assumption�
The �rst conjunct of the commitment is equal to that of T NET� In addition we
must make sure that the hardware queue uses the software queue correctly
 i�e�
 it
should only send requests when the software queue is not empty� This requirement
is stated by the second conjunct of the commitment�

��� Veri�cation

The correctness of this decomposition can be veri�ed in the same way as for the
earlier example� Firstly
 translate all speci�cations into the time dependent format�
Secondly
 use the adaptation rule to make implicit causalities explicit� Thirdly
 use
the parallel rule to prove the decomposition step� We leave the details as an exercise
for the reader�

��

� Conclusions

This paper has introduced a formal method supporting hardware	software co�design�
We have presented a uniform
 common semantic basis for all speci�cation formats

composition and re�nement� Our method is compositional and well�suited for top�
down design� We can handle both synchronous and asynchronous communication�
Real�time constraints can be speci�ed
 and we have specially designed rules for the
veri�cation of re�nement steps� This allows hardware	software co�design to be con�
ducted in a very elegant way�
When we claim that our method supports hardware	software co�design
 we obvi�
ously consider only those aspects related to speci�cation and veri�cation� There
are of course many other interesting research directions inside the area of hard�
ware	software co�design that we have not considered here�
We have had many sources of inspiration� We now relate our approach to the most
important�
Semantic Model� Park �Par��� employs ticks �hiatons� in the same way as us� How�
ever
 his functions are de�ned also for �nite streams
 and in�nite streams are not
required to have in�nitely many ticks� Kok �Kok��� models components by functions
mapping in�nite streams of �nite streams to non�empty sets of in�nite streams of
�nite streams� The �nite streams can be empty which means that he can represent
communication histories with only �nitely many messages� His in�nite streams of
�nite streams are isomorphic to our timed streams in the sense that we use ticks to
split an in�nite communication history into an in�nite sequence of �nite streams�
Two consecutive ticks corresponds to an empty stream� In the style of �Bro���
 we
use a set of functions to model nondeterministic behavior� This in contrast to the
set valued functions of �Kok���� Sets of functions allow unbounded nondetermin�
ism �and thereby liveness� to be modeled in an elegant way� However
 contrary to
�Bro���
 we use pulse�driven functions and in�nite timed streams� Thereby we get
a simpler theory� The actual formulation of pulse�drivenness has been taken from
�Bro���� For more details about the semantic model we refer to �GS����
Speci
cation Formats� The formats for time dependent and time independent spec�
i�cations are inspired by �BS���� The format for synchronous speci�cations is for
example related to the approach in �Tuc����
The one�step�longer�than semantics used by us is strongly inspired by �AL���� �Col���
employs a slightly weaker semantics � the commitment is only required to hold at
least as long the assumption has not been falsi�ed�
Assumption�Commitment Rules� A large number of composition rules for assump�
tion	commitment speci�cations have been published� In the case of sequential sys�
tems they were introduced with Hoare�logic �Hoa���� In the concurrent case such
rules were �rst proposed by �Jon���
 �MC����
Most rules proposed so far impose strong constraints on the properties that can oc�
cur in the assumptions� For example
 it is common to require the assumptions to
be safety properties �AL�
�
 �PJ��� or admissible �SDW���� The composition rule
introduced above does not require such restrictions� The main reason
 as we see it

is that the rule makes a clear distinction between induction hypotheses and assump�
tions
 i�e�
 it does not employ the usual trick of using the environment assumptions
as induction hypotheses�

��

An assumption	commitment rule handling general liveness properties in the assump�
tions can also be found in �Pnu��� �related rules are proposed in �Sta���
 �Pan�
���
However
 this rule is based on a 	 semantics for assumption	commitment speci�
�cations� Our rules require the stronger one�step�longer�than semantics� The rule
proposed in �AL��� handles some liveness properties in the assumptions� We have
not yet understood the exact relationship to our rules�
�AL��� argues that from a pragmatic point of view speci�cations should always be
formulated in such a way that the assumption is a safety property� Because we have
too little experience in using our formalism
 we do not take any standpoint to this
claim here� However
 with respect to our approach
 we have at least shown that

from a technical point of view
 there is no reason why such constraint should be
imposed�
Soundness and completeness proofs for our rules can be found in �St ����

� Acknowledgments

Financial support has been received from the Sonderforschungsbereich ��� �Werkze�
uge und Methoden f�ur die Nutzung paralleler Rechnerarchitekturen�� Manfred Broy

Pierre Collette and Christian Facchi have read a draft of this paper and provided
many helpful comments�

References

�AdBKR��� P� America	 J� de Bakker	 J� N� Kok	 and J� Rutten� Denotational semantics of
a parallel object�oriented language� Information and Computation	 �
��
����
	
�����

�AL��� M� Abadi and L� Lamport� Composing speci�cations� Technical Report ��	
Digital	 SRC	 Palo Alto	 �����

�AL�
� M� Abadi and L� Lamport� Conjoining speci�cations� Technical Report ���	
Digital	 SRC	 Palo Alto	 ���
�

�Bro��� M� Broy� Semantics of �nite and in�nite networks of concurrent communicating
agents� Distributed Computing	 ���
�
�	 �����

�Bro�
� M� Broy� Advanced component interface speci�cation� In Proc� TPPP����
Lecture Notes in Computer Science ���	 pages
���
��	 ���
�

�BS��� M� Broy and K� St�len� Speci�cation and re�nement of �nite data�ow networks
� a relational approach� In Proc� FTRTFT���� Lecture Notes in Computer
Science ��		 pages �������	 �����

�Buc��� K� Buchenrieder	 editor� Third International Workshop on Hardware
Software
Codesign� IEEE Computer Society Press	 �����

�Col��� P� Collette� An explanatory presentation of composition rules for assumption�
commitment speci�cations� Information Processing Letters	
��
��

	 �����

�GS�
� R� Grosu and K� St�len� A denotational model for mobile point�to�point
data�ow networks� Technical Report SFB
�������
 A	 Technische Univer�
sit�at M�unchen	 ���
�

��

�Hoa��� C� A� R� Hoare� An axiomatic basis for computer programming� Communica�
tions of the ACM	 ���
���
�
	 �����

�Hoa��� C� A� R� Hoare� Proof of correctness of data representations� Acta Informatica	
���������	 �����

�Jon��� C� B� Jones� Development Methods for Computer Programs Including a Notion
of Interference� PhD thesis	 Oxford University	 �����

�Kok��� J� N� Kok� A fully abstract semantics for data �ow nets� In Proc� PARLE����
Lecture Notes in Computer Science �
�	 pages

��
��	 �����

�MC��� J� Misra and K� M� Chandy� Proofs of networks of processes� IEEE Transactions
on Software Engineering	 ���������	 �����

�Pan��� P� K� Pandya� Some comments on the assumption�commitment framework for
compositional veri�cation of distributed programs� In Proc� REX Workshop on
Stepwise Re�nement of Distributed Systems� Lecture Notes in Computer Science
�	�	 pages �������	 �����

�Par�
� D� Park� The �fairness� problem and nondeterministic computing networks� In
Proc� �th Foundations of Computer Science� Mathematical Centre Tracts �
�	
pages �

����� Mathematisch Centrum Amsterdam	 ���
�

�PJ��� P� K� Pandya and M� Joseph� P�A logic � a compositional proof system for
distributed programs� Distributed Computing	
�
��
�	 �����

�Pnu�
� A� Pnueli� In transition from global to modular temporal reasoning about
programs� In Proc� Logics and Models of Concurrent Systems	 pages ��
�����
Springer	 ���
�

�SDW�
� K� St�len	 F� Dederichs	 and R� Weber� Assumption�commitment rules for
networks of asynchronously communicating agents� Technical Report SFB

������
 A	 Technische Universit�at M�unchen	 ���
� To appear in Formal As�
pects of Computing�

�Sta�
� E� W� Stark� A proof technique for rely�guarantee properties� In Proc�
th
Conference on the Foundation of Software Technology and Theoretical Com�
puter Science� Lecture Notes in Computer Science ���	 pages
���
��	 ���
�

�St��
� K� St�len� Assumption�commitment rules for data��ow networks � with an
emphasis on completeness� Technical Report SFB
�������
 A	 Technische
Universit�at M�unchen	 ���
�

�Tuc��� J� Tucker� Equational speci�cation of synchronous concurrent algorithms and
architectures� In Proc� Programming and Mathematical Method� Summerschool�
Marktoberdorf� Springer	 �����

��

SFB ���� Methoden und Werkzeuge f�ur die Nutzung paralleler

Rechnerarchitekturen

bisher erschienen �

Reihe A

������� A Robert Gold	 Walter Vogler� Quality Criteria for Partial Order Semantics of
Place�Transition�Nets	 Januar ����

������� A Reinhard F�o�smeier� Die Rolle der Lastverteilung bei der numerischen Parallel�
programmierung	 Februar ����

���
��� A Klaus�J�orn Lange	 Peter Rossmanith� Two Results on Unambi�

guous Circuits	 Februar ����

������� A Michael Griebel� Zur L�osung von Finite�Di�erenzen� und Finite�Element�
Gleichungen mittels der Hierarchischen Transformations� Mehrgitter�Methode

���
��� A Reinhold Letz	 Johann Schumann	 Stephan Bayerl	 Wolfgang Bibel� SETHEO�
A High�Performance Theorem Prover

������� A Johann Schumann	 Reinhold Letz� PARTHEO� A High Performance Parallel
Theorem Prover

������� A Johann Schu�
mann	 Norbert Trapp	 Martin van der Koelen� SETHEO�PARTHEO Users
Manual

������� A Christian Suttner	 Wolfgang Ertel� Using Connectionist Networks for Guiding
the Search of a Theorem Prover

������� A Hans�J�org Beier	 Thomas Bemmerl	 Arndt Bode	 Hubert Ertl	 Olav Hansen	
Josef Haunerdinger	 Paul Hofstetter	 Jaroslav Kremenek	 Robert Lindhof	
Thomas Ludwig	 Peter Luksch	 Thomas Treml� TOPSYS	 Tools for Parallel
Systems �Artikelsammlung�

�������� A Walter Vogler� Bisimulation and Action Re�nement

�������� A J�org Desel	 Javier Esparza� Reachability in Reversible Free� Choice Systems

�������� A Rob van Glabbeek	 Ursula Goltz� Equivalences and Re�nement

����
��� A Rob van Glabbeek� The Linear Time � Branching Time Spectrum

�������� A Johannes Bauer	 Thomas Bemmerl	 Thomas Treml� Leistungsanalyse von
verteilten Beobachtungs� und Bewertungswerkzeugen

����
��� A Peter Rossmanith� The Owner Concept for PRAMs

�������� A G� B�ockle	 S� Trosch� A Simulator for VLIW�Architectures

�������� A P� Slavkovsky	 U� R�ude� Schnellere Berechnung klassischer Matrix�
Multiplikationen

�������� A Christoph Zenger� SPARSE GRIDS

�������� A Michael Griebel	 Michael Schneider	 Christoph Zenger� A combination tech�
nique for the solution of sparse grid problems

�������� A Michael Griebel� A Parallelizable and Vectorizable Multi� Level�Algorithm on
Sparse Grids

�������� A V� Diekert	 E� Ochmanski	 K� Reinhardt� On con�uent semi� commutations�
decidability and complexity results

