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Zusammenfassung

Die vorliegende Dissertation befasst sich mit zwei neuen numerischen Verfahren, die die An-
bindung geometrischer Modelle an die Finite-Elemente-Analyse erleichtern sollen: die Methode
der Finiten Zellen und die Isogeometrische Analyse.

Im Kontext der Methode der Finiten Zellen (FCM) wird der bisherige Entwicklungs-
stand um vier Aspekte erweitert: Erstens wird die FCM unabhängig von einem bestimmten
Ansatzraum als allgemeines Konzept zur Geometrie-Analyse-Integration vorgestellt. Zwei-
tens wird die B-spline Version der FCM eingeführt, die B-Splines hoher Ordnung und hoher
Glattheit im Rahmen des allgemeinen FCM-Konzepts anwendet. Drittens wird die Idee des
“Deformation resetting” motiviert, das die Lösung geometrisch nichtlinearer Probleme im
Rahmen der FCM erlaubt. Viertens wird die FCM mit dem Ansatz der hierarchischen hp-d -
Adaptivität kombiniert, um lokale Netzverfeinerung zu ermöglichen.

Im Kontext der Isogeometrischen Analyse (IGA) wird aufbauend auf dem Subdivisions-
prinzip ein hierarchisches Verfeinerungsschema für nicht-uniforme rationale B-Splines (NURBS)
motiviert, das volle Analysetauglichkeit in 2D und 3D mit pragmatisch-intuitiver Imple-
mentierung in Baumstrukturen verbindet und somit eine geeignete Basis für lokale Netzver-
feinerung in der NURBS-basierten IGA darstellt. Es wird gezeigt, dass die Kombination von
hierarchischer Verfeinerung und der B-Spline Version der FCM eine nahtlose CAD-Analyse-
Integration von komplexen T-Spline basierten Bauteilen erlaubt, deren lokale Eigenschaften
hinsichtlich Geometrie und Lösungsfeldern adaptiv berücksichtigt werden können.

Abstract

The thesis at hand addresses two recently introduced concepts intended to support an efficient
interaction between geometrical models and finite element analysis: the finite cell method and
isogeometric analysis.

In the context of the finite cell method (FCM), the state of the art is complemented by
four new aspects: First, the FCM is generalized as a seamless geometry-through-analysis
procedure, independent of a special high-order basis. Second, the B-spline version of the FCM
is introduced, which applies high-order and high-continuity B-spline bases within the FCM
concept. Third, the idea of deformation resetting is motivated, which allows for the extension
of the finite cell method to geometrically nonlinear problems. Fourth, the FCM is combined
with hierarchical hp-d adaptivity for local mesh refinement.

In the context of isogeometric analysis (IGA), the principle of subdivision is used to derive
a hierarchical refinement procedure for non-uniform rational B-splines (NURBS). It combines
full analysis suitability in 2D and 3D with straightforward implementation in tree data struc-
tures and thus constitutes a suitable basis for local refinement in NURBS based IGA. It is
furthermore demonstrated that the combination of the B-spline version of the FCM and hi-
erarchical refinement of NURBS opens the door for a seamless IGA design-through-analysis
procedure for complex T-spline based engineering parts and assemblies, which is able to adap-
tively resolve local features in geometry and solution fields.
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der beträchtliche Freiraum, den ich während der letzten drei Jahre genießen durfte, haben
ganz wesentlich zum Gelingen dieser Arbeit und zu meiner persönlichen Entwicklung als Wis-
senschaftler beigetragen.
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Chapter 1

Introduction

The finite element method (FEM) is one of the most important tools for the numerical solution
of partial differential equations, which are used in many engineering disciplines to simulate
technical systems and processes. Finite element analysis (FEA) with standard tools requires
the discretization of the physical domain into a finite element mesh, whose boundaries con-
form to the boundaries of the geometry. While this constraint can be tackled today with the
help of powerful mesh generators, it still constitutes a severe bottleneck, when highly complex
geometries are at issue. This is illustrated by a recent statement of Ted Blacker, Manager
of Simulation Sciences at Sandia National Laboratories, who reports in [56] that in the con-
text of computer aided design (CAD), common industrial experience attributes 80% of the
overall analysis time to the transfer of a complex geometrical model into an analysis suitable
discretization and only 20% to finite element analysis itself. For geometrical models beyond
CAD such as volumetric voxel representations derived from medical imaging technologies, the
effort to create a suitable finite element discretization can be even much larger. Decreasing
the high ratio between discretization effort and actual analysis time would considerably reduce
the cost of FEA, which could help to further promote and establish large-scale numerical sim-
ulation for complex physical problems in many industrial, medical or scientific applications.
Therefore, the question of a more efficient interaction between geometrical models and finite
element analysis has gained tremendous interest over the last decade, and several promising
concepts to alleviate the discretization challenge for complex geometries have recently been
developed in the computational mechanics community. The thesis at hand focuses on two of
them: the finite cell method and isogeometric analysis.

The finite cell method (FCM) introduced by Parvizian, Düster and Rank [150] belongs
to the class of embedded domain methods [129, 141], also known as immersed boundary
[138, 152] or fictitious domain methods [59, 94, 155]. Their main idea consists of the extension
of the physical domain of interest beyond its potentially complex boundaries into a larger
embedding domain of simple geometry, which can be meshed more easily. The fictitious domain
approach and very similar ideas have been widely used in conjunction with penalty methods
[33, 155], the mortar approach [10], Lagrange multipliers [39, 81, 92, 94, 101], Nitsche’s method
[40], extended finite elements [24, 91, 102, 195], discontinuous Galerkin [16] and spectral
methods [124, 130, 149] as well as in the immersed [167, 173, 219] and unaligned finite element
methods [225] to address problems of structural analysis, acoustics, fluid and heat flow, fluid-
structure interaction, topology and shape optimization. The finite cell method combines the
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fictitious domain approach with the p-version of the finite element method [197, 198], adaptive
integration and weak imposition of unfitted Dirichlet boundary conditions [84, 207, 218]. For
problems with a smooth solution, it offers the following key advantages:

◦ It circumvents the whole mesh generation process by maintaining a structured grid of
cells, which are disconnected from the geometry. The geometry information is taken
into account implicitly during numerical integration by penalizing material parameters
at integration points that are located outside the physical geometry.

◦ It can accommodate geometries of arbitrary complexity, while the corresponding algo-
rithms are simple and allow for reliable automation of the discretization process.

◦ Despite its simplified geometry handling, the finite cell method maintains high rates of
convergence and thus guarantees high accuracy at a moderate computational effort.

Within the framework of the finite cell method, the following aspects have been examined
so far: Analysis of complex structures [162, 168], fluid-structure interaction [209], topology
optimization [151], thin-walled structures [163], weak boundary conditions [168, 207, 218],
elasto-plasticity [1] and advection-diffusion problems [42]. The present work contributes four
main new aspects: First, the finite cell method is characterized as a general geometry-through-
analysis procedure, which is independent of a special high-order approximation basis. Second,
this viewpoint is corroborated by the application of high-order and high-continuity B-splines
within the general finite cell concept, coined the B-spline version of the FCM, for which equiv-
alent overall solution characteristics with respect to the original p-version of the FCM are
demonstrated. Third, the formulation of the finite cell method is extended to geometrically
nonlinear problems, based on the deformation resetting idea. Fourth, the finite cell method
is combined with the concept of hp-d adaptivity, which provides the possibility for local mesh
refinement, while preserving the simple meshing property of the finite cell concept.

Isogeometric analysis (IGA) was introduced in a pioneering contribution [109] by Hughes

and co-workers to bridge the gap between computer aided design and finite element analysis.
Its core idea is to use the same basis functions for the representation of geometry in CAD and
the approximation of solutions fields in FEA. This strategy bypasses the whole mesh generation
process and supports a tightly connected interaction between CAD and FEA [54, 115, 183].
In addition, analysis based on geometric representations of higher-order smoothness exhibits
many advantages over standard C0-continuous finite element representations [79]. This has
been shown in many applications such as structural vibrations [55, 56], incompressibility [9, 77,
199], shells [27, 75, 117], fluid-structure interaction [20, 23], turbulence [6, 18, 21], phase-field
analysis [96, 35], contact [200, 201], fracture [206] and optimization [60, 211].

Due to their relative simplicity and ubiquity in today’s CAD tools, isogeometric analysis
has been largely based on non-uniform rational B-splines (NURBS). However, a multivariate
NURBS basis does not provide a natural possibility for truly local mesh refinement [22, 56].
Due to its rigid tensor product structure, refinement of NURBS is a global process that prop-
agates throughout the domain. The demand for adaptivity has recently expedited a shift from
NURBS to T-spline based isogeometric analysis, where local mesh refinement can be natu-
rally achieved [22, 69, 126, 185]. At the same time, prominent CAD tools such as Rhino or
SolidWorks [166, 191, 205] have started to introduce T-spline geometry representations, since
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T-splines exhibit further important geometric advantages over NURBS, such as the capability
of joining patches without gaps and the preservation of higher-order continuity throughout
a multi-patch model [186, 187]. A further geometry representation, which naturally accom-
modates local mesh refinement, are the so-called PHT-splines [63, 125], whose application for
local refinement in isogeometric analysis has been recently presented in [143, 144].

While T-splines are recent developments, the concept of hierarchical refinement of B-splines
dates back to the late 80’s, when it was introduced by Forsey and Bartels for local surface
refinement in CAD [88, 89] and later adopted by Höllig and co-workers for local mesh re-
finement in B-spline finite elements [105, 106, 119]. In the framework of isogeometric analysis,
local hierarchical refinement of NURBS combines several important advantages:

◦ Hierarchical B-splines rely on the intuitive principle of B-spline subdivision [212, 226],
which automatically ensures linear independence of the refined basis.

◦ Since hierarchical B-splines still rely on a local tensor product structure, they can be
easily generalized to arbitrary dimensions. Particular interest lies in 3D, where T-splines
become extremely complicated. The rigidity and simplicity of the tensor product struc-
ture also considerably facilitates automation of the refinement process.

◦ A hierarchical organization of a basis can be directly transferred into tree-like data
structures, which are a well-established concept in computer science [14, 41, 171, 172]
and allow for a straightforward implementation with manageable coding efforts.

Exploiting the benefits of hierarchical refinement, the present work contributes to the de-
sign of suitable approximation bases and corresponding algorithms for adaptive B-spline and
NURBS based analysis. In particular, the subdivision split of B-spline basis functions is com-
bined with the concept of hp-d adaptivity, which leads to a simple, easy-to-implement, yet
efficient hierarchical refinement strategy for B-splines and NURBS. Its versatility and flexibil-
ity is demonstrated in adaptive isogeometric and embedded domain analysis.

The present work is organized as follows: Chapter 2 provides a concise introduction
to the general finite cell concept as a seamless geometry-through-analysis procedure and es-
tablishes the p- and B-spline versions of the FCM, highlighting the different derivation and
characteristics of their high-order bases. Using linear elastic problems in one, two and three
dimensions, the equivalent solution behavior of the p- and B-spline versions of the FCM is
demonstrated, comprising for example the smooth extension of solution fields, high rates of
convergence and simple handling of very complex geometries. Turning to geometrically non-
linear problems, Chapter 3 introduces a FCM formulation based on the logarithmic strain
measure and demonstrates that a standard FCM approach applying the same kinematics over
the complete domain leads to the loss of uniqueness of the nonlinear deformation map within
the fictitious domain. It motivates its modification by the idea of deformation resetting, which
assumes the initial reference configuration within the fictitious domain after each Newton iter-
ation. Furthermore, it provides a geometrically nonlinear formulation of the penalty method
for the imposition of unfitted Dirichlet constraints in elements cut by the geometric boundary.
Chapter 4 presents a range of numerical benchmarks, which demonstrate stability, accuracy,
physical consistency and high rates of convergence for the modified geometrically nonlinear
FCM formulation applied within the p- and B-spline versions. It addresses the versatility of the
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geometrically nonlinear penalty method, the behavior of the FCM under severe mesh distor-
tion, and presents an application oriented large deformation analysis of a complex metal foam
sample. The latter demonstrates the capability of the FCM to directly operate on volumetric
voxel representations, leading to a seamless geometry-through-analysis procedure for complex
voxel based geometrical models. Furthermore, aspects of software implementation, hardware
requirements and computational performance are discussed and a concise comparison between
the p- and B-spline versions of the FCM is drawn.

Chapter 5 introduces the concept of hp-d adaptivity in the framework of the finite cell
method. It allows for local mesh refinement to take into account non-smooth properties of a
solution, for example discontinuities along material interfaces or singular points. While the
hp-d -adaptive p-version is based on overlays of linear hierarchical functions, the hp-d -adaptive
B-spline version uses overlays of successively contracted subdivision B-splines. The latter is
an important prerequisite for the efficient and easy-to-handle local refinement of NURBS
discussed in Chapter 6. After a brief review of B-spline and NURBS basis functions, a
hierarchical refinement scheme for axis-aligned B-splines is presented, drawing on ideas of
subdivision B-splines, the hp-d adaptivity and established hierarchical refinement of standard
nodal based FEA. Several aspects, such as extension to arbitrary dimensions, efficient imple-
mentation and algorithms and generalization to the hierarchical refinement of NURBS for the
representation of arbitrary geometries are discussed in detail. Chapter 7 demonstrates the
validity, versatility and efficiency of hierarchical refinement of NURBS for a range of two- and
three-dimensional examples from fluid and structural mechanics. In addition, the potential of
embedded domain analysis as a seamless IGA design-through-analysis procedure for complex
engineering parts and assemblies is outlined for the examples of a ship propeller and a rim of a
car wheel, analyzed with the B-spline version of the finite cell method. In this context, hierar-
chical refinement is demonstrated to considerably increase the flexibility of embedded domain
analysis by adaptively resolving local features in geometry and solution fields. Chapter 8
closes the discussion with a concise summary and some conclusions.
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Chapter 2

The finite cell method for high-order
embedded domain analysis

The fundamental ideas of the finite cell method (FCM) were introduced in [74, 150] as an
extension to the p-version of the finite element method. In this work, the finite cell method is
characterized as an embedded domain method, which combines the fictitious domain approach
with a high-order approximation basis, adaptive integration, and weak imposition of unfitted
Dirichlet boundary conditions. Its core benefit is the possibility to maintain a structured,
axis-aligned grid of cuboidal elements irrespective of the geometric complexity involved, while
its high-order approximation basis offers high rates of convergence for smooth problems. In
contrast to the pioneering FCM contributions [74, 150], we thus perceive herein the finite cell
method as a generalized geometry-through-analysis procedure, which is not rigidly connected
to the integrated Legendre basis of the p-version of the finite element method, but can be
combined with any high-order basis favored by the analyst.

The present chapter starts with a brief review of the components of the finite cell method
in the framework of linear elasticity. We then shortly outline the basics of high-order approx-
imation spaces based on the p-version of the finite element method and high-order B-splines,
highlighting the different derivation and characteristics of their basis functions, and subse-
quently combine them with the generalized FCM concept. In the context of this work, the
two resulting FCM schemes are coined the p- and B-spline versions of the finite cell method.
Using linear elastic problems first, we demonstrate the equivalent solution behavior of the two
FCM versions in terms of the smooth extension of solution fields, exponential rates of conver-
gence, in conjunction with Nitsche’s method and for a complex three-dimensional proximal
femur bone with inhomogeneous material.

2.1 A generalized geometry-through-analysis concept

In the following, we introduce the main components of the finite cell method in the framework
of linear elasticity, i.e. the fictitious domain approach, adaptive integration, weak imposition
of Dirichlet constraints and high-order approximation bases. We keep the discussion concise
and provide links to the pertinent literature for further details beyond the FCM context.
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Ωphys

t ∂Ω

ΓN

ΓD

Ωfict

Ω=Ωphys+Ωfict α = 1.0

α≪ 1.0

Figure 2.1: The fictitious domain approach: The physical domain Ωphys is extended by the fictitious
domain Ωfict into an embedding domain Ω to allow easy meshing of complex geometries. The influence
of Ωfict is penalized by α.

2.1.1 The fictitious domain approach

Figure 2.1 provides a concise illustration of the fictitious domain concept. The embedding
domain Ω consists of the physical domain of interest Ωphys and the fictitious domain extension
Ωfict. Analogous to standard finite element methods, the finite cell method for linear elastic
problems is derived from the principle of virtual work

δW (u, δu) =

∫

Ω

σ : (∇sym δu) dV −
∫

Ωphys

δu · b dV −
∫

ΓN

δu · t dA = 0 (2.1)

where σ, b, u, δu and ∇sym denote the Cauchy stress tensor, body forces, displacement vector,
test function and the symmetric part of the gradient, respectively [17, 83, 108, 222]. Neumann
boundary conditions are specified over the boundary of the embedding domain ∂Ω, where
tractions are zero by definition, and over ΓN of the physical domain by traction vector t (see
Fig. 1). The elasticity tensor C [17, 108, 222] relating stresses and strains

σ = αC : ε (2.2)

is complemented by a scalar factor α, which leaves the material parameters unchanged in the
physical domain, but penalizes the contribution of the fictitious domain

α (x) =

{

1.0 ∀x ∈ Ωphys

10−q ∀x ∈ Ωfict

(2.3)

In Ωfict, α must be chosen as small as possible, but large enough to prevent extreme ill-
conditioning of the stiffness matrix [74, 150]. Typical values of α range between 10−4 and
10−15. The idea of applying a penalized material for void regions of a domain has also been
frequently used in optimization, see for example [7, 141].

Using a structured grid of high-order elements (see Figure 2.1), which will be called finite
cells in the following, kinematic quantities are discretized as

u =
n
∑

a=1

Naua (2.4)

δu =
n
∑

a=1

Naδua (2.5)
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Finite cell mesh

k=0 k=1 k=2
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with geometric
boundary

Figure 2.2: 2D sub-cell structure (thin blue lines) for adaptive integration of finite cells (bold black
lines) that are cut by the geometric boundary (dashed line).

The sum of Na denotes a finite set of n high-order basis functions, and ua and δua the
corresponding vectors of unknown coefficients [34, 108]. Following the standard Bubnov-
Galerkin approach [17, 83, 108, 222], the substitution of Equations (2.4) and (2.5) into the
weak form Equation (2.1) leads to a discrete finite cell representation

Ku = f (2.6)

with stiffness matrix K and load vector f . Due to the similarity to the standard finite
element method [17, 83, 108, 197, 222], the implementation of the FCM can exploit existing
finite element techniques to the full.

2.1.2 Adaptive integration

The accuracy of numerical integration by Gauss quadrature [108, 194], which assumes smooth-
ness of the integrands, is considerably influenced by discontinuities within cells introduced by
the penalization parameter α of Equation (2.3) [74, 150]. Therefore, the finite cell method
uses composed Gauss quadrature to improve the integration accuracy in cells cut by geometric
boundaries, based on a hierarchical decomposition of the original cell into integration sub-cells
[74]. Figure 2.2 illustrates the generation of the sub-cell structure in two dimensions, where it
can be built up in the sense of a quadtree [171, 172]. Starting from the original finite cell of
level k=0, each sub-cell of level k=i is first checked whether it is cut by a geometric boundary.
If true, it is replaced by four equally spaced cells of level k=i+1, each of which is equipped
with (p+1)×(p+1) Gauss points. Partitioning is repeated for all cells of current level k, until
a predefined maximum depth k=m is reached. The quadtree approach can be easily adjusted
to one or three dimensions by binary trees or octrees, respectively [74, 172]. To clearly distin-
guish between finite cell and sub-cell meshes, finite cells are plotted in black and integration
sub-cells are plotted in blue lines throughout this work (see Figure 2.2).

The adaptive integration scheme is easy to implement, keeps the regular grid structure of
the FCM, and requires considerably less computational effort than non-adaptive schemes such



2.1. A generalized geometry-through-analysis concept 8

as the Gauss point method [150, 224]. However, the major part of the computational cost of the
finite cell method still stems from linear algebra operations, which need to be repeated many
times due to the large number of Gauss points in the sub-cell structure during the integration
of the stiffness matrix. Note that a reduction of the (p+1) Gauss points in each sub-cell
direction is not recommended, since this introduces an additional integration error, which for
instance dramatically decreases the convergence rate of the Newton-Raphson procedure or can
provoke a random failure of the nonlinear deformation mapping in a geometrically nonlinear
context.

2.1.3 Weak imposition of unfitted Dirichlet constraints

The fictitious domain concept inherently satisfies Neumann boundary conditions of zero trac-
tion, since stresses cannot be transferred beyond Ωphys due to the stiffness penalization in Ωfict

[74, 150]. Non-zero Neumann boundary conditions can be simply imposed by integrating over
the Neumann boundary ΓN (see Figure 2.1), irrespective of whether the geometric boundary
coincides with a cell boundary or not. For Dirichlet boundary conditions, the situation is
more involved. In case of cuboidal domains, where boundaries coincide with cell boundaries
of the structured grid, they can be imposed strongly by standard finite element techniques
[56, 83, 108, 198]. In case of more complex domains, Dirichlet constraints are defined along
boundaries of arbitrary geometry cutting through finite cells, which require an imposition in a
weak sense by variational techniques such as the penalty method [11, 13, 84, 220], the Lagrange
multiplier method [39, 84, 87, 91, 92, 94, 221] or Nitsche’s method [19, 40, 66, 78, 80, 99, 100].

In the framework of the FCM, the latter is usually preferred [168, 218], since it does not
introduce additional unknowns, preserves a symmetric, positive definite stiffness matrix and
satisfies variational consistency in the sense that solutions of the weak form can be shown
to be solutions of the original boundary value problem [78, 84]. In linear elasticity, Nitsche’s
method extends the weak form of Equation (2.1) by additional terms as follows

δWK (u, δu) =

∫

Ω

σ : (∇sym δu) dV + β

∫

ΓD

u · δu dA

−
∫

ΓD

δ (σ · n) · u dA −
∫

ΓD

(σ · n) · δu dA (2.7)

δWf (u, δu) =

∫

Ωphys

δu · b dV +

∫

ΓN

δu · t dA

+ β

∫

ΓD

û · δu dA −
∫

ΓD

δ (σ · n) · û dA (2.8)

where δWK=δWf . Function û denotes the prescribed displacements along the Dirichlet
boundary ΓD, scalar β is a stabilization parameter, which can be chosen empirically or ac-
cording to a generalized Eigenvalue problem [78, 84], and n is the outward unit normal vector
on ΓD. Evaluation of Equations (2.7) and (2.8) leads to the stiffness matrix K and the force
vector f , respectively.
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2.1.4 High-order approximation bases

So far, the finite cell method has been closely linked to the high-order p-version basis derived
from integrated Legendre polynomials [74, 150, 163], which is well-known from its application
in the p-version of the finite element method [70, 71, 197, 198]. Convergence is achieved by
increasing the polynomial degree p of the basis functions to reduce the approximation error,
while the structured high-order mesh remains unchanged. For smooth problems, the finite
cell method with p-version basis functions has been shown to achieve exponential rates of
convergence in energy norm [74, 150, 163]. Further advantages of approximations based on
the p-version basis comprise the locking-free behavior of high-order discretizations of thin-
walled structures [71, 161] or incompressible materials [49, 196, 104] and an increased level of
robustness against severe mesh distortion in geometrically nonlinear problems [72, 104].

Similar benefits are provided by alternative high-order approximation methods, such as
spectral methods [43, 68] or B-spline based finite elements [56, 106, 109], and can be expected
to apply also for corresponding finite cell approaches, which use their respective high-order
basis functions in the framework of the FCM concept. In the following, this is demonstrated
for the example of high-order B-splines.

2.2 High-order p-version and B-spline bases

The present work unhinges the finite cell method from a special high-order basis and demon-
strates for Ansatz spaces based on high-order B-splines that in the framework of the FCM,
a solution behavior comparable to that obtained with the established p-version basis can be
achieved. The two resulting FCM schemes will be coined the p- and B-spline versions of the
FCM [175, 176, 178, 180] and are briefly introduced in the following.

2.2.1 The p-version of the finite cell method

The high-order basis originally applied in the finite cell method [74, 150] uses a regular mesh
of elements of the p-version of the finite element method, introduced by Szabó and Babuška

[70, 71, 197, 198]. Its formulation is based on integrated Legendre polynomials of the form

φj(ξ) =

√

2j − 1

2

ξ
∫

−1

Pj−1(t) dt

=
1√

4j − 2
(Pj(ξ)− Pj−2(ξ)) , j = 2, 3, ... (2.9)

where Pj(ξ) are standard Legendre polynomials in local cell coordinates [194, 197]. As illus-
trated in Figure 2.3, the one-dimensional basis is constructed by combining the hat functions
of the standard linear basis (see for example [17, 83, 108, 197, 198, 221]) with higher-order
functions provided by Equation (2.1). The resulting basis is hierarchic, so that an increase of
the polynomial degree p of the basis by 1 is achieved by the addition of another φj [70, 197].

Corresponding higher-dimensional bases can be constructed by tensor products of the 1D
case. Figure 2.4 illustrates basis functions for high-order quadrilateral elements in 2D, which
are usually grouped as follows:
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space {ξ, η} (adapted from [70]).

◦ Nodal modes are the standard bilinear basis functions. The corresponding mode for node
n1 of Figure 2.4 reads

Nn1
1 (ξ, η) =

1

4
(1− ξ)(1− η) (2.10)

◦ Edge modes are defined separately for each individual edge and vanish at all other edges.
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Figure 2.5: Definition of nodes, edges and faces for a 3D hexahedral cell (adapted from [70]).

The corresponding modes for edge e1 of Figure 2.4 read

N e1
i (ξ, η) =

1

2
(1− η)φi(ξ) (2.11)

◦ Internal modes are purely local and vanish at all element edges. They read

N int
i,j (ξ, η) = φi(ξ)φj(η) (2.12)

For a high-order hexahedral cell in three dimensions as shown in Figure 2.5, one can generalize
the two-dimensional concept and obtain three-dimensional basis functions, classified in the
following four groups:

◦ Nodal modes are the standard trilinear basis functions, which read

NNi

1,1,1(ξ, η, ζ) =
1

8
(1 + ξi ξ)(1 + ηi η)(1 + ζiζ), i = 1, ..., 8 (2.13)

They are well-known from the isoparametric eight-node brick element. (ξi, ηi, ζi) are the
local coordinates of the i-th node.

◦ Edge modes are defined separately for each individual edge. If we consider for example
edge E1 (see Figure 2.5), the corresponding edge modes read

NE1

i,1,1(ξ, η, ζ) =
1

4
(1− η)(1− ζ)φi(ξ) (2.14)

◦ Face modes are defined separately for each individual face. If we consider for example
face F1, the corresponding face modes read

NF1

i,j,1(ξ, η, ζ) =
1

2
(1− ζ)φi(ξ)φj(η) (2.15)
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Figure 2.6: B-spline basis functions of increasing polynomial degree p, starting from a piecewise
constant at p=0 that are defined over knot spans in the parameter space.

◦ Internal modes are purely local and vanish at the faces of the hexahedral cell. They read

N int
i,j,k(ξ, η, ζ) = φi(ξ)φj(η)φk(ζ) (2.16)

The indices i, j, k of the basis functions denote the polynomial degrees in local directions ξ, η, ζ.
To limit the number of additional unknowns in 2D and 3D, the so-called trunk space is used
instead of the full tensor product basis [70, 198].

The geometry of the structured finite cell mesh in terms of the position vector X can be
represented exactly by the nodal part alone

X =
nvert
∑

i=1

Nn
i X i (2.17)

where X i and Nn
i denote the location of the nvert cell vertices and the corresponding nodal

modes, respectively. The p-version of the FCM can thus be regarded as a sub-parametric
finite element scheme [17, 156]. The resulting FCM stiffness matrix Equation (2.6) inherits
all beneficial properties of the p-version FEM, such as hierarchy of the modal contributions
and a tremendous improvement of the condition number under p-refinement with respect to
standard nodal finite element schemes [70, 197, 198].

