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Parallel Communication on WorkstationNetworks with Complex TopologiesAlexander Pfa�nger �Institut f�ur InformatikTechnische Universit�at M�unchenArcisstra�e 21, D-80290 M�unchen 2May 11, 1995AbstractWorkstation clusters o�er a cheap and powerful alternative to par-allel processors. For communication intensive distributed applicationsthe single Ethernet connection is a global resource and soon becomesa bottleneck that prohibits scalability. Our suggested solution is tobuild complex multiple-bus topologies with a second Ethernet linkper workstation. This paper introduces two classes of bus networksfor workstation clusters: a tree-like topology for divide-and-conqueralgorithms and a hypercube-like network for a broader class of appli-cations. We present some graph-theoretic aspects, simulation results,and numerical test data on a network with 16 workstations.1 IntroductionIn the �eld of parallel high performance computing, there is a trend towardsworkstation clusters, which are usually interconnected via Ethernet buses.�This work was supported by the Siemens AG.1



Networked workstations are already available at many sites and typicallytheir computing capacity is not fully exploited. Therefore, they o�er a cost-e�ective alternative to dedicated parallel computers.Recently, a number of machine independent parallel platforms like MPI,PVM, and LINDA has been developed. They support the distributed pro-gramming of a workstation cluster. These systems are now widely used inparallel numerical computing.With increasing demand for communication between the parallel tasks, how-ever, the bus-like nature of the Ethernet soon becomes a bottleneck. Hence,only few computing nodes can be used e�ciently. The system is not scalablewith respect to the number of processors.By introducing additional buses and a more complex interconnection topol-ogy of the workstations, the communication bandwidth can be signi�cantlyimproved. The required hardware investment are just some additional LANadapter cards and Ethernet cables. Depending on the network topology,pairs of workstations may now communicate in parallel.This matter has already been studied intensively for tightly coupled systems(see e.g. [6]), but not yet in the speci�c context of workstation networks.In particular the characteristics of an Ethernet, the high process generationcosts under UNIX, and the network administration must be considered.In this paper we will describe two network topologies which both need onlytwo I/O-ports per workstation. In section 2 we will sketch out a tree-likestructure which is optimally adapted to divide-and-conquer algorithms. Insection 3 we will present a more general hypercube-like topology. Section 4gives some simulation results.2 A Hierarchical TopologyA common model for parallel computing is the divide-and-conquer paradigm:a task is split into two (or more) subtasks that can be executed in parallel.Each of these subtasks can be divided in subsubtasks and so on.This leads to a tree-like dependence graph. In the case of exactly two subtasksper node we obtain a binary tree. This graph also reects the communicationscheme of the parallel tasks. A task needs to talk only to its parent and itschildren.When we consider the distribution of the jobs onto the computing nodes, we2
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15Figure 1: Binary tree with 16 computing nodes: dependence and communi-cation graph of a parallel divide-and-conquer application. Each interior nodeis identi�ed with its leftmost descendent.get a slightly di�erent graph. The parallel algorithm starts at node one. Atthe point of division two new tasks are created, which should be placed atdi�erent nodes. Since the parent is idle when the two subjobs are calculating,one subtask can remain on the initial node. This leads to a "squashed" binarytree. Figure 1 shows a divide-and-conquer graph with 16 computing nodes.Each left child of a node is identi�ed with its parent.We will discuss the communication pattern in more detail. Most importantly,we must distinguish between the cheap communication within a node and theexpensive external communication between di�erent nodes. The �rst onearises between parent and left child in Figure 1. Only the communication ofeach parent with its right child is external.If we assume that all tasks at one layer of the tree need quite the samecomputation time, there are no simultaneous communications at di�erent(edge-) levels of the tree. Therefore, it is desirable that all communicationson one level are done in parallel, i.e. on di�erent buses. The problem is to�nd a minimal bus topology in which at each level all nodes can communicatewith their right child via di�erent buses.3
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16Figure 2: Tree-like Ethernet topology: all communication between parentand (right) child at one level of Figure 1 can be done in parallel via di�erentbuses.Of course, this could be achieved by a complete interconnection, where eachnode is connected to any other node via a di�erent bus (or link). This wouldmean that for n processing elements each node needs to have n � 1 I/O-ports. But real hardware will always show a constant maximum. In thispaper we will examine topologies where only two I/O ports per workstationare needed.Figure 2 shows an appropriate tree-like solution with 8 buses that is obviouslyminimal in respect to the number of buses (we have 8 parallel communicationat the deepest level). Its hierarchical structure reects the recursive de�nitionof the corresponding squashed binary tree.The next higher network, which includes 32 nodes and 16 buses, would beconstructed as follows: take a copy of the 16-node-network, add 16 to all ofits node labels, and put the least labeled node (17 here) with an additionallink into the bus that connects 1 and 2. This topology corresponds perfectlyto the complete squashed binary tree with 32 leaf nodes.In general, for a complete binary tree with 2d leaves the corresponding bus4



