T UM

INSTITUT FUR INFORMATIK

A Software Reliability Model Based on a
Geometric Sequence of Failure Rates

Stefan Wagner and Helmut Fischer

TUM 1 0520
Dezenber 05

TECHNISCHEUNIVERSITAT MUNCHEN



TUM-INFO-12-10520-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2005

Druck: Institut fur Informatik der
Technischen Universitat Munchen



A Software Reliability Model Based on a
Geometric Sequence of Failure Rates*

Stefan Wagner Helmut Fischer
Institut fiir Informatik Siemens AG
Technische Universitat Miinchen COM E QPP PSO
Boltzmannstr. 3 Hofmannstr. 51
D-85748 Garching b. Miinchen D-81379 Miinchen
Abstract

Software reliability models are an important tool in quality manage-
ment and release planning. There is a large number of different models
that often have strengths in different areas. This paper proposes a model
that is based on a geometric sequence of the failure rates of faults. This
property of the failure process was observed in practice at Siemens among
others and led to the development of the Fischer-Wagner model. It is de-
scribed in detail and evaluated using standard criteria. Most importantly
the model is able to perform equally well as other models in terms of its
predictive validity.

*This research was partially supported by the DFG in the project InTime.



1 Introduction

Software reliability engineering is an established area of software engineer-
ing research and practice that is concerned with the improvement and
measurement of reliability. For the analysis typically statistical software
reliability models are used. They model the failure process of the software
and use other software metrics or failure data as a basis for parameter
estimation. The models are able to (1) estimate the current reliability and
(2) to predict future failure behaviour.

There already is a number of established models of which Miller clas-
sified several important ones as exponential order statistic (EOS) models
in [5]. He divided the models on the highest level in deterministic and
doubly stochastic EOS models meaning that the failure rates either have a
deterministic relationship or are again randomly distributed. For the deter-
ministic models, he gave several interesting special cases. The well-known
Jelinsky-Moranda model [3] has constant rates, for example. He also de-
scribed that geometric rates are possible and were observed by Nagel [9, 8].

This geometric sequence between failure rates of faults was also found
in projects of the communication networks department of the Siemens AG.
Several older projects were analysed and this relationship seemed to fit well
on the data. Therefore, a software reliability model based on a geometric
series of failure rates is proposed.

Problem. The problem software reliability engineering is still facing
is that we need accurate models for different environments and projects.
Detailed models with a geometric sequence of failure rates have not been
proposed so far.

Contribution. We describe a detailed and practical software reliabil-
ity model that was motivated out of practical experience and contains a
geometric sequence of failure rates which was also suggested by theoreti-
cal results. A detailed comparison shows that this model has a constantly
good performance over several projects although other models can perform
better in specific projects.

Outline. We first describe different important aspects of the model in
Sec. 2. In Sec. 3 the model is evaluated using several defined criteria, most
importantly its predictive validity in comparison with established models.
Based on the model a notion of test efficiency is developed in Sec. 4. We
give final conclusions in Sec. 5. Related work is cited where appropriate.

2 Model Description

The core of the Fischer-Wagner model is a geometric sequence for the
failure rates of the faults. This section describes this assumption and



others in more detail, introduces the main equations, the time component
of the model and gives an example of how the parameters of the model can
be estimated.

2.1 Assumptions

The main theory of this model is the idea to order the faults that are
present in the software based on their failure rates. The term failure rate
may describe in this context the probability that an existing fault will result
in an erroneous behaviour of the system during a defined time slot or while
executing an average operation. The ordering implies that the fault with
the highest probability of triggering a failure comes first, then the fault
with the second highest probability and so on. The probabilities are then
put on a logarithmic scale because this results in a uniform distribution of
the points on the x-axis. This is because there is the underlying assumption
that there are a many faults with low failure rates and only a small number
of faults with high failure rates.

