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Zusammenfassung

Die vorliegende Dissertation entwickelt ein nichtlineares, adaptives Flugregelungssystem fiir
einen endo-atmosphérischen Flugkorper, welcher sowohl {iber aerodynamische Steuerflichen
wie auch Querschubdiisen verfiigt. Auf Basis eines Simulationsmodells werden die Flugleistun-
gen und die inharente Dynamik des Flugkorpers analysiert. Die Regelungsmethodik Backstep-
ping wird dargestellt und dahingehend weiterentwickelt, dass sie zur Regelung des Flugkorpers
angewendet werden kann. Aufsetzend auf definierten Leistungsanforderungen wird das Flu-
gregelungssystem entworfen und implementiert. Die Regelungsparameter werden unter Nutzung
eines Optimierungsalgorithmus automatisiert ermittelt. Das Flugregelungssystem wird gegen die
Leistungsanforderungen in mehreren Testfdllen validiert.
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Abstract

A nonlinear adaptive flight control system for an endo-atmospheric dual-actuator interceptor
is developed in this thesis. First, the flight performance and the inherent dynamics of the
interceptor are analyzed, based on a simulation model. Thereafter, the control methodology
Backstepping is introduced and further developed to be utilized for the control of the interceptor.
Starting from specific performance requirements, the interceptor flight control system is designed
and implemented. The control parameters are derived by employing an optimization algorithm.
Finally, the flight control system is evaluated against the performance requirements in various
test cases.
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Chapter 1

Introduction

1.1 Interceptor overview

Although the beginning of missile technology reaches back to the 13th century, the development
of operational missile systems began in the last century. During World War II military system
architects merged the available, theoretical knowledge in the field of engineering with the prac-
tical experience from simple, unguided rockets to design the first operational systems employing
missiles as effectors. Afterwards, the capabilities and performance of such systems grew at an
enormous speed, and they became a definite as well as valuable part of military inventories.
The design of missile systems for different applications in the past decades lead to multiple
missile types which can be categorized by either their field of use or technical criteria. In the
following, a few of these missile categorizations are introduced to establish a context in which
the specific interceptor, used in this dissertation, can be seen. The categorizations are derived
from [28], [59] and [105].

From an overarching perspective, missiles are divided into non-military and military utilized
missiles. While the former are mostly used for scientific research, the latter typically carry a
warhead and are launched to hit a specified target. The interceptor considered in this thesis
belongs to the group of military missiles. Second, missiles are categorized into unguided and
guided missiles. Guided missiles exhibit the capability to alter their flight path, based on exter-
nally received or internally generated commands. Unguided missile do not own this ability. The
interceptor accounted for in this work is a guided missile. The third taxonomy to be introduced
accounts for the location of the launch point of the missile and the target location. Differen-
tiating between air, surface and subsurface for the launch as well as the target location, the
missile types represented in Figure 1.1 are derived. With respect to the beforehand presented
categorization, the interceptor considered herein constitutes a surface-to-air missile. Using the
flight envelope as criteria, missiles are divided into endo- and exo-atmospheric missiles. The
former type of missile does operate in altitudes where the atmosphere is being effective, only.
The trajectory of exo-atmospheric missiles runs outside of the effective atmosphere or at least
contains a certain time of flight outside the effective atmosphere. The flight envelope of the
considered interceptor is located in the effective atmosphere completely. Hence, it is an endo-
atmospheric missile. A further categorization to be mentioned is based on the trajectory. It
differentiates between aerodynamically flying and ballistic missiles. The former type of missile
generates an angle of attack between the surrounding airflow and their body or aerodynamically
shaped wings to produce lift as well as to control the missile. This results in the capability to
fly an arbitrary trajectory inside the effective physical constraints. The flight path of ballistic
missiles is determined by gravity. After a first, propelled flight phase, ballistic missiles fly the
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Figure 1.1: Missile categorization

remainder of the flight time without propulsion. The flight path of these missiles exhibits a
Kepler- Trajectory, caused by the gravitation acting on the missiles. The interceptor of this
thesis is an aerodynamically flying missile. The last categorization to be introduced separates
missiles into aerodynamically controlled and thrust controlled missiles. The fact that the inter-
ceptor comprises thrust actuators at the bow of its fuselage and aerodynamic actuators at the
stern, which will be illustrated in detail in Chapter 2, no definite allocation with respect to this
categorization is possible.

The variety of presented categorizations and the mapping of the considered interceptor to each
of these indicates that the design of a missile flight control system is very specific task. Related
to every missile type and sometimes every subversion of a type are tight specifications, which
allow the missile to fulfill its mission. These specifications must be met by the missile flight
control system. The combination of plant variety and tight specifications most often requires
new designs for missile flight control systems or at least extensive redesigns of existing control
systems. The process of defining specifications, designing a missile flight control systems, and
verifying its performance against the specifications will be elaborated in this work starting with
Chapter 2.

1.2 Nonlinear control methodologies

After the solution of comprehensive control problems for linear systems with unknown param-
eters during the early 1980’s, also nonlinear system theory rapidly advanced. The embodied
approach of feedback linearization made it possible to convert nonlinear problems into simpler,
solvable ones for the first time. The shortfall of the feedback linearization methodology, the
inability to handle unknown parameters, if utilized in its straight formulation without adaptive
augmentations, lead to the constitution of nonlinear adaptive control methodologies. Sliding
Mode Control, Lyapunov Redesign, Backstepping and Passivity-Based Control are a few of



these, which are connectedly presented in [66]. Details are available in [53], [54], [88], [106],
[112], and [117].

While many of the mentioned nonlinear adaptive control methodologies are restricted to systems
satisfying the matching condition or the extended matching condition, Backstepping is adequate
for systems with more than one integration between the control input and the unknown parame-
ters, too. It was first presented 1991 in [67], which based on [65]. [20], [37], [63], [68], [111], [126],
and [134] served as foundation from which Backstepping was derived. Further development of
the method was achieved in [60], [69], and [70]. Besides the evolution of the methodology itself,
[84], [85], [86], and [87] constitute spin offs of Backstepping.

The successful application of the Backstepping methodology to a broad variety of exemplary
systems has been shown in many texts. On the other hand, only a limited set of references
elaborates on the application of this method to aerospace systems. [123], [124], [133], and [139]
are recent references for the application of Backstepping to aircraft systems. The number of
sources dealing with Backstepping-based flight control for high agile missiles is even more lim-
ited. Approaches to such systems are found in [91], [118], [131], [137], and [138]. Although
latter sources contain very beneficial results, simplifications or open issues remain in each of
these references. The flight control system design in [118], [131], [137], and [138] is limited
to the missiles pitch plane. Additionally, the missile aerodynamics of the these references are
stated as nonlinear analytic functions. This differs from the design of a flight control system
for a real missile, where tabular aerodynamic data, gathered from computations or wind tunnel
measurements, will usually be given. The aerodynamic data is afflicted with non-negligible un-
certainties in this case. [91], [131], [137], and [138] consider a missile with aerodynamic actuators
only. Flight control system implementation issues, e.g. information availability according to the
internal measurement unit capabilities or signal discretization, are neglected partly in [131] and
completely in [137] as well as [138].

From the perspective of this thesis, no missile flight control system design scheme, employing
nonlinear adaptive control methodologies, considering all degrees of freedom of the vehicle, ac-
counting for existing uncertainties, and being applicable for dual-actuator configurations, exists.
Additionally, no missile related source offers a modular design process which provides the ca-
pability to reuse its embedded steps. Based on this conclusion, the following thesis tries to
overcome the limitations of the beforehand mentioned references to reach a nonlinear adaptive
missile flight control system that offers the potential of being implemented in an existing missile
airframe or a missile under development.

1.3 Outline

This thesis is structured in seven chapters. Chapter 2 starts with a description of the basic
properties of the endo-atmospheric dual-actuator interceptor. The derivation of the nonlinear
rigid body equations of motion which govern the motion of the interceptor follows. The descrip-
tion of the modeling of the external efforts that are acting on the interceptor and the modeled
interceptor subsystems follows. The chapter closes with an illustration of the modeling of con-
sidered parameter uncertainties, whereupon uncertain constant parameters and time-varying
parameters are treated separately.

Chapter 3 lays out the analysis of the interceptor flight dynamics. It constitutes the foundation
for the synthesis of the interceptor flight control system. First, the interceptor is trimmed at
steady-state flight conditions. Based on trim results for the flight of the interceptor with a con-
stant load factor, the maneuver capabilities of the interceptor are derived. The second section
of Chapter 3 presents the linearization of the interceptor flight dynamics. Following the de-



tailed description of the linearization algorithm and its modular implementation, the linearized
longitudinal as well as the linearized roll rate dynamics of the interceptor are analyzed. This
analysis covers the uncontrolled interceptor flight dynamics and the response of the linearized
interceptor dynamics to control inputs. The investigation of the change of the respective lin-
earized interceptor dynamics with respect to the flight condition ceases this section. The last
section of Chapter 3 describes the nonlinear simulation frame utilized for this work.

In Chapter 4 the nonlinear control methodology Backstepping is introduced. After providing a
brief overview, basic stability theorems are stated, followed by the derivation of the recursive de-
sign procedures for scalar strict-feedback systems as well as strict-feedback systems composed of
two nonlinear systems. Additionally, the control task of tracking is treated. The third section of
Chapter 4 introduces adaptive Backstepping. Following the presentation for Backstepping with-
out uncertainties, the recursive design procedures for scalar parametric strict-feedback systems
is derived and its boundedness and stability properties are illustrated. The results for the control
task of tracking augment the illustration. In the next step, the design procedures for unknown
control coefficients are derived, whereupon the most general case which contains an unknown
control coefficient in every system equation is considered. Finally, nonlinear damping which
provides the capability to overcome bounded disturbances and guarantees global boundedness
without adaptation is presented. The beforehand presented design procedures of Chapter 4 are
augmented by nonlinear damping terms and the overall boundedness and stability properties of
the combined designs are derived.

After the theoretical background has been illustrated in detail, the fifth chapter carries out the
design of the interceptor flight control system. The chapter starts by stating the performance
requirements which govern the design of the interceptor flight control system. As first step in
the design process, the top level architecture of the fight control system is derived in Section
5.2, based on the performance requirements. The roll rate control system is designed in Section
5.3. Thereafter, the pitch and yaw acceleration control systems follow. In Section 5.6 the design
of the control allocation which blends the roll commands of the respective control systems and
allocates them to the two actuator sections of the interceptor is conducted. Besides the control
allocation algorithm, the developed algorithms for searching and identifying the optimal reac-
tion jet cartridges to realize a calculated command are presented. The last section of Chapter 5
deals with the optimization of the flight control system parameters. Additionally, the structure
of modular tools developed during this work to carry out this task is presented.

Chapter 6 evaluates the performance of the designed interceptor flight control system. Initially,
the nominal case without uncertainties is treated. The performance of the controlled interceptor
is assessed with respect to the given performance requirements specified in Chapter 5. Two
scenarios are considered regarding the interceptor absolute velocity. In the second step, uncer-
tain constant parameters are introduced into the system. The cases of an uncertain interceptor
mass and an uncertain reaction jet cartridge thrust are examined separately in Section 6.2, and
are evaluated against the performance requirements for the two velocity scenarios. The third
section of Chapter 6 treats the robustness of the designed interceptor flight control system in the
case of time-varying parameters. Finally, Section 6.4 evaluates the performance of the controlled
interceptor in the two scenarios under combined uncertainties, whereupon combined uncertainty
denotes a situation in which uncertain constant parameters as well as time-varying parameters
are existent simultaneously in the system. This situation constitutes the most difficult environ-
ment for the designed interceptor flight control system.

The thesis closes with Chapter 7. This chapter embraces a summary of the presented con-
tent in combination with conclusions that can be drawn from the work. Furthermore, possible
perspectives for future research are provided.



Chapter 2

Interceptor model

2.1 Generic endo-atmospheric interceptor

The design and evaluation of the nonlinear adaptive flight control system in this thesis is con-
ducted for a generic endo-atmospheric dual-actuator interceptor. The approach of using a generic
interceptor allows to abstract from the specific designs of existing missiles. Different design ele-
ments of various missiles are combined in the generic interceptor to enhance the applicability of
the flight control system to be designed. Second, the choice of a generic interceptor renders the
overall work unclassified. As stated in [9], exact data of existing missiles exhibits very restricted
access, and high classification of the respective data is common. Hence, the use of real data
would be in conflict to the aims of this work, which incorporate the application of a nonlinear
adaptive control methodology to a high agile missile and making the results accessible for further
research.

To define a generic interceptor layout for this thesis, the designs of existing missiles, which be-
long to the appropriate category according to Section 1.1, are analyzed. A fielded and successful
operated design is chosen and altered to reach the desired unclassified level. Necessary basic
geometrical data for the design is taken from open information sources. All other data is calcu-
lated from the available basic data in combination with the altered design by using analytical
equations or open software tools. The result of the beforehand stated layout process is presented
in the following.

The basic geometrical concept of the interceptor is that of a cruciform missile. The Xp - Yp and
the Xp - Zp plane with respect to the body fixed frame are planes of symmetry. The definition
of the body fixed frame is given in Appendix B, and is in accordance with [16], [47], [55], as well
as [56]. Figure 2.1 shows the shape of the interceptor and illustrates its size. The interceptor has
a length of [ = 5.200 [m/], a fin span of s = 0.450 [m], and a fuselage diameter of d = 0.250 [m)].
The fuselage diameter of the interceptor is used as mean aerodynamic chord.

¢ = 0.250 [m] (2.1)

The fuselage cross-sectional area which is defined as area of reference for this work is calculated
from the mean aerodynamic chord.

Skes = 252 = 0.049 [m?] (2.2)
The internal structure of the interceptor is divided into six sections which carry the interceptor

subsystems. The missile bow forms the seeker section. It consists of the radome, the seeker
antenna and the active radar seeker. After the seeker section follows the guidance and control
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Figure 2.1: Generic endo-atmospheric dual-actuator interceptor

section, incorporating the guidance receiver for external guidance signals and the guidance pro-
cessor, capable of calculating guidance commands for the interceptor based on external guidance
signals as well as internal measurements by the active radar seeker. The third subsystem in the
guidance and control section is the interceptor flight control system which is designed in the fol-
lowing chapters. The next section is the reaction jet actuator section. This section houses 180
single reaction jet cartridges which can be fired individually, once each. Five single cartridges
form a reaction jet cartridge column along the Xp axis, as displayed in Figure 2.1. The position
vectors of the individual cartridges in a reaction jet cartridge column, specified in the body fixed
frame, are given by (2.3). The reaction jet cartridge columns are dispersed on the circumference
of the interceptor fuselage in steps of 10 [deg] starting in the direction of the negative Zp axis
and rotating according to a positive roll rate. This results in reaction jet cartridge attitudes,
specified in the body fixed frame, according to (2.4).

1.700 1.600 1.500 1.400 1.300
FRY =1 0 0 0 0 0 [m) (2.3)

o 0 0 0 0 ],

(™), = [-180 —170 —160 --- 170]}, [deg] (2.4)

The reaction jet actuator section constitutes the first of the two actuator sections of the inter-
ceptor. The fourth section is the warhead section, followed by the propulsion section as the fifth
section. The propulsion section is considered as a single stage, solid propellant rocket motor in
this thesis. The sixth and last section of the interceptor is the aerodynamic actuator section. It
comprises the actuator modules for the four rectangular shaped aerodynamic control surfaces,



which are arranged cruciform. The position vector of the aerodynamic actuator section, specified
in the body fixed frame, is given by (2.5).

(FF™) , = [~2.500 0 0]} [m] (2.5)

A detailed description comprising the layout data and performance characteristics of the inter-
ceptor subsystems which are of importance for the design of the interceptor flight control system
is given in the following sections.

Based on the considered internal structure, the sizes of the interceptor subsystems are derived.
Latter are used to estimate the masses of the respective subsystems, whereupon the rocket mo-
tor is considered without the solid propellant. These results are utilized to estimate the center
of gravity of the interceptor. In addition, the masses of the interceptor sections, the total in-
terceptor mass, and inertia tensor with respect to the center of gravity of the interceptor are
calculated from the interceptor subsystem mass estimates. The results for the total interceptor
mass and the inertia tensor with respect to the center of gravity of the interceptor, specified in
the body fixed frame, are given in (2.6) and (2.7).

M Empty = 150.00 [kg] (2.6)
500 0 0
(IGmpty) g = | 0 40000 0 [kgm?] (2.7)
0 0 400.00 .

2.2 Nonlinear rigid body equations of motion

In the following section the nonlinear rigid body differential equations which govern the motion
of the interceptor are derived. These describe the changes of the rigid body states of the inter-
ceptor in a six degree of freedom representation. The total number of twelve nonlinear scalar
differential equations can be divided into nonlinear differential equations specifying translation,
rotation, attitude, and position. The dynamic behavior of the interceptor subsystems as well as
the detailed modeling of the forces and moments acting on the interceptor are not accounted for
at this point, but will be presented in the respective following sections. A further detailed deriva-
tion of the nonlinear rigid equations of motion is available in [11], [16], [45], [47], [110], and [130].

Translation

The basis for the derivation of the nonlinear rigid body equations of motion is Newton’s second
axiom. The axiom states that the rate of change of momentum of a body, measured with re-
spect to an inertial reference frame, is proportional to the force imposed on the body. With the
momentum of a rigid body given by (2.8), the second axiom is written as (2.9).

7(t) = / V(P t) dm (2.8)

m

Y F= <(i)lﬁ(t) = <§t>1/171 (#7,t) dm (2.9)

Under the assumption that the influence of the rate of change of the interceptor mass on the rate
of change of the momentum is negligible, the mass is considered steady in (2.9). Expanding the
right side of (2.9) for an arbitrary reference point R results in (2.10), whereupon the superscript



E denotes the Earth-Centered-Earth-Fixed frame and G represents the center of gravity of the
interceptor.

= () (7))
. {2.((3@) < (P5)" 4 (31) x [() x (FR)]}
. {(;IB)B < (F0) + (&) x [(@P) x (fRG)}} (2.10)

By choosing the center of gravity of the interceptor as the reference point, the third term on
the right hand side of (2.10) vanishes. Making the further assumptions, which are based on the
capabilities and the flight envelope of typical missiles in the category of the interceptor, that the
interceptor time of flight is significantly below one minute and the covered distance during the
flight is small, the Coriolis force, the centrifugal force, and the geoid shape of the earth become
negligible. Hence, a flat earth representation with an embedded, fixed coordinate frame is taken
as inertial reference frame for the further derivation of the nonlinear rigid body equations of
motion as well as the following work. This inertial reference frame is denoted by the index I.
Incorporating the stated assumptions into Equation (2.10) leads to (2.11), which is specified in
the body fixed frame. This differential equation describes the translation of the interceptor and
constitutes the first nonlinear rigid body equation of motion in vector notation.

(78) = L3 (79), - (@), = (7€), e

B

Equation (2.11) utilizes the kinematic velocity of the center of gravity of the interceptor, specified
in the body fixed frame, (V}? )L = [u?( v wﬁ] p as state vector to describe the translation
of the interceptor. Another set of state variables to describe the translation consists of the
absolute kinematic velocity (Vj;?v Abs)IB of the center of gravity of the interceptor, the angle of
attack (@)L, and the sideslip angle (%)%, Wind is neglected in the calculation of (Vg’AbS)IB
herein. These alternate state variables are used occasionally in this work, too. Appendix B
illustrates the relation between the two sets of state variables. The following equations provide

the respective state transformation.

VE e = (0§ + (0§ + (w§)? (2.12)
G
o8 = arctan <Z)g> (2.13)
K
G
B¢ = arctan UK (2.14)
V(W§)? + (w)?
ve i+ ofiff +ugig o1s)
9 S .
VG + (0§)” + (w)?
GG _ G, G
a§ = WUk — UK (2.16)

(uft)” + (w§)”
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G, — () + (u)?] i + ofugu

(W) + (v2) + (@] (u2)” + (w)?

(2.17)

Rotation

The derivation of the nonlinear differential equation describing rotation is also based on New-
ton’s second axiom. In relation to (2.8), the angular momentum of a rigid body with respect to
the center of the earth is written as (2.18). Employing Newton’s axiom, while using the spin of
the rigid body and the external moments acting on latter, results in (2.19).

HO(t) = /FP (Z°,t) x VI (2",t) dm (2.18)

> M= (i)lﬁo (t) = <§t>1/FP (#F,¢) x VI (zFt) dm (2.19)

Implementing the assumption that the interceptor mass is steady, the right hand side of (2.19)
is expanded to (2.20), whereupon an arbitrary reference point R is considered. I R denotes the
inertia tensor of the rigid body with respect to R.

S0 = 1 (5)” 4 @) 17 (@2) 4 (V) x @+ (7 x (7))
+m (?RG> X (VR) +m (779) ( )

(7€) x (VF) ] (2.20)

+m ((DJB) x

Choosing the center of gravity of the interceptor as reference point and taking the flat earth
representation with the embedded, fixed coordinate frame as inertial reference frame, following
the derivation for translation, (2.21) is derived. The latter is specified in the body fixed frame
and describes the rotation of the interceptor with respect to the North-East-Down frame. (2.21)
constitutes the second nonlinear rigid body equation of motion in vector notation.

(B9) = (1955 [ (319)  — @) x (1) 5y (B30 ] (2:21)

The rotation vector ( Wy ) comprises the scalar states roll rate (p(}(B ) p» bitch rate (q(}(B ) p» and
yaw rate (r(}(B ) B

Attitude

The attitude of the interceptor can be described by using Euler angles which express the angular
displacement of the interceptor with respect to North-East-Down frame. The respective attitude
vector comprises the roll angle ®, the pitch angle ©, and the heading angle W. A visualization
of the Euler angles is provided in Appendix B. Following [16], [46], and [148], the nonlinear dif-
ferential equation describing the interceptor attitude, while Euler angles are employed, is given
by (2.22).

P 1 sin®tan® cosPtan® pK

0| =10 cos P —sin® |98 (2.22)
: in & i 0B

v 0 cos© w0 Jp LUK lg



As it is seen from (2.22), the equation for ¥ contains a singularity for pitch angles of © =
+90 [deg]. Because the interceptor constitutes a high agile missile, the description of the inter-
ceptor attitude by Euler angles including the mentioned singularity is not appropriate for this
work. The attitude description by Quaternions, which is free of singularities, instead consti-
tutes a more appropriate method. Hence, Quaternions are chosen and employed throughout
the following work. A complete introduction to Quaternion algebra and the derivation of the
differential equation describing the attitude of the interceptor is found in [33], [130], and [148].
To stay inside the scope of the thesis, they are omitted here. The result of the derivation of the
differential equation is given by (2.23). This equation describes the attitude of the interceptor
with respect to the North-East-Down frame, specified in the body fixed frame, and constitutes
the third rigid body equation of motion in vector notation.

. 1 O —
=P oz K w1 e | (2.23)
G 5 a0 Jp laslg 4] p

The second term on the right side of (2.23) is added based on [108] and [148] to diminish
errors resulting from numerical integration schemes. The constant k is chosen as &k = 0.5. The
orthonormality error A is calculated according to (2.24).

A=1— (g +ai+d+d) (2.24)

The transformations from Euler angles to Quaternions and vice versa, which are valuable for
simulation initialization, output calculations, and the perceivability of results, are given by the
following equations.

oo (2)eon () () (D)o (D) (8) oo
(D (&) (®) o (D (e (2) o
oo (D) () (D) o (Den (o (B) o
N R e O PN Y

o v — 2142 + d0d3) (2.29)

G+E—6—a
sin® = —2(q143 — q0q2) (2.30)

2 (q2q3 + qoq1)

2

tan ® =
-G -B+a@

(2.31)

Position

The nonlinear differential equation describing the interceptor position with respect to the iner-
tial reference frame is derived from the relationship between the velocity vector, specified in the
North-East-Down frame, and the position vector in the North-East-Down frame. Because the
derivative of the latter is equal to the velocity vector, specified in the North-East-Down frame,
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only a transformation for the velocity vector, specified in the body fixed frame, which is used in
(2.11), is necessary to establish the respective nonlinear differential equation. By employing the
transformation matrix from the body fixed frame to the North-East-Down frame, being found
in [16] and provided by (2.32), Equation (2.33) is derived.

cos©cosV¥ sinPsinOcos¥ — cosPsin¥  cos PsinO cos ¥ + sin @ sin ¥
Mop = |cosOcos¥ sinPsinO@sin ¥ + cosPcos¥ cos Psin©sin ¥ — sin P cos ¥ (2.32)

—sin® sin ® cos © cos ® cos ©
it uIG( !
yg = Mop - v% (2.33)
2], wi ] 5

To finally achieve the nonlinear differential equation for the position of the interceptor with
respect to the inertial reference frame, a second transformation is employed. It transforms the
position vector, specified in the North-East-Down frame, into the inertial reference frame. Con-
sidering that the inertial reference frame and the North-East-Down frame are oriented equally,
besides the fact that the Zy and the Z; axis point in opposite directions, the nonlinear differ-
ential equation is given by (2.34). This equation constitutes the fourth nonlinear rigid body
equation of motion in vector notation.

0 10 0 w1’
g9l =10 1 0| M- |v¥ (2.34)
€1, 00 -1 wi] 5

2.3 Modeling of external forces and moments

2.3.1 Gravity

Since the external efforts acting on the interceptor have been treated as a single vector in the
derivation of the nonlinear rigid body equations of motion (2.11) and (2.21), these efforts are
developed in detail now. According to their physical origin, the external forces and moments
are divided into gravitation, aerodynamic forces and moments, propulsion forces, and reaction
jet forces and moments. The modeling of the first is elaborated on in this section, while the
other efforts are described in the following sections.

The interceptor is being subject to the gravitation of the earth, whereupon the gravitational
force which actually acts on the interceptor varies, depending on the interceptor position and
the interceptor altitude. Considering the assumption that the interceptor time of flight is sig-
nificantly below one minute and the covered distance during the flight is small, which led to
the implementation of a flat earth representation, the dependency of the gravitation from the
interceptor position is neglected. Assuming that the interceptor operates in low to medium
altitudes, gravity is implemented independent of the interceptor altitude. From the definition of
the utilized coordinate frames according to Appendix B in conjunction with the used flat earth
representation, it is evident that the gravitation vector is persistently oriented perpendicular
to the surface of the flat earth representation and coincides with the Z; axis. Hence, gravity
is specified in the North-East-Down frame and is transformed to the body fixed frame to en-
ter (2.11). Equation (2.35) states the gravitational force acting on the center of gravity of the
interceptor. The transformation matrix Mpo is equal to M5, which is provided in (2.32).

. F)?,G 0
(Fg)B - F%G — Mpo- | 0 (2.35)
FZ7G B mg|,



2.3.2 Aerodynamic forces and moments

The aerodynamic forces and moments acting on the interceptor arise from the airflow streaming
over the interceptor fuselage and aerodynamic control surfaces at the stern of the interceptor.
The unique shape of a body, in this case the interceptor, results in specific aerodynamic forces and
moments that arise. Hence, the latter are a unique characteristic of the body interacting with the
airflow. This implies that the aerodynamic forces and moments must be calculated, analyzed,
and accurately be taken into account for every configuration. The complex aerodynamic force
and moment characteristics for a body are stored in dimensionless aerodynamic coefficients.

Calculation of the aerodynamic forces acting on the center of gravity of the interceptor, specified
in the body fixed frame, is done by (2.36). The aerodynamic moments with respect to the center
of gravity of the interceptor, specified in the body fixed frame, are calculated via (2.37). The
dynamic pressure ¢ is given by (2.38). As introduced earlier, wind is neglected in (Vj;g*v Ab S)g.

. F)C(;,A_ CxqSRef
(FE)B = FSA = | Cy@SRey (2.36)
FgA_ B CZQSRef B
. MEA_ CLqSResC
(M‘f)B = MJ\G/[,A = CMQSRefE (2.37)
Mg 4] 5 CNGSRerc] g
_ PA; 112
=20 (Vi ) ) (2.38)

Following [148], the dimensionless aerodynamic coefficients C; in (2.36) and (2.37) are nonlinear
functions of the state variables, their time derivatives, and the control surface deflections, as
indicated in Equation (2.39). The variables d1, dy;, and oy denote the roll, pitch, and yaw
control deflection of the interceptor. The analytic function which describes the relationship is
unknown.

Ci= 1 { (i) 0R) g ) (08F) 5 (aBF) - (P8P) OO} (230)

Under the assumption that the partial derivatives of the aerodynamic function are continuous
and the disturbance values are small, (2.39) is expanded into a Taylor series in terms of the state
variables and the control surface deflections. This approach is in line with [148]. The partial
derivatives of the Taylor series represent specific aerodynamic effects and can be measured in
wind tunnel tests or calculated, utilizing different methods, for a set of flight conditions which
is representative for the flight envelope of the interceptor. Details on specific aerodynamic ef-
fects as well as their calculation are available in the seminal sources [114] and [115]. [59] and
[105] provide an overview. The aerodynamic data set which is resulting from measurement or
calculation consists of aerodynamic lookup tables for the respective aerodynamic derivatives,
whose dimensions are determined by the number of independent variables considered during
aerodynamic lookup table generation. The aerodynamic lookup tables are arranged in applica-
tion rules, describing the build-up of the aerodynamic coefficients, and finally utilized in (2.36)
and (2.37) to calculate the aerodynamic forces and moments acting on the interceptor.

The aerodynamic data set for the interceptor is generated by using the Missile DATCOM aero-
dynamic prediction tool which employs semi empiric formulas, following [8]. Thereafter, the
generated results are post-processed to create a uniform structure of the application rules for
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the aerodynamic derivatives. This leads to (2.40) and (2.41). All variables are specified in the
body fixed frame.

CX = CX’() (Oé%,ﬁ[%,M) +CX,Alt (aga (ZG)I,M)
+Cx Base (OF, B, M) - kprop + Cx spgpar (0% 070tat, M) - 6rotal (2.40)
+CX,P (ag(v B[Cév M) ' p%i* + CX,‘] (agv 5[%7 M) : q[[)(B7* + CX»T (Oé%;? ﬂlcév M) ’ T?(B7*

Ci = Cio(af,B%, M)
+Ci’5L (Oé?(HBICé’M) ) 5L + Ci,éM (a?(,ﬂICé’M) : 5M + Ci,(sN (Oé?(vﬂfcévM) ' 5N
+Ci,p (a[G{’ ﬁfG{’ M) ’ p?(B,* + Ci,q (agv ﬁ[cév M) ’ q?(B7* + Ci,?“ (O[?{, ﬁIG(v M) : T(I)(B7*

i=Y,Z,L,M,N (2.41)

M denotes the Mach number. The aerodynamic derivative Cx pgse (a?(, ﬁg, M ) represents the
aerodynamic drag induced by propulsion. The factor kp,o, indicates the status of the sin-
gle stage, solid propellant rocket motor of the interceptor. kp,., is identical to either zero or
one, whereupon kpro,, = 1 represents a burning rocket motor. The aerodynamic derivative
CX 6roral (a%, Orotal, M ) is the aerodynamic drag resulting from the total control surface deflec-
tion d7otal. Orotar is calculated according to (2.42). Equation (2.43) states the formula for the

respective total angle of attack ap,tq;. The normalized roll rate p[;(B’*, the normalized pitch rate

q?(B’*, and the normalized yaw rate r(]](B’* are given by (2.44) to (2.46).

Ga\I G\!
(8)y |5
5Total = \/5 ' 5M7 - 5N7 (242)
QTotal QTotal
G
U
OTotal = Arccos (L)BI (2.43)
I?,Abs)B
0B\ =
0B, (pK ) ¢
v = . N (2.44)
2 (VK,Abs>B
0B\ =
% q ¢
G = _a)pe KG)B - (2.45)
2 (VK,Abs)B
r9B) ¢
rE = sl 7 (2.46)

To further enhance the quality of the generated aerodynamic data, a modular set of aerodynamic
data correction routines is applied. This modular set of routines has been developed during this
work and employs a five step approach to derive a high quality set of aerodynamic data for a
cruciform missile. The first step annihilates known deficits of Missile DATCOM. Based on the
results presented in [1], the aerodynamic lookup tables Cx g (aIG{, ﬁg,M ) are corrected. The
following steps of the modular set factors in the symmetry of a cruciform missile. Following [148],
a significant number of aerodynamic derivatives vanishes, because the Xp - Yp and the Xp - Zp
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plane with respect to the body fixed frame constitute planes of symmetry. Hence, the second
step erases all vanishing aerodynamic derivatives from the aerodynamic data set. The third step
eliminates aerodynamic lookup table offsets. The zero crossing is enforced for all aerodynamic
lookup tables which must exhibit the former for respective independent variables identical to
zero. Thereafter, the symmetry of aerodynamic lookup tables is implemented in step four.
The symmetry of a cruciform missile implies that a significant number of aerodynamic lookup
tables must feature symmetry as well. Czg (04?(, B[Cé, M ), for example, is axially symmetric with

respect to (ﬁg); = 0 [deg]. The fifth and final step considers relationships between aerodynamic
lookup tables which are based on the symmetry of a cruciform missile, e.g. C'z (a[G(, ﬁg, M ) =
C’;O (a%, ﬁg, M ), and implements these relationships in the aerodynamic data set.