network would consist of 2d computing nodes and 2d�1 buses. Each node isconnected to at most 2 buses and each bus is assigned to at most d+1 nodes.For each level in the binary tree all data transfer at that level from parentto child (or vice versa) can be done in parallel. This is a prerequisite ofscalability.Numerical ApplicationsThe architecture shown in Figure 2 has been implemented with 16 HP-720workstations. Each odd-numbered node has been provided with an additionalLAN adapter card. Node 1 is used as the gateway to outside networks.On this installation several applications with a divide and conquer strategyhave been parallelized. Besides the complex chip placement algorithm GOR-DIAN [8] this is the parallel Finite Element application ARESO [5, 9] whichwe will describe somewhat more in detail below.ARESO is a solver for partial di�erential equations that is based on domaindecomposition and recursive substructuring. In the case of a square domainARESO starts on top level with a certain problem size N , typically a powerof 2, that describes the number of grid points on the borderlines.When the problem is split up in two parts, the size decreases by the factor1=p2. (More accurately, N is halved every second step.) At level l we,therefore, get Nl = N=p2l. The computation time per node on level l isof order O(N3l ) while the communication amount per node is O(N2l ). Thismeans that the message size per node decreases with increasing level l, butthe number of communicating nodes increases. With a single Ethernet thisleads to high collision rates.Figure 3 compares the runtime of ARESO for a �xed problem size on thesingle bus and on the tree topology. At 4 nodes the tree structure has only aslight advantage over the single bus. But involving 8 and 16 computers thesingle bus is overloaded so that no speed up is obtained. The runtime is evenlonger than for 4 nodes. For the tree topology, in contrast, the algorithmstill shows a speed up.It is interesting that the advantage of multiple buses is not only restrictedto divide-and-conquer algorithms. In [11] the runtime behavior of a parallelunstructured matrix application on the di�erent topologies was compared.It concerns the distributed solution of a big sparse block matrix system.5
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Figure 4: Runtime comparison of a distributed block matrix solver on thesingle bus and on the hierarchical tree network.The matrix is split into di�erent block rows that are distributed among theprocessors. Eliminated rows must be transferred to those processors whoneed the speci�c row for elimination of one of its own rows. A detaileddiscussion of the numerical problem and the algorithm can be found in [10,9, 11].Figure 4 shows the runtimes on the two topologies for di�erent block sizes.Again, the multiple bus system is signi�cantly faster than the single bus.Nevertheless, the introduced tree topology is not very convenient for unstruc-tured dependence graphs. We will sketch out a better solution in the nextsection.3 The Dual hypercubeThe tree-like topology in the previous section is tailored to applications wherethe process graph is a complete binary tree that arises from the divide-and-conquer paradigm. However, for more general applications several inherentdisadvantages and di�culties may arise.7



If the dependence graph is less structured, e.g. even for divide-and-conquerwith adaptivity, it is not clear how the processes should be mapped to thetree. Simple and convenient embedding schemes may result in a large amountof long-distance communication and an overload of the top level bus.Another problem is fault tolerance. If workstation no. 9 in Figure 2 crashes,the half of the 16 computers is unreachable. A more symmetric topologywith several communication paths between di�erent nodes seems to be morecomfortable.A general topology would be the hypercube. But two main problems arise.First, the direct links between two nodes do not �t the bus-like nature ofEthernet. Secondly, we would need a logarithmic number of connections perworkstation. In practice only a �xed number of connections per workstationis supported.Both di�culties vanish if we exchange the roles of nodes and edges in thehypercube graph. Then, each edge represents a computing node with exactlytwo connections to buses, which are in their turn represented by the graphvertices. Because we changed the role of nodes and edges, we call this familyof topologies dual hypercube. Figure 5 shows an example of dimension d = 3.For dimension d we get d2d�1 nodes and 2d buses. Thus, we have d=2 asmany nodes as buses, enough to provide a logarithmic diameter d and highthroughput of the network. Since d is only the logarithm of the graph size,the amount of communication in each bus is expected to increase slowly.Each bus is assigned to exactly d workstations and each node needs to haveonly two I/O-ports. Some other basic properties can be found in [1, 3] wheresimilar types of graphs were introduced.Due to its proximity to the hypercube and cube-connected-cycles, the dualhypercube seems to be well suited for a broad class of algorithms. If we wantto compare the dual hypercube directly with the hierarchical topology of theprevious section, we must restrict ourselves to dimensions d = 2n of the cubesince only then the number of nodes is a power of 2 (namely 2n+2n�1). Thenumber of buses then equals 22n for the dual hypercube and 2n+2n�2 for thetree. In [7] we discuss the embedding of binary trees and product graphs ofbinary trees in dual hypercubes. 8