2.2.2 The B-spline version of the finite cell method

The B-spline version of the FCM has been recently established as a suitable alternative to the
p-version [175, 176, 178, 180]. Its formulation is based on high-order B-spline basis functions
Ni,p of polynomial degree p. We mention only the most important concepts for the construction
of B-spline basis functions here and refer to Section 6.1 for details, where a more comprehensive
review of B-splines and corresponding geometric aspects is provided in the framework of
isogeometric analysis.

B-spline basis functions are defined by p+2 knots ξ1 ≤ ξ2 ≤ ... ≤ ξp+2 in the parameter
space ξ [56, 109, 154, 165]. The resulting p+1 knot spans contain piecewise polynomials of
degree p, which join smoothly up to a continuous differentiability of Cp−1. A number of n
basis functions constitute a patch, defined by a so-called knot vector [56, 154, 165]

Ξ = {ξ1, ξ2, ..., ξn+p+1}, ξ1 ≤ ξ2 ≤ ... ≤ ξn+p+1 (2.18)

The knots of each individual basis function Ni,p with patch index i can be identified as the
consecutive entries {i, i+1 , ..., i+p+1} in Ξ. Figure 2.6 illustrates B-spline basis functions Ni,p

of arbitrary polynomial degree p, starting from piecewise constants Ni,0 [154, 165].
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Figure 2.7: Example of an open cubic B-spline patch consisting of three uniform B-splines and six
knot spans. At the boundaries, knots are repeated four times to obtain interpolatory B-splines.

A uniform B-spline patch with open knot vectors as illustrated in Figure 2.7 guarantees
optimal approximation for smooth problems due to maximum continuity within the patch, but
also allows for the imposition of boundary conditions by standard FE techniques [56, 109]. Its
basis functions away from the boundary of the patch consist of uniform B-splines constructed
from equidistant knots, which can be interpreted as translated copies of each other [106]. At
the boundaries, knots are repeated p+1 times in order to make the basis interpolatory.

The two-dimensional B-spline basis uses two independent 1D open knot vectors with indices
{i, j} for local coordinates {ξ, η}, respectively. The parameter space is then discretized by a
structured grid of knot spans, whose knot positions can be obtained by permuting all entries
{i, j}. Corresponding multivariate B-spline basis functions are obtained by taking the tensor
product of its univariate components

Ni,j,p (ξ, η) = Ni,p (ξ) ·Nj,p (η) (2.19)

The three-dimensional B-spline basis can be constructed analogously, using three independent
1D knot vectors with indices {i, j, k} for local coordinates {ξ, η, ζ}, respectively, and taking
the corresponding tensor product

Ni,j,k,p (ξ, η, ζ) = Ni,p (ξ) ·Nj,p (η) ·Nk,p (ζ) (2.20)

In the framework of the finite cell method, the discretization is accomplished with a regular
grid of knot spans of width h in the sense of the fictitious domain concept as illustrated in
Figure 2.1. In two and three dimensions, each knot span can be identified as a quadrilateral or
hexahedral finite cell, respectively, with full Gaussian integration [176, 178, 180]. The physical
coordinates X of the finite cell grid can be generated from a simple linear transformation of
the parameter space ξ

X = X0 + h ξ (2.21)

where X0 denotes the origin of the physical coordinate system in the parameter space. The
B-spline version of the FCM is thus also a sub-parametric scheme [17, 156].

2.3 Characteristic solution behavior

In the finite cell method, the polynomial degree p of the basis functions is increased to re-
duce the approximation error, while the structured high-order mesh remains unchanged. For
the illustration of the typical solution behavior, a linear elastic uni-axial rod is examined, for
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Figure 2.8: Uni-axial rod example. Geometric boundaries are located at X = 1.0 and X = 2 1

3
.

which geometry, material and boundary conditions are specified in Figure 2.8. Its middle part
represents the fictitious domain Ωfict, whose Young’s modulus E is penalized with parameter
α=10−8. The example approximates the situation of two separate rods. The right one under-
goes a rigid body movement ∆u and the left one is subjected to a sine load fsin. The FCM
discretizations considered consist of 2 p-version finite cells and 11 knot span cells as shown
in Figure 2.8. Due to the different construction of the bases, the B-spline version requires a
denser knot span grid than the p-version in order to achieve a comparable amount of degrees
of freedom (dofs). For all computations of this section, adaptive sub-cells of depth k=20 are
used to minimize the integration error in cells cut by geometric boundaries (see Section 2.2).

2.3.1 Smooth extension of solution fields

The corresponding analytical solution fields with finite α=10−8 exhibit kinks and jumps in
displacements and strains, respectively, at geometric boundaries X=L and X=7/3. The an-
alytical solution is approximated by an overkill solution with 1,800 equally-spaced standard
cubic finite elements, where the geometric boundaries coincide with nodes, so that discontinu-
ities can be represented. The p- and B-spline versions of the FCM, however, produce solution
fields, which extend smoothly into the fictitious domain despite the discontinuities of the ana-
lytical solution. This is illustrated in Figure 2.9, which compares the analytical strains to the
numerical strains of the p- and B-spline versions. The importance of the smooth extension of
the FCM solution into the fictitious domain for the overall convergence behavior of the finite
cell method can be explained with the help of the penalty parameter α in conjunction with
the total strain energy

U =

∫

Ω

Ψ dV =
1

2

∫

Ω

σ : ε dV (2.22)

where Ψ represents the strain energy function, defined over the complete domain Ω. The best
approximation property to the total strain energy U states that the solution of a Galerkin finite
element scheme represents a least-squares best fit to the exact solution in terms of Equation
(2.22) [108, 221]. Due to the penalization with parameter α of Equation (2.3), deviations from
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the exact solution in Ωfict have a considerably smaller impact on the strain energy Equation
(2.22) than deviations in Ωphys. Therefore, a minimization of the strain energy error by the
high-order basis of the FCM scheme results in an accurate approximation in Ωphys, where
potential deviations lead to considerable error contributions. In Ωfict, a largely inaccurate
approximation is allowed, since potential deviations lead to negligible error contributions due
to penalization. In particular, this implies a smooth extension of the solution into the fictitious
domain, so that its gradients in Ωphys remain unaffected up to the geometric boundary, as
illustrated in Figure 2.9 for the 1D example.

2.3.2 High rates of convergence in energy norm

We will assess accuracy and convergence of the FCM versions by the relative error in terms of
the total strain energy U of Equation (2.22) [70, 108, 197, 198, 221], which is obtained by the
following expression

er =

√

|Uex − UFCM|
Uex

× 100% (2.23)

Uex represents the exact strain energy of the original problem defined over the physical do-
main Ωphys. Accordingly, UFCM denotes the strain energy contribution from Ωphys, obtained
numerically with an FCM scheme. In the linear elastic case, Equation (2.23) is equivalent to
the relative error in energy norm [70, 197, 221].

The corresponding rate of convergence q, with which er decreases from the ith to the (i+1)th

p-refinement step compared to the number of degrees of freedom ndof is

q = − log10 (e
i+1
r /eir)

log10
(

ni+1
dof /n

i
dof

) (2.24)

The physical reference strain energy Uex for the example of Figure 2.8 consists of the
energy contribution by fsin only. An overkill discretization with 1,000 cubic finite elements
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Figure 2.11: Linear elastic plate with a circular hole: problem definition and exact solution.

taking into account the left rod only yields Uex=1.1873576208 · 10−5. Figure 2.10 compares
the convergence behavior of the p- and B-spline versions of the FCM, if the polynomial degree
of the discretizations given in Figure 2.8 is increased from p=1 to 15. Both the p-version
and the B-spline version of the FCM converge exponentially with a maximum rate of q=23.56
and q=23.74, respectively. The penalization parameter α=10−8 cannot completely erase the
influence of the fictitious domain, and the corresponding error takes control at a value around
0.1% in both the p- and B-spline versions, leading to a flattening of the convergence curves.
The present example shows that the p- and B-spline bases applied in the framework of the
finite cell concept exhibit an equivalent solution behavior and achieve comparable performance
in terms of error level, rates of convergence and flattening of the convergence curve, although
their high-order approximation bases are very different.

2.4 Numerical examples at small strains

Having observed the equivalent general solution behavior of the p- and B-spline versions for the
simple one-dimensional example, we would like to corroborate that statement by considering
more complex cases of linear elasticity in two and three dimensions. The standard example of a
two-dimensional plate with a circular hole demonstrates the FCM discretization procedure and
the convergence behavior with p-version and B-spline basis functions. The 2D ring problem
and the 3D proximal femur shown in the following outline the imposition of unfitted Dirichlet
boundary conditions and the versatility of the FCM for the analysis of very complex structures.

2.4.1 Plate with a circular hole

Figure 2.11 provides geometry, boundary conditions and the analytical solution [170] for the
classical example of an infinite plate with a circular hole under in-plane tension [56, 109].
Due to symmetry, only one quarter of the problem is considered. Figure 2.12 illustrates the
discretization procedure in the framework of the finite cell concept introduced in Section 2.1.
Basis functions are defined over an axis-aligned grid, which embeds the physical domain Ωphys

in a simple square irrespective of its geometry. The circular hole constitutes the fictitious
domain Ωfict, whose influence is extenuated by penalizing the elasticity matrix at integration
point level with a finite value α=10−12 according to Equations (2.2) and (2.3). The integration
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Finite cells

Sub-cell grid

Integration
point ∈ Ωfict

Integration
point ∈ Ωphys

Figure 2.12: Basis functions are defined over an axis-aligned grid (black lines). A sub-cell grid (blue
lines) leads to an aggregation of Gauss points around the boundary, where the elasticity matrix is
penalized according to Equation (2.3) at all points outside the physical domain Ωphys (marked in red).

accuracy in cut elements is ensured by adaptive integration sub-cells, which lead to an aggre-
gation of Gauss points around the boundary of the circular hole. It is important to note that
integration sub-cells do not affect basis functions, but only increase the number of integration
points around the geometric boundary. The foundation of the FCM discretization procedure
is a point location query, which is able to determine for each integration point with global
coordinates {x, y}, if it is located in Ωphys or Ωfict. In the present example, the geometric
boundary of the circular hole can be used to set up an inequality of the form

x2 + y2 ≤ R2 (2.25)

with R being the radius of the hole. A simple evaluation of Equation (2.25) is sufficient to
decide whether the point is located in Ωphys (inequality is true) or Ωfict (inequality is false).
For more complex arbitrarily shaped geometries, more general point location queries based
on voxel models or space-partitioning data structures are addressed later on in Sections 4.4.1
and 7.4.1. Finally, it should be noted that Dirichlet boundary conditions can be incorporated
strongly via standard finite element techniques, since the boundary of cell edges coincide with
the geometric boundary of the physical domain Ωphys.

2.4.1.1 FCM based on h-refinement

In a first step, the finite cell method is tested in the framework of classical h-refinement
[108, 197, 221]. We therefore discretize the plate with basis functions of moderate polynomial
degree p and quadrisect the finite cell mesh in each refinement step to reduce the approximation
error. Each discretization is supplemented by adaptive sub-cells for integration of cells cut by
the geometric boundary. We apply a depth of the sub-cell quadtree of m=4, placing an overly
large number of 20 integration points along each local sub-cell direction, in order to exclude
any effect from a potential integration error in the following convergence study.

Figure 2.13 shows the resulting convergence for both the p-version and B-spline version
in terms of the relative error in energy norm Equation (2.23). Both FCM schemes operate
on the same series of quadrisected grids, starting from a discretization with 3×3 finite cells.
Depending on the polynomial degree p and the length of a cell edge h, the mathematically
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Figure 2.13: Convergence in energy norm for uniform h-refinement of the finite cell mesh.
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Figure 2.14: Smooth extension of solution fields beyond the physical domain, illustrated for von Mises
equivalent strains plotted along the diagonal cutline (see Figure 2.11).

optimal rate of convergence is of order O(hp), and of order O(ndof)
−p/2 with respect to the

number of degrees of freedom ndof , which is approximately inversely proportional to h2 for
a two-dimensional problem [108, 221]. From Figure 2.13, we can observe that for linear,
quadratic and cubic basis functions, optimal rates of convergence are achieved with both
the p-version and the B-spline basis. In addition, we do not erase basis functions from the
discretization, which are lying outside the physical domain, although they obviously do not
contribute to the accuracy of the finite cell method. Thus, their removal could even slightly
improve the reported constants. The removal of basis functions with no support in Ωphys is
discussed in more detail in Sections 7.3, where it is applied in the framework of adaptive
analysis of complex CAD models with the B-spline version of the FCM.

As discussed in Section 2.3.1, the accuracy of the finite cell method relies on the smooth
extension of the solution fields into the fictitious domain. This important behavior of the
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Figure 2.15: Convergence of circumferential stresses σθ(r, θ) at the circular boundary of the hole
(r=1.0) for the finite cell method and standard body-fitted isogeometric analysis [56] under uniform
h-refinement of corresponding 3×3 cubic meshes.

FCM is illustrated in Figure 2.14 by von Mises equivalent strains plotted along the diagonal
cut line. While the exact solution is only defined over the physical domain Ωphys, the finite
cell solution extends smoothly into the fictitious domain Ωfict, although the elasticity matrix is
discontinuous due to the penalization factor α as defined by Equations (2.2) and (2.3). Due to
the best approximation property of a Galerkin finite element scheme [108, 221], largely inac-
curate solutions in the fictitious domain Ωfict are allowed, which permit an accurate solution in
the physical domain Ωphys up to the geometric boundary. Of particular interest in this respect
is the stress accuracy that can be achieved directly on the geometric boundary in cut cells.
We therefore plot the circumferential stresses on the circular boundary of the hole obtained
with different cubic finite cell meshes in Figure 2.15a through 2.15d and compare them to cor-
responding results obtained analytically (see Figure 2.11) and with body-fitted isogeometric
discretizations given on page 118 of [56]. The plots illustrate that the FCM stresses converge
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Figure 2.16: Convergence in energy norm for uniform p-refinement of the finite cell mesh.

to the analytical reference. However, standard body-fitted meshes lead to stresses that hit the
reference faster.

2.4.1.2 FCM based on p-refinement

In contrast to standard nodal functions based on Lagrange polynomials [17, 108, 197, 221],
integrated Legendre and B-spline basis functions still produce well conditioned system matri-
ces, when the polynomial degree p of the basis functions is large [56, 70, 109, 197]. Therefore,
convergence of the p- and B-spline versions of the finite cell method can alternatively be
achieved by increasing the polynomial degree p of the basis functions to reduce the approx-
imation error, while the structured high-order mesh remains unchanged. In fact, this is the
standard procedure for global refinement in the finite cell method (see [150, 74] and Section
2.1.4), which we will justify in the following by considering the convergence behavior of the
present plate example, discretized with 4×4 p-version cells and 10×10 knot span cells. Note
that the difference in mesh size results from the fact that we want to consider discretizations
with a comparable amount of degrees of freedom. We carry out all computations with a large
sub-cell depth of m=6, placing an overly large number of 50 integration points in each local
sub-cell direction, in order to make sure that the integration error does not play any role in
the following convergence study.

Figure 2.16 illustrates the convergence of the relative error in energy norm Equation (2.23)
under p-refinement of the considered FCM discretizations We observe that for the p-version
of the FCM, the rate of convergence measured by Equation (2.24) improves exponentially
from an initial q=0.79 to a maximum of q=2.74. For the B-spline version of the FCM, rates
of convergence turn out to be high from the beginning with q=6.65 and q=3.13 in the first
and fourth refinement step, respectively. The high rates of convergence obtained with global
p-refinement leads to a specifically low ratio between the relative error and the corresponding
number of degrees of freedom (dofs). Let us consider a target error in energy norm of 0.1 %
that is to be obtained with the p-version of the finite cell method. With linear basis functions,
extrapolation of the corresponding curve in Figure 2.13a indicates that we require approx.
100,000 dofs. With quadratic and cubic basis functions, we are able to decrease the number
to approx. 10,000 and 3,500 dofs, respectively. With p-refinement, however, we require only
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Figure 2.17: Exact normal stresses σx.

(a) 4×4 p-version cells. (b) 10×10 knot span cells.

Figure 2.18: Normal stresses σx, plotted over Ωphys, for FCM discretization of polynomial degree p=7.

about 1,000 dofs. For the B-spline version of the finite cell method, a similar relation can be
observed. While basis functions with p=1,2 and 3 require 100,000 dofs, 10,000 dofs and 800
dofs, respectively, p-refinement falls below the target error with only about 400 dofs. Similar
to the 1D example discussed in Section 2.3.2, both curves of Figure 2.16 level off at some finite
error, where the influence of the fictitious domain extension takes control due to the finite
penalization parameter α.

Comparing the two FCM versions in Figure 2.16, we observe that the lowest error of the
B-spline version is about one order of magnitude smaller than the lowest error in the p-version
and obtained with about half the number of degrees of freedom. This is also reflected in Figures
2.17 and 2.18, which compare the analytical stress plot for σx with corresponding stress plots
obtained with the p- and B-spline versions of the FCM at polynomial degree p=7. Whereas
both FCM versions accurately reproduce the general stress distribution, the B-spline version
comes closer to the reference in terms of maximum and minimum values. These observations



2.4. Numerical examples at small strains 22

Polygon segments

Polygon vertices

Finite cell edges

Ωphys

Ωfict

Ωfict

Parameters:

Cu
tlin

e

Ωphys: Ephys=1.0 t̂

Γ2

Γ1

rin

rout

Ωfict: Efict=α · Ephys

α=10−15

ν=0.0
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Figure 2.19: Ring under internal radial pressure and fixed outer displacements.

indicate an advantage of the B-spline version over the p-version in terms of the ratio between a
relative error and the corresponding number of degrees of freedom, which will be corroborated
more or less throughout the following examples and can be largely attributed to the high-order
continuity of the B-splines. However, a more sophisticated comparison will be presented in
Section 4.5, taking into account additional aspects such as computational time and required
hardware resources, and will lead to a more balanced picture, highlighting specific strengths
for each FCM version.

The results for the example of a plate with a spherical hole demonstrate that the finite cell
method works very well with both integrated Legendre and B-spline basis functions. Both p-
and B-spline versions of the FCM lead to equivalent solution characteristics. In particular, we
highlighted optimal rates of convergence under uniform h-refinement and the high quality of
stresses on the geometric boundaries in cut cells. Moreover, we saw that p-refinement achieves
a given accuracy level with fewer degrees of freedom than the classical h-refinement strategy
with low-order polynomials.

2.4.2 Ring with unfitted Dirichlet constraints

The imposition of unfitted Dirichlet boundary conditions with Nitsche’s method in the p- and
B-spline versions of the FCM is illustrated by the example of a ring in plane strain as shown
in Figure 2.19. For the present example, curved boundaries are approximated with arbitrary
precision by a polygon

s :

[

Xs

Y s

]

=
nvert
∑

i=1

N lin
i (ϑ) ·

[

Xs
i

Y s
i

]

(2.26)

Xs
i and Y s

i denote the physical coordinates of the nvert vertices of the polygon in the reference
configuration, which lie on Γ. Nodal basis functions N lin

i (ϑ) defined over parameter space
ϑ∈[−1, 1] linearly interpolate Γ between vertices. Assuming that wherever polygon s crosses
a cell edge, a vertex is placed (see Figure 2.19), the surface integrals in Equations (2.7) to
(2.8) can be evaluated by placing p+1 Gauss points in the parameter space ϑ of each polygon
segment without introducing an additional error from the discontinuities of the basis functions
at cell edges. This parameterization concept can be analogically applied to three-dimensional
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(a) 4×4 p-version finite cells with integra-
tion sub-cells of depth m=5.

(b) 16×16 knot span finite cells with inte-
gration sub-cells of depth m=3.

Figure 2.20: Finite cell discretizations with adaptive sub-cells for the ring example. Open circles
denote element nodes and B-spline knots in the p-version and B-spline meshes, respectively, while the
lines in blue denote integration sub-cells.

problems by introducing for example a triangular approximation for boundary surfaces of
arbitrary geometry [74, 168].

The present example specifies radial and circumferential displacements along the Dirichlet
boundary Γ1

ûr = 0.0; ûθ = 0.0 (2.27)

and radial traction along the Neumann boundary Γ2

t̂r =
1

2

ln 0.25 + 1

ln 2
(2.28)

In addition, radial body forces are applied

br =
1

r ln 2
(2.29)

over the physical domain Ωphys. Assuming the compatible displacement solution in polar
coordinates (r, θ) with origin in the center of the circular ring

ur = −
r

2

ln r

ln 2
(2.30a)

uθ = 0.0 (2.30b)

the corresponding analytical stress fields can be derived from basic laws of elastostatics [170]

σr = εr =
∂ur

∂r
= −1

2

1

ln 2
[ln r + 1] (2.31a)

σθ = εθ =
1

r

∂uθ

∂θ
+

∂ur

∂r
= −1

2

ln r

ln 2
(2.31b)
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Figure 2.21: Radial displacements of the ring, plotted along the inclined cutline shown in Figure 2.19.
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Figure 2.22: Von Mises stresses of the ring, plotted along the inclined cutline shown in in Figure 2.19.

σrθ = 0 (2.31c)

Note that the influence of material parameters does not appear explicitly due to the particular
choice of Young’s modulus E=1.0 and Poisson’s ratio ν=0.0 (see Figure 2.19).

The discretizations with the p- and B-spline versions of the FCM used in this study consist
of 4×4 p-version finite cells and 16×16 knot span cells, which are equipped with m=5 and
m=3 levels of adaptive sub-cells as shown in Figures 2.20a and 2.20b, respectively. Boundary
constraints are imposed in a weak sense according to Equations (2.7) and (2.8) via Nitsche’s
method. The penalty parameter β is chosen empirically for each discretization and polynomial
degree in such a way that β is small, but still keeps the stiffness matrix positive definite.
Solutions are obtained from the p-version mesh with polynomial degrees p=4 (322 dofs), p=8
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(1,090 dofs) and p=12 (2,370 dofs) and from the B-spline mesh with p=2 (648 dofs), p=4 (800
dofs) and p=6 (968 dofs).

Figures 2.21 and 2.22 compare the radial displacement and the von Mises stress results,
respectively, to the corresponding analytical reference obtained from Equation (2.29) and
(2.30). The plots refer to a cutline that originates in the center of the ring and is inclined by
an angle of 30◦ against the horizontal as shown in Figure 2.19 to avoid mesh induced symmetry
effects. The displacement and stress results converge under p-refinement to the reference and
confirm that the weak imposition of Dirichlet boundary conditions via Nitsche’s method works
well for both the p- and B-spline versions of the finite cell method. One can observe that for
the examined discretizations, the B-spline version achieves a comparable quality in stresses
with fewer degrees of freedom than the p-version due to its higher-order continuity.

2.4.3 A proximal femur bone with inhomogeneous material

The human femur bone of Figure 2.23 is analyzed with the p- and B-spline versions of the
finite cell method on the basis of voxel data derived from quantitative computed tomography
(CT) scans. This kind of analysis is common in biomechanics to mimic patient-specific in-vivo
behavior, which allows for a better understanding of bone stability and strength. The majority
of research in this field is based on traditional finite elements (see e.g. [116, 174]), which are
often limited in terms of accuracy and efficiency, the need for time-consuming segmentation
of the CT data and an element-wise constant material assignment. Before the discussion of
the FCM results, some details on the material model based on voxels are provided.

2.4.3.1 A voxel based model for the representation of inhomogeneous material

Voxels are volume elements, aligned in a structured spatial grid in Cartesian directions [2,
3, 38], each of which contains local material information. Voxel data sets have a limited
resolution, as precise data is only available at the center of each volume element, and care
has to be taken that the chosen voxel resolution represents changes in material parameters
accurately enough for simulating the corresponding mechanical behavior. Voxel models of real
structures can be directly obtained from computed tomography (CT), magnetic resonance
tomography (MRT) or ultrasound scans. For a concise review of medical imaging technologies,
see for example [146]. The CT scan of the femur shown in Figure 2.23a represents a discrete
model 1 of the continuous material distribution with a resolution of 1024× 1024× 183 voxels,
each providing a measure for the radiodensity of the cortical and trabecular bone regions.
First, a radiodensity limit needs to be defined, which separates material from void regions.
Since a heterogeneous isotropic material behavior is sufficient to accurately represent the
experimental observations [216], the radiodensity scale lying above that limit is translated
into a corresponding scale of equivalent material parameters, i.e. Young’s modulus E and
Poisson’s ratio ν, which are then stored independently for each voxel location according to
the radiodensity identified there. With the relations given in [116], this results in a different
Young’s modulus for each voxel and a constant Poisson’s ratio of 0.3.

1Courtesy of Prof. Zohar Yosibash, Dept. of Mechanical Engineering, Ben-Gurion University, Beer-Sheva,
Israel; http://www.bgu.ac.il/∼zohary/
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(a) Slices of the CT
scan, indicating the thin
cortical shell outside
and the inner trabecular
structure.

(b) Finite cell mesh
of the bone, consisting
of 678 p-version finite
cells, and boundary con-
ditions.

(c) Von Mises equiva-
lent strain distribution
[µε], evaluated for each
voxel of the physical do-
main.

Figure 2.23: The finite cell method applied for analysis of a CT based proximal femur bone.

2.4.3.2 FCM analysis with the p- and B-spline versions

In the p-version of the FCM, the bone is embedded in 678 finite cells, each covering 40×40×10
voxels (see Figure 2.23b). Cells that are completely outside the bone are neglected to minimize
the computational effort. An equivalent voxel resolution per cell is chosen for the B-spline
version of the FCM, but due to the support of the B-spline functions in adjacent cells, none
of the cells of the fictitious domain Ωfict can be removed, resulting in a full rectangular grid of
1,729 knot span cells. The inhomogeneity of the material is captured by 20× 20× 10 sub-cells
per knot span cell, applying 23 integration points per sub-cell. Thus the material properties of
each voxel within the bone contributes to the analysis model. Integration points outside the
physical domain Ωphys are penalized with α = 10−4 in the sense of Figure 2.1. The proximal
femur bone is loaded with 1,000 N on top of the femur head and Nitsche’s method according
to Equations (2.7) and (2.8) is applied to weakly satisfy the homogeneous Dirichlet boundary
conditions at the distal face (see Figure 2.23b) in both FCM versions. Figure 2.23c illustrates
the von Mises equivalent strains obtained from the discretization with the p-version of the
FCM, visualized pointwise for each voxel.

For validation of the numerical results, the linear elasticity response in terms of strains
is compared with results from a corresponding in-vitro experiment [168, 202]. Figure 2.24



2.4. Numerical examples at small strains 27

− 1000 − 500 0 500 1000

− 1000

− 500

0

500

1000
uz × 103[mm ] – B-spline version

uz × 103[mm ] – p-version

– B-spline version

– p-version

point data

R2 = 0 .975 (p-version)

R2 = 0 .972 (B-spline version)

Numerical analysis

t
n
e

mi
r
e

p
x

E

(a) Pointwise values.

− 1000 − 500 0 500 1000

− 1000

− 500

0

500

1000
uz × 103[mm ] – B-spline version

uz × 103[mm ] – p-version

– B-spline version

– p-version

mean face data

R2 = 0 .962 (p-version)

R2 = 0 .968 (B-spline version)

Numerical analysis

t
n
e

mi
r
e

p
x

E

(b) Element face average.

Figure 2.24: Experimental results vs. simulation results obtained with the p- and B-spline versions
of the FCM. The target parameter µε denotes von Mises equivalent strains [168, 202, 216].

provides a comparison of the numerical predictions and the experimental results for points
located at the strain gauge position of the experiment and averaged results over small surface
patches embedding the measuring points. A linear regression analysis shows a good correla-
tion (> 0.96) between numerical predictions and measurements for both the p- and B-spline
versions of the FCM. Sufficient convergence was found for both FCM versions at p=4. For
this polynomial degree, the 678 finite cells of the p-version result in about 35,000 degrees of
freedom, whereas the 1,729 knot span cells of the B-spline version only require about 13,000
degrees of freedom to yield equivalent results at the same accuracy level. The simulation
results demonstrate that from an overall point of view, the p- and B-spline version of the
finite cell method achieve comparable accuracy in the framework of a very complex example.
Readers interested in a detailed description of experiments and FCM analysis are referred to
the in-depth study by Ruess and co-workers [168].
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Chapter 3

The finite cell method for
geometrically nonlinear problems

We now turn from the small deformation range of linear elasticity to geometrically nonlinear
elasticity, combining the finite cell method with the well-established framework of nonlinear
finite element technology. Today, the large deformation analysis of structures in the framework
of the finite element method can be considered a standard procedure, for which underlying
principles of continuum mechanics are thoroughly understood and well documented [76, 107,
133, 136, 137, 204] and a multitude of reliable and efficient numerical algorithms exist [26, 32,
34, 64, 110, 214] and are available in commercial tools [128, 132, 190]. In the scope of the
present work, no attempt is made to give an overview of the vast amount of pertinent aspects
of nonlinear structural mechanics. Instead, we will confine ourselves to briefly introduce those
components that we will actually make use of, and extensively refer to the wealth of existing
literature for a more detailed description and for aspects that are not part of the present study.

