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Abstract

Workstation clusters offer a cheap and powerful alternative to par-
allel processors. For communication intensive distributed applications
the single Ethernet connection is a global resource and soon becomes
a bottleneck that prohibits scalability. Our suggested solution is to
build complex multiple-bus topologies with a second Ethernet link
per workstation. This paper introduces two classes of bus networks
for workstation clusters: a tree-like topology for divide-and-conquer
algorithms and a hypercube-like network for a broader class of appli-
cations. We present some graph-theoretic aspects, simulation results,
and numerical test data on a network with 16 workstations.

1 Introduction

In the field of parallel high performance computing, there is a trend towards
workstation clusters, which are usually interconnected via Ethernet buses.

*This work was supported by the Siemens AG.



Networked workstations are already available at many sites and typically
their computing capacity is not fully exploited. Therefore, they offer a cost-
effective alternative to dedicated parallel computers.

Recently, a number of machine independent parallel platforms like MPI,
PVM, and LINDA has been developed. They support the distributed pro-
gramming of a workstation cluster. These systems are now widely used in
parallel numerical computing.

With increasing demand for communication between the parallel tasks, how-
ever, the bus-like nature of the Ethernet soon becomes a bottleneck. Hence,
only few computing nodes can be used efficiently. The system is not scalable
with respect to the number of processors.

By introducing additional buses and a more complex interconnection topol-
ogy of the workstations, the communication bandwidth can be significantly
improved. The required hardware investment are just some additional LAN
adapter cards and Ethernet cables. Depending on the network topology,
pairs of workstations may now communicate in parallel.

This matter has already been studied intensively for tightly coupled systems
(see e.g. [6]), but not yet in the specific context of workstation networks.
In particular the characteristics of an Ethernet, the high process generation
costs under UNIX, and the network administration must be considered.

In this paper we will describe two network topologies which both need only
two 1/O-ports per workstation. In section 2 we will sketch out a tree-like
structure which is optimally adapted to divide-and-conquer algorithms. In
section 3 we will present a more general hypercube-like topology. Section 4
gives some simulation results.

2 A Hierarchical Topology

A common model for parallel computing is the divide-and-conquer paradigm:
a task is split into two (or more) subtasks that can be executed in parallel.
Each of these subtasks can be divided in subsubtasks and so on.

This leads to a tree-like dependence graph. In the case of exactly two subtasks
per node we obtain a binary tree. This graph also reflects the communication
scheme of the parallel tasks. A task needs to talk only to its parent and its
children.

When we consider the distribution of the jobs onto the computing nodes, we



Figure 1: Binary tree with 16 computing nodes: dependence and communi-
cation graph of a parallel divide-and-conquer application. Each interior node
is identified with its leftmost descendent.

get a slightly different graph. The parallel algorithm starts at node one. At
the point of division two new tasks are created, which should be placed at
different nodes. Since the parent is idle when the two subjobs are calculating,
one subtask can remain on the initial node. This leads to a ”squashed” binary
tree. Figure 1 shows a divide-and-conquer graph with 16 computing nodes.
Each left child of a node is identified with its parent.

We will discuss the communication pattern in more detail. Most importantly,
we must distinguish between the cheap communication within a node and the
expensive external communication between different nodes. The first one
arises between parent and left child in Figure 1. Only the communication of
each parent with its right child is external.

If we assume that all tasks at one layer of the tree need quite the same
computation time, there are no simultaneous communications at different
(edge-) levels of the tree. Therefore, it is desirable that all communications
on one level are done in parallel, i.e. on different buses. The problem is to
find a minimal bus topology in which at each level all nodes can communicate
with their right child via different buses.



Figure 2: Tree-like Ethernet topology: all communication between parent
and (right) child at one level of Figure 1 can be done in parallel via different
buses.

Of course, this could be achieved by a complete interconnection, where each
node is connected to any other node via a different bus (or link). This would
mean that for n processing elements each node needs to have n — 1 1/0-
ports. But real hardware will always show a constant maximum. In this
paper we will examine topologies where only two 1/O ports per workstation
are needed.

Figure 2 shows an appropriate tree-like solution with 8 buses that is obviously
minimal in respect to the number of buses (we have 8 parallel communication
at the deepest level). Its hierarchical structure reflects the recursive definition
of the corresponding squashed binary tree.

The next higher network, which includes 32 nodes and 16 buses, would be
constructed as follows: take a copy of the 16-node-network, add 16 to all of
its node labels, and put the least labeled node (17 here) with an additional
link into the bus that connects 1 and 2. This topology corresponds pertectly
to the complete squashed binary tree with 32 leaf nodes.

