
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Average-Case Analysis of Approximate Trie
Search

Moritz G. Maaß

TUM-I0405
März 04

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-03-I0405-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2004

Druck: Institut für Informatik der
Technischen Universität München

Average-Case Analysis of Approximate Trie Search

Moritz G. Maaß∗

maass@informatik.tu-muenchen.de

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, D-85748 Garching, Germany

Abstract

For the exact search of a pattern of length m in a database of n strings the trie data structure
allows an optimal lookup time of O (m). If errors are allowed between the pattern and the database
strings, no such structure with reasonable size is known. Using a trie some work can be saved and
running times superior to the comparison with every string in the database can be achieved. We
investigate a comparison-based model where “errors” and “matches” are defined between pairs of
characters. When comparing two characters, let p be the probability of an error. Between any two
strings we bound the number of errors by D, which we consider a function of n. We study the
average-case complexity of the number of comparisons for searching in a trie in dependence of
the parameters p and D. Our analysis yields the asymptotic behavior for memoryless sources with
uniform probabilities. It turns out that there is a jump in the average-case complexity at certain
thresholds for p and D. Our results can be applied for any comparison-based error model, for
instance, mismatches (Hamming distance), don’t cares, or geometric character distances.

1 Introduction
We study the average-case behavior of the simple problem of finding a given pattern in a set of patterns
subject to two conditions. The set of patterns is given in advance and may have been preprocessed
with linear space, and we are also interested in occurrences where the pattern is found with a given
number of errors.

This research was triggered by a project for the control of animal breeding via SNPs [31]. Without
going into details, each SNP can be encoded as a binary string that is an identifier for an individual.
Because of errors the search in the dataset of all individuals needs to be able to deal with mismatches
and don’t cares. The nature of the data allows a very efficient binary encoding, which yields a rea-
sonable fast algorithm that just compares a pattern to each string in the set. On the other hand, a trie
can be used as an index for the data. It has the same worst-case lookup time, but we expect to save
some work because fewer comparisons are necessary. As a drawback, the constants in the algorithm
are a bit higher due to the tree structure involved. We call the first variant “Linear Search” (LS) and
the second variant “Trie Search” (TS).

∗Research supported in part by DFG, grant Ma 870/5-1 (Leibnizpreis Ernst W. Mayr).

1

An abstract formulation of the problem is the following. Given n strings X1, . . . , Xn of the same
length m, a pattern P of length m, an error probability p, and a bound D for the maximal number
of errors allowed, let LD

n be the number of comparisons made by the LS algorithm and T D
n be the

number of comparisons made by the TS algorithm using a trie as an index. The parameters p depends
on the definition of errors, it gives the relative number of character pairs inducing an error (or mis-
match).What is the threshold D = D(n), up to where the average E

[

T D
n

]

is asymptotically better
than the average E

[

LD
n

]

? What is the effect of different error probabilities? The answers to these
questions give hints at choosing the faster method for our original problem.

Let Σ be an arbitrary finite alphabet of size σ := |Σ|. Let t = t1t2t3 . . . tn be a string with
characters ti ∈ Σ, we define |t| = n to be its length. For the average-case analysis we assume that we
deal with strings of infinite length, each string X = {xk}∞k=1 is generated independently at random by
a memoryless source with uniform probabilities Pr {xj = si} = 1/σ for all si ∈ Σ. We assume that
all strings X1, . . . , Xn used in the search are different (i.e., Xi 6= Xj for i 6= j). Since the strings are
generated randomly the probability that two identical strings of infinite length occur is indeed 0. We
further assume that a search pattern P = {pk}∞k=1 is generated by a source with the same probabilities
and similarly of infinite length.

When two arbitrary, randomly generated characters are compared, let p denote the probability of
an error and q := 1 − p the probability of a match. For example, we have a mismatch probability of
p = 1 − 1/σ and a match probability of q = 1/σ for Hamming distance.

It is easy to prove that the average number of comparisons made by the LS algorithm is E
[

LD
n

]

=
(D + 1)n/p. Indeed, one can prove almost sure convergence to this value. The LS algorithm has a
linear or quasi-linear average-case behavior for small D.

The interesting part is the analysis of the TS algorithm. In the trie each edge represents the same
character in a number of strings (the number of leaves in the subtree). Let there be k leaves below an
edge. If the TS algorithm compares a character from the pattern to the character at the edge, the LS
algorithm needs to make k comparisons. In essence, this can be seen as the trie “compressing” the set
of strings. It can be proven that the average number of characters thus “compressed” is asymptotically
n logσ n + O (n). Hence, for D ≥ (1 + ε) logσ n there can be no asymptotic gain when using a trie.

We will show that the TS algorithm performs sublinear for D < p logσ n and superlinear for
D > p logσ n. When D is a constant the asymptotic running time can be calculated very exactly and
is O

(

(log n)D+1
)

, for q = 1/σ, O
(

(log n)Dnlogσ q+1
)

, for q > 1/σ, and O (1), otherwise.

2 Related Work

Digital tries have a wide range of applications and belong to the most studied data structures in
computer science. They have been around for years; for their usefulness and beauty of analysis they
have received a lot of attention. Tries were introduced by Brandais [4] and Fredkin [11]. A useful
extension are Patricia trees introduced by Morrison [17].

Using tree (especially trie or suffix tree) traversals for indexing problems is a common technique.
For instance, in computer linguistics one often needs to correct misspelled input. Schulz and Mihov
[24] pursue the idea of correcting misspelled words by finding correctly spelled candidates from a
dictionary implemented as a trie or automaton. They build an automaton for the input word and
traverse the trie with it in a depth first search. The search automaton is linear in the size of the pattern
if only a small number of errors is allowed. A similar approach has been investigated by Oflazer [21],

2

except that he directly calculates edit distance instead of using an automaton.
Flajolet and Puech [10] analyze the average-case behavior of partial matching in k-d-tries. A

pattern in k domains with k − s don’t cares and s specified values is searched. Each entry in a k-
dimensional data set is represented by the binary string constructed by concatenating the first bits of
the k domain values, the second bits, the third bits, and so forth. Using the Mellin transform it is
proven that the average search time is O

(

n1−s/k
)

under the assumption of an independent uniform
distribution of the bits. In terms of ordinary strings this corresponds to matching with a fixed mask of
don’t cares that is iterated through the pattern.

Baeza-Yates and Gonnet [2] study the problem of searching regular expressions in a trie. The
deterministic finite state automaton for the regular expression is built, its size depending only upon
the query size (although possibly exponential in the size of the query). The automaton is simulated
on the trie and a hit is reported every time a final state is reached. Extending the average-case analysis
of Flajolet and Puech [10], the authors are able to show that the average search time depends upon
the largest eigenvalue (and its multiplicity) of the incidence matrix of the automaton. As a result,
they find that a sublinear number of nodes of the trie is visited. Apostolico and Szpankowski [1] note
that suffix trees and tries for independent strings asymptotically do not differ too much, which is an
argument for transferring the results on tries to suffix trees.

In another article Baeza-Yates and Gonnet [3] study the average cost of calculating an all-against-
all sequence matching. Here, for all strings, the substrings that match each other with a certain (fixed)
number of errors are sought. With the use of tries the average time is shown to be subquadratic.

For approximate indexing (with edit distance) Navarro and Baeza-Yates [19] have proposed a
method that flexibly partitions the pattern in pieces that can be searched in sublinear time in the suffix
tree for a text. For an error rate α = k/m, where m is the pattern length and k the allowed number of
errors, they show that a sublinear search is possible if α < 1− e/

√
σ, thereby partitioning the pattern

into j = (m + k)/ logσ n pieces. The threshold plays two roles, it gives a bound on the search depth
in a suffix tree and it gives a bound on the number of verifications needed. In Navarro [18] the bound
is investigated more closely. It is conjectured that the real threshold, where the number of matches
of a pattern in a text grows subexponentially in the pattern length, is α = 1 − c/

√
σ with c ≈ 1.09.

