TUM

INSTITUT FURINFORMATIK

Parallel Communication on Workstation Networks
with Complex Topologies

Alexander Pfaffinger

TUM | 9514
Mai 1995

TUM | NFO 05- 1995-19514-/ . - FI
Al l e Rechte vorbehal ten
Nachdruck auch auszugswei se verbot en

©1995 MATHEMATI SCHES | NSTI TUT UND
| NSTI TUT FUR | NFORMATI K
TECHNI SCHE UNI VERSI TAT MUNCHEN

Dr uck: Mat henat i sches I nstitut und
Institut fur Infornmati k der
Techni schen Uni versitat Minchen

Parallel Communication on Workstation
Networks with Complex Topologies

Alexander Pfaffinger *

Institut fur Informatik
Technische Universitat Munchen

Arcisstrafie 21, D-80290 Miinchen 2
May 11, 1995

Abstract

Workstation clusters offer a cheap and powerful alternative to par-
allel processors. For communication intensive distributed applications
the single Ethernet connection is a global resource and soon becomes
a bottleneck that prohibits scalability. Our suggested solution is to
build complex multiple-bus topologies with a second Ethernet link
per workstation. This paper introduces two classes of bus networks
for workstation clusters: a tree-like topology for divide-and-conquer
algorithms and a hypercube-like network for a broader class of appli-
cations. We present some graph-theoretic aspects, simulation results,
and numerical test data on a network with 16 workstations.

1 Introduction

In the field of parallel high performance computing, there is a trend towards
workstation clusters, which are usually interconnected via Ethernet buses.

*This work was supported by the Siemens AG.

Networked workstations are already available at many sites and typically
their computing capacity is not fully exploited. Therefore, they offer a cost-
effective alternative to dedicated parallel computers.

Recently, a number of machine independent parallel platforms like MPI,
PVM, and LINDA has been developed. They support the distributed pro-
gramming of a workstation cluster. These systems are now widely used in
parallel numerical computing.

With increasing demand for communication between the parallel tasks, how-
ever, the bus-like nature of the Ethernet soon becomes a bottleneck. Hence,
only few computing nodes can be used efficiently. The system is not scalable
with respect to the number of processors.

By introducing additional buses and a more complex interconnection topol-
ogy of the workstations, the communication bandwidth can be significantly
improved. The required hardware investment are just some additional LAN
adapter cards and Ethernet cables. Depending on the network topology,
pairs of workstations may now communicate in parallel.

This matter has already been studied intensively for tightly coupled systems
(see e.g. [6]), but not yet in the specific context of workstation networks.
In particular the characteristics of an Ethernet, the high process generation
costs under UNIX, and the network administration must be considered.

In this paper we will describe two network topologies which both need only
two 1/O-ports per workstation. In section 2 we will sketch out a tree-like
structure which is optimally adapted to divide-and-conquer algorithms. In
section 3 we will present a more general hypercube-like topology. Section 4
gives some simulation results.

2 A Hierarchical Topology

A common model for parallel computing is the divide-and-conquer paradigm:
a task is split into two (or more) subtasks that can be executed in parallel.
Each of these subtasks can be divided in subsubtasks and so on.

This leads to a tree-like dependence graph. In the case of exactly two subtasks
per node we obtain a binary tree. This graph also reflects the communication
scheme of the parallel tasks. A task needs to talk only to its parent and its
children.

When we consider the distribution of the jobs onto the computing nodes, we

Figure 1: Binary tree with 16 computing nodes: dependence and communi-
cation graph of a parallel divide-and-conquer application. Each interior node
is identified with its leftmost descendent.

get a slightly different graph. The parallel algorithm starts at node one. At
the point of division two new tasks are created, which should be placed at
different nodes. Since the parent is idle when the two subjobs are calculating,
one subtask can remain on the initial node. This leads to a ”squashed” binary
tree. Figure 1 shows a divide-and-conquer graph with 16 computing nodes.
Each left child of a node is identified with its parent.

We will discuss the communication pattern in more detail. Most importantly,
we must distinguish between the cheap communication within a node and the
expensive external communication between different nodes. The first one
arises between parent and left child in Figure 1. Only the communication of
each parent with its right child is external.

If we assume that all tasks at one layer of the tree need quite the same
computation time, there are no simultaneous communications at different
(edge-) levels of the tree. Therefore, it is desirable that all communications
on one level are done in parallel, i.e. on different buses. The problem is to
find a minimal bus topology in which at each level all nodes can communicate
with their right child via different buses.

Figure 2: Tree-like Ethernet topology: all communication between parent
and (right) child at one level of Figure 1 can be done in parallel via different
buses.

Of course, this could be achieved by a complete interconnection, where each
node is connected to any other node via a different bus (or link). This would
mean that for n processing elements each node needs to have n — 1 1/0-
ports. But real hardware will always show a constant maximum. In this
paper we will examine topologies where only two 1/O ports per workstation
are needed.