��

Reihe A

�������� A Manfred Broy	 Claus Dendorfer� Functional Modelling of Operating System
Structures by Timed Higher Order Stream Processing Functions

����
��� A Rob van Glabbeek	 Ursula Goltz� A Deadlock�sensitive Congruence for Action
Re�nement

�������� A Manfred Broy� On the Design and Veri�cation of a Simple Distributed Span�
ning Tree Algorithm

����
��� A Thomas Bemmerl	 Arndt Bode	 Peter Braun	 Olav Hansen	 Peter Luksch	
Roland Wism�uller� TOPSYS � Tools for Parallel Systems �User�s Overview
and User�s Manuals�

�������� A Thomas Bemmerl	 Arndt Bode	 Thomas Ludwig	 Stefan Tritscher� MMK �
Multiprocessor Multitasking Kernel �User�s Guide and User�s Reference Man�
ual�

�������� A Wolfgang Ertel� Random Competition� A Simple	 but E�cient Method for
Parallelizing Inference Systems

�������� A Rob van Glabbeek	 Frits Vaandrager� Modular Speci�cation of Process Alge�
bras

�������� A Rob van Glabbeek	 Peter Weijland� Branching Time and Abstraction in Bisim�
ulation Semantics

���
���� A Michael Griebel� Parallel Multigrid Methods on Sparse Grids

���
���� A Rolf Niedermeier	 Peter Rossmanith� Unambiguous Simulations of Auxiliary
Pushdown Automata and Circuits

���
���� A Inga Niepel	 Peter Rossmanith� Uniform Circuits and Exclusive Read PRAMs

���

��� A Dr� Hermann Hellwagner� A Survey of Virtually Shared Memory Schemes

������� A Walter Vogler� Is Partial Order Semantics Necessary for Action Re�nement�

������� A Manfred Broy	 Frank Dederichs	 Claus Dendorfer	 Rainer Weber� Characteriz�
ing the Behaviour of Reactive Systems by Trace Sets

���
��� A Ulrich Furbach	 Christian Suttner	 Bertram Fronh�ofer� Massively Parallel In�
ference Systems

������� A Rudolf Bayer� Non�deterministic Computing	 Transactions and Recursive
Atomicity

���
��� A Robert Gold� Data�ow semantics for Petri nets

������� A A� Heise� C� Dimitrovici� Transformation und Komposition von P�T�Netzen

unter Erhaltung wesentlicher Eigenschaften

������� A Walter Vogler� Asynchronous Communication of Petri Nets and the Re�nement
of Transitions

������� A Walter Vogler� Generalized OM�Bisimulation

������� A Christoph Zenger	 Klaus Hallatschek� Fouriertransformation auf d�unnen Git�
tern mit hierarchischen Basen

�������� A Erwin Loibl	 Hans Obermaier	 Markus Pawlowski� Towards Parallelism in a
Relational Database System

�������� A Michael Werner� Implementierung von Algorithmen zur Kompakti�zierung von
Programmen f�ur VLIW�Architekturen

�������� A Reiner M�uller� Implementierung von Algorithmen zur Optimierung von
Schleifen mit Hilfe von Software�Pipelining Techniken

����
��� A Sally Baker	 Hans�J�org Beier	 Thomas Bemmerl	 Arndt Bode	 Hubert Ertl	 Udo
Graf	 Olav Hansen	 Josef Haunerdinger	 Paul Hofstetter	 Rainer Kn�odlseder	
Jaroslav Kremenek	 Siegfried Langenbuch	 Robert Lindhof	 Thomas Ludwig	
Peter Luksch	 Roy Milner	 Bernhard Ries	 Thomas Treml� TOPSYS � Tools
for Parallel Systems �Artikelsammlung�� ��	 erweiterte Au�age

��

Reihe A

�������� A Michael Griebel� The combination technique for the sparse grid solution of
PDE�s on multiprocessor machines

