
T U M
I N S T I T U T F Ü R I N F O R M A T I K

AutoMate - From UML Models to
Multi-Tier-Architectures

Klaus Bergner, Andreas Rausch, Marc Sihling

ABCDEFGHIJKLMNO
TUM-I0015

Oktober 00

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N



TUM-INFO-10-I0015-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c2000

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen



AutoMate { From UML Models toMulti-Tier-ArhiteturesKlaus Bergner, Andreas Raush, Mar Sihlingfbergner,raush,sihlingg�in.tum.deInstitut f�ur InformatikTehnishe Universit�at M�unhen80290 Munih, GermanyAbstratTo reate multi-tier arhitetures with a transparent aess of distributed, persistantobjets on the appliation layer, a tehnial solution is required whih usually drastiallyompliates the overall implementation. In this paper, we present the tool AutoMatewhih generates on one hand large parts of the orresponding realization, releaving thedeveloper from shemati ode. On the other hand, AutoMate provides a onvenientframework to manage the appliation�s business objets in an elegant, omprehensibleway. This way, the overall time and ost of the development proess is notieably redued.KeywordsMulti-tier arhiteture, Client/Server, Codegeneration, OODBMS, CORBA1 IntrodutionMulti-tier arhitetures have grown to be standard solutions in various appliation domains inthe last ouple of years. For example, the three-tier arhiteture onsisting of the presentationlayer, the appliation layer and the database layer is already alled the \lassi" solution forall kind of information systems [5℄. The suess and aeptane of this kind of arhiteturehas been espeially stressed by the support of standardized interfaes as, for instane, to therespetive database.Appliation development in the objet-oriented world is tehnially rather straightforward andadditionally well supported by tools in the presentation and appliation layer. Various CASEtools help in elaborating analysis and design of the system model, graphial tools o�er sup-port for the design of the user interfae, and most development environments keep a stok ofstandardized, prefabriated omponents whih are easy to be adapted to the given appliationdomain. However, development of the server side is almost always hand-made although it oftenbrings along the same set of tehnial problems:1



Most appliations require some kind of ommuniation middleware. For example, CORBA-based objet request brokers allow for ooperation within a single layer or also between severallayers of the arhiteture. This way, method alls are transparently forwarded to the alledobjet eventually swithing to other proesses or omputers. However, modern middlewaretehnologies drastially ompliate development as they require, for example, a plethora ofadditional helper objets like stubs and skeletons. Similarly, the atual transparent usage ofpersistent objets stored within the database is preeded by the rather ompliated developmentof a ustom-made solution for persistene.By and large, the implementation of transparent aess from \everywhere" to persistent objetsof the appliation layer still laks standard solutions and thus renders development of the serverside unneessarily ompliated. This is espeially due to the triky interplay of appliationobjets, middleware, and the underlying database.In this paper, we present the tool AutoMate whih urrently o�ers transparent aess to objet-oriented Java databases via CORBA. Its speial feature: the server ode of a distributed three-tier arhiteture an be generated automatially from UML lass diagrams, thus greatly redu-ing the required programming e�ort.AutoMate builds on established ommerial omponents. In its urrent version, the appliationlayer relies on the CORBA objet request broker Iona OrbixWeb [2℄. The database layer usesthe objet-oriented database system Versant [7℄. Clients in the presentation layer aess Javaobjets on the appliation layer via standardized, easy-to-use interfaes, while the data is storedon the database layer transparently. The resulting three-tier arhiteture is very exible withrespet to the distribution of data and funtionality, making it espeially suitable for largeenterprise appliations like omputer-aided engineering environments.The software onsists of two parts: a generator for the objet model of the CORBA Javaobjet database, and a set of manager omponents in the appliation layer of the server. Theobjet model generator is integrated within the CASE tool Rational Rose [4℄. It uses UMLlass diagrams to generate the Java ode for the server objets, and starts up the appliationand database servers. Implementations for server-side methods on the appliation layer maythen be added to the server at runtime. With respet to the manager omponents, the urrentversion of AutoMate ontains omponents for objet reation, naming, queries, and transationmanagement. Additional funtionality like shema evolution, version management, and objetmigration, as well as support for other CORBA objet request brokers, objet-oriented databasesystems, and CASE tools is onsidered in future versions.In the following, we present our vision of the overall arhiteture of omputer-aided engineeringenvironments. We show how a tool like AutoMate an help software engineers in developingsuh systems, and disuss the basi onepts and design deisions of AutoMate. Finally, wedemonstrate the usage of AutoMate and present a small appliation example.2 Arhiteture OverviewThe overall arhiteture of an AutoMate system is shown in Figure 1. It onsists of the followingthree tiers:� The database layer is responsible for storing and aessing persistent Java objets. Theinterfae of the layer is urrently based on the ODMG 2.0 standard [1℄. Thus, di�erent2



