
T U M
I N S T I T U T F Ü R I N F O R M A T I K

A Graphical Description Technique for
Communication in Software Architectures

Manfred Broy
Christoph Hofmann

Ingolf Krüger
Monika Schmidt

ABCDEFGHIJKLMNO
TUM-I9705

Februar 97

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-02-I9705-350/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c1997

Druck: Fakult ät f ür Informatik der
Technischen Universit ät M ünchen

1

A Graphical Description Technique for
Communication in Software Architectures*

Manfred Broy, Christoph Hofmann, Ingolf Krüger, Monika Schmidt

Institut für Informatik
Technische Universität München

D-80290 München

Abstract

A crucial aspect of the architecture of a software system is its decomposition into
components and the specification of component interactions. In this paper we use an
enhanced variant of Extended Event Traces [SHB96] as a graphical technique for the
description of such component interactions. It allows us to define interaction patterns
that occur frequently within an architecture, in the form of diagrams. The diagrams
may be instantiated in various contexts, thus allowing reuse of interaction patterns.
We present several examples to show the applicability of our notation. In addition, we
provide a formal semantics for our graphical notation, based on sets of traces.
Furthermore, we compare our approach to connector specifications in WRIGHT
[AG94], another description language for component interaction in software
architectures.

* This work was sponsored by theBundesministerium für Bildung, Wissenschaft, Forschung und Technologie
(BMBF) under the project ‘ENTSTAND’ and by theDeutsche Forschungsgemeinschaft (DFG) under the
project ‘Bellevue’.

2

Contents

1 Introduction...3

2 EETs for Component Interaction ..3
2.1 Extended Event Traces .. 4

2.2 Graphical Notation .. 4

3 EETs for Example Architectures ..8
3.1 Client/Server.. 8

3.2 Shared Variable Access ... 9

3.3 Observer Pattern .. 11

3.4 Pipe.. 13

4 Formal Syntax and Semantics...15
4.1 Textual Representation .. 15

4.2 Denotational Semantics for <EETL>.. 16

4.3 Relating EETs and <EETL> Expressions ... 19

4.4 Examples ... 21
4.4.1 Observer Pattern ... 21
4.4.2 Pipe ... 23

5 Comparing EETs and WRIGHT Connectors ..24
5.1 Connector Specification in WRIGHT.. 24

5.2 Comparing EETs and WRIGHT Connectors by Examples... 26

6 Conclusion and Further Work ...28

Acknowledgements ...29

References ...29

3

1 Introduction

Software architecture is considered as one of the keys to modern software technology.
Therefore, in recent years software architecture has attracted a lot of attention in computer
science research [HHK+96]. Although no satisfactory formal definition of the term software
architecture (or architecture, for short) exists to date, most researchers in the field agree on
components and their relationships as architectural constituents.

We can describe various aspects of an architecture by further specifying the kinds of
components and relationships we are interested in. Such aspects include, for instance, data
models, module structures and component distribution. This allows us to restrict our focus to
certain architectural views instead of having to deal with the architecture as a whole. An
important architectural view is the logical decomposition of a system into interacting
components (consider, for instance, objects in an object-oriented application sending messages
between each other). This view allows us to either specify or analyze the overall
communication protocol of a possibly complex software system.

In this paper, we introduce a graphical notation for the description of component interaction in
software architectures. Our notation is based on Extended Event Traces (EETs, [SHB96]),
which are similar to Message Sequence Charts [ITU94]. We enhance this notation by additional
operators that allow us to describe interaction architectures succinctly. Furthermore, we present
a denotational semantics, which is based on traces of system actions. This semantics allows us
to analyze the protocols of component interaction specified graphically and to reason formally
about them. This formalization is also the basis for the analysis of the compatibility of
components with the interaction protocol, and the verification of protocol properties, such as
deadlock freedom. However, we do not elaborate on compatibility and verification issues here,
nor do we cover methodological questions (like, for instance, in which contexts EETs are best
applied, and which interaction protocol properties should be specified by EETs, and which by
other techniques, such as predicate calculus). Here, we focus on the graphical notation, and
examples of its application.

The remainder of this paper is structured as follows. In Section 2, we introduce our graphical
notation, and provide its semantics informally. Then, in Section 3, we give several examples of
EET specifications for software architectures to demonstrate applicability of our notation.
Section 4 contains the formal syntax and semantics of EETs, as well as examples that indicate
how additional properties can be specified by directly working with the semantics. In Section 5,
we compare our approach to the one of Allen and Garlan [AG94] for describing the interaction
of components. Finally, Section 6 contains our conclusions and directions for further work.

2 EETs for Component Interaction

In this section, we define the graphical notation that we employ for the description of
component interaction in software architecture. In Section 2.1, we briefly discuss our
motivation for choosing the Extended Event Traces (EETs) of [SHB96] as the basis for our
notation. In Section 2.2, we illustrate the syntax and its semantics by means of examples.

4

2.1 Extended Event Traces

Event traces emerged in the field of telecommunications (see, for instance, [ITU94]) and are
now extensively used in various modeling techniques, such as object-oriented analysis and
design methods (cf. [Boo94], [BRJ96]), as well as in architecture descriptions (cf. [GHJ+95],
[BMR+96]) where they are used to describe examples of object interactions. Because of their
simple graphical syntax and their intuitive concepts they are both understandable and easily
applicable without requiring extensive training. Often, however, their semantics is not formally
defined, which leads to ambiguities in specifications.

In [SHB96], EETs are introduced as a graphical description technique for component
interaction, together with a formal semantics. Their appearance is similar to that of Message
Sequence Charts. In contrast to the latter, EETs are based on a smaller set of operators, which
simplifies their understandability.

Usually, event traces depict exemplary interaction scenarios for a certain set of components. In
the area of software architecture, however, we are interested in the set ofall interaction
sequences that may occur during the lifetime of the participating components. Another
important requirement for an interaction description technique is that it offers the ability to
compose specifications hierarchically, thus reducing the complexity of interaction structures,
and offering the possibility to reuse specifications.

To summarize, the important properties and elements of a description technique for component
interaction in software architecture are

• a graphical, intuitive and easy to use syntax

• operators for complete interaction descriptions

• operators supporting structuring and reuse of interaction descriptions

• a formal semantics, based on clear concepts.

To address these issues, we use a slightly modified version of EETs for our purposes. We
enhance the structuring mechanism of EETs from [SHB96] by providing an instantiation
mechanism for interaction descriptions that allows us to adapt EETs to various contexts.
Furthermore, we introduce an interleaving operator that enables us to succinctly express EETs
in which the order of some events is of no relevance. In the following, we use the abbreviation
EET to refer to our modified graphical notation. References to the original definition in
[SHB96] are stated explicitly.

In the remainder of this section we describe our graphical notation and explain its semantics
informally. For the presentation of the formal semantics of our notation we refer the reader to
Section 4.