Higher error rates make a filtration algorithm useless because of too many verifications.
More careful tree traversal techniques can lower the number of nodes that need to be visited. This

idea is pursued by Jokinen and Ukkonen [13] (on a DAWG), Ukkonen [30], and Cobbs [7]. No exact
average-case analysis is available for these algorithms.

The start of precise analysis of algorithms is contributed to Knuth (i.e., [23]). Especially the analy-
sis of digital trees has yielded a vast amount of results. The Mellin transform and Rice’s integrals have
been the methods of choice for many results dating back as early as the analysis of radix exchange
sort in Knuth’s famous books [16]. See [27] for a recent book with a rich bibliography.

Our analysis of the average search time in the trie leads to an alternating sum of the type
n
∑

k=m

(

n

k

)

(−1)kf(n, k) . (1)

The above sum is intimately connected to tries and appears very often in their analysis (see, e.g.,
[16]). Similar sums, where f(n, k) only depends on k, have also been considered by Szpankowski
[25] and Kirschenhofer [15]. The asymptotic analysis can be done through Rice’s integrals (a tech-
nique that already appears in Nörlund [20], chap. 8, §1). It transfers the sum to a complex integral,
which is evaluated by the Cauchy residue theorem.

3

Our contribution is the general analysis of error models that depend only one the comparison
of two characters and limit the number of errors allowed before regarding two strings as different.
Unless the pattern length is very short, the asymptotic order of the running time depends on an error-
threshold relative to the number of strings in the database and independent of the pattern length. The
methods applied here can be used to determine exact asymptotics for each concrete error bound. It
also allows to estimate the effect of certain error models in limiting the search time. Furthermore,
for constant error bounds we find thresholds with respect to the error probability which reveal an
interesting behavior hidden for the most used model, the Hamming distance.

3 Main Results
The trie T for a set of strings X1, . . . , Xn is a rooted, directed tree where each edge is labeled with
a character from Σ, all outgoing edges of any node are labeled with different characters, and the
strings spelled out by the edges leading from the root to the leaves are exactly X1, . . . , Xn. We store
value(v) = i at leaf v, if the path to v spells out the string Xi. The paths from the last branching nodes
to the leaves are often compressed to a single edge.

When searching for a pattern P we want to know all strings Xi such that P is a prefix of Xi or vice
versa (with the special case of all strings having the same length). The assumption that all strings have
infinite length is not severe. Indeed, this reflects the situation that the pattern is not found. Otherwise,
the search would be ended earlier, so our analysis gives an upper bound. Pseudo code for the analyzed
algorithms is given in Figure 1.

LS Algorithm
Input: Strings X1, . . . , Xn and pattern P ,
bound D.
for i from 1 to n do

j := 1
c := 0
l := min{length(P), length(Xi)}
while c ≤ D do

while j ≤ l and match(P [j], Xi[j])
do

j := j + 1
c := c + 1
j := j + 1

if j − 2 = l then
report match for Xi

TS Algorithm : rfind(v, P, pos, D)
if D ≥ 0 then

if v is a leaf then
report match for Xvalue(v)

else if pos > length(P) then
for all leaves u in the subtree of v do

report match for Xvalue(u)

else
for each child u of v do

let c be the edge label of (u, v)
if match(P [pos], c) then

rfind(u, P, pos + 1, D)
else

rfind(u, P, pos + 1, D − 1)

Figure 1: Pseudo code of the LS and the TS algorithm. The recursive TS algorithm is started with
rfind(r, P, 0, D), where r is the root of the trie for the Strings X1, . . . , Xn.

We focus mainly on the TS algorithm, the LS algorithm is used as a benchmark. Our main result
is the following theorem. For fixed D the constants in the Landau symbols and further terms of the
asymptotic can also be computed (or at least bounded).

4

Theorem 1 (Average Complexity of the TS algorithm).

E
[

T D
n

]

=

O
(

(log n)D+1
)

, for D = O (1) and q = σ−1

O
(

(logσ n)D nlogσ q+1
)

, for D = O (1) and q > σ−1

O (1) , for D = O (1) and q < σ−1

o(n), for D + 1 < p logσ n

Ω (n logσ n) , for D + 1 > p logσ n.

(2)

Exacter bounds are possible through equations (27), (33), and (34) for the cases q < σ−1, q = σ−1,
and q > σ−1. For instance, equation (27) tells us that the number of nodes visited grows by pσ

1−qσ
for

each additional error allowed. These results can be applied to different models. For instance, for the
Hamming distance model with alphabet size 4 we get the exact first order term 4·3D

(D+1)!
(log4 n)D+1.

It is well known that the average depth of a trie is asymptotically equal to logσ n (see, e.g., [22,
26]). When no more branching takes place the TS and LS algorithm behave the same; both algorithms
perform a constant number of comparisons on average. If we allow enough errors to go beyond the
depth of the trie, they should perform similar. With an error probability of p we expect to make pm
errors on m characters. Thus, it comes as no surprise that the threshold is p logσ n.

With respect to the matching probability q we have a different behavior for the three cases q <
σ−1, q = σ−1, and q > σ−1. To explain this phenomena we take a look at the conditional probability
of a match for an already chosen character. If q < σ−1, then the conditional probability must be
smaller than 1, i.e., with some probability independent of the pattern, we have a mismatch and thus
restrict the search independently of the pattern. If q > σ−1, the conditional probability must be greater
than 1. Hence, with some probability independent of the pattern, we have a match and thereby extend
our search. This restriction or extension is independent of the number of errors allowed and, hence,
the additional factor in the complexity.

For the model where we bound the number of don’t cares we have p = 2/σ − 1/σ2 and
q = 1−2/σ+1/σ2. In the SNP database problem mentioned above, the alphabet size is σ = 4, includ-
ing the don’t care character. We find that the average-case behavior, bounding only the don’t cares, is
approximately O

(

(log n)Dn0.585
)

when allowing D don’t cares. For the number of mismatches we
could resort to the Hamming distance case mentioned above, but in this application a don’t care can-
not induce a mismatch. Therefore, the average-case complexity is approximately O

(

(log n)Dn0.292
)

when allowing D mismatches. This is significantly worse than Hamming distance only, which is
O
(

(log n)D+1
)

. It also dominates the bound on the number of don’t cares. When deciding whether
the LS or the TS algorithm should be used in this problem, we find that for D > (5/8) log4 n the LS
algorithm will outperform the TS algorithm.

As another application we apply our results to the model used by Buchner et al. [5, 6] for searching
protein structures. Here the angles of a protein folding are used for approximate search of protein sub-
structures. The full range of 360 degrees is discretized into an alphabet Σ = {[0, 15), . . . , [345, 360)}.
The algorithm then searches a protein substructure by considering all angles within a number of inter-
vals to the left and right, i.e., for i = 2 intervals to both sides, the interval [0, 15) matches [330, 345),
[345, 360), [0, 15), [15, 30), and [30, 45). If i intervals to the left or right are allowed, then the proba-
bility of a match is (2i + 1)/σ. In their application Buchner et al. [5, 6] allow no mismatch, i.e., the
search is stopped if the angle is not within the specified range. The asymptotic running time is thus
O
(

nlogσ (2i+1)
)

if i intervals to the left or right are considered. Although a suffix tree is used and the

5

underlying distribution of angles is probably not uniform and memoryless, this result can be used as
a (rough) estimate, especially of the effect of different choices of i.

4 Basic Analysis
For completeness we give a quick derivation of the expected value of LD

n , the number of comparisons
made by the LS algorithm. The probability of k comparisons is

Pr
{

LD
n = k

}

=
∑

i1+...+in=k

n
∏

j=1

(

ij − 1

D

)

pD+1qij−D−1 . (3)

From it we can derive the probability generating function

gLD
n
(z) = E

[

zLD
n

]

=
∞
∑

k=0

Pr
{

LD
n = k

}

zk =

(

zp

1 − zq

)n(D+1)

, (4)

which yields the expected value E
[

LD
n

]

= D+1
p

n. The stochastic process is very stable. We can uses
Chebyshevs inequality to derive convergence in probability of LD

n .