In the following, we first introduce a geometrically nonlinear finite cell formulation in
principal directions, based on the logarithmic strain measure. We then demonstrate that a
standard FCM approach, applying the same kinematics over the complete domain, leads to
the loss of uniqueness of the nonlinear deformation map within the fictitious domain. This
motivates its modification by the idea of deformation resetting, which assumes the initial ref-
erence configuration within the fictitious domain after each Newton iteration. A first simple
numerical experiment in one dimension indicates that this intervention allows for stable non-
linear finite cell analysis with both the p- and B-spline versions, preserving the full range of
advantages of the linear elastic FCM, in particular high rates of convergence. Finally, we de-
rive a geometrically nonlinear formulation of the penalty method for the imposition of unfitted
Dirichlet constraints in elements cut by the geometric boundary.

3.1 A geometrically nonlinear formulation in principal

directions

Turning to large deformation analysis, the linear elastic formulation of Section 2 is extended in
a straightforward manner to a geometrically nonlinear FCM formulation based on logarithmic
strains. The adaptation directly follows the standard finite element formulation, for which
details can be found in [26, 34, 64, 110, 214].
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Figure 3.1: Engineering, logarithmic, Green-Lagrange and Almansi strain measures εlin, εlog, εGL, εA,
respectively, in one dimension (adapted from [32]).

3.1.1 Kinematics

In geometrically nonlinear statics, the deformation map ϕ describes the motion of each ma-
terial point from its initial reference configuration X to its deformed configuration x.

x = ϕ(X) (3.1)

The deformed configuration x of Equation (3.1) is also denoted as the spatial configuration.
The deformation map Equation (3.1) is required to be one-to-one [34, 107]. The displacement
field u and the deformation gradient F follow as

u = x−X (3.2)

F =
∂x

∂X
(3.3)

In view of its polar decomposition, F=V R can be represented by the rotation tensor R and
the spatial stretch tensor V . Therefore, V 2 can be obtained from the left Cauchy-Green
tensor

b = FF T = (V R)(RTV ) = V 2 (3.4)

Evaluation of the principal directions of V 2 yields the orthogonal spatial Eigenvector triad
{n1,n2,n3} and the associated Eigenvalues {λ2

1, λ
2
2, λ

2
3}, which are identified as the squared

principal stretches. The spatial logarithmic strain tensor ε = lnV in spectral form reads

ε =
3
∑

a=1

lnλa na ⊗ na (3.5)

Logarithmic strains, also known as true or natural strains, represent a suitable strain measure
for the entire deformation range [32, 34, 64], and are compared in one dimension to other
common nonlinear strain measures in Figure 3.1.
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In the framework of the finite cell concept as described in Section 2, the nonlinear kinematic
relations Equations (3.1) to (3.5) can be applied throughout the complete embedding domain
Ω (see Figure 2.1). This approach is referred to as the standard geometrically nonlinear
finite cell formulation in the following. Due to the discontinuous penalization parameter α of
Equation (2.3), the analytical deformation map and corresponding displacements Equations
(3.1) and (3.2) exhibit a weak discontinuity (kink) along the geometric boundaries of the
physical domain Ωphys. Accordingly, the analytical deformation gradient and related stretches
and strains Equations (3.3) to (3.5) exhibit a strong discontinuity (jump).

3.1.2 Constitutive equations

The Hencky hyperelastic model is the finite logarithmic strain based extension of the standard
linear elastic material, whose strain energy function Ψ reads [34, 64]

Ψ = α ·
[

E

2(1 + ν)

(

(lnλ1)
2 + (lnλ2)

2 + (lnλ3)
2)+

νE

2(1 + ν)(1− 2ν)
(ln J)2

]

(3.6)

with J = detF = λ1λ2λ3 and material parameters Young’s modulus E and Poisson’s ratio ν.
In the standard FCM formulation, geometric nonlinearity is applied throughout the complete
domain Ω. Therefore, Equation (3.6) is factorized by parameter α of Equation (2.3), which
penalizes the strain energy function Ψ within the fictitious domain Ωfict. The principal Cauchy
stresses along principal axes a={1, 2, 3} follow with Equation (3.6) as

σa =
1

J

∂Ψ

∂ lnλa

=
α

J

[

E

(1 + ν)
lnλa +

νE

(1 + ν)(1− 2ν)
ln J

]

(3.7)

The fourth order spatial elasticity tensor in Cartesian coordinates can then be computed as

cijkl =
3
∑

a,b=1

1

J

∂2Ψ

∂ lnλa∂ lnλb

ηaabb −
3
∑

a=1

2σaηaaaa +
3
∑

α,β=1

σaλ
2
b − σbλ

2
a

λ2
a − λ2

b

(ηabab + ηabba) (3.8)

implying the fourth order dyadic product ηijkl = ni ⊗ nj ⊗ nk ⊗ nl. Due to the strong
discontinuity in parameter α, all derived analytical quantities exhibit a loss of regularity along
geometric boundaries.

3.1.3 Discretization and linearization

Taking into account Equations (3.1) to (3.8), the variational formulation of the standard FCM
for large deformation elasticity can be derived from the principle of virtual work

δW (ϕ, δu) =

∫

ϕ(Ω)

σ : ∇x δu dv −
∫

ϕ(Ωphys)

b · δu dv −
∫

ϕ(ΓN )

t · δu da = 0 (3.9)

with body forces b, traction vector t and test function δu. Integrals are evaluated in the
deformed configuration, where dv and da denote infinitesimal volume and area elements, re-
spectively, since a spatial formulation is computationally more efficient in the case of p-version
elements [72, 145, 188].
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The basic kinematic quantities u, δu and F can be discretized in the sense of Equations
(2.4), (2.5) and by

F = I +
n
∑

a=1

∇XNaua (3.10)

where Na denote n basis functions of a suitable high-order basis. In case of finite cells based
on p-version basis functions, insertion of the displacement approximation Equation (2.4) and
the reference configuration, interpolated subparametrically by Equation (2.17), into Equation
(3.2) yields an interpolation of the deformed configuration

x =
nvert
∑

i=1

Nnod
i X i +

n
∑

a=1

Na ua (3.11)

where nvert denotes the number of element nodes and Nnod are the corresponding nodal basis
functions. For finite cells based on high-order B-splines, the corresponding expression can be
found with Equation (2.21) as

x = X0 + h ξ +
n
∑

a=1

Na ua (3.12)

where h is the uniform width of the knot span cells and X0 denotes the physical origin in the
parameter space ξ.

Using these expressions in Equation (3.9), the discretized virtual work per high-order mode
shape a can be formulated as the difference between the internal and external equivalent force
vectors f int and f ext, called residual r

δW (ϕ, Naδua) = δuT
a

(

f int
a − f ext

a

)

= δuT
a ra (3.13)

f int
a =

∫

ϕ(Ω)

BT
aσ dv (3.14)

f ext
a =

∫

ϕ(Ωphys)

Na b dv +

∫

ϕ(ΓN )

Na t da (3.15)

with the strain-displacement matrix B [17, 34, 108]. The linearization of the discretized weak
form Equation (3.9) in the direction of an incremental displacement ∆u can be expressed in
terms of material and geometric parts DδWc and DδWσ, respectively, as

DδW (ϕ, Naδua) [Nb∆ub] = DδWc +DδWσ (3.16)

DδWc = δuT
a







∫

ϕ(Ω)

BT
a cBb dv






∆ub (3.17)

DδWσ = δuT
a







∫

ϕ(Ω)

(∇XNa · σ∇XNb) I dv






∆ub (3.18)
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with c being the matrix representation of the spatial elasticity tensor Equation (3.8) [34]. In
Equations (3.17) and (3.18), the expressions in brackets can be identified as the entries Kc,ab

and Kσ,ab of the material and geometric tangent stiffness matrices, respectively. Combining
Equations (3.9) and (3.13) yields

(Kc +Kσ)∆u = −r (3.19)

from which the classical Newton-Raphson procedure can be derived. In each Newton step, the
linearized system Equation (3.19) is solved for ∆u, which updates the total displacements u,
until the norm of the residual vector r has converged below a tolerance close to zero.

In the scope of the present work, the stiffness contribution due to deformation dependent
loads [34, 214] is not discussed. For a general overview and a treatment in the framework
of standard finite elements, we refer to [103, 139, 184, 189, 215], for a treatment within
the framework of the B-spline version and the p-version of the FCM, see [178] and [179],
respectively.

3.2 The standard geometrically nonlinear finite cell

formulation

With respect to the general three-dimensional formulation of the previous section, the geo-
metrically nonlinear formulation in principal directions for the one-dimensional rod of Figure
2.8 simplifies to

Ψ = α
E

2
(lnλ)2 (3.20)

σ = α
E

J
lnλ (3.21)

c = α
E

J
− 2σ (3.22)

with axial stretch λ and the determinant of the deformation gradient J = λ1−2ν [34]. To
illustrate the influence of large deformations within the fictitious domain, the sine load fsin of
Figure 2.8 is neglected for a moment and the prescribed displacement is set to a large value of
∆u=1.0. Nonetheless, the corresponding physical stresses should be zero, since a rigid body
movement of the right part of the rod is approximated. Thus, the resulting non-zero stresses
directly reflect the modeling error due to finite α and the numerical error. In all computations
of the present section, the total displacement load is divided into 10 increments, each of which
needs two to four Newton-Raphson iterations to converge to a L2-norm of the residual below
10−12. Dirichlet boundary conditions are imposed strongly. The exact stress solution, which
can be derived analytically according to [176], is plotted in Figure 3.2a for 10 displacement
load increments between 0 and ∆u and α = 10−5.

The standard finite cell method applies the same geometrically nonlinear formulation over
the complete embedding domain Ω as described in Section 3.1, where the only difference
between Ωphys and Ωfict constitutes the penalization of the strain energy function Ψ Equation
(3.6) and its derivatives with α of Equation (2.3). However, numerical experiments with the
one-dimensional rod of Figure 2.8 reveal that the smallest penalty parameter, which could be
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(a) Analytical.

(b) p-version. (c) B-spline version.

Figure 3.2: Stresses of the geometrically nonlinear rod example, obtained with the standard FCM
formulation and p=15, are compared to the analytical solution with finite α = 10−5.

used successfully for each tested polynomial degree p, is α=10−4 and α=10−5 for the p- and B-
spline versions, respectively. Corresponding solution fields obtained with two p-version finite
cells and 16 knot span cells in the sense of Figure 2.8 are plotted in Figures 3.2b and 3.2c. For
α smaller than these bounds, the determinant of the deformation gradient F falls below zero
at some integration point within Ωfict, which inevitably terminates the computation. From
a mathematical point of view, this implies the loss of uniqueness of the deformation map,
which is not one-to-one anymore. From a physical point of view, this can be interpreted as
a penetration of material, which constitutes a severe violation of the principles of continuum
mechanics [34, 107, 214]. With α as large as 10−4, the penalization of Equation (2.3) is
unable to sufficiently eliminate the influence of Ωfict, so that a considerable modeling error is
introduced. In addition, the strain energy contribution of Ωfict is amplified by the nonlinear
strain measure. Whereas engineering strains of linear elasticity are bound by definition to very
small values |εlin|≪1.0, logarithmic strains of nonlinear elasticity are able to grow without
bounds in order to yield physically meaningful measures for very large deformation states.
However, in case of large deformations in the fictitious domain, nonlinear strains thus act as
an additional counterbalance to α and increasingly outweigh the penalization.
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As a consequence, the contribution of Ωfict to the total strain energy Equation (2.22)
grows, so that the nonlinear FCM scheme tries to accurately fit the solution in both the ficti-
tious and physical domains due to the best approximation property discussed in Section 2.3.
Thus, solution fields do not extend smoothly into the fictitious domain, but develop large
oscillations throughout the discontinuous cells (see Figure 3.2). The corresponding conver-
gence deteriorates to a low algebraic rate, which is a well-known issue for high-order elements
with inter-element discontinuities [197]. Numerical experiments indicate this standard FCM
formulations based on other nonlinear strain measures (see [32, 34, 64] and Figure 3.1) in
combination with corresponding constitutive equations affect the stability of the deformation
map in the same way. The standard FCM formulation of Section 3.1 thus suffers from a
conflict of interest between stable analysis (increase of α) on the one hand and a reduction of
the contribution of Ωfict (decrease of α) on the other.

3.3 A modified formulation based on repeated deforma-

tion resetting

To avoid the stability problem of the deformation map in the fictitious domain Ωfict, the
physical consistency of the geometrically nonlinear FCM formulation is restricted to the phys-
ical domain Ωphys. Within Ωfict, the formulation is manipulated in such a way that stable
geometrically nonlinear analysis with very small values α<10−10 is possible.

3.3.1 Motivation and implementation

Numerical experiments reveal that problems with the uniqueness of the deformation map occur
at the location of maximum deformation within the fictitious domain Ωfict. This motivates the
following simple manipulation after each Newton iteration i [180, 181]

ϕi(X) =











xi deformed configuration ∀X ∈ Ωphys

X
reset to reference
configuration ∀X ∈ Ωfict

(3.23)

where ϕi and xi denote the deformation map and the deformed configuration after the ith

Newton step. According to Equation (3.23), the deformation is repeatedly reset to the initial
undeformed state to erase the complete deformation history within Ωfict. Thus, at the be-
ginning of the (i + 1)th Newton iteration, the deformation gradient Equation (3.3) in Ωfict is
defined as

F = I (3.24)

with I being the unit tensor. From Equation (3.24), the corresponding principal stretches
Equation (3.5) and stresses Equation (3.7) directly follow as

λa = 1.0, a = {1, 2, 3} (3.25)

σ = 0 (3.26)
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(a) Reference.

(b) p-version.

(c) B-spline version.

Figure 3.3: Displacements of the geometrically
nonlinear rod example, obtained with the modi-
fied FCM formulation and p=15. The reference
solution has been computed with three conform-
ing standard linear elements.

(a) Reference.

(b) p-version.

(c) B-spline version.

Figure 3.4: Stresses of the geometrically non-
linear rod example, obtained with the modified
FCM formulation and p=15. The reference so-
lution has been computed with three conforming
standard linear elements.
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The resulting formulation is inconsistent, because it violates the principles of continuum me-
chanics and its analytical solution in Ωfict turns unphysical. However, in the sense of the
fictitious domain approach (see Figure 2.1), it does not affect the physical consistency and
accuracy of the solution in the physical domain Ωphys, provided that the influence of Ωfict and
its contribution to the total strain energy Equation (2.22) are extenuated by a sufficiently
strong penalization.

The assumption of Equation (3.24) supersedes the calculation of the deformation gradi-
ent, so that any stability issues resulting from the numerical computation of the deformation
gradient are automatically avoided and a very small penalty parameter of α=10−15 can be
applied without any further problems. The corresponding stress and displacement fields ob-
tained with the p- and B-spline versions are plotted in Figures 3.3 and 3.4, respectively. The
repeated resetting of the deformation allows for a smooth extension of the FCM solution fields
into the fictitious domain despite the presence of discontinuities in the corresponding analyt-
ical solutions (see Figures 3.3 and 3.4). The oscillatory behavior demonstrated in Figure 3.2
for the stress solutions obtained with the standard FCM formulation is still present, but is
considerably reduced by several orders of magnitude.

For a computationally efficient implementation of the deformation resetting, the coinci-
dence of linear and geometrically nonlinear elasticity at the deformation and stress free refer-
ence configuration can be exploited [26, 34, 64, 214]. Since the deformation resetting switches
Ωfict back to its reference configuration after each Newton iteration, it is fully equivalent to
carrying out repeated linear elastic computations

δW =

{

δW (ϕ, δu) large deformation ∀X ∈ Ωphys

δW (u, δu) small displacements ∀X ∈ Ωfict

(3.27)

Numerical experiments show that provided a sufficiently small penalty parameter, the quadratic
rate of convergence of the Newton algorithm can be fully maintained.

We also modified the standard geometrically nonlinear FCM formulation in an even simpler
way, just setting a penalized unit matrix at Gauss points in the fictitious domain. According to
our experience, this strategy also works for moderate deformations, but destroys the quadratic
rate of convergence of the Newton algorithm, and does not converge at all for larger defor-
mations (while the FCM with deformation resetting does). Even if considered as a “trick”,
deformation resetting will be shown to yield physically consistent results in the physical do-
main for a range of numerical tests. Therefore, we believe that from the viewpoints of intuitive
derivation, easy implementation, accuracy and computational efficiency, the methodology de-
scribed as deformation resetting is quite optimal.

3.3.2 High rates of convergence in energy measure

To test convergence in energy measure in terms of Equations (2.23) and (2.24) [120], the uni-
axial rod of Figure 2.8 is considered with sine load fsin and ∆u=1.0. An overkill discretization
with 1,000 cubic finite elements taking into account the left rod yields Uex=1.17182588 · 10−5.
The convergence for p-refinement in the p- and B-spline versions with a standard geometrically
nonlinear formulation is plotted in Figure 3.5. It illustrates the convergence decay to a low
algebraic rate of around q=1.0 on average, which can be attributed to the modeling error
introduced by insufficient penalization in conjunction with oscillatory stresses (see Figure
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Figure 3.5: Convergence of the nonlinear example of the one-dimensional rod.

3.2). The modified geometrically nonlinear formulation allows for a considerable decrease
of the penalty parameter to α=10−15, which reduces the modeling error and the oscillatory
behavior in stresses considerably (see Figures 3.4 and 3.5). Using the modified formulation,
both p- and B-spline versions of the FCM are able to achieve exponential convergence with
maximum rates of q=18.13 and q=28.09, respectively (see Figure 3.5). The flattening of the
convergence curves indicate a take-over of the influence from Ωfict at a value of around 0.04%.
Under the assumption that the rate of the standard FCM formulation could be continued,
approximately 30,000 times as many degrees of freedom (around 1 million) would be required
to achieve a comparable level of accuracy.

3.4 The geometrically nonlinear penalty method for the

weak imposition of Dirichlet constraints

In the one-dimensional example shown so far, Dirichlet boundary conditions could be imposed
strongly by standard finite element techniques. More complex examples in two and three
dimensions require their imposition along boundaries cutting through cells, which can be
achieved in a weak sense with the help of Nitsche’s method as presented in Sections 2.1.3 and
2.4.2 for linear elastic problems.

3.4.1 Penalty vs. Nitsche’s method

The penalty method [11, 13, 220] is a subset of Nitsche’s method and can be obtained from
Equations (2.7) and (2.8) by omitting the so-called consistency terms that involve the com-
putation of the normal vector n [78, 84]. The penalty method is based on the remaining
terms that involve the penalty parameter β. It has similar advantages as Nitsche’s method,
for example it creates no additional unknowns and preserves the banded structure, symmetry
and positive definiteness of the stiffness matrix. However, in contrast to Nitsche’s method, it
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is not consistent in a variational sense [78, 84] and can lead to strongly ill-conditioned system
matrices. At least the latter does not affect the finite cell method in the present form, since
system matrices are already ill-conditioned due to the penalization of the fictitious domain
with parameter α of Equation (2.3) and the corresponding system of linearized equations
requires a robust linear solver, which can handle the strong ill-conditioning.

In the framework of geometrically nonlinear problems, Nitsche’s method requires the con-
sistent linearization of all additional terms in Equations (2.7) and (2.8). Due to the missing
consistency terms, the linearization of the penalty method is considerably simplified. There-
fore, in the scope of the present work, the penalty method is applied in the following for the
weak imposition of Dirichlet boundary conditions in both the p- and B-spline versions of the
geometrically nonlinear finite cell method.

3.4.2 Discretization and linearization

The penalty method in variational form [13, 220] is based on the addition of a penalty term δWp

to the geometrically nonlinear variational equation of the principle of virtual work Equation
(3.9) [17, 108]. The penalty term, obtained by integration over the Dirichlet boundary ΓD can
be formulated in the reference configuration as

δWp (u, δu) = β

∫

ΓD

(u− û) · δu dA (3.28)

where u, û and δu denote vectors of unknown displacements, prescribed displacements on
ΓD and test functions, and β is a scalar penalty parameter. The consistent derivation of
the penalty method is based on a constrained minimization problem, formulated with the
help of Lagrange multipliers, for which Equation (3.28) constitutes an approximation (see for
example [17, 108] for an overview and [28] for details). Note that inhomogeneous Dirichlet
boundary conditions, which constrain displacements in one special direction, can be easily
implemented by applying the penalty parameter β only to the vector components of the
constrained direction.

Inserting Equations (2.4) and (2.5) in Equation (3.28), the discretized virtual work of
the penalty term δWp at a known displacement state u results in the internal and external
equivalent force vectors f int

p and f ext
p , respectively, which can be expressed per high-order

mode shape a as

f int
a,p = β

∫

ΓD

uNa dA (3.29)

f ext
a,p = β

∫

ΓD

ûNa dA (3.30)

The linearization of the discretized virtual work of the penalty term Equation (3.28) in the
direction of an incremental displacement ∆u can be found by taking the Gâteaux derivative
[34, 107], which simply yields

DδWp = δuT
a



β

∫

ΓD

NaNb dA



∆ub (3.31)
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The expression in brackets can be identified as the entries Kp,ab of the penalty contribution to
the tangent stiffness matrix. Equation (3.31) is independent of the current state of deformation
u and remains therefore constant throughout all iterations. Note that all quantities resulting
from the penalty term are evaluated in the reference configuration [34, 107], since a push-
forward to the deformed configuration leads to more involved expression due to the vector
format of the area mapping (Nanson’s formula) [107].

Combining the penalty tangent stiffnessKp with material and geometric tangent stiffnesses
Kc and Kσ, respectively, and adding the equivalent internal and external forces Equations
(3.29) and (3.30) to the right hand side results in the following discrete system of equations

(Kc +Kσ +Kp)∆u = −r (3.32)

r =
(

f int + f int
p

)

−
(

f ext + f ext
p

)

(3.33)

from which the classical Newton-Raphson iterative procedure can be derived in the sense of
Equation (3.19).
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Chapter 4

Large deformation analysis with the
finite cell method

In the following, we present a range of numerical benchmarks in two and three dimensions,
which demonstrate stability, accuracy, physical consistency and exponential rates of conver-
gence for the modified geometrically nonlinear FCM formulation, based on the deformation
resetting idea. Benchmark results obtained with the finite cell method are compared to overkill
solutions derived with standard linear quadrilateral and quadratic tetrahedral elements on con-
forming meshes, which are provided by the open-source nonlinear finite element code FlagShyp
[86], developed by Bonet and Wood [34]. Corresponding mesh generation is accomplished
with the meshers Netgen [142] and Visual Domesh [208].

Furthermore, we examine the behavior of the FCM under severe mesh distortion, which is
fundamental for the representation of very large deformation states, and present the applica-
tion oriented large deformation analysis of a metal foam sample. The latter demonstrates the
capability of the FCM to directly operate on the voxel based geometrical model of the complex
foam structure, which illustrates the potential of the FCM as a seamless geometry-through-
analysis procedure. We also discuss briefly the aspects of software implementation, hardware
requirements and computational performance of the finite cell method. All examples are ana-
lyzed with both the p- and B-spline versions of the geometrically nonlinear finite cell method,
which allows for a comparison of the two FCM versions in the last section, highlighting specific
strengths of each approximation basis within the finite cell framework.

4.1 Standard benchmarks in two and three dimensions

The key advantage of the finite cell method are high rates of convergence at almost no meshing
cost. The following numerical benchmarks demonstrate that the geometrically nonlinear finite
cell method based on deformation resetting is able to achieve exponential rates of convergence,
when a p-refinement of its high-order approximation bases is performed.

4.1.1 Plate with a circular hole

The first example problem consists of a two-dimensional square plate in plane stress, which
is perforated by a circular hole. Material and geometric parameters as well as boundary



4.1. Standard benchmarks in two and three dimensions 41

a

a

Ωphys

Ωfict

∆u

Parameters:

a=2.0
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(a) 2D plate with circular hole.

a
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Ωphys

Ωfict

∆u

Parameters:

a=2.0
∆u=0.3
rs=0.75

rs

Ωphys: E=1.0
Ωfict: αE
ν=0.2

(b) 3D cube with spherical hole.

Figure 4.1: Benchmark examples: Parameters are width/height a; plate thickness t; radius r; Young’s
modulus E; domains Ωphys and Ωfict; Poisson’s ratio ν; prescribed displacements ∆u; cut line A-B

conditions are given in Figure 4.1a. For the FCM computations, the origin of the coordinate
system is placed in the center of the circular hole. Thus, its geometry can be implicitly
represented by the inequality X2 + Y 2 ≤ r2c , which allows for an efficient point location
query at each Gauss point to determine the corresponding penalty parameter α in terms
of Equation (2.3). The complete domain Ω is discretized by a structured mesh of 4×4 p-
version finite cells and 25×25 knot span cells shown in Figures 4.2a and 4.3a, respectively,
and complemented by integration sub-cells displayed in Figures 4.2a and 4.3b. The adaptive
structure of the sub-cells, each of which is equipped with (p+1)×(p+1) Gauss points, leads to
an aggregation of integration points around geometric boundaries, so that the discontinuity in
α can be accurately resolved. To minimize the integration error, a sub-cell quadtree with overly
large depths m=8 and m=4 is applied throughout all computations with the p- and B-spline
versions, respectively. Dirichlet boundary conditions can be imposed strongly, since Dirichlet
boundaries conform to cell boundaries. For the solution of the geometrically nonlinear system,
the displacement load is cut into three equally sized increments, each of which requires not
more than three to four Newton iterations in both FCM versions to converge to a value of the
L2-norm of the residual below 10−12. The modified FCM formulation allows for a penalization
of the fictitious domain with α=10−15.

A first impression of the quality of the geometrically nonlinear FCM solutions can be ob-
tained from the von Mises stress plots shown in Figures 4.2c and 4.3c obtained with polynomial
degree p=15. Both FCM versions are able to accurately localize the typical stress concentra-
tion phenomenon at the vertical edges of the circular hole and are free of stress oscillations
in the physical domain. For the computation of a reference solution in terms of strain energy,
we use the symmetry in geometry and boundary conditions to reduce the plate to one quar-
ter of the original system. The considered FlagShyp discretization with a mesh conforming
to the geometric boundaries consists of 224,312 standard linear quadrilateral elements and
449,723 degrees of freedom, taking into account the physical domain Ωphys only. Figures 4.4a
and 4.4b give a more detailed view of the quality of the stress solution by plotting von Mises
stresses along cut line A-B (see Figure 4.1), obtained from the p- and B-spline discretizations,
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(a) FCM mesh consisting
of 4×4 p-version cells.

(b) Integration sub-cells
displayed up to level k=4.

(c) Von Mises stresses on the deformed configura-
tion, obtained with p=15.

Figure 4.2: 2D plate with circular hole, com-
puted with the p-version of the FCM.

(a) FCM mesh consisting
of 25×25 knot span cells.

(b) Integration sub-cells
displayed up to level k=3.

(c) Von Mises stresses on the deformed configuration,
obtained with p=15.

Figure 4.3: 2D plate with circular hole, com-
puted with the B-spline version of the FCM.
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(a) p-version of the FCM.
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(b) B-spline version of the FCM.