2.2 Graphical Notation

Every EET has a unique name and consists of a finite set of interacting components that are
identified by their component names. Every component that participates in an EET is depicted
by a vertical axis (labelled with the component name) representing the lifetime of that
component where time advances from top to bottom. In our approach, the component names

5

are regarded as formal parameters of an EET. Thus, EETs can be combined and may be adapted
to a new context by substituting their component names. This allows us to reuse interaction
descriptions with modified axes labellings in different contexts. An interaction (or event) is
indicated by an arrow that is directed from the initiator of the interaction to the destination
component. Arrows may be labelled by an event name together with an optional parameter list
in parenthesis. No two events are allowed to occur at the same point in time, i.e. at the same
vertical position. We assume message transmission to be instantaneous. Figure 1 shows an EET
named “EET1” with three components (named A, B and C) and four events (labelled e, f, g and
h).

To reduce the number of EETs needed for an interaction description, option and repetition
indicators are provided by the graphical notation. An option indicator (denoted by 0-) allows us
to mark parts of an EET as optional, whereas a repetition indicator (-*) denotes parts that may
occur repeatedly. Both types of indicators are added to the right of an EET and their vertical
expansion designates their scope. Figure 2 depicts an EET where event e is optional, whereas
the sequence of messages f followed by g may occur one or more times, before event h occurs.

Furthermore, EETs can be hierarchically structured by a box operator where the box can be
instantiated by one of the EETs contained in the set referenced within the box. This set of
referenced EETs must be non-empty and finite. The referenced EETs have to be specified
elsewhere. This provides a means of maintaining readability in complex EETs.

A CB

e

f

g

h

Figure 1 : Simple EET

EET1:

A CB

0 - 1

1 - *

e

f

g

h

Figure 2 : EET with Optional and Repeated Parts

EET2:

6

The meaning of a box referencing a finite set of EETs is a finite choice: when the box is to be
unfolded one element from the set has to be chosen. Finite choice allows us to describe
alternatives in EETs without having to introduce large numbers of option indicators, while
maintaining the intuitive readability of EETs. Note that if finite choice is used in conjunction
with a repetition indicator, a different element of the set of possible selections may be chosen in
every repetition.EET3, depicted in Figure 3, denotes the finite set of EETs in which the box
namedChoices is substituted by eitherEET1 or EET2. If the set referenced within a box contains
only one element, the latter may be named directly in the box, thus omitting the set completely.

We do not allow cyclic or recursive references between EETs; such constructs are used mainly
to express repetition, which we handle by the explicit repetition operator. Furthermore,
omission of recursive references simplifies understanding of the diagrams, because then,
unfolding of the boxes always leads to a finite set of finite diagrams. The original definition in
[SHB96] explicitly allows recursive diagrams.

If we consider EETs as graphical representations of formal languages the definition given in
[SHB96] leads to Chomsky-2-like structures, whereas we restrict ourselves to a Chomsky-3-
like language. Consider, for instance, EETsRec andIter of Figure 4 and Figure 5, respectively.
Due to its recursive definitionRec can be used to specify the following two properties:

A CB

0 - 1
a

b

Figure 3 : EET with a Finite Choice Box

Choices
Choices = {EET1, EET2}

EET3:

P Q

s

Figure 4 : Recursive EET Definition

Rec

Rec:

g

0 - 1

7

1. an equal number of s and g messages have to occur between P and Q, and

2. no g message may precede any s message.

It is not possible to specify both properties graphically in our restricted notation.Iter, which
complies to our notation, specifies that any positive number of s messages may occur before
any positive number of g messages. The equality of the numbers of the respective messages
cannot be addressed graphically. However, in Section 4 we show how to overcome this
limitation by introducing predicates that specify additional properties of the EET, like, in our
example, the equality of the number of occurrences of s and g messages.

As we treat the component names in an EET as formal parameters, EETs can be adapted to a
different context, i.e. to different component names. This adaption is expressed by adjoining to
the name of the adapted EET the list of new component names so that every (formal)
component name of the adapted component (in the labelling order of its axes from left to right)
is substituted by the component name of the new context. For instance,EET2[D, E, F] is the
same EET asEET2 in Figure 2 with the component names A, B and C substituted by the
component names D, E and F, respectively. Of course, the compatibility concerning the arity
and the naming of the axes of an EET corresponding to a box with its “parent” EET has to be
ensured.

Consider, for instance,EET4 in Figure 6, where the EETs referenced in setChoices are adapted
to their new context.

P Q

s

Figure 5 : Nonrecursive EET Definition

Iter:

g

1 - *

1 - *

P RQ

0 - 1
a

b

Figure 6 : Adaption of Context

Choices
Choices = {EET1[P,Q,R], EET2[P,Q,R]}

EET4:

8

If substitution is applied to a hierarchically structured EET, the application is propagated all the
way down the hierarchy. Note that in the original definition in [SHB96] EETs could not be
adapted to different contexts explicitly.

Finally, we introduce an operator to denote the interleaving of EETs. Consider, for instance,
EET5 in Figure 7, which depicts the interleaving ofEET6 andEET7. Intuitively, this means that
events a, b, c and d may occur in any order, provided that b never occurs before a and d never
occurs before c. The interleaving operator is an extension of the original EET definition in
[SHB96].

Intuitively, the semantics of an EET is the set of traces obtained by recording all events while
following all possible paths through the graph from top to bottom.

3 EETs for Example Architectures

In this section, we give four examples of interaction architecture specifications using EETs.
These examples demonstrate the practical use of all operators introduced in Section 2.2. Some
examples are inspired by [AG94] such that it is easier to compare the two description
techniques later on (see Section 5).

3.1 Client/Server

The first example shows how the interaction of components in a simple Client/Server system
that consists of exactly one client and one server can be modelled. The system is then extended
by additional clients communicating with the same server. The interaction of a single client and
a server component can be described easily by the EET in Figure 8.

A B

a

b

A B

c

d

EET5:

EET6: EET7:

Figure 7 : Interleaving Operator

Client Server

request

reply 0 - *

Client/Server:

Figure 8 : EET for the Client/Server Interaction Architecture

9

The client sends a request message to the server. This message is followed by a reply message
in the opposite direction. This message sequence may occur never, or may be repeated finitely
often.

Now, we want to extend this example by an additional client that communicates with the same
server. The communication behavior of each client is as described in the EET above. We
assume that the server is able to process the requests in parallel. After completely processing
one client’s request, the server sends back a reply message to that client. The EET describing
the explained interaction architecture is depicted in Figure 9.

The EET in Figure 9 describes all system traces where request and the corresponding reply
messages may be interleaved with two restrictions resulting from each operand EET of the
interleaving operator. These restrictions are:

• Between any two request messages sent by a specific client, that client has to receive a
reply message from the server.