Pr

{∣

∣

∣

∣

LD
n

n(D + 1)
− 1

p

∣

∣

∣

∣

> ε

}

= Pr

{∣

∣

∣

∣

LD
n − n(D + 1)

p

∣

∣

∣

∣

> εn(D + 1)

}

<
q

p2ε2n(D + 1)

Hence, we have

lim
n→∞

LD
n

n(D + 1)
=

1

p
(pr.) .

Note that if D = D(n) is a function of n than we already have almost sure convergence
if D(n) = ω(log1+ε n) by a simply application of the Borel-Cantelli Lemma and the fact that
∑

n 1/(n log1+ε n) is convergent. Using a method of Kesten and Kingman (see, for instance, Sz-
pankowski [27] or Kingman [14]) this can be extended to almost sure convergence. Note that
LD

n < LD
n+1, so LD

n is non-decreasing. For any positive constant s let r = r(n) be the largest in-
teger with rs ≤ n, then LD

rs ≤ LD
n ≤ LD

(r+1)s and thus

lim sup
n→∞

LD
n

n(D + 1)
≤ lim sup

r→∞

LD
rs

(r + 1)s(D + 1)
= lim sup

r→∞

LD
rs

rs(D + 1)

rs

(r + 1)s

and equally

lim inf
n→∞

LD
n

n(D + 1)
≥ lim inf

r→∞

LD
(r+1)s

rs(D + 1)
= lim inf

r→∞

LD
(r+1)s

(r + 1)s(D + 1)

(r + 1)s

rs

By the Borel-Cantelli Lemma, LD
rs

rs(D+1)
converges to 1

p
almost sure, since for all s ≥ 1 + ε we have

∞
∑

r=0

Pr

{∣

∣

∣

∣

LD
rs

rs(D + 1)
− 1

p

∣

∣

∣

∣

≥ ε

}

≤
∞
∑

r=0

q

p2ε2
· 1

D + 1
· 1

rs
=

q

p2ε2
· 1

D + 1
· ζ(s) < ∞

6

and thus

lim
r→∞

LD
rs

rs(D + 1)
=

1

p
(a.s.)

Since (r + 1)s ∼ rs we have

lim
n→∞

LD
n

n(D + 1)
=

1

p
(a.s.)

Note that, interpreting D = D(n) as a function of n, this also holds for D(n) = Ω(1).
For the TS algorithm it is easier to examine the number of nodes visited. Observe that the

number of nodes visited is by one larger than the number of character comparisons. Each time a node
is visited the remaining leaves split up by a random choice of the next character. Depending on the
next character of the pattern the number of allowed mismatches in the subtree may stay the same
(with probability q) or may decrease (with probability p). For the average number we can set up the
following equation.

E
[

T D
n

]

= 1 +
∑

i1+···+iσ=n

(

n

i1, . . . , iσ

)

σ−n

(

σ
∑

j=1

pE
[

T D−1
ij

]

+

σ
∑

j=1

qE
[

T D
ij

]

)

. (5)

The boundary conditions are E [T−1
n] = 1, counting the character comparison that induced the last

mismatch, and E
[

T D
0

]

= 0. For n = 1 we have E
[

T D
1

]

= 1 + D+1
p

, which is the same as E
[

LD
1

]

,
except that additionally the root is counted.

From equation (5) we can derive the exponential generating function of E
[

T D
n

]

.

tD(z) = ez +

σ
∑

j=1

ptD−1
(z

σ

)

e(1− 1
σ)z +

σ
∑

j=1

qtD
(z

σ

)

e(1− 1
σ)z − 1 . (6)

We multiply with exp(−z) (which corresponds to applying some kind of binomial inversion) and
define t̃D(z) = tD(z)e−z . We have

t̃D(z) = 1 − exp(−z) + σpt̃D−1
(z

σ

)

+ σqt̃D
(z

σ

)

. (7)

Let yD
n be the coefficients of t̃D(z). The we have

yD
n = (−1)n

n
∑

k=0

(

n

k

)

(−1)k
E
[

T D
k

]

and E
[

T D
n

]

=

n
∑

k=0

(

n

k

)

yD
k .

We get the boundary conditions yD
1 = 1 + (D + 1)/p, yD

0 = 0, y−1
n = (−1)n−1 for n > 0, and

y−1
0 = 0. Comparing coefficients in equation (7) we find that for n > 1

yD
n =

(−1)n−1 + yD−1
n σ1−np

1 − σ1−nq
, (8)

which by iteration leads to

yD
n =

(−1)n

1 − σ1−n

(

σ1−n

(

σ1−np

1 − σ1−nq

)D+1

− 1

)

. (9)

7

Finally, we translate this back to

E
[

T D
n

]

= n

(

1 +
D + 1

p

)

+

n
∑

k=2

(

n

k

)

(−1)k

σk−1 − 1

(

pσ1−k

1 − qσ1−k

)D+1

−
n
∑

k=2

(

n

k

)

(−1)k

1 − σ1−k
. (10)

Let An :=
∑n

k=2

(

n
k

) (−1)k

1−σ1−k . A similar derivation to the above shows that the sum is the solution
to

An = n − 1 +
∑

i1+···+iσ=n

(

n

i1, . . . , iσ

)

σ−n

σ
∑

j=1

Aij , (11)

which we call the average “compression number”. It gives the average sum of the number of charac-
ters “hidden” by all edges, i.e., an edge with n leaves in its subtree “hides” n − 1 characters (which
would be examined by the LS but not by the TS algorithm). Hence, n(D + 1)/p − An is an upper
bound for the average performance of the TS algorithm. To examine the average-case let us recall
Rice’s integrals (see for instance Nörlund [20], chap. 8, §1).

Theorem 2 (Rice’s Formula). Let f(z) be an analytic continuation of f(k) = fk that contains the
half line [m,∞). Then

n
∑

k=m

(−1)k

(

n

k

)

fk =
(−1)n

2πı

∫

C
f(z)

n!

z(z − 1) · · · (z − n)
dz , (12)

where C is a positively oriented curve that encircles [m, n] and does not include any of the integers
0, 1, . . . , m − 1 or other singularities of f(z) .

See the liturature [16, 27, 25, 15] for details on this method (called Gamma-method by Knuth).
The proof of the theorem stems from the Cauchy residue theorem. We use this transformation to
examine the average-case behavior.

Lemma 3 (Asymptotic Behavior of the Compression Number). The asymptotic behavior of An is

An = n logσ n + n

(

1

2
− 1 − γ

ln σ
+

∑

k∈Z\{0} n− 2πık
ln σ Γ

(

−1 + 2πık
lnσ

)

ln σ

)

+ O (1) .

Proof. Recall that An is defined as

An = n − 1 +
∑

i1+···+iσ=n

(

n

i1, . . . , iσ

)

σ−n
σ
∑

j=1

Aij ,

with A0 = 0 and A1 = 0. The exponential generating function is

A(z) = zez − ez +

σ
∑

i=1

A
(z

σ

)

e(1− 1
σ)z + 1 .

Multiplying by e−z we get (with Ã(z) = A(z)e−z)

8

Ã(z) = z − 1 +

σ
∑

i=1

Ã
(z

σ

)

+ e−z .

Hence, Ã0 = 0 and Ã1 = 0. For n > 1 this, by comparing coefficients, yields

Ãn =
(−1)n

1 − σ1−n
.

Translating back we get

An =

n
∑

k=2

(

n

k

)

(−1)k

1 − σ1−k
.