Figure 4.4: Von Mises stresses along cut line A-B of the 2D plate with circular hole, obtained with
the p-version and B-spline discretizations shown in Figures 4.2 and 4.3, respectively.

respectively, and the FlagShyp reference solution. Both FCM versions converge towards the
reference, while stresses are accurate and smooth up to the geometric boundary at point B.
Comparing the p-version solution of p=12 (2,270 dofs) and the B-spline solution of p=3 (1,299
dofs), one can observe that the high-order continuity of B-splines achieves a more accurate
stress solution at a lower polynomial degree with fewer degrees of freedom, while the reduced
C0 continuity along the p-version cell boundary distinctly influences the stress solution.

Multiplying the total strain energy, which has been obtained by the FlagShyp discretization
of the quarter system, by four yields a reference Uex = 2.305691 ·10−3 for the complete system.
Convergence studies with different mesh sizes indicate that the given total strain energy Uex

is correct up to the 6th decimal, so that relative errors in terms of Equation (2.23) being
larger than 0.1% can be reliably determined. For the finite cell meshes of the p- and B-spline
versions given in Figures 4.2a and 4.3a, respectively, a p-refinement study is performed. Using
the overkill result from the Flagshyp discretization as a reference, Figure 4.5a reveals that both
the p- and B-spline versions of the finite cell method are able to achieve exponential rates of
convergence in strain energy measure. At an error level of 0.1%, the convergence curves of
both FCM versions level off due to the impact of the finite value of the penalty parameter α.
The jumps in the convergence curve of the B-spline version can be attributed to the influence
of the integration error.

The reason for the different mesh size in the p- and B-spline versions lies in the different
behavior of the support of the corresponding basis functions under p-refinement. To illustrate
that statement, let us consider the 4×4 p-version mesh of Figure 4.2a. According to Section
2.2.1, the support of the nodal, edge and internal modes in a two-dimensional p-version dis-
cretization under p-refinement is invariant, being a maximum of 4×4, 2×2 and 1×1 finite cells,
respectively. However, for B-spline basis functions, the maximum support spans (p+1)×(p+1)
finite cells (see Section 2.2.2) and thus rapidly increases with the polynomial degree p consid-
ered. A corresponding 4×4 knot span mesh exhibits one basis function with global support
at p=3, nine at p=5, and almost all of its basis functions are global at p=15. On the one
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hand, such a discretization will lead to an almost fully populated stiffness matrix with full
bandwidth. The B-spline version in this form can thus be characterized rather as a spectral
method than a finite element scheme. At the same time, it is considerably less accurate than a
p-version mesh, since it contains much fewer degrees of freedom. At polynomial degree p=15
for example, 4×4 knot span cells exhibit approx. 750 dofs, while approx. 3,500 dofs are created
in a 4×4 p-version mesh. Therefore, a comparison of p-version and B-spline discretizations
with the same number of cells seems not appropriate to us and is not presented in the scope
of this work. Instead, the number of knot span cells is increased in such a way that p-version
and B-spline meshes exhibit approximately the same amount of degrees of freedom and the
support of the largest part of the B-spline basis functions is smaller than the complete domain
Ω at issue.

4.1.2 Cube with a spherical hole

The 3D analogue of the perforated square plate is a cube with a spherical hole, whose geometry,
material and boundary conditions are given in Figure 4.1b. The geometry of the sphere is
again described implicitly by the inequality X2 + Y 2 + Z2 ≤ r2s , which allows for efficient
point location queries in 3D. The complete domain Ω is discretized by a structured FCM
mesh of 2×2×2 p-version cells and 7×7×7 knot span cells as shown in Figures 4.6a and
4.7a, respectively. For integration purposes only, the finite cell meshes are complemented by
adaptive sub-cells to take into account the discontinuity in α. In Figures 4.6b and 4.7b, only
one half of the symmetric sub-cell structures are displayed to uncover their adaptive resolution
of the spherical boundary in the center of the cube. Dirichlet boundary conditions can again
be imposed strongly, since Dirichlet boundaries coincide with cell faces. For the solution of the
geometrically nonlinear system, the displacement load is cut into 3 equally sized increments,
each of which requires in both FCM versions only 3 to 4 Newton iterations to converge to a
value of the L2-norm of the residual below 10−10. The modified FCM formulation allows for
a penalization with α=10−15.

A first impression of the quality of the geometrically nonlinear FCM solutions can be ob-
tained from the von Mises stress plots given in Figures 4.6c and 4.7c, obtained with polynomial
degree p=7. To allow an insight into the 3D stress state, only one eighth of the symmetric
system is displayed. Both FCM versions are able to accurately localize the stress concentra-
tion around the spherical boundary. Moreover, the physical domain Ωphys does not exhibit
stress oscillations. For the computation of a strain energy reference, we again make use of the
symmetry in geometry and boundary conditions to reduce the cube to one eighth of the origi-
nal system. The considered FlagShyp discretization with a mesh conforming to the geometric
boundaries consists of 15,300 standard 10-noded quadratic tetrahedrals with 69,862 degrees
of freedom. Multiplying the resulting strain energy by 8 yields Uex = 6.6008376 · 10−2. Con-
vergence studies with different mesh sizes indicate an accuracy up to the 4th decimal, so that
relative errors being larger than 1.0% can be reliably determined. Performing a p-refinement
study on the given finite cell discretizations, one can determine the convergence behavior in
strain energy with respect to the given reference. The results shown in Figure 4.5b confirm
also for the 3D case that exponential rates of convergence can be achieved with both the
p-version and the B-spline version of the finite cell method.
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(b) 3D cube with spherical hole.

Figure 4.5: Convergence behavior of the 2D and 3D benchmark examples obtained with the modified
FCM formulation based on deformation resetting.

4.2 Unfitted Dirichlet constraints and robustness under

severe mesh distortion

The discretization and linearization of the variational penalty method for the imposition of
unfitted Dirichlet boundary conditions in the framework of geometrically nonlinear formula-
tions has been derived in Section 3.4. In the following, its performance is examined in the
framework of the geometrically nonlinear finite cell method by the ring example of Figure 2.19.
Furthermore, the behavior of the FCM under severe mesh distortion, being fundamental for
the representation of very large deformation states, is examined with the example of a twisted
beam that also involves weakly imposed Dirichlet boundary conditions.

4.2.1 Ring with weakly enforced boundary conditions

The problem set of Figure 2.19 is maintained with the only exceptions that geometrically non-
linear kinematics are assumed, body forces are omitted and traction over the inner boundary
Γ2 is replaced by a non-zero displacement boundary condition

ûr = 0.25; ûθ = 0.0 (4.1)

The ring is discretized with the p- and B-spline versions of the finite cell method as shown
in Figures 2.20a and 2.20b, where the inner and outer circles are approximated in the sense
of Equation (2.26) by an overly large number of 20,212 and 38,612 polygon segments in order
to minimize the corresponding error influence. For the solution of the geometrically nonlinear
system, the displacements on Γ2 are cut into 3 equally sized increments, each of which requires
4 to 5 Newton-Raphson iterations to converge to a norm of the residual below 10−12. Figure
4.8a and 4.8b show the regular and symmetric mesh deformation in the physical domain
for the p-version and B-spline discretizations, respectively, which confirms that the physical
domain is not influenced by the presence or the modified FCM formulation of the surrounding
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(a) FCM mesh consisting of
2×2×2 p-version cells.

(b) Adaptive integration
sub-cells of level m=5.

(c) Von Mises stresses on the de-
formed configuration (p=7).

Figure 4.6: 3D cube with spherical hole, com-
puted with the p-version of the FCM. Only one
half of the symmetric sub-cell mesh is displayed
to uncover its internal structure.

(a) FCM mesh consisting of
7×7×7 knot span cells.

(b) Adaptive integration
sub-cells of level m=3.

(c) Von Mises stresses on the de-
formed configuration (p=7).

Figure 4.7: 3D cube with spherical hole, com-
puted with the B-spline version of the FCM.
Only one half of the symmetric sub-cell mesh is
displayed to uncover its internal structure.
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Edges of p-version cells

Geometric boundaries

(a) 4x4 p-version cells.

Edges of knot span cells

Geometric boundaries

(b) 16x16 knot span cells.

Figure 4.8: Deformed finite cell meshes of Figure 2.20, plotted over the physical domain, for the ring
example at large strains.

(a) p-version. (b) B-spline version.

Figure 4.9: Total displacements plotted on the initial configuration, obtained with the above finite
cell meshes of polynomial degree p=7.

fictitious domain. Figure 4.9a and 4.9b plot the corresponding total displacement solutions
on the initial configuration, which show the expected circular pattern. The maximum values
are located at the inner Dirichlet boundary and are accurate with respect to the boundary
conditions specified by Equation (4.1) up to the 4th decimal in both FCM versions.

For the computation of the corresponding relative errors in strain energy measure Equation
(2.23), Uex is computed by an overkill discretization in FlagShyp, which applies 41,400 linear
quadrilaterals conforming to geometric boundaries for one quarter of the symmetric ring.
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Figure 4.10: Convergence of the relative error in strain energy measure for the ring at large strains.

Multiplying the resulting total strain energy by four yields a reference for the complete system
of Uex=0.2855052. Figure 4.10 shows the convergence in strain energy measure, obtained by
p-refinement of the p-version and B-spline discretizations, respectively. For each polynomial
degree p, parameter β is empirically chosen in both FCM version within the interval [105, 107],
so that the corresponding solution yields a minimum error in strain energy measure. It can
be observed that exponential rates of convergence can be achieved for the p- and B-spline
versions. However, the convergence curve flattens at an error level of around 1%, due to the
influence of the finite penalization parameters α and β. A detailed examination and discussion
of possible effects of the penalty parameter β on the condition number of the stiffness matrix
and the convergence of the p-version of the finite cell method is provided in [207]. The present
example confirms the potential of the penalty method for incorporating unfitted Dirichlet
boundary conditions, while maintaining the key advantages of the FCM in terms of simple
mesh generation and exponential rates of convergence.

4.2.2 Beam under axial torsion

Previous studies on large deformation analysis with p-version [72, 103, 68] and isogeometric
finite elements [56, 77, 127] show that higher-order and higher-continuity shape functions
permit increased levels of mesh distortion. In the present context, severe distortion of the
structured finite cell mesh may occur as a result of the mapping of cells from the reference
to the deformed configuration. In the scope of this work, the ability of the p- and B-spline
versions of the FCM to use the robustness of their high-order bases for the representation
of very large deformation states is illustrated by the geometrically nonlinear benchmark of a
three-dimensional twisted beam, for which a system sketch and material properties are given
in Figure 4.11. The dimensions of the beam are chosen according to Lipton et al. [127], where
the example is examined for incompressible large deformation elasticity. Torsion is imposed
by a Dirichlet boundary constraint, rotating the cross-sectional plane at one end of the beam
by angle θ, while the cross-section at the opposite end of the beam is completely fixed.
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Figure 4.11: Twisted beam in three dimensions.

For testing the solution behavior of the FCM, the beam is embedded in a fictitious domain
Ωfict of dimensions 5×2×2, which contains the physical domain Ωphys in its center as illustrated
in Figure 4.11 and is penalized by parameter α=10−15 in the sense of Figure 2.1. The modified
geometrically nonlinear formulation introduced in Section 3.3 is applied. Corresponding dis-
cretizations with the p- and B-spline versions of the FCM, consisting of 8×3×3 p-version cells
of p=3 with 2,508 degrees of freedom and 11×5×5 knot span cells of p=3 with 2,688 degrees of
freedom, are displayed in Figures 4.12a and 4.12b, respectively, and are comparable in terms
of polynomial degree and number of degrees of freedom. Due to the cuboidal geometry of
the beam, integration of the FCM stiffness matrix contributions can be accomplished exactly
with m=2 levels of integration sub-cells, which conform to the discontinuity in α. Unfitted
Dirichlet boundary conditions at both ends are imposed weakly via the penalty method with
β=106 as discussed in Section 3.4, leaving all boundary parts of Ωfict unconstrained.

First, the behavior of the FCM versions for moderately large deformations is examined
by imposing a rotation angle of θ=180◦ (half a rotation around the beam axis). To obtain a
qualitative reference, a regular finite element analysis with the p-version of the finite element
method is performed. The conforming finite element mesh consists of 20×4×4 high-order
elements of polynomial degree p=6 with 43,110 degrees of freedom. In analogy to the FCM,
Dirichlet constraints are enforced via the geometrically nonlinear penalty formulation pre-
sented in Section 3.4. The resulting von Mises stress and the corresponding deformation
pattern are shown in Figure 4.13. Corresponding solutions obtained with the p- and B-spline
version of the finite cell method are displayed in Figures 4.14 and 4.15, respectively. The
deformed FCM meshes illustrating the behavior of the parts of the finite cells in the physical
domain show a regular deformation pattern, in particular the cells cut by the geometric bound-
ary. The corresponding von Mises stresses match well to the reference of Figure 4.13 despite
the presence of the fictitious domain. One can identify a slight advantage of the B-spline ver-
sion, which comes closer in terms of the maximum and minimum stress values and provides a



4.2. Unfitted Dirichlet constraints and robustness under severe mesh distortion 50

Wphys

p-version cells 
with nodal positions

Integration sub-cells

(a) 72 cubic p-version finite cells with 2,508
degrees of freedom.

Wphys

B-spline cells 
with knot positions

Integration sub-cells

(b) 265 cubic knot span finite cells with 2,688
degrees of freedom.

Figure 4.12: Discretization of the complete domain with the p- and B-spline versions of the FCM.

Figure 4.13: Qualitative reference for the beam twisted by θ=180◦, obtained with standard FEM.

C2-continuous stress pattern, while the p-version exhibits jumps across the C0-continuous cell
boundaries. The displacement and stress results show no observable effect from the distortion
of the FCM meshes on the displacement and stress accuracy.

Second, the behavior of the finite cell versions under extreme deformations is examined
by imposing a rotation angle of θ=1080◦ (three complete rotations around the beam axis).
Corresponding solutions obtained with the p- and B-spline versions of the finite cell method
are displayed in Figures 4.16 and 4.17, respectively. Deformed FCM meshes in the physical
domain, in particular the finite cells cut by the geometric boundary, still show a regular
deformation pattern with the expected helix-like shape despite a considerable distortion of
the cells. The corresponding von Mises stresses show a qualitative agreement at first sight,
but a closer look reveals that there are some differences in terms of maximum and minimum
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(a) Deformed p-version finite cell mesh in the
physical domain.

(b) Von Mises stress plotted on the deformed
configuration.

Figure 4.14: The beam under a moderately large rotation of θ=180◦, computed with the p-version of
the FCM. The fictitious domain parts of the mesh and the stress field are not displayed.

(a) Deformed knot span finite cell mesh in the
physical domain.

(b) Von Mises stress plotted on the deformed
configuration.

Figure 4.15: The beam under a moderately large rotation of θ=180◦, computed with the B-spline
version of the FCM. The fictitious domain parts of the mesh and the stress field are not displayed.

values and the location of stress peaks. Due to its higher-order continuity, the B-spline results
lead again to smoother deformation and stress patterns than the p-version results. To find the
limit deformation states for the present example, representable with the p-version and B-spline
discretizations of Figures 4.12a and 4.12b, the rotation angle θ is continuously increased in
increments of ∆θ=9◦, until the nonlinear mapping in the physical domain fails due to numerical
problems. The p-version of the FCM is able to represent a maximum rotation of the beam
of θ=1107◦, whereas the knot span finite cell mesh of the B-spline version achieves a slightly
larger maximum of θ=1143◦.

Figures 4.18 and 4.19 illustrate the distortion of the fictitious domain for moderately and
extremely large deformations by plotting the corresponding deformed meshes in Ωfict. From
the point of view of the typical FCM solution behavior discussed in Section 2.3, it is ben-
eficial for the quality of the FCM results, if the solution fields in the fictitious domain can
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(a) Deformed p-version finite cell mesh in the
physical domain.

(b) Von Mises stress plotted on the deformed
configuration.

Figure 4.16: The beam under an extreme twist of θ=1080◦, computed with the p-version of the FCM.
The fictitious domain parts of the mesh and the stress field are not displayed.

(a) Deformed knot span finite cell mesh in the
physical domain.

(b) Von Mises stress plotted on the deformed
configuration.

Figure 4.17: The beam under an extreme twist of θ=1080◦, computed with the B-spline version. The
fictitious domain parts of the mesh and the stress field are not displayed.

“move” as freely as possible to permit a smooth extension of the physical solution into the
fictitious domain. For the moderately large rotation of the beam, this freedom is provided to
a comparable extent by both FCM versions (see Figure 4.18). The resulting deformation in
the fictitious domain completely lacks physical meaning and an arbitrary penetration of the
deformed meshes may occur.

For the very large twist of the beam, the deformation in the fictitious domain of the
p-version discretization is considerably larger than the corresponding deformation in the B-
spline discretization. Note that Figures 4.19a and 4.19b exhibit different scales, and can be
related to each other only by comparison with the deformed physical meshes, which are also
displayed. The difference in the size of the deformation indicates that in the presence of
extremely large deformations, the C0-continuous p-version can better accomplish a smooth
extension of the solution fields than the B-spline version, where the higher-order continuity of
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the basis functions seems to constrain the freedom of solution fields in the fictitious domain.
Due to the modified formulation with deformation resetting in Ωfict, the extreme distortion
of the mesh in the fictitious domain does not affect the numerical stability of the overall
FCM scheme, since the corresponding geometrically linear computations always assume the
reference configuration and a nonlinear mapping does not need to be computed.

The results of the beam under extremely large rotation clearly indicate that the finite cell
method fully inherits the robustness of the high-order bases. Both FCM versions are able to
represent extremely large deformation states despite severe distortion of the physical part of
the corresponding mesh. However, the influence of the fictitious domain on the solution fields of
the physical part might be increased, in particular in higher-continuity B-spline discretizations.

4.3 FCM as a seamless geometry-through-analysis pro-

cedure for voxel models

The fundamental advantage of the finite cell method is the very simple and fast grid generation
irrespective of the geometric complexity involved. It is based on the disconnection of the high-
order grid from the geometry, which is instead represented by the change of parameter α
at integration point level. The standard way of representing very complex three-dimensional
geometries are volumetric models based on voxel partitioning [2, 3, 38], with large relevance for
example in biomedical and material science related applications [85, 168, 216]. Voxel models
are usually derived from computed tomography (CT) scans [146], but can also be generated
from a B-rep geometry of a CAD model [213]. In the following, the straightforward integration
of voxel data for the geometrically nonlinear simulation of a compression test for a complex
metal foam structure illustrates the potential of the FCM as a seamless geometry-through-
analysis procedure for voxel based geometrical models of very complex geometry.

4.3.1 Efficient generation of adaptive sub-cells from voxels

In contrast to the example of a voxel based geometrical model of a bone structure, accommo-
dating inhomogeneous material properties, which has been presented in Section 2.4.3, the focus
here lies on solids of very complex geometry with homogeneous material. In the case of one
single material, the voxel information required for FCM analysis consists solely of the penalty
parameter α. The information necessary at each voxel location can then be reduced to a bit
code bvox ∈ {0, 1}, which determines whether there is material (bvox = 1) or a void (bvox = 0).
Thus, geometric boundaries of the physical domain Ωfict are represented by the change of bvox
from one voxel to the next. The bit encoding significantly speeds up input/output operations
and minimizes memory requirements with respect to a direct storage of the floating point
number α. The bit code can be simply generated from a CT scan by defining a radiodensity
limit, below which bvox is set to zero, while everything above is set to one. The CT based
open cell aluminium foam sample2 shown in Figure 4.20 illustrates this concept. The voxel
model has also been transferred to a conventional triangulated surface parameterization in
STL format 3 given in Figure 4.21, which conveys a clear image of the geometric boundaries.

2Courtesy of IZFP Fraunhofer Institute for Non-Destructive Testing, Saarbrücken, Germany;
http://www.izfp.fraunhofer.de

3Surface Tesselation Language, also Standard Triangulation Language
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(a) Deformed p-version cells of Figure
4.12a.

(b) Deformed knot span cells of Figure 4.12b.

Figure 4.18: Deformed finite cell mesh including the fictitious domain for a beam rotation of θ=180◦

Size of the 
physical part 
of the mesh

(a) Deformed p-version cells of Figure 4.12a.

Physical part 
of the mesh

(b) Deformed knot spans of Figure 4.12b.

Figure 4.19: Deformed finite cell mesh including the fictitious domain for a beam rotation of θ=1080◦,
given by the contours of the cell faces covering the fictitious domain. The deformed physical part of the
mesh as shown in Figures 4.16a and 4.17a is also plotted to give an idea of the size of the deformation
of the fictitious domain.

With the help of the bit code, an adaptive integration mesh that decomposes finite cells
cut by geometric boundaries into sub-cells to accurately take into account the discontinuity
in α (see Section 2.2.1), can then be established by the following simple algorithm

1. Traverse all sub-cells of the currently finest level k (start with the finite cells at k=0)
and query each Gauss point if it is inside Ωphys or Ωfict.
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2. If Gauss points of the same sub-cell are located in different domains (hence, a geometric
boundary must be present), split the sub-cell into sub-cells of the next level k=k + 1.

3. Provide all new sub-cells with (p+1)n Gauss points, where n denotes the number of
Cartesian directions.

4. Repeat this process, until a sufficient sub-cell depth k=m is reached.

The voxel based bit code provides an ideal geometrical basis for the corresponding location
query, which determines for an arbitrary point in space, if it is located in the physical or
fictitious domain. Assuming a lexicographical ordering of the voxel data, the integration point
position {X, Y, Z}T in the reference configuration can be related to the voxel index kvox with
corresponding bvox by

kvox =

⌊

(X −X0)nx

Lx

⌋

nynz +

⌊

(Y − Y0)ny

Ly

⌋

nz +

⌊

(Z − Z0)nz

Lz

⌋

+ 1 (4.2)

where {X0, Y0, Z0}, {Lx, Ly, Lz} and {nx, ny, nz} denote the origin, the length and the number
of voxels in each Cartesian direction, and ⌊ ⌋ is the floor function.

To illustrate the efficiency of the algorithm, the voxel based geometry of the metal foam
shown in Figure 4.20 is discretized with 5×5×5 p-version finite cells of polynomial degree p=7
and m=3 levels of adaptive sub-cells. The fully automated generation of the corresponding
discretization shown in Figure 4.22 can be accomplished in only 42 seconds4. The main costs
result from the loading of voxel information encoded by approximately 109 (1 billion) bits, the

4On a Intel(R) Core(TM)2 P8800 @ 2.66 GHz

(a) Voxelized sample cube. (b) Voxels with bvox = 1.

Figure 4.20: Voxel based geometrical model of an aluminium foam sample, derived from a CT scan.
For better visibility, the original resolution of 10243 voxels is reduced to 1283.
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Figure 4.21: STL surface parameterization of the foam structure.

generation of 25,247 adaptive sub-cells and about 680,000 integration point queries according
to Equation (4.2). It can be easily observed that the adaptive aggregation of sub-cells around
geometric boundaries increases quickly with k.

4.3.2 Nonlinear analysis of a metal foam sample

Metal foams provide high stiffness at reduced weights, and are therefore frequently used for
lightweight structures in automotive and aerospace applications [15]. The p- and B-spline
versions of the FCM are applied to simulate a compression test for an aluminium foam sample
of size 20×20×20 mm. Its internal geometry is provided by voxels with a resolution of 1024 in
each Cartesian direction, each of which encodes α. Figure 4.20b shows all voxels of material
index 1 associated with aluminium in a coarsened resolution of 1283.

The foam sample is assumed as part of a larger specimen, which is uniformly compressed
along the vertical axis. A corresponding RVE5 model [188, 225] specifies boundary conditions
as follows: Displacements normal to the top surface are gradually increased to 1.6mm (8%
compressive deformation), modelling the influence of a testing machine, whereas the displace-
ments normal to all other surfaces are fixed due to the bottom support and the influence of
the surrounding material of the specimen. Since Dirichlet boundaries coincide with cell faces,
Dirichlet constraints are imposed strongly. The aluminium foam is characterized by a Young’s
modulus of E=70.000 N/mm2, penalized by α=10−12 at all integration points in Ωfict, and a
Poisson’s ratio of ν=0.35. For the p-version of the FCM, the discretization shown in Figure
4.22 is used, while the B-spline version discretizes the sample with 12×12×12 knot span cells
andm=2 levels of adaptive sub-cells. Thus, the smallest sub-cells of the p-version and B-spline
discretizations, respectively, contain approx. 25 and 21 voxels in each direction.

5Representative volume element
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(a) Structured high-order mesh (k=0),
consisting of 125 p-version finite cells.

(b) First level k=1 of the adaptive integra-
tion structure, consisting of 306 sub-cells.

(c) Second level k=2 of the adaptive integra-
tion structure, consisting of 2,197 sub-cells.

(d) Third level k=3 of the adaptive integra-
tion structure, consisting of 22,744 sub-cells.

Figure 4.22: Discretization of the metal foam sample with the p-version of the FCM with m=3 levels
of sub-cells, each with (p + 1)3 Gauss points, leading to an adaptive aggregation of integration points
around geometric boundaries.

The resulting von Mises stresses computed with the p- and B-spline versions of the FCM
at p=7 are shown in Figures 4.23a and 4.23b, respectively. They exhibit accurate localization
of stress concentrations at the convex sides of the foam members, which agrees well with
engineering experience. Both plots show good accordance in terms of stress patterns, absolute
values and locations of stress peaks. Figure 4.24a plots the equivalent force obtained from
integration of the normal stresses over the top surface vs. the prescribed displacement of the
top surface for different polynomial degrees p, computed with the p-version mesh of Figure
4.22. It can be observed that the increase of p leads to a better reproduction of the nonlinear
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(a) p-version of the FCM. (b) B-spline version of the FCM.

Figure 4.23: Von Mises stress of the metal foam sample plotted on the deformed configuration. The
results are obtained from the FCM discretizations of polynomial degree p=7 as described above.

behavior of the foam. Figure 4.24b illustrates the convergence of the equivalent top force under
p-refinement, obtained with the p- and B-spline versions. Both schemes converge towards a
final load of around 54 kN, where the B-spline discretization tentatively yields a comparable
accuracy with fewer degrees of freedom.

4.4 Software implementation and computational

performance

A significant assessment of the computational performance of a numerical scheme cannot be
done by considering its accuracy alone, but also has to account for the aspects of hardware
and software resources involved as well as the corresponding computational time required. In
the following, we discuss theses aspects for the example of the foam analysis.

Our in-house finite cell code, which has been set up from the scratch by the author,
implements both FCM versions in the same object-oriented software framework [177]. It has
been programmed in C++ and makes extensive use of Sandia’s library package Trilinos [203],
Intel’s math kernel library [111], the optimization options of Intel’s C/C++ compiler [112]
and shared-memory parallelization with OpenMP [45]. It applies the same routines for linear
algebra operations, adaptive integration, the elastic material at finite strains, assembly of the
stiffness matrix and the Newton-Raphson iterative procedure. The only difference between the
implementation of the p-version and B-spline version consists of the numbering and evaluation
of the shape functions. In the context of the finite cell method, the solution of the linearized
system of equations, which is strongly ill-conditioned due to the penalization of the fictitious
domain, cannot be achieved with iterative solvers. Therefore, the code interfaces the direct
solvers Lapack [123] and Pardiso [113]. Since the major cost of FCM results from integration
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(a) Force-displacement behavior with increasing
p, obtained from the p-version FCM discretiza-
tion of Figure 4.22.
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(b) Convergence of the equivalent vertical force
for the p- and B-spline versions of the FCM.

Figure 4.24: Convergence behavior under p-refinement with p- and B-spline versions of the FCM.

over the large number of sub-cells with (p+1) Gauss points in each local direction, a major
performance gain is achieved by the shared-memory parallelization of the loop that computes
local stiffness matrices for cells and sub-cells with subsequent assembly into the global system
matrix. A parallel for construct creates a team of n threads to execute the main loop over
sub-cells in parallel, where n is the number of threads available. With n=8, we achieved a
strong speed up of the loop of around five.

