
Transitions into Blak Box Views �| The NetBill Protool Revisited |Max Breitling Jan PhilippsInstitut f�ur InformatikTehnishe Universit�at M�unhenD-80290 M�unhen{max.breitling|jan.philipps}�in.tum.de FOCUS

AbstratSystem spei�ation by state mahines together with propertyspei�ation and veri�ation by temporal logis are by now standardtehniques to reason about the ontrol ow of hardware omponentsand embedded systems. The tehniques to reason about the dataowwithin loosely oupled systems, however, are less well developed.In this ontribution, we propose a formalism for the veri�ation ofsystems with asynhronously ommuniating omponents. The om-ponents themselves are spei�ed as state mahines, while the dataowbetween omponents is desribed as a relation over the input and out-put histories of a system. Communiation history properties are de-rived from temporal logi properties of the omponent state mahines.The history properties an then be used to dedue global propertiesof a omplete system.To demonstrate our approah, we model the NetBill protool formiro-payments in the Internet and prove some orretness properties.1 IntrodutionState mahines have beome a popular tehnique to speify software andhardware systems. They are often desribed by various inarnations of statetransition diagrams, whih are a suggestive notation for omponent design�This work is supported by the Sonderforshungsbereih 342 \Werkzeuge und Methodenf�ur die Nutzung paralleler Rehnerarhitekturen".

or implementation douments. Both in their graphial and in their non-graphial |suh as B, VDM or Z| variants, state-based spei�ation teh-niques have a preise semantis and lear operational models. E�ets ofstate transitions an be analyzed by Hoare-like triples with pre- and post-onditions.More abstrat properties of state mahines an be formulated with tem-poral logis to express invariane or liveness properties. Proofs in temporallogi often follow the operational intuition behind state mahines: Invarianeproperties, for example, are typially shown using indution over the mahinetransitions.Temporal logis are less well suited, however, to express properties ofthe data ow between loosely oupled omponents that ommuniate asyn-hronously via bu�ered ommuniation hannels. For suh systems, blakbox views relating input and output ommuniation histories of data owomponents and systems are better suited. Suh relations an be oniselyformulated in the style of Fous [9, 10, 1℄; they are inherently modular andallow easy reasoning about the global system behavior. In [2, 3, 5℄, we intro-dued a formalism for the veri�ation of blak box properties of systems withasynhronously ommuniating state mahine omponents. The formalismbuilds on work by Manfred Broy [8℄. In [6℄ tool support on the basis ofIsabelle/HOL [12℄ is desribed.In this paper, we demonstrate our approah with a model of the NetBillprotool. We speify the protool in an operational way that is easy toimplement but nevertheless abstrat enough for veri�ation purposes. Weformulate essential properties at di�erent abstration levels, and sketh theirformal proofs.Setion 2 ontains a brief summary of blak box and state mahine spe-i�ation tehniques. Setion 3 ontains a state mahine spei�ation of theNetBill protool for eletroni payments in the Internet. In Setion 4 weformalize orrretness properties of the protool as history relations, andshow that the state mahine spei�ation indeed satis�es these properties.Setion 5 ontains a short disussion of our spei�ation and veri�ation ap-proah. The onlusion in Setion 6 summarizes the results and ontains anoutlook on future work.2 Component and System Spei�ationsOur system model is a variant of the system model of Fous [9, 10, 1℄. It isdesribed in detail in [2℄. We model a system by desribing its omponents,its interfae with respet to the system's environment, and its behavior. The

omponents are onneted via direted hannels. The system's interfae isdesribed by the ommuniation hannels with the types of the message thatare sent on them. The ommuniation along all hannels is modeled by �niteor in�nite message streams. The behavior of a system is haraterized by arelation between the input and output streams, that we desribed in either oftwo di�erent abstration levels: blak-box spei�ations and state mahines.2.1 StreamsThe ommuniation history between omponents is modeled by streams. Astream is a �nite or in�nite sequenes of messages. Finite streams an beenumerated, for example: h1; 2; 3; : : :10i; the empty stream is denoted by h i.For a set of messages Msg, the set of �nite streams over Msg is denoted byMsg�, that of in�nite streams by Msg1. By Msg! we denote Msg� [Msg1.Given two streams s; t and j 2 N , #s denotes the length of s. If s is�nite, #s is the number of elements in s; if s is in�nite, #s =1. We writes _ t for the onatenation of s and t . If s is in�nite, s _ t = s. We writes v t , if s is a pre�x of t , i.e. if 9 u 2 Msg! � s _ u = t . The j -th element ofs is denoted by s:j , if 1 � j � #s; it is unde�ned otherwise. ft:s denotes the�rst element of a stream, i.e. ft:s = s:1, if s 6= h i. For A � Msg we denoteby Ass the subsequene that results from s by removing all elements not inA. For singleton sets we often just write ass instead of fagss.2.2 Blak-Box Spei�ationsA blak-box spei�ation is an abstrat desription in the sense that it doesnot relate to any internals of the system, but just desribes the external,visible behavior.The behavior relation is de�ned by formulas � where the free variablesrange over the input and output streams. The streams ful�lling these predi-ates desribe the allowed blak-box-behavior of our system. We an use allthe operators on streams to formulate the prediates.As a very simple example, onsider a omponent Identity that just opiesmessages from one input hannel i to one output hannel o. Its blak-boxbehavior spei�ation is de�ned by the formula o = i .2.3 State MahinesThe behavior of a system an also be spei�ed by a state transition system(STS), formalized by the tuple S = (I ;O ;A; I; T). The names of the inputand output hannels are ontained in I and O , respetively. The set A