Figure 2 shows an appropriate tree-like solution with 8 buses that is obviously
minimal in respect to the number of buses (we have 8 parallel communication
at the deepest level). Its hierarchical structure reflects the recursive definition
of the corresponding squashed binary tree.

The next higher network, which includes 32 nodes and 16 buses, would be
constructed as follows: take a copy of the 16-node-network, add 16 to all of
its node labels, and put the least labeled node (17 here) with an additional
link into the bus that connects 1 and 2. This topology corresponds pertectly
to the complete squashed binary tree with 32 leaf nodes.

In general, for a complete binary tree with 2¢ leaves the corresponding bus

network would consist of 2¢ computing nodes and 2¢~! buses. Each node is
connected to at most 2 buses and each bus is assigned to at most d+1 nodes.
For each level in the binary tree all data transfer at that level from parent
to child (or vice versa) can be done in parallel. This is a prerequisite of
scalability.

Numerical Applications

The architecture shown in Figure 2 has been implemented with 16 HP-720
workstations. Each odd-numbered node has been provided with an additional
LAN adapter card. Node 1 is used as the gateway to outside networks.

On this installation several applications with a divide and conquer strategy
have been parallelized. Besides the complex chip placement algorithm GOR-
DIAN [8] this is the parallel Finite Element application ARESO [5, 9] which
we will describe somewhat more in detail below.

ARESO is a solver for partial differential equations that is based on domain
decomposition and recursive substructuring. In the case of a square domain
ARESO starts on top level with a certain problem size N, typically a power
of 2, that describes the number of grid points on the borderlines.

When the problem is split up in two parts, the size decreases by the factor
1//2. (More accurately, N is halved every second step.) At level [we,

therefore, get N; = N/\/ﬁl. The computation time per node on level [is
of order O(N}) while the communication amount per node is O(N?). This
means that the message size per node decreases with increasing level [, but
the number of communicating nodes increases. With a single Ethernet this
leads to high collision rates.

Figure 3 compares the runtime of ARESO for a fixed problem size on the
single bus and on the tree topology. At 4 nodes the tree structure has only a
slight advantage over the single bus. But involving 8 and 16 computers the
single bus is overloaded so that no speed up is obtained. The runtime is even
longer than for 4 nodes. For the tree topology, in contrast, the algorithm
still shows a speed up.

It is interesting that the advantage of multiple buses is not only restricted
to divide-and-conquer algorithms. In [11] the runtime behavior of a parallel
unstructured matrix application on the different topologies was compared.
It concerns the distributed solution of a big sparse block matrix system.

120 T T T

\ 'single_bus’ <—
N\ 'tree_topology’ -+~
110 | E

100 | i

90 - \ g

80 | B

t[s]

70 | \ 1

60 |

50

40 - e g

30 1 1 1

NO. processors

Figure 3: ARESO runtimes on the single bus and the hierarchical tree-like
topology.

450 T T T T

tree topology -~
single bus

350 | -

400

300 F |
250 | _
200 _
150 F >< i
100 F :

0 1 1 1 1
0 20 40 60 80 100

block size

Figure 4: Runtime comparison of a distributed block matrix solver on the
single bus and on the hierarchical tree network.

The matrix is split into different block rows that are distributed among the
processors. Eliminated rows must be transferred to those processors who
need the specific row for elimination of one of its own rows. A detailed
discussion of the numerical problem and the algorithm can be found in [10,
9, 11].

Figure 4 shows the runtimes on the two topologies for different block sizes.
Again, the multiple bus system is significantly faster than the single bus.
Nevertheless, the introduced tree topology is not very convenient for unstruc-
tured dependence graphs. We will sketch out a better solution in the next
section.

3 The Dual hypercube

The tree-like topology in the previous section is tailored to applications where
the process graph is a complete binary tree that arises from the divide-and-
conquer paradigm. However, for more general applications several inherent
disadvantages and difficulties may arise.

It the dependence graph is less structured, e.g. even for divide-and-conquer
with adaptivity, it is not clear how the processes should be mapped to the
tree. Simple and convenient embedding schemes may result in a large amount
of long-distance communication and an overload of the top level bus.
Another problem is fault tolerance. If workstation no. 9 in Figure 2 crashes,
the half of the 16 computers is unreachable. A more symmetric topology
with several communication paths between different nodes seems to be more
comfortable.

A general topology would be the hypercube. But two main problems arise.
First, the direct links between two nodes do not fit the bus-like nature of
Ethernet. Secondly, we would need a logarithmic number of connections per
workstation. In practice only a fixed number of connections per workstation
is supported.