• The server sends a reply message to a client only after having received a request message
from that client.

If a system with one server and n (n∈ IN) clients is considered (where the interaction of each
client with the server is described as in Figure 8), the interaction architecture would be
described by the interleaving of n EETs.

This example shows how EETs may be used to specify properties of a communication
architecture elegantly. This is in contrast to other formal specification techniques, such as
predicate calculus, where formulation of such properties usually requires a substantial amount
of work.

3.2 Shared Variable Access

This example allows us to show the use of the finite choice operator in combination with axes
renaming. The mentioned system consists of two users sharing a common variable. First of all,
one of the users has to perform the initialization. Afterwards both of them can read or change
the value of the variable without any restrictions. These two scenarios are separately described
by the two EETs depicted in Figure 10. EETSet represents the event that occurs when the
shared variable is set to some value; EETGet describes the message exchange when reading the
shared variable’s value.

Client1 Server

request

reply 0 - *

Client/Server_2:

Figure 9 : EET for the Interaction of two Clients with a Single Server

Client2 Server

request

reply 0 - *

10

To describe the behavior of two users accessing the shared variable, we use EET block
specifications here, and instantiate them to the special context of the example by renaming their
axes as shown in Figure 11.

Figure 11 describes all EETs resulting from the concatenation of EETs starting with one
element of the setSET_ACCESS followed by an optional and finite sequence of elements of
UNCONSTRAINED_ACCESS.

This example shows the advantage of using the finite choice operator. Without it we would have
to draw an EET for all combinations of alternatives specified in the two EET setsSET_ACCESS

and UNCONSTRAINED_ACCESS of Figure 11. This would result in a large number of EETs.
Therefore, boxes and the finite choice operator are an elegant notation allowing us to represent
the complete interaction architecture of a system with exactly one EET.

In most cases, boxes represent interaction patterns that are typical for the system under
consideration. Therefore, by use of boxes EETs become more structured and are easier to read
and understand.

data(value)

getset(value)

Figure 10 : Variable Access

U V

Set:

U V

Get:

User1 User2Shared_Var

UNCONSTRAINED_ACCESS

SharedVariable:

Figure 11 : Shared Variable Access

SET_ACCESS

SET_ACCESS =
{Set [User1, Shared_Var],
Set [User2, Shared_Var] }

0 - *

UNCONSTRAINED_ACCESS =
{Set [User1, Shared_Var],
Set [User2, Shared_Var],
Get [User1, Shared_Var],
Get [User2, Shared_Var]}

11

3.3 Observer Pattern

Patterns [GHJ+95] [BMR+96] provide an intuitive, albeit informal, presentation technique for
(parts of) software architectures. Pattern descriptions consist of a problem statement and the
solution to the problem in a certain context. Usually, interaction scenarios of the components
participating in the solution are graphically described by event traces. Here, we will
demonstrate applicability of our notation for that purpose.

As an example pattern, we consider Observer [GHJ+95]. Observer presents a solution to the
following problem: Given a component whose state changes frequently, and other components
that are dependent on this state. How can the latter’s states be kept consistent with the former’s?
An application of the Observer pattern can be found in [BMR+96], where it forms the basis for
the well-known Model-View-Controller architecture.

The structure of the solution, depicted as a class diagram using an OMT-like notation
[RBP+91], is given in Figure 12.

In [GHJ+95], the authors present a more general solution using inheritance. We focus on the
interaction scenario, hence we deal with this simpler version.

The participants in this architecture are Subject and a number of Observers. Every Observer
that wants to receive notification of state changes in the Subject registers with the latter by
sending message attach. To decouple from its Subject an Observer sends message detach.
Whenever the Subject’s state is changed via changeState, all registered Observers are notified
by an update event. They may then request to receive the updated state by sending message
getState, which causes Subject to return a putState event.

We now specify this interaction architecture graphically. We focus on the update mechanism
and omit the registration and decoupling operations. For this example, we assume that the
number of Observers that have attached to a single Subject is n, n∈ IN. Two basic interaction
scenarios are depicted by EETs in Figure 13. The first one (StateChange) describes the sending
of message changeState from an Observer to the Subject, the second one (SingleUpdate)
expresses the notification of an Observer and the subsequent request for and transmission of the
changed state between Observer and Subject.

Figure 12 : Simplified Structure of the Observer Pattern

Subject

attach(Observer)

detach(Observer)

getState()

Observer

update()

putState(State)

observers

subject

changeState(State)

Legend:

X
Class X

 single association

 multiple association

12

Note that, as described bySingleUpdate, the Observer has to request and receive the updated
state. By means of an option indicator we could easily specify the state request and reply
mechanism as optional for the Observer, thus yielding a variant of the pattern. Next, we
describe the notification of all Observers by a single Subject. We use the interleaving operator
to denote that the order in which the Observers are notified does not matter (cf. Figure 14).

Now, we combine EETsStateChange andUpdate to yield a communication architecture for the
Observer pattern, where state changes are requested by one Observer at a time, followed by an
update broadcast to all registered Observers (cf. Figure 15).

changeState(state)

Figure 13 : State Change of the Subject and State Transmission to a Single Observer

S O

StateChange:

update

S O

SingleUpdate:

getState

putState(state)

Update:

Figure 14 : Updating the State Information of all Registered Observers O0, ..., On-1
with Subject S

S O0

SingleUpdate[S, O0]

S On-1

SingleUpdate[S, On-1]...

S On-1O0

Update

Observer:

Figure 15 : Observer Interaction Architecture after Attachment of Observers
O0, ..., On-1 with Subject S

State_Change

State_Change = {StateChange[S, O0],
...,
StateChange[S, On-1]}

0 - *

...

13

Note that the interaction architecture, as depicted in Figure 15, forbids interleaved sending of
changeState requests by different Observers. Instead, it specifies that first the complete update
cycle is processed, before another changeState request is handled by the Subject. Of course,
other request handling strategies could be specified as well.

This example, again, demonstrates that our graphical notation allows us to specify interaction
architectures including all participating components during the lifetime of the system, which is
an interesting extension of the example scenarios presented in [GHJ+95] and [BMR+96]. We
will return to this example in Section 4.4.1.

3.4 Pipe

The last example we study is a more complex one specifying a pipe architecture with a writer
that writes messages to the pipe and a reader that reads messages from the pipe. The interaction
with the pipe can be closed independently by the writer or the reader. If the reader gets an
eof_msg message, which appears when the writer has closed its connection, then the reader has
to close its connection eventually, as well. If, on the other hand, the reader decides to close the
pipe the writer can continue writing to the pipe.

Again, we specify the interaction architecture by typical interaction patterns. Figures 16 to 18
depict four EETs, each representing such a pattern.

