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Abstra
tSystem spe
i�
ation by state ma
hines together with propertyspe
i�
ation and veri�
ation by temporal logi
s are by now standardte
hniques to reason about the 
ontrol 
ow of hardware 
omponentsand embedded systems. The te
hniques to reason about the data
owwithin loosely 
oupled systems, however, are less well developed.In this 
ontribution, we propose a formalism for the veri�
ation ofsystems with asyn
hronously 
ommuni
ating 
omponents. The 
om-ponents themselves are spe
i�ed as state ma
hines, while the data
owbetween 
omponents is des
ribed as a relation over the input and out-put histories of a system. Communi
ation history properties are de-rived from temporal logi
 properties of the 
omponent state ma
hines.The history properties 
an then be used to dedu
e global propertiesof a 
omplete system.To demonstrate our approa
h, we model the NetBill proto
ol formi
ro-payments in the Internet and prove some 
orre
tness properties.1 Introdu
tionState ma
hines have be
ome a popular te
hnique to spe
ify software andhardware systems. They are often des
ribed by various in
arnations of statetransition diagrams, whi
h are a suggestive notation for 
omponent design�This work is supported by the Sonderfors
hungsberei
h 342 \Werkzeuge und Methodenf�ur die Nutzung paralleler Re
hnerar
hitekturen".



or implementation do
uments. Both in their graphi
al and in their non-graphi
al |su
h as B, VDM or Z| variants, state-based spe
i�
ation te
h-niques have a pre
ise semanti
s and 
lear operational models. E�e
ts ofstate transitions 
an be analyzed by Hoare-like triples with pre- and post-
onditions.More abstra
t properties of state ma
hines 
an be formulated with tem-poral logi
s to express invarian
e or liveness properties. Proofs in temporallogi
 often follow the operational intuition behind state ma
hines: Invarian
eproperties, for example, are typi
ally shown using indu
tion over the ma
hinetransitions.Temporal logi
s are less well suited, however, to express properties ofthe data 
ow between loosely 
oupled 
omponents that 
ommuni
ate asyn-
hronously via bu�ered 
ommuni
ation 
hannels. For su
h systems, bla
kbox views relating input and output 
ommuni
ation histories of data 
ow
omponents and systems are better suited. Su
h relations 
an be 
on
iselyformulated in the style of Fo
us [9, 10, 1℄; they are inherently modular andallow easy reasoning about the global system behavior. In [2, 3, 5℄, we intro-du
ed a formalism for the veri�
ation of bla
k box properties of systems withasyn
hronously 
ommuni
ating state ma
hine 
omponents. The formalismbuilds on work by Manfred Broy [8℄. In [6℄ tool support on the basis ofIsabelle/HOL [12℄ is des
ribed.In this paper, we demonstrate our approa
h with a model of the NetBillproto
ol. We spe
ify the proto
ol in an operational way that is easy toimplement but nevertheless abstra
t enough for veri�
ation purposes. Weformulate essential properties at di�erent abstra
tion levels, and sket
h theirformal proofs.Se
tion 2 
ontains a brief summary of bla
k box and state ma
hine spe
-i�
ation te
hniques. Se
tion 3 
ontains a state ma
hine spe
i�
ation of theNetBill proto
ol for ele
troni
 payments in the Internet. In Se
tion 4 weformalize 
orrre
tness properties of the proto
ol as history relations, andshow that the state ma
hine spe
i�
ation indeed satis�es these properties.Se
tion 5 
ontains a short dis
ussion of our spe
i�
ation and veri�
ation ap-proa
h. The 
on
lusion in Se
tion 6 summarizes the results and 
ontains anoutlook on future work.2 Component and System Spe
i�
ationsOur system model is a variant of the system model of Fo
us [9, 10, 1℄. It isdes
ribed in detail in [2℄. We model a system by des
ribing its 
omponents,its interfa
e with respe
t to the system's environment, and its behavior. The




omponents are 
onne
ted via dire
ted 
hannels. The system's interfa
e isdes
ribed by the 
ommuni
ation 
hannels with the types of the message thatare sent on them. The 
ommuni
ation along all 
hannels is modeled by �niteor in�nite message streams. The behavior of a system is 
hara
terized by arelation between the input and output streams, that we des
ribed in either oftwo di�erent abstra
tion levels: bla
k-box spe
i�
ations and state ma
hines.2.1 StreamsThe 
ommuni
ation history between 
omponents is modeled by streams. Astream is a �nite or in�nite sequen
es of messages. Finite streams 
an beenumerated, for example: h1; 2; 3; : : :10i; the empty stream is denoted by h i.For a set of messages Msg, the set of �nite streams over Msg is denoted byMsg�, that of in�nite streams by Msg1. By Msg! we denote Msg� [Msg1.Given two streams s; t and j 2 N , #s denotes the length of s. If s is�nite, #s is the number of elements in s; if s is in�nite, #s =1. We writes _ t for the 
on
atenation of s and t . If s is in�nite, s _ t = s. We writes v t , if s is a pre�x of t , i.e. if 9 u 2 Msg! � s _ u = t . The j -th element ofs is denoted by s:j , if 1 � j � #s; it is unde�ned otherwise. ft:s denotes the�rst element of a stream, i.e. ft:s = s:1, if s 6= h i. For A � Msg we denoteby Ass the subsequen
e that results from s by removing all elements not inA. For singleton sets we often just write ass instead of fagss.2.2 Bla
k-Box Spe
i�
ationsA bla
k-box spe
i�
ation is an abstra
t des
ription in the sense that it doesnot relate to any internals of the system, but just des
ribes the external,visible behavior.The behavior relation is de�ned by formulas � where the free variablesrange over the input and output streams. The streams ful�lling these predi-
ates des
ribe the allowed bla
k-box-behavior of our system. We 
an use allthe operators on streams to formulate the predi
ates.As a very simple example, 
onsider a 
omponent Identity that just 
opiesmessages from one input 
hannel i to one output 
hannel o. Its bla
k-boxbehavior spe
i�
ation is de�ned by the formula o = i .2.3 State Ma
hinesThe behavior of a system 
an also be spe
i�ed by a state transition system(STS), formalized by the tuple S = (I ;O ;A; I; T ). The names of the inputand output 
hannels are 
ontained in I and O , respe
tively. The set A




