
TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderfors
hungsberei
h 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Re
hnerar
hitekturen

Extending Database Fun
tionality toSupport Frequent Itemset Pro
essingClara Nippl, Angelika Reiser, Bernhard Mits
hang

TUM-I0011SFB-Beri
ht Nr. 342/07/00 AAugust 00

TUM{INFO{08-I0011-0/1.{FIAlle Re
hte vorbehaltenNa
hdru
k au
h auszugsweise verboten

2000 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler Ar
hitekturenAnforderungen an: Prof. Dr. A. BodeSpre
her SFB 342Institut f�ur InformatikTe
hnis
he Universit�at M�un
henD-80290 M�un
hen, GermanyDru
k: Fakult�at f�ur Informatik derTe
hnis
hen Universit�at M�un
hen

1

Abstract Given the highly complementary nature of data mining and data warehousing it seems
obvious that data mining should be performed as an integral part of the analysis process directly on the
data already in the warehouse. In this paper we focus on frequent itemset processing and a tight
integration approach. We introduce a novel concept to calculate candidate supports, called StreamJoin,
as well as the corresponding pruning strategy to effectively reduce search complexity. We show how this
approach can be efficiently embedded within a database engine, thus being able to exploit query
optimization as well as parallel execution. Our approach avoids costly database scan operations,
additional disk spoolings, intermediate blocking or preparatory phases. In contrast to other strategies, it
yields a uniform processing within a single query execution plan and can be easily expressed and
referenced via SQL-like interfaces.

 1 Introduction
Data mining can provide new insights into the relationships between data elements and provide

analysts and decision-makers with new discoveries. Integrating the data warehouse DBMS with

data mining makes sense for many reasons. First, obtaining clean, consistent data to mine is a

primary challenge, implicitly provided by data warehouses. Second, transferring and reorganiz-

ing the data for mining is prohibitively costly in the case of large-scale warehouse applications.

Third, it is advantageous to mine data from multiple sources to discover as many interrelation-

ships as possible. This requirement is also fulfilled by warehouses that contain data from a num-

ber of sources. Finally, the continuously extended functionality of the database engines, includ-

ing parallelization, can also only be used in an integrated environment.

One of the basic operations in data mining is the discovery of frequent sets. Given a set of trans-

actions, where each transaction refers to a set of items, this operation consists of finding itemsets

that occur in the database with certain user-specified frequency, called minimum support. The

derived itemsets can be used for further processing, such as association rule mining [AY97],

time series analysis, cluster analysis etc.

Extending Database Functionality to Support
Frequent Itemset Processing

Clara Nippl1, Angelika Reiser1, Bernhard Mitschang2

1Computer Science Department, Technische Universität München
D - 80290 Munich, Germany

e-mail: nippl@in.tum.de
2Institut für Parallele und Verteil te Höchstleistungsrechner, Universität Stuttgart

D - 70565 Stuttgart, Germany

2

However, special requirements have to be fulfill ed when integrating frequent itemset generation

with large-scale databases, such as data warehouses. First, due to the large amounts of data

stored, multiple database scans cause prohibitive overhead in terms of I/O costs. Second, it is

essential to provide adequate pruning techniques to reduce the exponential complexity of search

space exploration. Finally, the mining algorithm itself has to prove high eff iciency.

Itemsets that have no superset that is frequent are called maximal frequent itemsets (MFI). The

set of all maximal frequent itemsets is called the maximal frequent set (MFS). The sum of the

lengths of all MFIs defines the MFS volume. Since this measure accounts for both the number

of MFIs, as well as for their length, we consider that it reflects best the inherent complexity of

the frequent itemset evaluation problem. The MFS implicitly defines the set of all frequent item-

sets as well. Based on this observation, we propose a novel methodology to efficiently evaluate

the maximal frequent set only, called MFSSearch. This strategy is based on a new operator,

called StreamJoin, that efficiently calculates the support of a candidate itemset, as well as of all

of its prefixes. A dynamic pruning technique that combines both top-down as well as bottom-

up techniques is used throughout search space exploration. As a result, the complexity of the

algorithm is only proportional to the MFS volume.

In contrast to other strategies, MFSSearch can eff iciently be embedded into the database engine

by using a single query execution plan. We show how the approach can easily be expressed in

augmented SQL using user-defined table operators [JM99] and common table expressions

[SQL99]. The processing scheme is non-blocking, i.e. first results (MFIs) can be delivered fast

before the whole MFS is derived. Moreover, only selective disk accesses are necessary, depend-

ing on the current search space status. Intermediate result materializations or preparatory phases

are not necessary, either. Furthermore, we point out how this approach can make full profit of

the parallelization possibili ties of the database engine.

 2 Related work
Many approaches on integrating data mining with DBMSs are based on the bottom-up Apriori

algorithm. Hence, they bear also the main drawbacks of this strategy, namely exponential com-

plexity and multiple database scan operations [AS96, AY98]. Additionally, the proposed

approaches also involve some kind of intermediate result materializations or preprocessing of

data. On the other hand, some variants of the algorithm are not suitable for integration with data

warehouses, as they perform modifications on the stored data [PCY97].

3

When comparing different possibilit ies of integrating the Apriori algorithm within a DBMS, in

[STA98] the most promising scenario was found to be one based on a so-called Vertical format

of the database. We discuss this work in more detail l ater in the paper.

Solutions using top-down or hybrid search strategies were proposed as well , such as the

MaxMiner algorithm [Ba98], PincerSearch [LK98] or MaxClique and MaxEclat [ZP+97].

Although the pruning strategies of these algorithms reduce the search complexity considerably,

they still involve multiple database passes or even preparatory phases. This has a negative effect

on performance, as demonstrated later on in this paper.

Recent work [AAP00, HPY00] proposes the construction of highly condensed data structures

in order to avoid database scans. However, it is not clear how these approaches perform e.g. in

an ad-hoc data warehouse environment, where multiple users impose memory limitations and

thus also disk spoolings. Other approaches concentrate on language extensions [MPC96,

MPC98, HF+96] that are based on special operators to generate association rules. However, for

the easy development of data mining applications it is important that the constituting operations

are unbundled so that they may be shared [Ch98]. Thus, a better alternative is to provide a prim-

itive that can be exploited more generally for different data mining applications. The strategy

for MFS calculation proposed in this paper follows exactly this recommendation.

 3 Data Mining Scenar io
The decision on whether a given candidate itemset is frequent is the performance-criti cal oper-

ation in the MFS calculation. In our approach we want to directly map this primitive operation

to a single database operator. In order to model this scenario we assume the following two

tables: TRANS(tid, item) giving report of which transactions contain which items and CAND(item-

set, item) telling which itemsets contain which items, i.e. the potential frequent itemsets. An

example of two itemsets (100 and 200), three transactions (1, 2 and 3) and four items (10, 22,

35, 43) is shown in Fig. 1. This relational modeling of the data mining scenario supports that

both the number of items per tid, as well as the number of items per itemset is variable and

unknown during table creation time. In contrast, other representation alternatives, as e.g. all

items of a tid appearing as different columns of a single tuple are not useful in practice [STA98].

Given this scenario and a parameter minsup defining the minimal support set by the user, the

problem of deciding for a potential frequent itemset IS in the CAND table whether IS is frequent

can be formulated as follows:

4

“Find (through the TRANS table) those transactions containing all items of IS. If the sum of

the quali fying transactions exceeds minsup, then return IS as being a frequent itemset.”

Evaluating this query involves a join on item between the two tables TRANS(tid, item) and

CAND(itemset, item) for itemset = IS. This yields a set of tuples (IS, item, tid). We will call the

subset of those tuples for a given itemset which contain one specific item I a stream, denoted by

SIS,I. The streams for one specific itemset form a group. This means in general, every tuple from

the CAND table defines one stream.