Persistent
CORBA Objects

O
bjectM

anager

T
ransactionM

anager

N
am

ingM
anager

A
dditional M

anagers

Object-Oriented Database Management System

CORBA Interface

OODBMS Interface

Client 1 Client n. . .

Q
ueryM

anager

R
eception

Presentation
Layer

Application
Layer

Database
LayerFigure 1: Overall Arhiteture of an AutoMate Systemeven distributed databases an be integrated behind this layer. However, the urrentversion of AutoMate is based on the Versant OODBMS.� The appliation layer uses Iona's CORBA ORB OrbixWeb. On the one hand, it providesCORBA interfaes to the system's base funtionality, represented by a set of managerobjets. On the other hand, it makes the persistent Java objets in the database layeraessible via CORBA. The whole appliation layer an be distributed as eah managerand eah persistent CORBA objet may be a CORBA server itself.� The lients in the presentation layer aess the appliation layer via portable CORBAoperation alls.The IDL interfaes to the persistent CORBA database objets are desribed further in Setion 3.Basially, they o�er support for aessing the internal state of the objet attributes as wellas funtionality for navigating between objets. The urrent version does also support theexeution of additional, user-de�ned Java ode in this layer.The IDL interfaes to the manager objets are explained in Setion 5. They o�er supportfor objet reation and destrution, naming and lookup of named objets, and transationmanagement. We also o�er support for querying objets by means of standard OQL queries.Note that the appliation and database layers may be fully generated from an UML modelreated with Rational Rose. Custom programming is only neessary to implement the lientsin the presentation layer. In the future, we will provide support for the implementation oflients, for example, by providing a mehanism for event noti�ation between the server andthe lients. 3



Other planned extensions are onerned with salability improvements for large appliations, forexample, by means of lient-side ahing, support for ativation and passivation, and resourepooling.3 Modeling Tehniques and Generated IDL InterfaesAutoMate fully automates the reation and startup of a CORBA objet database server. Beforewe go into details about the generation itself and the tehnial infrastruture we �rst explainhow UML lass diagrams modeled in Rational Rose are used to generate IDL interfaes foraessing remote persistent CORBA objets. The next setion will show how a running servermay be generated and started.Currently, AutoMate only relies on UML lass diagrams for the generation of a CORBA objetdatabase server. In the following, the supported modeling elements are explained. For eahmodeling element, the IDL interfaes onerned with aessing modeled objets on the serverare given. Note that the urrent version of AutoMate o�ers only simplisti, minimal CORBAaess interfaes for objets. Although this is already suÆient for a wide range of appliations,future versions will provide more omfortable interfaes with added funtionality and supportfor additional modeling onepts.3.1 Classes and PakagesTo generate support for a ertain lass within the CORBA objet database, the persistenyag for this lass has to be set. This ag an be found in the \Detail" tab in the \ClassSpei�ation" dialog, as shown in 2.