Using Rice’s theorem (see Theorem 2) we show that

An =
(−1)n

2πı

∫

C

1

1 − σ1−z

n!

z(z − 1) · · · (z − n)
dz .

The growth of 1
1−σ1−z for z → ∞ is O (1), whereas n!

z(z−1)···(z−n)
= O (z−n−1). Let C be a circle

of radius M , carefully chosen as to avoid any singularities. Then 1
1−σ1−z ≤ C on the circle and we

have

∣

∣

∣

∣

(−1)nMCn!

∫ 1

0

1

M exp(2πıt)(M exp(2πıt) − 1) · · · (M exp(2πıt) − n)
dt

∣

∣

∣

∣

≤

MCn!(M − n)−n −−−−→
M→∞

0 .

Thus, we extend C to an infinite radius and find that An equals the negative sum of the residues of
1

1−σ1−z

(−1)nn!
z(z−1)···(z−n)

= B(n+1,−z) at z = 1, z = 0 and z = 1+ 2πık
lnσ

, k ∈ Z \{0}. These residues are
separated by the line <(z) = 3/2 from the residues at {2, . . . , n}. Integrating along this line yields
the value of the residues:

An =
1

2πı

∫ 3
2
+ı∞

3
2
−ı∞

1

1 − σ1−z
B(n + 1,−z)dz .

By the same argument as in Theorem 9, we can approximate the Beta function by Γ(−z)nz , thus, we
can calculate the residues of 1

1−σ1−z Γ(−z)nz , which are

res

[

1

1 − σ1−z
Γ(−z)nz, z = 0

]

= − 1

σ − 1
,

res

[

1

1 − σ1−z
Γ(−z)nz, z = 1

]

= −n

2
− γ − 1

ln σ
n − n logσ n ,

and
∑

k∈Z\{0}
res

[

1

1 − σ1−z
Γ(−z)nz, z = 1 +

2πık

ln σ

]

= − n

ln σ

∑

k∈Z\{0}
n− 2πık

ln σ Γ

(

−1 +
2πık

ln σ

)

.

9

The second term in the approximation of the Beta function is 1
1−σ1−z Γ(−z + 1)nz−1 1−z

2
. Here we

have the residues

res

[

1

1 − σ1−z
Γ(−z + 1)nz−1 1 − z

2
, z = 1

]

=
1

2 ln σ
,

and
∑

k∈Z\{0}
res

[

1

1 − σ1−z
Γ(−z + 1)nz−1 1 − z

2
, z = 1 +

2πık

ln σ

]

=

−
∑

k∈Z\{0}

kπı

(ln σ)2
n− 2πık

ln σ Γ

(

−1 +
2πık

ln σ

)

.

These residues are O (1). Hence, we find that

An = n logσ n + n

(

1

2
− 1 − γ

ln σ
+

∑

k∈Z\{0} n− 2πık
lnσ Γ

(

−1 + 2πık
lnσ

)

ln σ

)

+ O (1)

One can show that
∑∞

k=1

∣

∣Γ
(

−1 + 2πkı
ln σ

)∣

∣ is very small (below 1 for σ ≥ 106), but growing in σ.
We now turn to the evaluation of the sum

S
(D)
n :=

n
∑

k=2

(

n

k

)

(−1)k

σk−1 − 1

(

p

σk−1 − q

)D+1

. (13)

Note that if S
(D)
n is sublinear the main term of the asymptotic growth of E

[

T D
n

]

is determined by

equation (10) and Lemma 3 to be n
(

D+1
p

− logσ n
)

.

5 Asymptotic Analysis

We can prove two theorems regarding the growth of S
(D)
n for different bounds D. For constant D we

can give a very precise answer.

Theorem 4 (Searching with a Constant Bound). Let D = O (1), then

S
(D)
n = −n

(

1 +
D + 1

p

)

+ An +

O
(

(log n)D+1
)

, for q = σ−1

O
(

(logσ n)D nlogσ q+1
)

, for q > σ−1

O (1) , otherwise.

(14)

For logarithmic D we give a less exact answer, which yields a threshold where the complexity
jumps from sublinear to linear-logarithmic.

Theorem 5 (Searching with a Logarithmic Bound). If D + 1 = c logσ n, then we have

S
(D)
n =

{

−n
(

1 + D+1
p

)

+ An + o(n), for c < p

o(n), for c > p.
(15)

10

The two theorems immediately yield Theorem 1. Both proofs rely on transferring the sum to a
complex integral by Theorem 2:

Lemma 6 (From Sum to Integral). For 1 < ξ < 2 we have

S
(D)
n =

1

2πı

∫ −ξ+ı∞

−ξ−ı∞

1

σ−1−z − 1

(

p

σ−1−z − q

)D+1

B(n + 1, z)dz + O (1) . (16)

Proof. By Rice’ theorem we can write S
(D)
n as

S
(D)
n =

(−1)n

2πı

∫

C

1

σ−1−z − 1

(

p

σ−1−z − q

)D+1

B(n + 1, z)dz ,

where C is a positively oriented curve that encircles [2, m] and does not include the integers 0 and 1
or other singularities. Let

f(z) =
1

σ−1−z − 1

(

p

σ−1−z − q

)D+1

.

The function f(z) is periodic with respect to the complex part and bounded (or decreasing) with
respect to the real part. We only need to avoid its singularities. Thus, the growth of f(z) for z → ∞
is O (1) if the singularities at z = 1, z = 0, z = 1 ± 2πık/ ln σ, and z = − logσ q − 1 ± 2πık/ lnσ,
k ∈ Z, are avoided, whereas B(n + 1, z) = n!

z(z+1)···(z+n)
= O (z−n−1). Let K to be a circle of radius

M , carefully chosen as to avoid any singularities. Then for some constant C we have

∣

∣

∣

∣

∣

1

2πı

∫

K

1

σ−1−z − 1

(

p

σ−1−z − q

)D+1

B(n + 1, z)dz

∣

∣

∣

∣

∣

≤ MCn!(M − n)−n −−−−→
M→∞

0 .

The same holds for any partial path on K. Splitting K into two half circles divided by the line
<(z) = −ξ, we find that the negative sum of the residues in the right half must be the same as S

(D)
n ,

except for some small error O (1) dependent on the choice of M . This shows that

S
(D)
n =

1

2πı

∫ −ξ+ı∞

−ξ−ı∞

1

σ−1−z − 1

(

p

σ−1−z − q

)D+1

B(n + 1, z)dz + O (1) .

The integral in equation (16) can be extended to a half-circle to the right because the contribution
of the bounding path is very small. Hence, the integral is equal to the sum of the negative of the
residues right to the line <(z) = −ξ. These residues are located at z = 1, z = 0, z = 1 ± 2πık/ lnσ,
and z = − logσ q−1±2πık/ ln σ, k ∈ Z. The real part of the last ranges from 1 to 1−logσ (σ2 − 1) >
−1 under the assumption that σ−2 ≤ q ≤ 1 − σ−2.

The evaluation of the residues proves tricky for the Beta function. We approximate the Beta
function using an asymptotic expansion by Tricomi and Erdélyi [29] with help of a result of Fields
[9]. This approach was already used by Szpankowski [25]. In the following we will lay a rigorous
basis for this.

11

Lemma 7 (Asymptotic Approximation of a Beta Function Integral). For constant x 6∈
{0,−1,−2, . . .} we have

∫ ∞

−∞
|B(n, x + ıy)| dy = O

(

n−x
)

. (17)

Proof.