ontains for ea
h i 2 I a variable iÆ (a pre�x of i) denoting the sequen
e ofmessages already 
onsumed by S. Additionally, A may 
ontain variables torepresent lo
al data, as e.g. a variable � for the 
ontrol state. A state of thesystem 
onsists of a variable valuation that assigns values of the appropriatetype to all variables. Channel variables are evaluated to streams 
ontainingthe history of messages sent. The system starts in a state ful�lling thepredi
ate I, and T is the set of transitions.State transition systems 
an be des
ribed in various ways, for exampleby state transition diagrams [2℄, by tables [10℄, or by the notation as used inthis paper. All te
hniques have a 
ommon te
hnique to des
ribe a transitionby four parts: A pre
ondition, a set of input statements, a set of outputstatements and a post
ondition. The informal meaning of a transition isas follows: If the available messages in the input 
hannels 
an be mat
hedwith Inputs, the pre
ondition is and the post
ondition 
an be made true byassigning proper values to the primed variables, the transition is enabled. If itis 
hosen, the inputs are read, the outputs are written and the post
onditionis made true.PSfrag repla
ements Identi o
(a) Component

PSfrag repla
ements Id transmit
(b) State Ma
hine

transmitpre trueinput i?xoutput o!xpost true(
) Transition transmitFigure 1: Identity ComponentThe 
omponent Identity (Figure 1) just needs one transition, 
alled trans-mit , that is always enabled, reads some value x from i , and immediately sendsit on o, without 
ausing other 
hanges in the 
omponents state.Transitions 
an be s
hemati
ally translated into logi
al formulas; see [2℄for details.2.4 CompositionSystems 
an be 
omposed of several 
omponents by identifying 
hannels withthe same names. The 
omposition 
an be graphi
ally illustrated by stru
-ture diagrams, as used in Figure 4. The behavior of a 
omposite system is
ompletely de�ned by the behaviors of its 
omponents. Two 
omponents S1



and S2 
an only be 
omposed to S = S1 
 S2 if they are 
ompatible (de�nedin [2℄), meaning essentially that they do not 
ontrol the same variables.Using bla
k-box spe
i�
ations, the behavior of the 
omposed system isde�ned as the 
onjun
tion of the 
omponent behavior predi
ates. For statema
hines, a transition of the 
omposed system 
onsist of a transition of one
omponent together with an environment transition of the others.2.5 From State Ma
hines to Bla
k-Box ViewsWhile the state ma
hines represent an operational view on system's behav-ior, the bla
k-box spe
i�
ations 
an be seen as properties of the system.Therefore, it is 
ru
ial to be able to make a formal 
onne
tion between bothabstra
tion layers, sin
e this allows us to prove that a (implemented) systemhas 
ertain bla
k-box properties, e.g. show that the 
omponent Identitywith one transition transmit indeed ful�lls the property o = i .In [2℄, we used temporal logi
 to establish the 
onne
tion between bothabstra
tion levels. Properties 
an be split into a safety and progress part,that read in our simple example as2o = iÆ2((#o = k ^ #o < #i))3#o � #i)The properties express that the output is 
orre
t in all rea
hable states(i.e. equal to the 
onsumed messages on i) and that the output will be even-tually extended as long as there is still bu�ered input left. Invarian
e isproved as usual by showing that the invariant is valid initially, and staysvalid for all transitions. Output extension 
an be shown be �nding helpfultransitions that extend the output, and that are enabled, and therefore willbe taken due to some fairness properties that are assumed in the exe
utionmodel of the state ma
hines. In [6℄ we suggest how veri�
ation diagrams andme
hanized proof support assist the veri�
ation of properties of the aboveformat.Invarian
e properties form the basis of safety properties on the bla
k boxlevel. Invariants are also bla
k box safety properties, if their free variablesrefer only to history variables (I [ I Æ [ O) and if they are admissible [16℄with respe
t to these variables.Progress properties are derived from s
hemata similar to the propertyabove; in general, the output 
hannel length is 
ompared with an arbitrary
ontinous expression over the length of the input 
hannels. More details 
anbe found in [2℄.



PSfrag repla
ements Env. Customer 
 Mer
hant m BankRequest(m; g) Order(t ; g)Invoi
e(t ;G ; p)Cheque(t ; (
;m; g ; p)) KeyCheque(t ; k ;(
;m; g ; p))Re
eipt(t ; k)Re
eipt(t ; k)Delivery(m;G)Figure 2: NetBill Transa
tion3 NetBill Spe
i�
ationThe NetBill proto
ol [11, 19℄ supports low-
ost transa
tions of ele
troni
goods in the internet. Transa
tions o

ur between a 
ustomer pro
ess, amer
hant pro
ess, and a 
entralized bank server. All money-related a
tivitieso

ur at the bank server.Figure 2 show a sample transa
tion of the NetBill proto
ol. The 
ustomerpro
ess re
eives an order for ele
troni
 goods g at a mer
hant m from theenvironment. It generates a unique transa
tion number t whi
h is used toidentify the transa
tion in the subsequent message ex
hanges, and forwardsthe order to the mer
hantm. The mer
hant returns an invoi
e, whi
h 
onsistsof a pri
e statement and the en
rypted goods. The 
ustomer pro
ess thenissues a 
heque to the mer
hant, whi
h states that it is willing to pay thepri
e for the goods. This 
heque is digitally 
learsigned: Every parti
ipantin the proto
ol 
an read it, but it is impossible for anyone to 
hange theinformation in it. This 
heque, together with the key for de
rypting thegoods, is forwarded to the bank. The bank returns a re
eipt and the key tothe mer
hant, whi
h forwards it to the 
ustomer. With this key, the 
ustomerpro
ess de
rypts the goods re
eived earlier and delivers them to the user.Figures 3(a) and 3(b) show a transa
tion from the point of view of the