Figure 2: Marking a Class as PersistentClasses that are not marked as persistent will be treated as transient. This means identialinterfaes are generated for this lasses, but they are never made persistent. Thus, programmersan use persistent and transient lasses in an idential manner | they are also part of thetransational ontext.Classes belong to Rose pakages. Eah Rose pakage maps to a orresponding IDL moduleon the lient, and to a orresponding Java pakage on the server. Note that eah lass for apersistent CORBA objet has to be ontained in at least one pakage.4



All generated interfaes extend the (empty) IDL interfae de::tum::automate::ore::Ele-ment whih serves as a ommon base type for all persistent objets. The implementation ofthis basi lass provides the hooks for the manager framework, like the transation or querymanager:module server{ interfae Car : de::tum::automate::ore::Element{ // generated attribute aess// generated assoiations and navigations// generated user-defined methods};};3.2 EnumsIn ontrast to the objet models of C++ and CORBA, the objet models of Rational Rose andUML do not inlude the onept of an enum, that is, a type whose instanes are attributeswith a restrited number of possible, spei�ed values. Do not onfuse user-de�ned enums withJava enumerations used to iterate over the objets in a ontainer. (f. Setion 3.4).In AutoMate, support for enums is provided with the help of the speial stereotype <<Enum>>.To reate an enum, you have to add the stereotype <<Enum>> to a Rose lass. This an be doneon the \General" tab in the \Class Spei�ation" dialog, as shown in Figure 3.
Figure 3: Creating an Enum

Figure 4: Speifying the Possible Values of an Enum5



The possible values of an enum are spei�ed as attributes of the same type as the enum itself.An example an be seen in Figure 4. The IDL interfae generated from this example isenum TireType { SUMMER, WINTER, ALLROUND };3.3 AttributesAttributes an be of the base types: short, float, double, har, boolean, int, long,and java.lang.String or they may be user-de�ned enums, or referenes to user-de�ned per-sistent CORBA objets. For an attribute x of type A, two aess methods are generated in theIDL interfae:A getX();void setX(in A);3.4 Assoiations and AggregationsThe urrent version of AutoMate treats aggregations as simple assoiations and does not gen-erate speial ode for aggregations. All AutoMate assoiations are bidiretional.Multipliities: For eah assoiation or aggregation between persistent CORBA objets, themultipliity for both diretions has to be spei�ed. The urrent version of AutoMate onlysupports the following multipliities:0..1-to-0..10..1-to-*Multipliities of exatly 1 (like, for example, in 1-to-0..1) may be spei�ed, but are treatedas 0..1.AutoMate does not inlude the onept of a *-to-* assoiation. If suh assoiations are needed,they must be broken up into two 0..1-to-* assoiations.Iteration via Enumerations: When an 0..1-to-* assoiation is used, a single objet maybe assoiated with arbitrarily many other objets. For aessing these objets, we providetyped iterators. They are designed following the standard Java Enumeration lass. Note thatenumerations are not related to CORBA enums (f. Setion 3.2).For eah lass A, a orresponding IDL enumeration interfae is generated as follows:interfae AEnumeration{ boolean hasMoreElements();A nextElement();};
6



Navigating, Creating, and Removing Assoiations: The generated aess operationsin the IDL interfaes obey the following two rules, i� there are no name onits with otheraess operations:� On the x side of a 0..1-to-x assoiation (with x being 0..1 or *) between two lasses Aand B, two aess operationsA getA();void setA(in A);are generated in B's interfae.� On the x side of an x-to-* assoiation (with x being 0..1 or *) between two lasses Aand B, two aess operationsBEnumeration getBs();void addB(in B);are generated in A's interfae.If this transformation would result in name onits with other aess operations, role namesfor the assoiation endpoints have to be used in modeling. The aess operations are thengenerated based on these role names instead of the lass names. Name onits generallyarise only when there are two or more assoiations between two lasses or when there is a0..1-to-0..1 assoiation from a lass to itself. If role names are used, the generated aessoperations in the IDL interfaes obey the following two rules:� On the x side of a 0..1-to-x assoiation (with x being 0..1 or *) between two lasses Aand B with the role name R on the A side, two aess operationsR getR();void setR(in A);are generated in B's interfae.� On the x side of an x-to-* assoiation (with x being 0..1 or *) between two lasses Aand B with the role name R on the B side, two aess operationsBEnumeration getRs();void addR(in B);are generated in A's interfae.Note that the urrent, minimal IDL interfaes ontain no operations for removing assoiationinstanes. To remove an x-to-0..1 assoiation link between objets of lasses X and Y, themethod setX with parameter null has to be alled on the instane of Y whih wants to beexluded.
7