ontains for eah i 2 I a variable iÆ (a pre�x of i) denoting the sequene ofmessages already onsumed by S. Additionally, A may ontain variables torepresent loal data, as e.g. a variable � for the ontrol state. A state of thesystem onsists of a variable valuation that assigns values of the appropriatetype to all variables. Channel variables are evaluated to streams ontainingthe history of messages sent. The system starts in a state ful�lling theprediate I, and T is the set of transitions.State transition systems an be desribed in various ways, for exampleby state transition diagrams [2℄, by tables [10℄, or by the notation as used inthis paper. All tehniques have a ommon tehnique to desribe a transitionby four parts: A preondition, a set of input statements, a set of outputstatements and a postondition. The informal meaning of a transition isas follows: If the available messages in the input hannels an be mathedwith Inputs, the preondition is and the postondition an be made true byassigning proper values to the primed variables, the transition is enabled. If itis hosen, the inputs are read, the outputs are written and the postonditionis made true.PSfrag replaements Identi o
(a) Component

PSfrag replaements Id transmit
(b) State Mahine

transmitpre trueinput i?xoutput o!xpost true() Transition transmitFigure 1: Identity ComponentThe omponent Identity (Figure 1) just needs one transition, alled trans-mit , that is always enabled, reads some value x from i , and immediately sendsit on o, without ausing other hanges in the omponents state.Transitions an be shematially translated into logial formulas; see [2℄for details.2.4 CompositionSystems an be omposed of several omponents by identifying hannels withthe same names. The omposition an be graphially illustrated by stru-ture diagrams, as used in Figure 4. The behavior of a omposite system isompletely de�ned by the behaviors of its omponents. Two omponents S1

and S2 an only be omposed to S = S1
 S2 if they are ompatible (de�nedin [2℄), meaning essentially that they do not ontrol the same variables.Using blak-box spei�ations, the behavior of the omposed system isde�ned as the onjuntion of the omponent behavior prediates. For statemahines, a transition of the omposed system onsist of a transition of oneomponent together with an environment transition of the others.2.5 From State Mahines to Blak-Box ViewsWhile the state mahines represent an operational view on system's behav-ior, the blak-box spei�ations an be seen as properties of the system.Therefore, it is ruial to be able to make a formal onnetion between bothabstration layers, sine this allows us to prove that a (implemented) systemhas ertain blak-box properties, e.g. show that the omponent Identitywith one transition transmit indeed ful�lls the property o = i .In [2℄, we used temporal logi to establish the onnetion between bothabstration levels. Properties an be split into a safety and progress part,that read in our simple example as2o = iÆ2((#o = k ^ #o < #i))3#o � #i)The properties express that the output is orret in all reahable states(i.e. equal to the onsumed messages on i) and that the output will be even-tually extended as long as there is still bu�ered input left. Invariane isproved as usual by showing that the invariant is valid initially, and staysvalid for all transitions. Output extension an be shown be �nding helpfultransitions that extend the output, and that are enabled, and therefore willbe taken due to some fairness properties that are assumed in the exeutionmodel of the state mahines. In [6℄ we suggest how veri�ation diagrams andmehanized proof support assist the veri�ation of properties of the aboveformat.Invariane properties form the basis of safety properties on the blak boxlevel. Invariants are also blak box safety properties, if their free variablesrefer only to history variables (I [I Æ [O) and if they are admissible [16℄with respet to these variables.Progress properties are derived from shemata similar to the propertyabove; in general, the output hannel length is ompared with an arbitraryontinous expression over the length of the input hannels. More details anbe found in [2℄.

PSfrag replaements Env. Customer Merhant m BankRequest(m; g) Order(t ; g)Invoie(t ;G ; p)Cheque(t ; (;m; g ; p)) KeyCheque(t ; k ;(;m; g ; p))Reeipt(t ; k)Reeipt(t ; k)Delivery(m;G)Figure 2: NetBill Transation3 NetBill Spei�ationThe NetBill protool [11, 19℄ supports low-ost transations of eletronigoods in the internet. Transations our between a ustomer proess, amerhant proess, and a entralized bank server. All money-related ativitiesour at the bank server.Figure 2 show a sample transation of the NetBill protool. The ustomerproess reeives an order for eletroni goods g at a merhant m from theenvironment. It generates a unique transation number t whih is used toidentify the transation in the subsequent message exhanges, and forwardsthe order to the merhantm. The merhant returns an invoie, whih onsistsof a prie statement and the enrypted goods. The ustomer proess thenissues a heque to the merhant, whih states that it is willing to pay theprie for the goods. This heque is digitally learsigned: Every partiipantin the protool an read it, but it is impossible for anyone to hange theinformation in it. This heque, together with the key for derypting thegoods, is forwarded to the bank. The bank returns a reeipt and the key tothe merhant, whih forwards it to the ustomer. With this key, the ustomerproess derypts the goods reeived earlier and delivers them to the user.Figures 3(a) and 3(b) show a transation from the point of view of the

PSfrag replaements IdleOrderedCon�rmedDone
orderpayaept(a) Customer view
PSfrag replaements IdleDeliveredCashingDone

deliverGoodsashChequedeliverKey(b) Merhant viewFigure 3: Customer and Merhant View of a Transationustomer and merhant, respetively. The state strutures are explained inmore detail in Setions 3.2 and 3.3.In this setion, we give a formal spei�ation of a simpli�ed NetBill sys-tem. In Setion 3.1 we de�ne the state and message types used in the trans-ation protool; Setions 3.2 to 3.4 ontain omponent spei�ations for theustomers, merhants and the bank.3.1 General De�nitionsBasi types. Figure 4 shows the arhiteture of a NetBill system. It on-sists of an arbitrary number of ustomers, an arbitrary number of merhantsand the entralized bank server. Customers are identi�ed by elements from aset CID of ustomer identi�ers; similarly, we assume a setMID of merhantidenti�ers.In ontrast to other NetBill formalizations, we allow an arbitrary numberof overlapping transations between eah ustomer and eah merhant, i.e. austomer may order goods even if another transation is not yet �nished..To identify the various transations, we assume a set TID of transation IDsthat onsist of a pair of the onerned ustomer and a unique serial number,i.e. TID � CID� N .The eletroni goods handled by the protool are taken from a setGOODS;for eah good there is a unique identi�er in the set GID. We use a bijetive