Both difficulties vanish if we exchange the roles of nodes and edges in the
hypercube graph. Then, each edge represents a computing node with exactly
two connections to buses, which are in their turn represented by the graph
vertices. Because we changed the role of nodes and edges, we call this family
of topologies dual hypercube. Figure 5 shows an example of dimension d = 3.
For dimension d we get d2¢~! nodes and 2? buses. Thus, we have d/2 as
many nodes as buses, enough to provide a logarithmic diameter d and high
throughput of the network. Since d is only the logarithm of the graph size,
the amount of communication in each bus is expected to increase slowly.
Each bus is assigned to exactly d workstations and each node needs to have
only two [/O-ports. Some other basic properties can be found in [1, 3] where
similar types of graphs were introduced.

Due to its proximity to the hypercube and cube-connected-cycles, the dual
hypercube seems to be well suited for a broad class of algorithms. If we want
to compare the dual hypercube directly with the hierarchical topology of the
previous section, we must restrict ourselves to dimensions d = 2" of the cube
since only then the number of nodes is a power of 2 (namely 2"+2"~1). The
number of buses then equals 22" for the dual hypercube and 2712”2 for the
tree. In [7] we discuss the embedding of binary trees and product graphs of
binary trees in dual hypercubes.

10 8

Figure 5: Dual hypercube of dimension 3.

3.1 Hardware Realization and Numerical Tests

An interesting relation between the hierarchical topology in Figure 2 and
the dual hypercube is shown in Figure 6. It describes the way in which we
built an extended 3-dimensional dual hypercube (which is actually a faulty
h-dimensional dual hypercube) involving the former tree network by simply
adding four additional buses.

Using different routing mechanisms we could directly compare the perfor-
mance of the two distinct topologies. While the routing on the tree could
be done statically by standard UNIX software, it was a nontrivial issue to
realize a reasonable routing scheme for the cube. Dynamic routers like gated
do not allow to change the path from one node to another in short intervals
(e.g. between two messages or packets). Parallel platforms like PVM don’t
support multiple paths between two workstations at all.

Therefore, a new routing daemon MRouter [4] (based on the TCP protocol)
was developed, which runs a random path strategy: before each message is
sent from one node to another the route is determined uniformly random
among all optimal (i.e. shortest) paths.

@ 16
4
14
7 12
3 13
6
® /@/ ;

,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,

Figure 6: Embedding of the tree-like bus network with 16 nodes into the
5-dimensional dual hypercube.

10

400 T T T T T T T

350 A

300 _

250 Dualhypercube —<—
Tree Topology —+--

t[s]

200

150

100

50+ -

0 1 1 1 1 1 1 1
30 40 50 60 70 80 90 100
block size

Figure 7: Runtimes of the sparse block matrix solver on the dual hypercube
and the hierarchical topology.

We adapted the sparse block matrix solver mentioned in section 2 to MRouter
and compared it to the PVM version on the tree-like network using the 12
HP-720 workstations that belong to the three-dimensional dual hypercube.
The runtime behavior on the different topologies is shown in Figure 7.

At low block sizes (up to 75) the version on the tree-like topology is faster
due to the minor overhead of the UDP protocol used by PVM. When the
size of the matrix blocks grows, however, the hypercubic network is more
scalable.

4 Simulation Results

In [2] M. Backschat describes the object oriented network simulator DAPOS++!
that simulates in detail the communication of parallel applications on a com-
plex workstation cluster. The topology of the cluster, the characteristics of
the underlying hardware, the routing strategy, and the distributed algorithm

! Distributed-Algorithm-based Process-Oriented Simulation in C++

11

3 T

single bus <—
275 tree topology -+-- |

25 | 1

225 1

1.75 B

15 | B

tfs]

125 1

0.75 |
0.5 | * |

0.25 - 1

level

Figure 8: Simulated ARESO communication time on the shared bus and the
tree topology.

can be described in a flexible manner by the user.

In contrast to many other products DAPOS+4 does not use statistic data
or models, but simulates the communication from application level down to
packet transmission. Of course, we used statistic data for validation.

With DAPOS++ it was possible to study the divide-and-conquer communi-
cation scheme for various topologies and for large order of magnitude. In all
examples that follow we choose the ARESO application introduced in section
2 as object of simulation.

In Figure 8 we compared the pure communication times for constant prob-
lem size, but increasing computing nodes (1 to 128). The time on the tree
topology remains nearly constant whereas on the single bus the time grows
linearly due to the increasing collision rates (in our simulation up to 90 per-
cent). The Ethernet does not crash here even for 128 nodes because in the
ARESO application the transmitted packets become very small when we use
more and more workstations.

In order to include the dual hypercube network we have to focus on di-
mensions that are powers of 2 (as mentioned in section 3). In Figure 9

12

1.6 |
single bus <—

L4 tree random + -
dualhypercube H—

1.2 tree -X- - .. :_

4 32 1024

Nno. processors

Figure 9: Simulated ARESO communication time on the shared bus, the tree
topology, and the dual hypercube. On the tree-like network, we compare an
optimal and a random mapping of the nodes.

we, therefore, simulated the communication time on 4, 32, and 1024 work-
stations — dimension 2, 4, and 8 of the dual hypercube — on the three
different topologies. The problem size was divided by 2 in comparison with
the former simulation.