In general, for a complete binary tree with 2¢ leaves the corresponding bus



network would consist of 2¢ computing nodes and 2¢~! buses. Each node is
connected to at most 2 buses and each bus is assigned to at most d+1 nodes.
For each level in the binary tree all data transfer at that level from parent
to child (or vice versa) can be done in parallel. This is a prerequisite of
scalability.

Numerical Applications

The architecture shown in Figure 2 has been implemented with 16 HP-720
workstations. Each odd-numbered node has been provided with an additional
LAN adapter card. Node 1 is used as the gateway to outside networks.

On this installation several applications with a divide and conquer strategy
have been parallelized. Besides the complex chip placement algorithm GOR-
DIAN [8] this is the parallel Finite Element application ARESO [5, 9] which
we will describe somewhat more in detail below.

ARESO is a solver for partial differential equations that is based on domain
decomposition and recursive substructuring. In the case of a square domain
ARESO starts on top level with a certain problem size N, typically a power
of 2, that describes the number of grid points on the borderlines.

When the problem is split up in two parts, the size decreases by the factor
1//2. (More accurately, N is halved every second step.) At level [ we,

therefore, get N; = N/\/ﬁl. The computation time per node on level [ is
of order O(N}) while the communication amount per node is O(N?). This
means that the message size per node decreases with increasing level [, but
the number of communicating nodes increases. With a single Ethernet this
leads to high collision rates.

Figure 3 compares the runtime of ARESO for a fixed problem size on the
single bus and on the tree topology. At 4 nodes the tree structure has only a
slight advantage over the single bus. But involving 8 and 16 computers the
single bus is overloaded so that no speed up is obtained. The runtime is even
longer than for 4 nodes. For the tree topology, in contrast, the algorithm
still shows a speed up.

It is interesting that the advantage of multiple buses is not only restricted
to divide-and-conquer algorithms. In [11] the runtime behavior of a parallel
unstructured matrix application on the different topologies was compared.
It concerns the distributed solution of a big sparse block matrix system.
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Figure 3: ARESO runtimes on the single bus and the hierarchical tree-like
topology.
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Figure 4: Runtime comparison of a distributed block matrix solver on the
single bus and on the hierarchical tree network.

The matrix is split into different block rows that are distributed among the
processors. Eliminated rows must be transferred to those processors who
need the specific row for elimination of one of its own rows. A detailed
discussion of the numerical problem and the algorithm can be found in [10,
9, 11].

Figure 4 shows the runtimes on the two topologies for different block sizes.
Again, the multiple bus system is significantly faster than the single bus.
Nevertheless, the introduced tree topology is not very convenient for unstruc-
tured dependence graphs. We will sketch out a better solution in the next
section.

3 The Dual hypercube

The tree-like topology in the previous section is tailored to applications where
the process graph is a complete binary tree that arises from the divide-and-
conquer paradigm. However, for more general applications several inherent
disadvantages and difficulties may arise.



It the dependence graph is less structured, e.g. even for divide-and-conquer
with adaptivity, it is not clear how the processes should be mapped to the
tree. Simple and convenient embedding schemes may result in a large amount
of long-distance communication and an overload of the top level bus.
Another problem is fault tolerance. If workstation no. 9 in Figure 2 crashes,
the half of the 16 computers is unreachable. A more symmetric topology
with several communication paths between different nodes seems to be more
comfortable.

A general topology would be the hypercube. But two main problems arise.
First, the direct links between two nodes do not fit the bus-like nature of
Ethernet. Secondly, we would need a logarithmic number of connections per
workstation. In practice only a fixed number of connections per workstation
is supported.

Both difficulties vanish if we exchange the roles of nodes and edges in the
hypercube graph. Then, each edge represents a computing node with exactly
two connections to buses, which are in their turn represented by the graph
vertices. Because we changed the role of nodes and edges, we call this family
of topologies dual hypercube. Figure 5 shows an example of dimension d = 3.
For dimension d we get d2¢~! nodes and 2? buses. Thus, we have d/2 as
many nodes as buses, enough to provide a logarithmic diameter d and high
throughput of the network. Since d is only the logarithm of the graph size,
the amount of communication in each bus is expected to increase slowly.
Each bus is assigned to exactly d workstations and each node needs to have
only two [/O-ports. Some other basic properties can be found in [1, 3] where
similar types of graphs were introduced.

Due to its proximity to the hypercube and cube-connected-cycles, the dual
hypercube seems to be well suited for a broad class of algorithms. If we want
to compare the dual hypercube directly with the hierarchical topology of the
previous section, we must restrict ourselves to dimensions d = 2" of the cube
since only then the number of nodes is a power of 2 (namely 2"+2"~1). The
number of buses then equals 22" for the dual hypercube and 2712”2 for the
tree. In [7] we discuss the embedding of binary trees and product graphs of
binary trees in dual hypercubes.
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Figure 5: Dual hypercube of dimension 3.

3.1 Hardware Realization and Numerical Tests

An interesting relation between the hierarchical topology in Figure 2 and
the dual hypercube is shown in Figure 6. It describes the way in which we
built an extended 3-dimensional dual hypercube (which is actually a faulty
h-dimensional dual hypercube) involving the former tree network by simply
adding four additional buses.

Using different routing mechanisms we could directly compare the perfor-
mance of the two distinct topologies. While the routing on the tree could
be done statically by standard UNIX software, it was a nontrivial issue to
realize a reasonable routing scheme for the cube. Dynamic routers like gated
do not allow to change the path from one node to another in short intervals
(e.g. between two messages or packets). Parallel platforms like PVM don’t
support multiple paths between two workstations at all.

Therefore, a new routing daemon MRouter [4] (based on the TCP protocol)
was developed, which runs a random path strategy: before each message is
sent from one node to another the route is determined uniformly random
among all optimal (i.e. shortest) paths.
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Figure 7: Runtimes of the sparse block matrix solver on the dual hypercube
and the hierarchical topology.

We adapted the sparse block matrix solver mentioned in section 2 to MRouter
and compared it to the PVM version on the tree-like network using the 12
HP-720 workstations that belong to the three-dimensional dual hypercube.
The runtime behavior on the different topologies is shown in Figure 7.

At low block sizes (up to 75) the version on the tree-like topology is faster
due to the minor overhead of the UDP protocol used by PVM. When the
size of the matrix blocks grows, however, the hypercubic network is more
scalable.

4 Simulation Results

In [2] M. Backschat describes the object oriented network simulator DAPOS++!
that simulates in detail the communication of parallel applications on a com-
plex workstation cluster. The topology of the cluster, the characteristics of
the underlying hardware, the routing strategy, and the distributed algorithm

! Distributed-Algorithm-based Process-Oriented Simulation in C++
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Figure 8: Simulated ARESO communication time on the shared bus and the
tree topology.

can be described in a flexible manner by the user.

In contrast to many other products DAPOS+4 does not use statistic data
or models, but simulates the communication from application level down to
packet transmission. Of course, we used statistic data for validation.

With DAPOS++ it was possible to study the divide-and-conquer communi-
cation scheme for various topologies and for large order of magnitude. In all
examples that follow we choose the ARESO application introduced in section
2 as object of simulation.

In Figure 8 we compared the pure communication times for constant prob-
lem size, but increasing computing nodes (1 to 128). The time on the tree
topology remains nearly constant whereas on the single bus the time grows
linearly due to the increasing collision rates (in our simulation up to 90 per-
cent). The Ethernet does not crash here even for 128 nodes because in the
ARESO application the transmitted packets become very small when we use
more and more workstations.

In order to include the dual hypercube network we have to focus on di-
mensions that are powers of 2 (as mentioned in section 3). In Figure 9

12
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we, therefore, simulated the communication time on 4, 32, and 1024 work-
stations — dimension 2, 4, and 8 of the dual hypercube — on the three
different topologies. The problem size was divided by 2 in comparison with
the former simulation.

As expected, the single bus showed the worst performance. But it is inter-
esting that the dual hypercube performs almost as well as the corresponding
tree network, though we chose the nodes on the cube randomly whereas the
embedding onto the hierarchical network was optimal.

In the adaptive case, however, the dual hypercube turns out to be more
flexible than the tree. As pointed out in section 2 the mapping of an unbal-
anced binary tree on the hierarchical network may lead to an inconvenient
embedding. In this case the performance of the tree-like network deterio-
rates significantly. For demonstration we chose a random mapping of the
complete squashed binary tree onto the 2¢ nodes of the hierarchical network
and compared its throughput against the optimal embedding. We integrated
the corresponding results in Figure 9. The simulation clearly confirms the

13



superiority of the dual hypercube.

5 Conclusions

We presented two classes of bus topologies for workstation clusters. The first
one, a hierarchical tree-like network, is shown to be best suited for divide-
and-conquer parallelization. This theoretical consideration is confirmed by
simulation results and real applications running on 16 HP-720 computers
connected via FEthernet cables.

The second class of topologies, the dual hypercube, is better suited for more
general algorithms requiring more flexibility. This includes adaptive divide-
and-conquer applications and totally unstructured (random) communication
dependencies. This is also illustrated with simulation results and actual
runtimes of distributed numerical applications.
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