PSfrag replaements Customer Merhant
Bank

�mm�e��e b�m m�b
Figure 4: NetBill arhiteturefuntionshelf : GID! GOODSto map IDs to the orresponding goods. Monetary values for pries aremodeled by elements from a set M . The pries of the goods are yielded bythe funtionprie : GID! MEnryption. An essential part of any e-ommere protool is enryption ofmessages. The NetBill transation protool uses both symmetri and publikey ryptography. We abstrat from the underlying algorithms, and justassume that for eah message set M there exists a set of enrypted messagesM and two funtionsEnrypt : Key ! M ! M and Derypt : Key ! M ! MFor symmetri enryption, we demand thatDerypt k (Enrypt k m) = mFor publi key enryption, we demand that the publi keys of the ustomersare freely aessible by a funtionPubkey : CID! Keyand a message that is signed by ustomer (with private key k) an bederypted with the publi key:Derypt Pubkey: (Enrypt k m) = mThis latter requirement is satis�ed, for example, by the well known RSAalgorithm.

Message types. We de�ne a number of omplex data types to be used formessages on the ommuniation hannels.� Environment/Customer: The only messages from the environment tothe ustomer proess are goods requests parameterized by the ID ofthe goods ordered, and the ID of the merhant from whih the good isordered:Te ::= Request(MID�GID)The only messages returned to the environment are the goods:Te ::= Delivery(MID�GOODS)� Customer/Merhant: The ustomer sends two kinds of messages tothe merhant: Orders of a ertain good, and signed heques whih themerhant then forwards to the bank for further proessing.Tm ::= Order(TID�GID)j Cheque(TID� (CID�MID�GID� M))The merhant sends two kinds of messages to the ustomer:Tm ::= Invoie(TID�GOODS� M)j Reeipt(TID�KEY)� Merhant/Bank: The merhant forwards the heques to the bank to-gether with the key to derypt the involved goods.Tmb ::= KeyCheque(TID�KEY� (CID�MID�GID� M))The bank sends a reeipt to the merhant (to be forwarded to theustomer) as a signal that the money transfer has sueeded.Tbm ::= Reeipt(TID�KEY)We sometimes form message sets by replaing parameters of a message on-strutor with the plaeholder \�". For example, we writeReeipt(t ; �) for [k2KEYfReeipt(t ; k)g

3.2 CustomerA ustomer is identi�ed by its ID. The state spae of eah ustomer onsistsof its private key, and a mapping from transation IDs to a CustTrans reord.This reord holds the ontrol state of the transition aording to Figure 3(a)as well as the goods ID, the merhant ID, the enrypted goods, the prie ofthe goods, and the deryption key:CustTrans ::= reordphase : fIdle;Ordered;Confirmed;Doneggid : GIDmid : MIDgoods : GOODSprie : Mkey : KEYendTransations IDs are determined by the ustomer; our spei�ation usesa rather simple alloation sheme based on a variable nexttid , whih holdsthe next free ID.Thus, a ustomer 2 CID is spei�ed in Figure 5. Initially, all transa-tions are idle. Eah transation is proessed on the ustomer side as shownin Figure 3(a). A transation gets ativated by the transition order that isalways enabled. The ustomer proess reeives an order onsisting of a goodsID and a merhant ID to desribe what should be bought from whih mer-hant. A new transation number is generated, all required data are storedin st :t , and the order is forwarded to the merhant.The transition pay aepts the enrypted goods, and generates a signedheque that is sent to the merhant. This transition is only enabled if theprie the merhant o�ers is less than the prie the ustomer expets. Notethat the ustomer annot be sure if he got the orret goods, sine they areenrypted.Finally, the ustomer proess gets the deryption key from the merhant(transition aept). If the goods are the goods it expeted, they are sent tothe system environment, and the transation status is set to Done.3.3 MerhantOn the merhant side, eah transation is proessed as shown in Figure 3(b).Eah merhant must store for eah transition the ontrol state from Fig-ure 3(b) as well as goods ID, ustomer ID, prie and the deryption key:

Customer [℄inputse� : Tem� : Tm for all m 2 MIDoutputs�e : Te�m : Tm for all m 2 MIDstate pk : KEYnexttid : Nst : TID! CustTransinitializationnexttid = 0 ^8 t 2 TID � st :t :phase = Idletransition relationorder [;m; t ; g ℄; pay [;m; t ℄;aept [;m; t ; k ℄

order [;m; t ; g ℄pre t = (;nexttid)inpute�?Request(m; g)output�m!Order(t ; g)post st :t :phase := Orderedst :t :gid := gst :t :prie := prie(g)nexttid := nexttid + 1
pay [;m; y ℄pre st :t :phase = Ordered^ p � prie(st :t :gid)inputm�?Invoie(t ; g ; p)output�m!Cheque(t ;Enrypt pk(;m; st :t :gid ; p))post st :t :phase := Confirmedst :t :goods := gst :t :prie := p

aept [;m; t ; k ℄pre st :t :phase = Confirmed^ shelf :st :t :gid =Derypt k st :t :goodsinputm�?Reeipt(t ; k)output�e!Delivery(m;Derypt k st :t :goods)post st :t :phase := Donest :t :key := kFigure 5: Customer Spei�ation