The application of the developed modular set of aerodynamic data correction routines to the
aerodynamic data set of the interceptor leads to the application rules (2.47) to (2.52). These
are specified in the body fixed frame.

Cx = Cxyp (Oé%,ﬁ}%M) + Cx A (O‘?ﬁ (ZG)I’M)

+C'x Base (a%i,ﬁ%é, M) - kprop + CX 670m (aﬁ, Totat, M) * 6Total (
Cy = Cyo(a%,BL, M)+ Cy, (%, 8%, M) -rQP* 4 Cy sy (0%, 8%, M) 55 (
C;, = Czo (a[G(7ﬂ;C§,M)+CZ,q (a[G(,BIC;',M) OB’*—i-Cz&M (axyﬂm M) -6y (2.49
i = Cup (0 2 M) + Cuy o, 98,M) - 12 + Crs, (o 2 ) 1.
Car = Curo (0§ B M) + Carg (0, 85, 0M) 625 1 Casy, (0 65 M) -0
Cn = Cno (o, 6%, M)+ Cn, (oF, 8%, M) - OB’*+CN6N (o, B, M) - o (

The derived high quality aerodynamic data set described by the beforehand provided equations
constitutes the foundation for the development of the interceptor flight control system. Ap-
pendix C illustrates the content of this aerodynamic data set for the interceptor flight condition
(V[g Aps) s =600 [m/s] and (2¢) ; = 10000 [m]. Later, this high quality aerodynamic data set is
charged with specified uncertainties to test and evaluate the designed interceptor flight control
System.

2.3.3 Propulsion

As introduced in Section 2.1, the interceptor is propelled by a single stage, solid propellant
rocket motor. It is assumed that the rocket motor is aligned with the Xp axis of the body
fixed frame. This implies that the thrust force acting on the center of gravity of the interceptor
which is generated by the single stage, solid propellant rocket motor points in the direction of
the positive Xp axis. Neither thrust forces in the direction of the remaining axis of the body
fixed frame nor moments with respect to the center of gravity of the interceptor arising from
propulsion are considered. Hence, the propulsion force acting on the center of gravity of the
interceptor is given by (2.53).

. F)C(;,P FThTust,Abs
<F]§>B - ng = 0 (2.53)
Fzplp 0 B

The modeling of the single stage, solid propellant rocket motor in this thesis allows the imple-
mentation of a thrust profile for the generated thrust force Frpyyst aps- Considering standard
single stage, solid propellant rocket motors, a thrust profile exhibits an ignition phase, a boost
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phase with highly increasing thrust, a burn phase with approximately constant thrust, and a
burnout phase with constantly decreasing thrust. Additionally, constant Frp,yst aps, including
zero, are available in the simulation. This provides the capability to examine dedicated flight
conditions, including the situation after burnout of the single stage, solid propellant rocket
motor.

2.3.4 Reaction jet forces and moments

The fourth external effort acting on the interceptor is the force generated by the reaction jet
actuator section. The contained reaction jet cartridges each constitute a small, solid propellant
rocket motor which generates a thrust force while burning. Based on the fact that the reaction
jet actuator section is located ahead of the center of gravity of the interceptor, a lever arm
between the individually generated thrust force of the reaction jet cartridges and the center of
gravity of the interceptor exists. Hence, the reaction jet cartridges give rise to moments with
respect to the center of gravity of the interceptor.

Considering the interceptor geometry according to Section 2.1, it is assumed that the reaction jet
cartridges are mounted perpendicular to the Xp axis. Denoting the thrust force of an individual
reaction jet cartridge as Frjc, Aps, the force of the reaction jet actuator section acting on the
center of gravity of the interceptor, specified in the body fixed frame, is given by (2.54).

- O n
FG 36 5
~c )é;RJC Z Z {FRJC’ Abs,ij sin ((PRJC)éRJC»U}
<FRJC>B = F}éRJC — | = (2:54)
F
Z,RJICI B Z Z {~FRryc,avs,ij cos (9] ) drac,ij }
L : : - B

The indices i and j in (2.54) identify the individual reaction jet cartridges. The index i represents
the reaction jet cartridge attitude according to (2.4) and is identical to the index of the respective
vector element. The index j reflects the number of an individual cartridge in a reaction jet
cartridge column and is identical to the column index of the reaction jet cartridge position
matrix (2.3). The reaction jet cartridge deflection operator drjc represents the status of an
individual cartridge.

Assuming that the individual reaction jet cartridge thrust vectors intersect with the Xp axis,
which implies that the reaction jet actuator section does not generate a roll moment, the moment
with respect to the center of gravity of the interceptor, specified in the body fixed frame, is
calculated according to (2.55).

_ 0 -
ME pse %6: 25: F jcos (pRIC) (2BIC — 4G Spyc;
( Mch> _ M]\(/;[ el = &EA RJC,Abs,ij Pi J RJC,ij
7 M§ LU - (. RJIC\ (.RIC _ G
N,rRJC1 S {FRJqAbs,ij sin (77 (xj -z ) 5RJC,ij}
Li=1j=1 I
(2.55)

2.4 Interceptor subsystems

2.4.1 Aerodynamic actuator

While the preceding section illustrated the calculation of the external efforts acting on the in-
terceptor for the nonlinear rigid body equation of motions, the following section concentrates

15



UL UR

Ys

LL LR

ZB

Figure 2.2: Aerodynamic control surface arrangement, denotation, and deflection convention

on the interceptor subsystems modeled in this work. The properties and capabilities of the
modeled interceptor subsystems, which in the last resort influence the external efforts acting on
the interceptor, are presented. The aerodynamic actuator, the reaction jet actuator, and the
internal sensor system are considered. All other subsystems of the interceptor, being an integral
part of the latter according to Section 2.1, are neglected herein.

The aerodynamic actuator of the interceptor is comprised of four rectangular shaped aerody-
namic control surfaces. These are arranged in a cruciform configuration. Figure 2.2 utilizes an
interceptor rear view to illustrate the control surface arrangement as well as the control surface
denotation and deflection convention which is used in this work.

Based on the fact that the interceptor exhibits three rotational degrees of freedom, addressed by
the interceptor flight control system via the roll deflection command 9z, ¢4, the pitch deflection
command 6y7,cma, and the yaw deflection command dn cma, but four control surfaces exist, a
mapping from the deflection commands to the specific control surface deflection commands is
necessary. This mapping blends 7 cma, 0am,cmd, and dn,cma into individual control surface
deflection commands. In accordance with [148], this mapping is given by (2.56).

OUR,Cmd -1 1 -1 5
Sremd| _ |1 1 1| |cBom
: — N 0rr.cma (2.56)
OLL,Cmd 1 1 -1 5
UL, Cma 1 1 1 N.Gmd

The calculated individual control surface deflection commands are forwarded to the actuator
modules. The dynamics of the individual control surface actuator modules are modeled as
second order, linear time invariant systems. To further enhance the representation the dynamics
of the actuator modules, the second order, linear time invariant systems are augmented by two
memoryless nonlinearities. Details on such nonlinearities are available in [66] and [122]. The
integration of the individual control surface velocity b; is limited according to (2.57). The
integrators for the control surface positions ¢; in the actuator modules are also confined. (2.58)
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Figure 2.3: Actuator module block diagram

provides the respective bound.

di| <360 [deg/s] (2.57)

|0;] < 45 [deg] (2.58)
i=UR,LR,LL,UL

Figure 2.3 displays the block diagram of the individually implemented control surface actuator
modules. The natural frequency w;, of the four actuator modules is chosen as w,, = 20 [rad/s].
The damping coefficient of the actuator modules is set to { = 1.

The particular control surface deflections ; which constitute the outputs of the actuator modules
are composed to the three control surface deflections oy, dp7, and én afterwards. oy, dpr, and
dn are inputs for the application rules (2.47) to (2.52). The composition is available from [148]
and stated in (2.59).

S 1 -1 1 1 ‘;UR
Syl =021 1 1 1 5“% (2.59)
SN 1 1 -1 1 LL

UL

2.4.2 Reaction jet actuator

The reaction jet actuator houses 180 reaction jet cartridges. They are geometrically composed
according to Section 2.1. Each reaction jet cartridge constitutes a small, solid propellant rocket
motor which can be utilized once during the flight of the interceptor. The firing of individual
reaction jet cartridges as well as the simultaneous use of multiple reaction jet cartridges is
possible. The maximum number of reaction jet cartridges available for simultaneous firing is
limited according to (2.60).

oric <3 (2.60)

Besides their position in the interceptor fuselage and their attitude, all 180 reaction jet cartridges
exhibit identical properties. The main characteristic of the reaction jet cartridges is the reaction
jet cartridge thrust profile. It describes the development of the thrust force Frjc, aps Which
is generated by an individual reaction jet cartridge over the cartridge burn time trjc Burn-
Performance details, like the reaction jet cartridge fuze delay or the maximum reaction jet
cartridge thrust force, can be identified in the reaction jet cartridge thrust profile. A generic
reaction jet cartridge thrust profile is developed for this thesis. Figure 2.4 shows this reaction
jet cartridge thrust profile.

All reaction jet cartridges are implemented separately in the interceptor model, whereupon the
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Figure 2.4: Reaction jet cartridge thrust profile

respective positions, attitudes, and the reaction jet cartridge thrust profile are considered. The
individual reaction jet cartridge subsystems are triggered by a reaction jet cartridge deflection
operator drjo, being either identical to 0 or 1. Prior to firing, drjc = 0 for the respective
reaction jet cartridges. Hence, the latter do not contribute to the forces and moments calculation
in (2.54) and (2.55). By setting drjc = 1 for particular reaction jet cartridges, these subsystems
generate the reaction jet cartridge thrust profile displayed in Figure 2.4. The profile itself is
stored in a lookup table, using tgjc Burn as input and providing Frjc aps as output. External
efforts acting on the interceptor result. After trjc Burn is elapsed, the thrust force of the
particular reaction jet cartridges is set to Fryc aps = 0. The contribution to (2.54) and (2.55)
is annihilated. At the same time, the remaining, unchanged reaction jet cartridge deflection
operators dgjc = 1 indicate which particular cartridges are already consumed.

2.4.3 Internal sensor system

The third interceptor subsystem which is considered, modeled, and presented in this work is the
internal sensor system. It consists of an inertial measurement unit and additional sensors. The
inertial measurement unit measures a part of the state vector of the interceptor. The additional
sensors provide signals that are not part of the state vector. All measurements are forwarded to
the interceptor flight control system. This functionality is not especially related to the intercep-
tor or the internal sensor system. It constitutes the reason for an internal sensor system being
an integral part of every aerospace system. Hence, an internal sensor system is accounted for.

The study of [7], [9], [15], [22], [141], and [148] in conjunction with [89] and [129] leads to the fol-
lowing two conclusions concerning the measurement of signals in aerospace systems. An internal
sensor system constitutes a complex system, which requires a detailed modeling, if all contained
subsystems are considered adequately. Vice versa, all measured signals, including that of an
internal sensor system, are affected by common measurement effects. These effects are mea-
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surement, bias, measurement noise, and discretization. Measurement bias denotes a systematic
displacement of the measured signal from the real signal. With respect to an internal sensor
system, measurement bias could arise from an angular displacement of the inertial measurement
unit axis from the body fixed frame of the vehicle. Measurement noise is caused by the random
noise omnipresent in all signals. Hence, it exists in an internal sensor system. Discretization
describes the effect that signals are measurable at distinct time instances only. Although the
time between two measurement instances can be very small, measured signals are affected by
discretization. Envisioning the two described conclusions and focussing on the main topic of this
work, the design of the interceptor flight control system, it is decided not to model the internal
sensor system, but to account for the three measurement effects.

Proceeding from the beforehand decision, it is assumed that the inertial measurement unit is
located at the center of gravity of the interceptor, implying that no effects originating from a
displacement of the inertial measurement unit, illustrated in [9], are considered. Furthermore, it
is presumed that the inertial measurement unit is capable to measure the inertial accelerations
of the center of gravity of the interceptor, specified in the body fixed frame, (c‘[ G)g and the
rotation vector with respect to the body fixed frame, specified in the body fixed frame, (JJ?(B ) B
(J}%B ) p is considered to be integrated inside the inertial measurement unit to derive the Euler
angles. The Euler angles are supposed to be utilized to calculate the inertial accelerations of the
center of gravity of the interceptor, specified in the body fixed frame, without gravity (d’ G)’gwog,
which are provided to the interceptor flight control system. The individual aerodynamic control
surface deflections d;, the individual aerodynamic control surface velocities ;, and the statuses
of the particular reaction jet cartridges are assumed to be measured by additional sensors.

To factor in the common measurement effects, a subsystem which implements latter is em-
ployed for each measured signal. This subsystem adds a measurement bias and measurement
noise to the signals, whereupon the measurement bias, the measurement noise power, and the
measurement noise sampling rate are configurable. Afterwards, the signals are digitized with
an adjustable sampling rate. The output of the discretization constitutes the measured signal
which is forwarded to the interceptor flight control system. Figure 2.5 shows the block diagram
of the measurement effect implementation subsystem.

2.5 Modeling of parameter uncertainties

2.5.1 Uncertain constant parameters

The beforehand presented sections of Chapter 2 illustrated the interceptor layout and introduced
the properties of the interceptor. Thereafter, the nonlinear rigid body equations of motion
have been affiliated. The presentation of the modeling of the external efforts acting on the
interceptor followed. Finally, the interceptor subsystems which are considered in this work
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have been illustrated, including their respective properties. Although the derivations and the
modeling consider a significant level of detail, the dynamics of the interceptor simulation model
differ from the dynamics a real interceptor system. There are five reasons for this difference in
the dynamical behavior.

The first reason for differences in the dynamics of the interceptor simulation model and that of
a real interceptor system are simplifications. These have been introduced at dedicated points of
the modeling process and allow to simplify the structure of the interceptor simulation model and
to concentrate on the focus of this work. The consideration of a flat earth representation with
an embedded, fixed coordinate frame as inertial reference frame constitutes a simplification. All
introduced simplifications are explicitly stated in this work.

Second reason for a different dynamical behavior between the interceptor simulation model and
a real interceptor system are unknown or not modeled dynamics. The interceptor, like any
dynamical system, exhibits dynamics which are either unknown or feature a level of complexity
that makes modeling impossible or at least significantly increases the required modeling effort.
Structural modes are an example for this type of dynamics. Although structural modes of the
interceptor as well as of its subsystems exist, they are not accounted for in this thesis, because
their properties can not be determined terminatory.

Model uncertainties constitute the third reason for behavioral differences between the interceptor
simulation model and a real interceptor system. Model uncertainties comprise effects which are
reflected in the simulation model, but the dynamic order of the representation in the simulation
model is not in line with the dynamic order of the real system. The size and the amount of
the model uncertainties constitute an important factor for the behavioral difference between
a simulation model and the respective real system. The aerodynamic control surface actuator
modules are an example for model uncertainties in this work . These modules are considered
as second order, linear systems, whereas real aerodynamic control surface actuator modules are
systems of higher order.

The fourth and the fifth reason, which generate differences in the dynamics of the the interceptor
simulation model and that of a real interceptor system, are uncertain constant parameters
and time-varying parameters. These types of uncertainties are explicitly implemented in the
interceptor simulation model, and are treated in detail in the following.

Uncertain constant parameters are properties of the interceptor which are represented correctly
in the interceptor simulation model concerning their physical impact. On the other hand, the
values of these properties which are used in the interceptor simulation model are not correct,
because the true values are either unknown or not measurable during the flight of the interceptor.
As the denotation uncertain constant parameters indicates, these properties are constant or at
least vary so slow with time, compared to the states of the interceptor, that they are treated as
quasi constant. Usually, there exists a value or a function which defines the nominal behavior
for each uncertain constant parameter. The difference between the nominal behavior and the
real behavior constitutes the uncertainty for the respective property.

The total interceptor mass mgmpty and the inertia tensor with respect to the center of gravity of
the interceptor (Igmpty) BB are considered as uncertain constant parameters in this thesis. (2.61)
is utilized to implement uncertainty for mgpp, and (Igmpty) BB in the interceptor simulation
model before the beginning of the simulation. r is a random number in the interval r € (0;1). Ap
specifies the level of uncertainty that is taken into account for the respective property, expressed
as a percentage. After the implementation of the uncertainty, the values of the properties are
held constant during the simulated flight of the interceptor.

PUncertain = (2 (T - 0-5) Ap + 1) PNominal (2-61)
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The implementation via (2.61) allows to examine the interceptor flight control system perfor-
mance under various uncertain constant parameter conditions.

2.5.2 Time-varying parameters

The second type of uncertainty which is explicitly incorporated in this work and implemented
in the interceptor simulation model are time-varying parameters. Time-varying parameters also
constitute properties of the interceptor that are represented correctly in the interceptor sim-
ulation model concerning their physical impact. Unlike uncertain constant parameters, these
properties are subject to permanent change. Although nominal values for the time-varying pa-
rameters exist, the determination of the exact, current values of these properties during system
operation is impossible.
The aerodynamic derivatives, given by the application rules (2.47) to (2.52), are considered as
time-varying parameters in this thesis. This is based on the understanding of wind and tur-
bulence as stochastic processes which distract the aerodynamic derivatives from their nominal
values permanently. The implementation of the aerodynamic derivatives as time-varying param-
eters is done via (2.62). C; Nominal constitutes the nominal value of the aerodynamic derivative
which is derived from the implemented lookup table. AC; specifies the level of uncertainty for
the aerodynamic derivative percentage-wise. n denotes a random noise with a mean identical
to zero and a variance equal to one. The sample rate of the random noise is configurable to
account for different frequencies of parameter changes. In contrast to the implementation of the
uncertain constant parameters, (2.62) is employed permanently during the simulated flight of
the interceptor. Hence, the aerodynamic derivatives of the interceptor change at the predefined
sample rate, if AC; # 0.

Ci,Uncertain = (nACZ + 1) Ci,Nominal (262)

Like (2.61), Equation (2.62) provides the capability to examine the interceptor flight control
system under arbitrary parameter conditions.
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Chapter 3

Analysis of interceptor flight
dynamics

3.1 Trim

The developed simulation model of the endo-atmospheric dual-actuator interceptor constitutes
the basis for the following analysis, design, and validation. Induced by the complexity of the
interceptor simulation model, numerical methods are utilized for these steps. These methods
allow the use of computer systems to find appropriate solutions. Effectivity and efficiency for the
analysis, design, and validation is achieved, if the routines which are employed on the computer
systems feature a high degree of automation and provide a high degree of reusability. Hence, the
latter two characteristics become secondary aims of this work. They are accounted for starting
with this chapter.

Before the interceptor flight control system is designed, the flight dynamics of the interceptor
are analyzed in detail. The achieved results support the design of the interceptor flight control
system. The analysis of the interceptor flight dynamics is carried out in two steps. First, trim
calculations are conducted. They provide insight into the interceptor flight performance capa-
bilities. The trim results for steady-state flight conditions are linearized in the second step to
investigate the uncontrolled as well as the controlled interceptor dynamics, and derive an as-
sessment about the stability properties of the interceptor. Thereafter, the nonlinear simulation
framework which is employed is introduced at the end of Chapter 3. These process steps follow
the illustration in [46].

As first step in the analysis of the interceptor flight dynamics, steady-state flight conditions
of the interceptor are determined by trim calculations. Although multiple steady-state as well
as quasi steady-state flight conditions exist, which are treated in [17] and [48] in detail, only
the steady-state horizontal flight of the interceptor is considered, because all other flight condi-
tions are not of importance for this work. The calculated conditions for steady-state horizontal
flight of the interceptor are used to explore the interceptor flight envelope. Additionally, these
conditions are the input for the linearization afterwards. According to linear system theory,
available in [81], the results of a linearization are only valid, if the considered system operates
at a steady-state reference point. The flight of the interceptor with a constant load factor is also
treated herein, because it is accessible via trim calculations and allows to derive the interceptor
maneuver capabilities. This flight condition is not used for linearization afterwards, because the
rate of change of the states of the interceptor is to high. The flight of the interceptor with a
constant load factor neither constitutes a steady-state nor quasi steady-state flight condition.
To conduct the trim calculations for the steady-state horizontal flight of the interceptor and the
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flight of the interceptor with a constant load factor a methodology based on [48] is introduced
and employed in the following.

Trim calculation methodology

Steady-state flight conditions of the interceptor are characterized by a unique set of values for
the state variables and the control inputs of the interceptor. Hence, the trim calculations need
to determine the state vector T and control input vector @ of the interceptor which result in the
desired steady-state flight condition. Understanding the desired steady-state flight condition as
a set of conditions for the derivatives of the state variables, (3.1) needs to be solved for ¥ and @
to find the appropriate solution.

i:Desired = f (fa ﬁ) (31)

The problem of finding the correct combination of state and input variable values for the desired
steady-state flight condition of the interceptor is formulated as a system of nonlinear equations.
This system of nonlinear equations is generated by defining the difference between the derivative
of the state vector and the conditions for the desired steady-state flight condition as residual
vector 7. (3.2) states the respective relationship. By solving the system of nonlinear equations,
meaning ¥ and 4 are determined in a way that 7 is identical to zero, the solution to the trim
calculation is derived.

—

— T Desired

(fa ﬁ) - ;Desired =0 (32)

7—,‘

Il
- &y

Due to the fact that the some of the states of the interceptor are not of concern for a desired
steady-state flight condition and can take arbitrary values, no unique solution for (3.2) exists.
This problem is overcome by mapping & and « of the interceptor into a flight condition param-
eter vector p and a solver parameter vector g for the trim calculation. p contains constant
parameters which unambiguously determine the desired steady-state flight condition. On the
other hand, the elements of Xg are calculated in a way that 7 is identical to zero. A numeric
solver routine is employed for this calculation. By ensuring (3.3), a unique solution of (3.2) is
guaranteed. The mapping also allows to implement parts of the solution of the trim problem
which are available analytically.

dim Zg = dim 7 (3.3)

Following the denotation in [46], the mapping of Z and @ into p’ and Zg is called trim template.
Implementing the trim template into (3.2) leads to (3.4).

7= f(7.&s) = 0 (3.4)

The trim calculation architecture resulting from the introduction of the trim template is il-
lustrated in Figure 3.1. It displays the relationship between the p, Zg, Z, @, and 7. As one
might anticipate from Figure 3.1, this trim calculation architecture, which is integral part of the
chosen trim calculation methodology, provides a high degree of reusability. The trim routine is
applicable to all trim calculations. Only the trim templates are designed for the individual con-
sidered flight conditions. Therefore, two trim templates are necessary in this thesis to cover the
steady-state horizontal flight of the interceptor and the flight of the interceptor with a constant
load factor.

A detailed treatment of the utilized trim calculation methodology and the derivation of the trim
template is available in [49], [50], and [51].
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Figure 3.1: Trim calculation architecture

Steady-state horizontal flight

The trim calculation for the steady-state horizontal flight of the interceptor is treated in detail
in the following. First, the trim template is derived. Afterwards, results of the trim calculation
are presented.

Considering the nonlinear rigid body equations of motion, while at the same time neglecting
the dynamics of the aerodynamic control surface actuator modules, Z comprises twelve states.
Accounting for 6z, dps, and dn as well as the individual reaction jet cartridges, the interceptor
exhibits 183 inputs. Envisioning that the individual cartridges of the reaction jet actuator sec-
tion can only be used once during the flight of the interceptor, it is presumed that the latter
section is not employed during steady-state flight conditions. Hence, i contains three inputs,
leading to a sum of state variables and inputs equal to 15. On the other hand, the steady-state
horizontal flight of the interceptor is defined by nine conditions. These conditions are given by
(3.5) to (3.8), whereupon they are grouped following the derivation of the nonlinear rigid body
equations of motion in Chapter 2.

(8) 5 = (0f)y =0 (3.5)
(B8) 5 = (@) 5 = (1%F) 5 =0 (3.6)
d=0=1=0 (3.7)

(ZG)I =0 (3.8)

The number of conditions defining the steady-state horizontal flight of the interceptor implies
that six variables out of & and @ are treated as flight condition parameters, to guarantee a unique
solution of (3.2). Because (azG) ; and (yG) ; have no influence on the steady-state horizontal flight
of the interceptor, both states are defined identical to zero. Additionally, the heading angle ¥
has no influence on the steady-state horizontal flight. By setting ¥ = 0 [deg], the number of flight
condition parameters reduces to three. The velocity of the center of gravity of the interceptor
in the direction of the Xp axis (uIG();, the altitude of the center of gravity of the interceptor
(zG) ;» and the roll angle of the interceptor ® are chosen as elements of p. This choice leads to
Zg according to (3.9).

= (09 @D ), @)y (%), © & ou ] (39
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Figure 3.2: Trim calculation result steady-state horizontal flight

Although the choice of the elements of p'in combination with (3.9) already constitutes the trim
template for the steady-state horizontal flight of the interceptor, the system of nonlinear equa-
tions is further simplified. Noticing that during steady-state horizontal flight (p?(B ) B (q?(B ) B
and (r9F)  are identical to zero and considering (2.22), it is evident that the conditions (3.7) are
satisfied automatically and need not to be solved. The number of elements in rs and 7 reduces
to six and the final trim template for this flight condition of the interceptor is established.
Based on the derived trim template, (3.2) is solved numerically by employing a fixed step gra-
dient method in the trim routine. This method demonstrates an appropriate performance and
robustness for the trim calculations in this work. The result of the trim calculation for the
steady-state horizontal flight of the interceptor is displayed in Figure 3.2, whereupon three ex-
emplarily values for (zG) ; are illustrated. The blue line visualizes the trim calculation result
for (zG) ; = 0[m], the red line represents (zG) ; = 5000 [m], and the green line shows the result
for (%) ; = 10000 [m]. Absolute kinematic velocities of the interceptor below and above the
indicated (Vg Abs)]fg are considered of no operational relevance with respect to the steady-state
flight condition herein.

Besides the illustration of the trim calculation result according to Figure 3.2, the result for the
steady-state horizontal flight of the interceptor is utilized to derive the interceptor flight enve-
lope. The display of the latter is omitted at this point, because it is contained in the following
presentation.

Flight with constant load factor

Following the scheme presented for the trim calculation of the steady-state horizontal flight,
a trim template for the flight of the interceptor with a constant load factor is derived. This
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derivation is presented in an abbreviated manner herein, to stay inside the scope of this thesis;
details are available in [48]. The trim template and the trim routine are utilized to conduct trim
calculations for the flight of the interceptor with a constant load factor. The result of this cal-
culation allows to determine the interceptor flight envelope as well as the maneuver capabilities
of the interceptor.

Starting from the nonlinear rigid body equations of motion and using the identical assumptions
as during the derivation of the trim template for steady-state horizontal flight, the interceptor
exhibits 15 states and inputs. The flight of the interceptor with a constant load factor, in this
case meaning a steady-state pull-up maneuver, is described by the seven conditions (3.10) to
(3.12).

(%) = <B§?>IBB =0 (3.10)
(#58) 5 = () = (58) 5 = 0 (3.11)
dP=U=0 (3.12)

This number of conditions implies that eight elements out of & and « need to be considered
as flight condition parameters in this case. As for the steady-state horizontal flight, (:cG) .
(yG) ;» and ¥ have no influence on the steady-state flight condition. Therefore, they are set to
zero and the number of flight condition parameters decreases to five. Now, the scope is limited
to symmetrical steady-state pull-up maneuvers, where ® = 0 [deg] holds; four flight condition
parameters in p remain. The latter are (V[?:Abs)é, (zG)I, (q?(B)B, and the flight path angle of
the interceptor v. Using the presumption ® = 0[deg| in conjunction with the fact that (p(}(B ) B
and (r9%) , are identical to zero during such maneuver in (2.22), it is obvious that (3.12) is

fulfilled automatically. (¢97) p 18 derived according to (3.13).

(¢?2) ;=0 (3.13)
This result leaves (3.14) as the final Zg for the steady-state pull-up maneuver of the interceptor.
Based on (3.13), (q%B)B is replaced by © in p.

T
7s=[(09)} (8%)5 on ou on (3.14)

Because the appearance of © in 'is undesirable, a descriptive way to specify the flight condition
of the interceptor is developed. Following [48], the lift L of the interceptor during the steady-
state pull-up maneuver is given by (3.15).

L=m (Vngbs); 4 4+ mg cosy (3.15)
By using the definition of nyz, stated in (3.16), (3.15) is solved for ¥ as (3.17).
L
= 3.16
"= g (3.16)
s g
Y= ————5 [nz — cos] (3.17)

(Vf(g"“bs) B

The derivative of the approximation (3.18), which is developed in [48] and is valid for ® = 0 [deg]
and small (%)L, both given in the assumed maneuver, is built as (3.19). (3.10) is used in this
step.

0 =7+ (%)} (3.18)
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0=7% (3.19)

This achieved, (3.13), (3.17), and (3.19) are combined and (¢%7) p is replaced by the right hand
side of (3.17) in p. The steady-state pull-up maneuver of the interceptor is described by the
flight condition parameters (V[%:Abs)][g, (zG)I, nz, and 7. Zg is given in (3.14).

The interceptor flight envelope is determined by validating the trim calculation result for the
flight of the interceptor with a constant load factor against the aerodynamic control surface
position limit defined in (2.58). Therefore, the individual results which are comprised in the
trim calculation result for a range of (VI? Aps) 5 and (29) ; are validated against (2.58). If the
calculated d; of a particular trim calculation result are below the aerodynamic control surface
position limit, the interceptor is able to realize the particular (Vg Ape) 5 and (zG) ;- The contin-
uum of all realizable (Vg Ab S)IB and (zG) ; constitutes the interceptor flight envelope with respect
to the boundary (2.58). By limiting the maneuvers of the interceptor to the Xp - Zp plane,
defining v = 0 [deg], and considering nz = 1]g], the interceptor flight envelope for steady-state
horizontal flight is achieved again.

The employment the beforehand described method for different load factors n,, including the
limitation of the maneuvers of the interceptor to the Xp - Zp plane and the consideration of
v = 0[deg], leads to the maneuver capabilities of the interceptor. The continuum of all (Vg Ab S)IB
and (zG) ; which is realizable by the interceptor under consideration of (2.58) and a specific nz
describes the flight envelope in which the interceptor is capable to conduct maneuvers up to the
respective ny.

Figure 3.3 illustrates the interceptor flight envelope and the maneuver capabilities of the inter-
ceptor for a set of ny. It is evident from Figure 3.3 that the interceptor exhibits an enormous
flight envelope regarding the boundary given by (2.58). The interceptor flight envelope ranges
from (V[%:Abs)IB = 100 [m/s] to (V[%:Abs)IB = 1000 [m/s], being the maximum (VIgAbs)IB consid-
ered in this thesis. Above (VI?v Aps) sz = 300 [m/s], the interceptor flight envelope is limited by
the maximum considered (zG) ; = 20000 [m]. Furthermore, it is obvious that the interceptor
is capable to maneuver at considerable ny without reaching the aerodynamic control surface
position limit.

3.2 Linearization

3.2.1 Linearization algorithm and implementation

Although intense research on nonlinear systems was conducted in the recent past, only a limited
number of methodologies for the analysis and especially the prediction of the behavior of nonlin-
ear systems exists. Furthermore, as it is stated in [46] based on [41], [66], [73], [76], [122], [125],
and [142], no deterministic standard approach to derive the stability properties of nonlinear
systems is available.

In contrast, a wide spectrum of methodologies for the analysis of linear systems exists. These
rest on a wide theoretical foundation and their systematic application allows the determination
of the stability properties of linear systems. [39], [61], [80], [81], [119], [135], and [136] provide
an overview of latter methodologies.