As mentioned above the logarithmic scale brings the data points in
approximately the same distance from each other. Therefore, this distance
is approximated by a constant factor between the probabilities. Then we
can use the following geometric sequence for the calculation of the failure
rates.

pn=p1-d™, (1)

where p,, is the failure rate of the n-th fault, p; the failure rate of the first
fault, and d is a project-specific parameter. It is assumed that d is an
indicator for the complexity of a system (maybe expressed by the number
of possible different branches in a program). In past projects of Siemens d
was calculated to be between 0.92 and 0.96. d is multiplied and not added
because the distance is only constant on a logarithmic scale.

The failure occurrence of a fault is assumed to be geometrically dis-
tributed. Therefore, the probability that a specific fault a occurred by
time t is the following.

P(T, <t) = F(t) = 1 - (1 - pa)". (2)

We denote with T, the random variable of the failure time of the fault a.

In summary the model can be described as the sum of an infinite num-
ber of geometrically distributed random variables with different parameters
which in turn are described by a geometric sequence.

2.2 Equations

The two equations that are typically used to describe a software reliability
model are the mean number of failures p(t) and the failure intensity A(¢).

3



Cummulative number of failures

The mean value function needs to consider the expected value over the
indicator functions of the faults.

u(t) = E(N(¢))
= E (S foa (X))
=221 E(Ip,(X3)) 3)
=22 P(Xi <)
=TSR - (- p)
This gives us a a typical distribution as depicted in Fig. 1. Note that

the distribution is actually discrete which is not explicitly shown because
of the high values used on the x-axis.

100 T T T T

90

80

70

60

50

40

30

20

10

0 1 1 1 1
0 2000 4000 6000 8000 10000

Incidents

Figure 1: A typical distribution of the model

We cannot differentiate the mean value equation directly to get the
failure intensity. However, we can use the probability density function
(pdf) of the geometric distribution to derive this equation. The pdf of a
single fault is

Ft) = pa(l = pa)™" (4)
Therefore, to get the number of failures that occur at a certain point in
time ¢, we have to sum up the pdf’s of all the faults.

AD =3 pall — po)t! (5)
a=1

4



An interesting quantity is typically the time that is needed to reach
a certain reliability level. Based on the failure intensity objective that is
anticipated for the release, this can be derived using the equation for the
failure intensity. Rearranging Eq. 4 gives:

In A
e S| 6
Za:lpa_p(z], ( )

What we need, however, is the further needed time At to determine the

necessary length of the test or field trial. We denote the failure intensity
objective Ar and use the following equation to determine At:

InAp —In )\

At =tp —t=—"" "7
>ty Pa — P2

(7)
Having this, the result needs to be converted in calendar time to be able
to give a date for the end of the test or field trial.

2.3 Time Component

In the Fischer-Wagner model time is typically measured in incidents each
representing a usage task of the system. These incidents are also converted
into calendar time. For this it is necessary to introduce an explicit time
component. This means there need to be explicit means to convert from
one time format into another.

There are several possibilities to handle time in reliability models. The
most preferable way is to use execution time directly but this is often not
possible. Then a suitable substitute must be found. In case of testing this
could be the number of test cases, in the field the number of clients and so
forth. Fig. 2 shows the relationships between different possible time types.

Calendar time

How many users? How many users?

Incidents/day and Test Usage time/user?
user? per day?
Incidents —=——— Test cases—— In—service time
Duration of
Average test case?

duration of

e .
incident? Execution time

Figure 2: The relationships between different types of time possible

The first possibility is to use in-service time as a substitute. For this
we need to know the number of users and the average usage time per user.
Then the question is how does this relate to the test cases in system test.



Maybe the average duration of a test case can be used. Instead of the in-
service time the number of incidents is a way to measure time. The main
advantage of using incidents, apart from the fact that they are already in
use at Siemens, is that in this way, we can get very intuitive metrics, e.g.,
average number of failures per incident. There are often some estimations
of the number of incidents per client and data about the number of sold
client licenses.