Merhant [m℄inputs�m : Tm for all 2 CIDb�m : Tbmoutputsm� : Tm for all 2 CIDm�b : Tmbstate st : TID! MerhTransinitialization8 t 2 TID � st :t :phase = Idletransition relationdeliverGoods[;m; t ℄;ashCheque[;m; t ℄;deliverKey [;m; t ℄

deliverGoods[;m; t ℄pre st :t :phase = Idleinput�m?Order(t ; g)outputm�!Invoie(t ;Enrypt(k ; shelf :g);prie:g)post st :t :phase := Deliveredst :t :gid := gst :t :prie := prie:gst :t :key := k
ashCheque[;m; t ℄prest :t :phase = Delivered ^let (id ;mid ; gid ; pr) =Derypt(Pubkey:; h)in id = ^ mid = mgid = st :t :gid ^ pr = st :t :prieendinput�m?Cheque(t ; h)outputm�b!KeyCheque(t ; st :t :key ; h)postst :t :phase := Cashing

deliverKey [;m; t ℄pre st :t :phase = Cashinginputb�m?Reeipt(t ; k)outputm�!Reeipt(t ; k)postst :t :phase := Done
Figure 6: Merhant Spei�ation

MerhTrans ::= reordphase : fIdle;Delivered;Cashing;Doneggid : GIDid : CIDprie : Mkey : KEYendA merhant an reognize a new order sine the orresponding transationt is in the phase Idle. We do not model maliious behaviors, so we donot hek if the transation number really orresponds to the ustomer whosent the order, enoded by the name of the hannel on whih the orderwas reeived. The transition deliverGoods immediately sends the enryptedgoods to the ustomer, and remembers relevant information in st :t . Thetransition ashCheque examines the heque of the ustomer, and forwards itto the bank. If the bank on�rms the reeipt, the key will be sent to theustomer and the transation is ompleted. Merhants are spei�ed formallyin Figure 6.3.4 BankThe bank state onsists of an aount for eah ustomer and eah merhant,and a store of transation desriptions that is modeled as a partial funtionfrom transation IDs to desription tuples.The bank, spei�ed in Figure 7, has only one transition that is enabledif a reeived heque is orretly signed from the ustomer. The bank thentransfers the money from the ustomers aount to the merhants aount,and sends a reeipt to the merhant. It stores the information for eventuallater requests.4 NetBill Veri�ationIn this setion we show that our NetBill spei�ation satis�es the followingproperties:� Guaranteed Delivery: All goods ordered by the ustomer are delivered.Conversely, goods are only delivered if they were ordered. This is a typ-ial blak box property of the system; we use the veri�ation tehniquesof [2, 5℄ to derive it.

Bankinputsm�b : Tmb for all m 2MIDoutputsb�m : Tbm for all m 2MIDstateMaount : MID! MCaount : CID! Mkeystore : TID 7! (KEY�CID�MID�GID� M)initializationkeystore = ?transition relationtransfer [m; t ℄transfer [m; t ℄pre let (id ;mid ; gid ; pr) = Derypt(Pubkey:fst :t ; h)in id = fst :tendinputm�b?KeyCheque(t ; k ; h)outputb�m!Reeipt(t ; k)post let (id ;mid ; gid ; pr) = Derypt(Pubkey:fst :t ; h)in Maount:mid :=Maount:mid + prCaount:id := Caount:id � prendkeystore := keystore [ft 7! (k ; id ;mid ; gid ; pr)gFigure 7: Bank Spei�ation

� Guaranteed Payment: For all goods ordered by a ustomer, the moneyamount orresponding to the good's prie is subtrated from the us-tomer aount.� Money Atomiity: The sum of the ustomer and merhant aountsremains invariant. Beause of the entralized NetBill bank server, thisproperty is quite obvious, it follows immediately from a simple formulain prediate logi.In Setion 4.1, we state and prove some invariants of the NetBill protool.They are used in Setion 4.2 to prove a number of basi safety and progressproperties of the system omponents. In Setions 4.3 and 4.4 we show theorretness statements mentioned above.4.1 InvariantsFor the property proofs, we make use of two invariants. One invariant de-sribes the NetBill behavior from the point of view of a single transation,the other desribes it from the point of view of a given ustomer.In this setion, we frequently refer to a given ustomer and merhantm. For readability, we sometimes abbreviate Customer [℄ and Merhant [m℄by C and M, respetively.4.1.1 Transation View.The transation view desribes the system state for all eight phases of a singleNetBill transation t between a ustomer and a merhant m (see Figure 2).It is visualized in Figure 8. For example, the �rst row represents the statein whih the transation is still inative: Customer and merhant are stillidle, and no messages have been sent along the hannels. Two subsequentrows desribe a transition of either the ustomer, merhant or bank. Forexample, the seond state reets the system state after an order transitionof the ustomer: The ontrol state of the ustomer hanges to Ordered,and a new message Order is produed on hannel �m. The other hannelsremain unhanged. In the table, newly generated messages are highlightedby boxes. A di�erene of the number of messages on a hannel x and x Æmeans that there are unread messages available on that hannel. Note thatthe hanges in the ontrol state diretly follow the state mahine struturesin Figures 3(a) and 3(b).In addition to the ontrol state and data ow information of Figure 8, thesystem aumulates information about the ordered goods, keys, and prie inthe ustomer and merhant data state variables. For eah of the eight phases