In addition to the comparison of their accuracy, the common software basis also allows
for a fair comparison between the p- and B-spline versions of the FCM in terms of required
main memory resources and computational time. Using the linear solver Lapack [123], our
in-house finite cell code computes the given p-version and B-spline discretizations of the foam
example at polynomial degree p=7, which are similar in terms of number of degrees of freedom
and accuracy of the top force (see Figure 4.24b). The p-version discretization is characterized
by 21,492 dofs defined over 24,947 integration sub-cells with approx. 12.75 million Gauss
points, while the B-spline discretization involves 18,411 dofs defined over 37,414 sub-cells with
approx. 19.16 million Gauss points. The direct solver requires large main memory resources,
in particular due to increased levels of bandwidth and population of the high-order stiffness
matrices. From the total amount of 70 gigabytes of available main memory, the solution of
the p-version system required a maximum memory usage of about 55%, while the solution
of the B-spline system required a maximum of about 90%. Both discretizations converge in
three load increments with four to five Newton iterations to a L2-norm of the residual below
10−6. For the p-version mesh, the total analysis of the foam could be accomplished in about
four hours6, whereas the B-spline mesh took about nine and a half hours.

While the required hardware resources and the computational times of both FCM versions
seem to be quite high at first sight, one should keep in mind that the FCM analysis of the
foam achieves a seamless integration of the voxel based geometrical model. In comparison to

6Using eight threads on two interconnected Intel(R) Xeon(R) W5590 @ 3.33GHz with 70 GB RAM
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standard low-order approaches, no preprocessing steps such as segmentation of the voxel data
or generation of a conforming mesh are required, and the high-order finite cell method yields
high accuracy with a moderate amount of degrees of freedom.

4.5 Comparison of the p- and B-spline versions of the

finite cell method

The benchmark examples presented in Section 4.1 clearly demonstrate that basis functions of
the p-version of the finite element method and high-order B-splines are both well-suited for
the application in the framework of the geometrically nonlinear finite cell method. Apart from
the general validity of both approaches, a more detailed assessment reveals that each of the
two methods has its specific strengths, which are briefly highlighted in the following.

A comparison of the p- and B-spline discretizations of the same polynomial degree p with a
comparable amount of degrees of freedom shows that the p-version of the FCM has advantages
in terms of computational efficiency. Hierarchic shape functions of the p-version are defined
over only a few adjacent cells as opposed to B-splines, which are supported by a much larger
number of knot spans due to their piecewise definition. This results in a smaller number
of cells necessary to achieve the same amount of degrees of freedom and a higher degree of
adaptivity of the integration sub-cells, which can be clearly observed for example in the p-
version and B-spline discretizations of the ring discussed in Section 4.2.2 (see Figure 2.20). A
further consequence is a smaller degree of population and bandwidth of the stiffness matrix in
the p-version of the FCM, in particular for high-order computations in 3D. The combination
of fewer sub-cells at a comparable resolution of geometric boundaries and smaller degree of
population at the same polynomial degree makes the p-version of the FCM computationally
more efficient than the B-spline version, as illustrated by the computational times given in
Section 4.4 for the foam analysis.

The B-spline version of the FCM has advantages in terms of accuracy. Due to the smooth
extension of solution fields into the fictitious domain, the finite cell method can make use
of the higher-order continuity of the B-spline basis. In contrast, the p-version basis is only
C0-continuous along cell boundaries, and therefore leads to discontinuities in stresses. Con-
sequently, the p-version basis can be considered richer than actually required by the target
solution, for which a best approximation in terms of the strain energy is to be found. There-
fore, the smooth approximation space of the B-spline version can achieve the same level of
accuracy with fewer degrees of freedom than the p-version of the FCM, which “wastes” part
of its approximation power to unnecessary solution components. This characteristic feature
can be observed in the strain energy results of the benchmark examples presented in Section
4.1, in particular for the cube with a spherical hole, as well as for the foam analysis shown
in Section 4.3. It partly compensates the efficiency drawback in comparison to the p-version
described above. However, the beam under very large torsion presented in Section 4.2.2 in-
dicated that C0-continuous p-version cells show some advantages over higher-order continuity
B-spline cells in the presence of extremely large deformations, since they permit a greater
freedom for solution fields in the fictitious domain.
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Chapter 5

Hierarchical hp-d adaptivity in the
finite cell method

In the previous Sections 2, 3 and 4, we demonstrated that the finite cell concept is an accu-
rate and efficient numerical scheme for linear and geometrically nonlinear problems of solid
mechanics, provided that they have a smooth solution. For problems with non-smooth solu-
tions, for example in the presence of material interfaces or singularities, the finite cell method
exhibits undesirable properties, such as unphysical stress oscillations around inter-element dis-
continuities or a decay of convergence to a low algebraic rate, which is typical for high-order
methods. In the framework of high-order finite elements [197, 198], different strategies have
been developed to improve the quality of stresses and to restore high rates of convergence.
The hp-adaptive method generates a geometrically graded mesh, where both element size and
polynomial degree p become smaller towards the location of a singularity or discontinuity
[12, 61, 62, 157, 192, 197]. The rp-adaptive method tries to identify the locations of inter-
element discontinuities and subsequently changes the high-order discretization in such a way
that all discontinuities in the solution coincide with element edges or faces, where they can be
represented exactly due to the C0-continuity of the p-version basis [90, 147].

A key advantage of the finite cell method is its simplicity in terms of mesh generation.
Since classical hp- and rp-methods involve complex meshing procedures, their application
in the framework of the finite cell method would neutralize the advantage of simple meshing,
thus considerably reducing the attractiveness of the FCM. An alternative approach is the hp-d -
adaptive method originally introduced byRank [158], which is based on a local overlay mesh of
additional basis functions. Since the only constraint for the overlay mesh is linear independence
with respect to the original basis, it can be chosen in such a way that it preserves the simple
meshing property of the finite cell method. Combining the concepts of hp-d -adaptivity and
the FCM, we derive an hp-d -adaptive p-version, based on a local overlay of linear hierarchical
basis functions, and an hp-d -adaptive B-spline version, based on a local overlay of hierarchical
subdivision B-splines. The behavior of the finite cell method for non-smooth solutions can be
considerably improved, which is demonstrated for interface and singular problems. While the
hp-d -adaptive p-version of the FCM as presented herein can be characterized as a proof-of-
concept, which is intended to illustrate the potential of hierarchical hp-d adaptivity beyond this
work, the hp-d -adaptive B-spline version is an important prerequisite, which will be further
developed for efficient and easy-to-handle local refinement of NURBS for adaptive isogeometric
and embedded domain analysis in Sections 6 and 7.
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Base mesh: up Overlay mesh: uh Superposition: uhp-d

Figure 5.1: Basic idea of the hp-d method in one dimension (adapted from [70]).

5.1 The hierarchical hp-d method

Figure 5.1 outlines the principle of the hp-d method for a simple one-dimensional example.
The starting point is a standard high-order finite element approximation up on a so-called base
mesh, discretizing the whole computational domain. In order to locally improve this solution -
for example, in a region where a significant error occurs - a h-version approximation uh defined
on a fine overlay mesh is superimposed to the base mesh. The overall finite element approx-
imation uhp-d = up + uh results from the superposition of base and overlay approximations.
C0-continuity of uhp-d is guaranteed by imposing homogeneous Dirichlet boundary conditions
on the overlay approximation uh. Originally proposed by Rank [158, 159] for adaptive domain
decomposition (hence the d), the hp-d method has been successfully adapted for a range of
applications, such as the resolution of local features in non-smooth solutions [159], multi-scale
structural analysis [121, 160] and model adaptivity [70, 73]. In the following, we show how
the p-version of the FCM can be complemented by an overlay of local linear hierarchical basis
functions, which synergetically use the h-adaptivity of the sub-cell based integration scheme.
A similar procedure is derived for the B-spline version, which is complemented by an overlay
of local high-order hierarchical subdivision B-splines.

5.1.1 Linear overlays for the p-version basis

Let us assume that we want to apply the finite cell method to an elastic body, which consists
of n different homogeneous material phases as shown in Figure 5.2. Note that in the multi-
material case, interfaces between the phases play the same role as geometric boundaries in the
fictitious domain case, and therefore have to be resolved as well by adaptive integration sub-
cells as described in Section 2.2.2. Following Hansbo [99] and Mergheim and Steinmann

Ω1

Ω2

Ω3

Ω3

Γ12

Γ13

∂Ω

Figure 5.2: Multiphase body of three materials: Domain Ω, bounded by ∂Ω, open sets Ω1,Ω2, Ω3, and
internal boundaries Γ12, Γ13
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(a) Hierarchical representation of the linear ba-
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(b) Adaptive hp-d overlay to resolve a discon-
tinuity at ξ=1/3 (dotted line).

Figure 5.3: Principle of the hp-d -adaptive p-version of the finite cell method in one dimension for the
example of an inter-element discontinuity.

[135], a material interface problem can be described as follows: A domain Ω with boundary ∂Ω
is divided into n not necessarily compact open sets Ωk by internal boundaries Γij, representing
the material interfaces between Ωi and Ωj . For any sufficiently regular function f in Ω1∪Ω2∪
... ∪ Ωn, the jump of f on Γij can be defined by [f ] := fi | Γij

− fj | Γij
, where fk = f | Ωk

is
the restriction of f to Ωk. Under the assumption of perfect bonding, the following continuity
conditions hold on each material interface Γij for displacements u and strains ε

[u] = ui − uj = 0 (5.1)

[ε] =
∂ui

∂x
− ∂uj

∂x
6= 0 (5.2)

Thus, the displacement solution exhibits a weak discontinuity (kink) along material interfaces,
whereas the strains and related stresses exhibit a strong discontinuity (jump). If a high-order
cell is cut by a material interface Γij, this leads to unphysical oscillations in the solution fields
and the convergence rate of the FCM decays to a low algebraic rate [147, 178, 197].

5.1.1.1 Construction of univariate linear hierarchical overlays

To counteract these undesired phenomena, the hp-d-adaptive p-version of the FCM com-
plements the high-order p-version discretization with an adaptive overlay of h-version basis
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Finite cell mesh

Hierarchical representation of the linear basis

hp-d overlay on adaptive sub-cells

k=0 k=1 k=2

Nodal modes of
the high-order basis

Nodes of 1st hierarchical level

Nodes of 2nd hierarchical level

Material interface

Figure 5.4: Principle of the hp-d -adaptive p-version of the finite cell method in two dimensions for
the example of an inter-element discontinuity.

functions to locally improve the approximation. A fundamental component of the finite cell
method is the adaptive integration approach introduced in Section 2.2.2, which is based on
a decomposition of cells cut by material interfaces. It already realizes h-adaptivity around
geometric boundaries in the form of sub-cells, however at this point only for integration pur-
poses. Analogous to the two-dimensional case shown in Figure 2.2, the sub-cell structure in
one dimension is organized in the form of a binary tree, which partitions sub-cells of level
k=i cut by the geometric boundary into two equally spaced sub-cells of level k=i+1. The
resulting sub-cell structure shows strong parallels to a hierarchical representation of a linear
basis [37, 122, 217] in the sense that both are organized in levels k and carry out a bisection
in each level. A linear hierarchical basis is shown in Figure 5.3a.

The key concept for a computationally efficient implementation of the hp-d -adaptive p-
version of the FCM is to synergetically use the sub-cell structure to construct an adaptive
overlay from linear hierarchical basis functions [179]. In each level k > 0 of the binary
tree, those hat functions from level k of the hierarchical basis are added, which have their
nodal degrees of freedom between two newly generated sub-cells of the adaptive integration
structure. This procedure is illustrated in Figure 5.3b for the one high-order finite cell, where
we assume a discontinuity at a local coordinate position of ξ=1/3. In each level k, the sub-cell
containing the geometric boundary is bisected and the corresponding hat function is added to
the overlay. Figure 5.3b demonstrates that the resulting basis functions of the overlay achieve
a rapid concentration of nodes around the discontinuity.

The hp-d-adaptive FCM in this form can be easily implemented into existing finite cell
codes by the addition of the hierarchical overlay. Since it operates directly on the existing
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ξ

η

Figure 5.5: Sub-cell partitioning of two-dimensional quadrilateral cell and corresponding potential
nodal candidates for the hierarchical hp-d overlay (open circles).

sub-cell structure of the adaptive integration scheme, it requires no additional mesh generation
and completely retains the easy meshing property of the original FCM [179]. Its hierarchical
adaptivity considerably reduces the number of additional degrees of freedom in comparison to
global h-refinement of cells or an overlay with equally spaced h-version basis functions.

5.1.1.2 Construction of multivariate linear hierarchical overlays

In two dimensions, the overlay is constructed analogously [179]. As illustrated in Figure 5.4, we
start from a number of p-version finite cells cut by a geometric boundary, which are equipped
with high-order basis functions up to polynomial degree p and several levels k of adaptive
integration sub-cells. Looking at the hierarchical representation of a two-dimensional linear
basis in Figure 5.4, we note that its arrangement into levels k corresponds to the organization of
the quadtree based integration sub-cells (see also Figure 2.2). In the next step, we successively
iterate over each level k of hierarchical sub-cells and add a hat function of the corresponding
hierarchical level k to the finite cell basis, if all four sub-cells around a nodal position are
contained in the adaptive integration structure. Hence, there are five potential candidates for
each of the two-dimensional sub-cells as illustrated in Figure 5.5, from which the outer nodal
positions on the four edges are only selected, if the corresponding neighboring sub-cells are
also part of the sub-cell structure. We note that the finest level k=m of basis functions of the
overlay requires a depth of the hierarchical sub-cell structure equal or larger than m. The hp-d
overlay in this form fully re-uses the h-adaptivity provided by the sub-cell based integration
structure and does not require the introduction of additional Gauss points or sub-cells. It
is therefore easy to implement, maintains fast mesh generation irrespective of the geometric
complexity, and achieves a high degree of local adaptivity around geometric boundaries at a
limited amount of additional degrees of freedom.

5.1.2 Subdivision overlays for high-order B-splines

In the B-spline version of the finite cell method, a hierarchical overlay for hp-d refinement can
be motivated in a natural way by using the subdivision property of B-splines

Nh
p (ξ) = 2−p

p+1
∑

j=0

(

p+ 1

j

)

Nh/2
p (2ξ − j) (5.3)
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Figure 5.6: Refinement towards the interface: In each level k, three basis functions of contracted
support are added central to the knot span of level k-1, in which the discontinuity occurs. The location
of the discontinuity is assumed at ξ=4.48.

Equation (5.3) also known as the two-scale relation states that a B-spline of degree p and grid
width h can be expressed as a linear combination of several B-splines of the same degree, but
half the grid width h/2 [106, 118, 226]. The two-scale relation is the fundamental principle
for the development of efficient and easy-to-handle hierarchical refinement schemes for non-
uniform rational B-splines (NURBS) in Section 6. In this context, it is discussed in greater
detail in Section 6.2.1 and illustrated in Figures 6.4 and 6.5.

5.1.2.1 Construction of univariate hierarchical subdivision overlays

Based on the two-scale relation Equation (5.3), a hierarchical overlay can be constructed from
successively contracted groups of B-splines [178]. The corresponding construction procedure
for a material interface problem in one dimension is illustrated in Figure 5.6. We start by
selecting the knot span cell from the B-spline base discretization that is cut by the interface.
We then consider groups of three B-splines of grid width h/2. We select the group, which
consists of the B-spline centered to the knot span element cut by the interface and its left
and right neighbors, and add it to the hierarchical basis as the first hierarchical overlay level
k=1. We restart this process by considering the knot spans of the current hierarchical level k,
and repeat this process until the maximum level k=m has been reached. Depending on the
overlay level k and the initial grid width h, the grid width of each hierarchical level hk is

hk = 2−k h, 1 ≤ k ≤ m (5.4)
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Figure 5.7: Plate with circular inclusion: Example of hierarchical subdivision overlays in 2D.

The resulting grid of the hp-d adaptive basis consists of a nested sequence of bisected knot
span cells, which keep the regular grid property of the finite cell method. In the sense of
Figure 5.6, levels k<i and k>i will be referred to in the following as higher and lower levels,
respectively, with respect to the current level k=i. The choice of the central B-spline and its
two neighbors guarantees that the refined basis functions symmetrically embed the knot span
element of the higher level, which contains the interface. It is shown in [178] that a group size
of three B-splines per overlay level offers the best compromise between accuracy and increase
in degrees of freedom in comparison to a smaller or larger group size. Since the construction
of a B-spline of level k centered to a knot span of level k+1 requires that it is defined over an
even number of contracted knot spans p+1, the hp-d adaptive B-spline version of the FCM
uses B-splines of odd polynomial degrees p=1,3,5,... in the following.

Equation (5.3) restricts the amount of B-splines for each interface and overlay level to a
maximum of p+1 basis functions. In case that a group of contracted basis functions contains
p+2 or more functions, the approximation basis is not linearly independent, since one B-spline
of higher level can be represented as the sum of B-splines on one of the overlay levels in the sense
of the two-scale relation Equation (5.3). On the other hand, B-splines of higher levels cannot
be taken out of the approximation basis, if they are not representable by some combination
of lower level B-splines by Equation (5.3), since this leads to the loss of completeness of the
approximation basis with respect to a first order polynomial.

It is important to note that there are special cases, where the refinement strategy described
here still leads to a finite element basis with linear dependencies. For example, consider a
knot span discretization of polynomial degree p=3, where two interfaces are located in two
neighboring knot span elements. With the refinement procedure of Figure 5.6, a number
of p+2=5 consecutive B-splines of the next refinement level k+1 are generated, which can
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represent one of the B-spline basis functions of level k according to the two-scale relation
Equation (5.3). Increasing the number of neighboring knot spans with interfaces, this situation
can be easily constructed for any polynomial degree p. In this case, one has to go forward
to the more advanced refinement strategy described in Section 6, which identifies all linear
dependent B-spline basis functions of level k and erases them from the basis.

5.1.2.2 Construction of multivariate hierarchical subdivision overlays

The subdivision based hierarchical hp-d strategy for material interface problems in the frame-
work of the B-spline version of the FCM can be generalized straightforward for higher dimen-
sions [178]. Analogous to the one-dimensional definition, interfaces in two or three dimensions,
which occur in the form of curves or surfaces, respectively, are refined as follows:

◦ Traverse all knot span cells of the currently finest level. Check material properties at
each integration point.

◦ If integration points of the same knot span element are associated with different material
properties (hence, a material interface must be present), find in each parameter direction
the three univariate B-splines of the next refinement level, consisting of the contracted
B-spline centered to the knot span element as well as its two direct neighbors.

◦ Use the univariate contracted B-splines to locally construct the corresponding tensor
product B-splines of half the grid width and add them as additional overlay to the
approximation basis.

◦ Provide all new knot span elements of the currently finest level with integration points
and corresponding material parameters.

◦ Repeat this process, until a sufficient refinement level is reached.

The resulting hp-d refinement around a two-dimensional circular interface is illustrated in
Figure 5.7. In this form, hierarchical subdivision overlays are easy to implement with a high
degree of automation and therefore maintain the simple meshing property of the B-spline
version of the finite cell method [178].
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5.2 Analysis with the hp-d adaptive p-version of

the finite cell method

The hp-d adaptive p-version of the finite cell method is implemented in the framework of
our in-house finite cell code, which has been described in more detail in Section 4.4. In the
following, we first illustrate the potential of the hp-d adaptive p-version of the finite cell
method to locally improve the approximation of non-smooth solutions. We therefore examine
two well-known benchmarks, i.e. the material interface problem of a two-dimensional plate
with a circular inclusion [66, 135, 150, 178, 179, 195], which has a discontinuous solution along
interfaces, and the problem of the L-shaped domain with a singularity at the re-entrant corner
[157, 197, 198]. The results of this section are intended as a proof-of-concept that should
motivate further research in this direction beyond the scope of this work.

(a) Base mesh of 4 × 4 high-
order p-version finite cells.

(b) h-adaptive integration grid / hierar-
chical overlay mesh, depth m=6.

(c) Von Mises stress plotted on the deformed
configuration, obtained with the base mesh of
p=10 only.

(d) Von Mises stress plotted on the deformed
configuration, obtained with the base mesh of
p=10 and m=9 overlay levels.

Figure 5.10: Standard p-version and hp-d adaptive p-version of the FCM for the inclusion problem.
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Figure 5.11: Von Mises stress plotted along
undeformed cutline A-B (see Figure 5.8).
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Figure 5.12: Convergence behavior for the
plate with circular inclusion.

5.2.1 Plate with a circular inclusion

In Figure 5.8, material and geometric parameters as well as boundary conditions and the
location of cutline A-B for a plate in plane stress with a circular inclusion are given. According
to Equations (5.1) and (5.2), the solution fields exhibit discontinuities along the material
interface, i.e. kinks in displacements and jumps in stresses and strains. In line with Sections
3 and 4, we assume a linear elastic material based on geometrically nonlinear kinematics. A
reference is obtained with the open-source nonlinear finite element code FlagShyp [34]. The
discretization, which makes use of the symmetry in geometry and boundary conditions to
reduce the plate to one quarter of the original system, conforms to the interface and consists
of 106,674 standard linear quadrilaterals with 213,681 degrees of freedom. Multiplication by
four leads to a reference strain energy of Uex = 4.330559 · 10−3 for the complete system.
Convergence studies with different mesh sizes indicate that the given Uex is correct up to the
4th decimal digit.

Assuming a geometrically nonlinear formulation as discussed in Section 3.1, the finite cell
method can be analogously applied to material interface problems, where the fictitious domain
Ωphys is replaced by a second fully valid physical domain Ω2 with substantial stiffness. The
geometry of the interface is not reflected in the high-order mesh, but taken into account in
a FCM sense at integration point level via the difference in Young’s modulus E. Whether
an integration point is located inside or outside of the inclusion is determined implicitly by
substituting its global coordinates in the inequality x2 + y2 ≤ r2. For this class of problems,
the α parameter of Equation (2.3) denotes the ratio of the two Young’s moduli E1 and E2

involved. Figure 5.10a shows the discretization of the complete domain by a base mesh of 4×4
p-version finite cells. Figure 5.10b illustrates the adaptive sub-cell structure, which adaptively
resolves the location of the interface for accurate integration of the jump in Young’s modulus.
The standard p-version of the FCM leads to excessive stress oscillations in cells cut by material
interfaces, since the high-order approximation basis alone is not able to accurately represent
the discontinuous solution, which is illustrated for polynomial degree p=10 in Figure 5.10c.

The hp-d adaptive p-version of the FCM introduced in Section 5.1.1 offers a better approx-
imation of discontinuities along material interfaces. It uses the sub-cell structure of Figure
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5.10b to additionally construct overlays of linear hierarchical basis functions. The correspond-
ing stress plot of Figure 5.10d demonstrates that an addition of m=9 overlay levels to the base
mesh of polynomial degree p=10 leads to an effective reduction of oscillations and an improved
localization of stress concentrations along vertical inclusion boundaries. This observation is
further corroborated by the von Mises stresses plotted along cut line A-B in Figure 5.11.
Whereas the standard FCM approach yields strong oscillations over the whole domain, the
hp-d adaptive FCM solution is free of large-scale oscillations, reducing the oscillatory stress
behavior to the close vicinity of the interface location. Figure 5.12 compares the convergence
in strain energy measure in terms of Equations (2.23) and (2.24) for the standard and the hp-d
adaptive p-version. While p-refinement on the base mesh achieves only a low algebraic rate
of convergence of around q=0.25, hp-d adaptivity complementing the base mesh by m=p-1
overlays of linear hierarchical functions is able to improve the convergence rate to q=0.55.

5.2.2 The L-shaped domain

The solution fields on the L-shaped domain shown in Figure 5.9 exhibit a corner singularity
at the intersection point A of the two re-entrant edges. For a detailed discussion of its math-
ematical characteristics and hp-refinement strategies for its efficient numerical solution, see
for example [61, 62, 157, 192, 197, 198]. For the specific problem considered in the following,
plane strain linear elasticity is assumed (see for example [83, 108, 197]), for which an analytical
solution of the strain energy exists in the form

Uex = 4.15454423
A1a

2λ1

E
(5.5)

if the following traction boundary conditions are prescribed along the outer boundaries ΓN

σx = A1λ1r
λ1−1 [(2−Q1(λ1 + 1)) cos ((λ1 − 1)θ)− (λ1 − 1) cos ((λ1 − 3)θ)] (5.6)

σy = A1λ1r
λ1−1 [(2 +Q1(λ1 + 1)) cos ((λ1 − 1)θ) + (λ1 − 1) cos ((λ1 − 3)θ)] (5.7)

τxy = A1λ1r
λ1−1 [(λ1 − 1) sin ((λ1 − 3)θ) +Q1(λ1 + 1) sin ((λ1 − 1)θ)] (5.8)

where r and θ denote polar coordinates with origin at the corner singularity point A. The
values of the constants involved are the smallest eigenvalue λ1=0.544483737, the generalized
stress intensity factor A1=1.0 and Q1=0.543075579. The re-entrant edges Γ0 are stress-free
and constants a and E are geometric and material parameters given for the present case in
Figure 5.8. A detailed derivation of Equations (5.5) to (5.8) can be found in [197].

We consider the L-shaped domain problem to illustrate the applicability of hp-d adaptive
finite cell method in the presence of singular points within the physical domain. The L-shaped
domain is discretized by a base mesh of 16 p-version finite cells as shown in Figure 5.13a. In a
FCM sense, we do not account the L-shape of the domain, but discretize an embedding domain
of simpler geometry, where the lower left quadrant of the mesh is penalized by parameter
α=10−12. Since the geometric boundary of the physical domain conforms to cell edges, no
adaptive integration is required. Therefore, we additionally construct sub-cells around the re-
entrant corner, where we construct overlays of linear hierarchical basis functions as described
in Section 5.1.1. Figure 5.13b illustrates the resulting sub-cell structure, which realizes an
adaptive h-refinement towards the singular point A. In each overlay level k, all sub-cells
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(a) Base mesh of 16 high-order
p-version cells.

(b) Overlay mesh of linear hi-
erarchical functions.

Figure 5.13: Discretization of the L-shaped domain with the p-version and the hp-d adaptive p-version
of the FCM. Since the physical domain conforms to the finite cell mesh, no sub-cells are necessary for
adaptive integration. The dashed line indicates the geometric boundary.

Figure 5.14: Von Mises stress obtained with
p=12 and m=11 overlay levels.
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Figure 5.15: Convergence in energy norm for
the L-shaped domain (graded mesh results are
extracted from [197, 198]).

touching point A are refined by partitioning them into four new sub-cells of the next level
k+1. Following Figures 5.4 and 5.5, all those newly created sub-cell nodes are equipped with
linear hat functions of level k+1 that are either in the center of the partitioned cell or lie on
a boundary that touches other sub-cells of level k+1.

The resulting von Mises stress obtained with polynomial degree p=12 of the base mesh
and m=11 adaptive overlay levels is plotted in Figure 5.14, illustrating the considerable lo-
calization of stresses in point A. The stress solution further away from the location of the
singularity is smooth and can be accurately fitted by the high-order base mesh. We apply a
hp-d refinement strategy, which increases the polynomial degree p on the given base mesh and
the number of hierarchical overlay levels m=p-1 simultaneously. In Figure 5.14, the resulting
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convergence behavior is compared with that obtained by the standard p-version of the finite
cell method that uses only p-refinement on the base mesh. In addition, we plot the conver-
gence curves for classical h-refinement with p=2 on a conforming finite element mesh and for
classical p-refinement on a conforming geometric mesh, which is adaptively graded towards
the location of the singularity, which are reported by Szabó and Babuška in [197]. Whereas
h-refined finite elements, bisecting the characteristic element width h in each refinement step,
achieve a rate of convergence of around q=0.2775, all other refinement strategies involving
the elevation of the polynomial degree p exhibit a very similar final rate between q=0.5413
and q=0.5518. These results are in good accordance with corresponding theoretical estimates
[197], predicting qest=0.272 and qest=0.544 for h- and p-refinement, respectively. The per-
formance of the different p-refinement strategies is largely influenced by their pre-asymptotic
rates, which can considerably reduce the error level before the final rate tunes in. While the
efficiency of the geometrically graded conforming finite element mesh with maximum rates of
q=1.36 cannot be reached, the hp-d adaptive p-version of the finite cell method still achieves
a distinct pre-asymptotic exponential convergence with a maximum rate of q=0.84, which is
considerably better than the standard p-version of the FCM with p-refinement only.