For the task to find frequent itemsets, the streams only form an intermediate result (IR in Fig.

1). E.g., for our potential frequent itemset IS we must find those transactions which contain all

the items of IS. This means that for the final result (FR in Fig. 1) we have to join the different

streams of the itemset IS on the tid attribute, i.e. we have to join all the streams within a group.

In Fig. 1 we have an example for two itemsets, 100 and 200, which contain two resp. three items.

Therefore two streams resp. three streams are built for the itemsets. Joining the streams yields

for this example into a two-way resp. three-way join. However, in the general case we do not

have knowledge on the number of items per itemset, hence the number of joins to be performed

on a group is variable as well .

This task is a kind of all -quantification. At the same time, it is a very primitive operation within

 TRANS(tid, item) CAND(itemset, item)

 JOIN (item = item)

(1, 10)
(1, 22)
(1, 43)
(2, 10)
(2, 22)
(2, 35)
(3, 10)

(100, 10)
(100, 43)
(200, 10)
(200, 22)
(200, 35)

IR (itemset, item, tid)
(100, 10, 1)
(100, 10, 2)
(100, 10, 3)
(100, 43, 1)
(200, 10, 1)
(200, 10, 2)
(200, 10, 3)
(200, 22, 1)
(200, 22, 2)
(200, 35, 2)

{
{

JOIN (tid)

JOIN (tid)

Fig. 1: Processing scenar io for the evaluation of frequent itemsets

FR (itemset, tid)
(100, 1)
(200, 2)

S100,10
S100,43

S200,10
S200,22

 STREAMJOIN (itemset, item, tid)

Group for itemset 100

Group for itemset 200

S200,35

5

the processing of frequent itemsets. Hence, any eff icient evaluation of this all-quantification

directly supports the performance of the frequent itemset processing. Since all-quantification is

not yet a frequently occurring operator in database processing, there are rarely implementations

of it available [CK+97]. Here we designed our own solution, called StreamJoin operator, which

perfectly fits into our algorithms. The operator will be introduced in the next section. Thereafter

we will describe the particularities of our algorithm for eff icient MFI candidate generation.

 4 The StreamJoin Operator
We first describe the functionality of the operator. StreamJoin basically memorizes the incom-

ing tuples as long as they belong to the same stream. Then, these tuples are joined with the next

stream. This procedure continues for all streams of a group (i.e. for all it ems within a candidate

itemset), such that at the end, only those tuples survive that support all streams within a group,

i.e., all items within the given itemset. The StreamJoin operator has the following signature:

StreamJoin (Group-ID, Stream-ID, pred(Join-ID1), pred(Join-ID2), ...)

Two parameters specify the columns that define a group and the streams within a group; here,

these parameters are itemset and item. The subsequent parameter(s) define(s) the join predi-

cate(s). In the example from Fig. 1 it is a simple equi-join on the tid attribute. Thus the operator

joins subsequent streams of the same group, as presented in Section 3. However, more complex

predicates can be used as well to support e.g. pattern matching or sequence analysis [Ni99].

In order to perform well , the input of StreamJoin has to be grouped on the Group-ID and Stream-

ID attributes. Obviously, this requirement can always be fulfil led by adequate sorting tech-

niques. However, explicit sorting can mostly be avoided by adequate pre-processing of the data

in the very same query execution plan.

For instance, assume that the CAND table in Fig. 1 is sorted on itemset. Consider the following

evaluation alternatives w.r.t. the join between TRANS and CAND:

• an index-nested-loops join, using an index of the TRANS table on the item attribute; this is
possible in almost all cases, since in most data warehouse schemas the central table has sev-
eral indexes on the dimension attributes.

• a hash join, the CAND table being used as the probing table; please note that for an item
domain containing l items the number of possible candidates is 2l and thus the size of the
CAND table might even exceed the size of the TRANS table.

In these cases, the join result is constituted as follows: for each tuple (itemset, item) of the CAND

table a set of tuples (itemset, item, tid) is generated, yielding exactly a stream, i.e. the transac-

6

tions that contain that specific item. For instance, the tuple (100, 10) has generated the stream

S100,10 consisting of the tuples (100, 10, 1), (100, 10, 2) and (100, 10, 3). Hence, the necessary

grouping of the intermediate result IR for the StreamJoin processing is already satisfied and no

additional sort operations are necessary.

Based on this, our preliminary implementation for StreamJoin uses a dynamic hash-based

approach with two hash tables. The strategy is illustrated in Fig. 2 for an example group, repre-

senting group 500, constituted of four streams, derived from four items 1, 2, 3 and 4. The first

stream of each group is used to build the first hash table. The next stream is probed against this

hash table, the matching tuples being inserted into the second hash table. At the beginning of

the next iteration the first hash table is deleted. Similar to the previous iteration, the matching

tuples are used to build up the new contents of the first hash table. This process continues until

the next group is reached, or either a result of a probing phase or a constituting stream is empty.

At the same time, the intermediate result (i.e. hash table) sizes decrease with each iteration, as

the tuples which don’t match the join condition are eliminated.

As indicated in Fig. 2 the continuous arrows also represent the transactions that contain the pre-

fixes of the example itemset {1,2,3,4}. Hence, the corresponding supports can be easily evalu-

ated by a simple subsequent count(tid) operation. Thereby, the frequent itemsets are those for

which the calculated support exceeds minsup. In general, the following observation is valid:

Observation 1: Given an itemset X = {1,2,..., N-1,N}, by processing this itemset via the Stream-

Join operator, we also obtain the supports of all prefixes {1}, {1,2}... {1,2,...N-1}. ❐

S500,1

S500,2

S500,3

S500,4

H1,1

H1,3

H2,2

Fig. 2: StreamJoin processing flow for example group 500, constituted of 4 streams

Probe
Build (represents also prefix supports)
contents of the first hash table
contents of the second hash table

H1,1, H1,3:
H2,2:

transactions containing itemset {1}

transactions containing itemset {1,2}

transactions containing itemset {1,2,3}

transactions containing itemset {1,2,3,4}

7

Hence, given a transaction table TRANS and a table CAND with candidate itemsets, the support

of the candidates as well as of their prefixes can be eff iciently evaluated within the database,

performing a join on the two tables and pipelining the intermediate result IR into the StreamJoin

operator, as already shown in Fig. 1.

 5 The MFSSearch algor ithm
An open question is how to guide the search space exploration in order to reduce search com-

plexity and expensive database scans. In the hypothetical scenario from Fig. 1, we supposed that

all candidate itemsets are stored in the CAND table. However, given the exponential complexity

of the search space, this is impracticable for real-li fe applications and item domains. Hence, it

is desirable to fill the CAND as much as possible with MFI candidates only. In our solution this

sophisticated task of generating suitable candidates for the CAND table is performed by the MFS-

Search algorithm that is in detail explained and analyzed in a separate paper that concentrates

especially on pruning effects [NRM00]. The strategy expands the search space gradually, start-

ing with the itemset containing all items. This maximizes the effect of prefix calculations that

in turn reduce subsequent search efforts by means of pruning.

The StreamJoin processing is employed for the calculation of individual candidate supports.

The produced results are used for the generation of further candidates. Thus, MFSSearch guides

the search space exploration dynamically by already derived intermediate results. Please note

that although MFSSearch starts with the itemset containing all items, it follows a hybrid, rather

than a strict top-down search strategy. In the following, we briefly present this strategy as much

as it is necessary to understand its combination with the StreamJoin operator.

At a given time, the search space is constituted of a limited number of expanded itemsets. These

are organized in a stack. The algorithm basically extracts the topmost itemset of the stack and

calculates its support (and prefix supports) by means of StreamJoin. If the itemset is found to be

frequent, it is returned as such. If it is infrequent, MFSSearch expands the subsets of the current

itemset, pushes them on the stack, and the evaluation starts again with the topmost itemset.