As expected, the single bus showed the worst performance. But it is inter-
esting that the dual hypercube performs almost as well as the corresponding
tree network, though we chose the nodes on the cube randomly whereas the
embedding onto the hierarchical network was optimal.

In the adaptive case, however, the dual hypercube turns out to be more
flexible than the tree. As pointed out in section 2 the mapping of an unbal-
anced binary tree on the hierarchical network may lead to an inconvenient
embedding. In this case the performance of the tree-like network deterio-
rates significantly. For demonstration we chose a random mapping of the
complete squashed binary tree onto the 2¢ nodes of the hierarchical network
and compared its throughput against the optimal embedding. We integrated
the corresponding results in Figure 9. The simulation clearly confirms the

13

superiority of the dual hypercube.

5 Conclusions

We presented two classes of bus topologies for workstation clusters. The first
one, a hierarchical tree-like network, is shown to be best suited for divide-
and-conquer parallelization. This theoretical consideration is confirmed by
simulation results and real applications running on 16 HP-720 computers
connected via FEthernet cables.

The second class of topologies, the dual hypercube, is better suited for more
general algorithms requiring more flexibility. This includes adaptive divide-
and-conquer applications and totally unstructured (random) communication
dependencies. This is also illustrated with simulation results and actual
runtimes of distributed numerical applications.

6 Acknoledgements

I would like to thank Prof. Chr. Zenger and Dr. Ulrich Ride for many
stimulating discussions. I am also grateful to Reiner Huttl for providing
plenty of test data concerning the ARESO project. I am thankful to Martin
Backschat who helped me to prepare the simulator, and Andreas Paul who
helped me to build and administer the network.

14

References

1]

2]

[10]

D.P. Agrawal and V.K. Janakiram. Evaluating the Performance of Mul-
ticomputer Configurations. Computers, May 1986.

Martin Backschat. Simulation von Divide&Conquer-Algorithmen
auf verschiedenen Netztopologien in C+4. Technische Universitat
Minchen, Fortgeschrittenpraktikum, 1994.

L.N. Bhuyan and D.P. Agrawal. Generalized Hypercube and Hyperbus
Structures for a Computer Network. I[FEFE Transactions on Computers,

April 1984.

M. Eckart. Parallelisierung auf hypercubeartigen Workstationnetzen.
Master’s thesis, Technische Universitat Minchen, 1994.

R. Huttl and M. Schneider. Parallel Adaptive Numerical Simulation.
SFB-Bericht 342/01/94 A, Technische Universitdt Miinchen, 1994.

F. T. Leighton. Introduction to Parallel Algorithms and Architectures,
Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo,
1992.

A. Pfaffinger. Dual Hypercubes. Technische Universitat Minchen, SFB-
Bericht, to appear.

H. Regler and U. Ride. Layout optimization with algebraic multigrid
methods (AMG). In Proceedings of the Sizth Copper Mountain Confer-
ence on Multigrid Methods, Copper Mountain, Apri 4-9, 1993, Confer-
ence Publication. NASA, 1993.

M. Schneider. Verteilte adaptive numerische Simulation auf der Ba-
sis der Finite-Elemente-Methode. PhD thesis, Technische Universitat
Minchen, 1994.

M. Schneider, U. Wever, and (). Zheng. Solving large and sparse linear
equations in analog circuit simulation on a cluster of workstations. The

Computer Journal, 36(8):685-689, 1993.

15

[11] B. Weininger. Losen grofier, diinnbesetzter linearer Gleichungssysteme

auf einem Netz von Workstations. Master’s thesis, Technische Univer-
sitat Minchen, 1994.

16

SFDB 342:

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A

342/1/90 A
342/2/90 A
342/3/90 A

342/4/90 A

342/5/90 A
342/6/90 A
342/7/90 A
342/8/90 A

342/9/90 A

342/10/90 A
342/11/90 A

342/12/90 A
342/13/90 A
342/14/90 A

342/15/90 A
342/16/90 A
342/17/90 A

342/18/90 A

Robert Gold, Walter Vogler: Quality Criteria for Partial Order Se-
mantics of Place/Transition-Nets, Januar 1990

Reinhard Féfimeier: Die Rolle der Lastverteilung bei der numeri-
schen Parallelprogrammierung, Februar 1990

Klaus-Jorn Lange, Peter Rossmanith: Two Results on Unambi-
guous Circuits, Februar 1990

Michael Griebel: Zur Losung von Finite-Differenzen- und Finite-
Element-Gleichungen mittels der Hierarchischen Transformations-
Mehrgitter-Methode