5.3 Analysis with the hp-d adaptive B-spline version of

the finite cell method

The hp-d adaptive B-spline version of the finite cell method is implemented in the framework of
nonlinear elasticity in principal directions, provided by our in-house finite cell code (see Section
4.4). In the following, we will illustrate its potential to locally improve the approximation of
non-smooth material interface problems, whose solution is discontinuous along interfaces. We
therefore examine two benchmark problems, i.e. the two-dimensional plate with a circular
inclusion introduced in the previous section and a three-dimensional cube with a spherical
inclusion. We also apply the hp-d adaptive B-spline version of the finite cell method to
simulate a compression test of a foam composite sample. The hp-d -adaptive B-spline version
in this form constitute the basis for the derivation of efficient and easy-to-handle schemes for
local refinement of NURBS in Sections 6 and 7.

5.3.1 Plate with a circular inclusion

Material parameters, geometry and boundary conditions correspond to the ones shown in
Figure 5.8. In analogy with the p-version, the B-spline version of the FCM can be easily
adapted for the computation of material interface problems as described in Section 5.2.1.
An axis-aligned grid of knot span cells discretizes the complete domain irrespective of the
interface geometry, which is taken into account in a FCM sense at integration point level
via the difference in Young’s modulus E. Figure 5.16 illustrates the beneficial effect of hp-d
adaptivity, which are placed adaptively around the location of interfaces as described in Section
5.1.2. It compares von Mises stresses for an example discretization of 6×6 knot span elements
of polynomial degree p=5 with no subdivision overlays (see Figure 16a) to a corresponding
discretization with m=4 hierarchical overlay levels, which resolve the circular interface (see
Figure 16b). The solution of the standard B-spline version shown in Figure 5.16c exhibits
large oscillations throughout the domain, provoked by the strong discontinuity in stresses
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(a) Base mesh of 6×6 knot span finite
cells of polynomial degree p=5.

(b) Knot spans of m=4 hierarchical over-
lays with subdivision B-splines of p=5.

(c) Von Mises stress plotted on the deformed
configuration, obtained from the high-order
base mesh only.

(d) Von Mises stress plotted on the deformed
configuration, obtained from the base mesh
with m=4 overlay levels.

Figure 5.16: Knot span discretizations without and with hp-d adaptivity for the inclusion problem.

that cannot be approximated by Cp−1-continuous basis functions. The hp-d adaptive B-spline
version leads to a solution that is able to localize the typical stress concentrations along vertical
inclusion boundaries, while stresses away from the interface are free of oscillations (see Figure
5.16d). We observe that already a moderate number m=4 of hierarchical refinement levels
considerably improves the stress solution with respect to the standard FCM discretization.
This behavior is further examined in Figure 5.17, where von Mises stresses obtained along cut
line A-B with a distance of b=0.5 from the right boundary of the plate (see Figure 5.8) are
compared to the reference solution obtained with standard finite elements in Section 5.2.1. It
can be observed that hp-d adaptivity around the interface confines the stress oscillations to
the close vicinity of the interface, whereas stresses further away are free of oscillations and fit
the reference solution well.

A convergence study considering the total strain energy examines the effects of h-, p- and
hp-d adaptive strategies. Their effectiveness is again assessed on the basis of the rate of
convergence in strain energy measure according to Equations (2.23) and (2.24), where the
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Figure 5.17: Von Mises stress along the unde-
formed cut line A-B in a distance of b=0.5 from
the left plate boundary (see Figure 5.8).
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Figure 5.18: Convergence behavior for the cir-
cular inclusion problem, obtained with different
h-, p- and hp-d adaptive strategies.

FlagShyp reference given in Section 5.2.1 serves as Uex. Figure 5.18 displays the resulting
convergence behavior. First, global p-refinement without hp-d adaptivity is examined by
increasing the polynomial degree from p=5 to 15 on an mesh of (p+1)×(p+1) knot span
cells. Due to the excessive oscillations in stresses, provoked by the discontinuities at the
material interface, the convergence in strain energy measure only achieves a low algebraic
rate of q ≈ 0.33 at a comparably high error level. Second, p-refinement on the same grid is
supplemented by a constant number m=3 overlay levels of hierarchical subdivision B-splines
around the interface. While the rate of convergence only slightly improves to q ≈ 0.41,
the overall error level is considerably reduced. Third, the effect of local h-refinement with
hierarchical subdivision B-splines is examined, which starts from a cubic B-spline discretization
of 6× 6 knot span elements. The polynomial degree is held constant at p=3 and one overlay
level is successively added around the interface up to a maximum number of m=8 levels,
which achieves a rate of convergence of q ≈ 0.34. Finally, a combination of p-refinement
and successive increase of the number hierarchical overlay levels is tested. The base mesh
consists again of (p+1)×(p+1) knot span elements, for which p-refinement is performed. In
addition, m=p-1 hierarchical refinement levels are successively added around the interface.
This refinement strategy results in a maximum rate of convergence of q ≈ 0.82. We observe
that the standard B-spline version of the FCM leads to low rates of convergence in strain energy
measure, which can be considerably improved by adaptive overlays of subdivision B-splines
around material interfaces.

5.3.2 Cube with a spherical inclusion

The generalization of the two-dimensional plate with circular inclusion to three dimensions
leads to the problem of a cube with a spherical inclusion. A system sketch together with
geometry, material and boundary conditions are given in Figure 5.19. A corresponding refer-
ence is obtained with the standard finite element code Flagshyp [34]. The corresponding finite
element mesh, which conforms to the material interface, discretizes only one eighth of the
symmetric system with 24,960 standard quadratic tetrahedral elements and 107,181 degrees
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∆u

Parameters:

a=2.0

∆u=-0.3

r=0.75

Ω1: E1=1.0

Ω2: E2=0.5

ν=0.2

Ω1

Ω2

Figure 5.19: The spherical inclusion problem: Parameters are width/height a; radius r; Young’s
moduli E1 and E2; Poisson’s ratio ν; prescribed displacements ∆u

of freedom. It yields a reference strain energy for the reduced system of Uex = 1.14299 · 10−2.
Convergence studies with different mesh sizes indicate that the given Uex is correct up to the
4th decimal, so that relative errors in strain energy measure, which are larger than 1%, can be
reliably determined.

In order to be able to compute higher resolutions with the computational power provided
by a standard workstation, computations with the hp-d adaptive B-spline version of the FCM
are also performed for the symmetrically reduced one eighth system. Figure 5.20 illustrates
the effect of hierarchical overlays of subdivision B-splines in three dimensions. It compares
von Mises stresses for a base mesh of 5×5×5 cubic knot span cells of polynomial degree p=3
(see Figure 5.20a) to a corresponding discretization with m=3 adaptive hierarchical overlay
levels around the interface (see Figure 5.20b). In analogy to the two-dimensional cases, the
solution of the base mesh in Figure 5.10c exhibits large oscillations throughout the domain,
whereas the solution obtained with hierarchical overlays in Figure 5.10d confines oscillatory
stresses to the close vicinity of the interface, while areas further away are free of oscillations.
The solution with the hp-d adaptive B-spline version is furthermore able to accurately localize
the typical stress concentration phenomenon along the vertical edge of the interface.

Energy convergence obtained with different adaptive strategies is examined in Figure 5.21.
First, global p-refinement without local refinement is examined by increasing the polynomial
degree from p=3 to 9 on a base mesh of p×p×p knot span cells. Due to the impact of oscil-
lations, convergence in strain energy measure only achieves a rate of q ≈ 0.22. Second, global
p-refinement on the same grid is supplemented by a constant number of m=2 hierarchical
overlay levels around the interface, which results in a reduced level of error at a slightly im-
proved rate of convergence q ≈ 0.30. Third, the effect of local h-refinement with hierarchical
subdivision B-splines is examined. On a base mesh of 5×5×5 knot span elements of constant
polynomial degree p=3, we add one hierarchical level of subdivision B-splines per refinement
step up to a maximum of m=3, which results in a rate of convergence of q ≈ 0.31. The
hp-d strategy proposed in the previous section is not examined here, since several hierarchical
overlay levels at a higher polynomial degree p in three dimensions imply an excessive increase
in the bandwidth of the stiffness matrix, so that its solution requirements quickly exceed the
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(a) Cubic base mesh, discretizing one
eighth of the system.

(b) Adaptive mesh; three hierarchical
overlays with cubic subdivision B-splines.

(c) Von Mises stress on the deformed configu-
ration, obtained with the base mesh only.

(d) Von Mises stress on the deformed configu-
ration, obtained with the hp-d adaptive mesh.

Figure 5.20: Knot span finite cell discretizations without and with hp-d adaptivity.

hardware resources of standard workstations. Nonetheless, the convergence results illustrate
that the hp-d adaptive B-spline version of the FCM is able to reduce the error level and to
improve the rate of convergence also in the three-dimensional case. Hierarchical B-spline dis-
cretizations of moderate polynomial degree p with local hierarchical overlays around interfaces
offer a good trade-off between accuracy and accessibility with standard workstations.

5.3.3 An inter-penetrating phase composite

Multi-material composites provide high stiffness at reduced weights, and are therefore fre-
quently used for lightweight structures in automotive and aerospace applications. A recent
example are inter-penetrating phase composites (IPC), which combine open-cell aluminium
foams with a filling material, such as rubber silicates [46], thermoplastic polymers [51] or
epoxy-based syntactic foams [114]. The hp-d adaptive B-spline version of the FCM is ap-
plied to simulate a nonlinear compression test for an IPC sample. The specimen consists of
an aluminium foam characterized by Young’s modulus Efoam=70.000 N/mm2 and Poisson’s
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Figure 5.21: Convergence behavior obtained
with different adaptive strategies for the spheri-
cal inclusion problem.
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Figure 5.22: Convergence of the top load with
increasing number of hp-d adaptive subdivision
overlays for the IPC composite.

ratio ν = 0.35, which is embedded in an alkyd resin matrix with Ematrix=21.000 N/mm2 and
ν = 0.35. Its geometry is given by a voxel model similar to Figure 4.20. The STL triangulation
of the foam surface shown in Figure 5.23 provides a good idea of the material interfaces.

As shown for the example of the 3D cube with spherical inclusion, local overlays of hierar-
chical subdivision B-splines on a grid of moderate polynomial degree p yield good accuracy at
a manageable computational cost. Therefore, the foam sample of dimensions 10× 10× 10mm
is discretized by a cubic B-spline grid of 8×8×8 knot span finite cells, which are adaptively
refined around material interfaces by three levels of hierarchical B-splines, amounting to a
system with 215,799 degrees of freedom. All geometry related operations, in particular the
point location query that determines whether an integration point is located in the foam or
the matrix, is carried out according to the voxel based procedures described in Section 4.3.1.
The hierarchical grid structure is shown in Figure 5.24. The IPC sample is assumed as part
of a larger specimen, which is uniformly compressed along the vertical axis. A correspond-
ing RVE model [188, 224] specifies Dirichlet boundary conditions as follows: Displacements
normal to the top surface are gradually increased to -1 mm (10% compressive deformation),
modelling the influence of a testing machine, whereas the displacements normal to all other
surfaces are fixed due to the bottom support and the influence of the surrounding material
of the specimen. The geometrically nonlinear system is solved by applying the displacement
load on top in four increments, each of which requires five to six Newton-Raphson iterations
to converge below a norm of the residual of 10−8.

Convergence with increasing adaptive hierarchical refinement is illustrated in Figure 5.22 by
the vertical top force, obtained by integrating the normal stress component over the top surface
of the hp-d adaptive finite cell discretizations with m=0,1,2 and 3 hierarchical overlay levels.
It can be observed that the vertical top force converges to a value of around 451 kN. Figure
5.25 plots von Mises stresses obtained with three overlay levels on the deformed structure.
The hp-d adaptive B-spline version yields steady stress patterns free of oscillations away from
the interfaces. Characteristic phenomena of multiphase materials typically occurring close to
interfaces are stress concentrations in the stronger phase and stress minima in the weaker
phase, which are clearly reproduced and observable in the stress plot. The present example
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demonstrates the potential of hp-d adaptivity for the simulation of multiphase structures
with very complex interface geometries, where avoiding the expensive generation of explicit
interface parameterizations or conforming meshes can considerably simplify and speed up the
simulation process.

Figure 5.23: STL mesh of the material inter-
faces between the foam and the resin matrix in
the sample cube.

Figure 5.24: Hierarchical overlay mesh of the
hp-d adaptive B-spline discretization, resolving
the location of interfaces.

Figure 5.25: Von Mises stress plot, obtained from the nonlinear simulation of a compression test for
an IPC composite sample. Only part of the matrix is visualized to reveal the stresses in the foam.
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Chapter 6

Hierarchical refinement of non-uniform
rational B-splines (NURBS)

Isogeometric analysis (IGA) was introduced by Hughes and co-workers [56, 109] to bridge
the gap between computer aided design (CAD) and finite element analysis (FEA). Its core
idea is to use the same basis functions for the representation of geometry in CAD and the
approximation of solutions fields in FEA. An important requirement for efficient FEA is local
mesh refinement, which permits adaptive resolution of local features in the solution [4, 193].
Due to their relative simplicity and ubiquity in today’s CAD tools, isogeometric analysis has
been largely based on non-uniform rational B-splines (NURBS) [56, 109]. However, in contrast
to the standard Lagrangian nodal basis, a multivariate NURBS basis does not provide a
natural possibility for truly local mesh refinement [22, 56]. The standard knot insertion based
refinement of NURBS is a global process that propagates throughout the domain due to the
tensor product structure of the basis. The demand for adaptivity in isogeometric analysis has
recently expedited a shift from NURBS to other geometry representations such as T-splines
[22, 69, 185] or PHT-splines [143, 144], which naturally accommodate local mesh refinement,
but are considerably more difficult in terms of theory and implementation.

We believe that hierarchical refinement offers a suitable way to overcome the local refine-
ment restriction in NURBS based isogeometric analysis. The idea of hierarchical B-spline
refinement, which was introduced by Forsey and Bartels [88, 89] for local surface refine-
ment in CAD, involves no propagation of refinement and automatically satisfies linear inde-
pendence of the refined basis. It has been successfully adopted on the analysis side by Höllig

and co-workers [105, 106, 119] for local mesh refinement in B-spline finite elements. In the
following, we will explore the combination of hierarchical refinement based on the principle
of B-spline subdivision with ideas of the hp-d approach [158, 179] presented in the previous
chapter and established concepts for hierarchical refinement of standard nodal based finite
elements [65, 98, 122, 217]. The result offers truly local refinement of tensor-product B-splines
and NURBS, full analysis suitability of the refined basis, straightforward implementation in
tree data structures and simple generalization to higher dimensions at the same time.

We begin with a brief introduction to B-spline and NURBS basis functions, which expand
the short introduction on structured B-spline discretizations presented in Section 2.2.2 as part
of the B-spline version of the finite cell method. We then illustrate our basic refinement
concepts for a simple 1D example, before we extend them to B-splines in multiple dimensions
and outline the main aspects of an efficient and straightforward implementation. Finally, we
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Figure 6.1: Example of cubic B-spline basis functions and a corresponding B-spline curve in 2D.

generalize our hierarchical refinement procedure to non-uniform rational B-splines for adaptive
NURBS based isogeometric analysis.

6.1 B-spline and NURBS basis functions

We start with a brief review of some technical aspects of B-spline and NURBS bases for
isogeometric analysis, placing particular emphasis on the features important for understanding
the concepts and algorithms of their hierarchical refinement. Readers interested in a broader
and more detailed introduction are referred to the books of Piegl and Tiller [154], Rogers

[165] and Farin [82], which offer a comprehensive review of the underlying geometric concepts
and algorithms.

6.1.1 Univariate B-splines

A univariate B-spline basis of polynomial degree p consists of n basis functions Ni,p(ξ), where
i = 1, . . . , n and ξ is an independent variable defined in a suitable parameter space. It is
generated from a knot vector Ξ, which is a non-decreasing sequence of coordinates in the
parameter space, written as

Ξ = {ξ1, ξ2, ..., ξn+p+1}, ξ1 ≤ ξ2 ≤ ... ≤ ξn+p+1 (6.1)

The knots of each individual basis function Ni,p(ξ) can be identified as the consecutive entries
{i, i+1, ..., i+p+1} in Ξ. The resulting p+1 knot spans contain piecewise polynomials, which
join smoothly up to a continuous differentiability of Cp−1. If constructed from equally spaced
knots, a B-spline basis function is called uniform. B-spline basis functions Ni,p(ξ) of arbitrary
polynomial degree p can be generated recursively with the Cox-de Boor formula, starting from
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Figure 6.2: Bivariate cubic knot spans and a corresponding uniform B-spline basis function.

piecewise constants Ni,0

Ni,0 (ξ) =

{

1, if ξi ≤ ξ ≤ ξi+1

0, otherwise
(6.2)

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) (6.3)

A knot can occur at the same coordinate k times, which reduces the smoothness of the B-
spline curve at the knot position to Cp−k. Figure 6.1a illustrates a B-spline basis of polynomial
degree p=3 and knot vector Ξ={0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}, where knots at the beginning and
the end are repeated to make the basis interpolatory. The resulting group of basis functions
is often referred to as a B-spline patch with open knot vectors.

Having constructed the corresponding basis functions, we can build a B-spline curve in ds
dimensions by a linear combination of basis functions

C(ξ) =
n
∑

i=1

P i Ni,p(ξ) (6.4)

where coefficients P i ∈ R
ds are called control points. Piecewise linear interpolation of the

control points defines the control polygon. An example generated from the B-spline basis
shown in Figure 6.1a is provided in Figure 6.1b.

6.1.2 Multivariate B-splines

Multivariate B-spline bases for the description of surfaces and solids can be easily constructed
by taking the tensor product of corresponding univariate B-spline basis functions, which allows
for a straightforward generalization of almost all univariate properties and algorithms [56, 154].
Note that we need two different dimension indices ds and dp for the physical space and the
B-spline parameter space, respectively, where ds ≥ dp. In ds dimensions, multivariate B-spline
basis functions are generated from dp univariate knot vectors

Ξℓ = {ξℓ1, ξℓ2, ..., ξℓnℓ+pℓ+1} (6.5)
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(a) NURBS elements. (b) Corresponding control mesh.

Figure 6.3: NURBS surface of a quarter of a cylinder, generated with the bivariate B-spline basis of
Figure 6.2 and a set of suitable control points P i and weights wi.

where ℓ = 1, . . . , dp. Parameter pℓ indicates the polynomial degree along parametric direction
ℓ and nℓ is the associated number of basis functions. The resulting univariate B-spline basis
functions of each direction ℓ can then be denoted by N ℓ

iℓ,pℓ
, from which multivariate basis

functions can be generated by

Bi,p (ξ) =
d
∏

ℓ=1

N ℓ
iℓ,pℓ

(ξℓ) (6.6)

Multi-index i={i1, . . . , idp} denotes the position in the tensor product structure, p={p1, . . . , pdp}
indicates the polynomial degree, and ξ={ξ1, . . . , ξdp} are the independent variables in each
direction ℓ. An example of a two-dimensional knot vector structure and a uniform bivariate
B-spline are given in Figures 6.2a and 6.2b, respectively..

Setting dp=2 and dp=3, we can now represent B-spline surfaces and solids, respectively, as
a linear combination of multivariate basis functions

S(ξ) =
∑

i

P i Bi,p (ξ) (6.7)

where the sum is taken over all combinations of multi-index i. In the multivariate case, the
control points P i ∈ R

ds form the so-called control mesh.

6.1.3 Non-uniform rational B-splines

Many geometric entities being ubiquitous in engineering design, such as circles, ellipses, spheres
or tori, cannot be represented exactly by piecewise polynomials. The most important of them,
however, can be obtained through a projective transformation of a corresponding B-spline
object in R

ds+1, yielding a non-uniform rational B-spline (NURBS) object [56, 82, 154, 165].
In the univariate case, NURBS basis functions Ri,p(ξ) are given by

Ri,p (ξ) =
wiNi,p(ξ)

∑n
j=1wjNj,p(ξ)

(6.8)
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where Ni,p(ξ) are polynomial B-spline basis functions, each of which is accompanied by a scalar
weight wi. In analogy with the previous section, multivariate NURBS basis functions can be
obtained from a multivariate tensor product B-spline basis as

Ri,p (ξ) =
wiBi,p(ξ)

∑n
j=1 wjBj,p(ξ)

(6.9)

NURBS curves, surfaces and solids are then defined in the same manner as corresponding
B-spline objects of Equations (6.4) and (6.7) as

S(ξ) =
∑

i

P i Ri,p (ξ) (6.10)

An example is given in Figure 6.3. The NURBS geometry of Figure 6.3a, which represents
a quarter of a cylinder exactly, is generated by inserting the bivariate cubic B-spline basis of
Figure 6.2 together with a suitable set of control points and weights into the NURBS Equations
(6.9) and (6.10). Figure 6.3b shows the corresponding control mesh composed of the control
points P i. Suitable control points and weights can be derived in the present simple case from
[82, 154, 165] or for more complex examples from CAD tools such as Rhino [166, 183].

6.2 A concept for hierarchical refinement based on

B-spline subdivision

In the following, we briefly review B-spline subdivision and show how this concept can be
deployed to set up a hierarchical scheme for local refinement of B-spline basis functions, which
combines an intuitive principle, full analysis suitability and straightforward implementation.
We illustrate basic ideas of our hierarchical refinement strategy with a simple advection-
diffusion example in one dimension.

6.2.1 Refinability of B-spline basis functions by subdivision

A further remarkable property of uniform B-splines is their natural refinement by subdivision.
For a univariate B-spline basis function Np of polynomial degree p, the subdivision property
leads to the following two-scale relation [50, 212, 226]

Np(ξ) = 2−p

p+1
∑

j=0

(

p+ 1

j

)

Np(2ξ − j) (6.11)

In other words, a B-spline can be expressed as a linear combination of contracted, translated
and scaled copies of itself, which is illustrated for B-splines of different polynomial degrees in
Figure 6.4. Equation (6.11) does not hold for non-uniform B-splines with repeated knots, but
similar subdivision rules can be constructed [153, 169].

Due to their tensor product structure, the generalization of subdivision to multivariate
B-splines is a straightforward extension of Equation (6.11) and can be written as

Bp (ξ) =
∑

j

(

d
∏

ℓ=1

2−pℓ

(

pℓ + 1

jℓ

)

Npℓ(2ξ
ℓ − jℓ)

)

(6.12)
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Figure 6.4: Subdivision of an original uniform B-spline into p+2 contracted B-splines of half the knot
span width, illustrated for polynomial degrees p=1 through 4.
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(a) Contracted, translated and scaled B-splines. (b) Cut along ξ=2.0.

Figure 6.5: Subdivision of the bivariate cubic B-spline shown in Figure 6.2.

Following Section 6.1.2, multi-indices j={i1, . . . , idp}, p={p1, . . . , pdp} and ξ={ξ1, . . . , ξdp}
denote the position in the tensor product structure, the polynomial degree and the independent
variables in each direction ℓ of the dp-dimensional parameter space. Figure 6.5 illustrates
the new basis functions resulting from the multivariate two-scale relation Equation (6.12)
applied to the bivariate cubic B-spline of Figure 6.2b. The most widely known application
of Equations (6.11) and (6.12) is the development of highly efficient subdivision algorithms
for the fast and accurate approximation of smooth surfaces by control meshes in computer
graphics [153, 169, 212, 226].

6.2.2 Construction of adaptive hierarchical approximation spaces

In the following, we will derive step by step a hierarchical scheme for local refinement of
B-splines in one dimension, which combines concepts from B-spline subdivision, the hp-d
adaptive approach [158, 178, 179] and existing hierarchical refinement techniques for B-spline
finite elements [88, 106, 119] and for standard nodal based FEA [65, 122, 217]. Our main
goal is to arrive at a local refinement strategy, which maintains theoretical consistency, can
be straightforward generalized to two and three dimensions and NURBS, but at the same
time allows an intuitive understanding of the underlying theoretical principles and can be
implemented in arbitrary dimensions with manageable coding efforts.

6.2.2.1 Element and basis viewpoints on refinement

Traditionally, refinement in FEA adopts an element viewpoint, since the centerpiece of stan-
dard mesh refinement consists of the geometric division of elements [98, 122]. Furthermore,
an element by element view accommodates most error estimators [4, 193], which specify the
error element wise, and naturally corresponds to the way finite element procedures are tradi-
tionally implemented. In isogeometric analysis, however, it is often more suitable to look at
the complete basis, since an element centered viewpoint may obstruct an intuitive understand-
ing of refinement principles for basis functions, which extend over several knot span elements
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(b) Hierarchical refinement, inspired by the hp-d adaptive approach [178]. The combination of the
original patch and three contracted B-splines yields the refined basis.

Figure 6.6: Nucleus operation: the refinement of one knot span element.

[56, 98]. Therefore, we will adopt the element viewpoint, wherever we feel that aspects can
be reasonably explained from there. Wherever we feel that it might become too restrictive
or interferes with the consistency of the hierarchical methods at issue, we switch to the more
comprehensive basis viewpoint.

6.2.2.2 Two-level hierarchical refinement for one element

In a first step, let us define a nucleus operation, from which we start our development: the
refinement of one knot span element. Figure 6.6 exhibits a portion of a B-spline patch,
where the element in the center should be refined. A straightforward approach, introduced
for B-spline FEA by Kraft [119] and Höllig [106] and recently extended to isogeometric
analysis by Vuong et al. [210], is the application of the two-scale relation Equation (6.11)
to all basis functions with support in the knot span element under consideration. Contracted
B-splines resulting from the subdivision of different B-spline basis functions, but with the
same support, are superposed by adding their scaling factors. This leads to full hierarchical
B-spline basis functions in the center of the refinement, while hierarchical B-splines at the
boundary are gradually decreased as shown in Figure 6.6a. However, the direct subdivision
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Figure 6.7: Hierarchical refinement in the sense of the hp-d approach for the three rightmost knot
span elements in a row. The overlay is generated by repeating the nucleus operation of Figure 6.6b.

based refinement strategy results in a large spread of the refinement beyond the bounds of the
knot span element under consideration, which obstructs the localization of refinement. Due
to the increase of the spread with p, this is especially true for higher polynomial degrees. In
addition, it requires a correct book-keeping and addition of scaling factors, which considerably
complicates its implementation.

Therefore, we follow a different approach here and borrow the main idea of the hp-d adap-
tive approach, which was originally introduced for the p-version of the FEM [158] and success-
fully applied to B-spline bases in [178]. In an hp-d sense, we add an overlay of some B-splines
of contracted knot span width to the original B-spline basis. At this point, no changes in
the original basis functions are required, since we can infer from Equation (6.11) that single
B-splines of contracted knot span width are linearly independent to original B-splines of full
knot span width. The resulting basis is the combination of B-splines shown in Figure 6.6b,
where original and overlay basis functions are plotted on separate levels, which reflects the
two-level hierarchy between the original basis and its refinement overlay. Furthermore, we
do not change the amplitude of contracted B-splines, thus ignoring the presence of scaling
factors in Equation (6.11). We will show that this simplification can be maintained, when we
generalize this refinement strategy to higher dimensions and NURBS later on.

6.2.2.3 Two-level hierarchical refinement for several elements

The refinement rule introduced in Figure 6.6b for one element adds an overlay consisting of the
contracted B-spline central to the element at issue as well as its right and left neighbor. Let
us proceed one step further to the refinement of several knot span elements in a row. Figure
6.7 illustrates the two-level hierarchical basis, which results from a repetition of the nucleus
operation illustrated in Figure 6.6b for the three rightmost elements in the patch. We do not
add contracted B-splines a second time, if already generated from the refinement operation of
a neighboring element.