In the following, we would like to detail on the way subset itemsets are expanded.

Observation 2: Given an infrequent itemset X = {1,2,...,N-1,N}, in a top-down search it is nec-

essary to test all of its subsets of level N-1. This can be done by successively eliminating the

items N-1, N-2,...1 from X. It is not necessary to do this with item N, since X -{N} is a prefix

whose support is implicitl y evaluated together with the support of X (see Observation 1). ❐

8

However, if this procedure of generating subsets by eliminating the first N-1 elements is applied

recursively, duplicates are generated. For instance, both itemsets, {1,3,4} and {2,3,4}, generate

the subset {3,4}. In order to avoid this, we have assigned a so-called elimination list (ElimList)

to each expanded itemset in the search space. The ElimList of an itemset specifies which of its

constituting items are eligible to be used for subset expansion. Assume that the siblings X1, X2

,..., XN-1 are expanded successively from X. The Elimlists of these siblings are then calculated

by successively eliminating one element from the original ElimList of X. Thus for X = {1,2,...,

N-1, N} and EX = {1,2,...,N-1} the following sibling subsets and ElimLists are generated1:

X1= {1,2,...,N-2,N}, E1 = {1,2,...,N-2},

....

XN-2= {1,3,...,N-1, N}, EN-2 = {1},

XN-1= {2,...,N-1, N}, EN-1 = .

Fig. 3 shows a sample search space obtained in this way. As shown in [NRM00] the ElimList

method guarantees a full expansion of the search space without duplicate generation and

reduces in combination with the StreamJoin prefix processing the search space already by an

order of magnitude.

The numbers in brackets show the order in which the candidate itemsets come to evaluation

throughout search space evaluation, if no pruning methods are applied, i.e. the entire search

space is spawn. This shows once again that MFSSearch doesn’t adopt a strict top-down explo-

ration, but a mixed one. Thus, all direct subsets (corresponding to the ElimList method) of a cur-

rent itemset X are first taken into consideration, before MFSSearch continues with the next sib-

ling of X.

Based on this, we have the following MFSSearch algorithm:

1. Push the itemset containing all frequent items on the stack

1. For simpli fication, we use the notation Ei for E
Xi

∅

1234 (1)
E={123}

124 (5)
E={12}

14 (7)
E={1}

4 (8)
E={}

24 (6)
E={}

34 (4)
E={}

234 (2)
E={}

134 (3)
E={1}

Fig. 3: Search space for frequent itemset evaluation over the finite item
domain: 1,2,3,4.

Level 4 Level 3 Level 2 Level 1

Processing order

9

2. while stack not empty
3. Extract topmost itemset X from stack;
4. Calculate support and prefix supports of X by means of StreamJoin;
5. if X infrequent {
6. Use X and infrequent prefixes of X for Bottom-up Pruning;
7. Generate all subset of X according to the ElimList method;
8. Push generated subsets of X on the stack}
9. else{
10. Use X for Top-Down Pruning;
11. Add X to the output stream} // X is a MFI

As can be seen in the pseudo code, MFSSearch employs both top-down as well as bottom-up1

pruning techniques that are based on the results of previous support calculations (cf. Line 6. and

10. of the MFSSearch algorithm). Thereby, due to the StreamJoin processing scheme, both the

support of an entire candidate itemset as well as of all of its prefixes can be used for pruning.

Basically, the pruning strategy is founded on the following observation:

Observation 3: Given two itemsets X1 and X2, s.t. . In the MFSSearch exploration X1

will be processed after X2. ❐

Intuitively2, this observation results also from Fig. 3, showing that despite of the hybrid search

space exploration, any subset is explored only after all supersets have been explored as well. An

important consequence is the fact that once an itemset is found to be frequent, it can immedi-

ately be returned, as Observation 3 also guarantees that it is maximal. Hence, MFSSearch yields

a non-blocking processing. This property is used in line 11. of the algorithm.

Both pruning techniques affect the expanded itemsets on the stack, by either deleting them and

thus eliminating them from evaluation, or by reducing the number of the subsets to be expanded

when these itemsets come to evaluation, i.e. when they are on the top of the stack. It can be

shown that the number of items on the stack at a given time is O(n), where n is the size of the

considered item domain. This yields low memory requirements and high eff iciency for the

MFSSearch algorithm.

 6 Integration with the DBMS
In Fig. 1 we visualized our approach to evaluate the supports of itemsets and prefixes within the

database by using the StreamJoin operator. In this scenario, the candidates are given by the

1. Top-down pruning reduces the search space based on the fact that the subsets of a frequent itemset are also frequent.
Bottom-up pruning eliminates supersets of known infrequent itemsets from evaluation.

2. The detailed proof of this observation as well as of the employed pruning techniques can be found in [NRM00].

X1 X2⊆

10

(static) CAND table. Hence, in order to find the MFS, this table must contain all possible candi-

date itemsets, determined e.g. during a preprocessing step. However, as already mentioned, this

approach is prohibitively costly in terms of time and disk space for real-li fe item domains.

Hence, in our solution the input for the StreamJoin operator is provided by the MFSSearch algo-

rithm. In order to obtain an efficient and comprehensive integration of data mining with the data

warehouse DBMS this task has to be performed in the database engine as well . In this section

we present a strategy to eff iciently map MFSSearch to database operators. The necessary flexi-

bility will be provided by user-defined functions [SQL99] and user-defined table operators

(UDTOs) [JM99]. UDTOs permit the definition of set-oriented operations within the database

engine. They operate on one or more tables and possibly some additional scalar parameters and

return a table or a tuple. The arguments (i.e. input tables) can be intermediate results of a query,

i.e. they are not restricted to base tables only. Thus the StreamJoin operator itself can be imple-

mented as a UDTO as well .

In addition, we assume that the candidate generation algorithm is realized as a UDTO as well,

called GenerateCand. As already mentioned, this algorithm starts with the itemset holding all

items. Thus, this is the first itemset produced by the GenerateCand operator. Later on, since

dynamic pruning is employed, the generation of further candidates depends on the results of

processing the current candidate in the search space via the StreamJoin operator. This approach

obviously forms a cycle in the overall MFS generation scheme, as depicted in Fig. 4.

As the GenerateCand UDTO is incorporated within a cycle, candidate and result generation

must be split up. In Fig. 4, the functionality of the StreamJoin operator has already been

expanded to calculate also the aggregation on itemset as explained in Section 4, thus returning

the support of each itemset as well as of all it s prefixes. The resulting output stream is called

TRANS(tid, item)
 GenerateCand (itemset, item, sup)

 JOIN (item = item)

Fig. 4: Mapping of MFSSearch to database operators

 STREAMJOIN (itemset, item, tid)

 FIRSTCAND(itemset, item)

 GenerateResults (itemset, item, sup, parameter:minsup)

(itemset, item)

SResult (itemset, item, sup)

itemset, item

t1

(itemset, item, tid)

MFS

t2

11

SResult(itemset, item, sup).

This output stream is consumed by two operators: the GenerateCand UDTO and the Genera-

teResults UDF. The GenerateCand UDTO is only responsible for candidate generation. For ini-

tialization purposes, the first candidate, namely the itemset incorporating all it ems, is initially

read from the table FIRSTCAND(itemset, item) and transmitted unchanged to the subsequent oper-

ators Join, respectively StreamJoin. These calculate the corresponding (prefix) supports as

already presented before.

In all subsequent iterations, the input of the GenerateCand UDTO is provided by the output of

StreamJoin, i.e. the SResult data stream. This intermediate result is used by GenerateCand to

perform pruning as presented in the previous section and to further explore the search space. The

resulting subsequent candidate itemsets are added to the output stream, thus starting new itera-

tions. The process continues until no further candidate itemsets are available, i.e. the entire MFS

is calculated. The required grouping for the StreamJoin operator can be accomplished by an

index nested-loops join, TRANS being the inner table. Using an (usually already existing) index

on the item attribute we can also circumvent repeated scans of the TRANS table.

The functionality for generating the final result is taken over by the GenerateResults UDF. This

gets as input the result of the StreamJoin operator in the form (itemset, item, sup). The minimal

support defined by the user is provided by means of a scalar parameter minsup. Thus, Genera-

teResults selects frequent itemsets performing a filtering functionality. As already explained, by

employing the MFSSearch candidate generation, a frequent itemset found is also a MFI. Thus,

GenerateResults can immediately add it to the output stream. This results in fast response times

and continuous input for further processing by e.g. association rule generation.

In the following, we focus on how the QEP from Fig. 4 can be expressed in (augmented) SQL.

As already mentioned, GenerateResults can be realized by a UDF, as currently supported by

most database vendors. However, UDFs can not be used for the StreamJoin and GenerateCand

approaches, since they both deliver sets of tuples. This problem of expressing set-orientation can

be solved by UDTOs [JM99], as presented in the following. As for the cycle within the QEP,

this can be resolved in a similar way as recursion [SQL99], using e.g. common table expressions

[Ch96].

By adequately using the above mentioned concepts, we obtain a single statement, as depicted in

Fig. 5. Hereby, we have used a simpli fied syntax for a better understanding. The common table

expression corresponds to the SResult stream. The first “SELECT StreamJoin” clause corre-

12

sponds to the first iteration, where GenerateCand receives its input from the FIRSTCAND table,

i.e. the itemset containing all items. This first input is used to initialize the search space, hence

the value of the sup parameter is irrelevant (e.g. -1 in Fig. 5). After initializing the search space,

the GenerateCand operator transmits this first candidate unchanged to the StreamJoin operator.

The corresponding output stream is called t1 in Fig. 4 and Fig. 5. The subsequent iterations are

expressed by the second input of the UNION operator. In this “SELECT StreamJoin” clause, the

input of GenerateCand is already provided by the result of the StreamJoin operator, i.e.the SRe-

sult stream. This input is used to further explore the search space. The subsequent candidate

itemset is added to the output stream t2, thus starting a new iteration.

In this way, the MFS calculation can be comprehensively expressed in (augmented) SQL. Thus

the entire processing scheme or constituting parts of it can be referenced for other mining tasks

as well . Please note that in contrast to other approaches [STA98], this strategy avoids interme-

diate table constructions as well as the formulation of separate SQL statements for each process-

ing phase. Instead, as presented in Fig. 5, the entire MFS calculation can be expressed in a com-

pact way by a single statement, thus query optimization and parallelization can be applied as

usual for sake of increasing eff iciency.

 7 Parallelization Potential
The performance of database operations can be considerably improved by using parallelization

techniques [NM98]. In this section we concentrate on the parallelization possibiliti es of MFS-

Search. A critical aspect of parallelization is that the strategies work well with the existing phys-

ical data partitioning. This is especially important for an eff icient integration of data mining with

SET minsup = myminsup;

WITH SResult(itemset, item, sup) AS
((SELECT StreamJoin(itemset, item, tid)

FROM TRANS,
(GenerateCand(SELECT itemset, item, -1 FROM FIRSTCAND)) AS t1

WHERE TRANS.item = t1.item)
UNION ALL
(SELECT StreamJoin(itemset, item, tid)
FROM TRANS,

(GenerateCand(SELECT itemset, item, sup FROM SResult)) AS t2
WHERE TRANS.item = t2.item))

SELECT GenerateResults FROM SResult

Fig. 5: SQL representation using common table expressions, UDFs and UDTOs

13

data warehouses. In contrast, most related work [HKK97, AS96] propose solutions that are

based on proprietary partitioning strategies or even data replications, rendering these

approaches inadequate for large-scale operating databases. In addition, for such applications

communication and I/O overhead should be avoided as much as possible. However, most previ-

ous parallelization strategies [SK98, SK96, AS96] make repeated passes over the disk-resident

database partition, thus incurring high I/O overhead. Moreover, in many cases they exchange

their counts of candidates or remote database partitions during each iteration, resulting also in

high communication overhead. Additionally, some of the approaches replicate complicated

memory structures, thus inefficiently util izing main memory.

In the following, we present parallelization approaches that maximize data locality, thus reduc-

ing communication as well as I/O overhead. Moreover, different kinds of physical disk parti-

tionings of the data warehouse are taken into account.

Assume that the TRANS table in Fig. 4 is the central FACTS table in a data warehouse star schema,

holding also other attributes like customer, time etc. The CAND table is generated on the fly,

according to the current search space status, as presented in the previous section. We differenti-

ate two scenarios w.r.t. possible physical partitionings on disk, as discussed in the following.

7.1 Collocated Transaction I tems

According to different application scenarios, the FACTS table can be partitioned in multiple ways

[Schn97]. In Fig. 6 we propose a solution which is compatible with a partitioning strategy of the

central FACTS table so that all tuples belonging to a single transaction are on the same partition.

This is the case for instance if the partitioning is done on time, tid, or customer attributes.

In this case, each partition can calculate the local supports of the candidate itemsets by using the

StreamJoin processing scheme. In Fig. 6, the first candidate itemset is {A, B, C}. Only the sup-

ports of the prefixes need to be communicated to a central merge operator, called CumulateSup-

ports, that evaluates the final supports by adding up the local supports of the prefixes. This

cumulated result is the input of both the central GenerateCand as well as GenerateResults oper-

ators. As described in Section 6, the GenerateCand operator decides on the next candidate item-

set. This itemset, e.g. {A, C} in Fig. 6, is broadcasted to all participating nodes, thus starting a

new iteration. The GenerateResults operator produces the final results holding maximal fre-

quent itemsets as already shown in Section 6.

Hence, only candidate itemsets and computed supports need to be communicated over the net-

14

work, producing only minimal communication overhead. In contrast to similar strategies

[AS96], performance is improved by avoiding multiple database passes and replicated memory

structures.

7.2 Distr ibuted Transaction I tems

In the second possible scenario the FACTS table is partitioned in a way that doesn’t guarantee

that all items belonging to a transaction reside on the same partition. This is the case if the par-

titioning is done for instance on the item attribute.

A small modification of the StreamJoin operator allowing it to read streams from different

inputs can also prevent from repartitioning. This is shown in Fig. 7, where the data warehouse

is partitioned on the item attribute. When computing the support for candidate itemset {A, B, C},

the StreamJoin operator receives its input streams from different nodes, corresponding to the

constituting items. Thereby, the StreamJoin operator can reside on any of the processing nodes.

Please note that the communication overhead is increased by the fact that the tids belonging to

each item need to be communicated over the network. This can be reduced by executing the

StreamJoin processing on the node corresponding to the item with the highest support. In this

case, the most voluminous tid-li sts don’t have to be communicated over the network.

It is not necessary to broadcast the candidate itemsets to all partitions, either. If the partitioning

MFS

Join JoinJoin

Part. 1998 Part. 1997 Part. 1996

StreamJoin StreamJoin StreamJoin

CumulateSupports

GenerateResultsGenerateCand

A,B,C

A, 100
A,B, 80
A,B,C, 50

A, 200
A,B, 100
A,B,C, 30

A, 90
A,B, 20
A,B,C, 5

A, 390
A,B, 200
A,B,C, 85

(1)

(2)

(3)

(4)A,BA,C(5)

(1) candidate generation
(2) local supports
(3) cumulated supports
(4) result generation
(5) new candidate

Fig. 6: Parallel processing for the evaluation of maximal frequent itemsets;
items belonging to a transaction reside on the same par tition

local communication

network communication
selective broadcast
local processing

15

function on the item attribute is known, a candidate itemset only has to be sent to the partitions

that contain that item. For instance, in step (5) from Fig. 7, the new candidate {A, C} only has

to be sent to partitions A and C. We do not know of any other parallelization strategy in the data

mining area which would incur less communication overhead for this scenario without reparti-

tioning or (selectively) replicating the database [HKK97].

 8 Performance Evaluation
In order to evaluate the performance of our processing scheme MFSSearch for maximal fre-

quent itemsets via the StreamJoin operator, we have integrated this operator into the MIDAS

system. MIDAS [BJ+96] is a prototype of a parallel database system running on a hybrid archi-

tecture comprising several SMP nodes combined in a shared-disk manner. We have validated

our approach using a 100 MB TPC-D database [TPC95], running on a SUN-ULTRA1 worksta-

tion with a 143 MHz Ultra Sparc processor. For the parallel scenarios, we used a cluster of up

to 4 workstations. The database contains 150.000 transactions comprising orders on 20.000 dif-

ferent parts. For a detailed evaluation, it was important to consider a column having a limi ted

value domain. Thus, we have performed our measurements on the LINEITEM table, where the

place of the item column is taken over by l_linenumber and the pair l_partkey, l_suppkey is con-

sidered as being the tid attribute. The domain of the l_linenumber column is from 1 to 7, and the

attributes l_partkey, l_suppkey define 67.806 transactions. Due to the uniform data distribution,

the length of the MFIs decreases monotonically with increasing supports.

MFS

Join JoinJoin

Part. A Part. B Part. C

StreamJoin

GenerateResultsGenerateCand

local communication

network communication
selective broadcast

A,B,C

tid-Stream A

A, 390
A,B, 200
A;B,C, 85

(1)

(2)

(3)

(4)A,BA,C
(5)

(1) candidate generation
(2) local streams
(3) parallel StreamJoin
(4) result generation
(5) new candidate

Fig. 7: Parallel processing for the evaluation of maximal frequent itemsets;
items belonging to a transaction reside on different par tition

tid-Stream B tid-Stream C

local processing

16

In the following we would like to point out the difference of this modeling to traditional market

basket analysis. In a traditional market basket analysis, if an itemset {A, B} is found frequent, a

possible resulting rule might be: “ If a customer buys item A at a given time it is li kely that he/

she buys also item B” . For simplification purposes, assume that in our modeling the

l_linenumber attribute represents some kind of timestamp: weekdays, months etc. Hence, a pos-

sible interpretation of a frequent itemset {1, 2} is the following: “ If a part is sold at timestamp

1, it is li kely that the same part will be sold at timestamp 2 as well ” . Hence, this kind of mod-

eling is particularly suitable for e.g. event analysis.

In order to compare the performance of MFSSearch with the Apriori algorithm that is the basis

of most bottom-up approaches, we have presented in Fig. 8a the time that is necessary to per-

form the multiple database scans specific to this algorithm. Please note that this curve doesn’t

comprise any CPU costs that are also inherent to the Apriori algorithm. As can be seen in Fig.

8a, MFSSearch shows a performance that is orders of magnitude better than the Apriori algo-

rithm. At the same time, we have listed the I/O costs that would result from processing the items

using MaxMiner [Ba98]. This roughly corresponds also to the I/O necessary for the Pin-

cerSearch algorithm [LK98]. As can be seen, although both approaches have proven to be more

eff icient than the Apriori algorithm in terms of CPU costs, the repetitive database scans stil l

cause significant I/O costs. The results in [Ba98] also show that the increased eff iciency of

MaxMiner does not result primarily from the reduction of database passes, but from the consid-

eration of less candidates. However, as can be seen in Fig. 8a, the resulting I/O costs of these

algorithms already exceed the total costs of MFSSearch.

The most striking difference between Apriori and MFSSearch is in the number of candidate

itemsets considered to produce the set of maximal frequent itemsets. As can be seen in Fig. 8b,

while for the MFSSearch processing scheme this number is proportional to the actual number

of maximal frequent itemsets, the itemsets considered by the Apriori algorithm increase expo-

nentially with decreasing supports. As shown in [LK98], the number of maximum frequent

itemsets is a non-monotone function w.r.t. the minimal support. This result shows that, unlike

most algorithms, MFSSearch can fully benefit from this property.

As mentioned in Section 2, in [STA98] the most promising improvement of the Apriori algo-

rithm that is also suitable for database integration was found to be one based on a Vertical for-

mat. This format requires a preparatory phase that determines for each item a list comprising all

tids that contain that item. Because of the variable length of these lists, in [STA98] they are

stored in BLOBs. To compare this optimized variant of the Apriori algorithm with our approach,

17

we have kept track of the data accesses necessary in each scenario. In this case, by a single data

access we mean the access to all tids corresponding to a single item, i.e. in the implementation

proposed by [STA98] reading in a single BLOB. In Fig. 8c, we have compared these numbers

with the MFS volume1. As can be seen, the data accesses related to MFSSearch are proportional

to this measure. In contrast, the data accesses needed for the Vertical approach increased expo-

nentially with decreasing supports. Comparing Fig. 8a and Fig. 8c, we can see that the complex-

ity of MFSSearch scales linearly with the MFS volume as well.

As for parallelization, we have partitioned the LINEITEM table on l_partkey, l_suppkey. This cor-

responds to a partitioning in which all tuples belonging to a transaction reside on the same par-

1. Fig. 8c demonstrates once again the non-monotone property of the MFS volume [LK98] w.r.t. the minimum support.

d) Parallelization performance

a) Response times b) Candidate itemsets considered

Fig. 8: Per formance evaluation for the evaluation of maximal frequent itemsets

c) Data accesses

18

tition (cf. Section 7.1). We have used a degree of parallelism varying from 1 (sequential) to 4.

The results presented in Fig. 8d show a linear speedup. Hence MFSSearch shows a good paral-

lelization potential resulting in additional performance improvements [NM98].

Finally, we would like to make some general comments on these first experimental results. We

are fully aware of the fact that frequent itemset evaluation on a database of this size and item

domain can be very eff iciently performed using optimized methods that exploit the small size

of the database to construct compact data structures [AAP00, HPY00] and thus avoid multiple

scans. However, our aim was to test the feasibilit y of MFSSearch as a generic approach inte-

grated within the database engine and compare this with other strategies for the general case.

Therefore, we haven’t made use either of any optimizations, li ke e.g. caching. Instead, we have

only used an index for eff icient table access, as well as to achieve the necessary grouping for the

StreamJoin operator, as suggested in Section 6. Since the measurements show that in this con-

figuration MFSSearch still scales linearly with the MFS volume, we are confident that it wil l

show comparable eff iciency also for larger databases and item domains.

As already mentioned, in our test database the length of the MFIs decreases monotonically with

increasing supports. The performance measurements from Fig. 8 show that MFSSearch pro-

vides a good performance w.r.t. to all significant measures for both low and high supports, i.e.

for both short as well as long MFIs. This demonstrates the effectiveness of our hybrid pruning

technique. Thus top-down pruning performs best for long MFIs, where (large) frequent itemsets

eliminate several subsequent subsets from exploration. At the same time, bottom-up pruning

comes mostly to application in the case of short MFIs, where infrequent subsets reduce the

search space by eliminating their corresponding supersets from exploration. The effectiveness

of this bottom-up pruning in MFSSearch is reinforced by the fact that it employs the StreamJoin

technique that additionally calculates all prefixes. Hence infrequent prefixes can also very effec-

tively contribute to bottom-up pruning.

As compared to [AAP00, HPY00] that also avoid multiple database scans, we believe that the

main advantage of MFSSearch is the straightforward way it can be integrated and referenced on

the database execution level. In addition, since MFSSearch explores the search space gradually,

it yields a low memory consumption that avoids materialization even for large databases and

item domains, as well as in multi-user environments. This feature cannot be guaranteed by strat-

egies that operate on a condensed representation of the whole search space.

19

 9 Conclusions
In this paper we have presented MFSSearch, a processing scheme for the generation of maximal

frequent itemsets. MFSSearch employs a new operator, called StreamJoin as a highly effective

strategy for (prefix) itemset support calculations.

The response time and data accesses of the MFSSearch algorithm are only proportional to the

MFS volume, a measure that reflects the inherent complexity of the frequent itemset calculation

problem. In addition, MFSSearch is characterized by a low memory consumption. Thus, it is

applicable also for (ad-hoc) mining in multi-user DBMSs, such as data warehouses. The algo-

rithm can efficiently be integrated with a database engine yielding a single query execution plan.

Thus it is able to make profit of all forms of query execution optimizations, including paralleli-

zation. Furthermore, the suitability of MFSSearch for database integration is augmented by its

non-blocking feature, making it attractive for pipelining, and by the fact that it uses only avail-

able index structures of the database.

MFSSearch represents a processing primitive for the calculation of the maximal frequent set,

thus facil itating the modularization of similar problems, e.g. pattern recognition, and the reuse

of this primitive. Our implementation concept based on user-defined table operators and user-

defined functions yields a compact representation on the (SQL) language level. With this, MFS-

Search technology is made available as a kind of primitive database operation that considerably

facil itates its potential for reuse.

As for future work, we are in the process to experimentally validate the performance of MFS-

Search for large-scale databases and item domains. We further plan to investigate the suitability

of the approach for hybrid solutions as well, where the considered item domain is restricted by

means of e.g. sampling [FS+98].

Literature

AAP00 R. Agarwal,C. Aggarwal, V. Prasad: A tree projection algorithm for generation of frequent sets, In: Journal
of Parallel and Distributed Computing (to appear) 2000.

AM+95 R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo: Fast Discovery of Association Rules, Ad-
vances in Knowledge Discovery and Data Mining, Chapter 12, AAAI/MIT Press, 1995.

AS96 R. Agrawal, J. C. Shafer: Parallel Mining of Association Rules, In: TKDE 8(6): 962-969, 1996.

AY97 C. C. Aggarwal, P. S. Yu: Mining Large Itemsets for Association Rules, TCDE Bull., 21(1), March 1998.
AY98 C. C. Aggarwal, P. S. Yu: Online Generation of Association Rules, In: DE Conf., Orlando, Florida, 1998.
BJ+96 G. Bozas, M. Jaedicke et al.: On Transforming a Sequential SQL-DBMS into a Parallel One: First Results

and Experiences of the MIDAS Project, In: Proceedings of the EUROPAR Conf., 1996.
Ba98 R. Bayardo: Efficiently Mining Long Patterns from Databases, In: Proc. SIGMOD Conf., Seattle, 1998.

BM+97 S. Brin, R. Motwani, J. Ullmann, S. Tsur: Dynamic Itemset Counting and Implication Rules for Market Bas-
ket Data, In: Proc. ACM SIGMOD Conf., 1997.

Ch96 D. Chamberlin: Using the New DB2, Morgan Kaufman Publishers, San Francisco, 1996.

20

Ch98 S. Chaudhuri: Data Mining and Database Systems: Where is the Intersection?, In: Bulletin of the TCDE,
21(1), March 1998.

CK+97 J. Claussen, A. Kemper, G. Moerkotte, K. Peithner: Optimizing Queries with Universal Quantification in Ob-
ject-Oriented and Object-Relational Databases, In: Proc. VLDB Conf, Athens, Greece, 1997.

FS+98 M. Fang, N. Shivakumar et al: Computing Iceberg Queries Efficiently, Proc. VLDB Conf., New York, 1998.
HF+ J. Han, Y. Fu et al: A Data Mining Query Language for Relational Databases, Proc. SIGMOD Conf, 1996.

HGY98 J. Han, W. Gong, Y. Yin: Mining Segment-Wise Periodic Patterns in Time Related Databases, In: Proc. Intl.
Conf. on Knowledge Discovery and Data Mining, New York City, NY, August 1998

HKK97 E.-H. Han, G. Karypis, V. Kumar: Scalable Parallel Data Mining for Association Rules, In: SIGMOD Con-
ference, Tucson, Arizona, 1997.

HPY00 J. Han, J. Pei, Y. Yin: Mining Frequent Patterns without Candidate Generation, In: Proc. SIGMOD Conf.,
Dallas, 2000 (to appear).

JM99 M. Jaedicke, B. Mitschang: User-Defined Table Operators: Enhancing Extensibility for ORDBMS, Proc.
VLDB Conference, Edinburgh, 1999.

LK98 D. Lin, Z. M. Kedem: Pincer-Search: a New Algorithm for Discovering the Maximum Frequent Set, In: Proc
EDBT Conf., Valencia, Spain.

MPC96 R. Meo, G. Psaila, S. Ceri: A New SQL-like Operator for Mining Association Rules, In: Proc. VLDB Conf,
Mumbai, India, 1996.

MPC98 R. Meo, G. Psaila, S. Ceri: A Tightly-Coupled Architecture for Data Mining, In: DE Conf., Orlando, 1998.
Ni99 C. Nippl: Providing efficient, extensible and adaptive intra-query parallelism for advanced applications,

PhD Thesis in preparation, TU München, 1999.
NM98 C. Nippl, B. Mitschang: TOPAZ: a Cost-Based, Rule-Driven, Multi-Phase Parallelizer, Proc. VLDB Conf.,

New York City,1998.
NRM00 C. Nippl, A. Reiser, B. Mitschang: Conquering the Search Space for the Calculation of the Maximal Fre-

quent Set, TR TU München, 2000, http://www3.informatik.tu-muenchen.de/public/mitarbeiter/nippl.html.
PCY97 J. S. Park, M.S. Chane, P.S. Yu: Using a Hash-Based Method with Transaction Trimming for Mining Asso-

ciation Rules, In: IEEE Trans. on TKDE, 9(5), Sept. 1997.
RBG96 S. Rao, A. Badia, D. v. Gucht: Providing Better Support for a Class of Decision Support Queries, In: Proc.

SIGMOD Conf., Montreal, 1996.
SON95 A. Savasare, E. Omiecinski, S. Navathe: An Efficient Algorithm for Mining Association Rules in Large Da-

tabases, In: Proc. VLDB Conf., Zurich, 1995.
STA98 S. Sarawagi, S. Thomas, R. Agrawal: Integrating Association Rule Mining with Relational Database Sys-

tems: Alternatives and Implications, In: Proc. ACM SIGMOD Conf, Seattle, 1998.
Sch97 D. Schneider: The Ins and Outs of Data Warehousing, In: Tutorial on the VLDB Conference, Athens, 1997.
SK98 T. Shintani, M. Kitsuregawa: Parallel Mining Algorithms for Generalized Association Rules with Classifica-

tion Hierarchy. SIGMOD Conference, Seattle, 1998.
SK96 T. Shintani, M. Kitsuregawa: Hash Based Parallel Algorithms for Mining Association Rules. PDIS 1996.

SQL99 ISO/IEC 9075:1999, Information Technology-Database languages-SQL-Part2, 1999.
TPC97 Transaction Processing Council. TPC Benchmark D, Standard Spec., Rev 1.3, 1997.
ZP+97 M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li: New Algorithms for Fast Discovery of Association Rules,

In: Proc. Intl. Conf. on Knowledge Discovery and Data Mining, Newport Beach, California, 1997.

SFB 342: Methoden und Werkzeuge f�ur die Nutzung parallelerRe
hnerar
hitekturenbisher ers
hienen :Reihe A Liste aller ers
hienenen Beri
hte von 1990-1994auf besondere Anforderung342/01/95 A Hans-Joa
him Bungartz: Higher Order Finite Elements on Sparse Grids342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performan
e of Par-allel Computers: Order Statisti
s and Amdahl's Law342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of the Kro-ne
ker Produ
t of Identi
al Servers to a Redu
ed Produ
t Spa
e342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liefvoort:Auto-Correlation of Lag-k For Customers Departing From Semi-MarkovPro
esses342/05/95 A Sas
ha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids: Ap-pli
ations to Multi-dimensional S
hr�odinger Problems342/06/95 A Maximilian Fu
hs: Formal Design of a Model-N Counter342/07/95 A Hans-Joa
him Bungartz, Stefan S
hulte: Coupled Problems in Mi
rosys-tem Te
hnology342/08/95 A Alexander PfaÆnger: Parallel Communi
ation onWorkstation Networkswith Complex Topologies342/09/95 A Ketil St�len: Assumption/Commitment Rules for Data-
ow Networks -with an Emphasis on Completeness342/10/95 A Ketil St�len, Max Fu
hs: A Formal Method for Hardware/Software Co-Design342/11/95 A Thomas S
hnekenburger: The ALDY Load Distribution System342/12/95 A Javier Esparza, Stefan R�omer, Walter Vogler: An Improvement ofM
Millan's Unfolding Algorithm342/13/95 A Stephan Melzer, Javier Esparza: Che
king System Properties via IntegerProgramming342/14/95 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Point-to-Point Data
ow Networks342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Computethe Con
urren
y Relation of Free-Choi
e Signal Transition Graphs342/16/95 A Bernhard S
h�atz, Katharina Spies: Formale Syntax zur logis
hen Kern-spra
he der Fo
us-Entwi
klungsmethodik342/17/95 A Georg Stellner: Using CoChe
k on a Network of Workstations342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wism�uller:Workshop on PVM, MPI, Tools and Appli
ations342/19/95 A Thomas S
hnekenburger: Integration of Load Distribution into ParMod-C342/20/95 A Ketil St�len: Re�nement Prin
iples Supporting the Transition fromAsyn
hronous to Syn
hronous Communi
ation
1

Reihe A342/21/95 A Andreas Listl, Giannis Bozas: Performan
e Gains Using Subpages forCa
he Coheren
y Control342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with BoundedTreewidth into Optimal Hyper
ubes342/23/95 A Petr Jan�
ar, Javier Esparza: De
iding Finiteness of Petri Nets up toBisimulation342/24/95 A M. Jung, U. R�ude: Impli
it Extrapolation Methods for Variable CoeÆ-
ient Problems342/01/96 A Mi
hael Griebel, Tilman Neunhoe�er, Hans Regler: Algebrai
 MultigridMethods for the Solution of the Navier-Stokes Equations in Compli
atedGeometries342/02/96 A Thomas Graus
hopf, Mi
hael Griebel, Hans Regler: Additive Multilevel-Pre
onditioners based on Bilinear Interpolation, Matrix Dependent Geo-metri
 Coarsening and Algebrai
-Multigrid Coarsening for Se
ond OrderEllipti
 PDEs342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynami
 Edge-Disjoint Embed-dings of Complete Binary Trees into Hyper
ubes342/04/96 A Thomas Hu
kle: EÆ
ient Computation of Sparse Approximate Inverses342/05/96 A Thomas Ludwig, Roland Wism�uller, Vaidy Sunderam, Arndt Bode:OMIS | On-line Monitoring Interfa
e Spe
i�
ation342/06/96 A Ekkart Kindler: A Compositional Partial Order Semanti
s for Petri NetComponents342/07/96 A Ri
hard Mayr: Some Results on Basi
 Parallel Pro
esses342/08/96 A Ralph Raderma
her, Frank Weimer: INSEL Syntax-Beri
ht342/09/96 A P.P. Spies, C. E
kert, M. Lange, D. Marek, R. Raderma
her, F. Weimer,H.-M. Windis
h: Spra
hkonzepte zur Konstruktion verteilter Systeme342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian R�oder, Arndt Bode: PFS-Lib { A File System for Parallel Programming Environments342/11/96 A Manfred Broy, Gheorghe S�tef�anes
u: The Algebra of Stream Pro
essingFun
tions342/12/96 A Javier Esparza: Rea
hability in Live and Safe Free-Choi
e Petri Nets isNP-
omplete342/13/96 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Many-to-Many Data-
ow Networks342/14/96 A Giannis Bozas, Mi
hael Jaedi
ke, Andreas Listl, Bernhard Mits
hang,Angelika Reiser, Stephan Zimmermann: On Transforming a SequentialSQL-DBMS into a Parallel One: First Results and Experien
es of theMIDAS Proje
t342/15/96 A Ri
hard Mayr: A Tableau System for Model Che
king Petri Nets witha Fragment of the Linear Time � -Cal
ulus342/16/96 A Ursula Hinkel, Katharina Spies: Anleitung zur Spezi�kation von mo-bilen, dynamis
hen Fo
us-Netzen342/17/96 A Ri
hard Mayr: Model Che
king PA-Pro
esses342/18/96 A Mi
haela Huhn, Peter Niebert, Frank Wallner: Put your Model Che
keron Diet: Veri�
ation on Lo
al States342/01/97 A Tobias M�uller, Stefan Lamberts, Ursula Maier, Georg Stellner:Evaluierung der Leistungsf�ahigkeit eines ATM-Netzes mit parallelenProgrammierbibliotheken
2

Reihe A342/02/97 A Hans-Joa
him Bungartz and Thomas Dornseifer: Sparse Grids: Re
entDevelopments for Ellipti
 Partial Di�erential Equations342/03/97 A Bernhard Mits
hang: Te
hnologie f�ur Parallele Datenbanken - Beri
htzum Workshop342/04/97 A ni
ht ers
hienen342/05/97 A Hans-Joa
him Bungartz, Ralf Ebner, Stefan S
hulte: Hierar
his-
he Basen zur eÆzienten Kopplung substrukturierter Probleme derStrukturme
hanik342/06/97 A Hans-Joa
him Bungartz, Anton Frank, Florian Meier, Tilman Neunho-e�er, Stefan S
hulte: Fluid Stru
ture Intera
tion: 3D Numeri
al Simu-lation and Visualization of a Mi
ropump342/07/97 A Javier Esparza, Stephan Melzer: Model Che
king LTL using ConstraintProgramming342/08/97 A Niels Reimer: Untersu
hung von Strategien f�ur verteiltes Last- undRessour
enmanagement342/09/97 A Markus Pizka: Design and Implementation of the GNU INSEL-Compilergi
342/10/97 A Manfred Broy, Franz Regensburger, Bernhard S
h�atz, Katharina Spies:The Steamboiler Spe
i�
ation - A Case Study in Fo
us342/11/97 A Christine R�o
kl: How to Make Substitution Preserve Strong Bisimilarity342/12/97 A Christian B. Cze
h: Ar
hitektur und Konzept des Dy
os-Kerns342/13/97 A Jan Philipps, Alexander S
hmidt: TraÆ
 Flow by Data Flow342/14/97 A Norbert Fr�ohli
h, Rolf S
hlagenhaft, Josef Fleis
hmann: PartitioningVLSI-Cir
uits for Parallel Simulation on Transistor Level342/15/97 A Frank Weimer: DaViT: Ein System zur interaktiven Ausf�uhrung undzur Visualisierung von INSEL-Programmen342/16/97 A Niels Reimer, J�urgen Rudolph, Katharina Spies: Von FOCUS na
h IN-SEL - Eine Aufzugssteuerung342/17/97 A Radu Grosu, Ketil St�len, Manfred Broy: A Denotational Model forMobile Point-to-Point Data-
ow Networks with Channel Sharing342/18/97 A Christian R�oder, Georg Stellner: Design of Load Management for Par-allel Appli
ations in Networks of Heterogenous Workstations342/19/97 A Frank Wallner: Model Che
king LTL Using Net Unfoldings342/20/97 A Andreas Wolf, Andreas Kmo
h: Einsatz eines automatis
hen Theorem-beweisers in einer taktikgesteuerten Beweisumgebung zur L�osung einesBeispiels aus der Hardware-Veri�kation { Fallstudie {342/21/97 A Andreas Wolf, Mar
 Fu
hs: Cooperative Parallel Automated TheoremProving342/22/97 A T. Ludwig, R. Wism�uller, V. Sunderam, A. Bode: OMIS - On-line Mon-itoring Interfa
e Spe
i�
ation (Version 2.0)342/23/97 A Stephan Merkel: Veri�
ation of Fault Tolerant Algorithms Using PEP342/24/97 A Manfred Broy, Max Breitling, Bernhard S
h�atz, Katharina Spies: Sum-mary of Case Studies in Fo
us - Part II342/25/97 A Mi
hael Jaedi
ke, Bernhard Mits
hang: A Framework for Parallel Pro-
essing of Aggregat and S
alar Fun
tions in Obje
t-Relational DBMS342/26/97 A Mar
 Fu
hs: Similarity-Based Lemma Generation with Lemma-DelayingTableau Enumeration
3

Reihe A342/27/97 A Max Breitling: Formalizing and Verifying TimeWarp with FOCUS342/28/97 A Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase FrameWorkfor the Evaluation and Maintenan
e of Automated Theorem Prover Data(in
l. Do
umentation)342/29/97 A Radu Grosu, Ketil St�len: Compositional Spe
i�
ation of MobileSystems342/01/98 A A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. S
hiemann, T.S
hnekenburger (Herausgeber): \Anwendungsbezogene Lastverteilung",ALV'98342/02/98 A Ursula Hinkel: Home Shopping - Die Spezi�kation einer Kommunika-tionsanwendung in Fo
us342/03/98 A Katharina Spies: Eine Methode zur formalen Modellierung vonBetriebssystemkonzepten342/04/98 A Stefan Bis
hof, Ernst W. Mayr: On-Line S
heduling of Parallel Jobswith Runtime Restri
tions342/05/98 A St. Bis
hof, R. Ebner, Th. Erleba
h: Load Balan
ing for Problemswith Good Bise
tors and Appli
ations in Finite Element Simulations:Worst-
ase Analysis and Pra
ti
al Results342/06/98 A Giannis Bozas, Susanne Kober: Logging and Crash Re
overy in Shared-Disk Database Systems342/07/98 A Markus Pizka: Distributed Virtual Address Spa
e Management in theMoDiS-OS342/08/98 A Niels Reimer: Strategien f�ur ein verteiltes Last- und Ressour
en-management342/09/98 A Javier Esparza, Editor: Pro
eedings of INFINITY'98342/10/98 A Ri
hard Mayr: Lossy Counter Ma
hines342/11/98 A Thomas Hu
kle: Matrix Multilevel Methods and Pre
onditioning342/12/98 A Thomas Hu
kle: Approximate Sparsity Patterns for the Inverse of aMatrix and Pre
onditioning342/13/98 A Antonin Ku
era, Ri
hard Mayr: Weak Bisimilarity with In�nite-StateSystems
an be De
ided in Polynomial Time342/01/99 A Antonin Ku
era, Ri
hard Mayr: Simulation Preorder on Simple Pro
essAlgebras342/02/99 A Johann S
humann, Max Breitling: Formalisierung und Beweis einer Ver-feinerung aus FOCUS mit automatis
hen Theorembeweisern { Fallstudie{342/03/99 A M. Bader, M. S
himper, Chr. Zenger: Hierar
hi
al Bases for the Indef-inite Helmholtz Equation342/04/99 A Frank Strobl, Alexander Wisspeintner: Spe
i�
ation of an Elevator Con-trol System342/05/99 A Ralf Ebner, Thomas Erleba
h, Andreas Ganz, Claudia Gold, ClemensHarl�nger, Roland Wism�uller: A Framework for Re
ording and Visual-izing Event Tra
es in Parallel Systems with Load Balan
ing342/06/99 A Mi
hael Jaedi
ke, Bernhard Mits
hang: The Multi-Operator Method:Integrating Algorithms for the EÆ
ient and Parallel Evaluation of User-De�ned Predi
ates into ORDBMS
4

Reihe A342/07/99 A Max Breitling, Jan Philipps: Bla
k Box Views of State Ma
hines342/08/99 A Clara Nippl, Stephan Zimmermann, Bernhard Mits
hang: Design, Im-plementation and Evaluation of Data Rivers for EÆ
ient Intra-QueryParallelism342/09/99 A Robert Sandner, Mi
hael Mauderer: Integrierte Bes
hreibung au-tomatisierter Produktionsanlagen - eine Evaluierung praxisnaherBes
hreibungste
hniken342/10/99 A Alexander Sabbah, Robert Sandner: Evaluation of Petri Net and Au-tomata Based Des
ription Te
hniques: An Industrial Case Study342/01/00 A Javier Esparza, David Hansel, Peter Rossmanith, Stefan S
hwoon: EÆ-
ient Algorithm for Model Che
king Pushdown Systems342/02/00 A Barbara K�onig: Hypergraph Constru
tion and Its Appli
ation to theCompositional Modelling of Con
urren
y342/03/00 A Max Breitling and Jan Philipps: Veri�
ation Diagrams for Data
owProperties342/04/00 A G�unther Ra
kl: Monitoring Globus Components with MIMO342/05/00 A Barbara K�onig: Analysing Input/Output Capabilities of Mobile Pro-
esses with a Generi
 Type System342/06/00 A Mi
hael Bader, Christoph Zenger: A Parallel Solver for Conve
-tion Di�usion Equations based on Nested Disse
tion with In
ompleteElimination342/07/00 A Clara Nippl, Angelika Reiser, Bernhard Mits
hang: Extending DatabaseFun
tionality to Support Frequent Itemset Pro
essing342/08/00 A Clara Nippl, Angelika Reiser, Bernhard Mits
hang: Conquering theSear
h Spa
e for the Cal
ulation of the Maximal Frequent Set

5

SFB 342 : Methoden und Werkzeuge f�ur die Nutzung parallelerRe
hnerar
hitekturenReihe B342/1/90 B Wolfgang Reisig: Petri Nets and Algebrai
 Spe
i�
ations342/2/90 B J�org Desel: On Abstra
tion of Nets342/3/90 B J�org Desel: Redu
tion and Design of Well-behaved Free-
hoi
e Systems342/4/90 B Franz Abstreiter, Mi
hael Friedri
h, Hans-J�urgen Plewan: DasWerkzeug runtime zur Beoba
htung verteilter und paralleler Programme342/1/91 B Barbara Pae
h: Con
urren
y as a Modality342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier-Toolbox {Anwenderbes
hreibung342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop �uberParallelisierung von Datenbanksystemen342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Methods342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually SharedMemory S
heme: Formal Spe
i�
ation and Analysis342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Spe
i�
ation andCorre
tness Proof of a Virtually Shared Memory S
heme342/7/91 B W. Reisig: Con
urrent Temporal Logi
342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-SupportChristian B. Suttner: Parallel Computation of Multiple Sets-of-Support342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelre
hner: Theorie, Hardware,Software, Anwendungen342/1/93 B Max Fu
hs: Funktionale Spezi�kation einer Ges
hwindigkeitsregelung342/2/93 B Ekkart Kindler: Si
herheits- und Lebendigkeitseigens
haften: Ein Lit-eratur�uberbli
k342/1/94 B Andreas Listl, Thomas S
hnekenburger, Mi
hael Friedri
h: Zum En-twurf eines Prototypen f�ur MIDAS

6