Reinhold Letz, Johann Schumann, Stephan Bayerl, Wolfgang Bibel:
SETHEO: A High-Performance Theorem Prover

Johann Schumann, Reinhold Letz: PARTHEO: A High Performan-
ce Parallel Theorem Prover

Johann Schumann, Norbert Trapp, Martin van der Koelen: SE-
THEO/PARTHEO Users Manual

Christian Suttner, Wolfgang Ertel: Using Connectionist Networks
for Guiding the Search of a Theorem Prover

Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hubert Ertl, Olav
Hansen, Josef Haunerdinger, Paul Hofstetter, Jaroslav Kremenek,
Robert Lindhof, Thomas Ludwig, Peter Luksch, Thomas Treml:
TOPSYS, Tools for Parallel Systems (Artikelsammlung)

Walter Vogler: Bisimulation and Action Refinement

Jorg Desel, Javier Esparza: Reachability in Reversible Free- Choice
Systems

Rob van Glabbeek, Ursula Goltz: Equivalences and Refinement
Rob van Glabbeek: The Linear Time - Branching Time Spectrum
Johannes Bauer, Thomas Bemmerl, Thomas Treml: Leistungsana-
lyse von verteilten Beobachtungs- und Bewertungswerkzeugen
Peter Rossmanith: The Owner Concept for PRAMs

G. Bockle, S. Trosch: A Simulator for VLIW-Architectures

P. Slavkovsky, U. Riide: Schnellere Berechnung klassischer Matrix-
Multiplikationen

Christoph Zenger: SPARSE GRIDS

Reihe A

342/19/90 A
342/20/90 A
342/21/90 A

342/22/90 A

342/23/90 A
342/24/90 A

342/25/90 A

342/26/90 A

342/27/90 A
342/28/90 A
342/29/90 A

342/30/90 A
342/31/90 A

342/32/90 A
342/33/90 A
342/1/91 A
342/2/91 A
342/3/91 A
342/4/91 A

312/5/91 A

Michael Griebel, Michael Schneider, Christoph Zenger: A combina-
tion technique for the solution of sparse grid problems

Michael Griebel: A Parallelizable and Vectorizable Multi- Level-
Algorithm on Sparse Grids

V. Diekert, E. Ochmanski, K. Reinhardt: On confluent semi-
commutations-decidability and complexity results

Manfred Broy, Claus Dendorfer: Functional Modelling of Opera-
ting System Structures by Timed Higher Order Stream Processing
Functions

Rob van Glabbeek, Ursula Goltz: A Deadlock-sensitive Congruence
for Action Refinement

Manfred Broy: On the Design and Verification of a Simple Distri-
buted Spanning Tree Algorithm

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Peter
Luksch, Roland Wismiiller: TOPSYS - Tools for Parallel Systems
(User’s Overview and User’s Manuals)

Thomas Bemmerl, Arndt Bode, Thomas Ludwig, Stefan Tritscher:
MMK - Multiprocessor Multitasking Kernel (User’s Guide and
User’s Reference Manual)

Wolfgang Ertel: Random Competition: A Simple, but Efficient Me-
thod for Parallelizing Inference Systems

Rob van Glabbeek, Frits Vaandrager: Modular Specification of Pro-
cess Algebras

Rob van Glabbeek, Peter Weijland: Branching Time and Abstrac-
tion in Bisimulation Semantics

Michael Griebel: Parallel Multigrid Methods on Sparse Grids

Rolf Niedermeier, Peter Rossmanith: Unambiguous Simulations of
Auxiliary Pushdown Automata and Circuits

Inga Niepel, Peter Rossmanith: Uniform Circuits and Exclusive
Read PRAMs

Dr. Hermann Hellwagner: A Survey of Virtually Shared Memory
Schemes

Walter Vogler: Is Partial Order Semantics Necessary for Action
Refinement?

Manfred Broy, Frank Dederichs, Claus Dendorfer, Rainer Weber:
Characterizing the Behaviour of Reactive Systems by Trace Sets
Ulrich Furbach, Christian Suttner, Bertram Fronhofer: Massively
Parallel Inference Systems

Rudolf Bayer: Non-deterministic Computing, Transactions and Re-
cursive Atomicity

Robert Gold: Dataflow semantics for Petri nets

Reihe A

342/6/91 A A. Heise; C. Dimitrovici: Transformation und Komposition von

342/7/91 A

342/8/91 A
342/9/91 A

342/10/91
342/11/91
342/12/91

342/13/91

342/14/91
342/15/91
342/16/91
342/17/91
342/18/91
342/19/91
342/20/91
342/21/91
342/22/91

342/23/91
342/24/91

A

A

A

A

P/T-Netzen unter Erhaltung wesentlicher Eigenschaften

Walter Vogler: Asynchronous Communication of Petri Nets and the
Refinement of Transitions