The reason for the specific choice of the nucleus operation becomes clear by consideration of
the number of contracted B-splines. If we take fewer B-splines for each element refinement than
shown in Figure 6.6b and omit the left and right neighbor, we would not obtain a complete
row of contracted B-splines in Figure 6.7, since every second contracted B-spline would be
missing. If we take more, the refinement would again spread out further beyond the leftmost
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Figure 6.8: Hierarchical multi-level refinement: B-splines of level k plotted in dotted line can be
represented by a linear combination of B-splines of the next level k+1 according to the two-scale relation
Equation (6.11) and therefore need to be removed from the basis.

element at issue, which would counteract the localization of refinement. The refinement rule of
Figure 6.6b is valid for p=3, but can be easily transferred to B-spline bases of other polynomial
degrees by looking for the minimum number of contracted B-splines per element, with which
a complete row of contracted B-splines in the overlay level can be achieved, when several
elements are refined.

6.2.2.4 Multi-level hierarchical refinement

In order to increase the degree of local refinement, we can repeat the procedure described in
the previous paragraphs several times. In doing so, we proceed from the two-level hierarchy of
a single refinement step to a general multi-level hierarchy, consisting of several overlay levels.
Let us introduce the level counter k, where k=0 denotes the original B-spline patch. In each
refinement step, the nucleus operation is applied to elements of the currently finest level k to
produce a new overlay level k+1. Hierarchically contracted B-splines of the new level k+1 are
found by bisecting the knot span width with respect to level k, so that the specific width hk

of each level can be found by the relation

hk = 2−k h, 1 ≤ k ≤ m (6.13)

where h denotes the original knot span width of the unrefined patch and m the total number
of levels in the hierarchy. The multi-level refinement procedure is illustrated in Figure 6.8,
where the nucleus operation is successively applied to the three rightmost knot span elements
of each level k. The resulting grid consists of a nested sequence of bisected knot span elements,
and multiple hierarchical overlay levels of repeatedly contracted uniform B-splines.
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Figure 6.9: Convergence of cubic hierarchical B-spline bases for the 1D advection-diffusion example.

6.2.2.5 Recovering linear independence

In order to guarantee full analysis suitability of the hierarchically refined B-spline basis, we
have to ensure its linear independence. Comparing the different levels in the hierarchy of
Figure 6.8, one can immediately observe that each overlay level k+1 consists of more than
p+2 consecutive refined B-splines. As a consequence, their linear combination is capable of
representing some of the B-spline basis functions of the previous level k according to the two-
scale relation Equation (6.11). Therefore, we need to identify all B-spline basis functions that
are representable by a combination of refined B-spline basis functions of the next level k+1
and remove them from the hierarchical basis. In Figure 6.8, basis functions to be taken out are
shown with dotted lines, while the final linear independent hierarchical B-spline basis consists
of all basis functions shown with solid lines.

6.2.3 A simple model problem in 1D

In the following, we test the efficiency of the hierarchically refined B-spline basis with a
standard steady advection-diffusion problem in 1D, governed by the following equation and
Dirichlet boundary conditions

a
∂u

∂x
+ D

∂2u

∂x2
= 0 (6.14a)

u(x = 0) = 0; u(x = L) = 1 (6.14b)

Parameters u, a=100, D=1 and L=3 denote the unknown concentration, the velocity, the
diffusion coefficient and the length of the domain, respectively. Dirichlet constraints are spec-
ified at both ends. Here, the nature of the problem is dominated by advection, indicated by
the high global Péclet number Pe=aL/D≫1. This leads to an almost immediate jump of the
solution from 0 to 1 at the right hand end of the 1D domain Ω, involving very high gradients.
An in-depth discussion of this problem and its exact solution can be found in [67, 223].
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Figure 6.10: The subtraction procedure removes multiplicities of hierarchical B-splines according to
the two-scale relation, which further reduces the coupling of B-splines throughout the hierarchy.

We apply a standard Galerkin discretization, where the dominance of the non-symmetric
advection operator over the diffusion operator in Equation (6.14a) leads to spurious os-
cillations. While these issues are usually addressed by consistent stabilization techniques
[36, 53, 67, 148], we use a sequence of cubic hierarchical bases in the sense of Figure 6.8 to
obtain an accurate solution. In each refinement step, we generate an additional overlay level
by adaptively refining the three rightmost elements. Since they are not interpolatory at the
ends, the hierarchical basis requires weak enforcement of Dirichlet constraints, for which a
simple penalty method [84, 220] is applied here. Figures 6.9a and 6.9b show the convergence
in the H1 semi-norm and L2 norm, respectively, obtained with uniform h-refinement and adap-
tive hierarchical refinement. Uniform refinement doubles the number of equidistant knot span
elements in each refinement step, which leads to optimal rates of convergence as predicted by
the mathematical theory for uniform h-refinement [197, 221]. Due to their adaptivity, the hi-
erarchical bases achieve rates of convergence, which are far better. To arrive at the final error
level in both the H1 and L2 cases, the hierarchical bases require about one order of magnitude
less degrees of freedom than uniform h-refinement. After seven refinement steps, the largest
part of the error does not stem from the excessively refined right boundary anymore, so that
the convergence rate levels off.

# of hierarchical levels k 0 1 2 3 4 5 6 7 8
Without subtraction 42.0 84.8 85.6 84.5 88.3 106.3 197.6 388.6 774.1
With subtraction 42.0 51.2 44.2 41.4 44.8 67.0 126.3 250.8 502.3

Table 6.1: Condition number of the stiffness matrix for different numbers of hierarchical levels without
and with subtraction procedure.
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Number of dofs: 41
Number of non-zero entries: 399
Maximum bandwidth: 17

(a) Without subtraction procedure.

Number of dofs: 41
Number of non-zero entries: 307
Maximum bandwidth: 9

(b) With subtraction procedure.

Figure 6.11: Sparsity pattern of a stiffness matrix without and with subtraction procedure.

6.2.4 Condition number and sparsity of the stiffness matrix

In the hierarchically refined basis of Figure 6.8, some basis functions occur explicitly as re-
finement functions on some level k, but are also contained implicitly in some B-spline basis
function of higher level according to the two-scale relation Equation (6.11). We can achieve a
further improvement of the conditioning and sparsity of the stiffness matrix, if we detect and
remove these multiplicities. In principle, this can be achieved by checking each hierarchical
B-spline of the next level k+1 to determine if it has common support with a B-spline of the
current level k. If it does, we check whether the former is part of the linear combination of
subdivision B-splines that result from the two-scale relation Equation (6.11) applied to the lat-
ter. If this is also true, we subtract the hierarchical B-spline of the next level k+1, multiplied
by the corresponding scaling factor, from the B-spline of the current level k. Applying this
subtraction procedure to the example basis of Figure 6.8, we arrive at the improved hierarchi-
cal basis of Figure 6.10, where initial basis functions are shown as dotted lines, while the final
basis functions after subtraction are shown as solid lines. We observe that the overlapping of
hierarchical levels is further reduced.

Analogous to the previous sections, we create two sequences of hierarchically refined bases
with and without subtraction procedure, respectively, which are based on a refinement of
the last three elements of each hierarchical level, and apply them to the advection-diffusion
problem of Equation (6.14). To exclude any effect from weak boundary conditions, we re-
place uniform boundary basis functions by interpolatory basis functions created from open
knot vectors, so that Dirichlet constraints can be satisfied strongly. The sparsity pattern of
the stiffness matrices without and with subtraction procedure and the evolution of the corre-
sponding condition numbers with increasing levels of hierarchical refinement are illustrated in
Figure 6.11 and Table 6.1, respectively. The subtraction procedure has a beneficial effect on
the structure of the sparse matrix, reducing both bandwidth and number of matrix entries.
Note that the ordering of matrices was optimized by the symmetric reverse Cuthill-McKee
algorithm [95]. The condition number of the matrix is improved by the subtraction of mul-
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tiplicities, but still remains in the order of magnitude of its counterpart without subtraction
in the one-dimensional case. We note that in higher dimensions, the difference in the condi-
tion number might be more pronounced, since there are many more basis functions that have
common support and belong to different hierarchical levels.

From an implementation point of view, the detection of multiplicities requires complex
algorithms, which obstruct automation of the refinement process. Its advantages are likely
to be moderate, since the performance of iterative solvers is dominated by the condition
number of the matrix, while the bandwidth plays a subordinate role. Therefore, we omit the
subtraction procedure in the following, when we will focus on efficient and easy-to-implement
hierarchical refinement schemes for isogeometric analysis in multiple dimensions.

6.3 Hierarchical refinement of axis-aligned B-splines in

multiple dimensions

Due to their tensor-product structure, the concept of hierarchical refinement in 1D directly
carries over to multi-dimensional B-splines. We discuss its implementation in the framework
of tree-like data structures and suggest corresponding algorithms. To keep things simple at
this stage, we confine ourselves to axis-aligned B-spline discretizations of cuboidal domains.

6.3.1 Transition from the 1D concept to multiple dimensions

The tensor product structure of multi-dimensional B-splines permits a straightforward gen-
eralization of the one-dimensional hierarchical refinement concept presented in Section 6.2 to
multiple dimensions. Assume a dp-dimensional B-spline patch, which is generated according
to Section 6.1.2 by dp univariate knot vectors in each parametric direction ξℓ. An adap-
tive multi-level B-spline basis can be generated by successively applying the 1D procedures
of the previous section, since the tensor product structure allows for a decoupling of refine-
ment operations in each parametric direction ℓ and subsequent dp-dimensional assembly by
multiplication. We will illustrate this by commenting briefly on each refinement step:

◦ Nucleus operation (refinement of a single dp-dimensional element): Depending on the
polynomial degree pℓ of each parametric direction, we choose a suitable number of con-
tracted B-splines for each direction ℓ according to the principles outlined in Section
6.2.2. Assuming p=3, the nucleus operation in each parametric direction ℓ corresponds
to Figure 6.6b , from which dp-dimensional hierarchical B-splines can be generated by
multiplying the one-dimensional functions in the sense of Figure 6.5.

◦ Multi-level hierarchy : The local increase of refinement follows the same concept as de-
scribed in Sections 6.2.2.3 and 6.2.2.4, where the repetition of the nucleus operation in
each overlay level k and the repetition of hierarchical refinement with successively con-
tracted B-splines for the generation of the next overlay level k+1 lead to a multi-level
B-spline basis, which naturally accommodates adaptivity in dp dimensions.
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(a) System sketch.

(b) Hierarchical mesh.

k=0

k=1
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(c) Multi-level structure of hierar-
chically contracted knot spans.

Figure 6.12: Multi-level hierarchical B-splines of p=3 for adaptive refinement along a diagonal internal
layer in a square domain. The original patch of level k=0 consists of 5×5 knot span elements.

◦ Recovering linear independence: A linear combination of multi-dimensional hierarchi-
cal B-splines of the next level k+1 can represent B-splines of the current level k in
the sense of the multi-dimensional two-scale relation Equation (6.12). These linear de-
pendencies need to be identified through the multi-level hierarchy and eliminated by a
removal of corresponding higher-level B-splines. In analogy with section 6.2.2.5, this can
be achieved by checking in each parametric direction, if the required p+2 contracted
B-splines of level k+1 exist in the hierarchical structure.

◦ Dirichlet constraints : Dirichlet boundary conditions can be incorporated weakly by vari-
ational methods [19, 78, 84] or strongly by a least squares fit of boundary basis functions
[56, 97]. Homogeneous boundary conditions can be imposed strongly by simply removing
all basis functions with support at the Dirichlet boundary from the basis.

Multi-dimensional hierarchical refinement is illustrated for the example of a two-dimensional
square domain, which should be refined along its diagonal as shown in Figure 6.12a, where we
assume a steep gradient due to an internal layer. Figure 6.12b shows the hierarchical mesh,
which represents the element structure, over which numerical integration is carried out, so
that the coupling of basis functions from different levels can be taken into account. Basis
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Mesh in
parameter space

k=0

k=1

k=2

k=3

Connect neighbors by pointers

Tree node: Quadrisected knot spans of level k<3

Tree leaf: Unpartitioned knot spans of level k<3

Tree leaf: Knot span of deepest level k=3

Figure 6.13: Quadtree example illustrating the hierarchical data organization of part of an adaptive
mesh. The neighboring relations within each hierarchical level are established by pointers, which are
shown here for one element of the finest level.

functions of different levels are defined over knot spans, which are hierarchically contracted in
the sense of Equation (6.13). The corresponding multi-level overlay structure is illustrated in
Figure 6.12c, where the sequence of hierarchical knot spans is plotted.

6.3.2 Geometry representation and hierarchical mapping

In the general case, tensor-product B-splines are mapped from a regular grid in the parameter
space to an arbitrarily shaped physical geometry via control point values according to Equation
(6.7). In the special case of an axis-aligned regular B-spline mesh, we can use the simplicity
of its cuboidal geometry to describe the mapping from parameter space ξ to physical space x
analytically by the following transformation

x = x0(ξ) +H ξ (6.15)

where x0 denotes the origin of the physical domain in the parameter space, and H is a
diagonal matrix, containing the physical knot span width hξℓ of each parametric direction ℓ.
The Jacobian determinant directly follows as

J = detH (6.16)

Due to Equations (6.15) and (6.16), the B-spline basis can be disconnected completely from
the geometry and serves exclusively for the approximation of the solution fields.

Numerical integration is performed over the hierarchical mesh (cf. Figure 6.12b). Depend-
ing on the hierarchical level k of the respective element, an additional mapping that involves
the following Jacobian

j =

(

1

2k

)dp

(6.17)

is required, where dp is the number of dimensions of the B-spline discretization. In the scope

of the present paper, integrals are evaluated by Gauss integration, which places (p+ 1)dp

integration points in each element of the hierarchical mesh.
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Figure 6.14: Illustration of Algorithm 1: Apply nucleus operation to the first two knot span elements,
which creates new knot spans of level k+1 and flag knot spans, where contracted basis functions start.
Also split and flag all related ghost knot spans to ensure a correct treatment of boundary basis functions.

6.3.3 Efficient implementation in tree data structures

A considerable advantage of hierarchical refinement in the present form is the preservation
of its intuitive multi-level concept irrespective of the dimensionality of the B-spline basis,
which allows for an easy generalization of corresponding algorithms in the framework of the
tensor product structure. Additionally, its direct correspondence to standard multi-level data
structures [172] constitutes the basis for its straightforward and efficient implementation.

6.3.3.1 Binary, quad- and octrees

Hierarchical data structures provide a natural way to decompose and organize spatial data
according to different levels of complexity and offer fast access to relevant parts of a dataset
[171, 172]. For their efficient implementation, binary, quad- and octrees are usually employed
in one, two and three dimensions, respectively [14, 41, 140]. Tree data structures are also
often the starting point for efficient massively parallel simulations on very large architectures
[5, 14, 29, 41]. The quadtree concept shown in Figure 6.13 illustrates the analogy between an
adaptive hierarchical quadrilateral mesh and the two-dimensional tree. In our implementation
of hierarchical B-spline refinement, the tree is the fundamental entity, where each node or
leaf holds all the information of the corresponding knot span on the respective hierarchical
level and of the basis functions defined therein. Additionally, we equip each node or leaf with
pointers that connect it with all direct neighbors of the same hierarchical level (see Figure
6.13). These “horizontal” neighboring relations are frequently needed during refinement to
establish contracted basis functions, check for linear dependencies and correctly assign degrees
of freedom.

6.3.3.2 Evaluation of basis functions

Hierarchical B-splines Nk of knot span width h/2k are generated by contraction of unrefined
B-splines. Thus, they do not have to be implemented separately, but can be directly computed
on each overlay level k in each parametric direction ℓ from their original unrefined counterparts
N0 as follows

Nk(ξℓ) = N0(2kξℓ) (6.18a)
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Figure 6.15: Illustration of Algorithm 2: Identify linear dependencies, remove corresponding degrees
of freedom and store them in VacantDofs for later reassignment.

∂Nk(ξℓ)

∂ξℓ
=

1

2k
∂N0(2kξℓ)

∂ξℓ
(6.18b)

According to their tensor-product structure, multidimensional B-splines and their first deriva-
tives can be subsequently assembled by simple multiplication of their components from each
parametric direction.

6.3.3.3 Degree of freedom organization

Handling degrees of freedom within the hierarchical tree structure is complicated by the re-
moval of basis functions during the refinement process and therefore requires special care. The
degrees of freedom attributed to the basis functions with support in a knot span element are
contained in an array structure, denoted as DofIndx here, and stored in the corresponding
node or leaf of the tree. In particular, the last entry of DofIndx corresponds to the B-spline
whose support starts in the current knot span and continues over the successive p+1 knot
spans in positive parametric direction. A zero in DofIndx indicates that the corresponding
basis function does not exist in the basis. This idea can be easily generalized to dp dimen-
sions, where the support of the B-spline that starts in the current dp-dimensional knot span
continues over a regular polytope spanned by the successive (p + 1)dp knot spans (a line in
1D, a square in 2D, a cube in 3D, etc.). A 1D example of this numbering concept, which is
similar to the one devised by Höllig [106], is given in Figure 6.14.

During refinement, contracted B-splines of the next hierarchical level k+1 are first initiated
via a Boolean, called FuncFlag here, to flag the respective leaf, where the new basis function
starts. This allows us to check for linear dependencies first, to remove corresponding B-splines
of level k by setting their DofIndx entries to zero and to buffer their degree of freedom numbers
in the array VacantDofs. Later on, we can reassign these numbers to basis functions of the new
hierarchical level k+1, until the buffer VacantDofs is empty. In order to carry out the same
operations on boundary knot spans, we introduce ghost knot spans [14, 138] that are taken
into account only during the refinement procedure, but not during analysis (see Figures 6.14
through 6.16).
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Figure 6.16: Illustration of Algorithm 3: On the basis of FuncFlag, add contracted basis functions of
level k+1 that have support outside the ghost knot spans. Assign degrees of freedom by filling DofIndx
in positive parameter direction. Consume degrees of freedom buffered in VacantDofs first.

6.3.3.4 Basic algorithmic sketch

We roughly outline the basic algorithmic ideas of a single hierarchical refinement step. As
input, we assume the tree structure of the current hierarchical level k and the result of an
error estimator, which specifies for each leaf of the tree if it is to be refined or not. For
simplicity, we consider here only the leaves of the currently finest level k. The refinement
procedure consists of three parts. The first part is outlined in pseudocode in Algorithm 1 and
illustrated in Figure 6.14 by a small example. It carries out the nucleus operation for each
element to be refined, creates new leaves of level k+1 and fills in corresponding contracted basis
functions via FuncFlag. The second part is given in pseudocode in Algorithm 2 and illustrated
in Figure 6.15. It removes linear dependencies between basis functions of level k and k+1.
The third part is outlined in pseudocode in Algorithm 3 and illustrated in Figure 6.16. It
assigns degrees of freedom for the new basis functions of level k+1. As output, we receive the
refined B-spline patch, organized in a tree structure of level k+1.

6.4 Hierarchical refinement of NURBS for arbitrary ge-

ometries

Up to this point, we have dealt with B-splines over structured grids for the discretization
of axis-aligned cuboidal domains. The concept of subdivision can also be applied to NURBS
bases, which discretize arbitrarily shaped domains. A hierarchical refinement scheme for adap-
tive analysis with NURBS can be derived with minimal effort on the basis of the algorithms
and data structures described in Section 6.3.3.

Subdivision rules for univariate NURBS are derived by inserting the two-scale relation of
Equation (6.11) into the construction rule for NURBS basis functions, Equation (6.8), which
yields the following two-scale relation for NURBS

Ri,p (ξ) =
wi 2−p

∑p+1
j=0

(

p+1
j

)

Np(2ξ − j)
∑n

j=1wjNj,p(ξ)
(6.19)

According to the isogeometric paradigm [56, 109], the geometry is described exactly by the
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Data: Tree data structure, deepest level of leaves is k; result of the error estimator for
each knot span element of level k;

Result: Adds new leaves of level k+1 to the tree; initialize index structure DofIndx ;
mark all new leaves with FuncFlag, where a new basis function starts;

// Loop over all knot span elements of level k (currently deepest level);
// Arguments of for-loops are in the sense of iterators, pointing to leaves in the tree;
for i ele k ← 1 to n ele k do

if error estimator requires refinement in i ele k then

// Apply nucleus operation to current i ele k;
// Loop over all elements affected: In case of p=3, these are the current element
// i ele k and its surrounding direct neighbors (see Figure 6.6b);
// if i ele k is located at the boundary, also refine all neighboring ghost
elements;
for j ele← 1 to n ele affected do

// Create new knot span elements of level k+1 ;
if element j ele is unrefined then

Append 2/4/8 new leaves of level k+1 in the tree structure
(bi-, quadri- or octasection of element in 1/2/3D, respectively);

Initialize in each new leaf DofIndx = [0]; FuncFlag = false;

Connect neighboring leaves of level k+1 by pointers and update pointers
in all surrounding other leaves, if existing;

end

// Loop over all new leaves of j ele;
for i leaf k+1← 1 to n leaves do

// Fill in hierarchical basis functions of level k+1, if required by the
// nucleus operation (see Figure 6.6b and Section 6.2.2.3);
if a basis function starts in i leaf k+1 then

Set i leaf k+1.FuncF lag = true;
end

// Ensure the proper handling of boundary basis functions ;
if i leaf k+1 contains a ghost element then

Set i leaf k+1.FuncF lag = true;
end

end

end

end

end

Algorithm 1: Find elements and basis functions of the next hierarchical level k+1
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original unrefined NURBS basis, so that geometry refinement in the framework of isogeometric
analysis is not required. Therefore, we keep the weights wj and corresponding control points
P j unchanged and always take the sum of the original B-splines Nj,p in the denominator of
Equation (6.19). Nonetheless, using the refined NURBS basis for enhancing the geometry
representation would be of course possible [47, 48].

A multi-dimensional subdivision rule for NURBS can be derived analogously by substitut-
ing Equation (6.12) into Equation (6.9)

Rh
i,p (ξ) =

wi

∑

j

(

∏d
ℓ=1 2

−pℓ
(

pℓ+1
jℓ

)

Npℓ(2ξ
ℓ − jℓ)

)

∑

j wjBj,p(ξ)
(6.20)

Data: Tree data structure, deepest level of leaves is k+1;
Result: Degrees of freedom of linearly dependent basis functions of level k are erased

from DofIndx in the tree and stored in VacantDofs for later reassignment;

// Loop again over all knot span elements of level k;
for i ele k ← 1 to n ele k do

if i ele k has leaves of level k+1 then

// Implementation sketch of conditional clauses:

// - start from the leaves of level k+1 of the current element i ele k;
// - regular polytope at issue consists of (p+2)d successive leaves of level k+1;
// - it is spanned by (p+2) leaves of level k+1 in d positive parametric directions;
// - walk through the polytope using pointers that connect neighboring leaves;
// - determine existence of neighboring element by checking corresponding
pointer;

// Note that due to the ghost element concept (see Figures 6.14 through 6.16),
this
// strategy also works for boundary basis functions;

if at least one of the leaves of the polytope does not exist then break;

if FuncFlag == false in at least one of the leaves of the polytope then break;

// Since in each leaf of the polytope, a basis function of level k+1 starts, the
// basis function of level k starting in i ele k has to be removed and its degree
// of freedom needs to be remembered for reassignment later on;

Identify degree of freedom dof that starts in i leaf k and append to VacantDofs

// Loop over polytope spanned by (p+1)d leaves of level k and erase dof;
for j ele k ← 1 to n ele polytope do

Set j ele k.DofIndx ( position of dof ) = 0;
end

end

end

Algorithm 2: Remove linear dependencies between current level k and next level k+1
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where the multi-index notation exactly follows the one introduced in Section 6.1.2 for multi-
variate B-splines and Section 6.2.1 for multivariate B-spline subdivision. Since the geometry
is not refined, B-splines Bj,p and corresponding weights in the denominator of Equation (6.20)
refer again always to the original B-spline patch.

On the basis of Section 6.4.1, we introduce some adaptations to the hierarchical refinement
scheme for B-splines to also accommodate NURBS. First, we separate Equations (6.19) and
(6.20) in a B-spline part (numerator) and a rational part (denominator), which are treated
separately. The numerator carries out hierarchical refinement on B-spline level, so that we
can make full use of the concepts and algorithms introduced in Sections 6.2 and 6.3. Thus,
the resulting hierarchically refined NURBS basis is also constructed from a nested sequence
of bisected knot span elements, over which multiple hierarchical overlay levels of repeatedly
contracted B-splines are defined.

As shown in the previous section, the denominator is always computed with the original

Data: Tree data structure, deepest level of leaves is k+1; list of unassigned degrees of
freedom in VacantDofs ; total number of degrees of freedom numDofs ;

Result: In leaves of level k+1 with FuncFlag==true, a degree of freedom is assigned
to the basis function starting there;

// Loop over all new knot span elements of level k+1;
for i leaf k+1← 1 to n leaves k+1 do

// Prevent dof assignment to basis functions that consist of ghost knot spans only;
// Consider polytope spanned by (p+1)d leaves of level k+1;
if all leaves of the polytope are ghost knot spans then break;

else if i leaf k+1.FuncF lag == true then

if VacantDofs is empty then

// Loop over polytope spanned by (p+1)d leaves of level k+1 and assign new
dof;
for j leaf k ← 1 to n polytope do

Set i leaf k+1.DofIndx ( position of numDofs ) = numDofs ;
end
numDofs++;

else

// Assign degree of freedom from VacantDofs;
for j leaf k ← 1 to n polytope do

Set i leaf k+1.DofIndx ( position of numDofs ) = VacantDofs.First();
end
Erase first entry of VacantDofs ;

end

end

end

Algorithm 3: Activate new basis functions
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B-spline patch B0

sum(ξ) =
∑

j

wjB
0
j (ξ) (6.21)

where multi-index j includes all B-splines with support at the parameter space location ξ.
The basis functions Ri of the hierarchical NURBS basis and its derivatives follow as

Ri (ξ) =
Bi(ξ)

sum(ξ)
(6.22a)

∂Ri (ξ)

∂ξℓ
=

∂Bi (ξ)/∂ξ
ℓ sum(ξ) − Bi (ξ) ∂ sum(ξ)/∂ξℓ

sum(ξ) 2
(6.22b)

where we additionally drop the weights wi in the numerator of Equation (6.22a) for further
simplification. Standard rules for generating higher order derivatives [154] can be adapted in
the same way. The geometry mapping by way of the Jacobian matrix and determinant are
computed throughout the hierarchical refinement procedure from the unrefined NURBS patch

x(ξ) =
∑

j

wjB
0
j (ξ)

sum(ξ)
P j (6.23)

with the initial set of weights wj and control points P j .
In the following two chapters, we will illustrate how the concepts and algorithms for local

hierarchical refinement of B-splines and NURBS can be integrated into the finite cell method
and isogeometric analysis to derive efficient adaptive schemes.
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Chapter 7

Adaptive analysis based on local
hierarchical refinement of NURBS

In the following, the versatility of local hierarchical refinement in the framework of NURBS
based isogeometric analysis is demonstrated for a series of fluid and solid mechanics problems
in two and three dimensions. B-spline and NURBS basis functions exhibiting higher order
continuity have been shown to be ideal candidates for approximating these problems in the
framework of the finite element method, for example in the context of structural vibrations
[55, 56], incompressibility [9, 77, 199], shells [27, 75, 117], fluid-structure interaction [20,
23], turbulence [6, 18, 21], phase-field analysis [35, 96], contact [200, 201], fracture [206] and
optimization [60, 211]. Therefore, we will not discuss their general solution characteristics,
but directly concentrate on their hierarchical refinement.

Using the concepts and algorithms introduced in Section 7 in conjunction with a simple
gradient based error estimator, B-spline and NUBRS discretizations are adaptively refined by
overlays of hierarchically contracted basis functions. According to the isogeometric paradigm
that assumes that the initial geometry representation is already exact [54, 56, 183], the ini-
tial NURBS patch is always used for geometry related operations throughout the refinement
process. Our in-house isogeometric code has been set from the scratch by the author is an
adaptation of the finite cell implementation outlined in Section 5.4.3 [177]. In the present sec-
tion, all examples are discretized by cubic B-splines or NURBS and the corresponding system
of equations is solved by an iterative GMRES solver with ILU preconditioning [134] provided
by the library framework Trilinos [203].