Following [66] and [125], the approximation of a nonlinear system by its linearization is possible
in a small neighborhood of a stationary operating point. Additionally, it is allowed to draw
conclusions about the stability of the stationary operating point of the nonlinear system from
the stability of the stationary operating point of the linear system, if dedicated conditions apply.
Hence, the nonlinear dynamics of the interceptor are linearized at stationary operating points
and analyzed with the available methodologies for linear systems afterwards. The linear longi-
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Figure 3.3: Interceptor flight envelope and maneuver capabilities

tudinal dynamics and the linear roll rate dynamics of the interceptor are analyzed separately.
The results of this analysis support the design of the interceptor flight control system.

The abstract linearization algorithm which is employed origins from the presentation in [46] and
[47]. [9] and [148], based on [36], provide an illustration explicitly related to nonlinear aerospace
systems. These approaches are refused herein in favor for the more abstract algorithm. This
allows the developed routines to be used again for other problems, while not being confined to
aerospace applications. The stated aim of reusability of the products generated in the framework
of this thesis is supported.

The nonlinear system considered for the linearization is given as a nonlinear, implicit differen-
tial equation and a nonlinear algebraic equation according to (3.20) and (3.21). The nonlinear,
implicit differential equation contains the state equations, and the nonlinear algebraic equation
comprises the output equations.

f (:E z, ﬁ) —0 (3.20)

y=h (:f Z) ﬁ) (3.21)

The nonlinear system exhibits n states, m inputs, and r outputs. Following [46], the linearization
is carried out with respect to an operating point 0 which fulfills the nonlinear, implicit differential
equation. Hence, (3.22) holds.

f (a'?”o,a?o,ﬁo) =0 (3.22)

First, the nonlinear system is developed into a Taylor series around 0. Denoting the pertur-
bations from 0 according to (3.23) and the Jacobi-Matrices following the scheme of (3.24), the
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nonlinear system is written as (3.25) and (3.26), whereupon the abbreviation H.O.T. represents
higher order terms.

SE==F—1y Ofi==F—1y Odi=1iu—1dy 07=7%5— 7o (3.23)
on ... on
] ox1 Oxn
Vaf (f@a) =]+ (3.24)
Ox1 Oznd (F=7Zo)

f(:f:’o,fo,a’o)JrV f(:): 7 u)é:):—l—vxf< )6w+Vuf<:): 7 u)5u+H0T —0 (3.25)

Go+07 = h (7o, 7o, i) + Vb (#,7,@) 05+ Vsh (7,7, 7) 67+ Vh (7,7, ) 67+ HOT. (3.26)

The implementation of (3.22), the negligence of the higher order terms, and the rearrangement
of the remaining terms lead to (3.27) and (3.28).

- V: f( )&c— xf(xa:u)(h—i-vuf( >5u (3.27)

57 =V h(xxu)5x+v h( )5:c+v h(f,f,ﬁ)aﬁ (3.28)

Now, the Jacobi-Matrices in (3.27) and (3.28) are substituted according to (3.29). Solving the
equations for §Z and J7 leads to (3.30) and (3.31).

E:—v-f(aé’fﬁ) A=vyf(#za) B=vgf(zza
) . (3.29)

j ( ) C=vVh (i@ d) D=vVgh(i i
6f = E7'Asi + ET'Béu (3.30)
57 = [ﬁ (E*A) + é} 5% + [Jff (E*B) + D] 5it (3.31)

Renaming the matrices in this equations according to the convention in (3.32) brings up the linear
state space model given in (3.33) and (3.34). The linear state space model in vector notation is
provided in (3.35). The vectors 62 and 6 are of dimension (n x 1), 64 is of dimension (m x 1),
and Jy is of dimension (r x 1). The matrix A exhibits the dimension (n x n), B (n x m), C
(r x n), and D is of dimension (r x m).

(

\_/ Cbz
/_\
\_/ ml
@:
—
)
o
RS
N—

6% = AdT + Bou (3.33)
6§ = Co + Déi (3.34)
6F A B] [é%
(e 8-

The presented abstract linearization algorithm is realized as a linearization routine which utilizes
the trim calculation result for the steady-state horizontal flight of the interceptor as well as the
interceptor simulation model itself to derive the linear state space model. In analogy to the trim
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calculation, the linearization routine accounts for the nonlinear rigid body equations of motion.
For this reason, the state vector of the linear state space model is given by (3.36) and the input
vector is according to (3.37). The outputs of the linear state space model are in accordance with
the measurements available from the internal sensor system. Additionally, the elements of & are
available as outputs.

gt
CC S RO (350
o ) v }

i=[6r 6m on] (3.37)

The linearization routine employs numerical differentiation to calculate the Jacobi-Matrices in
(3.29) and generate the linear state space model. A fixed differentiation step size is implemented
to achieve a high performance of the linearization routine in terms of calculation velocity. Fol-
lowing [46], more capable numerical differentiation algorithms are necessary, if problems related
to differentiation step size appear. Such algorithms are available from [45], [49], [50], and [51].

The architecture of the linearization routine is similar to the trim calculation architecture dis-
played in Figure 3.1. The modular approach supports the linearization of an entire trim calcu-
lation result. If this is conducted, an array of linear state space models results, whereupon the
individual linear state space models relate to the particular trim conditions. In addition, the
linearization routine is usable with the translation states according to (2.11) or the alternate

states (V]gAbs)IB7 (o), and (BF)5.

3.2.2 Longitudinal interceptor dynamics

The dynamics of the uncontrolled interceptor are analyzed in the following, where the linearized
longitudinal interceptor dynamics and the linearized roll rate interceptor dynamics are treated
separately. Originating from the cruciform configuration, the linearized longitudinal and the
linearized lateral interceptor dynamics coincide, if short time frames are taken into account.
Hence, the linearized lateral interceptor dynamics are not considered, but the coincidence of the
linearized longitudinal and the linearized lateral interceptor dynamics is proven. This approach
follows [9] and [59]. The analysis is based on results derived with the beforehand presented
linearization routine.

Coincidence of linearized longitudinal and linearized lateral interceptor dynamics
The linearization routine employed in this thesis calculates the matrices A, B, C', and D of the
linear state space model given in (3.35). Following the derivation of the nonlinear rigid body
equations of motion in Chapter 2, the state vector # in (3.35) is given by (3.36), whereupon the
Euler angles substitute the Quaternions, because the former are more descriptive. The elements
in A, B, C, and D are arranged in accordance with the states in Z.

To resolve this intricate description of the dynamics as well as to reach a comparability between
the linearized longitudinal and the linearized lateral interceptor dynamics, the states in & are
regrouped. (3.38) and (3.39) constitute & after regrouping, depending on the state variables
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which are utilized to describe the translation of the interceptor.

= @9, @y ® 6,
(zG I €] (le(); (q%B)B - (3.38)
W), v D)y (), ]

P @9, (VEa), ® 0¥),
(ZG)I e ( ) (qK

9, v (D) (4 }T

By employing an appropriate transformation matrix 7" and (3.40) to (3.43), the elements in A,
B, C, and D are rearranged equivalently.

)

0B) (3.39)
)5
)

A=TAT! (3.40)
B=TB (3.41)
c=cr! (3.42)
D=D (3.43)

The result of this process is a transformed form of (3.35) which clearly displays the individual
linearized interceptor dynamics. Furthermore, it provides the capability to compare, extract,
and analyze the particular linearized interceptor dynamics straightforward. In this transformed
form, A contains the matrices A; to A4 along its main diagonal. Because A3 contains the system
matrix elements of those states which are exclusively involved in the linearized longitudinal
interceptor dynamics, given by the elements five to eight in (3.38) and (3.39), and A4 comprises
the elements of A of states only related to the linearized lateral interceptor dynamics, the two
dynamics become easily comparable. B is vertically separated into the matrices B; to B4 by
the transformation. Figure 3.4 illustrates the result of the transformation on the state equation
of (3.35). The output equation is modified similarly by this transformation.

The matrices A3, B3, C3, and D3 are compared with the respective matrices of the index 4 inside
the entire interceptor flight envelope. Except terms which are influenced by gravity, the matrices
coincide at every considered flight condition, as expressed in (3.44) to (3.47). For example, at
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the flight condition (V¢ 4,5)5 = 600[m/s] and (2¢) ; = 10000 [m], the respective individual
elements of the matrices show a deviation significantly below 1 [%]. Hence, the linearized lateral
interceptor dynamics is not considered in the further analysis.

As = Ay (3.44)
By = By (3.45)
Cs5 = Cy (3.46)
D3 = D, (3.47)

Linearized longitudinal interceptor dynamics
The extraction of the linearized longitudinal interceptor dynamics from the transformed form
of (3.35) leads to (3.48). The state vector & for this reduced system is given by either (3.49) or
(3.50). Based on (3.37), dpr constitutes the input w.

i = Apieni + Bpigentt (3.48)

F= | () L (@), 3.49

P= W), O )l (@), (3.49)
I T

v [(Vfg’:AbQB O (af)y (Q%B)B} (3.50)

This linearized longitudinal interceptor dynamics (3.48) exhibits four eigenvalues. These eigen-
values are separated into two pairs of complex eigenvalues describing two oscillatory motions.
The slower, lightly damped oscillatory motion, which following [16] is called Phugoid, describes
an energy exchange between (VI?v Ab 5)118 and (ZG) ;- This oscillatory motion affects mainly steady-
state flight conditions. A derivation and an analysis of the Phugoid is available in [9] and [47].
Considering the assumption that the interceptor time of flight is significantly below one minute,
while at the same time anticipating frequent interceptor maneuvers to reach a desired target,
the Phugoid is neglected.

The faster, heavy damped oscillatory motion constitutes an oscillation of (q%B) 5 and (aIG();.
According to [16], this oscillatory motion is called Short Period. The interceptor states involved
in the Short Period move the latter in the focus of the analysis of the linearized longitudinal

interceptor dynamics. As illustrated in the signal flow diagrams in [16] and [47], dps generates

(q%B ) p» Which in turn gives rise to (a%);. The presence of (aIG(); leads to longitudinal accel-

eration (a%)g of the interceptor. Because (ag)g is of greatest importance for the interceptor

to reach the desired target, a detailed analysis of the Short Period is inevitable.
Following the nomenclature in [16], [46], [90], and [130], the linearized state equation of the
Short Period is written as (3.51). (3.51) constitutes a subset of (3.48).

@8] (2 2] [(@@h] , [Z0d].
[(Q%B)Bﬁ _[Ma MJ (@) +[M5M] On (3.51)

The investigation of (3.51) for the interceptor for the flight condition (Vg Ape) 5 = 600 [m/s]
and (2¢) ; = 10000 [m] shows that the eigenvalues of the Short Period are —5.69 4 6.76i. This
implies a natural frequency of w,, = 8.83 [rad/s] and a damping ratio of ( = 0.64. The latter is
lower than the optimal damping ratio for a second order, time invariant system of (opr = %\/5
which is stated in the control literature, e.g. [81]. On the other hand, the comparison of w,, and
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Figure 3.5: Root locus of H(q%B) 5, (5) at (VE aps) 5 = 600 [m/s] and (ZG)I = 10000 [m] for
B b
the Short Period

¢ of the interceptor with the values provided in [9] and [59] shows that the Short Period of the
interceptor exhibits a similar dynamical behavior as other missiles in this category.

After analyzing the uncontrolled, linearized longitudinal interceptor dynamics, the response of
the linearized longitudinal interceptor dynamics to control inputs is examined. Classical method-
ologies in the frequency domain, in this case the transfer function, or graphical methods, like
the pole-zero plot, the root locus or the Bode plot, are utilized for this analysis.

Considering 6;; as the input of an interceptor flight control system loop for ( % ) the be-
forehand stated methodologies are employed for the flight condition (VK Aps) 5 = 600 [m /s] and
(z¢ )I = 10000 [m]. The transfer function from 0y to (g% )B is given by (3.52). Figure 3.5
illustrates the root locus and Figure 3.6 displays the Bode plot.

_ —70.50 - (s + 0.42)
Higp) ou (s) = s2 + 11.38s + 78.02

(3.52)

It is obvious from Figure 3.5 that a feedback of (q%B ) p allows to increase ¢ while at the same
time keeping w,, nearly constant.

Accounting for dj; as the input and (ag)IBI as the output, the transfer function for the flight
condition (V€ 4,.)5 = 600 [m/s] and (zG)[ = 10000 [m] is given by (3.53). The pole-zero plot
is shown in Figure 3.7.

| —33.37- (s — 43.94) - (s + 19.87)

i _
(a) " s0s ¥) s2 1 11.385 + 78.02

(3.53)

As displayed in Figure 3.7, the considered dynamics exhibits a zero in the right half plane,
meaning it is non-minimum phase. Based on the fact that the aerodynamic control surfaces
are located behind the center of gravity of the interceptor, the former generate a force acting
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on the interceptor which points in the opposite direction of the given command, once they are
deflected. This implies that the center of gravity of the interceptor accelerates in the opposite
direction of the command initially. After rotation of the interceptor and the establishment of
an angle of attack between the interceptor fuselage and the surrounding airstream, the lift force
generated by the fuselage exceeds the force originating from the aerodynamic control surfaces.
Therefore, the center of gravity of the interceptor is accelerated in the direction of the command
finally.

The non-minimum phaseness is also recognizable from (2.49). As Appendix C illustrates for
(Vngbs)g = 600 [m/s] and (zG)I = 10000 [m], Czgs,, (%, %, M) is negative inside the inter-
ceptor flight envelope. In combination with dys, the respective term always generates a force
component which opposes the remaining terms of (2.49).

To underline that these effects, which have been found by establishing (3.53), are not confined to
the linearized longitudinal interceptor dynamics, but instead originate from the interceptor con-
figuration, an example employing the endo-atmospheric dual-actuator interceptor is presented.
In this example, the interceptor is flying at (VgAbS)IB = 600 [m/s] and (zG)I = 10000 [m] in
steady-state horizontal flight. 65y = 10 [deg| is applied at the beginning of the simulation. The

resulting (ag)g is plotted in Figure 3.8, whereupon the time scale on the abscissa is chosen

11
B

erates upwards, before it reaches the desired (ag)g > 0 region, underpinning the beforehand
considerations.

adequately. It is clearly visible that (ag) < 0 initially, meaning that the interceptor accel-

Influence of the flight condition on the linearized longitudinal interceptor dynamics
The paragraphs above analyzed the linearized longitudinal interceptor dynamics at distinct flight
conditions inside the interceptor flight envelope. Because the aerodynamic forces and moments
acting on the interceptor are dependent on the flight condition, which is evident from the appli-
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cation rules (2.47) to (2.52), an influence of the flight condition on the linearized longitudinal
interceptor dynamics exists. Hence, the change of the linearized longitudinal interceptor dy-
namics inside the interceptor flight envelope is examined now.

Following Section 3.1, the interceptor flight envelope for this analysis is bounded by (3.54) and
(3.55). Variations of (VI?v AbS)IB and (ZG) ; are considered separately to investigate the particu-
lar influence of the respective variables. The poles of the Short Period, as given in (3.51), are
determined inside the interceptor flight envelope. The influence of (VI?v 1pe) 5 and (zG) ; on the
linearized longitudinal interceptor dynamics is derived by plotting the poles of the Short Period
for a set of flight conditions. Figure 3.9 illustrates the migration of the poles of the Short Period
for a variation of (VI%:AI)S)IB and (29)

.-
100 [m/s) < (V€ 43) 5 < 1000 [m/s] (3.54)
0[m] < (%), < 20000 [m] (3.55)

(Vlg Aps) 5 1s varied according to (3.54) in the upper diagram of Figure 3.9, whereupon (zG) ;=

10000 [m]. The increase of (Vlg ps) 5 leads to a rise of the natural frequency of the Short Period
from wy, arin, = 3.81 [rad/s] to wy, ymaexr = 13.59 [rad/s]. The respective damping ratio of the Short
Period lies in the interval (pzin = 0.56 to (pree = 0.58. The increase of w, with (Vngbs){S’ is
based on the increase of the aerodynamic moments acting on the interceptor. The latter rise
due to the greater ¢ at higher (Vg Abs)g, generating an increased stabilization of the interceptor.
The derivation of this relationship is available in [46].

The lower diagram of Figure 3.9 shows the migration of the poles of the Short Period for a change
of (zG)[. The variation of (zG)I is according to (3.55); (VIgAbS)]B = 600 [m/s]. Induced by the
change of (zG) ;» the natural frequency of the Short Period changes from wy, praz = 10.89 [rad/s]
at (ZG)I = 0[m] to wp min = 2.84[rad/s] at (ZG)I = 20000 [m], whereupon the damping ratio
of the Short Period varies inside the interval (prqz = 0.98 to (prin = 0.47. The reduction of
wy, with increasing (zG) ; originates from the decrease of p. This relationship is derived in the
following.

The characteristic equation of the system matrix of (3.51) is written on the left hand side of
(3.56). By understanding the left hand side as the general description of a second order, time
invariant system in the frequency domain, as indicated in (3.56), the respective w, and ( are
calculated. w,, and ¢ are provided in (3.57) and (3.58).

§%* — (Zo+ M) 8 + ZoMy — My Zy = 8* + 2Cwns + w2 =0 (3.56)
wn = /ZoMy; — Mo Z, (3.57)
Zo + M,

— 3.58
‘=73 /ZoM, — M, 2, (3.38)
The approximation of w,, according to (3.59), whereupon (2.21) and (2.37) are used, results in
calculation of the ratio of the natural frequencies of the Short Period for (2¢) ; = 20000 [m] and
(z9) ; = 0[m] as stated in (3.59). The calculated ratio according to (3.60) is close the ratio
Wn, Min divided by wy, 2. Hence, the presented approximation is feasible.

wn N/ = |- MRt (3.59)
(IYY)BB
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wnv(zG)I,JWaw ~ \/p(zG)IvMaz ~ \/0088 — 027 (360)

w"ﬁ(ZG)I,Mm p(ZG)I,Mm 1.225

A similar analysis is conducted for (. Approximating the latter as stated in (3.61) with the use
of (2.21), (2.37), and (2.38) allows the calculation of the ratio of the damping of the Short Period
for (2¢), = 20000 [m] and (2%), = 0 [m]. The comparison of the result in (3.62) with the ratio
Carin divided by (prqr shows that this approximation is not as good as the approximation for
W

_ C]\/[;qp(VIgAbs)IBSREfEQ

¢~ —-M, _ A9y ) pp (3.61)
2v/—M, 112 |
o 5 _C]WP[(VIgAbs)B] Skese
21y )
C(ZG)I,Maw ~ p(ZG)I’M/ax ~ \/0088 =0.27 (3 62)
C(ZG)I’MM p(ZG)I,Mm 1.225

The variation of w, and ¢ of the Short Period inside the interceptor flight envelope, which is
identical for the linearized lateral interceptor dynamics due to the coincidence of the respective
dynamics, constitutes an important insight valuable for the design of the interceptor flight control
system.

Besides the migration of the poles of the Short Period, the change of the non-minimum phase
property, which has been found by considering the transfer function from the input 3 to the
output (ag)g, inside the interceptor flight envelope is examined. The rational behind this
investigation is to derive, if this main characteristic of the interceptor, originating from its
configuration, varies with respect to its size.

Presuming that the interceptor is at steady-state horizontal flight, condition (3.63) holds. The
aerodynamic forces in the Xp - Zp plane are originating from the first and the last term in
(2.49). (@HL, (BE)L, and M are identical for these two terms. The ratio of the third and
the first term expresses how much of the aerodynamic forces is generated by the aerodynamic
control surfaces in relationship to the lift generated by the interceptor fuselage. It indicates the
size of the non-minimum phase behavior to be expected in case of maneuvers.

(Fga) = (FZa), (3.63)

If the second term in (2.49) is neglected, (ag’;)g, (ﬂg)%, and 0y are defined, and M is varied,
the change of the non-minimum phaseness over the interceptor flight envelope becomes seizable
by calculating the beforehand derived ratio. The §3; to be chosen is a representation for the
maneuver initialized by deflecting the aerodynamic control surfaces. Figure 3.10 displays the
ratio for (a$)5 = 2.5[deg], (6%)5 = 0[deg] and different dp; over the range of M that is
operationally relevant for the interceptor.

Figure 3.10 illustrates that the non-minimum phaseness generally decreases with increasing M.
It is obvious that greater d;; lead to an increased non-minimum phase behavior. This effect is
logical, because an increased 0,7, meaning greater aerodynamic control surface deflections, gives
rise to an increased aerodynamic force acting in the opposite direction of the command. On the
other hand, the added non-minimum phaseness resulting from an increased d,; is much smaller
at higher M. Therefore, the aerodynamic control surfaces influence the interceptor dynamics to
a much higher extend at low M.
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Figure 3.10: Change of the interceptor non-minimum phase behavior

Reaction jet cartridge effectivity

The last part of the uncontrolled longitudinal interceptor dynamics to be considered herein is
the reaction jet cartridge effectivity. Due to the fact that the individual reaction jet cartridges
can only be fired once and exhibit a fixed thrust profile, they are not adequate to reach and
sustain a steady-state flight condition. Hence, neither trim calculations are conducted nor the
linearized longitudinal interceptor dynamics is analyzed with this actuator section employed. In
contrast, the effectivity of the reaction jet cartridges is of greatest interest for the design of the
control allocation of the interceptor flight control system.

According to (2.3) and (2.4), the reaction jet cartridges differ regarding their attitude and
lever arm to the center of gravity of the interceptor. Assuming that an appropriate element of
(@RJ C) p for the implementation of a command is determined by the control allocation, only
the different lever arms with respect to the center of gravity of the interceptor influence the
reaction jet cartridge effectivity at this point. To assess this effectivity, the endo-atmospheric
dual-actuator interceptor is employed, the reaction jet cartridges pointing in the direction of
the Zp axis are fired individually, and the variables (o)L, (q(}(B) 5 and (ag)g are analyzed.
Figure 3.11 shows the respective results.

It is evident from Figure 3.11 that a single reaction jet cartridge, acting in the optimal attitude

concerning the command, is able to generate a maximum (%)% of 0.28 [deg] to 0.32 [deg] and a
maximum pitch rate of 2.2 [deg/s] < (¢%F) z < 3[deg/s]. The (ag)g achieved by an individual
reaction jet cartridge varies in the interval 4 [m/s?] < (ag)g < 4.5[m/s?.

Depending on the control variable to be chosen, these important results allow to design the
control allocation in accordance with the effectivity of the different actuator sections of the
interceptor. With this knowledge achieved, the analysis of the longitudinal interceptor dynamics
is concluded in this work.
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3.2.3 Roll rate dynamics

After the linearized longitudinal interceptor dynamics have been examined in detail, the lin-
earized roll rate interceptor dynamics are analyzed. Following the methodology in Section 3.2.2,
the uncontrolled, linearized roll rate interceptor dynamics, the response of the linearized roll
rate dynamics to control inputs, and the change of latter inside the interceptor flight envelope
are taken into account.
The extraction of the linearized roll rate interceptor dynamics from the transformed form of
(3.35) results in (3.64). The state vector Z of the reduced system comprises (p%7) 5 and @. The
input u is given by dr,. .

T = ArouT + Broyu (3.64)

Based on the fact that the reaction jet cartridges, which are dispersed on the circumference of
the interceptor fuselage, can only be used once, it is presumed that the interceptor flight control
system controls (p?(B) p to a specified value to ensure permanent availability of the reaction
jet actuator section during the flight. Hence, the linear differential equation which describes
the dynamics of @ is neglected. The remainder of (3.64) is written as (3.65), whereupon the
denotation according [16], [46], [90], and [130] is employed.

B98) 5 =Ly (0%8) , + Ls, - 01 (3.65)

The analysis of (3.65) at the flight condition (V& ,,)5 = 600[m/s] and (2%), = 10000 [mn]
shows a real eigenvalue located at —14.72.

Regarding o7, as the input of an interceptor flight control system loop for (p%B) > the response of
the linearized roll rate interceptor dynamics to control inputs is analyzed. The resulting transfer
function from dz, to (p%B)B for the flight condition (Vngbs)IB = 600 [m/s] and (zG)I = 10000 [m)]
is given by (3.66). The root locus is shown in Figure 3.12. Figure 3.13 displays the Bode plot.

—935.80

Hppey o0 (8) =5 11472 (3.66)

Influence of the flight condition on the linearized roll rate interceptor dynamics
The beforehand presented analysis investigated the linearized roll rate interceptor dynamics at a
distinct flight condition. Following the methodology in Section 3.2.2, the change of the linearized
roll rate interceptor dynamics inside the interceptor flight envelope is examined in the following.
To affiliate the influence of the flight condition on the linearized roll rate interceptor dynamics,
variations of (Vg 1pe) 5 and (zG) ; are considered. The interceptor flight envelope is bounded
according to (3.54) and (3.55). The migration of the pole of the linearized roll rate intercep-
tor dynamics for variations of (Vg e and (zG) ; pbrovides insight into the influence of these
variables. Figure 3.14 shows the migration of the pole of the linearized roll rate interceptor
dynamics for variation of (Vg Abs) 5 and (29) I

The upper diagram of Figure 3.14 displays the migration of the pole of the linearized roll rate
interceptor dynamics for the variation of (Vg Aps) 5 according to (3.54), whereupon (z¢) ;=
10000 [m]. As indicated in the diagram, the pole of the linearized roll rate interceptor dynamics
changes from wy, prin = 3.83[rad/s] to wy par = 24.59 [rad/s] with the increase of (VZ 4,.)5-
The rise of wy, is based on the increase of L, in (3.65). Considering (2.21) and (2.37); Ly is

written as (3.67). It shows the dependency of L, on (VlgAbs)IB.

I
CrLpp (VI?:Abs)  Shef

L. —
g 4(I§X)BB
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(ZG) ; changes according to (3.55) in the lower diagram of Figure 3.14. The absolute kinematic
velocity of the interceptor is chosen as (VI%:AbS),IB = 600 [m/s]. Based on the variation of (zG)I,
the pole of the linearized roll rate interceptor dynamics changes from wy, rrqr = 34.39 [rad/s] at
(ZG)I = 0[m] to wp rrin = 3.42[rad/s] at (ZG)I = 20000 [m]. The reduction of wy, is induced
by the decrease of p with increasing (zG) I (3.67) shows that, if p decreases, resulting from

is

an increasing (ZG) ;> while (Vfg Aps) 5 18 kept constant and a dependency of Cf,, on (zG) ;

neglected, L, decreases, which results in a decrease of wy,.
Like the results presented in Section 3.2.2, the variation of w, inside the interceptor flight
envelope is also an important result for this work.

3.3 Nonlinear simulation

The beforehand presented results provide valuable insights into the flight dynamics of the in-
terceptor. Vice versa, these results are augmented by nonlinear simulation to overcome the
shortfalls related to linearization.

The linearization which is utilized by the classical methodologies in the frequency domain does
not contain all characteristics of the nonlinear dynamics of the interceptor. Memoryless non-
linearities for example, as given in (2.57) and (2.58), are not represented therein. Hence, the
presented results do not describe the interceptor dynamics to the full extent. Furthermore, the
linearization is founded on steady-state flight conditions of the interceptor. The resulting lin-
earized interceptor dynamics are valid for a small neighborhood of the particular steady-state
flight condition only. This implies that the presented results neither describe the interceptor
dynamics at larger neighborhoods of the steady-state flight conditions nor at non-steady-state
flight conditions.

Nonlinear simulation constitutes a virtual flight of the interceptor. It considers all properties of
the interceptor and its subsystems, as introduced in Chapter 2, and it is appropriate for all flight
conditions. In this thesis, nonlinear simulation is utilized for design, testing, and performance
evaluation of the interceptor flight control system.

Nonlinear simulation framework

As introduced in [46], a nonlinear simulation solves the nonlinear state equations of a system
numerically. The states at the next time instant Z (¢t + At) are calculated as a function of the
actual states Z (t), the derivatives of the actual states 7 (t), the inputs @ (¢), and the simulation
time step At. This procedure approximates the solution of the nonlinear state equations itera-
tively, although an error remains due to the discrete treatment of time.

The architecture of a nonlinear simulation is shown in Figure 3.15, which is based on the illus-
tration in [46]. The nonlinear simulation of the interceptor exhibits the identical architecture. In
this architecture, the interceptor including all subsystems as well as the interceptor flight control
system is treated as a connected, quasi continuous system, based on At. The different parts of
the interceptor are not separated and treated individually for integration. This methodology
allows to employ any numerical integration method offered by the software which is utilized for
implementation of the nonlinear simulation.

MATLAB® Simulink, which is used for the nonlinear simulation in this work, offers numer-
ical integration methods with variable and with fixed step sizes. Given the explanations in
[46], [104], and [130] the fourth order Runge-Kutta method is chosen as numerical integration
method to solve the nonlinear state equations. This fixed step size numerical integration method
marks a compromise between numerical accuracy which is necessary to achieve reliability of the
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Figure 3.15: Nonlinear simulation architecture

nonlinear simulation results and performance in terms of nonlinear simulation velocity. (3.68)

o (3.72), which are derived from [104], are used in the fourth order Runge-Kutta method to
calculate 7 (t + At). As (3.68) to (3.71) indicate, the nonlinear state equations are evaluated
four times in every simulation step of the nonlinear simulation.

ki = At f (1) (3.68)
- << 2R 1> <t+;At>> (3.69)

ks = <( +% 2> <t+ ;m)) (3.70)
( F+ Eg) (t+ At)) (3.71)

T(t+ At) = Z(t) + %El + %EQ + %Eg + él%; (3.72)

To achieve usable nonlinear simulation results, At must be chosen significantly smaller than the
smallest time constant of any system of the interceptor. Such choice ensures that even the fastest
systems of the interceptor are considered adequately. Considering the reaction jet cartridge fuze
delay, which is illustrated in Figure 2.4 and understood as the time constant of the respective
systems, the simulation time step is defined as At = 0.001 [s].

Besides the necessity to chose At appropriately to achieve adequate nonlinear simulation results,
At is a measure to influence the performance of the nonlinear simulation in terms of simula-
tion velocity. The smaller At is defined, the more evaluations of the nonlinear state equations
are necessary for a specified simulation time. A reduction of At leads to an increased time
which is required by the nonlinear simulation to conduct the simulation. Empiric analysis shows
that the interceptor nonlinear simulation operates at a quarter of real time on a workstation
PC at At = 0.001 [s], whereupon the simulation framework of MATLAB® Simulink including
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graphical output operates at the same time. Accounting for the interceptor time of flight, this
nonlinear simulation velocity is acceptable for individual simulations. In addition, the empiric
analysis shows that a further reduction of At results in a considerable loss of nonlinear simu-
lation velocity, while at the same time the quality of the nonlinear simulation results does not
enhance significantly. For this reason, At is not reduced further.

The observed nonlinear simulation velocity of a quarter of real time is adequate for individual
simulations. Vice versa, this velocity is inappropriate for testing and evaluation of the intercep-
tor flight control system. To achieve a higher nonlinear simulation velocity, additional programs
accessing the interceptor without the graphical representation of the MATLAB® Simulink sim-
ulation model are developed. A nonlinear simulation velocity of approximately a third of real
time is achieved at At = 0.001 [s]. Additionally, the interceptor is build as code in C' utilizing
the Real Time Workshop component of the simulation framework. Employing the code instead
of the interceptor provides the capability to operate the nonlinear simulation faster than real
time. This nonlinear simulation velocity allows to conduct multiple, automatically initiated, and
evaluated simulations. These are used for testing, optimization, and evaluation of the interceptor
flight control system.
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Chapter 4

Backstepping methodology

4.1 Overview

After major advances in differential-geometric theory of nonlinear feedback control and the thor-
ough establishment of the feedback linearization methodology, which are presented in [24], [52],
[53], [54], [58], [82], and [83], it became evident that other nonlinear control methodologies were
necessary. The reasons behind this necessity were the wish to handle uncertainties present in
the systems to be controlled and thereafter the desire to overcome the matching as well as the
extended matching condition, meaning the ability to control systems with one or more integra-
tors between the input and the unknown parameters. In addition, structured design procedures
which allowed a systematic determination of an appropriate control law were missing.