Walter Vogler: Generalized OM-Bisimulation

Christoph Zenger, Klaus Hallatschek: Fouriertransformation auf
diinnen Gittern mit hierarchischen Basen

Erwin Loibl, Hans Obermaier, Markus Pawlowski: Towards Paral-
lelism in a Relational Database System

Michael Werner: Implementierung von Algorithmen zur Kompak-
tifizierung von Programmen fiir VLIW-Architekturen

Reiner Miiller: Implementierung von Algorithmen zur Optimierung
von Schleifen mit Hilfe von Software-Pipelining Techniken

Sally Baker, Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hu-
bert Ertl, Udo Graf, Olav Hansen, Josef Haunerdinger, Paul Hof-
stetter, Rainer Knédlseder, Jaroslav Kremenek, Siegfried Langen-
buch, Robert Lindhof, Thomas Ludwig, Peter Luksch, Roy Milner,
Bernhard Ries, Thomas Treml: TOPSYS - Tools for Parallel Sy-
stems (Artikelsammlung); 2., erweiterte Auflage

Michael Griebel: The combination technique for the sparse grid
solution of PDE’s on multiprocessor machines

Thomas F. Gritzner, Manfred Broy: A Link Between Process Alge-
bras and Abstract Relation Algebras?

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Tho-
mas Treml, Roland Wismiiller: The Design and Implementation of
TOPSYS

Ulrich Furbach: Answers for disjunctive logic programs

Ulrich Furbach: Splitting as a source of parallelism in disjunctive
logic programs

Gerhard W. Zumbusch: Adaptive parallele Multilevel-Methoden
zur Losung elliptischer Randwertprobleme

M. Jobmann, J. Schumann: Modelling and Performance Analysis
of a Parallel Theorem Prover

Hans-Joachim Bungartz: An Adaptive Poisson Solver Using Hier-
archical Bases and Sparse Grids

Wolfgang Ertel, Theodor Gemenis, Johann M. Ph. Schumann, Chri-
stian B. Suttner, Rainer Weber, Zongyan Qiu: Formalisms and Lan-
guages for Specifying Parallel Inference Systems

Astrid Kiehn: Local and Global Causes

Johann M.Ph. Schumann: Parallelization of Inference Systems by
using an Abstract Machine

Reihe A

342/25/91 A
342/26/91 A

342/27/91 A
342/28/91 A
342/29/91 A
342/30/91 A
342/31/91 A
342/32/91 A
342/1/92 A

342/2/92 A

342/2-2/92 A

312/3/92 A

342/4/92 A
312/5/92 A
312/6/92 A
342/7/92 A
312/8/92 A
312/9/92 A

342/10/92 A

Eike Jessen: Speedup Analysis by Hierarchical Load Decomposition
Thomas F. Gritzner: A Simple Toy Example of a Distributed Sy-
stem: On the Design of a Connecting Switch

Thomas Schnekenburger, Andreas Weininger, Michael Friedrich: In-
troduction to the Parallel and Distributed Programming Language
ParMod-C

Claus Dendorfer: Funktionale Modellierung eines Postsystems
Michael Griebel: Multilevel algorithms considered as iterative me-
thods on indefinite systems

W. Reisig: Parallel Composition of Liveness

Thomas Bemmerl, Christian Kasperbauer, Martin Mairandres,
Bernhard Ries: Programming Tools for Distributed Multiprocessor
Computing Environments

Frank Lelke: On constructive specifications of abstract data types
using temporal logic

L. Kanal, C.B. Suttner (Editors): Informal Proceedings of the
Workshop on Parallel Processing for Al

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: The Design of Distributed Systems
- An Introduction to FOCUS

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: The Design of Distributed Systems
- An Introduction to FOCUS - Revised Version (erschienen im Ja-
nuar 1993)

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: Summary of Case Studies in FO-
CUS - a Design Method for Distributed Systems

Claus Dendorfer, Rainer Weber: Development and Implementation
of a Communication Protocol - An Exercise in FOCUS

Michael Friedrich: Sprachmittel und Werkzeuge zur Unterstiit- zung
paralleler und verteilter Programmierung

Thomas F. Gritzner: The Action Graph Model as a Link between
Abstract Relation Algebras and Process-Algebraic Specifications
Sergei Gorlatch: Parallel Program Development for a Recursive Nu-
merical Algorithm: a Case Study

Henning Spruth, Georg Sigl, Frank Johannes: Parallel Algorithms
for Slicing Based Final Placement

Herbert Bauer, Christian Sporrer, Thomas Krodel: On Distributed
Logic Simulation Using Time Warp

H. Bungartz, M. Griebel, U. Riide: Extrapolation, Combination and
Sparse Grid Techniques for Elliptic Boundary Value Problems