Figure 5: Spei�ation of Server-Side Methods3.5 Server-Side MethodsAutoMate allows the exeution of Java ode on the appliation server layer. Methods must bespei�ed with the publi visibility in Rational Rose, as shown in Figure 5.The ode of server-side methods is not spei�ed in Rational Rose, but has to be written inspeial Java �les, loated in the servermethods diretory below the working diretory with theorresponding Rose model �le.The subdiretory struture within servermethods orresponds to the pakage struture of theprojet. The ode for the example lass server.Car of Figure 5 is, therefore, loated in the�le servermethodsnservernCarmethods.java.Server-side methods are spei�ed in a speial lass with the suÆx Methods. This lass mustextend the orresponding persistent server lass with suÆx ImplPers. For the example ofFigure 5, the lass de�nition looks like this:pakage server;import de.tum.automate.manager.*;import de.tum.automate.manager.impl.*;import de.tum.automate.ore.*;import de.tum.automate.ore.impl.*;publi lass CarMethods extends server.CarImplPers{ ...}Server-side methods should only rely on server-side lasses and other server-side methods, asprogrammers should not see and use the types of the AutoMate framework. Instead of theCORBA method and lass names spei�ed in Rational Rose, their server-side ounterpartsshould be used, therefore.The ode for the server-side methodpubli hangeAllTires(ount : int, fromOtherCar : Car) : booleanof Figure 5 may be as followspubli boolean hangeAllTiresImpl(int ount, CarImplPers fromOtherCar){if (getImplModel() == fromOtherCar.getImplModel()){ 8



TireEnumerationImpl myTires = getImplTires();TireEnumerationImpl otherTires = fromOtherCar.getImplTires();while(myTires.hasMoreElementsImpl() &&otherTires.hasMoreElementsImpl()){TireImplPers myTire = myTires.nextElementImpl();TireImplPers otherTire = otherTires.nextElementImpl();myTire.setImplAbrasion(otherTire.getImplAbrasion());}return true;} else {return false;}}Note that attribute alls have to be performed via alls to the orresponding getImpl andsetImpl methods. Furthermore, an AutoMate server may be started without all server-sidemethod Java �les present. Calls to suh server-side methods return default values, and arelogged in the log �le. This way, the tool an be used very easily for prototyping and inrementaldevelopment.4 Creating the ServerGenerating a server requires that the OrbixWeb Java Daemon is running. All remaining a-tivities are fully automated and an be seleted and started from the AutoMate main dialogwindow, whih may be opened in Rose via the menu bar. One the generation is started thefollowing steps are exeuted:
generation

Figure 6: Overview of an exemplary generation proess9



1. Generate, Compile, and EnhaneThis step relates to the generation and preparation of the IDL �les and the lasses of thepersistent CORBA objets on the server.2. New DatabaseIn this step, a new Versant Java database is reated and its shema is populated with theJava lasses generated in the previous step.3. CORBA StartupIn this step, OrbixWeb is initialized with the generated IDL interfaes, onneted withthe Versant database, and made available as a new server in the network.Figure 6 shows all �les that have been generated for the example lass Car. The interfaeCar represents the CORBA lient interfae. The stub and skeleton lasses CarStub, tie Car,CarSkeleton) are usually transparent to programmers. The persistent lass CarImplPers hasthe same operations as the stub and skeleton lasses, but implements a di�erent interfae, theinterfae CarOperations. Thus, CORBA objets and database objets are learly separated.