#Order(t;�)s�m
#Order(t;�)s�m Æ
#Cheque(t;�)s�m
#Cheque(t;�)s�m Æ
#Invoie(t;�;�)sm�
#Invoie(t;�;�)sm� Æ
#Reeipt(t;�)sm�
#Reeipt(t;�)sm� Æ
#KeyCheque(t;�;�)sm�b
#KeyCheque(t;�;�)sm�b Æ
#Reeipt(t;�)sb�m
#Reeipt(t;�)sb�m Æ
C.st.t.phase M.st.t.phase

�1 0 0 0 0 0 0 0 0 0 0 0 0 Idle Idle�2 1 0 0 0 0 0 0 0 0 0 0 0 Ordered Idle�3 1 1 0 0 1 0 0 0 0 0 0 0 Ordered Delivered�4 1 1 1 0 1 1 0 0 0 0 0 0 Confirmed Delivered�5 1 1 1 1 1 1 0 0 1 0 0 0 Confirmed Cashing�6 1 1 1 1 1 1 0 0 1 1 1 0 Confirmed Cashing�7 1 1 1 1 1 1 1 0 1 1 1 1 Confirmed Done�8 1 1 1 1 1 1 1 1 1 1 1 1 Done DoneFigure 8: Transation View: Control Invariant

�1 df= true�2 df= �1 ^ #Order(t ; g)s�m = 1 ^ C:st :t :gid = g�3 df= �2 ^ #Invoie(t ;Enrypt(k ; shelf :g); prie:g)sm� = 1^ M:st :t :gid = g ^ M:st :t :key = k�4 df= �3 ^ #Cheque(t ;Enrypt C:pk (;m; C:st :t :gid ; prie:g))s�m= 1 ^ C:st :t :goods = Enrypt(k ; shelf :g)�5 df= �4 ^ #KeyCheque(t ;M:st :t :key ;Enrypt C:pk (;m; C:st :t :gid ; prie:g))sm�b = 1�6 df= �5 ^ #Reeipt(t ;M:st :t :key)sb�m = 1�7 df= �6 ^ #Reeipt(t ;M:st :t :key)sm� = 1�8 df= �7 Figure 9: Transation View: Data Invariantin the protool, we formulate a property �i that relates the omponents' datastate and message ontents. The data invariant is shown in Figure 9. Notethat in our example, the set of properties beomes stronger in every phase,sine all transitions just set internal values that were unde�ned before. Weonly state a subset of the valid properties that is suÆient for the orretnessproofs later; it is straightforward to extend them with priing information.Together, Figures 8 and 9 illustrate the following invariant for the NetBillsystem:8 ;m; t � 9 g ; k � 8_i=1(�i ^ �i)The proof of the invariant proeeds along the typial indutive proofstruture for invariants: It holds initially, and is not violated by any systemtransition.4.1.2 Customer View.While the transation invariant desribes the system states for a given us-tomer , merhant m and transation t , we now formalize an invariant thathides the transations and just refers to the goods a ustomer ordered.The ustomer issues orders to the NetBill system and aepts the deliv-ered goods. Eah order is handled by a single transation. Transations thatdid not yet lead to delivery of a good are alled pending. The set of pendingtransations for an order of a good g by the ustomer at the merhant m

is denoted by P;m;g and de�ned as follows:P;m;g df= f t 2 TID j Customer [℄:st :t :phase 62 fIdle;Doneg ^Customer [℄:st :t :gid = g gFrom the ustomer point of view, the number of orders for a good gshould equal the number of deliveries of this good plus the number of pendingtransations for g . This invariant is formally expressed as8 ;m; g � #Delivery(m; shelf :g)s�e + jP;m;g j = #Request(m; g)se�ÆIt is easy, though tedious, to prove this invariant. The proof struture isvisualized by the veri�ation diagram in Figure 10, whih splits the invariantinto the two ases jP;m;g j = 0 and jP;m;g j > 0. Eah of the diagram nodesrepresents one ase. The free variables ;m; g are �xed by skolemizing thequanti�ers of the invariant above.The opaque dot in the upper diagram node means that initially the upperase of the invariant holds; this is easy to see from the ustomer spei�ation.The arrows show the veri�ation obligations for the indutive step: Eahnew order inreases jP;m;g j and the number of proessed Request messages;eah delivery of a good identi�ed by g dereases jP;m;g j, but inreases thenumber of Delivery messages at the same time. Orders and deliveries ofa di�erent good ĝ as well as the ustomer payment transitions leave theinvariant unhanged. Moreover, although not represented in the diagram, itis easy to see that the invariant is also left unhanged by transitions of otherustomers, other merhants or the bank.4.2 Blak Box PropertiesFrom the invariane and enabledness properties of the previous two setions,we now derive blak box safety and liveness properties. The liveness prop-erties are of a speial form, whih we all progress: They express that allexternal input to a omponent is proessed.4.2.1 Safety Properties.From the transition view invariant, we an derive a number of blak boxsafety properties for a �xed transation t , ustomer , merhant m and thebank:

PSfrag replaements
#Delivery(m; shelf :g)s�e + jP;m;g j= #Request(m; g)se�Æ^ jP;m;g j = 0
#Delivery(m; shelf :g)s�e + jP;m;g j= #Request(m; g)se�Æ^ jP;m;g j > 0

order [;m; g ℄ f aept [;m; t ; k ℄ j t 2 TID ^ jP;m;g j = 1^ Derypt(k ; :st :t :goods) = shelf :g g
order [;m; g ℄f aept [;m; t ; k ℄ j t 2 TID ^ jP;m;g j > 1^ Derypt(k ; :st :t :goods) = shelf :g g

f pay [;m; t ℄ j t 2 TID g [f order [;m; ĝ ℄ j ĝ 6= g g [f aept [;m; t ; k ℄ j t 2 TID^ Derypt(k ; :st :t :goods)6= shelf :g g
f pay [;m; t ℄ j t 2 TID g [f order [;m; ĝ ℄ j ĝ 6= g g [f aept [;m; t ; k ℄ j t 2 TID^ Derypt(k ; :st :t :goods)6= shelf :g g