PSfrag repla
ements IdleOrderedCon�rmedDone
orderpaya

ept(a) Customer view
PSfrag repla
ements IdleDeliveredCashingDone

deliverGoods
ashChequedeliverKey(b) Mer
hant viewFigure 3: Customer and Mer
hant View of a Transa
tion
ustomer and mer
hant, respe
tively. The state stru
tures are explained inmore detail in Se
tions 3.2 and 3.3.In this se
tion, we give a formal spe
i�
ation of a simpli�ed NetBill sys-tem. In Se
tion 3.1 we de�ne the state and message types used in the trans-a
tion proto
ol; Se
tions 3.2 to 3.4 
ontain 
omponent spe
i�
ations for the
ustomers, mer
hants and the bank.3.1 General De�nitionsBasi
 types. Figure 4 shows the ar
hite
ture of a NetBill system. It 
on-sists of an arbitrary number of 
ustomers, an arbitrary number of mer
hantsand the 
entralized bank server. Customers are identi�ed by elements from aset CID of 
ustomer identi�ers; similarly, we assume a setMID of mer
hantidenti�ers.In 
ontrast to other NetBill formalizations, we allow an arbitrary numberof overlapping transa
tions between ea
h 
ustomer and ea
h mer
hant, i.e. a
ustomer may order goods even if another transa
tion is not yet �nished..To identify the various transa
tions, we assume a set TID of transa
tion IDsthat 
onsist of a pair of the 
on
erned 
ustomer and a unique serial number,i.e. TID � CID� N .The ele
troni
 goods handled by the proto
ol are taken from a setGOODS;for ea
h good there is a unique identi�er in the set GID. We use a bije
tive



PSfrag repla
ements Customer Mer
hant
Bank


�mm�
e�

�e b�m m�b
Figure 4: NetBill ar
hite
turefun
tionshelf : GID! GOODSto map IDs to the 
orresponding goods. Monetary values for pri
es aremodeled by elements from a set M . The pri
es of the goods are yielded bythe fun
tionpri
e : GID! MEn
ryption. An essential part of any e-
ommer
e proto
ol is en
ryption ofmessages. The NetBill transa
tion proto
ol uses both symmetri
 and publi
key 
ryptography. We abstra
t from the underlying algorithms, and justassume that for ea
h message set M there exists a set of en
rypted messagesM and two fun
tionsEn
rypt : Key ! M ! M and De
rypt : Key ! M ! MFor symmetri
 en
ryption, we demand thatDe
rypt k (En
rypt k m) = mFor publi
 key en
ryption, we demand that the publi
 keys of the 
ustomersare freely a

essible by a fun
tionPubkey : CID! Keyand a message that is signed by 
ustomer 
 (with private key k
) 
an bede
rypted with the publi
 key:De
rypt Pubkey:
 (En
rypt k
 m) = mThis latter requirement is satis�ed, for example, by the well known RSAalgorithm.



Message types. We de�ne a number of 
omplex data types to be used formessages on the 
ommuni
ation 
hannels.� Environment/Customer: The only messages from the environment tothe 
ustomer pro
ess are goods requests parameterized by the ID ofthe goods ordered, and the ID of the mer
hant from whi
h the good isordered:Te
 ::= Request(MID�GID)The only messages returned to the environment are the goods:T
e ::= Delivery(MID�GOODS)� Customer/Mer
hant: The 
ustomer sends two kinds of messages tothe mer
hant: Orders of a 
ertain good, and signed 
heques whi
h themer
hant then forwards to the bank for further pro
essing.T
m ::= Order(TID�GID)j Cheque(TID� (CID�MID�GID� M ))The mer
hant sends two kinds of messages to the 
ustomer:Tm
 ::= Invoi
e(TID�GOODS� M )j Re
eipt(TID�KEY)� Mer
hant/Bank: The mer
hant forwards the 
heques to the bank to-gether with the key to de
rypt the involved goods.Tmb ::= KeyCheque(TID�KEY� (CID�MID�GID� M ))The bank sends a re
eipt to the mer
hant (to be forwarded to the
ustomer) as a signal that the money transfer has su

eeded.Tbm ::= Re
eipt(TID�KEY)We sometimes form message sets by repla
ing parameters of a message 
on-stru
tor with the pla
eholder \�". For example, we writeRe
eipt(t ; �) for [k2KEYfRe
eipt(t ; k)g



3.2 CustomerA 
ustomer is identi�ed by its ID. The state spa
e of ea
h 
ustomer 
onsistsof its private key, and a mapping from transa
tion IDs to a CustTrans re
ord.This re
ord holds the 
ontrol state of the transition a

ording to Figure 3(a)as well as the goods ID, the mer
hant ID, the en
rypted goods, the pri
e ofthe goods, and the de
ryption key:CustTrans ::= re
ordphase : fIdle;Ordered;Confirmed;Doneggid : GIDmid : MIDgoods : GOODSpri
e : Mkey : KEYendTransa
tions IDs are determined by the 
ustomer; our spe
i�
ation usesa rather simple allo
ation s
heme based on a variable nexttid , whi
h holdsthe next free ID.Thus, a 
ustomer 
 2 CID is spe
i�ed in Figure 5. Initially, all transa
-tions are idle. Ea
h transa
tion is pro
essed on the 
ustomer side as shownin Figure 3(a). A transa
tion gets a
tivated by the transition order that isalways enabled. The 
ustomer pro
ess re
eives an order 
onsisting of a goodsID and a mer
hant ID to des
ribe what should be bought from whi
h mer-
hant. A new transa
tion number is generated, all required data are storedin st :t , and the order is forwarded to the mer
hant.The transition pay a

epts the en
rypted goods, and generates a signed
heque that is sent to the mer
hant. This transition is only enabled if thepri
e the mer
hant o�ers is less than the pri
e the 
ustomer expe
ts. Notethat the 
ustomer 
annot be sure if he got the 
orre
t goods, sin
e they areen
rypted.Finally, the 
ustomer pro
ess gets the de
ryption key from the mer
hant(transition a

ept). If the goods are the goods it expe
ted, they are sent tothe system environment, and the transa
tion status is set to Done.3.3 Mer
hantOn the mer
hant side, ea
h transa
tion is pro
essed as shown in Figure 3(b).Ea
h mer
hant must store for ea
h transition the 
ontrol state from Fig-ure 3(b) as well as goods ID, 
ustomer ID, pri
e and the de
ryption key:



Customer [
℄inputse�
 : Te
m�
 : Tm
 for all m 2 MIDoutputs
�e : T
e
�m : T
m for all m 2 MIDstate pk : KEYnexttid : Nst : TID! CustTransinitializationnexttid = 0 ^8 t 2 TID � st :t :phase = Idletransition relationorder [
;m; t ; g ℄; pay [
;m; t ℄;a

ept [
;m; t ; k ℄

order [
;m; t ; g ℄pre t = (
;nexttid)inpute�
?Request(m; g)output
�m!Order(t ; g)post st :t :phase := Orderedst :t :gid := gst :t :pri
e := pri
e(g)nexttid := nexttid + 1
pay [
;m; y ℄pre st :t :phase = Ordered^ p � pri
e(st :t :gid)inputm�
?Invoi
e(t ; g ; p)output
�m!Cheque(t ;En
rypt pk(
;m; st :t :gid ; p))post st :t :phase := Confirmedst :t :goods := gst :t :pri
e := p

a

ept [
;m; t ; k ℄pre st :t :phase = Confirmed^ shelf :st :t :gid =De
rypt k st :t :goodsinputm�
?Re
eipt(t ; k)output
�e!Delivery(m;De
rypt k st :t :goods)post st :t :phase := Donest :t :key := kFigure 5: Customer Spe
i�
ation



Mer
hant [m℄inputs
�m : T
m for all 
 2 CIDb�m : Tbmoutputsm�
 : Tm
 for all 
 2 CIDm�b : Tmbstate st : TID! Mer
hTransinitialization8 t 2 TID � st :t :phase = Idletransition relationdeliverGoods[
;m; t ℄;
ashCheque[
;m; t ℄;deliverKey [
;m; t ℄

deliverGoods[
;m; t ℄pre st :t :phase = Idleinput
�m?Order(t ; g)outputm�
!Invoi
e(t ;En
rypt(k ; shelf :g);pri
e:g)post st :t :phase := Deliveredst :t :gid := gst :t :pri
e := pri
e:gst :t :key := k

ashCheque[
;m; t ℄prest :t :phase = Delivered ^let (
id ;mid ; gid ; pr) =De
rypt(Pubkey:
; 
h)in 
id = 
 ^ mid = mgid = st :t :gid ^ pr = st :t :pri
eendinput
�m?Cheque(t ; 
h)outputm�b!KeyCheque(t ; st :t :key ; 
h)postst :t :phase := Cashing

deliverKey [
;m; t ℄pre st :t :phase = Cashinginputb�m?Re
eipt(t ; k)outputm�
!Re
eipt(t ; k)postst :t :phase := Done
Figure 6: Mer
hant Spe
i�
ation



Mer
hTrans ::= re
ordphase : fIdle;Delivered;Cashing;Doneggid : GID
id : CIDpri
e : Mkey : KEYendA mer
hant 
an re
ognize a new order sin
e the 
orresponding transa
tiont is in the phase Idle. We do not model mali
ious behaviors, so we donot 
he
k if the transa
tion number really 
orresponds to the 
ustomer whosent the order, en
oded by the name of the 
hannel on whi
h the orderwas re
eived. The transition deliverGoods immediately sends the en
ryptedgoods to the 
ustomer, and remembers relevant information in st :t . Thetransition 
ashCheque examines the 
heque of the 
ustomer, and forwards itto the bank. If the bank 
on�rms the re
eipt, the key will be sent to the
ustomer and the transa
tion is 
ompleted. Mer
hants are spe
i�ed formallyin Figure 6.3.4 BankThe bank state 
onsists of an a

ount for ea
h 
ustomer and ea
h mer
hant,and a store of transa
tion des
riptions that is modeled as a partial fun
tionfrom transa
tion IDs to des
ription tuples.The bank, spe
i�ed in Figure 7, has only one transition that is enabledif a re
eived 
heque is 
orre
tly signed from the 
ustomer. The bank thentransfers the money from the 
ustomers a

ount to the mer
hants a

ount,and sends a re
eipt to the mer
hant. It stores the information for eventuallater requests.4 NetBill Veri�
ationIn this se
tion we show that our NetBill spe
i�
ation satis�es the followingproperties:� Guaranteed Delivery: All goods ordered by the 
ustomer are delivered.Conversely, goods are only delivered if they were ordered. This is a typ-i
al bla
k box property of the system; we use the veri�
ation te
hniquesof [2, 5℄ to derive it.



Bankinputsm�b : Tmb for all m 2MIDoutputsb�m : Tbm for all m 2MIDstateMa

ount : MID! MCa

ount : CID! Mkeystore : TID 7! (KEY�CID�MID�GID� M )initializationkeystore = ?transition relationtransfer [m; t ℄transfer [m; t ℄pre let (
id ;mid ; gid ; pr) = De
rypt(Pubkey:fst :t ; 
h)in 
id = fst :tendinputm�b?KeyCheque(t ; k ; 
h)outputb�m!Re
eipt(t ; k)post let (
id ;mid ; gid ; pr) = De
rypt(Pubkey:fst :t ; 
h)in Ma

ount:mid :=Ma

ount:mid + prCa

ount:
id := Ca

ount:
id � prendkeystore := keystore [ ft 7! (k ; 
id ;mid ; gid ; pr)gFigure 7: Bank Spe
i�
ation