However, also the question of the relation to test cases is open here. A
first cut would be to assume a test case is equal to an incident but probably
a test case has more “time value” than one incident because it is typically
directed testing which means that situations with a high probability of
failure are preferred. In addition, a test case is usually unique in function
or parameter set while the normal use of a product typically consists of
similar actions. Then we do not follow the operational profile and this
should be accounted for. A possibility for that is described in Sec. 4.

2.4 Parameter Estimation

There are two techniques for parameter determination currently in use.
The first is prediction based on data from similar projects. This is useful
for planing purposes before failure data is available.

However, estimations should also be made during test, field trial, and
operation based on the sample data available so far. This is the typical
approach most reliability models use and it is also statistically most ad-
visable because it is sample data from the population we actually want to
analyse. For this, techniques such as Maximum Likelihood estimation or
Least Squares estimation are typically used to fit the model to the actual
data.

Maximum Likelihood. The Maximum Likelihood method essentially
uses a likelihood function that describes how probable it is that a certain
number of failures occurred up to a certain time. This function is filled with
sample data and then optimised to get the parameters with the maximum
likelihood.

The problem with this is that the likelihood function of this model
gets extremely complicated. We have essentially an infinite number of
random variables that are geometrically distributed but all with different
parameter p. Even if we constrain ourselves to a high number IV of variables

. . o . N .
under considerations it still results in a sum of < - different products.

In detail that means we have to sum up every possible permutation in
which « failures have occurred up to time ¢. The number of possibilities

. N . . .
is ( - ) Each summand is a product of a permutation where different

6



faults resulted in failures.

L(p,d) = I 1—(1—p)t - TIep (1= pi)t+
[55 1—(1—p)t- Hﬁ\ix—i—Z (I=p)'- (1 =p1)'+ (8)
H“"’+2 1—(1=p)' TI s (1 —pi)t - TI=y (1 —p1)'+

)

where p; = p1di— 1.
We are currently not able to find an efficient possibility to maximise
this complex function.

Least Squares. For the Least Squares method typically an estimate of
the failure intensity is used and the relative error to the estimated failure
intensity from the model is minimised. We use the estimate of the mean
number of failures for this because it is the original part of the model.
Therefore, the square function to be minimised in our case can be written
as follows.

p17 Z IHT‘J IHN tjvplvd)]27 (9)

where m is the number of measurement points, r; is the measured value
for the cumulated failures, and ¢; is the time at measurement j.

This function is minimised using the simplex variant of Nelder and
Mead [10].

We found this method to be usable for our purpose. We first looked at
two different approaches: (1) to use only the last sample data point and (2)
to use all available data points. The motivation for (1) was to reduce the
costly computation but finally we found that (2) was feasible and yields a
better fit as can be seen, for example, in Fig. 3 for an example application
from Siemens.

3 Evaluation

We describe several criteria that are used to assess the Fischer-Wagner
model.

3.1 Criteria

The criteria that we use for the evaluation of the Fischer-Wagner model
are derived from [6]. We assess according to five criteria, four of which can
mainly be applied theoretically, whereas one criterion is based on practical
applications of the models on real data. The first criterion is the capability
of the model. It describes whether the model is able to yield important
quantities. The criterion quality of assumptions is used to assess the plau-
sibility of the assumptions behind the model. In what cases the model can

7



180 !

1
Last ——

Al ——x--- ;
Cumm. failures ---*--- XM

160 -

140 -

120 -
0
)
3

8 100 -
°
Q
k!
=1

£ 80 -
IS
=
o

60 -

40 -

20 -

0 i ! ! ! ! ! ! ! ! ! )

0 10 20 30 40 50 60 70 80 90 100
Calendar time (days)

Figure 3: A comparison of the fit of the model when using only the last or all
sample data points

be used is evaluated with the criterion applicability. Furthermore, simplic-
ity is an important aspect for the understandability of the model. Finally,
the predictive validity is assessed by applying the model to real failure data
and comparing the deviation.