Figure 7: Examplary interplay of the generated lassesFinally, if all the �les are generated and ompiled and if the database and CORBA have beenproperly started, programmers an use the Car CORBA objet. Figure 7 shows the appearinginterations if the method setCluth is alled via CORBA on a Car objet.5 Servies and ManagersTo aess the persistent CORBA objets living in an AutoMate objet database, lients needto aess so-alled manager objets providing base funtionality. In ontrast to the persistentobjets living on the AutoMate server, whih may be reated and deleted dynamially, themanager objets are part of the stati arhiteture of AutoMate (f. Setion 2). All managersare so-alled singleton objets|there exists only a single instane of eah manager lass.The IDL interfaes of all managers are de�ned in the module de::tum::automate::managerprovided in the �le Manager.idl. This �le inludes the Core.idl �le where the Elementinterfae (f. Setion 3.1) and a basi exeption interfae named BasiExeption are de�ned.Almost all interfaes follow the orresponding standards of the OMG interfaes (.f. [3℄).10



5.1 TransationsThe Transation ontext interfae o�ers the three standard transation operations: The beginoperation starts a new transation, the ommit operation tries to perform the hanges madewithin the transation, and the abort operation takes bak all those hanges. All three opera-tions may result in exeptions.It is possible to begin and end multiple transations within one transation ontext by allingthe begin and ommit operations repeatedly on a single Transation objet. However, eahbegin must be followed by a ommit or abort. Calling begin twie in a row results in anexeption.interfae Transation {void begin() raises(de::tum::automate::ore::BasiExeption);void ommit() raises(de::tum::automate::ore::BasiExeption);void abort() raises(de::tum::automate::ore::BasiExeption);};Currently, optimisti as well as pessimisti transation logi is supported. Database objets maybe loked aording to four di�erent strategies: exlusive, read/write, read, and not repeatableread. This allows the programmer to optimize the strategy used in AutoMate.The TransationManager interfae (f. Figure 8) provides support for reating and deletingtransation ontexts via the open and lose operations. Note that these two operations arerather heavyweight ompared to the transation operations of Setion 5.1.In the urrent version of AutoMate, CORBA objet referenes to objets of type Elementare only valid within a single transation (starting with a begin and ending with a ommit orabort). If a durable objet referene is needed, it an be aquired by alling the objetToHandleoperation on an arbitrary persistent Element. This results in a portable string that may bestored persistently on the lient, for example. The onverse operation handleToObjet onvertsthis string to an objet referene again.5.2 NamingThe naming funtionality (f. Figure 9) is used to assign (or bind) string names to databaseobjets. Names may be unassigned using the unbind operation. The lookup operation returnsthe database objet assigned with a ertain name.Note that the bind operation does not need a Transation parameter beause its Elementparameter is already onneted with a transation ontext.Objets of type Element returned by the lookup method have to be ast to a more spei�CORBA type before their spei� methods an be aessed. This an be done with the helpof the narrow method of the orresponding Helper interfae, as demonstrated in the followinglient ode example: 11



interfae TransationManager {Transation open(in string dbName, in Loking loking,in TransationLogi transationLogi)raises (de::tum::automate::ore::BasiExeption);void lose(in Transation transation)raises (de::tum::automate::ore::BasiExeption);string objetToHandle(in de::tum::automate::ore::Element element)raises (de::tum::automate::ore::BasiExeption);de::tum::automate::ore::Element handleToObjet(in Transation transation, in string handle)raises (de::tum::automate::ore::BasiExeption);}; Figure 8: Interfae of the transation manager
interfae NamingManager {void bind(in de::tum::automate::ore::Element element, in string name)raises (de::tum::automate::ore::BasiExeption);void unbind(in Transation transation, in string name)raises (de::tum::automate::ore::BasiExeption);de::tum::automate::ore::Element lookup(in Transation transation, in string name)raises (de::tum::automate::ore::BasiExeption);}; Figure 9: Interfae of the naming manager