Reihe A

342/11/92 A

342/12/92 A
342/13/92 A

342/14/92 A
342/15/92 A

342/16/92 A
342/17/92 A
342/18/92 A
342/19/92 A
342/20/92 A
342/21/92 A
342/22/92 A
342/23/92 A
342/24/92 A

342/25/92 A
342/26/92 A

342/1/93 A

342/2/93 A

342/3/93 A

342/4/93 A

M. Griebel, W. Huber, U. Riide, T. Stértkuhl: The Combination
Technique for Parallel Sparse-Grid-Preconditioning and -Solution
of PDEs on Multiprocessor Machines and Workstation Networks
Rolf Niedermeier, Peter Rossmanith: Optimal Parallel Algorithms
for Computing Recursively Defined Functions

Rainer Weber: Eine Methodik fiir die formale Anforderungsspezif-
kation verteilter Systeme

Michael Griebel: Grid— and point—oriented multilevel algorithms
M. Griebel, C. Zenger, 5. Zimmer: Improved multilevel algorithms
for full and sparse grid problems

J. Desel, D. Gomm, E. Kindler, B. Paech, R. Walter: Bausteine
eines kompositionalen Beweiskalkiils fiir netzmodellierte Systeme
Frank Dederichs: Transformation verteilter Systeme: Von applika-
tiven zu prozeduralen Darstellungen

Andreas Listl, Markus Pawlowski: Parallel Cache Management of
a RDBMS

Erwin Loibl, Markus Pawlowski, Christian Roth: PART: A Parallel
Relational Toolbox as Basis for the Optimization and Interpretation
of Parallel Queries

Jorg Desel, Wolfgang Reisig: The Synthesis Problem of Petri Nets
Robert Balder, Christoph Zenger: The d-dimensional Helmholtz
equation on sparse Grids

[lko Michler: Neuronale Netzwerk-Paradigmen zum FErlernen von
Heuristiken

Wolfgang Reisig: Elements of a Temporal Logic. Coping with
Concurrency

T. Stortkuhl, Chr. Zenger, S. Zimmer: An asymptotic solution for
the singularity at the angular point of the lid driven cavity
Ekkart Kindler: Invariants, Compositionality and Substitution
Thomas Bonk, Ulrich Riide: Performance Analysis and Optimiza-
tion of Numerically Intensive Programs

M. Griebel, V. Thurner: The Efficient Solution of Fluid Dynamics
Problems by the Combination Technique

Ketil Stglen, Frank Dederichs, Rainer Weber: Assumption / Com-
mitment Rules for Networks of Asynchronously Communicating
Agents

Thomas Schnekenburger: A Definition of Efficiency of Parallel Pro-
grams in Multi-Tasking Environments

Hans-Joachim Bungartz, Michael Griebel, Dierk Roéschke, Chri-
stoph Zenger: A Proof of Convergence for the Combination Techni-
que for the Laplace Equation Using Tools of Symbolic Computation

Reihe A

342/5/93 A
342/6/93 A
342/7/93 A

342/8/93 A

342/9/93 A

342/10/93 A
342/11/93 A

342/12/93 A

342/13/93 A

342/14/93 A
342/15/93 A

342/16/93 A

342/17/93 A

342/18/93 A
342/19/93 A
342/20/93 A
342/01/94 A
342/02/94 A

342/03/94 A

Manfred Kunde, Rolf Niedermeier, Peter Rossmanith: Faster Sor-
ting and Routing on Grids with Diagonals

Michael Griebel, Peter Oswald: Remarks on the Abstract Theory
of Additive and Multiplicative Schwarz Algorithms

Christian Sporrer, Herbert Bauer: Corolla Partitioning for Distri-
buted Logic Simulation of VLSI Circuits

Herbert Bauer, Christian Sporrer: Reducing Rollback Overhead in
Time-Warp Based Distributed Simulation with Optimized Incre-
mental State Saving

Peter Slavkovsky: The Visibility Problem for Single-Valued Surface
(z = {(x,y)): The Analysis and the Parallelization of Algorithms
Ulrich Riide: Multilevel, Extrapolation, and Sparse Grid Methods
Hans Regler, Ulrich Riide: Layout Optimization with Algebraic
Multigrid Methods

Dieter Barnard, Angelika Mader: Model Checking for the Modal
Mu-Calculus using Gaufl Elimination

Christoph Pflaum, Ulrich Riide: Gauf’ Adaptive Relaxation for
the Multilevel Solution of Partial Differential Equations on Sparse
Grids

Christoph Pflaum: Convergence of the Combination Technique for
the Finite Element Solution of Poisson’s Equation

Michael Luby, Wolfgang Ertel: Optimal Parallelization of Las Vegas
Algorithms

Hans-Joachim Bungartz, Michael Griebel, Dierk Roéschke, Chri-
stoph Zenger: Pointwise Convergence of the Combination Technique
for Laplace’s Equation