3.2 Capability

The main purpose of a reliability model is to aid managers and engineers in
planning and managing software projects by estimating useful quantities
about the software reliability and the reliability growth. Following [6] such
quantities, in approximate order of importance, are:

1. current reliability
2. expected date of reaching a specified reliability

3. human and computer resource and cost requirements related to the
achievement of the objective

Furthermore, it is a valuable part of a reliability model if it can pre-
dict quantities early in the development based on software metrics and/or
historical project data.



The model yields the current reliability as current failure intensity and
mean number of failures. It is also able to give predictions based on pa-
rameters from historical data. Furthermore, the expected date of reaching
a specified reliability can be calculated. Human and computer resources
are not explicitly incorporated. There is an explicit concept of time but it
is not as sophisticated as, for example, in the Musa-Okumoto model [7].

3.3 Quality of Assumptions

As far as possible each assumption should be tested by real data. At least it
should be possible to argument for the plausibility of the assumption based
on theoretical knowledge and experience. Also the clarity and explicitness
of the assumptions is important.

The main assumption in the Fischer-Wagner model is that the failure
rates of the faults follow a geometric sequence. The intuition is that there
are many faults with low failure rates and only a small number of faults
with high failure rates. This is in accordance with software engineering
experience and supported by [1]. Moreover, the geometric sequence as
relationship between different faults was also found in a study of NASA
and is documented in [9, 8].

Furthermore, an assumption is that the occurrence of a failure is ge-
ometrically distributed. The geometric distribution fits because it can
describe independent events and we did originally not consider continuous
time but discrete incidents.

Finally, the infinite number of faults makes sense when considering
imperfect debugging, i.e., fault removal can introduce new faults or the
old faults are not completely removed.

3.4 Applicability

It is important for a general reliability model to be applicable to software
applications in different domains and of different size. Also different project
environments or life cycle phases should be possible. There are four special
situations identified in [6] that should be possible to handle.

1. software evolution

[\)

. classification of severity of failures into different categories

w

. ability to handle incomplete failure data with measurement uncer-
tainties

4. operation of the same program on computers of different performance
All real applications of the Fischer-Wagner model have been in the
telecommunications area. However, it was used for software of various

sizes and complexities. Moreover, during the evaluation of the predictive
validity we applied it also to other domains (see Sec. 3.6). The phase it is

9



used in is before and during the field trial. Software evolution is hence not
explicitly incorporated. A classification of failures is possible but has not
been used so far. Moreover, the performance of computers is not a strong
issue in this domain.

3.5 Simplicity

A model should be simple enough to be able to use it in real project
environments. This includes that it has to be simple to collect the necessary
data, easy to understand the concepts and assumptions, and the model
should be implementable in a tool.

The concepts are not difficult to understand but the model in total
is rather complicated because it not only involves failures but also faults.
Furthermore, for all these faults the failure is geometrically distributed but
each with a different probability.

A main critic is also that the assumed infinite number of faults make
the model difficult to handle. In practical applications of the model and
when building a tool, an upper bound of the number of faults has to be
introduced to be able to calculate model values. This actually introduces
a third model parameter in some sense.

The two parameters, however, can be interpreted as physical quantities.
p1 is the failure probability of the most probable fault and d can be seen
as a measure of system complexity.

3.6 Predictive Validity

The most important and “hardest” criterion for the evaluation of a reliabil-
ity model is its predictive validity. A model has to be a faithful abstraction
of the real failure process of the software and give valid estimations and
predictions of the reliability. For this we follow again [6] and use the num-
ber of failures approach.

We assume that there have been ¢ failures observed at the end of test
time (or field trial time) t,. We use the failure data up to t.(< t¢,) to
estimate the parameters of the mean number of failures u(t). The substi-
tution of the estimates of the parameters yields the estimate of the number
of failures /i(t;). The estimate is compared with the actual number at g.
This procedure is repeated with several t.s.

For a comparison we can plot the relative error (ji(t,) — q)/q against
the normalised test time t./t,. The error will approach 0 as t. approaches
ty. If the points are positive, the model tends to overestimate and the
other way round. Numbers closer to 0 imply a more accurate prediction
and hence a better model.