� Guaranteed Payment: For all goods ordered by a 
ustomer, the moneyamount 
orresponding to the good's pri
e is subtra
ted from the 
us-tomer a

ount.� Money Atomi
ity: The sum of the 
ustomer and mer
hant a

ountsremains invariant. Be
ause of the 
entralized NetBill bank server, thisproperty is quite obvious, it follows immediately from a simple formulain predi
ate logi
.In Se
tion 4.1, we state and prove some invariants of the NetBill proto
ol.They are used in Se
tion 4.2 to prove a number of basi
 safety and progressproperties of the system 
omponents. In Se
tions 4.3 and 4.4 we show the
orre
tness statements mentioned above.4.1 InvariantsFor the property proofs, we make use of two invariants. One invariant de-s
ribes the NetBill behavior from the point of view of a single transa
tion,the other des
ribes it from the point of view of a given 
ustomer.In this se
tion, we frequently refer to a given 
ustomer 
 and mer
hantm. For readability, we sometimes abbreviate Customer [
℄ and Mer
hant [m℄by C and M, respe
tively.4.1.1 Transa
tion View.The transa
tion view des
ribes the system state for all eight phases of a singleNetBill transa
tion t between a 
ustomer 
 and a mer
hant m (see Figure 2).It is visualized in Figure 8. For example, the �rst row represents the statein whi
h the transa
tion is still ina
tive: Customer and mer
hant are stillidle, and no messages have been sent along the 
hannels. Two subsequentrows des
ribe a transition of either the 
ustomer, mer
hant or bank. Forexample, the se
ond state re
e
ts the system state after an order transitionof the 
ustomer: The 
ontrol state of the 
ustomer 
hanges to Ordered,and a new message Order is produ
ed on 
hannel 
�m. The other 
hannelsremain un
hanged. In the table, newly generated messages are highlightedby boxes. A di�eren
e of the number of messages on a 
hannel x and x Æmeans that there are unread messages available on that 
hannel. Note thatthe 
hanges in the 
ontrol state dire
tly follow the state ma
hine stru
turesin Figures 3(a) and 3(b).In addition to the 
ontrol state and data 
ow information of Figure 8, thesystem a

umulates information about the ordered goods, keys, and pri
e inthe 
ustomer and mer
hant data state variables. For ea
h of the eight phases



#Order(t;�)s
�m
#Order(t;�)s
�m Æ
#Cheque(t;�)s
�m
#Cheque(t;�)s
�m Æ
#Invoi
e(t;�;�)sm�

#Invoi
e(t;�;�)sm�
 Æ
#Re
eipt(t;�)sm�

#Re
eipt(t;�)sm�
 Æ
#KeyCheque(t;�;�)sm�b
#KeyCheque(t;�;�)sm�b Æ
#Re
eipt(t;�)sb�m
#Re
eipt(t;�)sb�m Æ
C.st.t.phase M.st.t.phase

�1 0 0 0 0 0 0 0 0 0 0 0 0 Idle Idle�2 1 0 0 0 0 0 0 0 0 0 0 0 Ordered Idle�3 1 1 0 0 1 0 0 0 0 0 0 0 Ordered Delivered�4 1 1 1 0 1 1 0 0 0 0 0 0 Confirmed Delivered�5 1 1 1 1 1 1 0 0 1 0 0 0 Confirmed Cashing�6 1 1 1 1 1 1 0 0 1 1 1 0 Confirmed Cashing�7 1 1 1 1 1 1 1 0 1 1 1 1 Confirmed Done�8 1 1 1 1 1 1 1 1 1 1 1 1 Done DoneFigure 8: Transa
tion View: Control Invariant



�1 df= true�2 df= �1 ^ #Order(t ; g)s
�m = 1 ^ C:st :t :gid = g�3 df= �2 ^ #Invoi
e(t ;En
rypt(k ; shelf :g); pri
e:g)sm�
 = 1^ M:st :t :gid = g ^ M:st :t :key = k�4 df= �3 ^ #Cheque(t ;En
rypt C:pk (
;m; C:st :t :gid ; pri
e:g))s
�m= 1 ^ C:st :t :goods = En
rypt(k ; shelf :g)�5 df= �4 ^ #KeyCheque(t ;M:st :t :key ;En
rypt C:pk (
;m; C:st :t :gid ; pri
e:g))sm�b = 1�6 df= �5 ^ #Re
eipt(t ;M:st :t :key)sb�m = 1�7 df= �6 ^ #Re
eipt(t ;M:st :t :key)sm�
 = 1�8 df= �7 Figure 9: Transa
tion View: Data Invariantin the proto
ol, we formulate a property �i that relates the 
omponents' datastate and message 
ontents. The data invariant is shown in Figure 9. Notethat in our example, the set of properties be
omes stronger in every phase,sin
e all transitions just set internal values that were unde�ned before. Weonly state a subset of the valid properties that is suÆ
ient for the 
orre
tnessproofs later; it is straightforward to extend them with pri
ing information.Together, Figures 8 and 9 illustrate the following invariant for the NetBillsystem:8 
;m; t � 9 g ; k � 8_i=1(�i ^ �i)The proof of the invariant pro
eeds along the typi
al indu
tive proofstru
ture for invariants: It holds initially, and is not violated by any systemtransition.4.1.2 Customer View.While the transa
tion invariant des
ribes the system states for a given 
us-tomer 
, mer
hant m and transa
tion t , we now formalize an invariant thathides the transa
tions and just refers to the goods a 
ustomer ordered.The 
ustomer issues orders to the NetBill system and a

epts the deliv-ered goods. Ea
h order is handled by a single transa
tion. Transa
tions thatdid not yet lead to delivery of a good are 
alled pending. The set of pendingtransa
tions for an order of a good g by the 
ustomer 
 at the mer
hant m