EET Write (see Figure 16) shows the message the writer sends to the pipe in order to write a
value to the pipe.Read describes the interactions taking place when the reader reads a value
from the pipe. First the reader has to send a read message and then receives a message from the
pipe that contains the value as a parameter.

Figure 17 describes the situation when the writer closes its connection to the pipe without the
reader having closed the connection until now. First the writer sends a close message to the
pipe, then the reader can read from the pipe until the latter sends an eof_msg. Afterwards the
reader has to close the connection as well.

Figure 16 : Read and Write Scenario

ReaderPipe

Write:

read

Writer Pipe

write(value)

Read:

data(value)

14

If the reader component is the first one that closes the connection, the writer may send
write(value) messages to the pipe until it closes the connection as well (see Figure 18).

To describe the behavior of the pipe interaction architecture, these EETs are composed to form
the EET of Figure 19. Note that we did not have to perform a context adaption inPipe because
the referenced EETs already have the right context.

eof_msg

close

read

Figure 17 : “Writer Closes” Scenario

Writer ReaderPipe
WriterCloses:

data(value)

0 - 1

close

0 - *
read

Figure 18 : “Reader Closes” Scenario

Writer ReaderPipe

write(value)

close
0 - *

close

ReaderCloses:

Figure 19 : Pipe Interaction Architecture

Writer ReaderPipe

PIPE_ACCESS 0 - *

CLOSE CLOSE = {WriterCloses,
ReaderCloses }

PIPE_ACCESS = {Write, Read }

Pipe:

15

Looking at the EET depicted in Figure 19, the structure of the system behavior is obvious: after
an initial phase of writing to and reading from the pipe repeatedly, either the writer or the reader
closes the pipe (one element ofCLOSE).

Note that we cannot specify the FIFO property, which a pipe typically has, in our graphical
notation. Our trace semantics, which we introduce in Section 4, allows us to formulate
predicates over traces. Such predicates may be used to restrict the set of traces described by an
EET, thus yielding only the traces with the desired properties (such as FIFO).

4 Formal Syntax and Semantics

In the preceding sections we have used our variant of EETs based on the informal semantics
given in Section 2.2. However, the graphical notation has limitations with respect to its
expressive power. Consider, for instance, the FIFO property of the pipe architecture described
above. This property cannot be specified graphically in our notation. To remedy this situation
we define a formal semantics for our variant of EETs that is based on sets of streams. To specify
additional properties of systems described by EETs we use predicates over these streams. This
allows us to formulate, for instance, the FIFO property in an elegant way.

In Section 4.1, we present a formal syntax for a simple language that can be used as a textual
representation for EETs. We also define a denotational semantics for that language in Section
4.2, based on predicates over streams. Then, in Section 4.3, we establish the relationship
between the graphical and the textual representation. To illustrate the applicability of our
semantics we present two examples in Section 4.4.

The presentation in this section has been strongly influenced by [Fac95], where a similar
approach is pursued for Time Sequence Diagrams [ISO94], which are used for the specification
of OSI services.

4.1 Textual Representation

The first step towards the definition of a formal semantics for EETs is to define a textual
representation. It is given by the following BNF grammar:

<EETL> ::= empty
| <Msg>
| <EETL> ; <EETL>
| <EETL> | <EETL>
| <EETL>~ <EETL>
| <EETL>*

The syntactic category <Msg> is used to represent the messages that constitute the interactions
between components.

<Msg> ::= (<ComponentName>, <ComponentName>, <MsgH>)
<MsgH> ::= <MessageName>

| <MessageName>, (<FPars>)

16

<FPars> ::= <FParName>
| <FParName>, <FPars>

The productions for <ComponentName>, <MessageName> and <FParName> are omitted here.
They can be represented by strings denoting component, message and formal message
parameter names, respectively. The component names in a message reference the sender and
the receiver of the message in that order. Thus, a message determines its sender and receiver,
the message name and an optional parameter tuple.

For reasons of brevity, in the sequel we identify nonterminals and the languages they generate.

Parenthesis may be used to group <EETL> expressions. To increase readability we define the
following precedence rule: All operators associate to the left. The operators;, | and~ bind
equally strong.* has highest precedence, i.e. all other operators have lower precedence than* .

The intuitive interpretation for the operators defined in the productions of <EETL> will be
sequential composition, alternative, interleaving and repetition, respectively. This set of
operators has been chosen to allow us a smooth transition from the graphical to the textual
representation of EETs.

Next, we define a formal semantics for the language introduced in this section.

4.2 Denotational Semantics for <EETL>

The denotational semantics of <EETL> is defined by predicates over streams. A stream over a

set M is a finite or infinite sequence of elements from M. By M* and M∞ we denote the set of

finite and infinite sequences of elements from M, respectively. Then Mω = M* ∪ M∞ is the set
of streams over M. The empty stream is denoted byε and the powerset of M is denoted by
℘(M).

Without formal definition, we use the following operators on streams over set M:

& : M × Mω → Mω

: Mω → IN∪{ ∞}

<.> : M → Mω

° : Mω × Mω → Mω

 : ℘(M) × Mω → Mω

ft : Mω → M∪{ ⊥}

rt : Mω → Mω

: Mω × Mω → IB

By IB = {true, false} andIN we denote the set of Boolean truth values and the set of natural

numbers, respectively. For m∈ M, s, t∈ Mω and N⊆ M the purpose of these operators can be
described as follows: ft.s yields the first element in s, or⊥ if s = ε. Stream s without its first
element is denoted by rt.s where rt.ε = ε. m&s yields the stream whose first element is m and

then continues as s. #s denotes the length of (i.e. the number of elements in) s. If s∈ M∞ then

17

#s = ∞. The term <m> denotes the stream consisting of only the message m. s°t yields the

stream obtained by prepending stream s to stream t. If s∈ M∞ then s°t = s. Ns yields the
stream obtained from s by removing all elements not in N. denotes the prefix ordering on
streams. We write s t if s is a prefix of t. For a formal definition of these operators see, for
instance, [Fac95].

Furthermore, we define a canonical extension of functions mapping a message set M to another
message set N: For each function

f : M → N

we define its corresponding extension to streams by

fω : Mω → Nω

fω.ε = ε
fω.(m&t) = f.m & fω.t.

For better readability we use f.x instead of f(x) to denote application of function f to argument
x.

The basic idea of our denotational semantics is that every <EETL> expression defines a
predicate that describes the sequence of interactions between the participating components.
Once we have such a predicate we can define the set of streams that describes all possible
interaction sequences as given by the <EETL> expression.

As a representation for the syntactic category <Msg>, we define the following set:

Msg = CN× CN × MN × (IN → PN)

By CN, MN and PN we denote the sets of component, message and message parameter names,
respectively. A message consists of the name of its source and the destination component, a
message name and a parameter tuple. Note that we impose the following restriction on the
parameter tuple: its domain has to be an interval of the form [0 .. i], for i∈ IN. Thus, we
consider only partial mappings fromIN to PN, whose domain is an interval of the given form, to
be valid parameter tuples. The parameter tuple may be omitted if it is empty.