We apply as comparison models four well-known models from the lit-
erature: Musa basic, Musa-Okumoto, Littlewood-Verall, and NHPP. All
these models are implemented in the tool SMERFS [2] that was used to

10



calculate the necessary predictions. We describe each model in more detail
in the following.

Musa basic. The Musa basic execution time model assumes that all
faults are equally likely to occur, are independent of each other and are
actually observed. The execution times between failures are modelled as
piecewise exponentially distributed. The intensity function is proportional
to the number of faults remaining in the program and the fault correction
rate is proportional to the failure occurrence rate.

Musa-Okumoto. The Musa-Okumoto model, also called logarithmic
Poisson execution time model, was first described in [7]. It also assumes
that all faults are equally likely to occur and are independent of each
other. The expected number of faults is a logarithmic function of time
in this model and the failure intensity decreases exponentially with the
expected failures experienced. Finally, the software will experience an
infinite number of failures in infinite time.

Littlewood-Verall Bayesian. This model was proposed for the first
time in [4]. The assumptions of the Littlewood-Verall Bayesian model are
that successive times between failures are independent random variables
each having an exponential distribution. the distribution for the i-th failure
has a mean of 1/A(¢). The A(i)s form a sequence of independent variables,
each having a gamma distribution with the parameters a and ¢(7). ¢(i)
has either the form: 3(0) + 3(1) - i (linear) or B(0) + 3(1) - i (quadratic).
We used the quadratic version of the model.

NHPP. Various models based on a non-homogeneous Poisson process
are described in [11]. The particular model used also assumes that all
faults are equally likely to occur and are independent of each other. The
cumulative number of faults detected at any time follows a Poisson distri-
bution with mean m(t). That mean is such that the expected number of
faults in any small time interval about ¢ is proportional to the number of
undetected faults at time ¢. The mean is assumed to be a bounded non-
decreasing function with m(t) approaching The expected total number of
faults to be detected as the length of testing goes to infinity. It is possible
to use NHPP on time-between-failure data as well as failure counts. We
used the time-between-failure version in our evaluation.

We apply the reliability models to several different sets of data to com-
pare the predictive validity. Three data sets are provided by The Data
& Analysis Center for Software of the US-American Department of De-
fence, the other three projects were done at Siemens. The former are called
DACS together with their system number, the latter were given the name
Siemens and are consecutively numbered.

11



3.6.1 DACS 1

The first project data under consideration had the aim of developing a real
time command and control application. The size of the software measured
in delivered object code instructions is 21,700. 136 failures were observed
during the system test. The system code of this project is 1. The data is
based on execution time, therefore all models were easily applicable.

S
5]
[}
=
8
[J]
o4
7
X
¥ -
04k 5 . _

: Fischer-Wagner —+——

¥ Musa basic ---x---

/ Musa-Okumoto ------

Littlewood-Verall &
NHPP --m-—
.05 1 1 1 1 1 T T )
20 30 40 50 60 70 80 90 100
Normalised execution time (percentage)
Figure 4: Relative error curves for the models based on the DACS 1 data set

The plot in Fig. 4 shows the relative error curves for all considered
models. The predictions become more and more accurate as increasingly
more sample data is available which was expected. The NHPP, Musa
basic, and Musa-Okumoto models all tend to predict too little failures
whereas the Littlewood-Verall model mostly overestimates the number of
future failures. The latter model also yields the best predictions from
early stages on. The Fischer-Wagner model has a quite similar predictive
validity. From 80% of the time on the predictions are even more accurate
than all the others although the predictions are in the beginning worse
than the ones from the Littlewood-Verall model.

12



Relative error

05l

3.6.2 DACS 6

This data set comes from the subsystem test of a commercial subsystem
with 5,700 delivered object code instructions. In total 73 failures occurred.
We tried to use all models on this data as well but the models were not
applicable at all stages. Especially the NHPP model was only able to make
predictions for about half of the analysed parts of the data set. The results
can be found in Fig. 5.