The first approaches to nonlinear, adaptive control methodologies, illustrated in [23], relied on
technically utmost difficult measurements, like the measurement of accelerations at joints of
robot arms. This problematic aspect was removed by the work presented in [93], [98], [120],
and [121]. In [132] a more general scheme of adaptive nonlinear regulation under the matching
condition is shown. The matching condition, denoting the situation when the control and the
parameter uncertainty appear in the same equation, was first relaxed to the extended matching
condition around 1990, which is recognizable from the results in [4], [5], and [64]. The achieve-
ment presented in [65] and [63], being reviewed in [67], established the recursive design procedure
denoted by adaptive Backstepping. It is not confined to the extended matching condition.
Besides other classes of systems, which are not considered herein, adaptive Backstepping is ap-
plicable to strict-feedback systems. These systems exhibit a triangular structure. In the scalar
case, the first differential equation contains only the respective state and the state of the second
equation. The second differential equation comprises the state of the first and second equation
as well as the state of the third differential equation. This scheme leads to the mentioned tri-
angular structure, if multiple equations are considered and they are written below each other.
Only the last equation contains the input of the system.

The basic principle of the procedure is to consider the state of the second differential equation
as input in the first equation and design an appropriate control law for the first equation under
this assumption by using a Lyapunov function. By stepping back through the integrator to the
second differential equation, meaning towards the input of the system, and accounting the state
of the third differential equation as input to the second equation, a feasible control for the second
equation is derived with the help of an adequate Lyapunov function. The repeated application
of these steps leads to the control law for the overall system in the last differential equation.
Because the interim control variables, e.g. the state of the second equation, are not always at
their desired values, error definitions are conducted during the procedure. Besides the control
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law, update laws for the unknown parameters in the system are designed from the derivative
of the Lyapunov functions. The design of the controller and the update laws is interlaced in
adaptive Backstepping.

If applied, this procedure generates multiple update laws, meaning also parameter estimates,
for an unknown parameter. The number of parameter estimates is identical to the number of
differential equations of the system. This behavior is denoted overparametrization. The further
development of the methodology illustrated in [70] and [69] reduces the overparametrization
of adaptive Backstepping. Following this development, other Backstepping varieties evolved.
[71] constitutes a contiguous illustration. The methodology of input-to-state stability Backstep-
ping, for example, provides the ability to separate the update law and controller design. The
requirement to handle time-varying parameters, bounded disturbances, and provide stability
without adaptation lead to the implementation of nonlinear damping terms into the Backstep-
ping methodologies, as presented in [71].

After its invention in 1991, the Backstepping methodology has been in the focus of research
regularly. Different authors applied the Backstepping methodology to various types of systems.
Besides the basic examples given in [71], the application of the Backstepping methodology to a
jet engine compressor is illustrated in [72]. The possibility of utilizing Backstepping for the con-
trol of spacecraft is demonstrated in [146]. Starting 2003, the use of the Backstepping method
for flight control was demonstrated and further developed. The results are available in [43], [44],
and [133]. One of the first applications of the Backstepping methodology to missile control is
shown in [92]. A more detailed treatment of Backstepping based missile control is illustrated in
[128] and [131].

The available literature comprises examples for the utilization of the adaptive Backstepping
methodology for aerospace systems. A control design for spacecraft which is based on adaptive
Backstepping is presented in [77]. The first employment of this methodology to flight control
is illustrated in [118]. Further detailed and elaborated adaptive Backstepping flight control de-
signs are presented in [123], [124], and [139]. Recently, the application of adaptive Backstepping
to flight control of an unmanned aerial vehicle was achieved. The design is available in [144].
Besides a Backstepping based missile control, [131] contains an adaptive Backstepping design.
The first employment of input-to-state stability Backstepping in missile control is illustrated in
[137] and [138]. The presentation in [3] contains nonlinear damping terms. In addition, nonlin-
ear damping terms are used in the designs illustrated in [131].

In the following, the theoretical background of the nonlinear control methodology Backstep-
ping is presented. Starting from Backstepping designs for systems without uncertainties, more
intricate designs are introduced successively, leading to the design procedure for parametric
strict-feedback systems with uncertain control coefficients. It is augmented by nonlinear damp-
ing terms, finally. Besides adaptive Backstepping, augmented by nonlinear damping terms, none
of the further developments mentioned above is introduced herein. This is motivated by the aims
stated at the beginning of the thesis. Because at the moment no source presenting a nonlinear,
adaptive flight control system which can be applied to a real endo-atmospheric dual-actuator
interceptor is on hand, it is reasonable to develop such system first using adaptive Backstepping,
before other methods are accounted for. The design procedures in this thesis are developed only
for systems of two differential equations, because these are of importance for the design of the
interceptor flight control system. The presentation of recursive design procedure for systems
consisting out of more differential equations would not allow to stay in the desired scope.

The following introduction generates a solid foundation of understanding of the Backstepping
method for the design of the interceptor flight control system in the following chapters. By
separating the theoretical background from the design of the interceptor flight control system, a
concentration on the interceptor specifics during the execution of the design process is possible.
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4.2 Backstepping

4.2.1 Basic stability theorems

The following sections introduce the Backstepping methodology and illustrate its usage for the
control of nonlinear systems. Strict-feedback systems composed of scalar equations as well
as strict-feedback systems consisting of two ordinary differential equations are considered. As
introduced above, strict-feedback systems have a lower triangular structure, where the individual
differential equations contain only the states up to the considered equation plus the state of the
next differential equation. The particular differential equations comprise two nonlinearities
which depend on the states up to the actual equation. One of the nonlinearities is multiplied
by the state of the following equation or the input respectively, if it is the lowest equation of
the triangular system. For this class of systems the control tasks of regulation and tracking
are covered. The boundedness and stability properties of the respective controlled systems
are affiliated based on Lyapunov stability. Furthermore, the relationship between the control
parameters and the transient performance of the respective controlled systems is illustrated.
Stability is the primary requirement for all control systems. Lyapunov stability constitutes an
established and widely spread concept in control theory. Due to the fact that Lyapunov stability
provides the basis for the derivation of the boundedness and stability properties of controlled
systems in this thesis, related stability properties as well as stability theorems are introduced
now. A detailed presentation of Lyapunov stability and connoted concepts is available in [66].
The latter, in combination with [71], forms the foundation for this introduction.
A nonlinear, non-autonomous system is given by (4.1), whereupon & € R™ and f : R" xR, — R”
is piecewise continuous in ¢ and locally Lipschitz in £. The origin £ = 0 is an equilibrium of
(4.1) at t = 0; (4.2) holds. .

= f(Z,1) (4.1)

F(0,6)=0, Vt>0 (4.2)
Then the equilibrium # = 0 of (4.1) is
o stable, if for each € > 0 there exists a § = 0 (&,¢9) > 0 such that
17 @)l <0 = ()] <e, VE=to=0 (4.3)
o uniformly stable, if for each £ > 0 there is 6 = ¢ (¢) > 0, independent of ¢y, such that (4.3)
is satisfied.
e unstable, if it is not stable.

e asymptotically stable, if it is stable, and there is a positive constant ¢ = ¢ (tp) such that
Z(t) — 0ast— oo, for all |Z ()| < c.

o uniformly asymptotically stable, if it is uniformly stable, and there is a positive constant
¢, independent of tg, such that Z(t) — 0 as t — oo, for all | (to)|| < ¢, uniformly in tp;
that is, for each n > 0, there is T'= T (n) > 0 such that

IZ@) <n, VE=to+T(n), VTl <c (4.4)

e globally uniformly asymptotically stable, if it is uniformly stable, § (¢) can be chosen to
satisfy lim._,o, 0 (¢) = 00, and for each pair of positive numbers 1 and ¢, there is T' =
T (n,¢) > 0 such that

2@ <n, Vt=to+T(n,c), VIZ({to)l <c (4.5)
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Utilizing the stated stability property definitions, the following theorems are derived from [74]
and [145]. These theorems constitute excellent tools for convergence analysis.

Theorem 4.1 (LaSalle-Yoshizawa, as in [71]) Let ¥ = 0 be an equilibrium point of (4.1)
and suppose f (Z,t) is locally Lipschitz in & uniformly int. Let V : R™ — Ry be a continuously
differentiable, positive definite, and radially unbounded function V (&) such that

V(@) =P Dz t) < -W(F) <0, V>0, VZeR", (4.6)

whereupon W : R™ — Ry is a continuous function. Then, all solutions of (4.1) are globally
uniformly bounded and satisfy
lim W (Z(t)) = 0. (4.7)

t—o0

In addition, if W (Z) is positive definite, then the equilibrium & = 0 is globally uniformly asymp-
totically stable.

Theorem 4.2 (LaSalle, following [66]) Let €2 be a positively invariant set of the nonlinear,
autonomous system & = f (Z). Let V : Q — R be a continuously differentiable function V (Z)
such that

V(&) <0, Vieq. (4.8)

Let E = {:f cQ|V (&)= 0}, and let M be the largest invariant set contained in E. Then,

every bounded solution T (t) starting in Q converges to M as t — oo.

The mentioned property of radial unboundedness means that V (¥) — oo for ||Z|| — oo. The
definition of the concepts invariant set and positively invariant set is given in [66]. The term
invariant set denotes as set which has the property that if the solution of the nonlinear, au-
tonomous system belongs to the set at a certain time instant, it belongs to this set for all times;
future and past. If the solution of a nonlinear, autonomous system belongs to a set starting at
a distinct time instant and belongs to this set for all future times, the set is named positively
invariant.

Theorem 4.2 allows to conclude that if ¥ = 0 is the only equilibrium of the nonlinear, autonomous
system Z = f (Z), V : R™ — R4 is a continuously differentiable, positive definite, radially un-
bounded function V (Z) such that (4.8) holds for all ¥ € R, E = {f ER™ |V () = 0} and no
solution other than &
stable.

This stability properties and theorems are the foundation for the presentation of the basic
principle of Backstepping and the recursive design procedure for strict-feedback systems in the
following.

(t) = 0 can stay forever in F, then the origin is globally asymptotically

4.2.2 Strict-feedback systems

Before the recursive design procedure for strict-feedback systems is introduced, the basic princi-
ple of Backstepping is illustrated on the simple nonlinear system given by (4.9) and (4.10). The
illustration follows [71].

i1 = f(21) + g (71) 22 (4.9)
i’Q =Uu (4.10)
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Assuming that the nonlinear system would only consist of (4.9) and that the state zo would be
the input u, (4.11) would result. The nonlinearity f (z1) in (4.11) is presumed to fulfill (4.12).

i1 = f(z1) +g(21)u (4.11)

F(0)=0 (4.12)

A feasible controller for (4.11) is designed by using the following approach. First, a Lyapunov
function Vi (z1) is chosen like (4.13). Vi (z1) exhibits the properties of continuous differentia-
bility, positive definiteness, and radial unboundedness stated in Theorem 4.1. The derivative of
Vi (x1) is developed as (4.14) by using (4.11).

Vi(z1) = 571 (4.13)
Vi (z1) = 2181
=21 [f (21) + g (z1) u] (4.14)

If the control w is chosen as (4.15), whereupon ¢; € R, the derivative of Vj (x1) simplifies to
(4.16).

V1 (21 1| f (1) +g(z1 @)

=21 [f (z1) = f (71) — c121]
= —c12? (4.16)

[—f (x1) — c121]

Because ¢; € R is given, as mentioned above, (4.17) holds.
1% (x1) = —clx% <0, V1 eR (4.17)

Referring back to Theorem 4.1, it becomes clear that the latter guarantees that all solutions
x1 (t) of (4.11) are globally bounded. Identifying W (z1 (t)) as W (z1 (t)) = c12? in terms of
Theorem 4.1, it is obvious that W (z; (t)) = 0 for ¢ — oo as stated in (4.7). Because W (x; (t)) is
also positive definite, the equilibrium 27 = 0 of (4.11) is guaranteed to be globally asymptotically
stable by Theorem 4.1.
Considering R as 2 in Theorem 4.2 and noticing that V3 : R — R, as well as (4.8) is equal to
(4.17), Theorem 4.2 guarantees that x; (t) converges to the largest invariant set M contained in
the set £ = {x1 € R| W (x1) = 0}. It is evident that the E as well as M encompass only the
point x1 = 0 in this case, because of ¢; € R...
Coming back to (4.9) and (4.10), it becomes clear that u, as chosen in (4.15), can not be used
to control z1, due to the fact that (4.9) only contains 5. Therefore, x; is controlled via z3. The
latter itself is not specifiable directly, but can be influenced by w in (4.10). (4.15) is understood
as the desired x2, because it leads to the derived boundedness and stability properties. Because
xo will differ from the desired value of (4.15), an error variable z is defined as stated in (4.18).
The desired value of x9 is represented by « (1), the stabilizing function, following the denotation
in [71).

z=ux9 —a(x) (4.18)
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By using (4.18) as well as the derivative of z, (4.9) and (4.10) are rewritten as (4.19) and (4.20).

i1 = f(21) + g (x1) [z + o (21)] (4.19)
s=u= B ) g (e B+ a el (4.20

Defining the Lyapunov function V5 (21, 2) as (4.21), whereupon V; (z1) is given by (4.13), the
derivative V5 (1, 2) is written as (4.22). (4.16) is used in the latter derivation. The functions
are written without their arguments to enhance readability.

1
Vo (21,2) = V1 (11) + §z2
1 1

Vo (21,2) = x181 + 23

=x1[f+gz+ga]+z{u—aaa(f—i—gz—i—goz)]
x1

o

—a:1[f+ga]+z[u—axl

(f+9z+ga)+ mlg] (4.22)

a (x1), which is the desired value of x5 according to (4.15), as introduced above, is implemented
in (4.22).

Vo (z1,2) = o1 {erg; (—f - 01$1)} +z [U — 38:1(/‘); <f+92+9; (—f— 0196‘1)) +$19]
=r[f-f-amn]+z {U—ga(ergz—f—Clxl)Jrl’lg]
x1
— —clm% +z [u — gai (9z — c1w1) + xlg] (4.23)

Choosing the control u as given in (4.24), with c2 € Ry, Equation (4.23) is simplified to (4.25).

0
U= —cCoz + o (9z — c1z1) — 219 (4.24)
8ZE1
Va (r1,2) = —clx% — c92? (4.25)

Because (4.26) holds, Theorem 4.1 guarantees global boundedness of z; (¢) and z(¢). Hence,
all solutions of (4.19) and (4.20) are globally bounded. The boundedness of z (t) and z (t)
in combination with (4.18) guarantees global boundedness of x5 (). Therefore, all solutions of
(4.9) and (4.10) are globally bounded. In addition, W (z1 (t), z (t)) = c12? + c22? is regulated
according to (4.27). The positive definiteness of W (x1 (t), z (¢t)) leads to the global asymptotic
stability of 1 = 0, z = 0 via Theorem 4.1. This implies that 1 = 0, zo = 0 is the global
asymptotic stable equilibrium of (4.9) and (4.10).

Vo (71,2) = —c122 — 222 <0, Vz; €R, VzeR (4.26)
tlim W(z1(t),2(t) =0 (4.27)

Theorem 4.2 guarantees convergence of [zq (£) 2 (t)}T to the largest invariant set contained in
the set {[:L’l (t) z(t)]T ER? |z =0,2= 0}.
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Design procedure for strict-feedback systems

After presenting the basic principle of Backstepping on a simple nonlinear system, the recursive
design procedure for strict-feedback systems is introduced. The presentation is based on [71].
The strict-feedback system is given by (4.28) and (4.29).

&1 = f1(21) + g1 (21) 22 (4.28)
T2 = fo (21,22) + g2 (T1,72) v (4.29)
First, an error variable z is defined according to (4.30), following the example above. Utilizing

this definition, (4.28) is rewritten as (4.31). The Lyapunov function V; (x;) for (4.31) is chosen
as (4.32). The derivative of V; (z1) is given by (4.33).

z=mx9 — a(x1) (4.30)
i1 = f1(z1) + g1 (z1) [z + a (21)] (4.31)
Vi(ry) = %33% (4.32)

Vi (1) = 211
=21 [f1 (21) + g1 (21) [2 +  (21)]] (4.33)

Now, the stabilizing function a (x) is chosen according to (4.34), whereupon ¢; € R;. Utilizing
a(x1) in (4.33) leads to (4.35). Because the sign of the last term in (4.35) is unknown, no
conclusion about the stability properties of (4.35) can be drawn.

a(z) = [—f1 (21) — c11] (4.34)

g1 (1)

Vi(z1) =21 f1 (z1) + 2101 (1) 2+ 2191 (1) o (1)
= —clx% + 2101 ($1) z (4.35)

The derivative of z, which is given in (4.36), is further developed to (4.37). (4.29), (4.31), and
(4.34) are used.

4= o — 6 (a1) (4.36)
= fo (z1,22) + g2 (z1,22) u — & (21)
= fa (@1,22) + g2 (x1,22) u — 80:3(351):&1
= falonsms) + g2 (o) u— P51 o) 4 g1 o)+ ()]
= f2 (w1, 22) + g2 (71, 22) u — 80(;53?) (91 (%1) 2 — c121] (4.37)

The Lyapunov function V5 (21, z) is defined in accordance with (4.38). The derivative of V5 (x1, 2)
is developed to (4.39) by employing (4.35) and (4.37).

1
Vo (z1,2) = Vi (1) + 522
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1
So 4o (4.38)

Vo (x1,2) = mydq + 22
= —c2t + 3191 (T1) 2

Oa (1)
8I1

+z |:f2 (x1,22) + g2 (x1,22) u — (g1 (z1) 2z — clxl]] (4.39)

By choosing the control u as stated in (4.40), with ca € Ry, (4.39) is written as (4.41).

u= | hm) + 5 g ) s - ] g ) -] @40
Vy (r1,2) = —clx% — c92? (4.41)

Following the derivation of the boundedness and stability properties in the illustration of the
basic principle of Backstepping, Theorem 4.1 guarantees global boundedness of x; () and z (),
because (4.42) holds. The boundedness of z; (¢) and z (¢) in combination with (4.30) guarantees
global boundedness of x3 (¢). For this reason, all solutions of (4.28) and (4.29) are globally
bounded. Additionally, 21 (t) and z (¢) are regulated based on Theorem 4.1. Seeing (4.30) and
(4.34), the regulation of z9 (t) is evident, if f; (0) = 0. Because the derivative of V5 (21, 2) is
negative definite, Theorem 4.1 guarantees global asymptotic stability of z1 = 0, z = 0. Provided
f1(0) = 0, this implies that z; = 0, z2 = 0 is the global asymptotic stable equilibrium of the
strict-feedback system given by (4.28) and (4.29).

Vo (71,2) = —c122 — 222 <0, Vz; €R, VzeR (4.42)

Theorem 4.2 guarantees the convergence of [acl (t) =z (t)]T to the largest invariant set contained
in the set {[xl (t) z(t)]T ER? |21 =0,2= 0}.
The necessary conditions for the derived boundedness and stability properties are ¢; € Ry
and ¢y € Ry. In addition, (4.43) and (4.44) must hold. Otherwise, the strict-feedback system
(4.28) and (4.29) is not controllable, and « (z1) as well as u are not defined. The concept of
controllability is not treated further to stay inside the scope of this thesis. A detailed illustration
is available in [125].

g1 (xl) 7'5 0, Vri1 € R (4.43)

g2 (1’1,1‘2) 7& 0, Va1 € R, Vrg € R (4.44)

It is clear from (4.41) that the derivative of V5 (21, z) is proportional to ¢; and ¢y. This means
that the strict-feedback system converges to its global asymptotic stable equilibrium x; = 0,
zo = 0 faster, if ¢; and co are increased. In contrast, (4.40) shows that increasing c¢; and co
results in a higher control effort. Therefore, optimal ¢; and ¢y, which guarantee maximum speed
of convergence at an allowable control effort, exist.

After presenting the basic principle of Backstepping and the recursive design procedure for
strict-feedback systems, more complex systems are treated in the following.

4.2.3 Block Backstepping

While scalar strict-feedback systems have been treated beforehand, the following paragraphs
illustrate Backstepping for strict-feedback systems which systems equations are composed of
two ordinary differential equations. The design procedure is presented and the boundedness
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and stability properties are derived. According to [66] and [71], which constitute the basis for
the following illustration, this use case of the Backstepping methodology is denoted as Block
Backstepping.

The strict-feedback system is given by (4.45) and (4.46). The states of the system are 7; € R”
and Ty € R™. The vector u € R" constitutes the control input. F; : R® — R” and F5 : R" — R"
are vector fields of smooth nonlinear functions. G; : R™ — R™ x R™ and G5 : R® — R" x R™ are
square matrices which are composed of vector fields of smooth nonlinear functions.

7 = Fy (F1) + Gy (§h) T2 (4.45)
Ty = Py (T, %) + Go (I, 72) 1 (4.46)

Following the methodology for scalar strict-feedback systems, an error variable Z' is defined
according to (4.47); Z € R™ and the stabilizing function « (#1) constitutes a vector field « :
R™ — R™. Utilizing the definition of Z' in (4.45) leads to (4.48).

=7 —a(f) (4.47)

Ty =P () + Gy (§1) [F+ o ()] (4.48)

The Lyapunov function V; (%) for (4.48) is chosen as (4.49). The derivative of V; (&) is derived
according to (4.50).

- 1_ 7.
Vi(#h) = §$1T$1 (4.49)
Vi(z) =zl
=& [F1 (#1) + G1 (#1) [Z+ a (71)]] (4.50)

At this point, the stabilizing function « (¥1) is taken as stated in (4.51), where C; € R™ x R”
is positive definite, meaning that all eigenvalues of C; are positive. The derivative of V; (¥) is
developed to (4.52) by employing (4.51) in (4.50).

« (3_3’1) = G1_1 (fl) [—Fl (fl) — leﬂ (4.51)

Vi(Z) =2l Fy (7)) + 21 Gy (7)) 2+ 2] Gy (7)) a (£1)

= —zlca + 2l Gy (7)) 7 (4.52)

The unknown sign of the last term in (4.52) prevents a conclusion about the boundedness and
stability properties of the strict-feedback system at this point of the procedure. Hence, the
latter is continued exactly as for the scalar strict-feedback system. The derivative of Z, which is
given by (4.53), is manipulated to (4.54). (4.46), (4.48), and (4.51) are used. The term 23V

constitutes the Jacobi-Matrix of o (Z1).

Z=1p — & (7)) (4.53)
:Fz(xl,fg)+G2(fl,fg)l_[—d(fl)
RN RN . 80& .f iR
= Fy (Z1,%2) + Go (%1, %2) U — 8(* 1)1‘1
1
L. o oo Oa(T - N, -
= By (F1,2) + Go (21, 82) T~ S5 (7 (7) + G () [+ 0 ()]
L. L .. Oua(x L .
= Fy (Z1,%2) + Go (%1, %2) U — 0:(5’11) (G (%1) 27— C1.4] (4.54)
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The Lyapunov function (4.49) is augmented according to (4.55). By employing (4.52) and (4.54),
the derivative of V5 (%1, 2) is achieved. It is stated in (4.56).

z (4.55)

Vo(#,7) = &lz+272

(G (#)) 7 — lel]}
= —z#lciz 4+ 216T (7)) 7
= [Fg (#1,82) + G (31, 72) @

_ Oa (J_fl)
0%y

= —zlown

Gy (1) 2 — lel]}

+zT [Fz (Z1,22) + Go (F1,Z2) U

. 004 (fl)
07
Now, the control @ is chosen as (4.57). C2 € R™ x R™ is positive definite. Implementing @ in
(4.56) leads to (4.58) for the derivative of V3 (¥, 2).

Oo (fl)
071

Vo (71, 2) = -2l 1@ — 2707 (4.58)
Considering (4.59), global boundedness of ¥ (¢) and Z(¢) is guaranteed by Theorem 4.1. Com-
bining this result with (4.47) provides the global boundedness of #5 (t). Hence, all solutions
of the strict-feedback system (4.45), (4.46) are globally bounded. Theorem 4.1 guarantees the
regulation of ¥ (t) and Z'(t). Based on (4.47), this implies the regulation of ¥ (¢), if 3 (0) = 0.
The negative definiteness of the derivative of V5 (Z1, Z) in combination with Theorem 4.1 leads to
global asymptotic stability of 1 = 0, 2= 0. Taking into account (4.47) and assuming F; (0) = 0,
the global asymptotic stable equilibrium of the strict-feedback system (4.45), (4.46) is given by
fleandE:’Q:O.

Vo (71,2) = -2 1@ — 2707 <0, Vi, € R*, VZeR" (4.59)

(G (71) 2 — O17] + G (F1) fl] (4.56)

il = Gyt (Z1,72) | —Fa (41, 7o) + (G (21)Z— C1@1] — G (2) 21 — 025} (4.57)

Theorem 4.2 guarantees the convergence of [Z (t) Z (t)]T to the largest invariant set contained
in the set {[:E’l 1) 2] eR™ | # =0,7= o}.

The derived boundedness and stability properties of the strict-feedback system are based on
the positive definiteness of C; € R” x R"™ and Cy € R" x R™. G (Z1) and Gg (¥, Z2) must be

nonsingular in their domain to ensure the existence of their respective inverse which are utilized

in (4.51) and (4.57).
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4.2.4 Tracking

The presentations up to this point of the thesis considered scalar and vector strict-feedback
systems. In either case, regulation has been the implicit aim of the control design. It is shown in
the following that the Backstepping methodology allows to achieve the control task of tracking.
The Backstepping control law is designed in such a way that the output of the strict-feedback
system follows a known, smooth, and bounded reference signal. The related boundedness and
stability properties are derived. This illustration augments [71] which does not treat tracking in
the situation without uncertainties.

Following the design procedure for strict-feedback systems, the latter is given by (4.60) and
(4.61). The output y of the strict-feedback system is defined in (4.62).

1= f1(z1) + g1 (1) 22 (4.60)
&y = fo (z1,22) + g2 (z1,22) u (4.61)
y = (4.62)

The known, smooth, and bounded reference signal, which y shall follow, is given by z1 gey. It
is assumed that all derivatives of x1 res are known, smooth, and bounded.

First, two error variables z; and 2o are defined according to (4.63) and (4.64). The derivative
of z1 is written as (4.65) by using (4.60) and (4.64).

21 =1 — xl,Ref (4.63)

29 = X9 — & (L1, 1,Ref > T1,Ref) (4.64)

Z1 = X1 — &1 Ref
= fi(x1) + g1 (1) 2 — T1,Res
= fi(z1) + g1 (21) [22 + @ (T1, T1,Refs T1,Ref)] — T1,Ref (4.65)

The Lyapunov function Vj (z;1) for (4.65) is chosen as (4.66). The derivative of V; (z1) is calcu-

lated as stated in (4.67).
1
Vi(z) = 52% (4.66)

Vi (z21) = 2121
=21 [f1 (x1) + g1 (21) [22 + @ (T1, T1 Ref, T1,Ref)] — T1,Ref) (4.67)

The stabilizing function o (21, 21 gef, ©1,res) is chosen according to (4.68), with ¢; € Ry. The
derivative of Vj (z1) simplifies to (4.69) with this choice.

. 1 ,

o (21,1, Refs T1,Ref) = [—f1(z1) + &1 Rep — c121] (4.68)
g1 (z1)

Vi(z1) = —a12i + 2191 (1) 22 (4.69)

A conclusion about the stability properties is not possible, because the sign of the second term in
(4.69) is unknown. Now, the derivative of z9 is affiliated according to (4.70). (4.61) is employed
in the derivation of (4.70).

Zp =T9g — & ($1,$1,Ref7331,Ref)
= fo (21, 22) + g2 (x1,22) u — & (T1, T1, Ref> T1,Ref) (4.70)
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The derivative of a (21,21 Ref, T1,Ref) in (4.70) is available as the analytic expression provided
in (4.71).

Oa (1,21, Ref, T1,Ref)

& (21, 1 Ref, B1,Ref) = 0x1 n

Oa (21, 1, Ref 9'61,Ref):t1 Ref + Oa (1, xl’Ref’il’Ref)il Ref

OZ1 Ref e QL1 Ref -
8 ) ) '
_ 00 (1, %1 Rey, ¥1,Ref) [f1 (1) + g1 (1) z2)

o0x1

O (21, 1, Ref, jfl,Ref)ﬂ'cl Ref + Oa (xl’xlvREf’i"l’Ref)il R
01 Ref el 01, Res -

(4.71)

The Lyapunov function V3 (21, 22) is taken as (4.72), and it constitutes an augmented version
of the choice in (4.66). The derivative of V5 (21, z2) is developed as given by (4.73), whereupon
(4.69) and (4.70) are utilized. The arguments of « (21, %1 ref, ©1,Ref) are not written in (4.73)
to enhance readability.

Va (21,22) = Vi (21) + =25

25 (4.72)

Vs (21,22) = 2121 + 2222

= *012% + 2191 (21) 22
+22| f2 (21, 72) + g2 (21, 72) u
oo . oo . oo

—5 . T1— 3 T1,Re
8951 aTl,Ref !

— 71 Re 4.73
01, Ref PLE f] (4.73)

With (4.74) for the control u, co € Ry, the derivative of Va (21, 22) simplifies to (4.75).

1 fo )+ da n da n da (1)
U=—F—"|"J2(Z1,22 a1 T1,R S L1,Ref — %191 (X1) — C222
g2 (21, x2) 0z 01, Ref bref OT1 Ref Lfes g
. (4.74)
Va (21, 292) = —clz% — czz% (4.75)

Respecting (4.76), Theorem 4.1 guarantees global boundedness of z; (t) and 23 (¢). All solutions
of the error system, comprising the states z; and 23, are globally bounded. In addition, Theorem
4.1 guarantees the regulation of z1 (t) and 29 (t). Because the derivative of V5 (21, 22) is negative
definite, Theorem 4.1 guarantees global asymptotic stability of z1 = 0, z9 = 0 for the error
system. The error system in vector notation is given in (4.77).

VQ (21722) = —clz% — 022’% <0, Vz1 R, VzoeR (476)

«?1 _ | —a gi(@)] & (4.77)
22 —g1(z1)  —c2 22
The derived boundedness and stability properties of (4.77) lead to the achievement of the con-
trol task of tracking. The global boundedness z1 (t) means that the difference between y (),
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which is equal to z1 (t), and 1 gey (t) is globally bounded. The regulation of z; (t) implies that
y (t) converges to 1 res (t) for t — oo. Based on the global asymptotic stability property of
z1 = 0, 29 = 0, this convergence exhibits global asymptotical behavior. Hence, the control task
of tracking of x1 ges (t) is achieved globally and asymptotically.

Concerning the boundedness of the strict-feedback system given by (4.60) and (4.61), the fol-
lowing conclusions are drawn. The global boundedness of z; (t) as well as the boundedness of
x1 Ref (t) in combination with (4.63) lead to the boundedness x; (¢). This result in conjunction
with the boundedness of 1 gey (t) implies the boundedness of « (21,21, Rref, ©1,ref). Considering
(4.64), the boundedness of z3 (t) is derived leading finally to the boundedness of x5 (¢). For this
reason, all solutions of the strict-feedback system (4.60), (4.61) are globally bounded.

If 21 ger (t) — 0 for t — oo, the regulation of 2 (t) implies z1 (t) — 0 for ¢ — oco. Provided
f1(0) =0, a(x1, 21 Refs T1,Ref) — 0 for t — oo which in turn leads to x2 (t) — 0 for ¢t — oo,
based on the regulation of z3 (¢). 1 = 0, x5 = 0 is the globally stable equilibrium of the strict-
feedback system (4.60), (4.61), if f1 (0) = 0.

Theorem 4.2 guarantees the convergence of [z (t) 22 (t)] T to the largest invariant set contained
in the set {[zl (t) =20 (t)]T ER? |2 =0,20 = O}.

The derived boundedness and stability properties are based on the appropriate choices of ¢; € Ry
and co € Ry. Furthermore, (4.43) and (4.44) must hold to guarantee controllability of the
strict-feedback system as well as the existence of o (21,1 Rref,Z1,ref) and u. The concept of
controllability is illustrated in [125] and not treated further herein.

Due to the dependency of the derivative of V5 (z1,22) from ¢; and ca, which is evident from
(4.75), the speed of convergence to the global asymptotic stable equilibrium z; = 0, z3 = 0 of
(4.77) increases, if ¢; and ¢ are increased. This means that the speed at which the control task
of tracking is achieved is proportional to ¢; and co. Vice versa, considering (4.74), it is obvious
that increased ¢ and ¢y result in a higher control effort. Hence, ¢; and co are optimizable with
respect to tracking performance and control effort.

The given presentation showed the utilization of the Backstepping methodology for the control
task of tracking of a known, smooth, and bounded reference signal. The boundedness and stabil-
ity properties have been derived and it has been demonstrated that global asymptotic tracking
of a known, smooth, and bounded reference signal is achieved. Because the interceptor flight
control system is designed to follow commands which are calculated by the interceptor guidance
the presented theoretical background is of high importance.