∫ ∞

−∞
|B(n, x + ıy)| dy = 2

∫ ∞

0

|B(n, x + ıy)|dy = 2

∫ ∞

0

Γ(n) |Γ(x + ıy)|
|Γ(n + x + ıy)| dy

= 2

∫ ∞

0

√
2π

(

n

|n + x + ıy|

)n− 1
2
(|x + ıy|
|n + x + ıy|

)x
1

√

|x + ıy|
e−yφ(n,x,y)dy

(

1 + O
(

n−1
))

,

where 0 < φ(n, x, y) = arg(x + ıy) − arg(x + n + ıy) < π
2
. Since

cos(φ(n, x, y)) =
nx + x2 + y2

√

x2 + y2
√

n2 + 2nx + x2 + y2
. (18)

We analyze φ(n, x, y) as a function φ(y) of y ≥ 0. Note that cos(φ(y)) grows inverse to φ(y) on
[0, π/2]. If x < 0, we have

nx + x2 + y2

√

x2 + y2
√

n2 + 2nx + x2 + y2
= 0 ⇔ y =

√
−nx − x2 .

The derivative of (18) is

d

dy
cos(φ(n, x, y)) =

yn2(−nx − x2 + y2)

(x2 + y2)
3
2 (n2 + 2nx + x2 + y2)

3
2

,

which, for x > 0, is 0 if y =
√

nx + x2 or y = 0. There is a minimum at y =
√

nx + x2. Hence, φ(y)
goes from 0 to a maximum at y =

√
nx + x2 and then decreases back to 0. For x < 0 the derivative

is always positive, and φ(y) decreases monotonically from π − ε to 0.
The term n

|n+x+ıy| is monotonically decreasing in y and tends to 0. The term |x+ıy|
|n+x+ıy| is monoton-

ically increasing in y and tends to 1.
We make a case distinction for the integration interval. For x > 0 we get

∫ x

0

(

n

|n + x + ıy|

)n− 1
2
(|x + ıy|
|n + x + ıy|

)x
1

√

|x + ıy|
e−yφ(n,x,y)dy

≤
(

n

n + x

)n− 1
2

(

√

x2 + x2

n2 + 2nx + 2x2

)x
1√
x

∫ x

0

e0dy ≤
(√

2x
)x

n−x
√

x = O
(

n−x
)

.

And for n large enough we have

12

∫ n

x

(

n

|n + x + ıy|

)n− 1
2
(|x + ıy|
|n + x + ıy|

)x
1

√

|x + ıy|
e−yφ(n,x,y)dy

≤
(
√

n2

(n + x)2 + x2

)n− 1
2

1√
2x

∫ n

x

(|x + ıy|
|n + x + ıy|

)x

e−yφ(n,x,y)dy

≤
∫ n

x

(
√

x2 + y2

(n + x)2 + y2

)x

e−yφ(n,x,y)dy ≤
∫ n

x

(
√

x2 + y2

n2

)x

e−yφ(n,x,y)dy

≤ n−x

∫ n

x

(√
2y
)x

e−y π
5 dy ≤ n−x 5

π

(√
2
5

π

)x

Γ(x + 1) = O
(

n−x
)

.

Since φ(n, x, x) −−−→
n→∞

arccos
(

1√
2

)

= π
4

and φ(n, x, n) −−−→
n→∞

arccos
(

1√
2

)

= π
4

we have

φ(n, x, y) > π
5

for some n large enough.
The third part is

∫ n2

n

(

n

|n + x + ıy|

)n− 1
2
(|x + ıy|
|n + x + ıy|

)x
1

√

|x + ıy|
e−yφ(n,x,y)dy

≤
(
√

n2

(n + x)2 + n2

)n− 1
2
(
√

x2 + n4

(n + x)2 + n4

)x

(x2 + n2)−
1
4 n2 = O

(

2−
n
2 n2
)

.

For the last part we have

∫ ∞

n2

(

n

|n + x + ıy|

)n− 1
2
(|x + ıy|
|n + x + ıy|

)x
1

√

|x + ıy|
e−yφ(n,x,y)dy

≤
∫ ∞

n2

(
√

n2

(n + x)2 + yn2

)n− 1
2

1√
y
dy ≤

∫ ∞

n2

y−n
2
− 1

4 dy = O
(

n−n− 1
2

)

.

Thus the whole integral is O (n−x).
For x < 0 (−x 6∈ N), the derivation is almost the same . We start with

∫ n

0

(

n

|n + x + ıy|

)n− 1
2
(|x + ıy|
|n + x + ıy|

)x
1

√

|x + ıy|
e−yφ(n,x,y)dy

≤
√

n

n + x

(

n

n + x

)n ∫ n

0

(|x + ıy|
|n + x + ıy|

)x
1

√

|x + ıy|
e−yφ(n,x,y)dy

≤ 4e−xxx (2n)−x 1√
x

∫ n

0

e−y π
5 dy = n−x 4(2e)−xxx

√
x

−5

π
(e−

1
5
nπ − 1) = O

(

n−x
)

.

13

Since
(

n
n+x

)n
< 2e−x,

√

n
n+x

< 2, and φ(n, x, y) > π
5

for some n large enough (with
φ(n, x, n) −−−→

n→∞
= π

4
and φ(n, x, 0) = π).

The second part is

∫ n2

n

(

n

|n + x + ıy|

)n− 1
2
(|n + x + ıy|

|x + ıy|

)−x
1

√

|x + ıy|
e−yφ(n,x,y)dy

≤
(
√

n2

(n + x)2 + n2

)n− 1
2
(
√

(n + x)2 + n2

x2 + n2

)−x

(x2 + n2)−
1
4 n2

≤
(√

n2

3
2
n2

)n− 1
2

2−
x
2 n2 = O

(

(

3

2

)−n
2

n2

)

.

The final part is

∫ ∞

n2

(

n

|n + x + ıy|

)n− 1
2
(|n + x + ıy|

|x + ıy|

)−x
1

√

|x + ıy|
e−yφ(n,x,y)dy

≤
∫ ∞

n2

(

n
√

(n + x)2 + y2

)n− 1
2
(
√

2y2

y2

)−x

1√
y
e−yφ(n,x,y)dy ≤ 2−

x
2

∫ ∞

n2

y−n
2
− 1

4 dy

= O
(

n−n− 1
2

)

.

This finishes the proof.

Lemma 8 (Tail of a Beta Function Integral). For x < 0 and any strictly positive function f(n) ∈
ω (1) we have

∫ ∞

f(n) ln n

|B(n, x + ıy)| dy = O
(

n−f(n)(π
4
−ε)−x

)

. (19)

Proof. We use the same derivations as in Lemma 7 together with φ(n, x, n) −−−→
n→∞

= π
4
, and

∫ n

f(n) ln n

(

n

|n + x + ıy|

)n− 1
2
(|n + x + ıy|

|x + ıy|

)−x
1

√

|x + ıy|
e−yφ(n,x,y)dy

≤ e−x

(

f(n) lnn√
2n

)x

(ln n)−
1+ε
2

∫ n

f(n) lnn

e−y(π
4
−ε)dy

≤ e−x

(

f(n) lnn√
2n

)x

(f(n) lnn)−
1
2

1
(

π
4
− ε
)e−f(n) lnn(π

4
−ε) = O

(

n−f(n)(π
4
−ε)−x

)

.

14

Theorem 9 (Approximation of Beta Integrals). Let f(n, z) be a function, such that |f(n, z)| =
O
(

nk
)

for a constant k. Let z = x + ıy. We can approximate for some constant c

∫ x+ı∞

x−ı∞
f(n, z)B(n, z)dz =

N−1
∑

k=0

∫ x+ı∞

x−ı∞
f(n, z)

(−1)kB
(1−z)
k (1)

k!
Γ(z + k)n−k−zdz + c

∫ x+ı∞

x−ı∞
f(n, z)n−N−zΓ(z)dz

+ O
(

n−N
3
−xe−

π
3
n

1
3
)

.

Proof. The proof relies on a standard expansion of the ratio of two Gamma functions by Tricomi and
Erdélyi [29], the proof that the expansion is uniform by Fields [9], and the exponentially small tails
of the integrands. The expansion is

Γ(z + α)

Γ(z + β)
= zα−β

∑

k

1

k!