is denoted by P
;m;g and de�ned as follows:P
;m;g df= f t 2 TID j Customer [
℄:st :t :phase 62 fIdle;Doneg ^Customer [
℄:st :t :gid = g gFrom the 
ustomer point of view, the number of orders for a good gshould equal the number of deliveries of this good plus the number of pendingtransa
tions for g . This invariant is formally expressed as8 
;m; g � #Delivery(m; shelf :g)s
�e + jP
;m;g j = #Request(m; g)se�
ÆIt is easy, though tedious, to prove this invariant. The proof stru
ture isvisualized by the veri�
ation diagram in Figure 10, whi
h splits the invariantinto the two 
ases jP
;m;g j = 0 and jP
;m;g j > 0. Ea
h of the diagram nodesrepresents one 
ase. The free variables 
;m; g are �xed by skolemizing thequanti�ers of the invariant above.The opaque dot in the upper diagram node means that initially the upper
ase of the invariant holds; this is easy to see from the 
ustomer spe
i�
ation.The arrows show the veri�
ation obligations for the indu
tive step: Ea
hnew order in
reases jP
;m;g j and the number of pro
essed Request messages;ea
h delivery of a good identi�ed by g de
reases jP
;m;g j, but in
reases thenumber of Delivery messages at the same time. Orders and deliveries ofa di�erent good ĝ as well as the 
ustomer payment transitions leave theinvariant un
hanged. Moreover, although not represented in the diagram, itis easy to see that the invariant is also left un
hanged by transitions of other
ustomers, other mer
hants or the bank.4.2 Bla
k Box PropertiesFrom the invarian
e and enabledness properties of the previous two se
tions,we now derive bla
k box safety and liveness properties. The liveness prop-erties are of a spe
ial form, whi
h we 
all progress: They express that allexternal input to a 
omponent is pro
essed.4.2.1 Safety Properties.From the transition view invariant, we 
an derive a number of bla
k boxsafety properties for a �xed transa
tion t , 
ustomer 
, mer
hant m and thebank:



PSfrag repla
ements
#Delivery(m; shelf :g)s
�e + jP
;m;g j= #Request(m; g)se�
Æ^ jP
;m;g j = 0
#Delivery(m; shelf :g)s
�e + jP
;m;g j= #Request(m; g)se�
Æ^ jP
;m;g j > 0

order [
;m; g ℄ f a

ept [
;m; t ; k ℄ j t 2 TID ^ jP
;m;g j = 1^ De
rypt(k ; 
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order [
;m; g ℄f a

ept [
;m; t ; k ℄ j t 2 TID ^ jP
;m;g j > 1^ De
rypt(k ; 
:st :t :goods) = shelf :g g

f pay [
;m; t ℄ j t 2 TID g [f order [
;m; ĝ ℄ j ĝ 6= g g [f a

ept [
;m; t ; k ℄ j t 2 TID^ De
rypt(k ; 
:st :t :goods)6= shelf :g g
f pay [
;m; t ℄ j t 2 TID g [f order [
;m; ĝ ℄ j ĝ 6= g g [f a

ept [
;m; t ; k ℄ j t 2 TID^ De
rypt(k ; 
:st :t :goods)6= shelf :g g

Figure 10: Customer View InvariantCustomer: #Cheque(t ; �)s
�m = #Invoi
e(t ; �)sm�
ÆMer
hant: #Invoi
e(t ; �)sm�
 = #Order(t ; �)s
�mÆ#KeyCheque(t ; �; �)sm�b = #Cheque(t ; �)s
�mÆ#Re
eipt(t ; �)sm�
 = #Re
eipt(t ; �)sb�mÆBank: #Re
eipt(t ; �)sb�m = #KeyCheque(t ; �; �)sm�bÆTo see that ea
h of these properties indeed holds for the systems bla
kbox view, note that ea
h property is an equality of 
ontinuous fun
tionson streams. Moreover, ea
h property is a state ma
hine invariant of the Net-Bill system, whi
h 
an be seen by 
omparing the entries for the left and righthand side of ea
h equation in the transition view invariant table shown inFigure 8. For example, the third and the sixth 
olumn have the same entries,whi
h means the the number of Cheque- and Invoive�messages on 
 �m andm � 
Æ are equal in all phases of a transa
tion. This proves the 
ustomerproperty.In addition to the property above, the 
ustomer satis�es two other bla
kbox safety properties:#Order(�; �)s
�m = #Request(m; �)se�
Æ#Delivery(m; �)s
�m = #Re
eipt(�; �)sm�
Æ



These properties do not refer to given goods or transa
tions. They are basedon invariants whi
h again are easy to show using standard invariant veri�
a-tion te
hniques.4.2.2 Progress Properties.The bla
k box properties above relate the 
onsumed input and the produ
edoutput of ea
h 
omponent; they are pure safety properties, derived fromstate ma
hine invariants like the transition invariant of Figure 8. The NetBillsystem enjoys also bla
k box properties that relate the external input andthe 
onsumed input for ea
h 
omponent:Customer: #Request(�; �)se�
Æ = #Request(�; �)se�
#Invoi
e(t ; �)sm�
Æ = #Invoi
e(t ; �)sm�
#Re
eipt(t ; �)sm�
Æ = #Re
eipt(t ; �)sm�
Mer
hant: #Order(t ; �)s
�mÆ = #Order(t ; �)s
�m#Cheque(t ; �; �)s
�mÆ = #Cheque(t ; �)s
�m#Re
eipt(t ; �)sb�mÆ = #Re
eipt(t ; �)sb�mBank: #KeyCheque(t ; �; �)sm�bÆ = #KeyCheque(t ; �; �)sm�bThese properties are immediate 
onsequen
es of the �ve bla
k box propertiese�
Æ = e�
, m�
Æ = m�
, 
�mÆ = 
�m, b�mÆ = b�m and m�bÆ = m�b.For the 
ustomer property m �
Æ = m �
, it is suÆ
ient to show that#m�
Æ � #m�
, sin
e m�
Æ v m�
 is by 
onstru
tion an invariant. This lengthproperty 
an be redu
ed to the following temporal logi
 property:2(#m�
Æ = k ^ #m�
 > k )3(#m�
Æ > k))This is an example of an output extension property. To prove is, it is suÆ
ientto �nd a helpful transition � su
h that:#m�
Æ = k ^ #m�
 > k ) En(�) and#m�
Æ = k ^ #m�
 > k ^ � ) #(m�
Æ)0 > kAssume now that the system is in a state where #m�
Æ = k ^ #m�
 > k .Then we know that there is at least one unpro
essed message in m �
. Inother words, there exists a message x su
h thatm�
Æ _ hx i v m�
A

ording to the type de�nition of Tm
 in Se
tion 3.1, the message x is eitheran invoi
e, or a re
eipt with a key; in any 
ase, it refers to a transa
tion t :