If all properties of the interceptor would be known exactly, the presented theoretical background
would be sufficient for the design of the interceptor flight control system. As already introduced
in Chapter 2, the exact determination of all interceptor properties is impossible. Therefore, the
theoretical background is augmented further.

4.3 Adaptive Backstepping

4.3.1 Parametric strict-feedback systems

After the theoretical background for strict-feedback systems without uncertainties has been
presented, the application of the Backstepping methodology to strict-feedback systems which do
comprise uncertain constant parameters is shown. Following [71], this use case of Backstepping
is denoted as adaptive Backstepping. Parametric strict-feedback systems as well as the latter
systems with unknown control coefficients are treated. Regulation and tracking of a known,
smooth, and bounded reference signal are considered. Based on Chapter 2, these illustrations
are of importance to enable the interceptor flight control system to overcome uncertain constant
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parameters.
To introduce the concept of adaptive Backstepping, the simple, scalar, parametric nonlinear
system given by (4.78) and (4.79) is used. This also follows [71].

&1 = f(21)0 + g (z1) 22 (4.78)
To=u (4.79)

Under the assumption that the parametric nonlinear system would only encompass (4.78) and
that zo would constitute the input u, (4.80) would remain. At this point, it is assumed further
that the nonlinearity f (x1) fulfills (4.81).

1= f(x1)0+g(x1)u (4.80)

f(0)=0 (4.81)

For this reduced system, consisting only of (4.80), a controller would be derived in the following

way. Initially, a Lyapunov function Vi (x1,6;) is chosen according to (4.82). 6; is the parameter
error which results from the fact that the parameter estimate, denoted by 61, differs from the
real parameter value 6. It is defined in (4.83). The variable =, is called adaptation gain and
exhibits the property 71 € Ry.
- 1 -
Vi <x1,91> = a2+ 02 (4.82)
2 2
0, =0—0, (4.83)

The chosen Vi (z7, 51) is continuous differentiable, positive definite, and radially unbounded. Its
derivative is developed to (4.84), whereupon (4.80) is employed.

. ~ . 1~ =
Vi (331791) =101 + %9191
1~ =
=z [f (21) 0+ g (z1) u] + ot (4.84)

Because 6 is assumed to be constant, 51 is equal to —0;, which can be seen from (4.83). By
implementing this as well as (4.83) itself into (4.84), (4.85) is derived.

Vl (1’1,51) = f (1’1) (51 + é1> —i—g(a?l)u] — ’Y11§1é1
=1 f (x1) 0, + f(z1) 0, + g (z1) u] — ;519;1

= [f @) b+ g @] + £ @) b - iy

=21 :f ({L’l) él +g ((L‘l) u:| + 9~1 I:xlf (xl) — ’:1@1:| (4.85)

The choice for the update law for él according to (4.86) simplifies (4.85) to (4.87).
0, = 1z f (z1) (4.86)
Vl (.%'1, 9~1> = [f (xl) él +g (.%1) u] (4.87)
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Based on the fact that ) is available from (4.86) via integration, the feasible control u, as stated
n (4.88), can be chosen; ¢; € R;. This control employed in (4.87) leads to (4.89).

U = p (;) [—f (x1) él - clxl] (4.88)
1% <x1,§1> = —clx% (4.89)

Given that (4.90) holds, Theorem 4.1 guarantees that z; (t) and 6; (t) are globally bounded.

Vl (131,51) = —Cll'% <0, Vr; €R, Vél eR (4.90)

Understanding W (x1 (t)) = clwi with respect to Theorem 4.1, it becomes clear that x; (t) is
regulated. If z; (t) is regulated, 6; (t) reaches a steady-state based on (4.86), implying further
that u reaches the steady-state according to (4.91) for ¢ — oc.

1 .
uss = o5 [—f (0) 91755} (4.91)

Because (4.81) holds and z; (t) is regulated, z; = 0 is the globally stable equilibrium of (4.80).
Besides 71 € Ry and ¢1 € Ry, g(x1) # 0 for all 1 € R is a mandatory prerequisite for this
approach.

Widening the perspective to (4.78) and (4.79), it is evident that the designed w in (4.88) is
not appropriate to control such parametric nonlinear system. On the other hand, the insights
achieved by designing the control for the reduced system (4.80) help in finding the adequate
control for the system (4.78) and (4.79).

As in the case without uncertainties, z; has to be controlled via x3, because (4.78) does not
contain u. The designed control for the reduced system according to (4.88) is considered as the
desired x5. Due to the fact that x5 will differ from this desired value, the error z is defined
as stated in (4.92). The stabilizing function, which represents the desired value of x5, is now
depending on x; as well as él.

z2=1T9—« (xl,él) (4.92)
By employing (4.92) and the derivative of z, (4.78) and (4.79) are written as (4.93) and (4.94).
&1 = f (1) 0+ g (1) [Z‘FOZ <56179A1>} (4.93)

) Oo (xl, é1> R Oa (xl, él) i

The Lyapunov function Va(z1, 2,61, 6s) is defined as (4.95), with 6, according to (4.96). The
adaptation gain vo € R,.. 6 in (4.96) is a second parameter estimate of §. Although the system
(4.78), (4.79) contains only one unknown parameter 6, the second parameter estimate 05, which
implies 0y, is necessary to cancel the terms in the derivative of V2 (1,2 .01, 92) originating from
(4.94) later. 05 is independent from the parameter estimate 61, meaning two estimates for 6
exist. Therefore, the overall resulting system is be overparametrized. This is a negative aspect
of the adaptive Backstepping methodology. As introduced above, other methods are able to
overcome the overparametrization, but they are not treated herein for the also stated reasons.

Vo (961, z, él,§2> =W (l'l,él) + %ZQ + 21725%
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1 1 1 1 -
= 595% - 2—%9% + =2+ —03 (4.95)

0y = 0 — 0y (4.96)

The derivative of Va(z1, 2, 6, 9~2) is developed to (4.97). The functions are written without their
arguments to provide readability.

- o~ 1 -~ = 1~ =
V5 (:Cl, 2, 01,92> = 11+ —0101 + 22 + —0505
4! V2
1~ =
= z1[f0+gz+ ga] + ?0191
1
1 -~ =
+22 + —020
V2
~ ~ 1~ =
= {f (91 + 91) +gz+ ga} + 79191
1
1~ =
422 4+ —0505 (4.97)
V2
The rearranging of terms in (4.97) and the use of the fact that 51 is equal to —él leads to (4.98).
. ~ o~ o ~ 1 %
Vo (93172791,92) = mn [f91 +92+904} + 01 |:-T1f - 91]
Y1
1 -~ =
+2Z 4+ —0620- (4.98)
72

Implementing (4.86) simplifies the latter to (4.99).

V2<961,2,9~1,9~2) = 11 {fél—i—gz—i—ga

1 ~ =
+zZ 4+ —00- (4.99)
V2

Now, the remaining terms are manipulated further and a(z1,0;) which is given by (4.88) is
employed.

V2 (a:l,z,él,ég) = I [fél +ga} + r19%2
1~ =
+22 + —0202
Y2
= —clx% + z192

1 ~ =
+zZ+ —00, (4.100)
V2

With the use of (4.94), the last line of (4.100) is expanded further. (4.86) is used in this

derivation. Additionally, it is utilized that the derivative of 0y equals —ég, which can be seen
from (4.96).

VQ (33172751,52) = —0133% + 2192

Oa Oa » 1~ -
+zlu——=—(f0+ gz +ga) — —01| + —650
{ oz, (f g g ) 90, 1 2 209
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2
= —cx]+2x19%

oo oo 1~ =
+ ——(fO+ -+ — — — —050 4.101
z {U By (f0+ gz + ga) 26, (mz1f) 5, 0202 ( )

At this point, the remaining # in the second line of (4.101) is separated according to 0y + 0y = 0;
the second, independent parameter estimate of 8 is employed. Furthermore, the terms are once
again rearranged.

VQ (.’El, 27517 §2> = _lel}'% + X192
_ 5 ] ) ) o
+z |u— (‘37?1 <f (62 + 02) + gz + ga> — 8; (’h:clf)] — %9292
) 1
= _Cle + 2192
i dox 5 Oa
+z |u— Ere <f92 + 9z +ga) ey (71x1f)}
. 1
_ZaiféQ - iégég
Oz 7
= _0133% + 2192
dox A Oa
+z [u S <f92 + gz +ga> - 50 (ylxlf)}
1
~ Ja 1 =
0 4102
92 |:Z8.CC1 f + P 92:| ( )

The last term in (4.102) is eliminated by choosing the update law for 0y as (4.103). The control
u is taken as (4.104); ¢z € Ry.

A O
_ 4.1
02 M2E g (4.103)
u——cz—i—aia(fé—i— z+ a>+8a( xif)—w (4.104)
2 o7, 2TgzTyg 90, 71 19 .

The choices of (4.103) and (4.104) simplify the derivative of Va(z1, 2, 61, 62) to (4.105).
Va (a:l, 2,01, 52) = —clx% — 92 (4.105)

Given that (4.106) holds, Theorem 4.1 guarantees global boundedness of z1 (t), z (t), 6 (¢), and
0 (t). This result leads to the global boundedness of a(z1 (t),6; (t)). The combination of the
global boundedness of z (t) and a(z (t),6; (t)) in (4.92) guarantees the identical property for
x2 (t). This achieves that all solutions of (4.78) and (4.79) are globally bounded.

Vy (azl,z,él,ég) =—c1z3 — 22 <0, Vr €R, Vz€ER, V0, €R, Y0y eR (4.106)

In addition, z; (t) and z () are regulated, based on Theorem 4.1 implying that 01 (t) and 65 (t)
reach a steady-state. This means that a(z (¢),6; (t)) reaches the steady-state value in (4.107)

for t — oo.
1

“ 90

Presumed (4.81) holds, a(xy (t),0; (t)) — 0 for t — oco. In this case, x5 (£) — 0 for t — oo, as
can be seen from (4.92). In combination with the regulation of x; (¢), this means that z; = 0,

ags (3:1, él) [— £(0) él,ss} (4.107)
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xo = 0 is the globally stable equilibrium of the nonlinear parametric strict-feedback system
(4.79), (4.80).

The already introduced prerequisites for the establishment of this procedure remain in effect.
Additionally, 72 € Ry and ¢ € R} are mandatory.

Design procedure for parametric strict-feedback systems

By combining the design procedure for strict-feedback systems without uncertainties with the
concept of adaptive Backstepping, the design procedure for parametric strict-feedback system
results. The derivation follows [71], but explicitly shows all steps of the design procedure.

The parametric strict-feedback system is stated by (4.108) and (4.109). z; € R and z3 € R con-
stitute the states. The control input is given by v € R. F; : R — R™*! and F, : R2*! — R*x!
are vector fields composed of known, smooth nonlinear functions. g; : R - R and g5 : R — R
are known, smooth nonlinear functions. g € R? is a vector of uncertain constant parameters.

i1 = FL (21) 0+ g1 (21) 22 (4.108)

io = F (z1,22) 0 + go (z1,29) u (4.109)

Following (4.92), an error variable z is defined according to (4.110). Employing this definition,
(4.108) is rewritten as (4.111).

Z2=29 —« (331, 51) (4.110)

i1=F (21)0+ g1 (x1) [z+a(x1,51)} (4.111)

At this point, the Lyapunov function Vi (z1, 51) is chosen according to (4.112), whereupon 6;
constitutes the parameter error as defined in (4.113). The adaptation gain matrix I'; € R? x R?

is positive definite. The derivative of V;(z1,6;) is developed thereafter to (4.114).

A 1 12 A
1%} (1‘1,91) = 5.1‘% + 501TF1_191 (4.112)

RS
1R

=i

)
)

1 (4.113)

Vl (m1,931> =x1T1 + Hz'le‘l_lﬁil
=1 [FlT (21) 6 + g1 (z1) [z +a (zl, 50” + éffflgl (4.114)

Given that the vector § comprises uncertain constant parameters, (4.113) allows to conclude

that 51 is equal to —0;. Implementing this result in (4.114) results in (4.115).
‘./1 (xl,gl) =T [FlT (.’El) §+ g1 (ZEl) [Z +« (.1?1, 51)]} — 9?1“1’1% (4115)

The stabilizing function a(z1,0;) is chosen adequately as (4.116), with ¢; € R,.. Employing
(4.116) in (4.115) allows the calculation of (4.117).

~
=

«o (xl,gl) = " (1:1:1) [—FlT (1) 601 — clxl] (4.116)
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= —clx% + 2191 (331) z+ 1'1F1T (1'1) 51 — 91 Fl_lé‘l

= —clx% + 2191 (.%'1) z+ 9_"111 |:F1 (1‘1) xr1 — F1_191:| (4.117)

This achieved, the update law for 6, is taken as (4.118). Implementing this choice in (4.117)
leads to (4.119) for the derivative of the V; (1, 51)

0, =T F (z1) 2, (4.118)

Vl (."L‘l, 51) = —6117% + 2101 (1:1) z (4.119)

Because the sign of the last term in (4.119) is unknown, no conclusion about the stability

properties is achievable. The derivative of z is developed to (4.120). The derivative of a(z1,6;)
for this step of the process is given by the analytic expression (4.121).

ZZi?Q — o <$1,61>

= Ff (21,29) 0+ ga (21, 22) u — & <w1,§1) (4.120)

. Oa (xl,ﬁgl) oo (:ﬁﬁi) ES

& (acl, 51) = 0, 1 + 851 th
= w [FlT (1) 0+ g1 (1‘1)3«“2} + &li;i’al) [T1Fy (21) 2] (4.121)
1

The Lyapunov function Va(z1, 61, 2, 02) is stated in (4.122). 6, is defined in (4.123), whereupon
52 constitutes a second parameter estimate of g. Like in the beforehand presented approach, 9} is

independent from the parameter estimate 671. Therefore, the overall system is overparametrized
which is normal for adaptive Backstepping designs. I'y € R? x RY is positive definite and can
differ from I';.

—

= = = 1 1z =
Vs (ml,el,z,th) =W (m1,91> + 522 + 592TF2_192

1 Lornz 1 Lore—1z
= ix% + 500 T 01+ 522 + 505 T3 02 (4.122)
by =6 — 6, (4.123)

The derivative of Va(z1,6;, 2, 65) is manipulated to (4.124) by using (4.119) and (4.120). The
arguments of the functions are left out in the derivation of (4.124) to provide readability.

% (xl,gl,z,§2> = :L'li‘l - §1TFI1§1 + 2z — 52TF5152
= —clx% +r1012+ 2 F2T§+ gou — | — 9_’2:[’F2_19_’2
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2
= —cax]t+x191%

+z

o~ da da >
F2Te +92U — aixll'l — 89;91]
1

—65 1510,

2
= —C1T1 + T101%

- 0 - 0
+2z F2T€ + gou — g {FlTH + glacg} — g [Ty Fra]
Oz 00,
—0, 156, (4.124)

The control u is chosen appropriately as (4.125), with co € Ry. Implementing u in (4.124) leads
to (4.126).

> 0 5 0
w=— | —FTfy — z1g + 22 [FlTHQ +qiza| + T [0y i) — ez (4.125)
g2 Oz 96,
Vs <$1,517Z,§2> = —cazi+a1912
5 5 Ja S oo
+z F2T (92 + 92) + gou — — [FlT (92 +02> +g1IL‘2} - —= [Fllel]
8.%'1 891
0,156,
= —cla:% + 21912
2 0 5 0
+z FQTGQ + gou — g |:F1T@2 + glxg} — ?é [FlFlajl]
83:1 0
00y
= o A 2
2 FL 0y — 2o FLg, — 61T5 0,
ox1
2 2 Ty oo > o1
= —c17] — 22" + Fy oz — —F] bz — 0515 09
8%1
2 2 a7 da Zp S5
= —cx] — 2" + 05 For — —05 F1z— 05150y
81‘1
2 2, T Oa 1y
= —C1T] —C22 + 92 F2 — gFl z — 92 F2 92 (4126)
1
By utilizing 4.127 as the update law for 65, (4.126) simplifies to (4.128).
5 oo
Oy =19 | Fp — —F 4.12
=1 |- oA (4.127)
Vs (:nl, 51, z, 52) = —clzv% — 92? (4.128)

Due to the fact that (4.129) holds, global boundedness of z1 (%), 01 (t), z (), and 0, (¢) is guaran-

teed by Theorem 4.1. The global boundedness of z (¢) and 8 (t), via (4.113), leads to the global
boundedness of a(zq (t),6; (t)). This guarantees global boundedness of @ (¢) by 4.110. Hence,
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all solutions of (4.108), (4.109) are globally bounded. Furthermore, Theorem 4.1 guarantees the
regulation of x; () and z ().

VQ (xl,gl,z, 52) = —Cll‘% — 6222 <0, Vr; €R, VzeR, V§1 € R, Vgg € R" (4.129)

Since 1 (t) and 2 (t) are regulated, it is evident from (4.118) and (4.127) that f, (t) — 0 and

05 (t) — 0 for t — oco. Latter implies that 0 (£) and 65 (t) reach a steady-state value. It is
concluded from (4.116) that a(zy (t),0; (t)) reaches the steady-state value given in (4.130). If
F} (z1) exhibits the property (4.131), oz (), 6, (£)) — 0 for ¢t — oo.

ass <$1,§1) = gll(()) [—Fir (0) 51,55} (4.130)
F1(0)=0 (4.131)

Provided (4.131) holds, x2 (t) — 0 for ¢ — oo, which is derived from (4.110). Under this
condition, x; = 0, z2 = 0 is the globally stable equilibrium of (4.108), (4.109).

The necessary conditions for the derived boundedness and stability properties are ¢; € Ry and
co € R;. Furthermore, I'y € R? x R? and I'y € R? x RY are required to be positive definite. In
addition, (4.132) and (4.133) must hold.

g1(x1) #0, Vr1 €R (4.132)

g2 (1'1,:6'2) 7é 0, Va1 € R, Vry € R (4.133)

Design procedure for parametric strict-feedback systems in the case of tracking
The beforehand presented design procedure has been concerned with the regulation of paramet-
ric strict-feedback systems. Although this procedure itself constitutes an important step in the
process of establishing a foundation from which the interceptor flight control system can be de-
signed, the aim of the procedure is inappropriate for the interceptor flight control system design.
For this reason, the control task of tracking is considered in the following. The design procedure
for parametric strict-feedback systems in the case of tracking arises from the combination of the
earlier results concerning tracking with the design procedure for parametric strict-feedback sys-
tems. This presentation exceeds the illustrations in [66] and [71]. These sources do not consider
the control task of tracking in combination with adaptive Backstepping.

The parametric strict-feedback system, which constitutes the starting point for the design pro-
cedure, is given by (4.134) and (4.135). The states are z; € R and z2 € R. u € R constitutes
the control input. F; : R — R™*! and Fy : R2*X1 — R™*! are vectors fields of known, smooth
nonlinear functions. ¢g; : R — R and g2 : R — R are known, smooth nonlinear functions. g € RY
constitutes a vector uncertain constant parameters.

T = Fir (1’1) 5—1— g1 (.1‘1) o (4.134)
To = FQT (1'1,.7}2) §+ g2 ($1,$2) U (4.135)

The output y € R of the parametric strict-feedback system (4.134), (4.135) is equal to 1. y
shall follow the known, smooth, and bounded reference signal x1 gy € R. The derivatives of
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71,Ref are assumed to be known, smooth, and bounded.
Initially, two error variables z; € R and 22 € R are defined according to (4.136) and (4.137).

21 =1 — -Tl,Ref (4.136)

2o = T2 — (331,361,Ref, T1,Ref> 51) (4.137)

The Lyapunov function Vi(z1,6;) is chosen as (4.138). The parameter error ) is defined in
(4.139) and I'y € R? x R? is a positive definite adaptation gain matrix.

= 1 1= =
Vi (z1,¢91> = 35+ 500 T, (4.138)

1t
Ik

=i

>
>

1 (4.139)

The stabilizing function a(z1, 21, ref, 1, Ref, 51) is affiliated from the derivative of Vi (z1, 671) ac-

cording to (4.140); c1 € Ry. By employing a(x1, %1 Ref, ©1,Ref> 51) in the derivative of V(z1, §1),

the update law for f; becomes evident as given in (4.141).

. 5 1 5
« (xlyl'l,Ref, T1,Ref > 91) = m [—FlT (xl) 01 + T1,Ref — C121 (4.140)
51 = F1F1 (.%'1) z1 (4.141)

Because no conclusion about the stability properties of the parametric strict-feedback system is
possible after (4.140) and (4.141) are implemented in the derivative of Vj(z1, 51), the derivative of
2o is developed. Therein, the derivative of a(1, 21, ref, T1,Ref, 6’1) is represented by an analytic
expression. Afterwards, Va(z1, 51, 22, 52) is chosen as stated in (4.142), with 52 as (4.143). T'y €
RY x R? is positive dfaﬁnite. 52 in (4.143) constitutes a second parameter estimate of 5, which

is independent from 9:, implying that the overall system is overparametrized also in the case of
tracking.

5 = 1 13 | 13 5,
Vs (21, 01, 2o, 92) = 52’% + 591TI‘1_191 + 525 + 592TI12_192 (4.142)

1t
IR

=7

>
>

2 (4.143)

The calculation of the derivative of V5(z1, 51, 29, 52) leads finally to the control u given in (4.144),

whereupon ¢ € Ry. Using w in the derivative of Va(z1, 51, 22, 52), the appropriate choice for

the update law for 65 according to (4.145) becomes obvious. The arguments of the functions in
(4.144) and (4.145) are left out to enhance readability.

1 2, oo >
u = —|-Fj0—zg1+—— [Ff% + 122
92 O
oa . oo
T1,Ref +

Z1,Ref
8:Ul,Ref

Ja

001

ai’l,Ref

_l’_

[ Fiz1] — 622’2:| (4.144)
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6, =T [Fz - ggiFl} 2 (4.145)

(4.144) and (4.145) simplify the derivative of Va(z1, 51, 22,52) to (4.146).
‘./2 (Zl, 51, 22, gg) == —clz% - CQZ% (4146)

Presuming (4.147) holds, Theorem 4.1 guarantees global boundedness of 21 (¢), 01 (1), z2 (t), and

05 (t). Hence, all solutions of the error system which is given in (4.148) and (4.149) are globally
bounded. Following [71], the abbreviations w; and wy are denoted regressor functions.

VQ (21,51,22,52) = —clz% — CQZ% <0, Vz1 R, Vz €R, Vél e R"”, Vgg € R" (4.147)

1 —c1 g1 (x1)] [=1 w{ 0] 51
a] _ n 4 4.148
B e I V1 (149
6| [Ty 01w 07 [a
- )l
)
wy = Fy (1) (4.150)
Oa <$1,561,Ref,i1,Ref, 51)
wo = F2 (1'1,1‘2) — F1 (IL‘1) (4.151)

8:)51

Theorem 4.1 guarantees regulation of z; (¢) and 22 (t). The regulation of z; (¢) implies via (4.136)
that 21 rey is tracked globally. Therefore, the control task of tracking is achieved globally. Based

on z (t) — 0 and z; (t) — 0 for t — oo as well as (4.141) and (4.145), 6, (t) and 6 () reach a
steady-state for t — oco. 23 = 0, 25 = 0 is the globally stable equilibrium of the error system
given in (4.148) and (4.149).

Reconsidering the parametric strict-feedback system stated in (4.134) and (4.135), the global
boundedness of 21 (t) and x1 res (t) achieves the global boundedness of 1 (t). The global bound-

edness of 21 (t), x1 ges (t), and 0, (t), which is derived from (4.139), generates the global bound-

edness of a(x1, 21 Ref, Z1, Ref,gl). This result in combination with the global boundedness of
zo (t) provides the global boundedness of z2 (t). Hence, all solutions of (4.134) and (4.135) are
globally bounded.

Besides these results directly related to the case of tracking, some additional results are deriv-
able, if special conditions apply. If x; ger (t) — 0 for t — oo, the regulation of z; (¢) leads to
z1 (t) — 0 for t — oo. Taking into account the regulation of z; (t) and 23 (), which implies

that the parameter estimates of g reach a steady-state, a(x1, X1 Ref, T1,Ref> 51) converges to the
steady-state given in (4.152).

. JaN 1 JaN
ass (1/‘1,961,Ref,$1,3ef,91) = —— [—FlT (0) 61,55 (4.152)
91 (0)

Provided Fj (0) = 0, a(a:l,xlyRef,a'clyRef,H_’l) — 0 for ¢ — oo. This result in combination with
(4.137) is the basis for x2 (t) — 0 for ¢ — oo. Under the assumed conditions, x; = 0, z2 = 0 is
the globally stable equilibrium of (4.134), (4.135).
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The derived boundedness and stability properties are founded on the appropriate choices of
c1 € Ry and ¢o € Ry. In addition, the positive definiteness of I'y € R? x R? and I's € R? x R?
are prerequisites for the derived boundedness and stability properties. (4.153) and (4.154) are
necessary to guarantee Controlla})ility of the parametric strict-feedback system as well as the

existence of a(z1, 21 ref, T1, Ref, 51) and u.
g1 (x1) #0, Vz1 €R (4.153)

g2 (1'1,.732) 75 O, Va1 € R, Vrs € R (4.154)

The provided illustrations showed how the Backstepping methodology is applied to strict-
feedback systems containing uncertain constant parameters. The result of the design procedure
for parametric strict-feedback systems demonstrated that global boundedness as well as global
stability is achieved. Furthermore, the achievement of global tracking of a known, smooth, and
bounded reference signal has been shown.

The introduced capabilities of the Backstepping methodology constitute a major milestone in
establishing the theoretical background for the design of the interceptor flight control system.
However, uncertain constant parameters have to be considered additionally as unknown control
coefficients. The latter leads to a further augmentation of the introduced theory.

4.3.2 Unknown virtual control coefficients

The straightforward augmentation of the parametric strict-feedback systems considered before-
hand by unknown control coefficients results in (4.155) and (4.156). This simple, nonlinear
system is utilized to introduce the method which overcomes unknown control coefficients. The
tools for this introduction are provided by [71], but latter does not comprise a self-contained
presentation.

The unknown control coefficient in (4.155), (4.156) is denoted by b, with b € R. Although b is
an uncertain constant parameter, the sign of b is supposed to be known.

&1 = f(21)0 + bg (v1) x2 (4.155)
o= u (4.156)

If the beforehand system would only consist of the first equation and the input to this equation
would be x9, (4.157) would constitute the system to be accounted for.

1= f(x1)0+bg(x1)u (4.157)

In this case, a controller and the respective update laws could be designed by the following
approach. A Lyapunov function Vl(xl,él, 01) is defined according to (4.158). The parameter
error 0 is given by (4.159). &, which is also a parameter error, is given by (4.160). The latter
shows that instead of directly estimating the unknown parameter b, b=! is estimated. The reason
for this becomes evident from the upcoming steps. According to [71], the parameter estimate
01 = 131_1 is denoted unknown virtual control coefficient. 75, € Ry and v,, € R, are adaptation
gains.

~ - o ]. 2 1 a2 1 ~2
V1 <§C1, 01, Ql) = 51’1 + %01 + E ’b| 01 (4158)
0, =60—6, (4.159)
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br=0-01, o=b"t, o =b" (4.160)
Considering Theorem 4.1, the defined V;(x1, 6, 01) is continuous differentiable, positive definite,
and radially unbounded. Its derivative is developed according to (4.161) in the following. The

fact that él = —él and §1 = —él are used in this derivation. These properties are evident from
(4.159) and (4.160), keeping in mind that 6 and o = b~! are constant.

. ~ . 1 - =« 1 -
Vi (961, 01, Ql) = x4+ —6161 + —1|b| 0101
Y6, Yo1
1 -~ = 1 .
= I [f (1‘1) (9 + bg (Il) u] + 70101 + — ’b| 0101
76, Yo1
1 ~ = 1 o
= x1[f(x1)0+bg (x1)u] — —0,60 — — |b| 0101 (4.161)
76, Yo1

At this point, the control w is chosen like (4.162); ¢; € R;. Implementing this choice in (4.161)
leads to (4.163).

u = p (9;1) [—f (21) 01 — clxl] (4.162)

Vi ($1,§1,§1> = m [f (z1) 0 + by [_f($1)él —01561”

_Lélél b |b] 6101 (4.163)
Y6, Yeu

It is desired to cancel the inner bracketed term in the first term of (4.163). This is done by
finding an appropriate update law for 9;. To establish a feasible design for this update law, it is
necessary to remember that the sign of b is assumed to be known. Therefore, sgn (b) is available
for update law design. Given that |b|sgn (b) = b, the update law for g1 is taken as (4.164). With
this choice, (4.163) is developed to (4.165). The fact that g, + g1 = o0 = b~ !, available from
(4.160), is utilized in this derivation.

é)l = —Yp, 881 (b)x1 [—f (x1) 91 — 611:1} (4.164)

Vi (961,51,@1) = m [f (z1)0 + boy [—f(xl)él - Clxlﬂ

1 ~ = B A
—79191 —+ X1 ’b’ sgn (b)gl |:—f (1‘1) 01 — 011‘1:|

01

= n [f (21) 0+ b (01 + 01) [—f (1) 61 — 01361”

1 ~ =
——01604
Y6,
~ 1 ~ =
= mn [f (1) 0 — f (x1) 01 — 61301} - —010;
Y6,
~ 1 ~ -
= x1|f(x1)01 —c1z1| — —610
N R
~ 1 ~ »
= —61:13%+$1f(331)91—79191 (4.165)

01
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The update law for 6; is now chosen as in the beforehand presented procedures as (4.166). This
simplifies (4.165) to (4.167).

01 = vo,21f (1) (4.166)
Vi (xl,él,@) = —c17] (4.167)

Theorem 4.1 guarantees global boundedness of 21 (t), 61 (t), and g1 (t), based on the fact that
(4.168) holds.

Vl (.131,91, @1) = —Cl.%% <0, Vr; eR, Vél eR, Vo R (4.168)

Furthermore, Theorem 4.1 guarantees that x1 (t) is regulated, if W (z1 (t)) = c12? is interpreted
in terms of the theorem. As can be seen from (4.164) and (4.166), 6, (t) and ; (¢) reach a
steady-state due to the regulation of x; (t). Given that f(0) =0, ;1 = 0 is the globally stable
equilibrium of (4.157).

The prerequisites for the taken approach are 79, € R4, v,, € Ry, and ¢; € Ry. Additionally,
g (z1) # 0 for all 1 € R must hold, which is obvious from (4.162).

Returning to the system (4.155), (4.156), the beforehand derived design steps are employed to
reach an overall controller for this system. Based on the rationale that the desired value of xo
in this case would be according to (4.162), but this value can not be guaranteed to be achieved
persistently, the error z is defined in (4.169).

Z =Ty — (:El, él, @1) (4.169)

Using (4.169) as well as the derivative of z, (4.155) and (4.156) are written as (4.170) and (4.171).

i = f@)0+bg(a1) [z +a(21,01,61)] .
3 = u-— W [f (z1) 0 + bg (1) [z + o (‘rl’él’@l)ﬂ
1Y) PRCICUON

The Lyapunov function Vo(z1, 2 .01, 01, 02, bg) is taken according to (4. 172) The definitions of
05 and by are provided in (4.173) and (4.174) respectively, where 65 and by are second parameter
estimates of 6 and b. These second estimates are independent of the already introduced estimates
6; and 01, showing that this control design leads to an overparametrized system. The adaptation
gains are vg, € Ry and v, € R..

< s - _ 1 1 - 1 -
‘6(1}1,2,01,@1,92,[)2) = ‘/1 (xlvelugl) +§Zz+ 279 05—*—%6%
2 2
o EE B U
2 279, 270
4ieg L é§+i6§ (4.172)
2 2792 27172
0y =0 — 0 (4.173)
by =b—by (4.174)



Employing these equations, the derivative of Va(zy, 2, 61, 01,05, 52) is calculated as (4.175).

- . R R
Va (l'la 2,01, 01, 02, b2) = 181+ —6161+ — bl g101
6, Yo1

1 ~ = 1 ~ =
+2zZ + —0509 + —boby (4.175)
0o ba
Implementing the results from (4.162), (4.164), and (4.166) as well as the conclusions that

0y = —0y and by = —by, (4.175) is developed to (4.176). The functions are written without their
arguments.