Georg Stellner, Matthias Schumann, Stefan Lamberts, Thomas
Ludwig, Arndt Bode, Martin Kiehl und Rainer Mehlhorn: Deve-
loping Multicomputer Applications on Networks of Workstations
Using NXLib

Max Fuchs, Ketil Stglen: Development of a Distributed Min/Max
Component

Johann K. Obermaier: Recovery and Transaction Management in
Write-optimized Database Systems

Sergej Gorlatch: Deriving Efficient Parallel Programs by Systema-
ting Coarsing Specification Parallelism

Reiner Hiittl, Michael Schneider: Parallel Adaptive Numerical
Simulation

Henning Spruth, Frank Johannes: Parallel Routing of VLSI Circuits
Based on Net Independency

Henning Spruth, Frank Johannes, Kurt Antreich: PHIroute: A Par-
allel Hierarchical Sea-of-Gates Router

Reihe A
342/04/94 A

342/05/94 A

342/06/94 A
342/07/94 A
342/08/94 A
342/09/94 A
342/10/94 A
342/11/94 A

342/12/94 A

342/13/94 A

342/14/94 A
342/15/94 A

342/16/94 A
342/17/94 A

342/18/94 A
342/19/94 A

342/20/94 A

342/01/95 A

Martin Kiehl, Rainer Mehlhorn, Matthias Schumann: Parallel Mul-
tiple Shooting for Optimal Control Problems Under NX/2
Christian Suttner, Christoph Goller, Peter Krauss, Klaus-J6rn Lan-
ge, Ludwig Thomas, Thomas Schnekenburger: Heuristic Optimiza-
tion of Parallel Computations

Andreas Listl: Using Subpages for Cache Coherency Control in Par-
allel Database Systems

Manfred Broy, Ketil Stglen: Specification and Refinement of Finite
Dataflow Networks - a Relational Approach

Katharina Spies: Funktionale Spezifikation eines Kommunika-
tionsprotokolls

Peter A. Krauss: Applying a New Search Space Partitioning Me-
thod to Parallel Test Generation for Sequential Circuits

Manfred Broy: A Functional Rephrasing of the Assumption/Com-
mitment Specification Style

Eckhardt Holz, Ketil Stglen: An Attempt to Embed a Restricted
Version of SDL as a Target Language in Focus

Christoph Pflaum: A Multi-Level-Algorithm for the Finite-
Element-Solution of General Second Order Elliptic Differential
Equations on Adaptive Sparse Grids

Manfred Broy, Max Fuchs, Thomas F. Gritzner, Bernhard Schétz,
Katharina Spies, Ketil Stglen: Summary of Case Studies in FOCUS
- a Design Method for Distributed Systems

Maximilian Fuchs: Technologieabhéngigkeit von Spezifikationen di-
gitaler Hardware

M. Griebel, P. Oswald: Tensor Product Type Subspace Splittings
And Multilevel Iterative Methods For Anisotropic Problems
Gheorghe Stefanescu: Algebra of Flownomials

Ketil Stglen: A Refinement Relation Supporting the Transition
from Unbounded to Bounded Communication Buffers

Michael Griebel, Tilman Neuhoeffer: A Domain-Oriented Multilevel
Algorithm-Implementation and Parallelization

Michael Griebel, Walter Huber: Turbulence Simulation on Sparse
Grids Using the Combination Method

Johann Schumann: Using the Theorem Prover SETHEO for verify-
ing the development of a Communication Protocol in FOCUS - A
Case Study -

Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse

Grids

SFDB 342:

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe B

342/1/90 B
342/2/90 B
342/3/90 B
342/4/90 B
342/1/91 B
342/2/91 B
342/3/91 B
342/4/91 B
342/5/91 B

312/6/91 B

342/7/91 B
342/1/92 B

342/2/92 B
342/1/93 B
342/2/93 B

342/1/94 B

Wolfgang Reisig: Petri Nets and Algebraic Specifications

Jorg Desel: On Abstraction of Nets

Jorg Desel: Reduction and Design of Well-behaved Free-choice
Systems

Franz Abstreiter, Michael Friedrich, Hans-Jiirgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler
Programme

Barbara Paechl: Concurrency as a Modality

Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox
-Anwenderbeschreibung

Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop
iiber Parallelisierung von Datenbanksystemen

Werner Pohlmann: A Limitation of Distributed Simulation
Methods

Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually
Shared Memory Scheme: Formal Specification and Analysis
Dominik Gomm, Ekkart Kindler: Causality Based Specification and
Correctness Proof of a Virtually Shared Memory Scheme

W. Reisig: Concurrent Temporal Logic

Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-
of-Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-
Support

Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-
ware, Software, Anwendungen

Max Fuchs: Funktionale Spezifikation einer Geschwindigkeits-
regelung

Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein
Literaturiiberblick

Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum
Entwurf eines Prototypen fiir MIDAS