����
��� A Thomas F� Gritzner	 Manfred Broy� A Link Between Process Algebras and
Abstract Relation Algebras�

�������� A Thomas Bemmerl	 Arndt Bode	 Peter Braun	 Olav Hansen	 Thomas Treml	
Roland Wism�uller� The Design and Implementation of TOPSYS

�������� A Ulrich Furbach� Answers for disjunctive logic programs

�������� A Ulrich Furbach� Splitting as a source of parallelism in disjunctive logic programs

�������� A Gerhard W� Zumbusch� Adaptive parallele Multilevel�Methoden zur L�osung
elliptischer Randwertprobleme

�������� A M� Jobmann	 J� Schumann� Modelling and Performance Analysis of a Parallel
Theorem Prover

�������� A Hans�Joachim Bungartz� An Adaptive Poisson Solver Using Hierarchical Bases
and Sparse Grids

�������� A Wolfgang Ertel	 Theodor Gemenis	 Johann M� Ph� Schumann	 Christian B�
Suttner	 Rainer Weber	 Zongyan Qiu� Formalisms and Languages for Specify�
ing Parallel Inference Systems

����
��� A Astrid Kiehn� Local and Global Causes

�������� A Johann M�Ph� Schumann� Parallelization of Inference Systems by using an

Abstract Machine

����
��� A Eike Jessen� Speedup Analysis by Hierarchical Load Decomposition

�������� A Thomas F� Gritzner� A Simple Toy Example of a Distributed System� On the
Design of a Connecting Switch

�������� A Thomas Schnekenburger	 Andreas Weininger	 Michael Friedrich� Introduction
to the Parallel and Distributed Programming Language ParMod�C

�������� A Claus Dendorfer� Funktionale Modellierung eines Postsystems

�������� A Michael Griebel� Multilevel algorithms considered as iterative methods on in�
de�nite systems

���
���� A W� Reisig� Parallel Composition of Liveness

���
���� A Thomas Bemmerl	 Christian Kasperbauer	 Martin Mairandres	 Bernhard Ries�
Programming Tools for Distributed Multiprocessor Computing Environments

���
���� A Frank Le�ske� On constructive speci�cations of abstract data types using tem�
poral logic

������� A L� Kanal	 C�B� Suttner �Editors�� Informal Proceedings of the Workshop on
Parallel Processing for AI

������� A Manfred Broy	 Frank Dederichs	 Claus Dendorfer	 Max Fuchs	 Thomas F�
Gritzner	 Rainer Weber� The Design of Distributed Systems � An Introduc�
tion to FOCUS

��������� A Manfred Broy	 Frank Dederichs	 Claus Dendorfer	 Max Fuchs	 Thomas F�
Gritzner	 Rainer Weber� The Design of Distributed Systems � An Introduc�
tion to FOCUS � Revised Version �erschienen im Januar ���
�

���
��� A Manfred Broy	 Frank Dederichs	 Claus Dendorfer	 Max Fuchs	 Thomas F�
Gritzner	 Rainer Weber� Summary of Case Studies in FOCUS � a Design
Method for Distributed Systems

������� A Claus Dendorfer	 Rainer Weber� Development and Implementation of a Com�
munication Protocol � An Exercise in FOCUS

���
��� A Michael Friedrich� Sprachmittel und Werkzeuge zur Unterst�ut� zung paralleler
und verteilter Programmierung

��

Reihe A

������� A Thomas F� Gritzner� The Action Graph Model as a Link between Abstract
Relation Algebras and Process�Algebraic Speci�cations

������� A Sergei Gorlatch� Parallel Program Development for a Recursive Numerical
Algorithm� a Case Study

������� A Henning Spruth	 Georg Sigl	 Frank Johannes� Parallel Algorithms for Slicing
Based Final Placement

������� A Herbert Bauer	 Christian Sporrer	 Thomas Krodel� On Distributed Logic Sim�
ulation Using Time Warp