. . s = 1 ~ = 1 .
Va (33172791791792,52) = x1[f0+ bgz + bga] — 779191 o |b] 0101
1 01

1 ~ = 1 ~ =
+2%2 + —0505 + —boby
Y62 Voo
. 5 1~z 1 Loz
= 11 [fe + bgz + bo1 [—f91 - Cll‘lﬂ — —0101 — — |b] 0101
Y6, Yo
. 1 ~ = 1 ~ =
+2%2 + —0505 + —boby
Y62 Voo

R - A 1~
= @ [fe +bgz + b (01 + 01) [—f91 - 015'31” - 779191
1
. 1 ~ = 1 ~ =
+2Z + —0505 + —bobo
Y6, Voo

~ 1 ~ =
= o [f91 +bgz — clxl} — — 0,6,
Y6,

1 ~ = 1 ~ =
‘2% + —0509 + —boby
V6> Yoo

~ 1 =
= —c12? +bgz + 6, [1‘1f — 01]
Y6,

1 ~ = 1 ~ =
+2z%2 + —0505 + —boby

> Voo
= —c12% +bgz
da Oa : oo -
4z |lu— —(f0+bgz + bga) — —01 — —0
[ R (f0 + bgz + bga) o an
1 ~ = 1 ~ 2
———0905 — —baby
Y6, Voo
= —c12? + bgz
da oo
——(fO0+0 b - —
+2[u 021 (f0 + bgz + bga) 20, [0, 71 ]
da .
_(97@1 [—fygl sgn (b)zy [—f@l — clxln]
1 ~ = 1 ~ 2
———0505 — —boby (4.176)
Y0, Voo

The choice for the control u is stated in (4.177); co € Ry. This leads to (4.178) for the derivative
of Va(z1, 2,01, 01,02,b2).
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u = —529

oo (.~ ¢ - el
+8T:1 (f92 + bagz + bzga) + %6, [vo, 21 f]
Oa R
+87@1 |:—”}/91 sgn (b)l’l |:—f91 — clxlﬂ
—C2z (4.177)
, 0 1.0 b — 2 2 7
Va (x1’2701591,927b2> = —C1Ty —C22 +b292
oo~ oo ~ oo ~
———f0y — —b ——b
+2 [ Ozvlf 2~ 5 29 T oo an}
1 ~ = 1 ~ 2
——0905 — —bobs
792 ’71)2
= —cl:zf — 0222
~ ]_ ~ X
+z [_&y fag} — — by,
8x1 ’YQQ

~ Jda - Ja ~ 1~ =
+2 |bag — bagz — —baga| — —babo (4.178)
(9.%'1 81‘1 bo

The update law for 82, defined as (4.179), simplifies the derivative of Va(x1, z, 01,01, 02,b2) to
(4.180).

2 Oo oo
by = Yo, 2 [9 = 5297 &Elga] (4.179)
. 5o~ 53 _ 2 2
‘/2 (l‘lazael)Qlae?abQ) = —CT] —C2z2
~ 1 ~ =
+z [—80‘ feg] — = 0y, (4.180)
0x1 Y64

(4.181) states the choice for the update law for 0. The derivative of Va(x1, 2,01, 61, 02, b2)
simplifies to (4.182).

A O

Va (:El, z,éb 01, ég, Bg) = —clx% — c92? (4.182)

Because (4.183) holds for all arguments of Vg(xl,z,él, @1,@2,52) in their respective domain,
Theorem 4.1 guarantees global boundedness of x1 (t), z (t), 61 (t), 01 (t), 62 (), and by (¢). This
results in the global boundedness of a(; (t), 61 (t), 61 (t)). Via (4.169), the global boundedness
of z(t) and a(zy (t),0; (), 01 (t)) leads to the global boundedness of x5 (t). All solutions of
(4.155) and (4.156) are globally bounded.

Furthermore, Theorem 4.1 guarantees regulation of z1 (¢) and z(t). This implies that 6; (¢),
01 (1), 02 (t), and by (t) reach a steady-state for t — oo. Therefore, a(xy (t), 6, (t), 61 (t)) reaches
a steady-state value.

If f(0) = 0 holds, a(xy (t),01 (), 01 (t)) — 0 for t — oo. Via (4.169) in combination with the
regulation of z (¢), this means that zo — 0 for ¢ — oo, leading to the fact that 1 = 0, zo = 0 is
the global stable equilibrium of (4.155) and (4.156), finally.

VQ (l‘l, Z, 51, @1, 9~2, EQ) = —Cl.’L'% — 622’2 S 0 (4.183)
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Design procedure for parametric strict-feedback systems with unknown control co-
efficients

With the basic concept to handle unknown control coefficients developed, the design procedure
for parametric strict-feedback systems with unknown control coefficients is laid out in the fol-
lowing. This procedure evolves from the combination of the design procedure for parametric
strict-feedback systems with the introduced methodology concerning unknown control coeffi-
cients. The latter are considered in every equation of the nonlinear system.

The parametric strict-feedback system with unknown control coefficients is given in (4.184) and
(4.185). x1 € R and x5 € R constitute the states. u € R is the control input. F; : R" — R"
and Fy : R™ — R" are vector fields of known, smooth nonlinear functions. ¢g; : R — R and
g2 : R — R are known, smooth nonlinear functions. 6 € R? is a vector of uncertain constant
parameters, and b; € R as well as by € R are uncertain constant parameters. The signs of by
and by are known.

T = FlT (1’1) 54— big1 (1’1) X2 (4.184)
To = FQT (1’1,1‘2) 54— baga (xl,xg)u (4.185)

The initial step of the procedure is the definition of an error variable z in (4.186). Using z in
(4.184) leads to (4.187).

Z2=T9 — « (xl, 51, @1> (4.186)
iy = F{ (21) 0+ g1 (1) [z—l—a(xl,@gl,@l)} (4.187)

The Lyapunov function Vi (x1, 01,b11, 01) is chosen as (4.188). The parameter errors 0y, bi1, and
01 are defined according to (4.189), (4.190), and (4.191) respectively. by; is a first estimate for
the uncertain constant parameter by, whereas 91 is an estimate for bfl. Both estimates and its

respective parameter errors, also represented in Vj (1, 51, 511, 01), are necessary for the conduct
of the design procedure, as will be evident from the upcoming steps. The adaptation gain matrix
I'y € R? x RY is positive definite.

P 1 12 = 1 - 1
v( 0B ,~):f 2L T+ —— 5+ —— |by| 4.188
1| 21,601,011, 01 2301-1-21 1 1+2b11 11+2,yg1‘1|91 ( )
01 =0— 0, (4.189)
b1 = by — bny (4.190)
f=0-01, or=0b", o1 ="b" (4.191)

The derivative of Vi (x1, 01, b1, 01t) is calculated as (4.192), by utilizing the latter definitions as
well as the fact that 8 and b; are presumed to be constant.

Vi (56‘1,9:1,511,@1) = n [FlT (21) 0 + bigr (21) [z—i—oz <$1,§1,@1)H
! byibiy — S |b1] 6161 (4.192)

b11 01

—0{ 1710, —

77



The stabilizing function a(ml,gl, 01) is defined by (4.193), with ¢; € R4. (4.192) simplifies to
(4.194).

« (ml,él, §1> = glf;l) [—FlT (1) 51 - clxl} (4.193)

‘/1(331751,511751) = xl[Ffr(ﬂfl)g—l—bwl(ﬂ?l)Z

+b1@1 [—FlT (CCl) 51 — Clxl}]
1 - = 1 o
bi1b11 — — |b1| 0101 (4.194)

b11 01

—§1TFI1§1 —

The update law for §; is chosen according to (4.195). The knowledge about the sign of by allows
this choice. The derivative of Vi(z1,01,b11,81) shortens to (4.196), by implementing (4.195)

in (4.194). From (4.196), appropriate choices for the update laws for by and 6; according to
(4.197) and (4.198) are obvious. The derivative of Vi (z1,01, b1, 31) simplifies further to (4.199).

él = —’ygl sgn (bl)l'l [—FlT (.CEl) 51 — Cl$1:| (4195)

Vi <x1,§1,1~)11, @1) = 1 [Ffp (21) 0+ bigr (z1) 2

+b1 (01 + 01) [—F1T (21) 0, — C1UC1H

1

—9?1“1_1671 — (;11(;11
Vb11
= {FlT (1) 61 + b1ga (1) 2 — 011'1]
S A 1 - =
—0IT7 0 — —Dby1bys
b11
= —aat+ o F ()0 + (311 + 511) 7191 (21) 2
S 4 1 ~ =
—0{T7'0;, — —b11b1y
b11

= —cja3 + 131135191 (x1) 2

- A - 1 :
+67 [Fl (1) 21 — T 191] + b1t [50191 (1) 2 — , bii| (4.196)
11
811 = ’)/bu:l/‘lgl (331) z (4197)
0, =T\ F (z1) 2, (4.198)
Vi ($1,§1,511, @1) = —c122 + byxigr (1) 2 (4.199)

Because of the unknown sign of the last term in (4.199), neither a conclusion about the bounded-
ness properties nor a conclusion about the stability properties is possible at this point. Therefore,
the derivative of z is calculated in the following as (4.200).

P o= dy—d (xl,el,@l)
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= Ff (x1,29) g+ baga (21, 22) u
da (‘Tla 51’ @1)

9 |:F1T (.Tﬂé—l— big1 (xl)xg} _—Q[FIFI (1‘1):61]
11 06,
da ($1,§1, @1) . .
BT {—’ygl sgn (by)z1 [—Fl (1) 6, — clq:lﬂ (4.200)
01

The Lyapunov function Vo(x1, 01,b11, 01, 2, 02, b2, 02) is defined in (4.201). The parameter er-

rors 9;, bia, and Jo are defined following (4.189) to (4.191), and I'y € R? x R? is positive
definite. bys is a second estimate for the uncertain constant parameter by in (4.184), but g con-
stitutes an estimate for by ! In contrast to the designs in [71], which neither considers unknown
control coefficients in adaptive Backstepping designs nor elaborates the case with unknown
control coefficients in every equation of the nonlinear system, the term comprising bio enters

Vao(xq, 671, 1511, 01, 2, 0}, 512, 02). This term provides the necessary degree of freedom to cancel by,
which reappears in the remaining steps of the procedure.

Va ($1,§175117@1727527512,§2> = W ($1,5175117§1>
1
27

1

|b2| 55
2792 2

1 1= A ~
+=22 4+ 2041505 + by +
2 2 ,

1

1, 13,5 1
= §$1+§91 ]._‘1 61"_2’}/

~ 1 N
bT; + b1 &7
b1y 1

27,

- 1
b2 byl 02 (4.201
12+2792|2|Q2( )

Ly 1zpap
+—z"4+ =05 ', 05 +
2" 27777 2%b,,

Employing (4.199), the derivative of Vg(xl,gl, bi1, 61, 2,02, b2, 02) is developed to (4.202). The
arguments of the functions are omitted for the sake of readability.

. 5 L L ) S 15 1 ~ = 1 .
Vo (131,91,b1179172,92,b12,Q2) = md —0{ 70 - 5 biibit — — |b1| 0101
11 o1
1

~ 2 1 o
biabio — — |b2| 0202

b12 02

+zz — §§FF5152 —

,
= —car] +birig12

+z |:F2T§+ bagou — 870[ [Ff§+ blgll‘g}
81‘1
Jda foJe" 2,
—— M1 Fia] — YN [—Pym sgn (b1)xy [—FlTHl — C1$1H]
96, 01
o 1 - = 1 .
—92 FQ 92 — blgblg - — ‘b2| 0202 (4.202)
b12 Yoz

The control u is chosen according to (4.203); co € I@+. By addit}onally defining the update law
for po as stated in (4.204), the derivative of Va(zq, 51, bi1, 81, 2, 52, bia, 02) simplifies to (4.205).

5 A oo 5. oo
= 2 [—F2T'92 —bnzigr + 5 — [F1T@2 + b1291$2} + — M1 Fiz1]
g2 O0xy 00,
301 T:*
+87@1 [_%11 sgn (by)x1 [—Fl 01 — 01331” — czz] (4.203)
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3 8 o
02 = —7gsen(b2)z [ Fy 92 —bia1g1 + — 021 [F1 ) +b1291$2} =~ [['1F21]
001
Oa P
+8@ [—fybu sgn (by)x; [—Fl 01 — clcclﬂ —Ccoz (4.204)
1

Vs <x1,§17511, 01, 2,02, b2, @2) = —c12? 4+ burigiz

A oa _r% O« -
+z [FQTQQ —bniz1g1 — (‘T’chlTeQ - 8756151291332 — 2%
9 ry 192 - biab1a
b12
= —clx% — 622’2

= Oa -~
> _
92 |:FQZ — TxlFlZ — ]._‘2 162:|

~ Oa 1 =
512 [_281’191@ — bia blg] (4.205)
Using (4.205) as basis, the update laws for bys and 6 are derived as (4.206) and (4.207), which

finally provides the simplification of the derivative of Va(x1, 51, bi1, 01, 2, 52, bia, 02) according to
(4.208).

A 9o
bio = —’YbuZaTClng (4.206)
0 —Ts |7 - 201 - (4.207)
2 =192 | F2 924 1 .
VQ (ﬁla 5].7 511) élv Z, 52) 512) @2) = —C]_I% - C2Z2 (4208)

Due to the fact that (4.209) holds for all arguments of Vg(xl,gl,gll, @1,2152,512, 02) in their
respective domain, Theorem 4.1 guarantees global boundedness of x1 (1), 0, (1), b1y (t), 01 (1),
2 (t), 6 (t), bz (t), and g2 (t). Based on the global boundedness of the mentioned signals,

a(zq (t),01 (t), 61 (t)) is globally bounded. This further implies the global boundedness of z (t)
via definition (4.186). All solutions of (4.184) and (4.185) are globally bounded. The regulation
of z1 (t) and z (t) is additionally guaranteed by Theorem 4.1.

Va (931,51,511, 01,2, 0, bia, @2) = 1@t — 22 <0 (4.209)

It is evident from (4.195),

(), bi1 (t), 61 (), O3 (), byz (), and o (t) reach a steady-state value

for t — oo. Hence, a(zy (t),0; (t), 01 (t)) converges to the steady-state value given in (4.210)
for t — oo.

(4.197), (4.198), (4.204), (4.206), and (4.207) that the regulation of
1 (t) and z (t) causes that 6; (¢

ass <w1,51,@1> _ fuss [—FlT (0) B1.55 (4.210)
91 (0)

Presumed Fy (0) = 0, azy (t),01 (t),61(t)) — 0 for ¢ — oo, which leads to 2 () — 0 for
t — oo. In this case, 1 = 0, x2 = 0 is the globally stable equilibrium of (4.184) and (4.185).
Ifer e Ry, 2 € Ry, 1y, € Ry, 1y, € Ry, v, € Ry, and vy, € Ry, the derived boundedness
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and stability properties are achieved. In addition, the positive definiteness of I'y € R? x R? and
I’y € R? x R? as well as (4.211) and (4.212) are requirements for the derived boundedness and
stability properties. 91 # 0 and d2 # 0 must hold.

g1 (z1) #0, Vr1 €R (4.211)

g2 (:cl,arg) 75 O, Va1 € R, Vry € R (4.212)

Design procedure for parametric strict-feedback systems with unknown control co-
efficients in the case of tracking

The preceding design procedure illustrated that adaptive Backstepping achieves global bound-
edness and global stability for parametric strict-feedback systems with unknown control coeffi-
cients. If global boundedness, global tracking of a known, smooth, and bounded reference signal,
and global stability is achieved by a similar design procedure, the ability to withstand uncertain
constant parameters is established for the design of the interceptor flight control system. For
this reason, the control task of tracking is considered now.

The parametric strict-feedback system with unknown control coefficients is identical to the be-
forehand presented procedure. It is given by (4.184) and (4.185). The stated properties of the
system remain unchanged. The output y € R, which is equal to x1, is desired to follow a known,
smooth, and bounded reference signal x1 g.y € R. The derivatives of x1 r.y are known, smooth,
and bounded.

Following prior presentations concerning tracking, two error variables z; € R and zo € R are
defined by (4.213) and (4.214).

21 =1 — :El,Ref (4.213)
Zog =Ty —« (1131, T1,Refs T1,Ref> 01, @1) (4.214)
The Lyapunov function Vj (21, 01, b1, 01) is given in (4.215), whereupon the respective parameter

errors are defined in (4.216) to (4.218), 1,, € Ry, 7, € R4, and the adaptation gain matrix
I'y € R? x RY is positive definite.

P 1 1z % 1 - 1
Vi <21, 01, b11, él) = 722 + 79T1—w—191 + 71)2 + —1b1 §2 4.215
7+ T+ i o Il (1.215)
0,=0—6, (4.216)
bi1 = by — by (4.217)
=0 -0, oo=>b" o="b" (4.218)

The derivative of \/1(21,91,1911, 01) leads to the stabilizing function oz(zl,:nl Ref» &1, Ref,91, 01)

as (4.219); ¢ € R, . Furthermore, the update laws for o1, bn, and 91 are derived from the
derivative of V4 (z1,6;,b11, 1) according to (4.220), (4.221), and (4.222).

a <Z1,$1,Ref, T1,Refs 01, @1) =4 [—FlT (z1) 60, + T1,Ref — 6121} (4.219)
g1 (xl)
él —Yo1 SN (bl)zl [—FlT (1’1) 51 + i'l,Ref — 612’1] (4.220)
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bi1 =, 2101 (1) 22 (4.221)

—

(9 = FlFl (ZL‘l) Z1 (4222)

a(21, %1 Ref, T1, Ref,é?l, 01) and the update laws are used in the derivative of Vl(zl,Gl,bn 01)-
Afterwards, the Lyapunov functlon Va(z1, 91, bi1, 1, 22, 92, bia, 02) is taken as stated in (4.223).

The respective parameter errors 02, bi2, and gy are given by (4.224) to (4.226). 92 is a second
parameter estimate for 0. b12 is second parameter estimate for by, where g9 is only related to
ba. I's € R? x RY constitutes a positive definite adaptation gain matrix independent of I'y, and
Vo, € Ry as well as 7v,, € Ry.

5 - A 1
Va <21,91,b11, 01, 22,02, b12, 02) = 521 + 91 Iy 0+ 2 bt + 5— i &t
Vo1 27@1
+12+ 0r19+ Lo,y |bo| 33 (4.223)
2 ? 2761 2 2’7@2 ezt
Oy =0 — 0y (4.224)
bia = by — b2 (4.225)
G2=03— 02, 02=0by", 0Goa=10;" (4.226)

Via the derivative of Va(z1, 01, b11 Ql, 29, 02, blg, 02) the control u is derived according to (4.227);

co € Ry. The update laws for 09, b12, and 92 are appropriately chosen as (4.228), (4.229), and
(4.230). The respective arguments of the functions are left out for readability.

0 Oa
w = 2 [—F2T92 bi121g1 + —— [F1 0 + b1291$2}
92 O0x1
Ja Oa
— I'F
3$1,Refw1’Ref+ D s T, Ref + —= 20, [T Fy21]
Ja 5
9%, [—’ybn sgn (b1)z1 [—FlTel + &1,Ref — C1Z1H — 0222] (4.227)
. T2 ~ oo 5 ~
02 = —Yo,58n0(b2)z2 | —Fy 02 — b112191 + o [F1 B2 + b1291$2}
da
— 1 — |I'1 F
(%LRefﬂCLRef + e 1,Ref + 1 [ F121]
Ja 2 .
—}—87@1 [—’ybn sgn (bl)Zl {—F1T¢91 + T1,Ref — 0121}] — 6222:| (4228)
A oo
bio = —’ybsza—xlglxg (4.229)
5 0
02 = FQ |:F2 — aF1:| Z9 (4230)
8331

Employing (4.227) and (4.228) to (4.230) in the derivative of V5(z1, 51, bi1, b1, 22, 52, bia, 02) gives
rise to (4.231).

Vs (2’1, 01, b11, 61, 22, 09, b12, @2) = —c12} — 273 (4.231)
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Because (4.232) holds, global boundedness of 21 (t), 61 (t), bi1 (), 81 (£), 22 (t), 02 (t), b2 (t), and
02 (t) is guaranteed by Theorem 4.1. All solutions of the error system, which is given in (4.233)
to (4.242), are globally bounded. The comparison of (4.233) to (4.242) with (4.148) and (4.149)
shows how the error system is modified and augmented due to the consideration of the unknown
control coefficients.

% (Zl, 51, 611, @1, 292, 52, l~)12, @2) = —612% — CQZ% S 0 (4.232)
[21] _ [ —c bi1g1 (951)] [21} [w? 0 ] 6,
. - =~ + T :
22 —b1191 (1) —co 29 0wyl |g,
u+ 0111 0 1 7)11 0 |+
R ~ . b 4.233
" |: 0 _(987& (u + 01v1) b12:| + |:Q2U2:| 2 ( )
(31 [Ty 0][wr 0] [
N |:0 P2:| |:0 wo 22:| (4234)
_92 "
o1 [0, 5810 (b1) v1 0 } {zl]
Al T 4.235
[QQ] L 0 —Yoo 881 (b2) v2] |22 ( )
bi1 = Yoy, uz1 (4.236)
2 Oa
b12 = —Vbys Txluxz (4.237)
u =g (z1) 22 (4.238)
v = —FlT (1) 51 + Z1,Ref — C121 (4.239)
T 7o QL Oa [ A
vy = —Fy (z1,22) 00 — biizigr (z1) + 67:r1 [Fl (1) 02 + b12g1 (x1) 562}
Oa Ox foJe"
By M T By el g, (D) A
Oa 5
+87@1 —7o1 881 (b1) 21 [—Fir (1) 01 + &1, Ref — clzlﬂ — Co29 (4.240)
w1 = F1 (.1‘1) (4.241)
Oa
Wy = FQ (:El, (L‘Q) — 37F1 (371) (4.242)
Z1

In addition to global boundedness, Theorem 4.1 provides the regulation of z; (t) and 2o (t).
Given (4.213), this implies that z1 g is tracked globally. Hence, the control task of tracking of
a known, smooth, and bounded reference signal is achieved globally.

Revisiting (4.220), (4.221), (4.222), (4.228), (4.229), and (4.230) as well as the regulation of

21 (t) and 23 (1), it is clear that 67 (t), byy (), 61 (t), 62 (t), bia (t), b2 (t) reach a steady-state for
t — 00. z1 = 0, z2 = 0 constitutes the globally stable equilibrium of the error system given in

(4.233) to (4.242).
With respect to the parametric strict-feedback system given in (4.184) and (4.185), the global
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boundedness of 21 (t) and 21 ges (t) achieves the global boundedness of x1 (t). The global bound-
edness of 0y (t) and ¢ (), which is derived from (4.220) and (4.222), leads to the global bound-

edness of a(z1, 1, Ref, T1,Ref> 0, 01). The latter result provides the global boundedness of 2 (t)
based on (4.214). Therefore, all solutions of (4.184) and (4.185) are globally bounded.

Given 1 ref (t) — 0 for t — oo, 1 (t) — 0 for ¢ — oo is implied via the regulation of z; (t) and
(4.213). Accounting for the regulation of z; (¢) and 23 (t), which leads to the convergence of 6, (t),
b1y (t), 01 (1), 52 (1), bio (t), and g2 (t) to a steady-state for t — oo, a(zl,xl,Ref,a‘cLRef,G_’l,él)
converges to the steady-state stated in (4.243).

) S 01,55 >
ass (Z1,:E1,Ref,9€1,Ref,91701) =4 [—F1T (0) 91,55] (4.243)

91 (0)

If Fy (z1) exhibits the property F (0) = 0, a(21,Z1,Ref: £1,Ref> 01, 01) — 0 for t — co. Founded
on (4.214), x5 (t) — 0 for t — oo. If the introduced conditions hold, z; = 0, x2 = 0 is the
globally stable equilibrium of (4.184) and (4.185).

c1 € Ry, e € Ry, iy, € Ry, € Ry, 70, € Ry, and vy, € Ry are prerequisites for the
derived boundedness and stability properties. I'1 € R? x R? and I'y € R? x RY are required to
be positive definite. (4.244) and (4.245) are necessary to guarantee the controllability of (4.184)

and (4.185) as well as the existence of « <Z1,$1,Ref, T1,Ref> 51, @1> and u. Furthermore, g1 # 0

and gy # 0 must hold.
g1 (z1) #0, Vz1 €R (4.244)

g2 (1'1, .7}2) 7'5 0, Vr1 € R, o €R (4.245)

This section introduced adaptive Backstepping, and demonstrated that this methodology is ca-
pable to overcome uncertain constant parameters in strict-feedback systems. Parametric strict-
feedback systems as well as parametric strict-feedback systems with unknown control coefficients
have been considered. The design procedures for regulation and tracking of a known, smooth,
and bounded reference signal have been derived.

If the uncertainties which are implemented in the interceptor would only encompass uncertain
constant parameters, the presented theoretical background of this thesis would be sufficient to
design the interceptor flight control system. As introduced in Chapter 2, the interceptor com-
prises uncertain constant parameters and time-varying parameters. This means, the presented
theoretical background must be further augmented. This augmentation constitutes the final
step in the theoretical background presentation.

4.4 Nonlinear damping

The strict-feedback systems considered beforehand contained no uncertainties or uncertain con-
stant parameters. As illustrated, Backstepping and adaptive Backstepping constitute appro-
priate methodologies to control such systems. Following Chapter 2, some properties of the
interceptor are subject to permanent change. These properties constitute time-varying parame-
ters. Because Backstepping and adaptive Backstepping in the presented form are inappropriate
to deal with time-varying parameters in strict-feedback systems, another methodology is em-
ployed. This methodology is nonlinear damping. It is available in [71], which introduces the
basic concept. The combination of nonlinear damping with the design procedures is illustrated
in the following. Furthermore, it is shown that nonlinear damping guarantees global bounded-
ness in partial absence of adaptation concerning the derived design procedures.
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For the introduction of the concept of nonlinear damping, the nonlinear system given in (4.246)
is considered. x € R is the state, u € R is the control input, f : R - R, and ¢ : R — R are
known, smooth nonlinear functions. The nonlinearity A (¢) is unknown, but uniformly bounded.

t=f(x)A{)+g(x)u (4.246)

The Lyapunov function V (z) for (4.246) is chosen equal to (4.247). The derivative of V (z) is
developed to (4.248).

V(z) = %xQ (4.247)
V(z) = zi
=z[f(z)A(t) +g(z)u] (4.248)

By choosing the control u in accordance with (4.249), where ¢ € R} and x € Ry, the derivative
of V' (x) is calculated as (4.250).

= 1 —C.%'—Hzx.%'
u= | 7 (@) ] (4.249)

V=—ci? —kfi(x)a?+zf (z) At) (4.250)

The completion of squares in (4.250) leads to (4.251). The derivative of V (z) is negative
whenever (4.252) holds. Based on the fact that A (¢) is uniformly bounded, the derivative of
V (x) is negative outside the set R given in (4.253). Because V (z) is positive definite, ||z (¢) ||
decreases whenever x (t) is outside the set R. Hence, x (t) is globally bounded.

A<t>r+A<t>2

2K 4k
< —cx? + Aii)Q (4.251)
2 ()] QA\/(% (4.252)
R= {a: x| < %O} (4.253)

Design procedure for robust strict-feedback systems

The repeated application of the introduced concept of nonlinear damping to a robust strict-
feedback system establishes the design procedure for robust strict-feedback systems which is
illustrated now. The steps of this procedure comprise the terms which are utilized in the fol-
lowing to augment the beforehand derived designs. [71] introduces this design procedure, but a
more general form of system is considered herein.

The robust strict-feedback system is given in (4.254) and (4.255). z; € R and x2 € R constitute
the states. u € R is the control input. F} : R™ — R™ and Fy : R® — R"” are vector fields com-
posed of known, smooth nonlinear functions. ¢g; : R — R and ¢go : R — R are known, smooth
nonlinear functions. A (t) € R? is a vector of unknown, uniformly bounded nonlinearities.
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T = FlT (1‘1) A (t) + 0 (SCl) T2 (4.254)
dy = FY (21,22) A (t) + g2 (1, 72) (4.255)

By defining an error variable z according to (4.256) and utilizing its definition, (4.254) is written
as (4.257). The Lyapunov function Vj (z1) is chosen as (4.258).

z =9 — a(x7) (4.256)
1= F] (21) A(t) + g1 (21) [z + o (1)) (4.257)
Vi (m) = ot (4.258)

Then, the derivative of V; (1) is manipulated to (4.259). Afterwards, the stabilizing function
a (x1) is chosen like (4.260), with ¢; € Ry and k1 € Ry. Implementing this in the derivative of
Vi (x1) leads to (4.261).
Vi (z1) = 2181

=1 [FT (@) A (1) + g1 (1) [z 4+ (21)]]

=21 P (1) A () + 2191 (1) 2 + 2191 (1) @ (1)

< o] |Fy ()] || A Jloo +2191 (21) 2 + 2191 (21) 0t (1) (4.259)

1

g1 (1)

[0 (33‘1) = |:—Clx1 — K1 |F1 (1'1)‘21‘1:| (4.260)

Vi (21) < o1 [Py ()] || A Jloo +@191 (21) 2 = c12f — w1 [Py (21)]7 o
2

= 2 H A HOO H A Hgo
= + — F _ra
cixt + x1g1 (1) 2 — K1 ||2a] |[Fr (1)) o + A4;<;1
P Hi AH<2>O
S C1Tq + In =+ 101 (xl) z (4261)
1

Because neither a conclusion about the boundedness properties nor a conclusion about the sta-
bility properties of the robust strict-feedback system is possible, the derivative of z is developed
as (4.262). The Lyapunov function Vs (21, 2) is now given by (4.263). Utilizing (4.261) and
(4.262), the derivative of V5 (z1,2) is developed to (4.264). The respective arguments of the
functions are omitted to enhance readability.

i=dy— d(21)

. o .
= Fy (z1,22) A(t) + g2 (21, 22) u — Oé;fl) [FIT (1) A(t) + g1 (xl):z:g} (4.262)
1 2
Va(x1,2) = Vi(x1) + 57
1 1
= §x% + §z2 (4.263)

Va (21,2) = 2181 + 22
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o AR
= —C1Tq + 4K/1

. P B
+z1012 + 2 {FQTA + gou — 8—;11 [FlTA + gleH (4.264)

The control u is chosen according to (4.265); c2 € R4 and ko € Ry. Using (4.265) in (4.264),
the derivative of V5 (21, 2) is simplified to (4.266).

2

1 0 0
u=— |—coz — w191 + —aglxg — Ko | Fy — —aFl z (4.265)
g2 O0xy o0x1
- A2
V- - _ 2 H o)
2 (xla Z) C1T7 + 4/%1
- oa | o -
+z FQTA—CQZ—KJQ FQ—aixlFl z TMFFA
A2
> car]+ Ary
Oa - oo 2
—6222 + |Z| F2 — (97.21?1F1 || A Hgo s ) F2 — 87.%'11:‘1 z
e A
a “ar + 4I<J1
9 1A 0], 1E 2
2 o 0 o)
_ 2| —
coz” + ||z| | F2 By 1‘ Sy ] + Ty
AR, A2
< c1r] — 2 + dry + drs ( )

(4.266) shows that z; (¢) and z (t) are globally bounded. The global boundedness of z; (¢) in
combination with (4.260) leads to the global boundedness of a (z1). Relying on (4.256), the
global boundedness of x3 (t) is concluded. Hence, all solutions of the robust strict-feedback
system (4.254), (4.255) are globally bounded. All signals converge to the compact set given by
(4.267).

A2 A2
R= {(xl,z) o7t +e2? < ” 4%!00 + H 4/€!°O} (4.267)

Interpreting A (t) not as a vector of unknown, uniformly bounded nonlinearities, as introduced
above, but as a vector of time-varying parameters, it is evident that the presented design pro-
cedure guarantees global boundedness for strict-feedback systems which comprise time-varying
parameters.

Augmented design procedure for parametric strict-feedback systems with unknown
control coefficients in the case of tracking

After the employment of nonlinear damping has been illustrated in the framework of a de-
sign procedure, Backstepping and nonlinear damping are combined. This combination leads to
augmented design procedures for parametric strict-feedback systems. The latter provide the
capabilities to handle uncertain constant parameters as well as time-varying parameters.
Because the combination of adaptive Backstepping and nonlinear damping is achieved by the
straightforward and simultaneous employment of both methodologies, only the augmented de-
sign procedure for parametric strict-feedback systems with unknown control coefficients in the
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case of tracking is derived herein to stay inside the scope of this thesis. This procedure encom-
passes the full spectrum of the introduced theoretical background. Based on its capabilities,
this design procedure is the starting point for the design of the interceptor flight control sys-
tem. The boundedness and stability properties which are achieved by this design procedure are
derived. In addition, following the introduction for a simpler system in [71], it is shown that
global boundedness in partial absence of adaptation is achieved.