1 1
Fischer-Wagner —+—
Musa basic ---x---
Musa-Okumoto ------
~ Littlewood-Verall B
| TS~ NHPP ---m—

T T )
. I K — K

-1.5

10

20

30

40 50

60

70

80

90

Normalised execution time (percentage)

100

Figure 5: Relative error curves for the models based on the DACS 6 data set

It is obvious that the models behave strongly differently. Note that the
Littlewood-Verall model gives the most accurate predication although it is
the worst before 30% of the execution time is over. The Fischer-Wagner
model is similar to the other models. Sometimes it is able to predict
more accurately (between 45% and 55%, and after 70%), sometimes the
predictions are worse (between 55% and 70%).

3.6.3 DACS 40

The DACS 40 test data describes the results of the system test of a military
application with 180,000 delivered object code instructions. The Musa ba-
sic model was not applicable to this data. All the other models perform well

13



Relative error

with relative errors not bigger than 0.25. The results are again illustrated
in a plot in Fig. 6.

Normalised execution time (percentage)

0.25 1 1 1 1 I I 1 1 1
% Fischer-Wagner —+—
Musa-Okumoto ---»---
0.2} Littwood-Verall ---%--- |-
Xoooook NHPP o
0.15 -
0.1} -
0.05
0
-0.05
-0.1
-0.15
0.2 | y -
X=mmn X e
- e R iz =}
.025 1 E/’/’?‘S = E 1 1 1 1 1 J
10 20 30 40 50 60 70 80 90

100

Figure 6: Relative error curves for the models based on the DACS 40 data set

For this data the Musa-Okumoto model is able to make the best predic-
tions with an relative error of about 0.05 after 40% of the execution time.
The Fischer-Wagner model is able to outperform the others in the early
stages but is worse than the Musa-Okumoto model from 35% onwards.
However, beginning at 75% the predictive validity is similar.

3.6.4 Siemens 1

This data comes from a large Siemens project that we call Siemens 1 in
the following. The software is used in a telecommunication equipment.

We only look at the field trial because this gives us a rather accurate ap-
proximation of the execution time which is the actually interesting measure
regarding software. It is a good substitute because the usage is nearly con-
stant during field trial. Based on the detailed dates of failure occurrence,
we cumulated the data and converted it to time-between-failure (TBF)
data. This was then used with the Fischer-Wagner, Musa-basic, Musa-
Okumoto, and NHPP models. The results can be seen in Fig. 7. In this
case we omit the Littlewood-Verall that made totally absurd predictions
of over a thousand future failures.

14



0.8 I I I I I I 1 I
l; Fischer-Wagner —+—
N Musa basic ---x---
S Musa-Okumoto ------
B NHPP -8

Relative error

06 I I I I I I I I ]
10 20 30 40 50 60 70 80 90 100

Normalised calendar time (percentage)

Figure 7: Relative error curves for the models based on the Siemens 1 data set

The Musa-basic and the NHPP models yield similar results all the time.
They overestimate in the beginning and slightly underestimate in the end.
The Musa-Okumoto model overestimates all the time, the Fischer-Wagner
model underestimates. All models make again reasonably well predictions.
The Fischer-Wagner model has a relative error below 0.2 from 45% on, the
Musa basic and the NHPP models even from 40% on.

3.6.5 Siemens 2

Siemens 2 is a web application for which we only have a small number of
field failures. This makes predictions more complicated as the sample size
is smaller. However, it is interesting to analyse how the different models
are able to cope with this. For this, we have plotted the results in Fig. 8.