Figure 10: Customer View InvariantCustomer: #Cheque(t ; �)s�m = #Invoie(t ; �)sm�ÆMerhant: #Invoie(t ; �)sm� = #Order(t ; �)s�mÆ#KeyCheque(t ; �; �)sm�b = #Cheque(t ; �)s�mÆ#Reeipt(t ; �)sm� = #Reeipt(t ; �)sb�mÆBank: #Reeipt(t ; �)sb�m = #KeyCheque(t ; �; �)sm�bÆTo see that eah of these properties indeed holds for the systems blakbox view, note that eah property is an equality of ontinuous funtionson streams. Moreover, eah property is a state mahine invariant of the Net-Bill system, whih an be seen by omparing the entries for the left and righthand side of eah equation in the transition view invariant table shown inFigure 8. For example, the third and the sixth olumn have the same entries,whih means the the number of Cheque- and Invoive�messages on �m andm � Æ are equal in all phases of a transation. This proves the ustomerproperty.In addition to the property above, the ustomer satis�es two other blakbox safety properties:#Order(�; �)s�m = #Request(m; �)se�Æ#Delivery(m; �)s�m = #Reeipt(�; �)sm�Æ

These properties do not refer to given goods or transations. They are basedon invariants whih again are easy to show using standard invariant veri�a-tion tehniques.4.2.2 Progress Properties.The blak box properties above relate the onsumed input and the produedoutput of eah omponent; they are pure safety properties, derived fromstate mahine invariants like the transition invariant of Figure 8. The NetBillsystem enjoys also blak box properties that relate the external input andthe onsumed input for eah omponent:Customer: #Request(�; �)se�Æ = #Request(�; �)se�#Invoie(t ; �)sm�Æ = #Invoie(t ; �)sm�#Reeipt(t ; �)sm�Æ = #Reeipt(t ; �)sm�Merhant: #Order(t ; �)s�mÆ = #Order(t ; �)s�m#Cheque(t ; �; �)s�mÆ = #Cheque(t ; �)s�m#Reeipt(t ; �)sb�mÆ = #Reeipt(t ; �)sb�mBank: #KeyCheque(t ; �; �)sm�bÆ = #KeyCheque(t ; �; �)sm�bThese properties are immediate onsequenes of the �ve blak box propertiese�Æ = e�, m�Æ = m�, �mÆ = �m, b�mÆ = b�m and m�bÆ = m�b.For the ustomer property m �Æ = m �, it is suÆient to show that#m�Æ � #m�, sine m�Æ v m� is by onstrution an invariant. This lengthproperty an be redued to the following temporal logi property:2(#m�Æ = k ^ #m� > k)3(#m�Æ > k))This is an example of an output extension property. To prove is, it is suÆientto �nd a helpful transition � suh that:#m�Æ = k ^ #m� > k) En(�) and#m�Æ = k ^ #m� > k ^ �) #(m�Æ)0 > kAssume now that the system is in a state where #m�Æ = k ^ #m� > k .Then we know that there is at least one unproessed message in m �. Inother words, there exists a message x suh thatm�Æ _ hx i v m�Aording to the type de�nition of Tm in Setion 3.1, the message x is eitheran invoie, or a reeipt with a key; in any ase, it refers to a transation t :

1. x 2 Invoie(t ; �): Then #Invoie(t ; �)sm � Æ < #Invoie(t ; �)sm�.From Figure 8, we now that the system must then be in a state har-aterized by �3, and thus by �3 ^ �3.In this ase, the helpful transition is the ustomer transition pay . It isenabled beause aording to �3 the ustomer ontrol state of t is OR-DERED, and aording to the assumption the next unread messageis an invoie for t . Moreover, sine pay indeed onsumes the invoiemessage, the length of the proessed input m�Æ is extended.2. x 2 Reeipt(t ; �): This ase is similar to the one above; instead of thethird phase, however, the system must be in phase 7: The system stateis haraterized by �7 ^ �7, and the helpful transition is the ustomertransition aept .The proof for the other internal hannels is analogous. The proof that e�Æ =e � is a bit di�erent: Instead of appealing to the transition invariant table,we make use of the fat that there is always a free transation ID (nextid),so that transition order is enabled whenever there is unproessed input onhannel e�.4.3 Guaranteed DeliveryThe blak box orretness property states that all ordered goods are deliv-ered, and that all delivered goods have been ordered:8 ;m; g � #Delivery(m; shelf :g)s�e = #Request(m; g)se�This property an be split into a safety and a liveness part:8 ;m; g � #Delivery(m; shelf :g)s�e � #Request(m; g)se�8 ;m � #Delivery(m; �)s�e � #Request(m; �)se�The liveness part need not to refer to a goods ID. Sine the orretness ofthe output follows already from the safety part, it is suÆient to show thatenough output is produed.4.3.1 Safety.For the safety part, we observe that#Delivery(m; shelf :g)s�e� #Delivery(m; shelf :g)s�e + jP;m;g j sine jP;m;g � 0j� #Request(m; ; �)se�Æ by ustomer view invariant� #Request(m; g)se� sine e�Æ v e�

Thus, the safety formula is by itself an invariant of the NetBill system. It isalso admissible, and is thus also valid at the blak box level, where all freevariables range over the limits of a system exeution.4.3.2 Liveness.For the liveness part we show the following equality sequene for all andm: #Delivery(m; �)gs�e= #Reeipt(�; �)sm�Æ by ustomer safety= #Order(�; �)s�m see below= #Request(m; �)se�Æ by ustomer safety= #Request(m; �)se� by ustomer progressTo show the seond equality, we observe that for all , m and t :#Reeipt(t ; �)sm�Æ= #Reeipt(t ; �)sm� by ustomer progress= #Reeipt(t ; �)sb�mÆ by merhant safety= #Reeipt(t ; �)sb�m by merhant progress= #KeyCheque(t ; �; �)sm�bÆ by bank safety= #KeyCheque(t ; �; �)sm�b by bank progress= #Cheque(t ; �)s�mÆ by merhant safety= #Cheque(t ; �)s�m by merhant progress= #Invoie(t ; �; �)sm�Æ by ustomer safety= #Invoie(t ; �; �)sm� by ustomer progress= #Order(t ; �)s�mÆ by merhant safety= #Order(t ; �)s�m by merhant progressEah of the safety and progress steps in this sequene is immediate from theblak box properties of Setion 4.2.4.4 Guaranteed Payment and Money AtomiityThe previous setion showed the orretness of a blak box property, whihonly refers to the hannel ommuniation histories. The orretness proofmade use of both temporal logi properties (the invariane and responseproperties), and of prediate logi properties (for example, to show the en-abledness of a transition).

However, temporal and prediate logi are useful not only for the deriva-tion of blak box properties. There are some properties, whih are bestexpressed by temporal logi beause they refer to the internal state of a om-ponent, and properties best expressed by prediate logi, beause they alsorefer to a given transition.4.4.1 Temporal Logi.This level is useful when properties about the internal states of a omponentare formalized. In the NetBill example, we an speify that if the ustomerorders a good, at a later state the prie of the good will have been subtratedfrom the ustomer aount.8 x 2 M ; 2 CID;m 2MID; t 2 TID �2(Bank :Caount: = x ^Customer [℄:st :t :phase 2 fOrdered;Confirmedg)3(Bank :Caount: � x � prie:(Customer [℄:st :t :gid)))Note that it would be quite diÆult to preisely haraterize the amount ofmoney on the ustomer aount, beause there an be any number of ativetransation being proessed at any time.4.4.2 Prediate Logi.The prediate logi level is useful when properties of single transitions areformalized. In the NetBill example, all money related ativities our at aentralized bank server, whih is spei�ed by a single transition. The prop-erty that within the NetBill system money is neither destroyed nor reatedan be expressed as the following formula in �rst-order logi:8 x 2 M ; 2 CID;m 2MID �(Bank :Caount: + Bank :Maount:m = x) ^ transfer) (Bank :Caount0: + Bank :Maount:m 0 = x)5 DisussionIn this ontribution, we used a simpli�ed formalization of the NetBill pro-tool, whih di�ers from the desription in [11℄ in various respets. In thissetion, we disuss possible extensions of our model and briey summarizethe proof methodology from Setion 4.

5.1 NetBill ModelIn the original desription of the NetBill protool, the ustomer proess anquery the bank for the reeipt and deryption key for a given transation.This ensures that the ustomer an derypt the goods even if the networkonnetion between bank, merhant and ustomer an lose messages.For ustomer queries, the system struture diagram must be extendedby hannels that onnet the ustomers and the bank server. The trans-ation state transition diagrams must be extended as shown in Figure 11.It is straightforward to de�ne the new transitions query , aeptBank anddropKey .
PSfrag replaements IdleOrderedCon�rmedDone

orderpayaept queryaeptBank (a) Customer view
PSfrag replaements IdleDeliveredCashingDone

deliverGoodsashChequedeliverKeydropKey(b) Merhant viewFigure 11: Customer and Merhant View of a TransationMoreover, the message types in [11℄ are more omplex. In our modelwe removed muh redundany; we also abstrated from some details of theenryption algorithms. Finally, we do not examine maliious merhants andustomers or limited ustomer redit lines, although of ourse the NetBillprotool has to be examined arefully for these ases.5.2 Proof MethodologyMany of the proofs in Setions 4.1{4.3 are not ompletely formal; they annotbe, sine we did not give preise translations de�nitions of the omponentstate mahine transitions into logi. Still, we hope that the reader an getthe gist of the proof style that we used:

� Based on the message sequene hart of the NetBill protool (Figure 2)and the transition state transition diagrams (Figure 3) the reahablestates from the perspetive of a single transations ould be oniselydesribed in tabular form (Figure 8). Again, we did not give a om-pletely formal translation of the table into a logial expression, we referto Broy's work on tabular spei�ation tehniques [7℄ for details.� From the invariant table, a number of blak box safety properties thatrelate input and output of eah system omponent are immediate. Onlythe ommuniation along the two hannels that onnet the system tothe environent had to be treated speially.� For blak box liveness properties, we �rst proved omponent progress:Eah omponent onsumes all its input. For progress, we made useof temporal logi and blak box veri�ation rules from [2℄, whih aretailored to proving the length properties typial for progress arguments.The premises of these rules |essentially enabledness statements forhelpful transitions| ould easily be disharged by a ase split on themessage types, and again a lookup in the invariant table.� For the �nal blak box orretness proof it is then suÆient to assemblethe omponent blak box properties in a hain of (in)equations.Note that in this way, the orretness of the protool is proven omposi-tionally: History spei�ations in the style of Fous are a modular desrip-tion tehnique that allows suint reasoning with blak box properties ofomponents.In previous examples [2, 3℄, we proved liveness properties diretly, insteadof showing progress �rst. The approah here seems to be more shemati andeasier to sale to larger systems.We did not yet attempt the orretness proofs for the extended NetBillversion with ustomer queries, maliious ustomer or merhant behavior orlimited redit lines; it remains to be seen whether and whih parts of theurrent proof an be reused for the new aspets.6 ConlusionState based and I/O history based views of the system an be linked bytemporal logial formulas for invariane and response. This tehnique isdoumented in more detail in [2, 8, 3, 5℄, where simple bu�er examples areveri�ed. In this ontribution, we applied spei�ation and proof priniples