The parametric strict-feedback system with unknown control coefficients is given by (4.184) and
(4.185). The properties of the system remain unchanged. It is desired that the output y € R,
which is equal to x4, follows a known, smooth, and bounded reference signal x1 r.s. The deriva-
tives of o1 rey are known, smooth, and bounded.

First, two error variables z; € R and 29 € R are defined in (4.213) and (4.214). After develop-

ing the derivative of 21, the Lyapunov function Vj(z1, 51, by, 01) is chosen according to (4.215),
whereupon v, € Ry, v, € R4, and I't € R? x R? is positive definite. The definition of the
respective parameter errors is stated in (4.217) to (4.219).

The stabilizing function a(z1, 1 Ref, T1,Re > 51, 01) is chosen as (4.268), based on the derivative of
Vi(z, 51, 511, 01)- The nonlinear damping terms, which were derived in the design procedure for
robust strict-feedback systems, are taken into account for this choice of a(z1, 21 gref, ©1,Ref, 51, 01)-
01
g1 (z1)

a (Zl, T1,Refs T1,Ref> 01, @1) = [—F1T (x1) 61 + T1,Ref — €121 — K1 |F} (z1)[? 21} (4.268)

By implementing a(zl,azLRef,:tl,Ref,gl,@1) in the derivative of %(21,51,511,51), the update

law for 9; becomes obvious as (4.269). The update laws for by, and 6; are given in (4.221) and
(4.222); they remain unchanged.

01 = =, sgn (b1)z1 | —FFL (1) 0) + #1Ref — 121 — K1 |F1 (21)]? Zl] (4.269)

The choice for the Lyapunov function 1/2(21,51,511, @1,z2,§2,512, 02) is stated in (4.223). The
adaptation gain matrix I'y € R? x RY is positive definite, v, € R4, and v,, € R4. (4.224),

(4.225), and (4.226) provide the parameter errors, where 05 is a second parameter estimate for

— A

0 and b9 constitutes a second~ parameter estimate for by.

Given the derivative of Va(z1, 51, 511, 01, 22, 52, 512, 02), the control u is chosen in accordance with

(4.270). After u is employed, the update law for gs is defined appropriately as (4.271). The
nonlinear damping terms derived in the design procedure for robust strict-feedback systems

enter u as well as the update law for @2, but the update laws for bi2 and 52 remain unchanged as
stated in (4.229) and (4.230). The arguments of the functions are left out to enhance readability.

o 5. oo 5
g2 Oz

Ja Ja Oa
a1 Z1,pef + — [T1F121]

- 7R + _—
01 Rey </ 01 Ref 96,

oo

+a7@1 [—%11 sgn (b1)21 [—F1T§1 + jjl,Ref — 121 — K1 |F1‘2 Zl”

Oa

Fy— ——
2 8x1

—C222 — K2 Fy

2 zz] (4.270)
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N A O A
02 = —7g, 580 (b2)22 [—FQT@2 —biizig1 + BN [F1T92 + b1291$2]
O oo Oa
T1,Ref + 75— Z1,Ref + — [I'1F121
01 Ref </ OT1 Ref < 96, | ]
Ox 2, .
+8@1 [—’Ybu sgn (by)z1 [—F1T91 + &1 pef — €121 — K1 |F1|2 zlﬂ
oo 2
—C229 — K2 F2 - 7F1 22:| (4271)
6951

The derivative of 1/2(21,51, by, @1,22,52,512, 02) is simplified to (4.272) by implementing u as
well as the update laws (4.229), (4.230), and (4.271).

Vz<Z17§1,511,@1,22,527512752) = —c12] — c223

Oo 2
Fy— —F| 22 4.272
I ( )

—RK1 ‘F1’2 Z% — K2

Due to the fact that (4.273) is valid for all arguments of V5(z1, 51, bi1, 01, 22, 9}, bia, 02) in their
respective domain, the boundedness and stability properties of the augmented design procedure
are similar to the design procedure for parametric strict-feedback systems with unknown control
coefficients in the case of tracking. Theorem 4.1 provides global boundedness of z (t), 6y (t),

b1y (t), 01, 22 (1), 0y (1), bio (t), and g2, which implies that all solutions of the error system are
globally bounded.

. 5 L 5 . 9 9

‘/2 (ZlaelabllaQ17227927b12792) = —C121 — (229

2
2

Joa )

8.%'1
< 0 (4.273)

—K1 ‘F1’2 Z% — K2

Furthermore, Theorem 4.1 guarantees the regulation of z; (t) and 23 (¢). Considering (4.213),
the regulation of z; (¢) leads to the global tracking of z1 rey. The regulation of 21 (t) and 23 (t)
causes that 6y (t), biy (t), 61 (t), 02 (t), bia (£), and o (¢) reach a steady-state for t — co. 2, = 0,
zo = 0 is the globally stable equilibrium of the error system.

The global boundedness of z1 (t) is achieved via the global boundedness of z; (t) and z1 ref (%).
Global boundedness of 0 (t) and g1 (¢) implies global boundedness of a(z1, %1 Ref, ©1,Ref 51, 01),
which leads to the global boundedness of x5 (). For this reason, all solutions of (4.184) and

(4.185) are globally bounded in case of the augmented design procedure.
Assuming x1 pes (t) — 0 for t — oo, x1(t) — 0 for ¢ — oo results. This ends up in the

convergence of a(21, %1 Ref, T1,Ref 01, 01) to the steady-state value given in (4.274).

. 5 01,55 5
asgs <Z1,$1,Ref,931,Ref,91, 91) = 9117@.) {—FlT (0) 91755] (4.274)

Provided Fj (0) = 0, ags(zl,xLRef,abLRef,é'l, 01) — 0 and x5 (t) — 0 for t — oo. This finally
shows that z; = 0, z2 = 0 is the globally stable equilibrium of (4.184) and (4.185).

The prerequisites for the augmented design procedure are identical to the design procedure for
parametric strict-feedback systems with unknown control coefficients in the case of tracking. In
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addition, k1 € R4 and w2 € Ry are required.

Besides the fact that the augmented design procedure achieves the identical boundedness and
stability properties as the design procedure for parametric strict-feedback systems with unknown
control coefficients in the case of tracking, the former provides another benefit. It guarantees
global boundedness in partial absence of adaptation. The proof that all signals are globally
bounded, even if parts of the adaptation algorithms comprised in the design procedure fail, is
given in the following.

Global boundedness in partial absence of adaptation

The nonlinear system to be considered is (4.184) and (4.185), and the properties of this nonlinear
system as well as the assumptions on x1 gef, which have been provided for the augmented design
procedure for parametric strict-feedback systems with unknown control coefficients in the case of
tracking, remain. The definitions of the respective error variables z; and z9 are given by (4.213)

and (4.214). In contrast to the beforehand presentation, the Lyapunov function Vi(z1,b11, 01)
is defined without 6; according to (4.275); I'y =0, v,, € Ry, and v,, € R

1
2%

1

bi| 03 4.275
2m| | o1 (4.275)

. 1 .
Vi (2?1,511, 91) = QZ% + bt +

11

By choosing the stabilizing function o(z1, 21 gref, ©1,Ref, 51’0, 01) as (4.276) and the update law

for él according to (4.277), whereupon ¢; € Ry, k1 € R4, and 51,0 € R? constitutes an initial,
constant parameter estimate for 0, the derivative of Vi (z1,b11, 01) is developed to (4.278). The

update law for by; is given by (4.221).

A~

o <Z1, T1,Refs 1, Refr 01,05 @1) = 91?;1) [—F1T (1) 01,0 + d1,pef — 121 — K1 |F1 (1) ] Zl}
(4.276)
@1 = —’)/gl sgn (bl)zl [—FlT (1‘1) 51,0 + j;l,Ref — C121 — K1 |F1 (ml)\Z Z11| (4.277)
. ~ 5 . 1 ~ = 1 oo
Vi (Zl,bn, Ql) = 2141 — —Dbi1by1 — — |b1| 0101
b11 01
= 21 [FlT (1'1) 5—1— b191 (1'1) zZ9 + blgl (xl) o ( . ) — .T'Ulypbef}

1

~ A 1 o
biibin — — |b1] 0101
b11 01

—c122 + biizigr (1) 20 + 21 FE (1) 0 — 21 F (1) 51,0 — k1 | Py (21)]? 23

(
_ 2,3 T > 2 2
= —azi +biuzg (1) 22 + 21 F (1) 61,0 — k1 | F1 (1) 21
< —azf +buzig (1) 22 + |21 [Fy (21))] ’51,0‘ — k1 |Fy (21)]7 27
= 2 = 2
2,5 6’1,0‘ 91,0’
= — — F _
121 +biiz191 (1) 22 — k1 ||21] | F1 (21)] o + P
~ (2
. i
< —c17] + b112191 (171)22—}— 1n (4278)
1
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Starting from the derivative of zq, the Lyapunov function Va(z1, IN)H, 01, 22, 512, 02) is chosen as

(4.279) accordingly. The latter does not contain 0. The adaptation gains 73, and v,, € R4.

1 1

- ~ 1 ~
V(abv~a ab7~):72 b2 b~2
2 21, b11, 01, 22, D12, 02 2Z1+ o 11+ o |b1] 07
1, 72 1 9
— b b
+222 + 0 12 T 0 |ba| 03

(4.279)

The derivative of V(21 bi1, 81, 22, bia, 02) forms the basis for the appropriate choice of the control
u in (4.280) as well as the update law for g2, which is given in (4.281); ¢z € Ry and k2 € Ry

0_'270 € R? constitutes a second initial, constant parameter estimate for g. The arguments of the

functions are omitted.

02 A Oa 7y + b
u = = [—F2T€270 —buzigr + 5 — [F1T92,0 + bi2g122
9 O0x1

. o
T1,Ref + 7= T1,R
k] ef 8x17Ref k] ef

01 Ref
da

+==
001

Joa )

—C222 — R2
(9.%1

2
ZQ:|

02 = —7g, 580 (b2)22 [_Fg§2,0 — bizigr +

6] jaN -
B [F1T€2,0 + b12911’2]

) Ja ..
S ZL1,Ref + T1,R
01 Ref e/ 01 Ref </
49
901

o9

—C929 — K2
8:61

2
22]

[_'Ybu sgn (b1)21 {—FlTéLO + @1 Rep — 121 — K1 | F1|? Z1H

[—%11 sgn (b1)21 [_F1T§1,0 iy pef — c121 — k1 |F1|? Zl”

(4.280)

(4.281)

Utilizing u, the update law for 02, and the update law for 1312, which remains unchanged from

(4229), the derivative of V2 (21, 511, él, Z9, 612, @2) simpliﬁes to (4282)

. = = ) 1 - = 1 _
Vo (Zl,bn, 01, 22, b12, QQ) = 2% — bi1b11 — —|b1| 0101
b11 Vo1
. 1 - = 1 ~
29%9 — biab1a — — |ba| 0202
b12 02
~ 2
2,1 91’0‘
< —c12] + biiz19122 + I
1
T—’ 1 od A 1 - X
+22 [Fz 0 + 529210} - biabio — — |b2| 0202
bi2 02
= 2
i
< —c1z
= 1<1 + 41%1
oo = da
—CQZS + |2’2’ F2 - aiFl 9270‘ — K9 F2 — 7F1
1 oxy
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= 2
2 91’0‘
a —012’1+ 4I€1
r = 2 =2
oo | _|Pof | |0ao]
_CQZ%+ ‘22’ Fy — 87‘%'1F1 — s + A1y
) ~ 2 ~ 2
PN 27 I 1)
- 4.282
< Cc1z] — C225 + o + drs ( )

The result achieved by (4.282) allows the following conclusions about the boundedness and
stability properties of (4.184) and (4.185), based on the status of the adaptation algorithms
comprised in the design.

If all of the adaptation algorithms are available and active, the derivative of the Lyapunov

function %(21,51,511,@1,22,52,512,@2) is given by (4.272). The respective boundedness and
stability properties have been derived in conjunction with the augmented design procedure for
parametric strict-feedback system with unknown control coefficients in the case of tracking.

The derivative of the Lyapunov function Vz(zl,gn, 61, 22, b1a, 02) is established by (4.282), if

the adaptation algorithms for 0 fail. Because ‘5170‘ and ‘5270‘ are bounded, z; (t) and 23 (¢) are
globally bounded; the tracking error is globally bounded. Via (4.213), the global boundedness
of x1(t) is achieved. This leads to the global boundedness of g1 (t), founded on (4.277), and
a(21, Z1,Ref> T1,Ref 5170, 01). Accounting for (4.214), the global boundedness of x2 () is achieved.
For this reason, all solutions of (4.184) and (4.185) are globally bounded.

Because the derivative of V5 (zl, bi1, 61, 22, 512, §2> is negative outside the set defined in (4.283)
and the Lyapunov function is positive definite, z; (t) and 22 (t) converge to R. This means that

the tracking error decreases until 21 (¢) and 2z (t) reach R. Therefore, x1 rcs is tracked to a

certain degree.
’2

=~ 2 A
‘91,0’ ‘92,0
+

R =< (z1,29): 0122 + 0222 <

(4.283)

The derived results are valid in the absence of adaptation for g. The adaptation laws for b1, 5;51,

1312, and 2)2 are employed based on the augmented design procedure for parametric strict-feedback
system with unknown control coefficients in the case of tracking. With respect to the design and
implementation of the interceptor flight control system, this means that the augmented design
procedure provides capabilities for a failure of the adaptation mechanism for g. Vice versa, the

adaptation mechanism for 1311, él, 312, and E)g are required to be available and active in the
presented design.
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Chapter 5

Design of the flight control system

5.1 Performance requirements

After the theoretical background of the Backstepping methodology has been presented in Chap-
ter 4, the design of the interceptor flight control system is conducted. The design process consists
of seven consecutive steps. First, the performance requirements for the controlled interceptor
are provided and analyzed. Thereafter, the overall interceptor flight control system architecture
is designed. This leads to the detailed design of the respective control systems. Section 5.3
covers the design of the interceptor roll rate control system. The interceptor pitch acceleration
control system is illustrated in Section 5.4, followed by Section 5.5 which shows the design of the
interceptor yaw acceleration control system. In the sixth step, the control allocation algorithm
as well as the reaction jet cartridge allocation mechanisms are designed. Finally, the parameters
of the interceptor flight control system are optimized.

The design of the interceptor flight control system is governed by a set of performance require-
ments. These define the boundedness and stability properties which the interceptor flight control
system shall guarantee. Furthermore, requirements concerning the dynamical behavior of the
controlled interceptor exist.

e Requirement 1 The interceptor flight control system shall guarantee global boundedness
of all signals of the controlled interceptor.

e Requirement 2 Concerning the control task of requlation in absence of parameter uncer-
tainties, the interceptor flight control system shall guarantee global asymptotic stability. In
the presence of parameter uncertainties, the controlled interceptor shall be globally stable.

e Requirement 3 The interceptor flight control system shall guarantee global asymptotic
tracking of a known, smooth, and bounded reference signal, if parameter uncertainties are
absent. In case of existing parameter uncertainties, the interceptor flight control system
shall guarantee global tracking of a known, smooth, and bounded reference signal.

e Requirement 4 The interceptor flight control system shall implement provision to over-
come failures of the comprised adaptation algorithms. Global boundedness shall be pre-
served under this conditions, and tracking of known, smooth, and bounded reference signal
should be achieved.

e Requirement 5 The controlled interceptor shall maintain (p([)(B) g = 90[deg/s] during the
terminal flight phase, which encompasses the last 10[s| of the interceptor time of flight,
in the presence of parameter uncertainties. (p%B)B shall not vary more than £50 [%)] to
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Figure 5.1: Interceptor flight control system architecture

guarantee availability of reaction jet cartridges for longitudinal as well as lateral maneuvers
of the interceptor.

e Requirement 6 The controlled interceptor shall demonstrate a time constant of T =
0.1[s] or smaller during the terminal flight phase for longitudinal and lateral acceleration
maneuvers in the presence of parameter uncertainties. The time constant is understood
as one third of the time the controlled interceptor needs to reach 90 [%)] of the commanded
acceleration. The overshoot shall not exceed 15[%)] of the acceleration command. The
settling time to +£5[%)] of the acceleration command shall be below 0.5 [s].

e Requirement 7 The interceptor flight control system should utilize both actuator sections
of the interceptor during the terminal flight phase to guarantee mazximum longitudinal and
lateral agility. The reaction jet cartridge consumption shall not exceed 50 (%] during the
terminal flight phase to guarantee availability of reaction jet cartridges for longitudinal as
well as lateral maneuvers of the interceptor.

While Requirement 1 to Requirement 4 must be achieved by the control methodology employed
in the interceptor flight control system, the remaining requirements are depended on the flight
control system parameters. The latter need to be determined appropriately so that the controlled
interceptor exhibits the fast and accurate responses as well as correct properties mandatory to
fulfill Requirement 5 to Requirement 7.

5.2 Flight control system architecture

The definition of the overall interceptor flight control system architecture constitutes the first
step of the actual design work. It is influenced by the properties of the interceptor, the capabil-
ities of the internal sensor system, and the given requirements. Figure 5.1 displays the defined
interceptor flight control system architecture. As illustrated, the interceptor flight control sys-
tem consists of five subsystems.

The lower left subsystem in Figure 5.1 which is denoted plant model comprises a model of the
interceptor dynamics as well as representations of the interceptor subsystems. Because the in-
ternal sensor system provides only a subset of the states and the signals of the interceptor, this
subsystem is necessary to make all states and signals of the interceptor available for the control
systems as well as the control allocation. The output of the internal sensor system constitutes
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the input to this subsystem. Besides driving the modeled interceptor dynamics and the repre-
sentations of the interceptor subsystems, the input passes this subsystem without modification.
Hence, the output of the internal sensor system is available to the control systems and the
control allocation. In addition, the internally in the plant model generated states and signals
are available to the control systems and the control allocation. The structure of the subsystem
follows the presentation in Chapter 2. The aerodynamic control surface actuator modules are
omitted in the plant model, because all signals of these modules are available from the internal
sensor system. For the conduct of simulations, this subsystem is initialized with the identical
initial conditions as the interceptor. Furthermore, neither uncertain constant parameters nor
time-varying parameters exist in the plant model.

The center upper part of Figure 5.1 displays the interceptor roll rate control system. The reason
for the separate implementation of this subsystem is twofold. First, it supports the fulfillment of
the requirements. Based on Requirement 5, the interceptor shall maintain (pg(B ) 5 =90 [deg/s]
during the terminal flight phase. By this separate implementation, Requirement 5 is individu-
ally addressed and the subsystem is specifically designed to fulfill this requirement. Second, the
separate implementation takes into account the structure of the nonlinear rigid body equations
of motion of the interceptor. Considering (2.21), (2.37), (2.50), (2.56), and (2.59), the differen-
tial equation describing (pg{B ) p is a first order system. Therefore, this subsystem is separated
from control systems for higher order dynamics. The subsystem filters the incoming roll rate
command (p%B ) B.Cmd and calculates the roll rate error (p%B) B.Er the parameter estimates,
and the roll deflection command 97, cima. 0r,cma constitutes the output of this subsystem being
handed over to the control allocation.

In the center lower part, Figure 5.1 shows the interceptor pitch and yaw acceleration control
system. The rational behind the separation of these subsystems from the interceptor roll rate
control system has been illustrated beforehand. The separation of both subsystems provides
the capability to design, implement, optimize, and analyze each subsystem individually. Fur-
thermore, it is possible to achieve Requirement 6 stepwise with the chosen interceptor flight
control system architecture. The incoming acceleration commands and the output of the plant
model are inputs to these subsystems. Based on these inputs, the subsystems calculate the pitch
deflection command d57,cmq and the yaw deflection command 6y, cymq respectively. These are
provided to the control allocation.

The last subsystem in the interceptor flight control system architecture is the control allocation.
It is displayed on the right side of Figure 5.1. This subsystem consists of the control alloca-
tion algorithm and the reaction jet cartridge allocation. Because 07, cmd, Onm,cmds and On,cmd
need to be blended to the reaction jet actuator section and the aerodynamic actuator section
of the interceptor, a separate subsystem is required. In addition, this subsystem in the overall
interceptor flight control system architecture addresses Requirement 7 individually. It offers the
capability to be designed specifically in order to fulfill this requirement. Besides o7, cma; dn,cmd,
and 6y cma, the output of the plant model constitutes an input to the subsystem. The outputs
of the subsystem are o1, cimd, 0a,cmd, and dn,cma as well as the reaction jet cartridge deflection
operator drjo for the individual reaction jet cartridges.

5.3 Roll rate control system

The interceptor roll rate control system is the first control system in the interceptor flight control
system architecture to be designed. Given Requirement 5 this subsystem shall control (p?(B ) B
to the specified value of (p%B ) =9 [deg/s]. From the architectural perspective of the overall

interceptor flight control system, (p(}(B) and the output of the plant model are inputs to

B,Cmd
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the interceptor roll rate control system. These signals are the basis for the calculation of 47, cma,
which constitutes the output.

Considering (2.21), (2.37), (2.50), (2.56), and (2.59), while at the same time neglecting the dy-
namics of the aerodynamic control surface actuator modules, the system from the input ér, cma
to the output (p(}{B) p is a first order system. Although this implies that the Backstepping
methodology is not required, because dr, cynq and (p(}{B ) p appear in the same differential equa-
tion, the imparted theoretical background is employed to design the interceptor roll rate control
system.

The augmented design procedure for parametric strict-feedback systems with unknown control
coefficients in the case of tracking is used for the design. To adapt to the given first order
system, this design procedure is modified. The nonlinear system is given by (4.184), where
x2 € R considered as the control input u € R. (4.213) provides the respective error definition.

The Lyapunov function Vj(z1, 51, 01) is stated in (4.215), whereupon the term concerning by is
not required in this case, and (4.217) as well as (4.219) provide the definition of the parameter

errors. Based on the system order, the stabilizing function a(z1, 1 gef, £1,Ref> 91, 01) according
to (4.268) constitutes the control w in this special case. The update laws are given by (4.222)
and (4.269).

To implement this design in the interceptor flight control system, the terms of the modified
design procedure are substituted by variables of physical meaning. First, z1 rey is replaced.
Following Chapter 4, z1 ey is a known, smooth, and bounded reference signal. In addition, the

derivatives of 21 gy are assumed to be known, smooth, and bounded. Vice versa, (p(}(B ) B.Cmd

is not guaranteed to be smooth, which means that the derivatives of (p(l){B ) B.Cmd MY neither be
smooth nor bounded. Hence, a first order, linear time invariant system is employed as filter for
(p(}(B ) B.Cmd to ensure smoothness as well as boundedness. The outputs of the (p([)(B ) B.Cmd filter
are used as 1 rey and its derivatives in the modified design procedure. Figure 5.2 displays the
block diagram of the (p%B ) B.Cmd filter.

The implementation of the update laws (4.222) and (4.269) as well as u requires the substitution
of Fy (z1) and g; (z1) in (4.184). Because (4.184) constitutes a scalar equation now, it is written

as (5.1), where f1 : R — R and 6 € R.
i1 = f1(z1)0 +bg1 (z1)u (5.1)

Taking into account (2.7), (2.21), (2.37), and (2.50), the differential equation describing (p%%) B
is derived as (5.2).
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By rearranging the terms in (5.2) like (5.3), the structure of (5.1) is achieved. (p}?) , substitutes
x1 and 07, constitutes u. fi (1) and g; (z1) are given by (5.4) and (5.5).

+Cpp (o, B, M) -

('OB)B _ GSResC Cro (0%, 8%, M) + Cpp (oF, BS, M) - (P) pe
Pk )p = (IG ) L0 \%K; PK> Lp \®K; PK, G T
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0B c
Cro (0%, B%, M) + Cryp (o, 8L, M) - (Z’Ki)B, (5.4)

2(V&
K,Abs B

' CL,éL (a%)ﬂg’M) (55)

fi(21) = (qSRefc

I)C(TVX)BB

g1 (x1) = (?&QR;fC
XX/)BB
The analysis of (5.4) concerning the boundedness and stability properties, which have been de-
rived for the augmented design procedure for parametric strict-feedback systems with unknown
control coefficients in the case of tracking, shows that global boundedness as well as global
tracking of the output of the (p?(B) B.Cmd filter is achieved under all conditions. Additionally,
f1(0) =0, if (a§)f; = 0[deg] and (BF)5; = 0[deg]. In this case, (p}7) ; = 0[deg/s] is a glob-
ally stable equilibrium. Furthermore, g; (x1) # 0, except for ¢ identical to zero. Because such
condition is identical to (Vlg Aps) 5 = 0[m/s], this situation is negligible and the controllability
of (5.1) as well as the existence of u is guaranteed.
The parameter uncertainties introduced in Chapter 2 are reflected in 6 and b in (5.1). In the
absence of parameter uncertainties, # = 1 and b = 1. If parameter uncertainties are present,
they enter the system via (5.4) and (5.5), leading to 6 # 1 and b # 1. The individual parameter
uncertainties of Chapter 2 are not represented separately, which constitutes a great advantage
of the design derived in this thesis. Another advantage is # = 1 and b = 1 are reasonable initial
conditions for the update laws.
After all elements of the modified design procedure are substituted, they are arranged in sub-
systems to the interceptor roll rate control system architecture displayed in Figure 5.3. The
subsystems named fi (1) and g; (z1) calculate the actual values of the respective terms, based
on (5.4) and (5.5). The error calculation subsystem provides z according to (5.6), which results

from (4.213) by considering the substitution of x; by (p?(B)B and the (p(}(B)chd filter.

= (p(I)(B)B - (p%B)B,Flt (5.6)
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The parameter update law subsystem comprises (4.222) and (4.269) and calculates the parameter
estimates for 8 and b. All calculated signals are forwarded to the subsystem illustrated as control
law. It contains (4.268) and generates dr, cmq as output.

Besides the enhanced readability and traceability of the signals in the interceptor roll rate control
system, the implemented architecture supports a high degree of reusability. If the interceptor
roll rate control system is applied to a different plant, only the subsystems denoted f; (z1) and
g1 (x1) require a redesign to implement the correct substitution of terms for the modified design
procedure. The parameter update laws and the control law remain unchanged, because they use
the naming convention of Chapter 4.

5.4 Pitch acceleration control system

The interceptor pitch acceleration control system is the second control system to be designed.
This subsystem shall control the pitch acceleration of the interceptor to the acceleration com-
mands provided by the interceptor guidance. Furthermore, the pitch acceleration of the intercep-
tor shall demonstrate the dynamical behavior specified in Requirement 6. The pitch acceleration
commands as well as the output of the plant model are inputs to the interceptor pitch acceler-
ation control system; das,cmq is the output.

To be able to control the pitch acceleration of the interceptor, an equation describing the latter
is derived first. (2.11) constitutes the starting point. By bringing the cross product to the
left hand side of (2.11), an equation for the inertial acceleration of the center of gravity of the
interceptor, specified in the body fixed frame, is achieved. The longitudinal acceleration of the
center of gravity of the interceptor with respect to the inertial reference frame, specified in the
body fixed frame, (ag)g is the third element of the vector on the left hand side. By combining
5 With the differential equation for (49P) > Which is available from (2.7),
(2.21), (2.37), and (2.51), a second order system from the input dps,cma to the output (ag)g
is derived, whereupon the dynamics of the aerodynamic control surface actuator modules are
neglected.

Unfortunately, this approach is inappropriate, because the second order system from dys,cma to

the equation for (ag)H

(ag)g is non-minimum phase, as already introduced, substantiated, and analyzed in Chapter
3. This non-minimum phase property prevents the application of the theoretical background
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introduced in Chapter 4; the Backstepping methodology can not be applied to non-minimum
phase systems.

Longitudinal acceleration of an arbitrary reference point

To overcome the non-minimum phaseness and reach the desired control, as implied by Require-
ment 6, the longitudinal acceleration of an arbitrary reference point of the interceptor is defined
as control variable. In terms of control theory, this approach means that the non-minimum
phase output (ag)g
reference point of the interceptor. If such reference point can be chosen so that the longitudinal
acceleration at the respective position is minimum phase, the Backstepping methodology is ap-

plicable.

is distorted in favor of the output longitudinal acceleration of an arbitrary

Picturing the physical effects behind the non-minimum phase property of (ag)g, it becomes
evident that the center of gravity of the interceptor rotates with respect to an instantaneous
center of rotation during the initiation of longitudinal maneuvers, once the aerodynamic control
surfaces are deflected. The instantaneous center of rotation is located ahead of the center of
gravity of the interceptor. By choosing an arbitrary point in front of the instantaneous center of
rotation as reference point for the longitudinal acceleration of the interceptor, minimum phase-
ness is guaranteed. This minimum phase property of such an output is proven via the derivation
of the longitudinal acceleration of an arbitrary reference point of the interceptor.

The position of the arbitrary reference point P with respect to the inertial reference frame is

given by (5.7), where G denotes the center of gravity of the interceptor.
(F") = (79) + (77) (5.7)

The derivative of (5.7), which describes the velocity of P with respect to the inertial reference
frame, is developed to (5.8). Because the interceptor is considered as a rigid body in this work,
(5.9) is utilized in the derivation of (5.8).

(
- <17G)I + (@'8) x (79T (5.8)

(?GP)B =0 (5.9)

Now, the derivative of (5.8) is developed according to (5.10), with (5.9) employed again. In ad-
dition, it is utilized that the cross product of equal vectors is identical to zero. (5.10) constitutes
the acceleration of P with respect to the inertial reference frame.

@)= (3) () (&) 1@ < o)

_ (f}G)H i [(&IB)B + (@'8) x (&IB)} x (7P + (&'B) x (%—,»GP)I



= @)+ (&) x (FOP) + (@'5) x [(@'P) x (77)] (5.10)
By expressing (dG )H via Newtons’s second axiom, (5.11) results.
_py T 1 o ~8\? _ (= - - .
(@) = — ST FC+ (1F) 7 x (FO) + @F) x [(@7) x (7OF)] (5.11)

Considering the assumptions from Chapter 2, which lead to the employment of the flat earth
representation and the inertial reference frame according to Appendix B, (5.11) is written as
(5.12). The latter is specified in the body fixed frame.

(@) = 5 30 (F9) 4 (308) % (F) 5+ G0 5 > (@) % (7)) (502

The angular acceleration vector (Q’?{B )B is given by (2.21). Assuming that P is located on the

Xp axis of the interceptor, as stated in (5.13), (ag)g is extracted from (5.12) as (5.14).

(7F) = [2" 0 0] [m] (5.13)

(5)h = LS (FG) 5~ @)1 (") 5+ () (192) 5 (7 5 (5.14)

Based on Requirement 5, the interceptor is a rolling airframe during the terminal flight phase.
This implies that the influence of gravity on (ag)g varies permanently, depending on the in-

terceptor attitude. Even in the case of © = 0[deg]|, the influence of gravity on (alg)g changes

between none and full impact, due to the variation of ®, as is evident from (2.35) in conjunction

with (2.32). Hence, accounting for gravity in (5.14) while using (aIZD)[BI as control variable means
an enormous effort.

Contemplating gravity from the system perspective, the interceptor guidance automatically
compensates for the gravitation acting on the interceptor. Former subsystem commands any
longitudinal acceleration being necessary to reach the desired target, even if gravity is neglected
in (5.14). If gravity causes the interceptor to leave the desired collision course with the target,
the interceptor guidance generates appropriate longitudinal acceleration commands to force the
interceptor back on the desired flight path.

Given the two beforehand presented conclusions, gravity is neglected, which leaves (5.15) for the
longitudinal acceleration of P with respect to the inertial reference frame, specified in the body
fixed frame, without gravity.