Again not all models were applicable to this data set. The NHPP
model only made predictions for a small number of data points, the Musa
basic and the Musa-Okumoto models were usable mainly in the middle
of the execution time. All models made comparably bad predictions as
we expected because of the small sample size. Surprisingly, the Fischer-
Wagner model did extremely well in the beginning but worsened in the
middle until its prediction became accurate in the end again. Despite this
bad performance in the middle of the execution time it is still the model

15



0.8 ¥ | | | 1 1 1 1 n
Mmoo X Fischer-Wagner —+—
Musa basic ---x---
. ook T Musa-Okumoto ---:---
T T Littlewood-Verall &
- T e NHPP -—-m— |_
0.6 . o
' I VR
TK-ee- *--ee- ¥ TR X
K K
e X\\\
| - W W X -
0.4 - [ O B = |
5] B N o

Relative error
o
N
T
[}

0.4 I I I I I I I I ]
10 20 30 40 50 60 70 80 90 100

Normalised execution time (percentage)

Figure 8: Relative error curves for the models based on the Siemens 2 data set

with the best predictive validity in this case. Only the Littlewood-Verall
model comes close to these results. This might be an indication that the
Fischer-Wagner model is good suited for smaller sample sizes.

3.6.6 Summary

For a better general comparison we combined the data into one plot which
can be found in Fig. 9. This combination is straight-forward as we only
considered relative time and relative errors. To avoid that strongly posi-
tive and strongly negative values combined give very small errors we use
medians instead of average values. The plot shows that with regard to
the analysed projects the Littlewood-Verall model gives very accurate pre-
dictions, also the NHPP and the Fischer-Wagner models are strong from
early on.

However, for an accurate interpretation we have to note that the data
of the Littlewood-Verall model for one of the Siemens projects was not
incorporated into this comparison because its predictions were far off with
a relative error of about 6. Therefore, the model has an extremely good
predictive validity if it gives reasonable results but strongly weak predic-
tions for some projects. A similar argument can be made for the NHPP
model which made the weakest predictions for one of the DACS projects.

16



L 1
Fischer-Wagner —+—
.‘ Musa basic ---x---
05 b Musa-Okumoto ------ |
2T Littlewood-Verall &
: NHPP —-m-—

Relative error

03 I I I I I I I ]
20 30 40 50 60 70 80 90 100

Normalised execution time (percentage)

Figure 9: Median relative errors for the different models based on all analysed
data sets

The Fischer-Wagner model cannot reach the validity of these models for
particular projects but has a more constant performance over all projects.

4 Test Efficiency

One idea that comes out of being based on incidents as substitute of ex-
ecution time is to measure the efficiency of the system test by the ratio
of incidents per test case that were achieved. The underlying assumption
is that system test is more efficient in revealing failures because special
and border cases are analysed forcefully. Therefore each executed test case
should be as good as several field incidents in finding a defect.

Formally, we define the ratio of incidents per test case as

Lsystem
p= _system (10)
Csystem

where 4y step 1s the number of incidents that the system test represents
and Csystem 18 the actual and measured number of test cases that were
executed during system test.

17



That this additional factor makes sense can be seen in Fig. 10 where
we try to incorporate the system test data based on the assumption that
one test case corresponds to one incident. Obviously, this gives extremely
bad predictions during system test.

| | .
[_Fischer” ——1]

System test -

Field trial : Field

Relative error
N
[

1 g _

0 et
T ' N

] 5 ! L ! ! ! |

0 0.05 0.1 0.15 0.2 0.25 0.3

Normalised number of incidents (percentage)

Figure 10: Relative error curve for the Fischer-Wagner model assuming one test
corresponds to one incident for Siemens 2

A definitive value for p can only be determined after the system was
released. Using field failure data, it can be estimated using a similar ap-
proach as for the other parameters (cf. Sec. 2.4). However, we now have
to optimise for ¢ as well. That means that we change the square function
to the following.

S(p1,d) =S [lnr; —In Y 1— (1 - p,) total ]2, (11)
j=1 a=1

where m is the number of measurement points, r; is the measured value
for the cumulated failures, and d; is the distance of the current number
to the total number of incidents before the new estimation. We need this
distance to be able to handle more than one sample data point and still
keep the distances and have only one parameter i;,;,;. Note that this only
works if the sample data comes from the field trial and field otherwise p
would take effect.