We use function

M[[.]] : <Msg>→ Msg

to denote the mapping between the syntactic category <Msg> and its denotation. Its obvious
definition is skipped here.

When defining the semantics of <EETL> expressions we have to take into account that
<EETL> only deals with messages with formal parameter names. An actual interaction pattern
consists of messages where these formal parameters are substituted by some actual values.
Therefore, we define the set AMsg denoting the set of actual messages as follows:

AMsg = CN× CN × MN × (IN → VAL)

18

The set VAL denotes the set of all values that can be substituted for formal parameters in
messages. Again, we impose the restriction on the parameter tuple that it be a partial mapping
from IN to VAL, whose domain is an integer interval starting at 0. For convenient access to the
constituents of an actual message, we define the following functions:

sender : AMsg → CN
receiver : AMsg → CN
msgName : AMsg → MN
paramValues : AMsg→ (IN → VAL)

by

m ∈ ΑMsg ∧ m = (s, r, mn, pv)⇒ sender.m = s∧ receiver.m = r
∧ msgName.m = mn∧ paramValues.m = pv

Furthermore, for every formal message m’∈ Msg we assume a mapping

dom: Msg→ ℘(AMsg)

such that dom.m’ denotes the set of all possible messages where the formal parameters are
replaced by concrete values.

Now, we apply the operators introduced above for the formal definition of a semantics for
<EETL>. We use induction over the structure of the grammar. To that end, we define the
following function:

P[[.]] : <EETL> → (AMsg∗ → IB)

Intuitively, for any α ∈ <EETL>, P[[α]] yields a predicate that describes the set of streams

generated byα. Let α, β ∈ <EETL>, m∈ <Msg> and t∈ AMsg∗. We define P[[.]] as follows:

P[[empty]].t ≡ (t = ε)

Thus,empty generates the empty stream.

P[[m]].t ≡ (∃m’ : m’ ∈ dom.M[[m]]: t = <m’>)

A single message generates the set of streams consisting of exactly one message where all the
formal parameters have been substituted by actual values.

P[[α ; β]].t ≡ (∃s0, s1 : s0 ∈ AMsg∗ ∧ s1 ∈ AMsg∗ :

t = s0 ° s1 ∧ P[[α]].s0 ∧ P[[β]].s1)

This defines; to denote sequential composition of <EETL> expressions.

P[[α | β]].t ≡ (P[[α]].t ∨ P[[β]].t)

Due to this definition| denotes the choice operator for <EETL> expressions.

19

P[[α ~ β]].t ≡ (∃bs: bs∈ IB∞ : P[[α]].(f.true.bs.t)∧ P[[β]].(f.false.bs.t))

where f :IB × IB∞ × AMsg∗ → AMsg∗ is defined by
f.x.y.ε = ε
f.x.(y0&y).(s0&s) = if (x = y0)

then s0&f.x.y.s
else f.x.y.s

Thus,α ~ β denotes the (not necessarily fair) interleaving of the streams generated byα andβ,
respectively.

P[[α*]].t ≡ (µZ.(τ.P[[α]].Z)).t

where τ : (AMsg∗ → IB) → (AMsg∗ → IB) → (AMsg∗ → IB)
is defined by
τ.E.A.s≡ (s =ε

∨ (∃s0, s1 :s0 ∈ AMsg∗ ∧ s1 ∈ AMsg∗ :

s0 ≠ ε ∧ s = s0 ° s1 ∧ E.s0 ∧ A.s1))

Here, µZ denotes the least fixpoint operator.τ is the functional that generates predicates
describing all finite repetitions of the stream generated byα. Existence of the least fixpoint is
guaranteed by the monotonicity ofτ in its second argument according to the theorem of
Knaster-Tarski.

The definition of P[[.]] as given above allows us to assign a semantics to all <EETL>
expressions. It is the set of streams generated by the expression under P[[.]].

[[.]] : <EETL> → ℘(AMsg∗)

[[α]] = {t ∈ AMsg∗ : P[[α]].t}

As we might constrain the set of possible system traces by some further predicate, we define the
following semantics[[. , .]] for an <EETL> expression and a constraining predicate by:

[[. , .]] : <EETL> × (AMsg∗ → IB) → ℘(AMsg∗)

[[α, Q]] = {t ∈ [[α]]: Q.t}

Now that we have defined a formal semantics for <EETL>, we relate EETs and <EETL>
expressions. Thereby, we obtain a formal semantics for EETs.

4.3 Relating EETs and <EETL> Expressions

Due to the set of operators and the semantics we have defined for <EETL> expressions it is
straightforward to obtain an <EETL> expression from any given EET. The sets CN, MN and
PN can be derived from the names of the components, messages and message parameters,
respectively, as referenced in the EET. We assume that all referenced EETs are properly
adapted to the general EET context. In the following, we provide a functionT from EET

20

diagrams to <EETL> expressions by describing its transformation rules that we can apply to
the different structures of EET diagrams:

The sending of a message between
components A and B, as depicted in Figure
20, is transformed into the following textual
representation:

T(E1) = (A, B, m, (p0, ..., pn-1))

The concept of finite choice in EETs can be
modelled by application of the alternative
operator of <EETL>. Hence, the textual
representation of the graph depicted in
Figure 21 is defined by

T(E2) = T(S0) | T(S1) | ... | T(Sk-1)

We demand that all names of the axes of all
EETsSi for 0 ≤ i ≤ k-1 are also names of
axes in EETE2.

Putting one EET after another is trans-
formed into the sequential composition of
their textual representations. Thus, the
graph depicted in Figure 22 is translated
into:

T(E3) = T(F) ; T(G)

Each dotted box in this figure denotes any
EET with compatible axes names.

The indicator 0-1 is transformed by
application of the choice operator for
<EETL>. One of the operands is the
<EETL> expressionempty. The graph of
Figure 23 thus yields the following textual
representation:

T(E4) = empty | T(F)

Figure 20 : Single Message

A B

m(p0, ..., pn-1)

E1:

Figure 21 : Choice Operator

Choices Choices = {S0, S1, ..., Sk-1}

E2:

...

Figure 22 : Sequence of EETs

E3:
...

F:

G:

Figure 23 : Indicator 0 - 1

0 - 1

...

F:

E4:

21

Indicator 0-* is directly translated into
application of operator* . The EETL
expression of the EET in Figure 24 is given
by:

T(E5) = T(F)*

Other indicators, like 1-*, can also be
translated easily.