�������� A H� Bungartz	 M� Griebel	 U� R�ude� Extrapolation	 Combination and Sparse
Grid Techniques for Elliptic Boundary Value Problems

�������� A M� Griebel	 W� Huber	 U� R�ude	 T� St�ortkuhl� The Combination Technique for
Parallel Sparse�Grid�Preconditioning and �Solution of PDEs on Multiprocessor
Machines and Workstation Networks

�������� A Rolf Niedermeier	 Peter Rossmanith� Optimal Parallel Algorithms for Com�
puting Recursively De�ned Functions

����
��� A Rainer Weber� Eine Methodik f�ur die formale Anforderungsspezifkation verteil�
ter Systeme

�������� A Michael Griebel� Grid� and point�oriented multilevel algorithms

����
��� A M� Griebel	 C� Zenger	 S� Zimmer� Improved multilevel algorithms for full and
sparse grid problems

�������� A J� Desel	 D� Gomm	 E� Kindler	 B� Paech	 R� Walter� Bausteine eines kompo�
sitionalen Beweiskalk�uls f�ur netzmodellierte Systeme

�������� A Frank Dederichs� Transformation verteilter Systeme� Von applikativen zu
prozeduralen Darstellungen

�������� A Andreas Listl	 Markus Pawlowski� Parallel Cache Management of a RDBMS

�������� A Erwin Loibl	 Markus Pawlowski	 Christian Roth� PART� A Parallel Relational
Toolbox as Basis for the Optimization and Interpretation of Parallel Queries

�������� A J�org Desel	 Wolfgang Reisig� The Synthesis Problem of Petri Nets

�������� A Robert Balder	 Christoph Zenger� The d�dimensional Helmholtz equation on
sparse Grids

�������� A Ilko Michler� Neuronale Netzwerk�Paradigmen zum Erlernen von Heuristiken

����
��� A Wolfgang Reisig� Elements of a Temporal Logic� Coping with Concurrency

�������� A T� St�ortkuhl	 Chr� Zenger	 S� Zimmer� An asymptotic solution for the singu�
larity at the angular point of the lid driven cavity

����
��� A Ekkart Kindler� Invariants	 Compositionality and Substitution

�������� A Thomas Bonk	 Ulrich R�ude� Performance Analysis and Optimization of Nu�
merically Intensive Programs

������
 A M� Griebel	 V� Thurner� The E�cient Solution of Fluid Dynamics Problems
by the Combination Technique

������
 A Ketil St�len	 Frank Dederichs	 Rainer Weber� Assumption � Commitment Rules
for Networks of Asynchronously Communicating Agents

���
��
 A Thomas Schnekenburger� A De�nition of E�ciency of Parallel Programs in
Multi�Tasking Environments

������
 A Hans�Joachim Bungartz	 Michael Griebel	 Dierk R�oschke	 Christoph Zenger� A
Proof of Convergence for the Combination Technique for the Laplace Equation
Using Tools of Symbolic Computation

���
��
 A Manfred Kunde	 Rolf Niedermeier	 Peter Rossmanith� Faster Sorting and Rout�
ing on Grids with Diagonals

��

Reihe A

������
 A Michael Griebel	 Peter Oswald� Remarks on the Abstract Theory of Additive
and Multiplicative Schwarz Algorithms

������
 A Christian Sporrer	 Herbert Bauer� Corolla Partitioning for Distributed Logic
Simulation of VLSI Circuits

������
 A Herbert Bauer	 Christian Sporrer� Reducing Rollback Overhead in Time�Warp
Based Distributed Simulation with Optimized Incremental State Saving

������
 A Peter Slavkovsky� The Visibility Problem for Single�Valued Surface �z
f�x	y��� The Analysis and the Parallelization of Algorithms

�������
 A Ulrich R�ude� Multilevel	 Extrapolation	 and Sparse Grid Methods

�������
 A Hans Regler	 Ulrich R�ude� Layout Optimization with Algebraic Multigrid
Methods