Having this ¢; we can determine p by interpreting ¢; as the total number
of incidents i4,;,;- Then we have to subtract the number of incidents in
the field i field and in the field trial ¢ 1t to get the incidents in the system

18



test. We divide this number by the number of test cases executed in the
system test cgystem to get p. The other way round means that we can
calculate the total number of incidents with these figures.

Utotal = field T ift T Csystem P (12)
Further investigation in this direction has to be done and the optimisa-

tion has to be implemented to analyse the improvement in the predictive
validity during system test.

5 Conclusions

We conclude with a summary of our investigations and give some directions
for future work.

Summary. We propose a software reliability model that is based on a
geometric series of the failure rates of faults. This basis is suggested from
the theory by Miller in [5] as well from practice from Nagel in [9, 8] and
from the experience in Siemens projects.

We give the model a state-of-the-art parameter determination approach
and also made a prototype implementation of it. Several data sets from
DACS and Siemens were used to evaluate the predictive validity of the
model in comparison to well-established models. We find that the Fischer-
Wagner model often has a similar predictive validity as the comparison
models and outperforms most of them. However, there is typically one of
the models that performs better than ours.

Future Work. Another possibility would be to base the early esti-
mation of the parameters on other system parameters. For example the
parameter d of the model is supposed to represent the complexity of the
system. Therefore, one or more complexity metrics of the software code
could be used for the prediction. This needs extensive empirical analysis
but could improve the estimation in the early phases significantly.

Furthermore, a time component that also take the uncertainty into
account would be most accurate. The Musa basic and Musa-Okumoto
models were given such components (see [6]). They model the usage as a
random process and give estimates about the corresponding calendar time
to an execution time.

The test efficiency approach has to be implemented and applied to
several case study to judge its usefulness. Finally, we also plan to use the
model in an economics models for software quality [12].

Acknowledgments

We are grateful to Christine Dietrich and Lothar Quoll for the help in
gathering the needed data.

19



References

1]
2]

E.N. Adams. Optimizing Preventive Service of Software Products.
IBM Journal of Research and Development, 28(1):2—-14, 1984.

W.H. Farr and O.D. Smith. Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) Users Guide. Technical
Report NAVSWC TR-84-373, Naval Surface Weapons Center, 1993.

Z. Jelinski and P.B. Moranda. Software Reliability Research. In
W. Freiberger, editor, Statistical Computer Performance Evaluation.
Academic Press, 1972.

B. Littlewood and J.L. Verall. A Bayesian Reliability Growth Model
for Computer Software. Applied Statistics, 22(3):332-346, 1973.

D.R. Miller. Exponential Order Statistic Models of Software Reliabil-
ity Growth. IEEE. Trans. Software Eng., 12(1):12-24, 1986.

J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability: Mea-
surement, Prediction, Application. McGraw-Hill, 1987.

J.D. Musa and K. Okumoto. A Logarithmic Poisson Execution Time
Model for Software Reliability Measurement. In Proc. Seventh Inter-
national Conference on Software Engineering (ICSE’84), pages 230—
238, 1984.

P.M. Nagel, F.W. Scholz, and J.A. Skrivan. Software reliability:
Additional investigations into modeling with replicated experiments.
NASA Contractor Rep. 172378, NASA Langley Res. Center, Jun.
1984.

P.M. Nagel and J.A. Skrivan. Software reliability: Repetitive run ex-
perimentation and modeling. NASA Contractor Rep. 165836, NASA
Langley Res. Center, Feb. 1982.

J.A. Nelder and R. Mead. A simplex method for function minimiza-
tion. The Computer Journal, 7(4):308-313, 1965.

Hoang Pham. Software Reliability. Springer, 2000.

Stefan Wagner and Tilman Seifert. Software quality economics for
defect-detection techniques using failure prediction. SIGSOFT Soft-
ware Engineering Notes, 30(4), 2005.

20