Two EETs, used to describe independent
interaction patterns between components,
can be translated by application of the
interleaving operator of <EETL>. The EET
depicted in Figure 25 may be transformed
according to:

T(E6) = T(F) ~ T(G)

This translation may be formalized further in a straightforward manner. For reasons of brevity
we do not go into the details here.

4.4 Examples

In the following we provide two examples where we employ the formal semantics to add
properties to interaction architectures specified in our graphical notation. In Section 4.4.1 we
continue our treatment of the Observer pattern from Section 3.3 by adding the property that
within an update cycle every Observer receives the same state. Section 4.4.2 contains a formal
specification of the FIFO property for the Pipe architecture of Section 3.4.

4.4.1 Observer Pattern

In our presentation of the interaction architecture of the Observer pattern in Section 3.3 we
could not state formally that within one update cycle the states transmitted from the Subject to
the Observers are equal. In presentations of the Observer pattern, such as [GHJ+95], this “kind
behavior” of the Subject is usually taken for granted. Here, however, we formalize this
property.

In order to be able to formulate properties for EETObserver (cf. Figure 15) that describes the
interaction architecture of the Observer pattern, we first have to translate the graphical
representation of the EET into a corresponding <EETL> expression. According to the
transformation rules given in Section 4.3, we obtain the following textual representations for
the EETs depicted in Figure 13 to Figure 15:

Figure 24 : Indicator 0 - *

0 - *

...

F:

E5:

Figure 25 : Interleaving Operator

...

F:

...

G:

E6:

22

T(StateChange) = (O, S, changeState, (state))

T(SingleUpdate) = (S, O, update); (O, S, getState); (S, O, putState, (state))

T(Update) = ((S, O0, update); (O0, S, getState); (S, O0, putState, (state)))
~ ((S, O1, update); (O1, S, getState); (S, O1, putState, (state)))
~ ...
~ ((S, On-1, update); (On-1, S, getState); (S, On-1, putState, (state)))

T(Observer) = (((O0, S, changeState, (state))
| (O1, S, changeState, (state))
| ...
| (On-1, S, changeState, (state)));

T(Update))*

To obtainT(Update) andT(Observer) we have performed the necessary substitutions in the
textual representations ofSingleUpdate and StateChange, respectively. Furthermore, for
reasons of readability, we have usedT(Update) in the definition ofT(Observer).

The semantics ofT(Observer), i.e. [[T(Observer)]], contains all message streams where change
requests by some Oi, 0 ≤ i ≤ n, are followed by sequences of update messages (containing
arbitrary state values) between S and all Oj, 0 ≤ j ≤ n. Now, we will restrict this trace set further
to ensure that within one update cycle all Observers receive the same state value. To that end,

we define the following predicate for all t∈ AMsg* :

PStateConsistent.t ≡ t = ε
∨ (∀ t0, t1: t0 ∈ AMsg∗ ∧ t1 ∈ AMsg∗ ∧ t1 ≠ ε :

((t0 ° t1) t
∧ msgName.(ft.t1) = changeState
∧ #(MchangeState rt.t1) = 0)

⇒ equalValues.(paramValuesω.(MputState rt.t1)))

In the definition of this predicate we have used the following abbreviations:

MchangeState = {m ∈ AMsg : msgName.m = changeState},

MputState = {m ∈ AMsg : msgName.m = putState}

Predicate

equalValues : VAL∗→ IB

yields true iff all elements of the given stream of parameter values are equal. Its obvious
definition is omitted for reasons of brevity.

Intuitively, PStateConsistent.t states that in any subsequence of t that starts with a changeState
message, all parameter values of the subsequent putState messages are equal until the next
changeState message occurs.

23

Predicate PStateConsistent allows us to define the semantics of the Observer interaction
architecture we considered in Section 3.3 in the following way:

[[T(Observer), PStateConsistent]] = {t ∈ [[T(Observer)]] : PStateConsistent.t}

Properties of interaction scenarios are, if at all, stated informally in pattern descriptions. This
example shows how such properties can be formalized straightforwardly, thus reducing the
ambiguity arising from incomplete or informal descriptions.

4.4.2 Pipe

As a second example for the benefits gained from the formalization of our graphical notation
we recall the pipe architecture of Section 3.4. Taking a closer look at Figure 19 we notice that
the reader may read the pipe without the writer ever having sent a write(value) message to the
pipe. In fact, nothing is said about the FIFO properties a pipe typically has. It is difficult, if not
impossible, to express these properties in our EET notation. Our trace semantics, on the other
hand, allows us to formulate predicates over traces. Again, we first state the <EETL>
expressions corresponding to the EETs of Figure 16 to Figure 19:

T(Write) = (Writer, Pipe, write, (value))

T(Read) = (Reader, Pipe, read); (Pipe, Reader, data, (value))

T(WriterCloses) = (Writer, Pipe, close);
((Reader, Pipe, read); (Pipe, Reader, data, (value)))*;
(((Reader, Pipe, read); (Pipe, Reader, eof_msg)) | empty);
(Reader, Pipe, close)

T(ReaderCloses) = (Reader, Pipe, close); (Writer, Pipe, write, (value))*;
(Writer, Pipe, close)

T(Pipe) = (T(Write) | T(Read))*; (T(WriterCloses) | T(ReaderCloses))

Now we are ready to restrict the set of traces contained in[[T(Pipe)]] to those

• that exhibit FIFO behavior

• where an eof_msg message is transmitted to the reader only after all data messages have
been delivered.

An appropriate predicate for the FIFO property is as follows (t∈ AMsg∗):

PFIFO.t ≡ (∀ t’: t’ ∈ AMsg∗ :
t’ t ⇒

paramValuesω.(Mdata t’) paramValuesω.(Mwrite t’))

where the sets Mdata and Mwrite denote the sets of all actual read and write messages,
respectively:

Mdata = {m ∈ AMsg : msgName.m = data},

24

Mwrite = {m ∈ AMsg : msgName.m = write}

PEOF ensures that the reader has read all messages from the pipe before an eof_msg message is

transmitted (t∈ AMsg∗):

PEOF.t ≡ (∀ t’: t’ ∈ AMsg∗ :
t’ ° <(Pipe, Reader, eof_msg)> t
⇒ # (Mdata t’) = # (Mwrite t’))

The resulting predicate for PIPE is therefore (t∈ AMsg∗):

PPIPE.t ≡ PFIFO.t ∧ PEOF.t

This predicate is true, iff trace t has FIFO and EOF property. Thus, the set of all desired traces
in our pipe example is

[[T(Pipe), PPIPE]] = {t ∈ [[T(Pipe)]] : PPIPE.t}

5 Comparing EETs and WRIGHT Connectors

In this section, we compare the Extended Event Traces as introduced in the previous sections
with connector specifications in WRIGHT. WRIGHT is another specification technique for the
interaction of architectural components, based on CSP. It is described by Allen and Garlan in
[AG94], and allows the software architect to specify both components and connectors
separately. Connectors define the roles of interacting components and their coordination in a
certain kind of interaction. Because connectors are a “first class” element in this approach, we
can reason about component interactions independently, without taking the behavior of
components into account.