12



interfae ObjetManager {de::tum::automate::ore::Element reate(in Transation transation, in string objetType)raises (de::tum::automate::ore::BasiExeption);void delete(in de::tum::automate::ore::Element element)raises (de::tum::automate::ore::BasiExeption);}; Figure 10: Interfae of the objet managerCar arModel = CarHelper.narrow(namingManager.lookup(transation,"Donatas 2000 GLX"));5.3 QueriesApart from �nding existing objets via the lookup operation of the naming manager, OQLqueries may be used. The syntax of these queries follows the Versant variant of OQL asdesribed in the Versant manuals.interfae QueryManager {de::tum::automate::ore::ElementEnumeration query(in Transation transation, in string query)raises (de::tum::automate::ore::BasiExeption);};The query manager returns an enumeration of generi Element CORBA objets. Analogous toobjets returned by the lookup method of the NamingManager, the objets in the enumerationhave to be ast to a more spei� CORBA type before their spei� methods an be used.Furthermore, that queries rely on persistent server lasses, and not on CORBA interfaes.Given the example lass of Figure 5 on page 8, a possible query string ould beselet selfoid from server.CarImplPers where _Model == "Beetle"5.4 Objet Creation and DestrutionNew persistent objets on the AutoMate server may be reated by alling the generi fatorymethod reate of the AutoMate ObjetManager. On reation, the new objet has to beonneted with a transation ontext. The objetType string parameter must ontain a full,quali�ed Java lass name with the pakage quali�ers aording to the orresponding UMLpakages and IDL modules (an example is the string "server.Car", whih denotes lass Carwithin module server). If one wants to remove a persistent objet from the server AutoMateprovides the delete operation.
13



interfae Reeption {TransationManager getTransationManager()raises (de::tum::automate::ore::BasiExeption);ObjetManager getObjetManager()raises (de::tum::automate::ore::BasiExeption);NamingManager getNamingManager()raises (de::tum::automate::ore::BasiExeption);QueryManager getQueryManager()raises (de::tum::automate::ore::BasiExeption);}; Figure 11: Interfae of the reeption manager5.5 ReeptionThe Reeption objet (f. Figure 11) serves as entral entry point to the AutoMate system,analogous to the reeption of a hotel. Its purpose is to provide lients with referenes to theother managers on the server, e.g. the transation, objet, naming, and query managers. Thusthe reeptions an be used to authentify and authorify users. Future managers, like the plannedversion manager, will also be available via the reeption.6 The Client Side

Figure 12: Example Class DiagramIn the previous setions, we demonstrated features as well as usage of the AutoMate frameworkusing the simple example of a ar. Now, we'd like to have a look from the viewpoint of theappliation programmer using the very same example.We start out by the reation of the business lass diagram as depited in Figure 12. Basially,a ar is modeled to have several wheels and an optional luth. This spei�ation is enrihedwithin the tool Rational Rose with further information regarding the lasses' persisteny. Then,the server objets are reated using the AutoMate-extension within Rational Rose whih takesroughly �ve to ten minutes on a regular PC with Windows NT. After the generation proess(see Figure 6), the AutoMate-framework together with the respetive appliation objets isready to use. Consider, a simple example of a lient that instantiates a ar and does somemodi�ations (f. Figure 13). 14