G %Z (FF) pasoc = (@) 5 (") 5+ 030) 5 (r50) 5 (27 5 (5.15)

(5.15) reveals the desired insight into the mechanism guaranteeing the minimum phase prop-
erty of the chosen output. Although the first term in (5.15) which constitutes the longitudinal
acceleration of G with respect to the inertial reference frame, specified in the body fixed frame,
without gravity exhibits non-minimum phase behavior, the second term in (5.15) which is the
relative angular acceleration of P with respect to G, specified in the body fixed frame, ren-
ders (ag)gwoG
(zF") 5 > 0[m], then, the second term in (5.15) generates an relative angular acceleration which
acts in the same direction as the longitudinal acceleration arising from the angle of attack be-
tween the interceptor fuselage and the surrounding airstream. These acceleration components

minimum phase. If, for example, (p%%) 5 = 0[deg], (r92) 5 = 0[deg], and
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Figure 5.4: Pole-zero plot of H(ap)n (s) at (z7) 5 = 1[m], (Vi 4p5) = 600 [m/s],
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and (ZG)I = 10000 [m] for the Short Period

oppose the longitudinal acceleration generated by the force originating from the aerodynamic
control surfaces. By increasing (a:P ) > the relative angular acceleration component is increased,
the non-minimum phaseness is overwhelmed, and minimum phaseness of the output is achieved.

A second proof of the minimum phase property of (alg)n is provided via the linearized inter-

B,woG
ceptor dynamics. (5.16) states the transfer function from s, cpma to (alg)ngG for (Vg )l =
600 [m/s] and (ZG)I = 10000 [m], whereupon (a:P)B = 1[m]. Figure 5.4 shows the pole-zero
plot of (5.16). It is evident that minimum phaseness is achieved by the presented approach. The
comparison of (5.16) and Figure 5.4 with (3.53) and Figure 3.7 underpins this result.

~39.22- (s 4 8.545 4 734.50)

H
() odrrcma * 2+ 11.385 + 78.02

(5.16)

Pitch acceleration control system design

Utilizing the derived minimum phase output, the interceptor pitch acceleration control system
is designed in the following, applying the full spectrum of theoretical background presented in
Chapter 4.

The augmented design procedure for parametric strict-feedback systems with unknown control
coefficients in the case of tracking is employed for the interceptor pitch acceleration control sys-
tem. Following the design of the interceptor roll rate control system, the terms of latter design
procedure are substituted by variables of physical meaning.

According to the design procedure, x1 gres is a known, smooth, and bounded reference signal.
Furthermore, the derivatives of 1 rey are assumed to be known, smooth, and bounded. On

the other hand, the smoothness of (ag)gwog Oomage Which constitutes the input to the inter-

ceptor pitch acceleration control system, is not guaranteed. For this reason, the derivatives of
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Figure 5.5: (ag) filter block diagram

I1 . .
(a?) Bawol.Cma A€ neither guaranteed to be smooth nor guaranteed to be bounded. To achieve
the required smoothness and boundedness properties of 21 r.r as well as its derivatives, a second

. . . . II
order, linear time invariant system is employed as (a,g) BwoG.Cma Hlter. Because the augmented

design procedure for parametric strict-feedback systems with unknown control coefficients in the
case of tracking contains Z1 g.f, a second order, linear time invariant system is necessary. The

1T
outputs of the (aZ)B,wOG’Cmd

diagram of the (a?)gwoG oma Hlter is illustrated in Figure 5.5.

The implementation of the terms of the augmented design procedure for parametric strict-
feedback systems with unknown control coefficients in the case of tracking requires the substitu-
tion of x1, x2, u, and the nonlinearities in (4.184) as well as (4.185). Based on Requirement 6 and
the presented derivation of a minimum phase output, x; is substituted by (ag)gwoG. Following
the attempt to control the acceleration of the center of gravity of the interceptor with respect

to the inertial reference frame, specified in the body fixed frame, the equation for (ag)ngG is

combined with the differential equation describing (q%B ) - Hence, z2 is substituted by (q?(B )
OM,cmd replaces u.

filter are used as x1 gey and its respective derivatives. The block

B
To account for the dimension of the terms in the (alzj)g
JWO!

and (4.185) are written as (5.17) and (5.18).

. and the (q?(B)B equation, (4.184)

i’l == [Fl,ll (-%'1) 0] . [z;j —|—b1g1 (.%'1):(}2 (5.17)

. 0
To = [O F 01 (xl,:zz)} . [9;] + bago (1, x2) U (5.18)

The derivative of (5.15) is calculated according to (5.19), to identify the nonlinearities in (5.17)
and (5.18). Assuming that (zG) ; varies slowly, the latter is considered steady in the derivation
of (5.19). This implies that pa; as well as the velocity of sound a are constant. The derivatives
of (Vig aps) s (a%) B, and (BF)} are given by (2.15) to (2.17). (Mf; pyc)p and (Mg p;0)p are
according to (2.55).
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By utilizing the introduced substitution and rearranging terms, (5.19) is written in the structure
of (5.17). 01, dar, On, and 0y are considered as measurements provided by the internal sensor

system to achieve the strict-feedback form of (5.17) and (5.18).

This form is mandatory to

apply the theoretical background of Chapter 4. The derivatives of the aerodynamic derivatives
contained in (5.19) are implemented in the plant model as aerodynamic lookup tables. Hence,
the actual values of these derivatives are available to the interceptor pitch acceleration control
system. Fj 11 (z1) and g1 (x1) are derived from the rearranged (5.19) according to (5.20) and

(5.21).
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For the substitution of terms in (5.18), the differential equation describing (q%B ) p 1s written as

(5.22). It origins from (2.7), (2.21), (2.37), (2.51), and (2.55).

.0B\B 7S RefC
(B = (1ot [Cwo (o 0810
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(M]\G/[,RJC> 1§ - (1g
n - B ( XX)B% ( ZZ)BB (pt}{B)B (Q%B)B (5.22)

(IYY)BB (IYY)BB

Employing the substitutions for z1, x2, and u, leads to (5.23) and (5.24) for F5 21 (x1,22) and
g2 (21, x2).

SRefC G 3G G G (627) 5
Fyor (21,22) = @) Caro (o, B, M) + Ci g (aK,ﬁK,M)‘M
YY/ BB 2 VKAbs
’ B
(MACjI,RJC> (I$x) s — (IS2)
2,) £ 5% ) ZEEE (098) 5 (a8P) (5.23)
YY /BB YY)BB
o
g2 (w1, 72) = (iGR‘;fCoM,aM (o, 8%, M) (5.24)
Yy)BB

As shown in Chapter 4, this design achieves global boundedness and global tracking of the

output of the (ag)gwoc Omd

Fi11(0) = 0, if (a§); = Oldeg], (a§)f; = O[deg/s], (6F) = Oldeg], (6F)5; = 0[deg/s],
(098) 5 = Oldeg/s], (r%F) ; = Oldeg/s], 61 = 0[deg], 6rr = O[deg], and éx = 0[deg]. In this
case, (af)1] g
g2 (x1,22) # 0, except for g equal to zero, which means that (VgAbs)]Ig = 0[m/s|. Therefore,
the controllability of (5.17) and (5.18) as well as the existence of the stabilizing function and u
is guaranteed, because this case is negligible.

Following the design of the interceptor roll rate control system, all parameter uncertainties in-
troduced in Chapter 2 are reflected by 5, b1, and bs. 0 = [1 1]T, by = 1, and by = 1, if
parameter uncertainties are absent. If parameter uncertainties exist, they enter the system via
(5.20), (5.21), (5.23), and (5.24), resulting in § # 1 1]T, b1 # 1, and b # 1. The zero ele-
ments in Fy (z1) and F; (21, z2) ensure that the introduced parameter uncertainties impact the

filter under all conditions. Furthermore, analysis shows that

= 0[m/s%], (¢}F) z = 0[deg/s] is a globally stable equilibrium. g; (z1) # 0 and

(ag)gwoG or the (q(}(B) 5 equation only. The particular parameter uncertainties of Chapter 2
are not considered individually in the presented approach, which reveals a great advantage of

the chosen approach also for the pitch acceleration control system. In addition, g = [1 1]T,
by = 1, and bo = 1, constitute reasonable initial conditions for the update laws contained in
the augmented design procedure for parametric strict-feedback system with unknown control
coefficients in the case of tracking.

After the substitution of all elements of the employed design procedure is finished, they are
implemented in interceptor pitch acceleration control subsystem in the architecture illustrated
in Figure 5.6. The subsystems denoted F} (x1), g1 (1), F2 (21, x2), and ga (z1,z2) provide the
actual values of the terms, based on (5.20), (5.21), (5.23), and (5.24). The error calculation

subsystem generates z; and 2 according to (4.213) and (4.214), with (4.268) is employed to

calculate 0(21,$17Ref,i1,Ref,§1,@1)- The parameter update law subsystem contains (4.221),
(4.222), (4.229), (4.230), (4.269), and (4.271). pr,cma is calculated in the control law subsystem
by utilizing (4.270).

As the interceptor roll rate control system architecture, the interceptor pitch acceleration con-
trol system architecture provides an enhanced readability as well as traceability of the signals.
Furthermore, the comparison of Figure 5.6 with 5.3 underpins the earlier conclusion regarding
reusability of the chosen architectural approach. By augmenting the interceptor roll rate con-
trol system with the Fy (z1,22) and go (z1, z2) subsystem as well as redesigning the parameter
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update law and the control law subsystem, the interceptor pitch acceleration control system is
realized. The upcoming design of the interceptor yaw acceleration control system emphasizes
the aspect of reusability even more.

5.5 Yaw acceleration control system

The last control system required to be designed is the interceptor yaw acceleration control
system. This subsystem shall control the lateral acceleration of the interceptor. In addition,
this subsystem shall ensure that the lateral acceleration of the interceptor demonstrates the
dynamical behavior specified in Requirement 6. Inputs to the interceptor yaw acceleration
control system are the lateral accelerations commands provided by the interceptor guidance and
the output of the plant model. The subsystem generates dn cmq as output.

Requirement 6, which considers the longitudinal as well as the lateral acceleration performance
of the controlled interceptor, imposes that the lateral acceleration of the interceptor is controlled.
As illustrated in Chapter 3, the longitudinal and the lateral interceptor dynamics coincide, due
to the cruciform configuration of the interceptor. This implies that the lateral acceleration of

the center of gravity of the interceptor with respect to the inertial reference frame, specified
II

B
Hence, (ag)IBI is inappropriate to apply the theoretical background presented in Chapter 4.

Following the design of the interceptor pitch acceleration control system, the lateral acceleration
of an arbitrary reference point P of the interceptor is defined as control variable to achieve a
minimum phase output. Based on (5.12) and (5.13), the lateral acceleration of P with respect

in the body fixed frame, (ag) exhibits the identical non-minimum phase property as (aG)g.

to the inertial reference frame, specified in the body fixed frame, (a{i)IBI is given by (5.25).

)0 = L5 (BE) y + (H2) 0 () + 00 (a) 5 (27 (5.25)
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Implementing the negligence of gravity, because the conclusions given for the interceptor pitch

acceleration control system are also valid for (a{;)g, leads to (5.26).
1 .
(@F) 50 = = 0 (F) g oes + (198) 5 (&) 5 + (8F) 5 (480) (=) (5.26)

(a{i)g,woc is the desired minimum phase output. The proof of the minimum phaseness of this
output is possible via the linearized interceptor dynamics, but is omitted here.

The interceptor yaw acceleration control system is designed by using the augmented design
procedure for parametric strict-feedback systems with unknown control coefficients in the case
of tracking. Following the earlier presentations, the terms of the design procedure are substituted
by variables of physical meaning.

First, z1 rey is substituted. Because the latter and its derivatives are assumed to be known,

pNIT
smooth, and bounded and (aY)BwOG’Cmd
. . . 11
time invariant system is employed as (a{i) B wol-Cmd

The outputs of the (a?)gwoG Cmd filter are utilized as 21 rey and its derivatives in the terms

of the design procedure. This approach follows the design of the interceptor pitch acceleration
control system. The block diagram of the (ag)gwoG Cmd
in Figure 5.5.

Second, x1, z2, u, and the nonlinearities in (4.184) as well as (4.185) are substituted. As the

is not guaranteed to be smooth, a second order, linear

filter to guarantee the required properties.

filter is identical to the one displayed

derivation of the minimum phase output implies, (a{i)gwoG
(9B ’

r9P) g and dn,cma represents u.

By writing (4.184) and (4.185) in the form of (5.17) and (5.18), developing the derivative of
(5.26), and restructuring the latter, Fy 11 (z1) as well as g1 (z1) are calculated as stated in (5.27)
and (5.28). (2Y) ; is considered steady in the development of the derivative of (5.26). The

derivatives of (VlgAbs)IB, (@)L, and (B%)L are provided in (2.15) to (2.17), and (M]\%RJC)B

as well as (Mﬁ,RJC)B are according to (2.55). Furthermore, dr,, dp7, oy, and Sy are taken into
account as measured signals offered by the internal sensor system.

is taken as x1. xg is substituted by
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The differential equation for (r[}(B)B, which is available from (2.7), (2.21), (2.37), (2.52), and
(2.55), constitutes the foundation for the substitution of the terms in (5.18) concerning the inter-
ceptor yaw acceleration control system. Based on this differential equation and the replacements
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for x1, x9, and u, F5 21 (x1,22) and g2 (z1,x2) are derived according to (5.29) and (5.30).

qSRefC G AG G AG (") e
F2,21(x1’$2) = (IG ) [CN,O(QK,ﬁ[OM)+CN,r(aKaﬁK7M)' ( B )I
Z%)BB 2 VKAbs
Abs ) p
Mﬁ,RJc IG — (1€
+< - )B _ ( YY)BBG ( XX)BB (p(}(B)B (T%B)B (5.29)
(I%2) s (I%2) s
TS i
g (w1, w9) = 2L O 5. (%, BF, M) (5.30)
(IZZ)BB

This design of the interceptor yaw acceleration control system guarantees global boundedness

gwoG’Cm , filter independent of the flight condi-

tion of the interceptor, based on Chapter 4. Furthermore, F1 11 (0) = 0, if (a?{)g = 0[deg],
(a§%)5 = 0ldeg/s], (BF); = 0ldeg], (6F) = 0ldeg/s], (0%7) 5 = 0ldeg/s], (43F) 5 = 0[deg/s],

dr, = 0[deg], dpr = 0[deg], and dn = 0[deg]. Under this conditions, (a?)ngG = 0[m/s?%,
(r9B

9P) 5 = 0[deg/s] is a globally stable equilibrium. Following the design of the interceptor pitch
acceleration control system, the controllability of (5.17) and (5.18) as well as the existence of

and global tracking of the output of the (a{;)

a(21,$1,R3f7¢1,Ref,51, 01) and u is guaranteed, because g1 (x1) # 0 and go (z1,22) # 0, except
for ¢ identical to zero.

The consideration of the parameter uncertainties introduced in Chapter 2 in the interceptor yaw
acceleration control system follows exactly the interceptor pitch acceleration control system. 5,
b1, and by account for all individual parameter uncertainties. Without parameter uncertainties
present, g = [1 1}T, b1 = 1, and by = 1. If parameter uncertainties exist, 57& [1 1}T, b1 # 1,
and by # 1. The zero elements in (5.17) and (5.18) guarantee that the parameter uncertainty

. . I7 .
effects stay in the respective (a{i) Bwoe OF (r(}(B ) p equation.

The implementation of the elements of the augmented design procedure for parametric strict-
feedback systems with unknown control coefficients in the case of tracking inside the interceptor
yaw acceleration control subsystem is identical to the interceptor pitch acceleration control sys-

tem. The architecture of the (a{i i control system is shown in Figure 5.6. The subsystems

)B woG
denoted F (1), g1 (1), Fa (21, 3:2),7 and g9 (71, x2) are redesigned according to (5.27) to (5.30).
The fact that the implementation of interceptor yaw acceleration control system differs from
the interceptor pitch acceleration control system only in the Fy (x1), g1 (1), F» (z1,z2), and
g2 (x1,x2) subsystems underlines the superior reusability of the architectural approach chosen

in this thesis.

5.6 Control allocation

5.6.1 Allocation algorithm

The control allocation subsystem inside the interceptor flight control system shall allocate
01,Cmds OM,Cmds and Oy ,cma to the two actuator sections of the interceptor, containing the
total number of 184 actuators. Based on Requirement 7, the design of the control allocation
should ensure that both actuator sections of the interceptor are employed and that the reac-
tion jet cartridge consumption does not exceed 50 [%]. Therefore, standard control allocation
methodologies are analyzed in the following concerning their capability to fulfill these require-
ments.
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Standard control allocation methodologies

Available literature offers a wide spectrum of standard control allocation methodologies. [101]
provides an overview to this spectrum and is based on [2], [6], [10], [13], [18], [19], [34], [35], [42],
[75], [79], and [140]. In addition, the publication series consisting of [29], [30], [31], and [32] cov-
ers an enormous field of aspects related to control allocation, ranging from constrained controls
to computational efficiency. Mathematical background touched in control allocation problems
is available from [62], [96], and [99]. According to [101], control allocation methodologies are
categorized into direct and optimization based algorithms. Daisy chaining is a control allocation
methodology separate from these types.

[43] illustrates the successful application of optimization based algorithms to the control alloca-
tion of a modern fighter aircraft. Despite the availability of this important result, optimization
based algorithms are inapplicable for this work. Such algorithms generate a solution for the
control allocation problem which involves all available actuators. This means that the reaction
jet actuator section of the interceptor would be driven permanently by the control allocation,
even though the individual reaction jet cartridges can only be fired once. This behavior would
lead to an excessive reaction jet cartridge consumption during the terminal flight phase of the
interceptor. The results in [107] underpin the inapplicability of optimization based algorithms to
this thesis, by showing that continuous reaction jet actuators are constantly driven in a similar
situation.

The daisy chaining methodology constitutes a two step approach. First, all available actuators
are sorted according to a priority order which is based primarily on measurable quantities, like
actuator efficiency, maximum actuator deflection, etc., or possibly non-measurable quantities,
e.g. predilection for an actuator by the system designer. Second, during system operation, all
available actuators are driven according to the predefined priority order. If the actuator with the
highest priority is saturated, the actuator which exhibits the second highest priority is driven
with the remaining command that can not be implemented by the first actuator. This process
continues until all available actuators are deflected to their limits. This is the case when the
command exceeds the overall available actuator capability. The described operating principle
of the daisy chaining methodology implies that the employment of all available actuators is not
guaranteed. If, for example, a system operates at states where small commands which are below
the saturation limit of the highest priority actuator need to be allocated, only this actuator is
driven.

Based on the two actuator sections of the interceptor, two possible implementations of the daisy
chaining methodology exist. Both exhibit different implications. If the reaction jet actuator
section would be apportioned the highest priority, reaction jet cartridges would be utilized for
every command, independent of the magnitude. Comparable to the optimization based algo-
rithms, excessive reaction jet cartridge consumption would occur, preventing the fulfillment of
Requirement 7. If the reaction jet actuator section would be given a priority lower than the
aerodynamic actuator section, it would be possible that the reaction jet actuator section is not
employed during the terminal flight phase of the interceptor, depending on the magnitude of
the command, although beneficial effects for the agility of the interceptor could be achieved.
Although [27], following [10], [12], [35], [97], and [100], presented this priority order for aerospace
vehicles comprising reaction control jets and aerodynamic control surfaces operating in endo-
atmospheric conditions and derived a methodology to prevent control variable overshoot by
accounting for the torques generated by the individual reaction control jets, this priority order
is inappropriate for the interceptor flight control system, because it does not guarantee the uti-
lization of both actuator sections of the interceptor during the terminal flight phase. Moreover,
the cited method would lead to an enormous computational effort endangering the real time
performance of the interceptor flight control system, due to the large number of individual reac-
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tion jet cartridges in the reaction jet actuator section. Hence, the daisy chaining methodology
is not usable herein.

Control allocation algorithm design

The inapplicability of the standard control allocation methodologies analyzed beforehand di-
rects the search to simpler and straightforward solutions. Such solutions shall implement the
following functionalities to fulfill Requirement 7.

The reaction jet actuator section shall not be driven by the control allocation when the inter-
ceptor is at a or close to a steady-state, meaning only small tracking errors exist, to prevent
excessive reaction jet cartridge consumption. This functionality is extended to the situation
when commands which are below a defined threshold need to be allocated. In this case, the
reaction jet actuator section shall not be driven either. Small acceleration commands shall only
be allocated to the aerodynamic actuator section to reduce reaction jet cartridge consumption.
Vice versa, if large acceleration commands or tracking errors occur, the control allocation shall
employ both actuator sections of the interceptor. The reaction jet actuator section, which ex-
hibits a fast response time, supports the slower responding aerodynamic actuator section in the
implementation of the commands. Furthermore, the control allocation should drive the reaction
jet actuator section in discrete values up to the limit defined by (2.60).

Given this, the following control allocation algorithm design is defined. Because the reaction jet
actuator section does not generate roll moments, which is evident from (2.55), 07, cmq is com-
pletely allocated to the aerodynamic actuator section. das,cma and dn,cmd are also allocated to
the aerodynamic actuator section. In contrast to these allocations, the tracking errors z; of the
pitch and yaw acceleration control systems are forwarded to the reaction jet actuator section.
(5.31) and (5.32) state the respective allocation.

OM,Cmd,RIC = Z1,Pitch (5.31)
ON,Cmd,RIC = 21, aw (5.32)

OM,cmd and dn cma generated by the pitch and yaw acceleration control system are inappropri-
ate to be used for the reaction jet actuator section, because dyr,cma # 0 or dn,cma 7 0, if the
interceptor is at a steady-state. Therefore, the reaction jet actuator section would be driven, an
excessive reaction jet cartridge consumption would result, and the defined requirements would
not be achieved.

Because the individual reaction jet cartridges are dispersed on the circumference of the inter-
ceptor fuselage, as illustrated in Figure 2.1, (5.31) and (5.32) are transformed into polar coordi-
nates. The magnitude of the reaction jet actuator section command dyrqg,cmd,rJC is calculated
by (5.33).

_ 2 2
oM ag,Cmd,RJC — \/ 5M,Cmd,RJc + 5N,Cmd,RJC (5.33)

Thereafter, drrag,0ma,rJC 18 quantized as stated in (5.34). The quantization is based on the
reaction jet cartridge effectivity analyzed in Chapter 3. As Figure 3.11 shows, each reaction jet
cartridge generates a (ag)’g of 4[m/s?) to 4.5[m/s?], if positioned in the optimal attitude with
respect to the command. A similar investigation for the chosen output (alg)gwoG leads to the

result that an individual reaction jet cartridge gives rise to 6.9 [m/s?] < (a?)gwoc <7.2[m/s?.

dMag,cmd,RJC Which represents the total acceleration tracking error, as can be seen from (5.31)

_ pyIT
to (5.33), is decreased by (aZ)B,woG

act in an adequate attitude. If, for example, drrag,cma,rIC = 7[M/ s%] caused by dur.cma.rIC ~
7[m/s?], one reaction jet cartridge in the Xp - Zp plane is sufficient to diminish the total

originating from the reaction jet cartridges, if the latter
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acceleration tracking error; tracking of the longitudinal acceleration is reestablished. Hence,
the quantization expresses the amount of (a?)IB{wOG
capable to achieve. Presuming that the effects of individual reaction jet cartridges add up, (5.34)
results. The integer interval to which the intervals of dareg,cmd,r7c are mapped is chosen in

accordance with (2.60).

one or multiple reaction jet cartridges are

if 0 < 0rag,cmd,ric <T[m/s?
if 7[m/s*] < Oragcma,ric < 14[m/s?]
if 14[m/s*] < Opag,cmd,ric < 21[m/s?]

) if 5Mag,Cmd,RJC > 21 [m/SQ]

5X4ag,0md,RJC = (534)

W N = O

The last step of the control allocation algorithm guarantees d3,, g.cmd.ric =0 for defined time
interval between two successive reaction jet cartridge firings. This mechanism allows the reac-
tion jet cartridge thrust profile, illustrated in Figure 2.4, to unfold, the respective forces and
moments acting on the interceptor to develop, and by that prevents excessive reaction jet car-
tridge consumption during transition phases. The duration of the time interval is configurable
and enables direct access to the reaction jet cartridge consumption in the terminal flight phase
of the interceptor.

Although the designed control allocation algorithm is a straightforward approach, all required
functionalities are fulfilled. The allocation of 07, cima, 0ar,cmd, and On,cmd to the aerodynamic ac-
tuator section guarantees steady-state accuracy without the reaction jet actuator section driven.
The control allocation algorithm uses the reaction jet actuator section in the presence of large
commands and tracking errors with discrete values of reaction jet cartridges to be fired. In
addition, the ability to directly influence the reaction jet cartridge consumption is implemented.
The control allocation algorithm has no impact on the derived boundedness and stability proper-
ties, because the forces and moments generated by the reaction jet actuator section are considered
in the employed design procedure.

5.6.2 Reaction jet cartridge allocation

The control allocation algorithm developed in the previous section generates 6}k\/lag,Cmd, RJC A8
output. 43, 9.Cmd,rJc Which expresses the amount of reaction jet cartridges to be fired needs
to be mapped to reaction jet cartridge deflection operators dgjo of the individual reaction jet
cartridge subsystems. The mapping is conducted in the reaction jet cartridge allocation. This
process accounts for the positions and the attitudes of the individual reaction jet cartridges
inside the interceptor fuselage as well as the availability of the particular reaction jet cartridges.
The reaction jet cartridge allocation employs a four step approach. First, the optimal reaction
jet cartridge angle with respect to the given commands is determined. Afterwards, the optimal
reaction jet cartridge angle is corrected depending on (p?{B ) p to account for the reaction jet
cartridge fuze delay. Third, different reaction jet cartridge firing strategies are employed to
fuze the amount of reaction jet cartridges given by d3,, 9.Cmd,RIC The reaction jet cartridge
firing strategies depend on 5}"\4a97cmd’ ryo- Finally, two different reaction jet cartridge search
algorithms are executed to find available reaction jet cartridges. Although the third and fourth
step of the reaction jet cartridge allocation process are introduced separately, their execution
inside the interceptor flight control system is interlaced.

Optimal reaction jet cartridge angle

The first step of the reaction jet cartridge allocation process searches the optimal reaction jet
cartridge angle with respect to the given commands. Based on the dispersal of the reaction jet
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cartridges on the circumference of the interceptor fuselage, the angle of 63,, 9.Cmd.RIC specified
in the body fixed frame, needs to be calculated. 0a7,cma,r7c and dn,cmd,rJCc are employed in
(5.35) to calculate the angle of OMag.Cmd,RIC

RJC’)

(5.35)

(¢

( —ON,Cmd,RIC >
— arctan | ————

B,Cmd OM,Cmd,RIC

with the elements of (@’RJ C) 5> as given in (2.4), the optimal reac-
RJC)

By comparing (SDRJC)B,Cmd
tion jet cartridge angle is found. The element of (@’RJ C) p nearest to (go
the optimal reaction jet cartridge angle.

The property (p?(B ) 5 > 0[deg/s] of the interceptor, induced by Requirement 5, implies that the
optimal reaction jet cartridge angle is a function of time. The calculated optimal reaction jet

cartridge angle for a given 63, 9.Cmd, RJC 1S Inappropriate after a period of time and the adjacent
SBRJC)

B.Cmd determines

element of ( p becomes better suited. The reaction jet cartridge fuze delay displayed in
Figure 2.4 contributes to this effect. Hence, the optimal reaction jet cartridge angle is corrected
depending on (pg(B) g+ This mechanism ensures that the forces and moments generated by the
reaction jet actuator section act in the plane specified by (5.35).

Considering (p(}{B ) 5 =90 [deg/s] and the reaction jet cartridge thrust profile, reaction jet car-
tridges which exhibit the optimal reaction jet cartridge angle for a given 5”];/[ag7cmd7 RrJyc rotate
0.45 [deg| until the reaction jet cartridge fuze delay is elapsed, 1.35 [deg] until the maximum reac-
tion jet cartridge thrust unfolds, and 2.7 [deg] until the reaction jet cartridge thrust diminishes.
Compared to the angle of 10 [deg] between adjacent reaction jet cartridges cartridge columns,
these rotations are negligible. For this reason, no optimal reaction jet cartridge angle correction
is necessary for (p}?) 5 = 90[deg/s].

On the other hand, a correction of the optimal reaction jet cartridge angle becomes mandatory
with increasing ’ p?(B ’ p- To ensure reusability of the designed components, which has been de-
fined as one of the aims of this work, the optimal reaction jet cartridge angle correction table
according to Figure 5.7 is implemented in the reaction jet cartridge allocation. The table is
based on considerations about ‘ p(}{B‘ p in relationship to the angle of 10 [deg] between adjacent
reaction jet cartridges cartridge columns.

Reaction jet cartridge firing strategies
After the determination of the optimal reaction jet cartridge angle, the individual reaction jet
cartridge subsystems for the implementation of 03, g.cmd,rJc are determined. This is the third
step of the reaction jet cartridge allocation process. Depending on d3,, 9.Cmd,RJC 88 well as the
availability of particular reaction jet cartridges, different reaction jet cartridge firing strategies
are employed. In total, nine reaction jet cartridge firing strategies are designed in the framework
of this thesis. All reaction jet cartridge firing strategies are displayed in Figure 5.8. Besides
acting as an overview, Figure 5.8 illustrates the sequence in which the reaction jet cartridge
firing strategies are utilized for different d3,, 9.Cmd,RIC
Reaction jet cartridge firing Strategy 1 relates to the case 57\/[ag,cmd, ryjo = 1. To generate forces
and moments by reaction jet actuator section which are acting in the plane specified by the
optimal reaction jet cartridge angle, it is desired to fire a reaction jet cartridge in the latter
angle. Hence, Strategy 1 searches for an available reaction jet cartridge in the optimal reaction
jet cartridge angle. Because the availability of such an reaction jet cartridge is not guaranteed,
Strategy 1 incorporates the search in four adjacent reaction jet cartridge angles out of (@’RJ C) B
whereupon the sign of (p(}(B) p 1s considered. If no available reaction jet cartridge is found in the
total five considered reaction jet cartridge angles, Strategy 1 terminates without implementing
Ma 9.Cmd, RIC This termination prevents the generation of forces and moments by the reaction
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Optimal reaction jet

cartridge angle corrected (%) g [rad/s]

by ...available positions
-3 (p})(B ) g < —6m
-2 —6m < (p(,](B)B < —4m
-1 —4r < (p(}(B)B < =27
0 =21 < (p(])(B)B <27
1 2#§(p%3)3<47r
2 47r§(p(}(B)B<67r
3 (pg(B)B = 6m

Figure 5.7: Optimal reaction jet cartridge angle correction table

B p—
51\1ag,Cmd,RJC =1

* p—
61\r1ag7Cmd,RJC =2

* —
61\1119,Cmd,RJC =3

Strategy 1:
1 RJC out of
RJC angles

Strategy 2.1:
2 RJC in optimal
RJC angle

5

Strategy 3.1:
3 RJC in optimal RJC angle

Strategy 2.2:
2 RJC
simultaneously

Strategy 3.2:
1 RJC in optimal RJC angle
and 2 RJC simultaneously

Strategy 2.3:
2 x 1 RJC out of 5
RJC angles

Strategy 3.3:
1 RJC in optimal and 2 RJC
out of 5 RJC angles

Strategy 3.4:
2 RJC simultaneously and
1 RJC out of 5 RJC angles

Strategy 3.5:
3 RJC out of 5 RJC angles

Figure 5.8: Reaction jet cartridge firing strategies
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(Fric,abs.) g

Figure 5.9: Reaction jet cartridge thrust forces at simultaneous firing

jet actuator section which act far outside the plane defined by the optimal reaction jet cartridge
angle.
The case 03, 9.Cmd,RJC = 2 comprises three reaction jet cartridge firing strategies. These strate-
gies are applied in the sequence shown in Figure 5.9. Strategy 2.1 searches for two available
reaction jet cartridges in the optimal reaction jet cartridge angle. This constitutes the most
desirable implementation of 57\4a970md’ rjo = 2. If such a pair of reaction jet cartridges is not
available, Strategy 2.2 is employed.
Strategy 2.2 tries to implement 6}“\/[ag’cmd7 rjc = 2 by simultaneously firing two reaction jet
cartridges which are positioned at the identical angle left- and right-hand side of the optimal
reaction jet cartridge angle. As displayed in Figure 5.9, the simultaneous firing of two reaction
jet cartridges gives rise to two reaction jet cartridge thrust forces. By splitting these reaction jet
cartridge thrust forces into parallel thrust force components (FR JC, Abs,H) B and perpendicular
thrust force components (Frjc,aps, 1) g, it becomes evident that (Frjc,aps,1) g of the two reac-
tion jet cartridges cancel each other, while (FR JC, Abs,||) p remain. The remaining (FR JC, Abs,H) B
act in the plane specified by the optimal reaction jet cartridge angle. If Strategy 2.2 can not
be implemented, due to reaction jet cartridge no