1. x 2 Invoi
e(t ; �): Then #Invoi
e(t ; �)sm � 
Æ < #Invoi
e(t ; �)sm�
.From Figure 8, we now that the system must then be in a state 
har-a
terized by �3, and thus by �3 ^ �3.In this 
ase, the helpful transition is the 
ustomer transition pay . It isenabled be
ause a

ording to �3 the 
ustomer 
ontrol state of t is OR-DERED, and a

ording to the assumption the next unread messageis an invoi
e for t . Moreover, sin
e pay indeed 
onsumes the invoi
emessage, the length of the pro
essed input m�
Æ is extended.2. x 2 Re
eipt(t ; �): This 
ase is similar to the one above; instead of thethird phase, however, the system must be in phase 7: The system stateis 
hara
terized by �7 ^ �7, and the helpful transition is the 
ustomertransition a

ept .The proof for the other internal 
hannels is analogous. The proof that e�
Æ =e � 
 is a bit di�erent: Instead of appealing to the transition invariant table,we make use of the fa
t that there is always a free transa
tion ID (nextid),so that transition order is enabled whenever there is unpro
essed input on
hannel e�
.4.3 Guaranteed DeliveryThe bla
k box 
orre
tness property states that all ordered goods are deliv-ered, and that all delivered goods have been ordered:8 
;m; g � #Delivery(m; shelf :g)s
�e = #Request(m; g)se�
This property 
an be split into a safety and a liveness part:8 
;m; g � #Delivery(m; shelf :g)s
�e � #Request(m; g)se�
8 
;m � #Delivery(m; �)s
�e � #Request(m; �)se�
The liveness part need not to refer to a goods ID. Sin
e the 
orre
tness ofthe output follows already from the safety part, it is suÆ
ient to show thatenough output is produ
ed.4.3.1 Safety.For the safety part, we observe that#Delivery(m; shelf :g)s
�e� #Delivery(m; shelf :g)s
�e + jP
;m;g j sin
e jP
;m;g � 0j� #Request(m; ; �)se�
Æ by 
ustomer view invariant� #Request(m; g)se�
 sin
e e�
Æ v e�




Thus, the safety formula is by itself an invariant of the NetBill system. It isalso admissible, and is thus also valid at the bla
k box level, where all freevariables range over the limits of a system exe
ution.4.3.2 Liveness.For the liveness part we show the following equality sequen
e for all 
 andm: #Delivery(m; �)gs
�e= #Re
eipt(�; �)sm�
Æ by 
ustomer safety= #Order(�; �)s
�m see below= #Request(m; �)se�
Æ by 
ustomer safety= #Request(m; �)se�
 by 
ustomer progressTo show the se
ond equality, we observe that for all 
, m and t :#Re
eipt(t ; �)sm�
Æ= #Re
eipt(t ; �)sm�
 by 
ustomer progress= #Re
eipt(t ; �)sb�mÆ by mer
hant safety= #Re
eipt(t ; �)sb�m by mer
hant progress= #KeyCheque(t ; �; �)sm�bÆ by bank safety= #KeyCheque(t ; �; �)sm�b by bank progress= #Cheque(t ; �)s
�mÆ by mer
hant safety= #Cheque(t ; �)s
�m by mer
hant progress= #Invoi
e(t ; �; �)sm�
Æ by 
ustomer safety= #Invoi
e(t ; �; �)sm�
 by 
ustomer progress= #Order(t ; �)s
�mÆ by mer
hant safety= #Order(t ; �)s
�m by mer
hant progressEa
h of the safety and progress steps in this sequen
e is immediate from thebla
k box properties of Se
tion 4.2.4.4 Guaranteed Payment and Money Atomi
ityThe previous se
tion showed the 
orre
tness of a bla
k box property, whi
honly refers to the 
hannel 
ommuni
ation histories. The 
orre
tness proofmade use of both temporal logi
 properties (the invarian
e and responseproperties), and of predi
ate logi
 properties (for example, to show the en-abledness of a transition).



However, temporal and predi
ate logi
 are useful not only for the deriva-tion of bla
k box properties. There are some properties, whi
h are bestexpressed by temporal logi
 be
ause they refer to the internal state of a 
om-ponent, and properties best expressed by predi
ate logi
, be
ause they alsorefer to a given transition.4.4.1 Temporal Logi
.This level is useful when properties about the internal states of a 
omponentare formalized. In the NetBill example, we 
an spe
ify that if the 
ustomerorders a good, at a later state the pri
e of the good will have been subtra
tedfrom the 
ustomer a

ount.8 x 2 M ; 
 2 CID;m 2MID; t 2 TID �2(Bank :Ca

ount:
 = x ^Customer [
℄:st :t :phase 2 fOrdered;Confirmedg)3(Bank :Ca

ount:
 � x � pri
e:(Customer [
℄:st :t :gid)))Note that it would be quite diÆ
ult to pre
isely 
hara
terize the amount ofmoney on the 
ustomer a

ount, be
ause there 
an be any number of a
tivetransa
tion being pro
essed at any time.4.4.2 Predi
ate Logi
.The predi
ate logi
 level is useful when properties of single transitions areformalized. In the NetBill example, all money related a
tivities o

ur at a
entralized bank server, whi
h is spe
i�ed by a single transition. The prop-erty that within the NetBill system money is neither destroyed nor 
reated
an be expressed as the following formula in �rst-order logi
:8 x 2 M ; 
 2 CID;m 2MID �(Bank :Ca

ount:
 + Bank :Ma

ount:m = x ) ^ transfer) (Bank :Ca

ount0:
 + Bank :Ma

ount:m 0 = x )5 Dis
ussionIn this 
ontribution, we used a simpli�ed formalization of the NetBill pro-to
ol, whi
h di�ers from the des
ription in [11℄ in various respe
ts. In thisse
tion, we dis
uss possible extensions of our model and brie
y summarizethe proof methodology from Se
tion 4.