�������
 A Dieter Barnard	 Angelika Mader� Model Checking for the Modal Mu�Calculus
using Gau�s Elimination

����
��
 A Christoph P�aum	 Ulrich R�ude� Gau�s� Adaptive Relaxation for the Multilevel
Solution of Partial Di�erential Equations on Sparse Grids

�������
 A Christoph P�aum� Convergence of the Combination Technique for the Finite
Element Solution of Poisson�s Equation

����
��
 A Michael Luby	 Wolfgang Ertel� Optimal Parallelization of Las Vegas Algorithms

�������
 A Hans�Joachim Bungartz	 Michael Griebel	 Dierk R�oschke	 Christoph Zenger�
Pointwise Convergence of the Combination Technique for Laplace�s Equation

�������
 A Georg Stellner	 Matthias Schumann	 Stefan Lamberts	 Thomas Ludwig	 Arndt
Bode	 Martin Kiehl und Rainer Mehlhorn� Developing Multicomputer Appli�
cations on Networks of Workstations Using NXLib

�������
 A Max Fuchs	 Ketil St�len� Development of a Distributed Min�Max Component

�������
 A Johann K� Obermaier� Recovery and Transaction Management in Write�
optimized Database Systems

�������
 A Sergej Gorlatch� Deriving E�cient Parallel Programs by Systemating Coarsing
Speci�cation Parallelism

�������� A Reiner H�uttl	 Michael Schneider� Parallel Adaptive Numerical Simulation

�������� A Henning Spruth	 Frank Johannes� Parallel Routing of VLSI Circuits Based on
Net Independency

����
��� A Henning Spruth	 Frank Johannes	 Kurt Antreich� PHIroute� A Parallel Hier�
archical Sea�of�Gates Router

�������� A Martin Kiehl	 Rainer Mehlhorn	 Matthias Schumann� Parallel Multiple Shoot�
ing for Optimal Control Problems Under NX��

����
��� A Christian Suttner	 Christoph Goller	 Peter Krauss	 Klaus�J�orn Lange	 Ludwig
Thomas	 Thomas Schnekenburger� Heuristic Optimization of Parallel Compu�
tations

�������� A Andreas Listl� Using Subpages for Cache Coherency Control in Parallel
Database Systems

�������� A Manfred Broy	 Ketil St�len� Speci�cation and Re�nement of Finite Data�ow
Networks � a Relational Approach

�������� A Katharina Spies� Funktionale Spezi�kation eines Kommunikationsprotokolls

�������� A Peter A� Krauss� Applying a New Search Space Partitioning Method to Parallel
Test Generation for Sequential Circuits

�������� A Manfred Broy� A Functional Rephrasing of the Assumption�Commitment
Speci�cation Style

�������� A Eckhardt Holz	 Ketil St�len� An Attempt to Embed a Restricted Version of
SDL as a Target Language in Focus

��

Reihe A

�������� A Christoph P�aum� A Multi�Level�Algorithm for the Finite�Element�Solution
of General Second Order Elliptic Di�erential Equations on Adaptive Sparse
Grids

����
��� A Manfred Broy	 Max Fuchs	 Thomas F� Gritzner	 Bernhard Sch�atz	 Katharina
Spies	 Ketil St�len� Summary of Case Studies in FOCUS � a Design Method
for Distributed Systems

�������� A Maximilian Fuchs� Technologieabh�angigkeit von Spezi�kationen digitaler Hard�
ware

����
��� A M� Griebel	 P� Oswald� Tensor Product Type Subspace Splittings And Multi�
level Iterative Methods For Anisotropic Problems

�������� A Gheorghe S!tef"anescu� Algebra of Flownomials

�������� A Ketil St�len� A Re�nement Relation Supporting the Transition from Un�
bounded to Bounded Communication Bu�ers