for blak box properties of distributed systems to the NetBill protool [11, 19℄for eletroni payments over the Internet.There is no single language for the formulation of mathematial orret-ness properties of a system. Simple Hoare-like veri�ation onditions, tem-poral logi formulas and history relations in the style of Fous [9, 1℄ allowthe formulation of properties at di�erent abstration levels. Conversely, ver-i�ation onditions for eah level lead to veri�ation onditions formulatedin the lower levels languages.The blak box orretness property of the NetBill system is assembledfrom blak box properties of the individual omponents. This shows howthe inherent modularity of Fous spei�ations an be used for oniseompositional proofs: Both liveness and safety arguments are redued tosimple (in)equality reasoning.The simple struture of the temporal logi formulas needed for the veri�-ation of blak box properties is well-suited for veri�ation diagrams [14, 15℄in order to struture property proofs. While the veri�ation onditionsassoiated with a veri�ation diagram are simple, their sheer number re-quires tool support. In [6℄, we present a formalization of our approah inIsabelle/HOL[12℄. It onsists of extensions of Shankar's PVS formalizationof state mahines [18℄ to handle liveness properties and asynhronous om-muniation as well as veri�ation tatis tailored to invariane and responsediagrams. The Isabelle formalization and veri�ation diagrams are dou-mented in a tehnial reports [6℄. The theory �les and proof sripts an beaessed eletronially [4℄.Typially, when examining protools for e-ommere appliations, thefous is on seurity, and less on the safety and liveness issues handled byour approah. Further work will ombine our veri�ation tehniques withPaulson's indutive approah to protool veri�ation [17℄, and with formalmodels of threat senarios [13℄.

Referenes[1℄ M. Breitling, U. Hinkel, and K. Spies. Formale Entwiklung verteilterreaktiver Systeme mit Fous. In FBT'1998, 8. GI/ITG Fahgespr�ah,1998.[2℄ M. Breitling and J. Philipps. Blak Box Views of State Mahines. Teh-nial Report TUM-I9916, Institut f�ur Informatik, Tehnishe Universit�atM�unhen, 1999.[3℄ M. Breitling and J. Philipps. Diagrams for dataow. In FBT'2000,10. GI/ITG Fahgespr�ah, June 2000.[4℄ M. Breitling and J. Philipps. State mahine theories and proof sriptsfor Isabelle/HOL. http://www.in.tum.de/~philipps/BBV, 2000.[5℄ M. Breitling and J. Philipps. Step by step to histories. In Interna-tional Conferene on Algebrai Methodology And Software Tehnology,AMAST 2000, LNCS 1816, 2000.[6℄ M. Breitling and J. Philipps. Veri�ation diagrams for dataow proper-ties. Tehnial Report TUM-I0005, Institut f�ur Informatik, TehnisheUniversit�at M�unhen, 2000.[7℄ M. Broy. Pragmati and Formal Spei�ation of System Properties byTables. Tehnial Report TUM-I9802, Institut f�ur Informatik, Tehnis-he Universit�at M�unhen, 1998.[8℄ M. Broy. From states to histories. Leture Notes of the MarktoberdorfSummer Shool on Engineering Theories of Software Constrution, 2000.[9℄ M. Broy, F. Dederihs, C. Dendorfer, M. Fuhs, T. F. Gritzner, andR. Weber. The Design of Distributed Systems: An Introdution toFous|Revised Version. Tehnial Report TUM-I9202-2, Institut f�urInformatik, Tehnishe Universit�at M�unhen, 1993.[10℄ M. Broy and K. St�len. Spei�ation and Development of InterativeSystems - FOCUS on Streams, Interfaes and Re�nement. Springer,2000. To appear.[11℄ B. Cox, J. D. Tygar, and M. Sirbu. Netbill seurity and transation pro-tool. In Pro. of the First USENIX Workshop in Eletroni Commere,pages 77{88, 1995.[12℄ Isabelle home page. http://isabelle.in.tum.de.

[13℄ V. Lotz. Threat senarios as a means to formally develop seure systems.Journal of Computer Seurity 5 (1997), pp. 31-67, 1997.[14℄ Z. Manna, A. Browne, H. B. Sipma, and T. E. Uribe. Visual abstrationsfor temporal veri�ation. In LNCS 1548, pages 28{41, 1998.[15℄ Z. Manna and A. Pnueli. Temporal veri�ation diagrams. In Interna-tional Symposium on Theoretial Aspets of Computer Software, LNCS789, pages 726{765, 1994.[16℄ L. C. Paulson. Logi and Computation. Cambridge University Press,1987.[17℄ L. C. Paulson. The indutive approah to verifying ryptographi pro-tools. Journal of Computer Seurity 6 (1998), pp. 85-128, 1997.[18℄ N. Shankar. A lazy approah to ompositional veri�ation. TehnialReport CSL-93-08, Computer Siene Laboratory, SRI, 1993.[19℄ J. D. Tygar and M. Sirbu. Netbill: An internet ommere system opti-mized for network delivered servies. IEEE Personal Communiations,2(4):34{39, 1995.