This section first briefly introduces the notation of WRIGHT. Then, we compare WRIGHT

connector specifications to interaction specifications using EETs by means of the Client/Server
and pipe architectures.

5.1 Connector Specification in WRIGHT

In [AG94], Allen and Garlan introduce connectors as “explicit semantic entities” for the
description of interactions between architectural components. In their approach the architecture
of a system is described by a WRIGHT specification that consists of component and connector
declarations, a list of component and connector instance definitions, and a list of attachment
declarations. A component declaration describes the behavior of an architectural component
and the interface for linking its instances with connector instances. A connector declaration
defines a certain kind of interaction between components. We will describe connectors in
greater detail, below. The list of instances defines the actual entities (components and
connectors) that form the system. The list of attachment declarations defines how components
are linked via connectors. Without going into syntactic details, we illustrate this notation by the
following example, which is extracted from [AG94]:

25

Here, two component types (Client and Server) and one connector type (C-S-connector) are
declared. Then, an instance of each of the respective types is defined (named s, c and cs).
Finally, in the “Attachments” section, s and c are linked via connector cs. Thus, SimpleExample
describes a simple Client/Server architecture.

Now we describe the notion of connector in more detail. As stated above, connectors define
how architectural components interact. In a WRIGHT specification components do not interact
directly but are linked via instances of connector types. Because connector types are declared
separately from component types, interaction protocols can be reused in the description of an
architecture. We may, for instance, add several server and client instance pairs to the above
example. The link between client and server instance within any of these pairs could be
established by a separate instance of type C-S-connector. A connector declaration consists of a
list of role declarations and a glue declaration. Informally, a role declaration describes how a
single participant in an interaction is expected to perform. The glue declaration is used to
coordinate the roles of a connector. In [AG94] Allen and Garlan use CSP-like notation to
describe role and glue declarations. Furthermore, they define the semantics of WRIGHT

specifications by means of CSP processes. Thus, formal reasoning about component
interactions is possible. In particular, one can determine whether port declarations (in
component specifications) are compatible with role declarations (in connector specifications),
such that we are able to determine whether an instance of a given component type can
participate in an interaction described by a given connector type. Because a formal semantics
for role and glue specifications is defined, certain properties of connectors (like, for instance,
deadlocks within connector declarations) can be formulated and (automatically) checked.

Again, we illustrate the connector concept informally, by means of an example, taken from
[AG94].

System SimpleExample
Component Server

Port provide [provide protocol]
Spec [Server specification]

Component Client
Port request [request protocol]
Spec [Client specification]

Connector C-S-connector
Role client [client protocol]
Role server [server protocol]
Glue [glue protocol]

Instances
s: Server
c: Client
cs: C-S-connector

Attachments
s.provide as cs.server
c.request as cs.client

end SimpleExample.

Figure 26 : WRIGHT Specification of a Client/Server System

26

Here, two roles (Client and Server) and their coordination (glue) are declared. The client role
consists of requesting a service and receiving the corresponding result. The role of the server is
to wait for a service request and to return the result of the service invocation. The coordinating
glue defines the order in which these events occur. Note that both the roles and the glue are
modelled as CSP processes. In the semantics of WRIGHT the coordination of the role processes
is achieved by composing them with the glue process by the ||-operator of CSP.

For a more detailed treatment of the syntax and semantics of connector declarations we refer
the reader to [AG94].

5.2 Comparing EETs and WRIGHT Connectors by Examples

In the following, we compare EETs and WRIGHT connector specifications as notations for the
specification of component interactions in software architecture. For this purpose, we first
consider the Client/Server example described above and in Section 3.1, and then turn our
attention to the pipe example of Section 3.4.

In Section 3.1 we have already described a Client/Server system with one client and one server.
Figure 28 depicts the EET together with its textual representation and its semantics.

When comparing this description with the WRIGHT specification of Figure 27 the following
differences strike out:

In the WRIGHT specification the interaction protocol is described by a connector that declares
two roles: Client and Server. The corresponding glue defines the order in which the interaction
between Client and Server takes place. The semantics of the connector description is obtained
by composing the three processes (Client, Server and glue) by the ||-operator of CSP. The
behavior description is spread over different processes. This leads to redundancies in the

connector C-S-connector =
role Client = (request!x → result?y → Client) √
role Server = (invoke?x → return!y → Server) [] √
glue = (Client.request?x → Server.invoke!x → Server.return?y

→ Client.result!y → glue) [] √

Figure 27 : WRIGHT Specification of a Client/Server Connector

Client Server

request

reply 0 - *

Client/Server:

Figure 28 : EET for the Client/Server Interaction Architecture and its Semantics

T(Client/Server) = ((Client, Server, request); (Server, Client, reply))*

The semantics of this expression is the following trace set:

[[T(Client/Server)]] =
{ ε,

< (Client, Server, request), (Server, Client, reply) >,
< (Client, Server, request), (Server, Client, reply),

(Client, Server, request), (Server, Client, reply) >,
< (Client, Server, request); (Server, Client, reply),

(Client, Server, request); (Server, Client, reply),
(Client, Server, request); (Server, Client, reply) >,

...
}

27

system specification, which induces the risk of inconsistencies. The EET describing the same
system behavior consists only of two interacting components. There is nothing that explicitly
represents the glue and thus, redundancies are avoided.

The case of success denoted by the parallel√-action in every role and the glue is simply given in
the EET by the end of the trace at the bottom of the EET. Recursion in CSP is modelled by the
repetition operator in the EET.

The WRIGHT specification contains four events:

• the client sendsrequest!x , which is received by the glue (Client.request?x)

• the glue sendsServer.invoke!x , which is received by the server (invoke?x)

• the server sendsreturn!y , which is received by the glue (Server.return?y)

• the glue sendsClient.result!y , which is received by the client (result?y)

These four events can be collapsed into two events of the EET, because the EET does not have
any glue component. Each message is sent directly from the client to the server, no
“intermediate” events, modeling message transportation, are necessary. We expect that, when
coding the Client/Server system, the glue will not be implemented by a separate software
component.

Further differences between WRIGHT and EET specifications become transparent when
considering a more complex example. Therefore, we use the pipe architecture of Section 3.4
and compare it with a similar WRIGHT specification taken from [AG94] (see Figure 29).