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Figure 5: Dual hypercube of dimension 3.3.1 Hardware Realization and Numerical TestsAn interesting relation between the hierarchical topology in Figure 2 andthe dual hypercube is shown in Figure 6. It describes the way in which webuilt an extended 3-dimensional dual hypercube (which is actually a faulty5-dimensional dual hypercube) involving the former tree network by simplyadding four additional buses.Using di�erent routing mechanisms we could directly compare the perfor-mance of the two distinct topologies. While the routing on the tree couldbe done statically by standard UNIX software, it was a nontrivial issue torealize a reasonable routing scheme for the cube. Dynamic routers like gateddo not allow to change the path from one node to another in short intervals(e.g. between two messages or packets). Parallel platforms like PVM don'tsupport multiple paths between two workstations at all.Therefore, a new routing daemon MRouter [4] (based on the TCP protocol)was developed, which runs a random path strategy: before each message issent from one node to another the route is determined uniformly randomamong all optimal (i.e. shortest) paths.9
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Figure 7: Runtimes of the sparse block matrix solver on the dual hypercubeand the hierarchical topology.We adapted the sparse block matrix solver mentioned in section 2 to MRouterand compared it to the PVM version on the tree-like network using the 12HP-720 workstations that belong to the three-dimensional dual hypercube.The runtime behavior on the di�erent topologies is shown in Figure 7.At low block sizes (up to 75) the version on the tree-like topology is fasterdue to the minor overhead of the UDP protocol used by PVM. When thesize of the matrix blocks grows, however, the hypercubic network is morescalable.4 Simulation ResultsIn [2] M. Backschat describes the object oriented network simulator DAPOS++1that simulates in detail the communication of parallel applications on a com-plex workstation cluster. The topology of the cluster, the characteristics ofthe underlying hardware, the routing strategy, and the distributed algorithm1Distributed-Algorithm-based Process-Oriented Simulation in C++11
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Figure 8: Simulated ARESO communication time on the shared bus and thetree topology.can be described in a exible manner by the user.In contrast to many other products DAPOS++ does not use statistic dataor models, but simulates the communication from application level down topacket transmission. Of course, we used statistic data for validation.With DAPOS++ it was possible to study the divide-and-conquer communi-cation scheme for various topologies and for large order of magnitude. In allexamples that follow we choose the ARESO application introduced in section2 as object of simulation.In Figure 8 we compared the pure communication times for constant prob-lem size, but increasing computing nodes (1 to 128). The time on the treetopology remains nearly constant whereas on the single bus the time growslinearly due to the increasing collision rates (in our simulation up to 90 per-cent). The Ethernet does not crash here even for 128 nodes because in theARESO application the transmitted packets become very small when we usemore and more workstations.In order to include the dual hypercube network we have to focus on di-mensions that are powers of 2 (as mentioned in section 3). In Figure 912
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superiority of the dual hypercube.5 ConclusionsWe presented two classes of bus topologies for workstation clusters. The �rstone, a hierarchical tree-like network, is shown to be best suited for divide-and-conquer parallelization. This theoretical consideration is con�rmed bysimulation results and real applications running on 16 HP-720 computersconnected via Ethernet cables.The second class of topologies, the dual hypercube, is better suited for moregeneral algorithms requiring more exibility. This includes adaptive divide-and-conquer applications and totally unstructured (random) communicationdependencies. This is also illustrated with simulation results and actualruntimes of distributed numerical applications.6 AcknoledgementsI would like to thank Prof. Chr. Zenger and Dr. Ulrich R�ude for manystimulating discussions. I am also grateful to Reiner H�uttl for providingplenty of test data concerning the ARESO project. I am thankful to MartinBackschat who helped me to prepare the simulator, and Andreas Paul whohelped me to build and administer the network.
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