// initialize the ORBORB orb = ORB.init();// get a CORBA referene to the reeptionReeption reeption = ReeptionHelper.bind("AutoMateReeption", "automate.tum.de");// get CORBA referenes to the managersTransationManager transationManager =reeption.getTransationManager();ObjetManager objetManager = reeption.getObjetManager();NamingManager namingManager = reeption.getNamingManager();QueryManager queryManager = reeption.getQueryManager();// reate and start a new transation on the ar databaseTransation transation = transationManager.open("ars", Loking.READ_WRITE,TransationLogi.PESSIMISTIC);transation.begin();// get a referene to the objet named "Donatas 2000 GLX"Car arModel = CarHelper.narrow(namingManager.lookup(transation, "Donatas 2000 GLX"));// set the size of all wheels to 5WheelEnumeration wheels = arModel.getWheels();while (wheels.hasMoreElements())wheels.nextElement().setSize(5);// reate a new persistent Cluth objetCluth luth = CluthHelper.narrow(objetManager.reate(transation,"de.tum.automate.ars.Cluth"));// add the reated luth to the ar modelarModel.setCluth(luth);// searh for all ars named "Bug" and rename them to "Beetle"ElementEnumeration bugCars = queryManager.query(transation,"selet selfoid from server.CarImplPers where _Name == \"Bug\"");while (bugCars.hasMoreElements())CarHelper.narrow(bugCars.nextElement()).setName("Beetle");// ommit and destroy the transationtransation.ommit();transationManager.lose(transation);Figure 13: Implementation of the ar lient example15



After initialization of the objet request broker and the database, the ode gets to know allmanagers as, for instane, the query manager. An appropriate transation ontext is reatedand at this point, the tehnial preparation is done. Now, the business model is easily reatedand modi�ed. Consider, in partiular, the transparent usage of all appliation objets. Itdoesn't make a di�erene whether they are transient or persistent, remote or loal.7 Conlusion and Further WorkIn this work, we presented and demonstrated AutoMate, a development tool essentially speedingup the reation of software systems based on three-tier arhitetures. Using the tool, appliationprogrammers an abstrat away from tehnial details assoiated with underlying mehanismsand at the same time, exploit the properties of a software tool that inorporates a variety ofexisting standards, implementations , and spei�ations. For example, the ODMG 2.0 interfaefor objet-oriented databases, the middleware CORBA, and existing transation servies.But although the urrent version of AutoMate is already robust and fast enough to be usedfor some small to medium-sized three-tier appliations, it is mainly intended as a �rst initialversion. The basi arhiteture has the potential for many optimizations and extensions withrespet to funtionality as well as to salability for large systems. We plan to o�er support for� the portable objet adapter spei�ation by the OMG. Besides being independant fromthe atual ORB in use, we result in an eased usage of objet identi�ers. In partiular, weould get rid of the method ObjetToHandle of the TransationManager interfae.� the new ODMG 3.0 interfae spei�ation. Here, a variety of new data types is introduedand ready to use also for navigational purposes. Moreover, several databases might beused at the same time.� sheme evolution whih is essentially model evolution resp. lass diagram evolution.Basially, the designer spei�es a set of transformation primitives whih appliation resultsin the new model. For this purpose, we implemented another tool alled ShapeShifterwhih does exalty these steps using XMI/XML spei�ations. ShapeShifter is about tobe integrated in AutoMate within the next ouple of months.Those interested in trying out AutoMate are invited to download a fully funtional opy fromour website [6℄.Referenes[1℄ R. Cottell. Objet Database Standard: ODMG 2.0. Morgan Kaufmann, 1997.[2℄ Iona Tehnologies. Iona Home Page, http://www.iona.om, 1998.[3℄ Robert Orfali and Dan Harkey. Client/Server Programming with Java and CORBA. JohnWiley & Sons, 2nd edition, 1998.[4℄ Rational Rose. Rational Rose, http://www.rational.om, 1998.16



[5℄ Klaus Renzel and Wolfgang Keller. Three Layer Arhiteture. Software Arhitetures andDesign Patterns in Business Appliations, TUM-I9746, 1997.[6℄ The Automate Homepage, Tehnishe Universit�at M�unhen. http://automate.informatik.tu-muenhen.de, 2000.[7℄ Versant Objet Tehnology. Versant Home Page, http://www.versant.om, 1999.

17