Γ(1 + α − β)

Γ(1 + α − β − k)
B

(1+α−β)
k (α)z−k

+ O
(

zα−β−m (1 + |α − β|m) (1 + |α| + |α − β|)m) , (20)

which is uniformly valid for | arg(z+α)| < π, and (1 + |α − β|) (1 + |α| + |α − β|) = o(z), β−α 6∈
N, z → ∞. The B

(a)
n (x) are the generalized Bernoulli polynomials (See Temme [28] or Nörlund [20],

chap. 6, §5), which are multivariant polynomials in a and x of degree n. The first polynomials are
B

(a)
0 (x) = 1, B

(a)
1 (x) = −a/2 + x, and B

(a)
2 (x) = (3a2 + 12x2 − a(1 + 12x)) /12.

Assume x < 0. By equation (20), we can approximate B(n, x + ıy) ≤ gN(n, x + ıy) on the
interval 0 ≤ y ≤ n

1
3 by

gN(n, x + ıy) =

N−1
∑

k=0

(−1)kB
(1−x−ıy)
k (1)

k!
Γ(x + ıy + k)n−k−x−ıy + cn−N−x−ıy|y|2NΓ(x + ıy) . (21)

For y > n
1
3 we use Lemma 8 and get

∫ ∞

f(n) ln n

|B(n, x + ıy)|dy = O

(

e−n
1
3 (π

4
−ε)n−x

)

.

The terms of gN(n, x + ıy) are of the type n−k−x−ıyΓ(x + ıy + k)(x + ıy)l (l ≤ k). Integrating
over a term like this yields

15

∫ ∞

f(n) ln n

∣

∣n−k−x−ıyΓ(x + ıy + k)(x + ıy)k
∣

∣ dy

≤ 2k
√

2πn−k−x

∫ ∞

n
1
3

yk|x + k + ıy|x+k− 1
2 e

−y arg(x+k+ıy)−x−k+ x+k

12((x+k)2+y2) dy

≤ 2x+2k
√

2πn−k−x

∫ ∞

n
1
3

yx+2ke−y arg(x+k+ıy)dy

≤ 2x+2k
√

2πn−k−x

∫ ∞

n
1
3

y2ke−y π
3 dy ≤ 2x+2k

√
2πn−k−x

(

3

π

)2k+1 ∫ ∞

π
3
n

1
3

u2ke−udu

≤ 2x+2k
√

2πn−k−x

(

3

π

)2k+1

2
(π

3
n

1
3

)2k+1

e−
π
3
n

1
3 = O

(

n− k
3
−xe−

π
3
n

1
3
)

.

Since we have arg(x + k + ı) ≥ π
3
sgn(y), and

∫∞
π
3
n

1
3
u2ke−udu ≤ 2

(

π
3
n

1
3

)2k

e−
π
3
n

1
3 by iterated

integration (for n large enough). Hence, the error on the tail y > n
1
3 is exponentially small.

ΓResidues of (z)

−1σ−z−1
1

−qσ−z−1

1−q)
D+1

(Residues of

Residues of

Real values depend on q

ΓResidues of (z)

−1σ−z−1
1

−qσ−z−1

1−q)
D+1

(Residues of

Residues of

*ξ
Minimum depends
on q and c

Real values depend on q

Figure 2: Behavior of the studied function in the complex plane.

We concentrate on the first term of the expansion since each further term is by an order of magni-
tude smaller then the previous. This is due to the fact, that each new term introduces a factor n−1 and
possibly a factor z which reduces the order of singularities (in particular those of Γ(z)). As a result,
this leads to

I
(D)
ξ,n :=

1

2πı

∫ −ξ+ı∞

−ξ−ı∞

1

σ−1−z − 1

(

p

σ−z−1 − q

)D+1

Γ(z)n−zdz , (22)

with S
(D)
n = I

(D)
ξ,n + O (1) for ξ ∈ (1, 2). In Figure 2 we visualize the behavior of the function under

the integral in the complex plane. Depending on the parameter q = 1 − p the right line (dotted with
circles) of residues moves left or right. The real value −ξ∗, where the absolute value of the function
under the integral is minimal, also depends upon c for the case of D + 1 = c logσ n. If −ξ∗ > −1 is
right of the left line of residues, we move the line of integration over the residues at <(z) = −1 and
get a sublinear behavior. We might need to account for the residue of Γ(z) at z = 0 if the dotted line
is right of <(z) = 0. Otherwise, if the −ξ∗ < −1, the whole integral is too small to compensate for
An. For small values of D we take all residues into account.

16

The most important residues are those where the singularity is at a point with real value −1. We
find that

Lemma 10 (Residues at z = −1 ± 2πık/ lnσ). Let g(z) := 1
σ−1−z−1

(

p
σ−z−1−q

)D+1

Γ(z)n−z.

res [g(z), z = −1] = n

(

1 − γ

ln σ
− logσ n +

1

2
+

(D + 1)

p

)

(23)

∑

k∈Z\{0}
res

[

g(z), z = −1 +
2πık

ln σ

]

=
1

lnσ

∑

k∈Z\{0}
−Γ

(

−1 +
2πkı

ln σ

)

n1− 2πkı
ln σ (24)

Proof. The residue can be derived easiest from the series decompositions. These are at z = −1 +
2πık/ ln σ

1

σ−1−z − 1
=

∞
∑

l=−1

Bl+1(− ln σ)l

(l + 1)!

(

z + 1 − 2πık

ln σ

)l

=
−1

ln σ
(

z + 1 − 2πık
lnσ

) − 1

2
+ O

((

z + 1 − 2πık

ln σ

))

(

p

σ−z−1 − q

)D+1

= 1 +
(D + 1) lnσ

p

(

z + 1 − 2πık

ln σ

)

+ O

(

(

z + 1 − 2πık

ln σ

)2
)

n−z = n

∞
∑

l=0

n− 2πık
ln σ

(− ln n)l

l!

(

z + 1 − 2πık

ln σ

)l

Γ(z) =

{
∑∞

k=−1 γ
(−1)
l (z + 1)l = −1

z+1
+ (γ − 1) + O ((z + 1)) , for k 6= 0

∑∞
k=0 γ

(−1+ 2πık
ln σ)

l

(

z + 1 − 2πık
ln σ

)l
, otherwise.

The Bk are the Bernoulli numbers (see, e.g., Temme [28] or equation (32)).

If we expanded the next term by Theorem 9, we would find that the residues at <(z) = −1 of

g1(z) := 1
σ−1−z−1

(

p
σ−z−1−q

)D+1

Γ(z + 1)−1−z
2

n−z+1 are O (1). As a result, we have

−

res [g(z), z = −1] +
∑

k∈Z\{0}
res

[

g(z), z = −1 +
2πık

ln σ

]

 + n

(

1 +
D + 1

p

)

− An = O (1) .

Moving the line of integration to −1 + ε we get

S
(D)
n = An − n

(

1 +
D + 1

p

)

+ I
(D)
1−ε,n + O (1) . (25)

If we keep the line right of −1 we get

S
(D)
n = I

(D)
1+ε,n + O (1) . (26)

17

By equation (17), we can bound the integral for some constants c, C and for D + 1 = c logσ n as

I
(D)
ξ,n ≤ C

σξ−1 − 1
n

c logσ

“

p

σξ−1
−q

”

+ξ
.

Let Ec,q,ξ := c logσ

(

1−q
σξ−1−q

)

+ ξ be the exponent. We can bound the exponent as follows.

Lemma 11. For 0 < q < 1, c ≥ 0, and c 6= 1 − q there exists a ξ < 2 such that Ec,q,ξ < 1. If c < 1,
then Ec,q,ξ has a minimum at ξ∗ = − logσ (1 − c) + logσ q + 1. If c ≥ 1 or ξ∗ ≥ 2, then some value
ξ ∈ (1, 2) satisfies Ec,q,ξ < 1.