�������� A Michael Griebel	 Tilman Neuhoe�er� A Domain�Oriented Multilevel
Algorithm�Implementation and Parallelization

�������� A Michael Griebel	 Walter Huber� Turbulence Simulation on Sparse Grids Using
the Combination Method

�������� A Johann Schumann� Using the Theorem Prover SETHEO for verifying the de�
velopment of a Communication Protocol in FOCUS � A Case Study �

�������
 A Hans�Joachim Bungartz� Higher Order Finite Elements on Sparse Grids

�������
 A Tao Zhang	 Seonglim Kang	 Lester R� Lipsky� The Performance of Parallel
Computers� Order Statistics and Amdahl�s Law

����
��
 A Lester R� Lipsky	 Appie van de Liefvoort� Transformation of the Kronecker
Product of Identical Servers to a Reduced Product Space

�������
 A Pierre Fiorini	 Lester R� Lipsky	 Wen�Jung Hsin	 Appie van de Liefvoort� Auto�
Correlation of Lag�k For Customers Departing From Semi�Markov Processes

����
��
 A Sascha Hilgenfeldt	 Robert Balder	 Christoph Zenger� Sparse Grids� Applica�
tions to Multi�dimensional Schr�odinger Problems

�������
 A Maximilian Fuchs� Formal Design of a Model�N Counter

�������
 A Hans�Joachim Bungartz	 Stefan Schulte� Coupled Problems in Microsystem
Technology

�������
 A Alexander Pfa�nger� Parallel Communication on Workstation Networks with
Complex Topologies

�������
 A Ketil St�len� Assumption�Commitment Rules for Data��ow Networks � with
an Emphasize on Completeness

�������
 A Ketil St�len	 Max Fuchs� A Formal Method for Hardware�Software Co�Design

�

SFB ��� � Methoden und Werkzeuge f�ur die Nutzung paralleler

Rechnerarchitekturen

Reihe B

������� B Wolfgang Reisig� Petri Nets and Algebraic Speci�cations

������� B J�org Desel� On Abstraction of Nets

���
��� B J�org Desel� Reduction and Design of Well�behaved Free�choice Systems

������� B Franz Abstreiter	 Michael Friedrich	 Hans�J�urgen Plewan� Das Werkzeug run�
time zur Beobachtung verteilter und paralleler Programme

������� B Barbara Paech�� Concurrency as a Modality

������� B Birgit Kandler	 Markus Pawlowski� SAM� Eine Sortier� Toolbox �
Anwenderbeschreibung

���
��� B Erwin Loibl	 Hans Obermaier	 Markus Pawlowski� �� Workshop �uber Paral�
lelisierung von Datenbanksystemen

������� B Werner Pohlmann� A Limitation of Distributed Simulation Methods

���
��� B Dominik Gomm	 Ekkart Kindler� A Weakly Coherent Virtually Shared Mem�

ory Scheme� Formal Speci�cation and Analysis

������� B Dominik Gomm	 Ekkart Kindler� Causality Based Speci�cation and Correct�
ness Proof of a Virtually Shared Memory Scheme

������� B W� Reisig� Concurrent Temporal Logic

������� B Malte Grosse	 Christian B� Suttner� A Parallel Algorithm for Set�of�Support

Christian B� Suttner� Parallel Computation of Multiple Sets�of�Support

������� B Arndt Bode	 Hartmut Wedekind� Parallelrechner� Theorie	 Hardware	 Soft�
ware	 Anwendungen

������
 B Max Fuchs� Funktionale Spezi�kation einer Geschwindigkeitsregelung

������
 B Ekkart Kindler� Sicherheits� und Lebendigkeitseigenschaften� Ein Liter�
atur�uberblick

������� B Andreas Listl� Thomas Schnekenburger� Michael Friedrich� Zum Entwurf eines
Prototypen f�ur MIDAS

��

