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Abstract Given the highly complementary nature of data mining and data warehousing it seems
obvious that data mining should be performed as an integral part of the analysis process directly on the
data already in the warehouse. In this paper we focus on frequent itemset processing and a tight
integration approach. We introduce a novel concept to calculate candidate supports, called StreamJoin,
as well as the corresponding pruning strategy to effectively reduce search complexity. We show how this
approach can be efficiently embedded within a database engine, thus being able to exploit query
optimization as well as parallel execution. Our approach avoids costly database scan operations,
additional disk spoolings, intermediate blocking or preparatory phases. In contrast to other strategies, it
yields a uniform processing within a single query execution plan and can be easily expressed and
referenced via SQL-like interfaces.

1 Introduction

Data mining can provide new insightsinto the relationships between data elements and povide
analystsand ceasion-makerswith new discoveries. Integrating the data warenouse DBM S with
data mining makes sense for many reasons. First, oltaining clean, consistent datato mineisa
primary challenge, implicitly provided by data warehouses. Second,transferring and reorgani z-
ingthe datafor miningis prohibitively costly in the case of large-scale warehouse gpli cations.
Third, it is advantageous to mine data from multiple sources to dscover as many interrelation-
shipsas possible. Thisrequirement isalso fulfilled by warehousesthat contain datafrom anum-
ber of sources. Finaly, the continuously extended functionality of the database engines, includ-
ing parallelization, can also orly be used in an integrated environment.

One of the basic operationsin datamining isthe discovery of frequent sets. Given a set of trans-
actions, where each transadionrefersto aset of items, thisoperation consists of findingitemsets
that occur in the database with certain user-specified frequency, called minimum suppat. The
derived itemsets can be used for further processing, such as asociation rule mining [AY 97],

time series analysis, cluster analysis etc.



However, special requirements haveto be fulfill ed when integrating frequent itemset generation
with large-scale databases, such as data warehouses. First, due to the large anourts of data
stored, multi ple database scans cause prohibitive overhead in terms of 1/O costs. Second, it is
esential to provide adequate pruning techniquesto reduce the exporential complexity of search

space exploration. Finaly, the mining algorithm itself hasto prove high efficiency.

Itemsets that have no superset that is frequent are called maximal frequent itemsets (MFI). The
set of all maximal frequent itemsets is called the maximal frequent set (MFS). The sum of the
lengths of all MFIs defines the MFS volume. Sincethis measure accounts for bath the number
of MFls, aswell asfor their length, we consider that it reflects best the inherent complexity of
the frequent itemset evaluation problem. The MFSimplicitly definesthe set of all frequent item-
setsaswell. Based onthis observation, we propose a novel methoddogy to efficiently evaluate
the maximal frequent set only, called MFSSarch. This grategy is based ona new operator,
called StreamJoin, that efficiently cdculates the suppat of a candidate itemset, aswell as of all
of its prefixes. A dynamic pruning technique that combines both top-down as well as bottom-
up techniques is used throughou search space exploration. As a result, the complexity of the

algorithm isonly propationa to the MFS volume.

In contrast to ather strategies, MFSSarch can efficiently be embedded into the database engine
by using asingle query exeaution dan. We show how the approach can easily be expressd in
augmented SQL using wser-defined table operators [IM99] and common table expressons
[SQL99]. The processng schemeis non-blocking, i.e. first results (MFIs) can be delivered fast
beforethewhade MFSisderived. Moreover, only selective disk aacesses are necessary, depend-
ing onthe current search space status. I ntermediate result materiali zations or preparatory phases
are nat necessary, either. Furthermore, we point out how this approach can make full profit of

the paral elization passibili ties of the database engine.

2 Related work
Many approaches on integrating data mining with DBM Ss are based onthe bottom-up Apriori
algorithm. Hence, they bea also the main drawbacks of this grategy, namely exporential com-
plexity and multiple database scan operations [AS96, AY98]. Additionaly, the proposed
approaches a so involve some kind d intermediate result materializations or preprocessng d
data. On the other hand, some variants of the dgorithm are not suitable for integration with data

warehouses, as they perform modifications on the stored data [PCY 97].



When comparing dfferent passhilities of integrating the Apriori algorithm withinaDBMS, in
[STA98] the most promising scenario was foundto be one based ona so-called Vertical format

of the database. We discussthis work in more detail | ater in the paper.

Solutions using top-down o hybrid search strategies were proposed as well, such as the
MaxMiner agorithm [Ba98], PincerSearch [LK98] or MaxClique and MaxEclat [ZP+97].
Althoughthe pruning strategies of these dgorithms reduce the search complexity considerably,
they still involve multi ple database passes or even preparatory phases. This has anegative dfect

on performance, as demonstrated later onin this paper.

Recent work [AAPOO, HPY0Q] proposes the construction d highly condensed data structures
in order to avoid database scans. However, it is nat clear how these gproaches perform e.g.in
an ad-hoc data warehouse environment, where multiple users impose memory limitations and
thus aso disk spodings. Other approaches concentrate on language extensions [MPC96,
MPC98, HF+96] that are based onspecial operatorsto generate asociation rules. However, for
the eay development of datamining applicationsit isimportant that the cnstituting operations
are unbunded so that they may be shared [Ch9§]. Thus, abetter alternativeisto provide aprim-
itive that can be exploited more generally for different data mining applications. The strategy
for MFScdculation propased in this paper follows exactly this recommendation.

3 DataMining Scenario

The decision onwhether a given candidate itemset is frequent is the performance-criticd oper-
ationin the MFScalculation. In ou approach we want to drectly map this primitive operation
to a single database operator. In arder to model this senario we assume the following two
tables: TRANS(tid, item) givingreport of which transadions contain which itemsand cAND (item-
set, item) telling which itemsets contain which items, i.e. the potential frequent itemsets. An
example of two itemsets (100and 200), threetransadions (1, 2and 3) and four items (10, 22,
35, 43 is srown in Fig. 1. This relational modeling d the data mining scenario suppats that
both the number of items per tid, as well as the number of items per itemset is variable and
unknown duing table credion time. In contrast, other representation alternatives, as e.g. all

items of atid appeaing as different columns of asingletuple aenot useful in practice[ STA9§].

Given this enario and a parameter minsup defining the minimal suppat set by the user, the
problem of deadingfor apotential frequent itemset 1Sin the CAND table whether 1Sis frequent

can beformulated as foll ows:



“Find (through the TRANS table) those transactions containing all items of 1S If the sum of

the quali fying transactions exceals minsup, then return IS as being a frequent itemset.”

Evaluating this query involves a join onitem between the two tables TRANS(tid, item) and
CAND(itemset, item) for itemset = IS, Thisyields a set of tuples (1S, item, tid). We will call the
subset of those tuples for a given itemset which contain ore specific item | astream, denoted by
Ss)- Thestreamsfor one specific itemset form agroup. Thismeansin general, every tuple from

the cAND table defines one stream.

For the task to find frequent itemsets, the streans only form an intermediate result (IR in Fig.
1). E.g.,for our patential frequent itemset ISwe must find those transadions which contain all
theitems of 1S. This means that for the final result (FRin Fig. 1) we have to join the different
streams of the itemset IS onthetid attribute, i.e. we have to join al the streams within a group.
InFig. 1wehave an examplefor two itemsets, 100and 200, which contain two resp. threeitems.
Therefore two streams resp. three streams are built for the itemsets. Joining the streams yields
for this example into a two-way resp. threeway join. However, in the general case we do nd
have knowledge on the number of items per itemset, hence the number of joinsto be performed

onagroupisvariable aswell.

Thistask isakind d al-quantification. At the same time, it isavery primitive operationwithin
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Fig. L Procesgng scenario for the evaluation of frequent itemsets




the processng d frequent itemsets. Hence, any efficient evaluation d this all-quantification
directly suppatsthe performance of the frequent itemset processng. Since dl-quantificaionis
naot yet afrequently occurring operator in database processng, there are rarely implementations
of it available[CK+97]. Here we designed ou own solution, call ed SreamJoin operator, which
perfectly fitsinto ou algorithms. The operator will beintroduced in the next section. Thereafter

we will describe the particularities of our algorithm for efficient MFI candidate generation.

4 The StreamJoin Operator

We first describe the functionality of the operator. SreamJoin basically memorizes the incom-
ingtuples aslongasthey belongto the same stream. Then, these tuples are joined with the next
stream. This procedure continues for all streams of agroup(i.e. for al itemswithin a candidate
itemset), such that at the end, orly those tuples aurvive that suppat all streams within agroup,
i.e., al itemswithin the given itemset. The StreamJoin operator has the foll owing signature:

SreamJoin (Group-1D, Stream-1D, pred(Join-1D1), pred(Join-ID2), ..)

Two parameters gedfy the mlumns that define a group and the streams within a group, here,
these parameters are itemset and item. The subsequent parameter(s) define(s) the join predi-
cate(s). Inthe example from Fig. 1 it isasimple ejui-join onthetid attribute. Thus the operator
joins subsequent streams of the same group, as presented in Section 3.However, more complex

predicates can be used as well to suppat e.g. pattern matching a sequence analysis[Ni99].

In order to performwell, theinpu of SreamJoin hasto be grouped onthe Group-ID and Stream+
ID attributes. Obvioudly, this requirement can always be fulfilled by adequate sorting tech-
niques. However, explicit sorting can mostly be avoided by adequate pre-processng d the data

in the very same query execution gdan.

For instance, asaume that the CAND tablein Fig. 1is sorted on itemset. Consider the following
evaluation alternatives w.r.t. the join between TRANS and CAND:
® anindex-nested-loopsjoin, using an index of the TRANS table on the item attribute; thisis

posshleinamost al cases, sincein most datawarehouse schemasthe central table has sev-
eral indexes on the dimension attributes.

® ahash join, the CAND table being used as the probing table; please note that for an item
domain containing | items the number of possble candidatesis 2! and thus the size of the
CAND table might even exceed the size of the TRANS table.

In these cases, thejoin result is constituted asfollows: for each tuple (itemset, item) of the CAND

table aset of tuples (itemset, item, tid) is generated, yielding exadly a stream, i.e. the transac
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Fig. 2 StreamJoin processing flow for example group 500, constituted of 4 streams

tions that contain that specific item. For instance, the tuple (100, 10 has generated the stream
S100,10C0Nsiting d the tuples (100, 10, }, (100, 10, 2 and (100, 10, 3. Hence, the necessary
groupng d theintermediate result IR for the StreamJoin processngis aready satisfied and no

additional sort operations are necessary.

Based on this, our preliminary implementation for StreamJoin uses a dynamic hash-based
approach with two hash tables. The strategy isillustrated in Fig. 2for an example group, repre-
senting goup 500, constituted of four streams, derived from four items 1, 2, 3and 4. The first
strean of each groupis used to build the first hash table. The next stream is probed against this
hash table, the matching tuples being inserted into the second hash table. At the beginning o
the next iteration the first hash table is deleted. Similar to the previous iteration, the matching
tuples are used to build upthe new contents of the first hash table. This processcontinues urtil
the next groupisreached, or either aresult of aprobing phase or a wnstituting stream is empty.
At the same time, the intermediate result (i.e. hash table) sizes decrease with each iteration, as

the tuples which dorit match the join condtion are eliminated.

Asindicated in Fig. 2the continuous arrows a so represent the transadions that contain the pre-
fixes of the example itemset {1,2,3,4}. Hence, the correspondng suppats can be easily evalu-
ated by a simple subsequent court(tid) operation. Thereby, the frequent itemsets are those for
which the calculated suppat exceeds minsup. In general, the following olservationis valid:

Observation 1: Given anitemset X = {1,2,...,N-1,N}, by processngthisitemset viathe Sream-
Join operator, we dso oltain the suppats of all prefixes {1}, {1,2}... {1,2,..N-1}. O



Hence given a transaction table TRANS and a table CAND with candidate itemsets, the suppat
of the candidates as well as of their prefixes can be efficiently evaluated within the database,
performingajoin onthe two tables and ppeliningthe intermediate result IR into the SreamJoin
operator, as already shown in Fig. 1.

5 TheMFSSearch algorithm
An open guestionis how to gude the search space explorationin order to reduce search com-
plexity and expensive database scans. In the hypathetical scenario from Fig. 1,we supposed that
al candidate itemsets are stored in the CAND table. However, given the exporential complexity
of the seach space, thisisimpracticable for real-life gplications and item domains. Hence, it
isdesirableto fill the cCAND as much as possble with MFI candidates only. In ou solution this
sophisticated task of generating suitable candidatesfor the CAND tableis performed by the MFS-
Search algorithm that isin detail explained and analyzed in a separate paper that concentrates
especialy on puning effects [NRMOQ]. The strategy expands the search space gradually, start-
ing with the itemset containing all items. This maximizes the dfect of prefix calculations that

in turn reduce subsequent search efforts by means of pruning.

The SreamJoin processng is employed for the calculation of individual candidate suppats.
The produced results are used for the generation d further candidates. Thus, MFS&arch guides
the search space exploration dynamically by already derived intermediate results. Please note
that althoughMFS Sarch starts with the itemset containing al items, it follows a hybrid, rather
than a strict top-down search strategy. In the foll owing, we briefly present this grategy as much

asit isnecessary to uncerstand its combination with the StreamJoin operator.

At agiventime, the search spaceis constituted of alimited number of expanded itemsets. These
are organized in a stadk. The dgorithm basically extracts the topmost itemset of the stack and
calculatesits suppart (and prefix suppats) by means of StreamJoin. If the itemset isfoundto be
frequent, it isreturned as such. If it isinfrequent, MFS Sarch expands the subsets of the aurrent
itemset, pushes them on the stack, and the evaluation starts again with the topmost itemset.

In the following, we would like to detail onthe way subset itemsets are expanded.

Observation 2: Given an infrequent itemset X = {1,2,...N-1,N}, in atop-down search it is nec
essry to test all of its subsets of level N-1. This can be dore by successvely eliminating the
items N-1, N-2,...1 from X. It is not necessary to dothis with item N, since X -{N} is a prefix

whose suppat isimplicitly evaluated together with the suppat of X (see Observation 1). [
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Fig. 3 Search space for frequent itemset evaluation over the finite item
domain: 1,2,3,4.

However, if this procedure of generating subsets by eliminatingthefirst N-1 elementsisapplied
recursively, dugdicates are generated. For instance, bah itemsets, {1,3,4} and {2,3,4}, generate
the subset {3,4}. In arder to avoid this, we have asdgned a so-called eliminationlist (ElimList)
to each expanded itemset in the search space. The ElimList of an itemset spedfieswhich of its
congtitutingitems are digibleto be used for subset expansion. Assume that the siblings X4, X5
-y XN-1 @re expanded successively from X. The Elimlists of these siblings are then calcul ated
by successvely eliminating ore dement from the original ElimList of X. Thusfor X = {1,2,...,
N-1, N} and Ey = {1,2,...N-1} the following sibling subsets and Eli mLists are generated™:

X.= {1,2,...N-2N}, E; = {1,2,...N-2},

XN-2: {1,3,...N'1, N}, EN-Z = {1},

XN-l: {2,...,N-1, N}, EN-l =0.

Fig. 3shows a sample search space obtained in this way. As $iown in [NRMOQ] the ElimList
method guarantees a full expansion d the search space withou dupgicae generation and
reduces in combination with the StreamJoin prefix processng the search space dready by an

order of magnitude.

The numbers in brackets sow the order in which the candidate itemsets come to evaluation
throughou search space evaluation, if no pruning methods are gplied, i.e. the entire search
space is pawn. This hows once again that MFSSarch doesn’t adopt a strict top-down explo-
ration,but amixed ore. Thus, all dired subsets (correspondngto the ElimList method) of a aur-
rent itemset X are first taken into consideration, kefore MFSSarch continues with the next sib-
ling d X.

Based onthis, we have the following MFS&arch agorithm:

1. Push the itemset containing all frequent items on the stack

1. For simplification, we use the notation E; for EX
[



2. while stack nat empty

3 Extract topmost itemset X from stack;

4.  Cdculate suppat and prefix supports of X by means of SreamJoin;
5 if Xinfrequent {

6. Use X and infrequent prefixes of X for Bottom-up Pruning;

7 Generate all subset of X according to the ElimList method

8 Push generated subsets of X on the stack}

9

. el
10. Use X for Top-Down Pruning;
11. Add X to the output stream} Il Xisa MFI

As can be seen in the pseudo code, MFSSarch employs both top-down as well as bottom-up1
pruning techniques that are based onthe results of previous suppat calculations(cf. Line 6. and
10. d the MFSSarch algorithm). Thereby, due to the StreamJoin processng scheme, both the
suppat of an entire @ndidate itemset as well as of al of its prefixes can be used for pruning.

Basicdly, the pruning strategy is founded onthe foll owing olservation:

Observation 3: Given two itemsets X; and Xp, sit. X; 0 X, . In the MFS&arch exploration X;
will be processed after X,. [

Intuitivelyz, this observation results also from Fig. 3,showing that despite of the hybrid search
space exploration, any subset is explored only after all supersets have been explored aswell. An
important consequence is the fact that once an itemset is foundto be frequent, it can immedi-
ately bereturned, as Observation 3also guaranteesthat it ismaximal. Hence, MFS&arch yields
anon-blocking processng. This property isused in line 11. d the algorithm.

Both pruning techniques affect the expanded itemsets on the stack, by either deleting them and
thus eliminating them from evaluation, a by reducing the number of the subsetsto be expanded
when these itemsets come to evaluation, i.e. when they are on the top d the stack. It can be
shown that the number of items on the stack at a given time is O(n), where n is the size of the
considered item domain. This yields low memory requirements and hgh efficiency for the
MFSSarch algorithm.

6 Integration withthe DBMS

In Fig. 1wevisualized ou approach to evaluate the suppats of itemsets and prefixes within the

database by using the SreamJoin operator. In this <enario, the candidates are given by the

1. Top-down pruning reduces the search space based on the fad that the subsets of a frequent itemset are dso frequent.
Bottom-up pruning eliminates supersets of known infrequent itemsets from evaluation.
2. The detailed proof of this observation as well as of the employed pruning techniques can be found in [NRMOO].



(static) caND table. Hence, in order to find the MFS, this table must contain al possble candi-
date itemsets, determined e.g. duing a preprocessng step. However, as aready mentioned, this

approach is prohibitively costly in terms of time and dsk space for real-life item domains.

Hence, in ou solutiontheinpu for the SreamJoin operator is provided by the MFSSarch algo-
rithm. In order to oltain an efficient and comprehensive integration d data miningwith the data
warehouse DBMS this task has to be performed in the database engine & well. In this sction
we present a strategy to efficiently map MFSSarch to database operators. The neaessary flexi-
bility will be provided by user-defined functions [SQL99] and wser-defined table operators
(UDTOs) [IM99]. UDTOs permit the definition d set-oriented operations within the database
engine. They operate on ore or more tables and passbly some additional scalar parameters and
return atable or atuple. The aguments (i.e. inpu tables) can be intermediate results of aquery,
i.e. they are nat restricted to base tables only. Thus the SreamJoin operator itself can beimple-
mented asa UDTO as wall.

In addition, we assume that the candidate generation algorithm is realized asaUDTO as well,
called GenerateCand As already mentioned, this algorithm starts with the itemset holding all
items. Thus, this is the first itemset produced by the GenerateCand operator. Later on, since
dynamic pruning is employed, the generation d further candidates depends on the results of
processngthe aurrent candidate in the search space viathe SreamJoin operator. This approach

obviously forms a cyclein the overall MFS generation scheme, as depicted in Fig. 4.

As the GenerateCand UDTO is incorporated within a cycle, candidate and result generation
must be split up. In Fig. 4, the functionality of the SreamJoin operator has already been
expanded to calculate dso the aygregation onitemset as explained in Section 4,thus returning
the suppat of each itemset as well as of al its prefixes. The resulting ouput stream is called

MFS
‘ itemset, item

(GenerateResults (itemset, item, sup, parameter:minsup))

A SResult (itemset, item, sup)

(STREAMJOIN (itemset, item, tid))
4 (itemset, item, tid)

(JoIN (item = item) )

(itemset, item)
2 t1

(GenerateCand (itemset, item, sup)) -
o~ oy

( FIrsTCAND(itemset, item) )

Fig. 4 Mapping of MFSSearch to database operators
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SResult(itemset, item, sup).

This output stream is consumed by two operators. the GenerateCand UDTO and the Genera-
teResults UDF. The GenerateCandUDTO isonly resporsible for candidate generation. For ini-
tialization puposes, the first candidate, namely the itemset incorporating all items, isinitialy
read from thetable FIRSTCAND (itemset, item) and transmitted unchanged to the subsequent oper-
ators Join, respectively StreamJoin. These alculate the arrespondng (prefix) suppats as
aready presented before.

In all subsequent iterations, the inpu of the GenerateCandUDTO is provided by the output of
SreamJoin, i.e. the SResult data stream. This intermediate result is used by GenerateCand to
perform pruning as presented in the previous sctionandto further explore the search space The
resulting subsequent candidate itemsets are added to the output stream, thus garting rew itera-
tions. The processcontinuesuntil nofurther candidateitemsetsare avail able, i.e. the entire MFS
is calculated. The required groupng for the SreamJoin operator can be accomplished by an
index nested-loopsjoin, TRANS beingtheinner table. Usingan (usually already existing) index

on the item attribute we can also circumvent repeated scans of the TRANS table.

The functionality for generating the final result istaken over by the GenerateResults UDF. This
gets asinput the result of the SreamJoin operator in the form (itemset, item, sup). The minimal
suppat defined by the user is provided by means of a scdar parameter minsup. Thus, Genera-
teResults selects frequent itemsets performing afilt ering functionality. As aready explained, by
employing the MFS&arch candidate generation, a frequent itemset foundis also a MFI. Thus,
GenerateResults can immediately addit to the output stream. Thisresultsin fast resporse times

and continuows inpu for further processng by e.g. association rule generation.

In the following, we focus on how the QEP from Fig. 4 can be expressed in (augmented) SQL.
As aready mentioned, GenerateResults can be redized by a UDF, as currently suppated by
most database vendars. However, UDFs can na be used for the StreamJoin and GenerateCand
approades, sincethey bath deliver setsof tuples. Thisproblem of expressng set-orientation can
be solved by UDTOs [JM99], as presented in the following. As for the cycle within the QER,
thiscan beresolvedinasimilar way asrecursion[ SQL99], usinge.g.commontable expressons
[Chod].

By adequately usingthe @ove mentioned concepts, we obtain asingle statement, as depicted in
Fig. 5.Hereby, we have used a smplified syntax for a better understanding. The commontable

expression corresponds to the SResult stream. The first “SELECT StreamJoin” clause corre-

11



SET minsup = myminsup;

WITH SResult(itemset, item, sup) AS
((SELECT StreamJoin(itemset, item, tid)
FROM TRANS,
(GenerateCand(SELECT itemset, item, -1 FROM FIRSTCAND)) AS t1
WHERE TRANS.item = t1.item)
UNION ALL
(SELECT StreamJoin(itemset, item, tid)
FROM TRANS,
(GenerateCand(SELECT itemset, item, sup FROM SResult)) AS t2
WHERE TRANS.item = t2.item))

SELECT GenerateResults FROM SResult

Fig. & SQL representation using common table expressons, UDFsand UDTOs

sponds to the first iteration, where GenerateCandreceives its inpu from the FIRSTCAND table,
i.e. theitemset containing all items. Thisfirst inpu is used to initiali ze the search space, hence
the value of the sup parameter isirrelevant (e.g.-1in Fig. 5. After initiai zing the seach space
the GenerateCand operator transmitsthisfirst candidate unchanged to the StreamJoin operator.
The orrespondng ouput stream iscdledtlin Fig. 4and Fig. 5. The subsequent iterations are
expressed by the secondinput of the UNION operator. Inthis* SELECT StreamJoin” clause, the
inpu of GenerateCandis already provided by the result of the SreamJoin operator, i.e.the SRe-
sult stream. Thisinpu is used to further explore the search space. The subsequent candidate

itemset is added to the output stream t2, thus garting a new iteration.

In thisway, the MFS calculation can be comprehensively expressed in (augmented) SQL. Thus
the entire processng scheme or constituting parts of it can be referenced for other mining tasks
aswell. Please note that in contrast to ather approaches [STA99], this drategy avoids interme-
diatetable constructionsaswell asthe formulation o separate SQL statementsfor each process
ing phese. Instead, as presented in Fig. 5,the entire MFScal culation can be expressed in a com-
pact way by a single statement, thus query optimization and parallelization can be applied as

usual for sake of increasing efficiency.

7 Parallelization Potential
The performance of database operations can be mnsiderably improved by using parallelization
techniques [NM98]. In this sction we cncentrate on the parallelization pcsshiliti es of MFS-
Search. A critical aspect of parallelizationisthat the strategieswork well with the existing phys-
icd datapartitioning. Thisisespedally important for an efficient integration d dataminingwith

12



data warehouses. In contrast, most related work [HKK 97, AS96] propcse solutions that are
based on poprietary partitioning strategies or even data replications, rendering these
approadhes inadequate for large-scale operating databases. In addition, for such applications
communicaionand /O overhead shoud be avoided as much as possble. However, most previ-
ous parall eli zation strategies [ SK98, SK96, AS96] make repeated passes over the disk-resident
database partition, thus incurring high 1/O overhead. Moreover, in many cases they exchange
their courts of candidates or remote database partitions during each iteration, resulting also in
high communication overhead. Additionally, some of the approaches replicate compli cated

memory structures, thus inefficiently utilizing main memory.

In the foll owing, we present parallelization approaches that maximize data locdity, thus reduc-
ing communication as well as 1/0 overhead. Moreover, different kinds of physical disk parti-

tionings of the data warehouse are taken into account.

Asaimethat the TRANStablein Fig. 4isthe central FACTS table in adatawarehouse star schema,
hoding also ather attributes like customer, time etc. The CAND table is generated onthe fly,
according to the current search space status, as presented in the previous sction. We differenti-

ate two scenarios w.r.t. possble physical partitionings on dsk, as discussed in the foll owing.

7.1 Collocated Transaction Items

Accordingto dfferent application scenarios, the FACTS table can be partitioned in multi ple ways
[Schn97. InFig. 6we propase asolution which is compatible with a partitioning strategy of the
central FACTS table so that all tuples belongngto a single transaction are on the same partition.

Thisisthe casefor instance if the partitioningis done ontime, tid, or customer attributes.

Inthiscase, each partition can calculate thelocal suppats of the candidate itemsets by usingthe
SreamJoin processng scheme. In Fig. 6,the first candidate itemset is{A, B, C}. Only the sup-
ports of the prefixes need to be communicated to acentral merge operator, cdled CumulateSup
ports, that evaluates the final suppats by adding upthe locd suppats of the prefixes. This
cumulated result istheinpu of both the central GenerateCandaswell as GenerateResults oper-
ators. Asdescribed in Section 6,the GenerateCand operator decides on the next candidate item-
set. Thisitemset, e.g. {A, C} in Fig. 6,is broadcasted to al participating noaes, thus starting a
new iteration. The GenerateResults operator produces the fina results holding maximal fre-

guent itemsets as already shown in Section 6.

Hence, only candidate itemsets and computed suppats need to be communicated over the net-
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Fig. 6: Parallel procesdng for the evaluation of maximal frequent itemsets,
items belonging to atransaction reside on the same partition

work, produwing oy minima communication overhead. In contrast to smilar strategies
[AS96], performance isimproved by avoiding multiple database passes and repli cated memory

structures.

7.2 Distributed Transaction Items
In the seoond pesble scenario the FACTS table is partitioned in away that doesn’t guarantee
that al items belongng to atransaction reside on the same partition. Thisis the caseif the par-

titioning is dore for instance on the item attribute.

A smal modification o the SreamJoin operator alowing it to read streams from different
inpus can also prevent from repartitioning. Thisis shown in Fig. 7,where the data warehouse
ispartitioned ontheitem attribute. When computing the suppat for candidate itemset {A, B, C},
the StreamJoin operator receives its input streams from different nodes, correspondng to the
constituting items. Thereby, the StreamJoin operator can reside on any of the processing noaes.
Please note that the communication overhead is increased by the fact that the tids belongng to
each item need to be communicaed over the network. This can be reduced by exeauting the
StreamJoin processng onthe node correspondng to the item with the highest suppat. In this

case, the most voluminous tid-li sts don't have to be communicated over the network.

It isnot necessary to broadcast the andidate itemsetsto all partitions, either. If the partitioning
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function onthe item attribute is known, a andidate itemset only has to be sent to the partitions
that contain that item. For instance, in step (5) from Fig. 7,the new candidate {A, C} only has
to be sent to partitions A and C. We do nd know of any other parall eli zation strategy in the data
mining area which would incur less communication overhead for this senario withou reparti-
tioning a (selectively) replicating the database [HKK 97].

8 PerformanceEvaluation
In order to evaluate the performance of our processng scheme MFS&arch for maximal fre-
guent itemsets via the SreamJoin operator, we have integrated this operator into the MIDAS
system. MIDAS [BJ+96] isa prototype of a parall € database system runrning onahybrid archi-
tecture coomprising several SMP nodes combined in a shared-disk manner. We have validated
our approach usinga100MB TPC-D database [ TPC95], runnng ona SUN-ULTRA1 worksta-
tionwith a 143 MHz Ultra Sparc processor. For the parall el scenarios, we used a cluster of up
to 4workstations. The database mntains 150.000transactions comprising aderson 20000 df-
ferent parts. For a detailed evaluation, it was important to consider a wlumn having alimited
value domain. Thus, we have performed ou measurements on the LINEITEM table, where the
place of theitem columnistaken over by | _linenumber andthe pair |_partkey, | _suppkeyiscon
sidered as beingthetid attribute. The domain of the|_linenumber columnisfrom1to 7,andthe
attributes|_partkey, | _suppkey define 67.806transactions. Due to the uniform data distribution,

the length of the MFIs decreases monaonically with increasing supparts.
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In the following we would like to pdnt out the difference of this modeling to traditional market
basket analysis. In atraditional market basket analysis, if an itemset {A, B} isfoundfrequent, a
passble resulting rule might be: “ If a customer buysitem A at a gven time it is likely that he/
she buys also item B”. For simplification puposes, asaume that in ou modeling the
|_linenumber attribute represents smekind d timestamp: weekdays, months etc. Hence, apos-
sibleinterpretation o afrequent itemset {1, 2} isthe following: “ If a part is ld a timestamp
1,itislikely that the same part will be sold at timestamp 2 as well” . Hence, this kind d mod-

elingis particularly suitable for e.g. event analysis.

In order to compare the performance of MFSSarch with the Apriori algorithm that isthe basis
of most bottom-up approaches, we have presented in Fig. 8athe time that is necessary to per-
form the multiple database scans specific to this algorithm. Please note that this curve doesn’t
comprise any CPU costs that are also inherent to the Apriori algorithm. As can be seenin Fig.
8a, MFSSarch shows a performance that is orders of magnitude better than the Apriori algo-
rithm. At the sametime, we have listed the 1/O costs that would result from processingtheitems
using MaxMiner [Ba98]. This rougHy corresponds also to the 1/0O necessary for the Pin-
cer Search algorithm [LK98]. As can be seen, athough bah approaches have proven to be more
efficient than the Apriori algorithm in terms of CPU costs, the repetitive database scans dill
cause significant 1/0 costs. The results in [Ba98] also show that the increased efficiency of
MaxMiner does not result primarily from the reduction d database passes, but from the onsid-
eration d lesscandidates. However, as can be seen in Fig. 8, the resulting 1/0 costs of these
algorithms already exceed the total costs of MFSSarch.

The most striking dfference between Apriori and MFSSarch is in the number of candidate
itemsets considered to produce the set of maximal frequent itemsets. As can be seenin Fig. 8b,
while for the MFSSarch processng scheme this number is propartional to the actual number
of maximal frequent itemsets, the itemsets considered by the Apriori algorithm increase expo-
nentially with deaeasing supports. As sown in [LK98§], the number of maximum frequent
itemsets is a nonmonotone function w.r.t. the minimal suppat. This result shows that, urlike

most algorithms, MFSSarch can fully benefit from this property.

As mentioned in Sedion 2,in [STA98] the most promising improvement of the Apriori algo-
rithm that is also suitable for database integration was foundto be one based ona Vertical for-
mat. Thisformat requires a preparatory phase that determinesfor each item alist comprisingal
tids that contain that item. Because of the variable length of these lists, in [STA98] they are
stored in BLOBSs. To compare this optimized variant of the Apriori algorithm with ou approach,
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we have kept track of the data acesses necessary in each scenario. In this case, by asingle data
access we mean the accessto all tids correspondngto asingleitem, i.e. in the implementation
proposed by [STA9§] readingin asingle BLOB. In Fig. &, we have compared these numbers
with the MFSvolume!. Ascan be seen, the data accesses related to MFSSarch are propartional
to this measure. In contrast, the data accesses needed for the Vertical approach increased expo-
nentially with decreasingsuppats. ComparingFig. 8 andFig. 8, we an seethat the cmmplex-
ity of MFSSarch scaes linealy with the MFS volume & well.

Asfor parallelization, we have partitioned the LINEITEM tableon|_partkey, | _suppkey. This cor-

responds to a partitioning in which al tuples belonging to a transaction reside on the same par-

1. Fig. 8c demonstrates once aain the non-monotone property of the MFS volume [LK 98] w.r.t. the minimum support.
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tition (cf. Sedion 71). We have used a degreeof parallelism varying from 1 (sequential) to 4.
The results presented in Fig. 8d show alinear speedup.Hence MFSSarch shows agood aral-

lelization pdential resultingin additional performance improvements [NM9§].

Finally, we would like to make some general comments on these first experimental results. We
are fully aware of the fact that frequent itemset evaluation ona database of this size and item
domain can be very efficiently performed using ogimized methods that exploit the small size
of the database to construct compact data structures [AA POO, HPY 00] and thus avoid multiple
scans. However, our aim was to test the feasibility of MFSSarch as a generic gpproach inte-
grated within the database engine and compare this with ather strategies for the general case.
Therefore, we haven’t made use ather of any optimizations, like eg. caching. Instead, we have
only used anindex for efficient table aacess aswell asto achieve the necessary groupngfor the
StreamJoin operator, as suggested in Sedion 6. Since the measurements sow that in this con
figuration MFSSarch still scales linearly with the MFS volume, we ae nfident that it will

show comparable efficiency also for larger databases and item domains.

Asalready mentioned, in ou test database the length of the MFIs decreases monaonically with
increasing suppats. The performance measurements from Fig. 8 show that MFS&arch pro-
vides agood prformance w.r.t. to al significant measures for bath low and hgh supports, i.e.
for both short as well aslong MFIs. This demonstrates the effectivenessof our hybrid pruning
technique. Thustop-down pruning performs best for longMFIs, where (large) frequent itemsets
eliminate several subsequent subsets from exploration. At the same time, batom-up pruning
comes mostly to application in the case of short MFIs, where infrequent subsets reduce the
seach space by eliminating their correspondng supersets from exploration. The effediveness
of thisbottom-up pruningin MFSSarch isreinforced by the fact that it employsthe SreamJoin
techniquethat additionally cdculatesal prefixes. Henceinfrequent prefixes can also very effec-
tively contribute to batom-up pguning.

As compared to [AAPOO, HPY 00Q] that aso avoid multi ple database scans, we believe that the
main advantage of MFS&arch isthe straightforward way it can be integrated and referenced on
the database execution level. In addition, since MFSQarch explores the search space gradually,
it yields alow memory consumption that avoids materializaion even for large databases and
item domains, aswell asin multi-user environments. Thisfeature anna be guaranteed by strat-

egies that operate ona mndensed representation o the whole search space.
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9 Conclusions

In this paper we have presented MFS&arch, a processng schemefor the generation d maximal
frequent itemsets. MFSSarch employs a new operator, called SreamJoin as a highly effective
strategy for (prefix) itemset suppat calculations.

The resporse time and data accesses of the MFSSarch algorithm are only propational to the
MFS volume, ameasure that reflects the inherent complexity of the frequent itemset calculation
problem. In addition, MFS&arch is characterized by a low memory consumption. Thus, it is
applicable aso for (ad-hoc) mining in multi-user DBM Ss, such as data warehouses. The algo-
rithm can efficiently beintegrated with adatabase engineyieldingasingle query execution dan.
Thusit is able to make profit of all forms of query execution ogimizaions, including peraleli-
zation. Furthermore, the suitability of MFSSarch for database integration is augmented by its
non-blocking feature, making it attractive for pipelining, and by the fact that it uses only avail-
able index structures of the database.

MFSSearch represents a processng primitive for the alculation of the maximal frequent set,
thus facilitating the moduarization d similar problems, e.g. pattern recogrition, and the reuse
of this primitive. Our implementation concept based on user-defined table operators and user-
defined functionsyields a compact representation onthe (SQL) language level. With this, MFS
Search techndogy ismade available asakind d primitive database operation that considerably

facilitates its potential for reuse.

As for future work, we are in the processto experimentally vali date the performance of MFS
Search for large-scd e databases and item domains. We further plan to investigate the suitability
of the gproach for hybrid solutions as well, where the considered item domain is restricted by

means of e.g. sampling [FS+98].
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Bernhard Mitschang: Technologie fiir Parallele Datenbanken - Bericht
zum Workshop

nicht erschienen

Hans-Joachim Bungartz, Ralf Ebner, Stefan Schulte: Hierarchis-
che Basen zur effizienten Kopplung substrukturierter Probleme der
Strukturmechanik

Hans-Joachim Bungartz, Anton Frank, Florian Meier, Tilman Neunho-
effer, Stefan Schulte: Fluid Structure Interaction: 3D Numerical Simu-
lation and Visualization of a Micropump

Javier Esparza, Stephan Melzer: Model Checking LTL using Constraint
Programming

Niels Reimer: Untersuchung von Strategien fiir verteiltes Last- und
Ressourcenmanagement

Markus Pizka: Design and Implementation of the GNU INSEL-Compiler
gic

Manfred Broy, Franz Regensburger, Bernhard Schatz, Katharina Spies:
The Steamboiler Specification - A Case Study in Focus

Christine Rockl: How to Make Substitution Preserve Strong Bisimilarity
Christian B. Czech: Architektur und Konzept des Dycos-Kerns

Jan Philipps, Alexander Schmidt: Traffic Flow by Data Flow

Norbert Frohlich, Rolf Schlagenhaft, Josef Fleischmann: Partitioning
VLSI-Circuits for Parallel Simulation on Transistor Level

Frank Weimer: DaViT: Ein System zur interaktiven Ausfithrung und
zur Visualisierung von INSEL-Programmen

Niels Reimer, Jiirgen Rudolph, Katharina Spies: Von FOCUS nach IN-
SEL - Eine Aufzugssteuerung

Radu Grosu, Ketil Stglen, Manfred Broy: A Denotational Model for
Mobile Point-to-Point Data-flow Networks with Channel Sharing
Christian Roder, Georg Stellner: Design of Load Management for Par-
allel Applications in Networks of Heterogenous Workstations

Frank Wallner: Model Checking LTL Using Net Unfoldings

Andreas Wolf, Andreas Kmoch: Einsatz eines automatischen Theorem-
beweisers in einer taktikgesteuerten Beweisumgebung zur Losung eines
Beispiels aus der Hardware-Verifikation — Fallstudie —

Andreas Wolf, Marc Fuchs: Cooperative Parallel Automated Theorem
Proving

T. Ludwig, R. Wismiiller, V. Sunderam, A. Bode: OMIS - On-line Mon-
itoring Interface Specification (Version 2.0)

Stephan Merkel: Verification of Fault Tolerant Algorithms Using PEP
Manfred Broy, Max Breitling, Bernhard Schatz, Katharina Spies: Sum-
mary of Case Studies in Focus - Part 11

Michael Jaedicke, Bernhard Mitschang: A Framework for Parallel Pro-
cessing of Aggregat and Scalar Functions in Object-Relational DBMS
Marc Fuchs: Similarity-Based Lemma Generation with Lemma-Delaying
Tableau Enumeration



Reihe A

342/27/97 A
342/28/97 A
342/29/97 A

342/01/98 A

342/02/98 A
342/03/98 A
342/04/98 A

342/05/98 A

342/06/98 A
342/07/98 A
342/08/98 A
342/09/98 A
342/10/98 A
342/11/98 A
342/12/98 A
342/13/98 A
342/01/99 A

342/02/99 A

342/03/99 A
342/04/99 A

342/05/99 A

342/06/99 A

Max Breitling: Formalizing and Verifying TimeWarp with FOCUS
Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase FrameWork
for the Evaluation and Maintenance of Automated Theorem Prover Data
(incl. Documentation)

Radu Grosu, Ketil Stglen: Compositional Specification of Mobile
Systems

A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. Schiemann, T.
Schnekenburger (Herausgeber): “Anwendungsbezogene Lastverteilung”,
ALV’98

Ursula Hinkel: Home Shopping - Die Spezifikation einer Kommunika-
tionsanwendung in Focus

Katharina Spies: Eine Methode zur formalen Modellierung von
Betriebssystemkonzepten

Stefan Bischof, Ernst W. Mayr: On-Line Scheduling of Parallel Jobs
with Runtime Restrictions

St. Bischof, R. Ebner, Th. Erlebach: Load Balancing for Problems
with Good Bisectors and Applications in Finite Element Simulations:
Worst-case Analysis and Practical Results

Giannis Bozas, Susanne Kober: Logging and Crash Recovery in Shared-
Disk Database Systems

Markus Pizka: Distributed Virtual Address Space Management in the
MoDiS-OS

Niels Reimer: Strategien fur ein verteiltes Last- und Ressourcen-
management

Javier Esparza, Editor: Proceedings of INFINITY’98

Richard Mayr: Lossy Counter Machines

Thomas Huckle: Matrix Multilevel Methods and Preconditioning
Thomas Huckle: Approximate Sparsity Patterns for the Inverse of a
Matrix and Preconditioning

Antonin Kucera, Richard Mayr: Weak Bisimilarity with Infinite-State
Systems can be Decided in Polynomial Time

Antonin Kucera, Richard Mayr: Simulation Preorder on Simple Process
Algebras

Johann Schumann, Max Breitling: Formalisierung und Beweis einer Ver-
feinerung aus FOCUS mit automatischen Theorembeweisern — Fallstudie
M. Bader, M. Schimper, Chr. Zenger: Hierarchical Bases for the Indef-
inite Helmholtz Equation

Frank Strobl, Alexander Wisspeintner: Specification of an Elevator Con-
trol System

Ralf Ebner, Thomas Erlebach, Andreas Ganz, Claudia Gold, Clemens
Harlfinger, Roland Wismiiller: A Framework for Recording and Visual-
izing Event Traces in Parallel Systems with Load Balancing

Michael Jaedicke, Bernhard Mitschang: The Multi-Operator Method:
Integrating Algorithms for the Efficient and Parallel Evaluation of User-
Defined Predicates into ORDBMS



Reihe A
342/07/99 A
342/08/99 A

342/09/99 A

342/10/99 A
342/01/00 A
342/02/00 A
342/03/00 A

342/04/00 A
342/05/00 A

342/06/00 A

342/07/00 A

342/08/00 A

Max Breitling, Jan Philipps: Black Box Views of State Machines
Clara Nippl, Stephan Zimmermann, Bernhard Mitschang: Design, Im-
plementation and Evaluation of Data Rivers for Efficient Intra-Query
Parallelism

Robert Sandner, Michael Mauderer: Integrierte Beschreibung au-
tomatisierter Produktionsanlagen - eine FEvaluierung praxisnaher
Beschreibungstechniken

Alexander Sabbah, Robert Sandner: Evaluation of Petri Net and Au-
tomata Based Description Techniques: An Industrial Case Study
Javier Esparza, David Hansel, Peter Rossmanith, Stefan Schwoon: Effi-
cient Algorithm for Model Checking Pushdown Systems

Barbara Konig: Hypergraph Construction and Its Application to the
Compositional Modelling of Concurrency

Max Breitling and Jan Philipps: Verification Diagrams for Dataflow
Properties

Giinther Rackl: Monitoring Globus Components with MIMO

Barbara Konig: Analysing Input/Output Capabilities of Mobile Pro-
cesses with a Generic Type System

Michael Bader, Christoph Zenger: A Parallel Solver for Convec-
tion Diffusion Equations based on Nested Dissection with Incomplete
Elimination

Clara Nippl, Angelika Reiser, Bernhard Mitschang: Extending Database
Functionality to Support Frequent Itemset Processing

Clara Nippl, Angelika Reiser, Bernhard Mitschang: Conquering the
Search Space for the Calculation of the Maximal Frequent Set



SFB 342 :

Reihe B

342/1/90 B
342/2/90 B
342/3/90 B
342/4/90 B

342/1/91 B
342/2/91 B

342/3/91 B

342/4/91 B
342/5/91 B

342/6/91 B
342/7/91 B
342/1/92 B
342/2/92 B

342/1/93 B
342/2/93 B

342/1/94 B

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

Wolfgang Reisig: Petri Nets and Algebraic Specifications

Jorg Desel: On Abstraction of Nets

Jorg Desel: Reduction and Design of Well-behaved Free-choice Systems
Franz Abstreiter, Michael Friedrich, Hans-Jiirgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler Programme
Barbara Paech: Concurrency as a Modality

Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier-Toolbox —
Anwenderbeschreibung

Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop tiber
Parallelisierung von Datenbanksystemen

Werner Pohlmann: A Limitation of Distributed Simulation Methods
Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually Shared
Memory Scheme: Formal Specification and Analysis

Dominik Gomm, Ekkart Kindler: Causality Based Specification and
Correctness Proof of a Virtually Shared Memory Scheme

W. Reisig: Concurrent Temporal Logic

Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-
Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-Support
Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hardware,
Software, Anwendungen

Max Fuchs: Funktionale Spezifikation einer Geschwindigkeitsregelung
Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein Lit-
eraturiiberblick

Andreas Listl, Thomas Schnekenburger, Michael Friedrich: Zum En-
twurf eines Prototypen fiir MIDAS