Proof. The exponent Ec,q,ξ has at most one extreme value for real ξ at ξ∗ = − logσ (1 − c)+logσ q+1.
Assume c < 1 and let c = 1 − σ−x, then the exponent has a minimum at ξ∗ = x + logσ q + 1,

where it takes the value

(

1 − σ−x
)

(

logσ

(

1

q
− 1

)

− logσ (σx − 1)

)

+ x + 1 + logσ q .

With respect to x there is a single extreme value, a maximum, at x∗ = − logσ q, where the
exponent takes the value 1. So for all other values of x the exponent is smaller than 1. This takes care
of the interval ξ∗ < 2.

For ξ∗ ≥ 2 we derive that c > 1 − q
σ

and that the minimum is taken for some ε > 0 at ξ = 2 − ε.

Since c logσ

(

1−q
σ1−ε−q

)

< c logσ 1 = 0 we find that

Ec,q,1−ε <
(

1 − q

σ

)

logσ

(

1 − q

σ1−ε − q

)

+ 2 − ε .

The derivative of
(

1 − q
σ

)

logσ

(

1−q
σ1−ε−q

)

+ 2 − ε w.r.t. q is

−1

σ
logσ

(

1 − q

σ1−ε − q

)

+
(

1 − q

σ

)

(

− σ1−ε − 1

(σ1−ε − q)(1 − q) lnσ

)

.

The second derivative is

2

σ

(

σ1−ε − 1

(σ1−ε − q)(1 − q) lnσ

)

−
(

1 − q

σ

)

(

(σ1−ε − 1) ((1 − q) + (σ1−ε − q))

(σ1−ε − q)2(1 − q)2 ln σ

)

,

which is smaller 0 for q < σ2−ε+σ−2σ1−ε

1+2σ−σ1−ε −−→
ε→0

σ. Therefore, the first derivative is decreasing for

q < σ − ε, it is maximal at q = 0. Here we have a value of (1−ε) ln σ−σ+σε

σ ln σ
−−→
ε→0

ln σ−σ+1
σ ln σ

< 0 for
σ ≥ 2. The term is decreasing in q and the maximal value is attained at q = 0, where we have a value
of 1. As a result we have for some small ε

Ec,q,1−ε < 1 .

Finally, for c ≥ 0 the derivative of Ec,q,ξ is

−cσξ−1

σξ−1 − q
+ 1 <

−σξ−1

σξ−1 − q
+ 1 ≤ 0, for ξ > 1 + q .

18

Thus, we again have a minimum at ξ = 2 − ε. We find that

Ec,q,1−ε ≤ logσ

(

1 − q

σ1−ε − q

)

+ 2 − ε ,

where the right terms derivative w.r.t. q is − σ1−ε−1
(σ1−ε−q)(1−q) ln σ

< 0. This, by the same arguments as
above, shows that Ec,q,1−ε < 1 for q > 0.

Note that the above formulas could be used to determine the exponent exactly for concrete values
of q and c.

We can now prove Theorem 5. If ξ∗ > 1 or c ≥ 1 we find a ξ ∈ (1, 2) such that Ec,q,ξ < 1, thus
I

(D)
ξ,n = o(n) and S

(D)
n = o(n) by equation (26).

If ξ∗ < 1, we move the line of integration to −ξ∗ = −1 + ε and find that I
(D)
1−ε,n = o(n), and by

equation (25) we have S
(D)
n = An − n

(

1 + D+1
p

)

+ o(n). A special situation occurs only for ξ∗ < 0

because we have to take the singularity of the Gamma function at z = 0 into account (the singularities
at z = − logσ q − 1 ± 2πık/ lnσ are always to the right of ξ∗).

Lemma 12 (Singularity at z = 0 for ξ∗ < 0). For ξ∗ < 0 we have

−res [g(z), z = 0] =
σ

σ − 1

(

pσ

1 − qσ

)D+1
(

= o(n), for D + 1 = c logσ n
)

. (27)

Proof. The singularities at z = − logσ q − 1 ± 2πık/ lnσ are always to the right of ξ∗ since
− logσ (1 − c) is positive. The only other singularity is the singularity at z = 0. Under the assumption
ξ∗ < 0 we have c < 1 − qσ (thus q < σ−1) and

−res [g(z), z = 0] =
σ

σ − 1

(

pσ

1 − qσ

)D+1

=
σ

σ − 1
n

c logσ

“

1−q

σ−1
−q

”

<
σ

σ − 1
n

(1−qσ) logσ

“

1−q

σ−1
−q

”

.

(28)
The exponent (1 − qσ) logσ

(

1−q
σ−1−q

)

has derivative (w.r.t. q)

−σ logσ

(

1 − q

σ−1 − q

)

+
(1 − qσ)

ln σ

[

1

σ−1 − q
− 1

1 − q

]

< 0 ,

since logσ

(

1−q
σ−1−q

)

> 1 and

(1 − qσ)

ln σ

[

1

σ−1 − q
− 1

1 − q

]

=
(1 − qσ)(1 − σ−1)

(σ−1 − q)(1 − q) lnσ
=

σ(1 − qσ)(1 − σ−1)

(1 − qσ)(1 − q) lnσ
= σ

(1 − σ−1)

(1 − q) lnσ
< σ .

The exponent has value 1 at q = 0, hence it is smaller than 1 for q > 0. Thus, the singularities
contribution is o(n), which does not affect the result.

Thus, the complexity has two cases depending on whether ξ∗ is left or right of 1. This translates
to ξ∗ < 1 if and only if c < 1 − q = p, which proves Theorem 5.

To prove Theorem 4 we calculate the remaining residues at z = 0 and z = − logσ q − 1 ±
2πık/ ln σ.

19

Lemma 13 (Residues at z = 0, z = − logσ q − 1 + 2πık
lnσ

).

Let g(z) := 1
σ−1−z−1

(

p
σ−z−1−q

)D+1

Γ(z)n−z . If q = σ−1 we have

res [g(z), z = 0] =

D+1
∑

l=0

(σ − 1)D+1(−1)−lB
(D+1)
−l+D+1

(−l + D + 1)!

l
∑

i=0

[

i
∑

j=0

Aj(σ
−1)

j!(i − j)!

(

σ

1 − σ

)j+1(

− ln n

ln σ

)i−j
]

γ
(0)
l−i−1

(lnσ)l−i
, (29)

otherwise the residue is given by equation (28).
For k ∈ Z and k 6= 0 or q 6= σ−1 we have

res

[

g(z), z = − logσ q − 1 +
2πık

ln σ

]

=

D
∑

l=0

(

1 − q

q

)D+1 (− ln σ)−lB
(D+1)
−l+D

(−l + D)!

l
∑

i=0

[

i
∑

j=0

−Aj(q)(− lnσ)j

(1 − q)j+1j!
nlogσ q+1− 2πık

ln σ
(− ln n)i−j

(i − j)!

]

(

γ
(− logσ q−1+ 2πık

ln σ)
l−i

)

. (30)

Here, B
(a)
k are generalized Bernoulli numbers, Al(x) are Eulerian polynomials and γ

(z0)
l are the

coefficients of the series for Gamma(z) at z = z0.

Proof. We compute the residues at z = 0 and z = − logσ q − 1 + 2πık
lnσ

. If q 6= σ−1, then the residue
at z = 0 is given by equation (28). Otherwise, we have a higher order singularity at z = 0, i.e., we
need to use a different series expansion for the Gamma function. We need the series representations

for the factors of g(z) = 1
σ−1−z−1

(

p
σ−z−1−q

)D+1

Γ(z)n−z at z = − logσ q − 1 + 2πık
ln σ

. These can be
derived best in terms of Eulerian polynomials An(u) defined by

1 − u

1 − uet(1−u)
=

∞
∑

n=0

An(u)
tn

n!
=

∞
∑

n=0

tn

n!

n
∑

k=0

An,ku
k |t| <

ln u

u − 1
(31)

(see Comtet [8] or Graham et al. [12] for Eulerian numbers An,k). We also need generalized
Bernoulli numbers B

(a)
k , defined by

(

t

et − 1

)a

=

∞
∑

k=0

B
(a)
k

tk

k!
|t| < 2π (32)

(see Temme [28] or Nörlund [20]). We then have the following series representations:

20

1

σ−1−z − 1
=

∞
∑

l=0

−Al(q)(− ln σ)l

(1 − q)l+1l!