In the WRIGHT specification, the pipe is modelled as a connector. The message exchange of the
two roles Writer and Reader (representing the communication restrictions of components, that
interact via connector pipe) is synchronized by the glue specification. The description of the
connector behavior is achieved by composing the three processes (Writer, Reader and glue) by
the ||-operator of CSP. In the EET in Figure 19, the roles, as described by the connector
specification of Figure 29, correspond to components and the pipe is modelled as an additional
component. Therefore, in this example, no events of the WRIGHT specification are collapsed in

connector Pipe =
role Writer = write!x → Writer close → √
role Reader = let ExitOnly = close → √

in let DoRead = (read?x → Reader [] read-eof →
ExitOnly)
in DoRead ExitOnly

glue = let ReadOnly = Reader.read!y → ReadOnly
[] Reader.read-eof → Reader.close → √
[] Reader.close → √

in let WriteOnly = Writer.write?x → WriteOnly
 [] Writer.close → √

in Writer.write?x → glue [] Reader.read!y → glue
[] Writer.close → ReadOnly [] Reader.close → WriteOnly

spec ∀ Reader.read i!y • ∃ Writer.write j?x • i = j ∧ x = y

∧ Reader.read-eof
⇒ (Writer.close ∧ #Reader.read = #Writer.write)

Figure 29 : WRIGHT Specification of a Pipe Connector (taken from [AG94])

28

the EET. Both of the modelling techniques require an additional predicate over the possible set
of traces to describe advanced properties of the pipe, like, for instance, FIFO behavior.

However, this example shows that connector specifications in WRIGHT for nontrivial examples
can be fairly hard to read and to understand. This has (at least) two reasons. First, different
choice operators (denotes internal and[] denotes external choice) are used here for an implicit
coordination of the roles. Second, the various execution paths are hard to follow in the textual
protocol representation, because a substantial amount of redundancy in system specification is
introduced. This is due to the fact that in a WRIGHT connector specification interaction
protocols are described in (at least) two locations: in the role and glue part of a connector
declaration. Furthermore, a corresponding interaction sequence has to be specified in the port
declaration of a component that is designed to interact via the given connector. These
redundancies lead to a substantial amount of proof obligations to ensure the consistency of a
specification. To decide which action can take place next, it is not sufficient only to look at one
process description but it is necessary to look at the parallel composition of the role and glue
processes.

On the other hand, the two-dimensional representation of EETs allows us to follow the different
execution paths visually. In the example above, it can easily be seen that after an initial phase of
unconstrained write and read operations either the reader or the writer can close its connection.

The comparisons above show that EETs are an intuitive and easy to read notation for
component interaction with less redundancies than WRIGHT connector specifications. However,
WRIGHT deals with both connector and component specifications while EETs focus on
component interactions. The interplay between EETs and component specifications has yet to
be investigated. For the description of more advanced properties of an interaction architecture
both description techniques require additional predicates based on a formal semantics.

6 Conclusion and Further Work

In recent years, caused by the growth of both the size and the complexity of software, the
importance of software architecture has increased. Two important parts of an architectural
description of a software system are the specification of the participating components and their
interaction. Therefore, we enhanced the EETs of [SHB96] to provide an adequate description
technique for component interactions with an underlying denotational semantics.

As shown by the examples in Section 3, EETs provide a very intuitive graphical notation for the
description of component interaction. Boxes allow us to structure the EETs and thus, help to
increase the readability and to reuse interaction patterns by adapting them to a new context. The
repetition indicator and the choice operator, as well as the interleaving operator are an
additional means to structure complex EETs. Furthermore, these powerful operators enable the
developer to specify all communication histories of an interaction protocol.

We have assigned a formal semantics to EETs, which is based on the mathematical concept of
streams over communication actions. Thus, the user can specify more sophisticated interaction
properties by providing additional predicates over the trace sets corresponding to an EET
directly.

29

EETs avoid the redundancies of connector descriptions in WRIGHT, because the roles of the
components and the coordination of the interaction is depicted in a single diagram. In our
opinion the usage of CSP-like notation limits the user spectrum of the theory significantly.
Practitioners in the field of software architecture and software engineering are seldom trained in
the application of process algebras. On the other hand, the notation of EETs is similar to that of
Message Sequence Charts, which are well known and extensively used in various modelling
techniques. The use of boxes with substitution in EETs allows us to reuse interaction protocols
in various contexts, similar to the reuse of connector types.

There are three main areas for further work: First, the language of the EETs has to be evaluated
and additional useful operators should be investigated. For instance, we are experimenting with
notations for the specification of broadcast messages to groups of components. Examples for
additional desirable operators are component creation and deletion. Furthermore, we evaluate
the usefulness of other powerful operators, e.g. a “self-interleaving” operator whose semantics
is a combination of repetition and interleaving. Concerning the underlying semantics, we
examine the benefits of using infinite traces, which would allow us to express liveness
properties.

Second, we will investigate how EET descriptions may be integrated into the whole
development process and for what purposes they might be used besides the pure documentation
of an interaction. A crucial aspect is checking of compatibility of a given component with an
interaction architecture specified by EETs.

Finally, methodological questions have to be examined, e.g. which interaction properties should
be specified with EETs and which properties should be specified by predicates.

Acknowledgements

The authors are grateful to Markus Kaltenbach, Barbara Paech, Bernhard Rumpe, Bernhard
Schätz, and Marc Sihling for stimulating discussions about draft versions of this work.

References

[AG94] R. Allen, D. Garlan: Formal Connectors, Technical Report CMU-CS-94-115,
School of Computer Science, Carnegie Mellon University, Pittsburgh, USA, 1994

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: A System of Pat
terns. Pattern-Oriented Software Architecture. Wiley, Sussex, 1996

[Boo94] G. Booch: Object-Oriented Analysis and Design with Applications. 2nd ed. Addi-
son-Wesley, CA, 1994

[BRJ96] G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language for Object-
Oriented Development, Version 0.9, 1996

[Fac95] C. Facchi: Methodik zur formalen Spezifikation des ISO/OSI Schichtenmodells.
PhD-Thesis. Technische Universität München, 1995

30

[GHJ+95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Elements of Reus-
able Object-Oriented Software. Addison-Wesley, CA, 1995

[HHK+96] C. Hofmann, E. Horn, W. Keller, K. Renzel, M. Schmidt: The Field of Software
Architecture. Technical Report TUM - I9641, Technische Universität München,
1996

[ISO94] ISO: Final DIS text of ISO/IEC 10731, information technology - Open Systems
Interconnection - conventions for the definition of OSI services. Technical Report
ISO/IEC JTC 1/SC 21 N 8604, ISO, 1994

[ITU94] International Telecommunication Union: Message Sequence Charts. ITU-T Rec-
ommendation Z.120. Geneva, 1994

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorenson: Object-Oriented
Modeling and Design. Prentice Hall, 1991

[SHB96] B. Schätz, H. Hußmann, M. Broy: Graphical Development of Consistent System
Specifications. In: J. Woodcock, M.-C. Gaudel, eds.: FME’96: Industrial Benefit
and Advances in Formal Methods. Springer, LNCS 1051, 1996