5.1 NetBill ModelIn the original des
ription of the NetBill proto
ol, the 
ustomer pro
ess 
anquery the bank for the re
eipt and de
ryption key for a given transa
tion.This ensures that the 
ustomer 
an de
rypt the goods even if the network
onne
tion between bank, mer
hant and 
ustomer 
an lose messages.For 
ustomer queries, the system stru
ture diagram must be extendedby 
hannels that 
onne
t the 
ustomers and the bank server. The trans-a
tion state transition diagrams must be extended as shown in Figure 11.It is straightforward to de�ne the new transitions query , a

eptBank anddropKey .
PSfrag repla
ements IdleOrderedCon�rmedDone

orderpaya

ept querya

eptBank (a) Customer view
PSfrag repla
ements IdleDeliveredCashingDone

deliverGoods
ashChequedeliverKeydropKey(b) Mer
hant viewFigure 11: Customer and Mer
hant View of a Transa
tionMoreover, the message types in [11℄ are more 
omplex. In our modelwe removed mu
h redundan
y; we also abstra
ted from some details of theen
ryption algorithms. Finally, we do not examine mali
ious mer
hants and
ustomers or limited 
ustomer 
redit lines, although of 
ourse the NetBillproto
ol has to be examined 
arefully for these 
ases.5.2 Proof MethodologyMany of the proofs in Se
tions 4.1{4.3 are not 
ompletely formal; they 
annotbe, sin
e we did not give pre
ise translations de�nitions of the 
omponentstate ma
hine transitions into logi
. Still, we hope that the reader 
an getthe gist of the proof style that we used:



� Based on the message sequen
e 
hart of the NetBill proto
ol (Figure 2)and the transition state transition diagrams (Figure 3) the rea
hablestates from the perspe
tive of a single transa
tions 
ould be 
on
iselydes
ribed in tabular form (Figure 8). Again, we did not give a 
om-pletely formal translation of the table into a logi
al expression, we referto Broy's work on tabular spe
i�
ation te
hniques [7℄ for details.� From the invariant table, a number of bla
k box safety properties thatrelate input and output of ea
h system 
omponent are immediate. Onlythe 
ommuni
ation along the two 
hannels that 
onne
t the system tothe environent had to be treated spe
ially.� For bla
k box liveness properties, we �rst proved 
omponent progress:Ea
h 
omponent 
onsumes all its input. For progress, we made useof temporal logi
 and bla
k box veri�
ation rules from [2℄, whi
h aretailored to proving the length properties typi
al for progress arguments.The premises of these rules |essentially enabledness statements forhelpful transitions| 
ould easily be dis
harged by a 
ase split on themessage types, and again a lookup in the invariant table.� For the �nal bla
k box 
orre
tness proof it is then suÆ
ient to assemblethe 
omponent bla
k box properties in a 
hain of (in)equations.Note that in this way, the 
orre
tness of the proto
ol is proven 
omposi-tionally: History spe
i�
ations in the style of Fo
us are a modular des
rip-tion te
hnique that allows su

in
t reasoning with bla
k box properties of
omponents.In previous examples [2, 3℄, we proved liveness properties dire
tly, insteadof showing progress �rst. The approa
h here seems to be more s
hemati
 andeasier to s
ale to larger systems.We did not yet attempt the 
orre
tness proofs for the extended NetBillversion with 
ustomer queries, mali
ious 
ustomer or mer
hant behavior orlimited 
redit lines; it remains to be seen whether and whi
h parts of the
urrent proof 
an be reused for the new aspe
ts.6 Con
lusionState based and I/O history based views of the system 
an be linked bytemporal logi
al formulas for invarian
e and response. This te
hnique isdo
umented in more detail in [2, 8, 3, 5℄, where simple bu�er examples areveri�ed. In this 
ontribution, we applied spe
i�
ation and proof prin
iples



for bla
k box properties of distributed systems to the NetBill proto
ol [11, 19℄for ele
troni
 payments over the Internet.There is no single language for the formulation of mathemati
al 
orre
t-ness properties of a system. Simple Hoare-like veri�
ation 
onditions, tem-poral logi
 formulas and history relations in the style of Fo
us [9, 1℄ allowthe formulation of properties at di�erent abstra
tion levels. Conversely, ver-i�
ation 
onditions for ea
h level lead to veri�
ation 
onditions formulatedin the lower levels languages.The bla
k box 
orre
tness property of the NetBill system is assembledfrom bla
k box properties of the individual 
omponents. This shows howthe inherent modularity of Fo
us spe
i�
ations 
an be used for 
on
ise
ompositional proofs: Both liveness and safety arguments are redu
ed tosimple (in)equality reasoning.The simple stru
ture of the temporal logi
 formulas needed for the veri�-
ation of bla
k box properties is well-suited for veri�
ation diagrams [14, 15℄in order to stru
ture property proofs. While the veri�
ation 
onditionsasso
iated with a veri�
ation diagram are simple, their sheer number re-quires tool support. In [6℄, we present a formalization of our approa
h inIsabelle/HOL[12℄. It 
onsists of extensions of Shankar's PVS formalizationof state ma
hines [18℄ to handle liveness properties and asyn
hronous 
om-muni
ation as well as veri�
ation ta
ti
s tailored to invarian
e and responsediagrams. The Isabelle formalization and veri�
ation diagrams are do
u-mented in a te
hni
al reports [6℄. The theory �les and proof s
ripts 
an bea

essed ele
troni
ally [4℄.Typi
ally, when examining proto
ols for e-
ommer
e appli
ations, thefo
us is on se
urity, and less on the safety and liveness issues handled byour approa
h. Further work will 
ombine our veri�
ation te
hniques withPaulson's indu
tive approa
h to proto
ol veri�
ation [17℄, and with formalmodels of threat s
enarios [13℄.
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