(

z + logσ q + 1 − 2πık

lnσ

)l

(

p

σ−z−1 − q

)D+1

=

∞
∑

l=−D−1

(

1 − q

q

)D+1 (− ln σ)lB
(D+1)
l+D+1

(l + D + 1)!

(

z + logσ q + 1 − 2πık

ln σ

)l

n−z =

∞
∑

l=0

nlogσ q+1n− 2πık
ln σ

(− ln n)l

l!

(

z + logσ q + 1 − 2πık

ln σ

)l

Γ(z) =

{
∑∞

k=−1 γ
(0)
l zl, for q = σ−1 and k = 0

∑∞
k=−1 γ

(− logσ q−1+ 2πık
lnσ)

l

(

z + logσ q + 1 − 2πık
ln σ

)l
, otherwise.

One can show that
∣

∣

∣
γ

(0)
l − (−1)l

∣

∣

∣
<
(

1
2

+ ε
)l. The γ

(− logσ q−1+ 2πık
ln σ)

l are just the result of a simple

Taylor series. The relevant singularities are of order D + 1 (or D + 2 for q = σ−1). The residue is the
sum of all combinations of coefficients such that the power of (z + logσ q + 1 − 2πık/ lnσ) is −1.
The series lead directly to the residues.

We consider D, q, p, σ constant, so we look for largest term in n. If q = σ−1, this term is

−σ(σ − 1)D

(D + 1)!
(logσ n)D+1 , (33)

otherwise, this term is

−(1 − q)D

D!qD+1
(logσ n)D nlogσ q+1n− 2πık

lnσ Γ

(

− logσ q − 1 +
2πık

lnσ

)

. (34)

For logσ q + 1 < 0 this is o(1). In this case the residue at z = 0 yields O (1), see equation (27).
Note also that for real values Γ(x) has different signs left and right of x = 0. For the calculation
of I

(D)
ξ,n we sum up the negative of the residues. There are infinitely many residues, but due to the

behavior of the Gamma function for large imaginary values we have
∣

∣

∣

∣

∣

∑

k∈Z

n− 2πık
ln σ γ

(− logσ q−1+ 2πık
ln σ)

l−i

∣

∣

∣

∣

∣

= O (1) . (35)

Hence, the growth for constant D is

S
(D)
n = An − n

(

1 +
D + 1

p

)

+

O
(

(log n)D+1
)

, for q = σ−1

O
(

(logσ n)D nlogσ q+1
)

, for q > σ−1

O (1) , otherwise.

(36)

Thus, we have proven Theorem 4.

21

References
[1] A. Apostolico and W. Szpankowski. Self-alignments in words and their applications. Journal of

Algorithms, 13:446–467, 1992.

[2] R. A. Baeza-Yates and G. H. Gonnet. Fast text searching for regular expressions or automaton
searching on tries. Journal of the ACM, 43(6):915–936, 1996.

[3] R. A. Baeza-Yates and G. H. Gonnet. A fast algorithm on average for all-against-all sequence
matching. In String Processing and Information Retrieval Symp. SPIRE, pages 16–23. IEEE,
1999.

[4] R. D. L. Briandais. File searching using variable length keys. In Proc. of the Western Joint
Computer Conference, pages 295–298, March 1959.

[5] A. Buchner and H. Täubig. A fast method for motif detection and searching in a protein structure
database. Technical Report TUM-I0314, Fakultät für Informatik, TU München, September
2003.

[6] A. Buchner, H. Täubig, and J. Griebsch. A fast method for motif detection and searching
in a protein structure database. In Proceedings of the German Conference on Bioinformatics
(GCB’03), volume 2, pages 186–188, October 2003.

[7] A. L. Cobbs. Fast approximate matching using suffix trees. In Proc. of the 6th Sym. on Combi-
natorial Pattern Matching (CPM), volume 937 of LNCS, pages 41–54. Springer, 1995.

[8] L. Comtet. Advanced Combinatorics. D. Reidel Publishing, Dortrecht-Holland, 1974.

[9] J. L. Fields. The uniform asymptotic expansion of a ratio of Gamma functions. In Proc. of the
Int. Conf. on Constructive Function Theory, pages 171–176, Varna, May 1970.

[10] P. Flajolet and C. Puech. Partial match retrieval of multidimensional data. J. ACM, 33(2):371–
407, 1986.

[11] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

[12] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, 2nd
edition, 1994.

[13] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in static texts.
In Proc. of the 16th Int’l Symp. on Mathematical Foundations of Computer Science (MFCS),
volume 520 of LNCS, pages 240–248. Springer, 1991.

[14] J. Kingman. Subadditive ergodic theory. The Annals of Probability, 1(6):883–909, 1973.

[15] P. Kirschenhofer. A note on alternating sums. Electronic Journal of Combinatorics, 3(2), 1996.

[16] D. E. Knuth. The Art of Computer Programming – Sorting and Searching, volume 3. Addison
Wesley, 2nd edition, feb 1998.

22

[17] D. R. Morrison. PATRICIA – practical algorithm to retrieve information coded in alphanumeric.
J. of the ACM, 15(4):514–534, oct 1968.

[18] G. Navarro. Approximate Text Searching. PhD thesis, University of Chile, Dept. of Computer
Science, University of Chile, Santiago, Chile, 1998.

[19] G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate string matching.
Journal of Discrete Algorithms (JDA), 1(1):205–209, 2000. Special issue on Matching Patterns.

[20] N. E. Nörlund. Vorlesungen über Differenzenrechnung. Springer, Berlin, 1924.

[21] K. Oflazer. Error-tolerant finite-state recognition with applications to morphological analysis
and spelling correction. Computer Linguist, 22(1):73–89, 1996.

[22] B. Pittel. Paths in a random digital tree: Limiting distributions. Adv. Appl. Prob., 18:139–155,
1986.

[23] H. Prodinger and W. Szpankowski (Guest Editors). Theoretical Computer Science. Elsevier,
144(1–2) (Special Issue), 1995.

[24] K. U. Schulz and S. Mihov. Fast string correction with Levenshtein automata. Int. J. on Docu-
ment Analysis and Recognition (IJDAR), 5:67–85, 2002.

[25] W. Szpankowski. The evaluation of an alternative sum with applications to the analysis of some
data structures. Information Processing Letters, 28:13–19, 1988.

[26] W. Szpankowski. Some results on v-ary asymmetric tries. J. of Algorithms, 9:224–244, 1988.

[27] W. Szpankowski. Average Case Analysis of Algorithms on Sequences. Wiley-Interscience, 1
edition, 2000.

[28] N. M. Temme. An Introduction to Classical Functions of Mathematical Physics. Wiley, New
York, 1996.

[29] F. G. Tricomi and A. Erdélyi. The asymptotic expansion of a ratio of Gamma functions. Pacific
J. of Mathematics, 1:133–142, 1951.

[30] E. Ukkonen. Approximate string-matching over suffix trees. In Proc. of the 4th Sym. on Com-
binatorial Pattern Matching (CPM), volume 684 of LNCS, pages 228–242. Springer, 1993.

[31] F. A. O. Werner, G. Durstewitz, F. A. Habermann, G. Thaller, W. Krämer, S. Kollers,
J. Buitkamp, M. Georges, G. Brem, J. Mosner, and R. Fries. Detection and characterization
of SNPs useful for identity control and parentage testing in major European dairy breeds. Ani-
mal Genetics, to appear, 2003.

23