7.1 Error estimation and automatic refinement

In the following, elements to be refined are selected automatically by means of a suitable error
indicator ε. All meshes shown in the following are generated automatically with the help of a
simple gradient based error estimator, which aims at capturing steep gradients in the solution

εe =
1

Ve





∫

Ωe

|∇u|2 dΩe





1/2

(7.1)

where u is the solution field evaluated from the current mesh of hierarchical level k. The
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Figure 7.1: Advection skew to the mesh in 2D: Problem definition.

indicator is evaluated over the domain Ωe of each element and subsequently normalized with
respect to the corresponding element volume Ve. If εe is larger than its average

εe >
C

nele

nele
∑

i=1

εie (7.2)

with nele being the number of all elements in the current mesh, the element is refined. We
introduce an additional constant C to empirically fine-tune the threshold for the specific
problem. For more elaborate error indicators and estimators, see for example [4].

7.2 Adaptive isogeometric analysis based on cuboidal

geometries

We will first focus on problems over cuboidal axis-aligned domains, which can be discretized
exactly by B-splines defined over a structured grid of knot span elements. As outlined in
Section 7.3.2, this allows for a particularly simple geometry handling.

7.2.1 Advection skew to the mesh in 2D

The first model problem is illustrated in Figure 7.1a and involves the solution of the linear
advection-diffusion equation

a · u−∇u · (D∇u) = f (7.3)

where u denotes the solution, a is the velocity, D is the diffusivity and f is a source term.
In particular, the velocity is inclined to the mesh at 45◦ and the diffusivity is chosen to be
extremely small, so that the problem is dominated by advection, resulting in a very high global
Pećlet number of Pe=104. Thus, we expect sharp interior and boundary layers, which require
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(a) Uniform mesh k=0.
ndof = 49

(b) Mesh of level k=1.
ndof = 119

(c) Mesh of level k=2.
ndof = 279

(d) Mesh of level k=3.
ndof = 612

(e) Mesh of level k=4.
ndof = 1,319

(f) Mesh of level k=5.
ndof = 3,017

Figure 7.2: Sequence of hierarchical meshes generated by an automatic refinement scheme that makes
use of a simple gradient-based error indicator and the algorithms described in sub-section 4.4.

stable numerical techniques in addition to increased resolution to be accurately captured. The
problem is a well-studied benchmark [19, 36], examined for uniform k-refinement in [56] and
local T-spline refinement in [22, 69].

We investigate the adaptive resolution of the internal and boundary layers with the present
hierarchical refinement approach, starting from a 5×5 grid of cubic B-splines. We satisfy
boundary conditions weakly at the inflow boundary with Nitsche’s method [78, 80, 99] and
strongly at the outflow boundaries [19]. Furthermore, we apply standard SUPG stabilization
[19, 36, 67] in addition to refinement. The corresponding stabilization parameter is chosen to
be τ = ha/(2 |a|), where ha is the element length of in flow direction. In the current example,
ha =

√
2 2−kh, where k is the finest level of hierarchical refinement present in the element

under consideration and h is the original knot span spacing of the unrefined discretization.
Employing an automatic refinement scheme based on the error indicator of Equation (7.1) and
the algorithms described in Section 6.3, we obtain a sequence of hierarchical meshes shown
in Figure 7.2. The hierarchy of knot spans defining B-splines of each level k is shown in
Figure 7.3. It can be observed that the refinement captures the location of the internal as well
as the boundary layers very well.

An overkill solution obtained with a uniform cubic B-spline discretization of 160×160
elements and SUPG stabilization and the adaptive solution obtained with a refined mesh of
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Figure 7.3: Sequence of knot span elements for each hierarchical level k, corresponding to the hierar-
chical meshes for the 2D advection problem.

(a) Solution obtained with a uniform dis-
cretization of 160×160 cubic elements.

(b) Solution obtained with the adaptive hi-
erarchical mesh of k=5.

Figure 7.4: Solution of the advection dominated problem in 2D.

hierarchical level k = 5 are shown in Figure 7.4. We can observe over- and under-shooting
of the adaptive solution along the internal layer as also reported in [22, 69] for T-spline
refinement. Nonetheless, the comparison of adaptive and uniform solution fields demonstrates
that hierarchical refinement leads to a qualitatively similar result. While both meshes provide
a comparable element size around the location of the layers, the adaptive mesh with 3,017
dofs requires only about 12% of the degrees of freedom of the uniform mesh with 26,244 dofs.
Finally, we would like to point out the high quality of the refinement in terms of locality, as
the hierarchical elements of the finest level show no propagation through the mesh. This is an
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Figure 7.5: Advection skew to the mesh in 3D.

improvement in comparison to recent works on adaptive isogeometric analysis [22, 69], where
automatic local refinement employing cubic T-splines was reported to result in globally refined
T-meshes when applied to a very similar advection-diffusion problem.

7.2.2 Advection skew to the mesh in 3D

Having in mind the 2D problem of Figure 7.1, we can construct an analogous advection-
diffusion problem in three dimensions, whose details are given in Figure 7.5a. It exhibits
the same challenges in terms of strong advection dominance (global Péclet number κ=104),
a sharp internal layer and several boundary layers (see Figure 7.5b). Following the previous
sub-section, we apply SUPG stabilization, the error indicator of Equation (7.1) and weak and

(a) Hierarchical mesh of level k=4. (b) Accurate approximation of sharp layers.

Figure 7.6: Adaptive mesh and corresponding solution for the 3D advection problem. To reveal
internal features, only one half of the domain is shown according to Figure 7.6b.
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(a) Mesh of level k=4. (b) Isolines of the stream function Ψ.

Figure 7.7: The lid driven cavity problem: Adaptive hierarchical mesh and corresponding solution.

strong boundary conditions at inflow and outflow boundaries, respectively. Figure 7.6 shows
the resulting hierarchical mesh of level k=4, generated automatically from an initial 6×6×6
cubic B-spline grid, and the corresponding solution field. The mesh captures the location
of internal and boundary layers accurately and its refinement is local without propagating
throughout the entire domain. Similar to the 2D case, the solution field exhibits slight under-
and overshooting along the internal layer. While the adaptive mesh of Figure 7.6a features
only 116,314 degrees of freedom, a uniform cubic B-spline discretization, which uses a global
mesh size corresponding to the finest elements of the adaptive mesh, requires a resolution of
96×96×96 knot span elements, which amounts to 941,192 degrees of freedom. In Section 4,
we demonstrated that our hierarchical refinement approach can be generalized easily to three
dimensions from algorithmic and implementation points of view. From the point of view of
computational efficiency, the present result confirms that hierarchical refinement in 3D also
yields high quality adaptive meshes and accurate solution fields, comparable to the 2D case
of the previous sub-section.

7.2.3 Lid driven cavity

To demonstrate the versatility of the hierarchical refinement approach in the framework of
a further physical model, we consider the two-dimensional stationary incompressible Navier-
Stokes equation in stream function formulation [44]

−ν∆2Ψ+Ψy (∆Ψ)x −Ψx (∆Ψ)y = f (7.4)

where Ψ denotes the stream function, ν the viscosity, and f the applied body force. A standard
benchmark is the lid driven cavity problem [44, 93], which models flow in a unit square domain
Ω = (0, 1)2, whose upper boundary moves to the right, whereas the rest of the boundaries
are fixed. Corresponding boundary conditions are Ψ=0 on all boundaries, Ψx=0 and Ψy=0
on the left, right and bottom boundaries (’no slip’ requirement), Ψx=0 and Ψx=1 on the top
boundary (the driven surface). At all boundaries, we impose Ψ strongly, while its derivatives
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(a) Control mesh. (b) NURBS mesh.

Figure 7.8: Geometry description of half a cylinder. The structure is modeled as a continuum with
cubic NURBS in surface directions and 3 quadratic NURBS basis functions through the thickness.

are imposed weakly by a variant of Nitsche’s method [19, 99]. The nonlinearities in Equation
(7.4) are handled by simple fixed point iteration [194].

The solution characteristics of the driven cavity problem are strongly determined by the
choice of viscosity. We set ν=1.25 ·10−3, which results in a Reynolds number of Re=800. A
separation of vortices in the lower edges can thus be expected. Since we are also interested
in accurately tracking the location of separation at Ψ=0, we add an additional term to the
gradient-based error indicator of Equation (7.1) as follows

εe =
1
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(7.5)

so that εe also grows in the vicinity of Ψ=0. The resulting hierarchical mesh of level k=4,
generated from an initial cubic B-spline discretization of 8×8 knot span elements, and the
isolines of the corresponding stream function solution are plotted in Figure 7.7. They show
that the refinement can be concentrated around the boundary layers and locations of flow
separation. The adaptive mesh of Figure 7.7a with 3,517 dofs requires about 80% fewer
degrees of freedom than a corresponding uniform discretization with 16,641 that uses the size
of the smallest element of Figure 7.7a as the global mesh size.

7.3 Adaptive isogeometric analysis based on NURBS

geometries

According to the isogeometric paradigm, the NURBS basis of the geometry description should
be also used for analysis, thus superseding geometry approximation and mesh generation
of standard FEM [56, 183]. However, in most cases, the complexity in geometry and in
the solution of the physical model do not coincide, so that the NURBS basis can represent
the geometry exactly with a limited number of basis functions, while analysis requires local
refinement to achieve satisfactory accuracy. The hierarchical refinement approach for NURBS
based isogeometric analysis introduced in Section 5 maintains the initial geometry description
by a given set of control points, weights and NURBS basis functions throughout the refinement
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Figure 7.9: The pinched cylinder.
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Figure 7.10: Convergence of the vertical dis-
placement under the load.

(a) Hierarchical mesh of level k=4. (b) Corresponding vertical displacements plot-
ted on the deformed structure.

Figure 7.11: Adaptive mesh and solution for the pinched cylinder problem. The results for the
complete structure are obtained by mirroring the results obtained for the half cylinder.

process, while introducing additional levels of hierarchical basis functions, which achieve an
adaptive refinement of the solution fields only.

7.3.1 The pinched cylindrical shell

The first NURBS example is the pinched cylinder problem from the shell obstacle course.
It constitutes a standard benchmark with great relevance to the assessment of shell analysis
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(a) System sketch. (b) Solution from uniform discretization.

Figure 7.12: Advection-diffusion in an annular section.

(a) Hierarchical mesh of level k=4. (b) Corresponding solution.

Figure 7.13: Adaptive mesh and solution for the 2D advection-diffusion problem.

procedures and has therefore been discussed extensively in the literature [25, 56, 52, 131]. Its
geometry is given here by the control mesh and the corresponding mapped NURBS mesh of
Figure 7.8, modeling one half of the cylinder. All geometrical mapping procedures throughout
the adaptive analysis will revert to this model, which will not be refined, since it represents the
geometry exactly. Following [56, 161], the shell is modeled as a three-dimensional solid and
no shell assumptions are employed (see Figure 7.8a). The polynomial degree is cubic in the
surface directions, whereas only one quadratic NURBS element is used through the thickness,
which has been shown to be sufficient to obtain sufficiently accurate results [31, 56]. The
problem definition of Figure 7.9 illustrates the external loading by two opposite concentrated
forces, which results in highly localized deformation under the loads. At the longitudinal
edges of the half cylinder, we apply symmetry boundary conditions. Automatic hierarchical
refinement based on the concepts of Section 6.3 and 6.4 with the error indicator of Equation
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Figure 7.14: Problem sketch. Figure 7.15: Initial solution.

(a) Hierarchical NURBS mesh of level k=3. (b) Corresponding solution.

Figure 7.16: Adaptive mesh and solution for the 3D advection-diffusion problem.

(7.1) is applied to the initial discretization of 8×4×1 NURBS elements shown in Figure 7.8b.
It carries out local refinement only in the surface directions, but keeps one quadratic NURBS
element in the thickness direction, so that the shell is not refined through-the-thickness.

Convergence in terms of vertical displacements under the applied point load is shown in
Figure 7.10, for which the analytical solution is given as 1.82488 ·10−5 [52, 56]. Uniform
refinement, which applies global h-refinement in surface directions to the initial discretization
of Figure 27b, converges to a slightly softer solution than the reference, which agrees well
with previous results [22, 56]. In contrast, adaptive hierarchical refinement converges to a
slightly smaller displacement. This can be attributed to the influence of the unrefined parts
of the shell, which are not sufficiently resolved, but not detected by the simple gradient-based
error indicator due to their relatively small gradients. Nonetheless, hierarchical refinement
achieves a comparable level of accuracy with about one order of magnitude fewer degrees of
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(a) Initial knot spans of k=0. (b) Hierarchical knot spans of k=1.

(c) Hierarchical knot spans of k=2. (d) Hierarchical knot spans of k=3.

Figure 7.17: Sequence of knot span elements, over which contracted basis functions of successive
hierarchical levels k are defined. The combination of all levels results in the hierarchical NURBS mesh
of Figure 7.16a.

freedom than uniform refinement. The hierarchical mesh of level k=4 and the corresponding
displacement plot on the deformed structure are given in Figure 7.11, where deformations are
largely magnified for better visibility of the deformation pattern.

7.3.2 Advection-diffusion in an annular section

We focus again on linear advection-diffusion described by Equation (7.3). The present 2D
example is defined over an annular quarter section, which is described exactly by a 10×13
NURBS mesh. The two-dimensional flow field corresponds to a rotational vortex with tan-
gential velocity aθ=ωr and radial velocity ar=0. A sketch of the problem definition is given
in Figure 7.12a. Boundary conditions are prescribed weakly at inflow and strongly at outflow
boundaries [19]. Over part of the inflow, the concentration u is set to 1, creating boundary and
internal layers, which is illustrated by the reference solution of Figure 7.12b, obtained from a
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uniform standard Galerkin discretization of 160×208 cubic NURBS elements. Applying auto-
matic hierarchical refinement based on the gradient-based error indicator of Equation (7.1),
we obtain an adaptive mesh of level k=4, plotted in Figure 7.13a. The corresponding solution
in Figure 7.13b shows qualitatively no difference in terms of boundary and internal layers as
well as absolute values in comparison to Figure 7.12b. However, the uniformly refined solution
requires 33,810 degrees of freedom, whereas the adaptive mesh requires only 1,387, but both
provide the same resolution of the concentration jumps at the boundaries.

7.3.3 Advection-diffusion in a rotating cylinder

Finally, we consider advection-diffusion in a three-dimensional cylinder that rotates around its
axis with tangential velocity aθ=ωr and radial velocity ar=0. At the same time, we assume
flow of constant axial velocity az, which results in a helical pattern of the concentration that
emerges from the fixed local inflow boundary condition u=1. The geometry of the cylinder is
described exactly by two equal NURBS patches, each of which covers one half of the cylinder
and consists of 5×10×20 cubic standard Galerkin NURBS elements in (r, θ, z)-directions,
respectively (see Figure 7.17a). A sketch of the problem and the initial isogeometric solution
are shown in Figure 7.14 and 7.15, respectively. The initial NURBS discretization is unable to
accurately resolve the boundary and internal layers along the plume. Automatic hierarchical
refinement based on the gradient-based error indicator of Equation (7.1) results in an adaptive
mesh of level k=3, plotted in Figure 7.16a. The corresponding solution in Figure 7.16b exhibits
a considerably improved resolution of boundary and internal layers. Figure 7.17 illustrates the
sequence of knot spans, over which the contracted hierarchical basis functions are defined. The
finest level k=3 shown in Figure 7.17d demonstrates that the automatic refinement procedure
is able to accurately track the revolving plume. A uniform discretization that yields a plume
resolution with the same element size as the smallest element of the adaptive mesh requires
a globally refined mesh of 40×80×160 NURBS elements with 1,391,380 degrees of freedom,
whereas the present adaptive mesh requires only 125,271 dofs.

7.4 Hierarchical refinement, the finite cell method, and

T-spline CAD surfaces

The translation of complex CAD based geometrical models into conforming finite element
discretizations is computationally expensive, hard to be fully automated and often leads to
error-prone meshes, which have to be improved manually by the user. Combining simplicity
and reliability with a high degree of automation, embedded domain methods such as the
B-spline version of the finite cell method introduced in Sections 2 to 5 open the door for
a seamless isogeometric design-through-analysis procedure for complex engineering parts and
assemblies, which bypasses all problems of mesh generation [182]. Its potential for the analysis
of complex CAD based geometrical models is illustrated in the following by a a ship propeller
and a rim of car wheel, whose geometry is provided by T-spline CAD surfaces. We furthermore
demonstrate that hierarchical refinement of B-splines can considerably increase the flexibility of
the method by adaptively resolving local features in geometry and solution fields, while thanks
to its straightforward implementation, the key benefit of full automation can be maintained.
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(a) Bézier elements of a T-spline
surface (Output from CAD package
Rhino with T-spline plug-in).

(b) The complete structure is immersed in a bounding
box of 16×16×4 axis-aligned cubic B-spline elements.

Figure 7.18: Propeller example: CAD geometry description and embedded domain discretization.

(a) Deletion of elements without support in
the propeller domain creates a reduced set
of elements, which homogeneously resolve the
structure irrespective of the local thickness.

(b) Hierarchical refinement of the propeller
blades achieves a homogeneous through-the-
thickness resolution. Corresponding elements
are octasected twice.

Figure 7.19: Propeller example: The role of hierarchical refinement
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(a) 18,499 sub-cells of level k=1. (b) 226,272 sub-cells of level k=2.

Figure 7.20: Propeller example: Sub-cell partitioning of elements cut by the geometric boundary. The
partitioning scheme shown in Figure 2.2 is carried out up to level k=2.

7.4.1 Free vibration analysis of a ship propeller

The geometry of the propeller is given by a smooth, watertight T-spline surface (i.e., no gaps
or overlaps). It is exported from the CAD package Rhino [166] with the T-spline plug-in [205]
in the form of Bézier elements as shown in Figure 7.18a. Its maximum diameter and height is
0.695 m and 0.334 m, respectively, and it is made out of steel with Young’s modulus 2.1·1011
N/m2, Poisson’s ratio 0.28 and density 7,850 kg/m3. The thickness of the cylindrical hub in
the center is about four times larger than the average thickness of the surrounding propeller
blades. The structure can neither be characterized as a typical shell nor as a true solid.
Configurations like this usually require specialized and time consuming meshing procedures
to produce good quality discretizations.

We apply the B-spline version of the finite cell method to illustrate the discretization
procedure in the framework of the immersed boundary concept and its combination with
hierarchical refinement. First, the complete structure is embedded in a regular grid of axis-
aligned B-splines as illustrated in Figure 7.18b. In the present examples, we apply uniform
B-splines of polynomial degree p=3, which offer higher order approximation, but still are
computationally efficient due to their relatively local support. Second, all those knot span
elements without support in the propeller domain Ωphys are eliminated from the discretization,
which leads to a reduced set of elements displayed in Figure 7.19a. The decision whether an
element is to be kept or not is based on a simple point location query, which checks if at least
one integration point is located in Ωphys. In particular, this discertization procedure can be
fully automated irrespective of the geometric complexity involved.

We have successfully tested two options to establish an efficient and reliable point location
query procedure within a CAD based geometrical model. A straightforward approach is the
voxelization of the embedding domain [38, 57], where a Boolean flag indicates for each voxel
whether it is located in- or outside. This transfer of the CAD into a voxel model permits an
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(a) The first, second and third mode shapes
exhibit a rotational symmetry around the cen-
ter, corresponding to the three pairs of opposing
propeller blades. We display mode 2.

(b) The fourth and fifth mode shapes exhibit
a symmetry with respect to the two axis of the
propeller plane. We display mode 5.

(c) The sixth mode shape is single and shows
bending of the blades out of the propeller plane.

(d) The seventh mode shape shows the bending
of opposing blades out of the propeller plane.

Figure 7.21: Free vibration analysis of the ship propeller. Most of the activity occurs in the propeller
blades, whose resolution has been adaptively increased by hierarchical refinement. The color scale refers
to the absolute displacement (dark blue - no displacement, red - highest displacement).
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(a) Bézier elements of a T-spline surface
(Output from CAD package Rhino with T-
spline plug-in).
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(b) Horizontal loading on the outer edge
of the rim, fixture at the hub of the wheel.
(Radius R=239 mm and b=R sinπ/5)

Figure 7.22: Rim of a car wheel: Geometry description and boundary conditions.

analysis in the sense of Section 4.4. A suitable alternative is provided by search algorithms
based on special space-partitioning data structures such as k-d trees [30, 58, 171, 172], which
are able to directly operate on a surface parameterization. As a proof of concept, we connected
our in-house finite cell implementation to the library VFlib7, which provides an efficient k-d
tree based point location query for an STL surface parameterization of a CAD model, and
successfully generated finite cell discretizations directly based on CAD data.

An axis-aligned discretization with elements of the same size does not account for the
inhomogeneous thickness of the different regions of the structure. In a third step, we there-
fore apply two levels of hierarchical refinement to the propeller blades, while we leave the
discretization of the central hub as it is, in order to achieve a homogeneous resolution of the
two different thicknesses. Whereas a uniformly refined mesh of the propeller that provides the
same resolution of the blades has 80,922 dofs, the adaptive mesh shown in Figure 7.19b has
only 53,052 dofs. In a fourth step, we equip each element cut by the geometric boundary by ad-
ditional sub-cells, which are organized in an octree of depth two, generated by the partitioning
procedure described in sub-section 7.1. The sub-cells corresponding to the leaves of the first
and second levels of the octree are shown in Figure 7.20a and 7.20b, respectively. It should be
noted again that the blue sub-cells of Figure 7.20 do not affect B-spline basis functions, which
are still defined over the set of elements shown in black lines in Figure 7.19b. Each sub-cell
contains 4×4×4 Gauss points, leading to an aggregation of integration points in cut elements
to accurately take into account the geometric boundary during numerical integration.

Following the finite cell method and the fictitious domain concept, which has been discussed
in detail in Section 2.1, parameter α specified in Equation (2.3) penalizes the elasticity matrix

7Courtesy of Prof. Manfred Krafczyk and co-workers, Institut für rechnergestützte Modellierung im Bauin-
genieurwesen, Technische Universität Braunschweig; www.tu-braunschweig.de/irmb



7.4. Hierarchical refinement, the finite cell method, and T-spline CAD surfaces 119

(a) The complete structure is immersed in
a bounding box of 30×15×30 axis-aligned
B-spline elements.

(b) Elements without support in the
physical domain of the rim are deleted.

(c) Hierarchical refinement adaptively in-
creases the resolution, where high gradi-
ents of the solution are expected.

(d) Cut elements are adaptively parti-
tioned twice for accurate integration of the
geometric boundary (473,641 sub-cells).

Figure 7.23: Immersed boundary discretization of the rim of a car wheel with the B-spline version of
the finite cell method and hierarchical refinement for adaptive stress-displacement analysis.
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Figure 7.24: Total displacements in mm, plotted on the deformed structure. Steep gradients of the
solution around the loading area on the lower edge are adaptively resolved by hierarchical refinement.

in the fictitious domain. It is introduced into the weak form of linear elasticity given in
Equation (2.1) via the stress-strain relation of Equation (2.2). The linear elastic free vibration
problem additionally considers the influence of the mass of the structure characterized by
its homogeneous density ρ. The corresponding mathematical derivation and its numerical
treatment within the finite element method are reported in detail for example in [17, 108, 222].
In analogy to the stiffness integral of Equation (2.1), parameter α of Equation (2.3) is also
applied to penalize the density ρ in the fictitious domain in order to maintain consistency with
the original problem. The weak form of the free vibration problem in the framework of the
finite cell method follows as

∫

Ω

σ : (∇sym δu) dV − λ

∫

Ω

(αρ) δu · u dV = 0 (7.6)

In the corresponding finite cell discretization, the contribution to the stiffness matrix and the
mass matrix are penalized by factor α in the sense of Equation (2.3), if a point location query
indicates that an integration point is located outside the propeller domain Ωphys. For the free
vibration analysis of the propeller, we choose a moderately small α=10−3, which prevents an
extreme ill-conditioning of the system, so that an iterative Eigenvalue solver can be applied.

The hierarchically refined mesh of Figure 7.19b is analysis suitable and is used in combi-
nation with the sub-cells of Figure 7.20 to conduct a free vibration analysis of the structure,
where the mass matrix is lumped according to the row sum method [108]. For the solution of
the Eigenvalue problem, we applied the library package ARPACK [8]. Figure 7.21 illustrates
the first seven mode shapes. The three lowest Eigenforms, each of which corresponds to one
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Figure 7.25: Von Mises stress in the rim of a car wheel (Front view).

pair of opposing blades, exhibit a rotational symmetry in the propeller plane around the center
of the hub. The next two mode shapes are the same, but the second is rotated 90◦ compared
to the first within the plane of the propeller. They are thus symmetric with respect to the two
axes that span the propeller plane. The sixth Eigenform is single and denotes a rotationally
symmetric bending of the blades out of the propeller plane. The seventh mode shape shows
an out-of-plane bending of two opposite blades. The reflection of geometric symmetries in the
Eigenforms corresponds very well to engineering experience and indicates a good quality of
the first modes. Unfortunately, we found that higher mode shapes were corrupted.

7.4.2 Stress-displacement analysis of a rim of a car wheel

The second example is a rim of a car wheel. Analogous to the propeller, its geometry is
originally described by a T-spline surface, which is exported from the CAD package Rhino
[166] using the T-spline plug-in [205] in the form of Bézier elements as shown in Figure 7.22a.
Its maximum diameter and height are 239.26 mm and 223.28 mm, respectively, and its material
is aluminium with Young’s modulus 7.0·104 N/mm2 and Poisson’s ratio 0.34. We apply an
ellipsoidal line load at the bottom outer edge of the rim in the direction of the global y-axis,
and homogeneous Dirichlet constraints at the hub fix the structure, simulating the suspension
of the wheel. Horizontal loadings typically occur due to centrifugal forces, when the vehicle



7.4. Hierarchical refinement, the finite cell method, and T-spline CAD surfaces 122

Figure 7.26: Von Mises stress in the rim of a car wheel (Bottom-up view).

enters into a curve, and are transferred from the road surface onto the outer edge of the rim
by the tire. The boundary conditions are further specified in Figure 7.22b.

The discretization procedure in the framework of the immersed boundary approach is
illustrated in Figure 7.23. In a first step, the structure is completely immersed into a cuboidal
bounding box of axis-aligned knot span elements, over which uniform B-splines are defined
(Figure 7.23a). In a second step, elements located completely outside the physical domain Ωphys

of the wheel are erased from the discretization (Figure 7.23b). The location of the elements
is determined by the straightforward point location query based procedure described in the
previous sub-section. In a third step, we apply hierarchical refinement to adaptively resolve
those parts of the structure, where we expect larger gradients in the solution fields (Figure
7.23c). The first level of refinement addresses the complex geometric parts of the spokes, the
central hub and the upper part of the tire bearing. The second level of refinement is applied
to the lower part of the tire bearing, where the loading is imposed. In a last step, we apply the
simple partitioning procedure of sub-section 7.1 to elements cut by the geometric boundary,
which generates two levels of sub-cells that accurately resolve the geometric boundary by
integration points (Figure 7.23d). The stiffness contribution of integration points located
outside the rim domain are penalized by factor α=10−6 in the sense of Equation (2.3).

Dirichlet constraints are considered in a weak sense by applying Nitsche’s method, whose
variational formulation requires an integration over the Dirichlet boundary. Taking advantage
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of the axis-aligned Dirichlet surface ΓD shown in Figure 7.22b, corresponding integrals can be
evaluated by a projection of Gauss points onto ΓD in each sub-cell that cuts ΓD. The discrete
system of equations is passed to the direct solver Pardiso [113]. The resulting deformation of
the rim is illustrated in Figure 7.24, where the displacements imposed on the structure are
magnified by a factor of 300 for better visibility. It can be observed that the solution in the
local vicinity of the loading area at the outer edge of the rim exhibits rapid changes, which
confirm the necessity of local hierarchical refinement there. The adaptive mesh of Figure 7.23c
with 105,807 dofs considerably decreases the computational effort in comparison to uniform
refinement, which requires 622,989 dofs for the same resolution of the loading area. Figures
7.25 and 7.26 show von Mises stresses, plotted on the boundaries of the undeformed structure.
Large stresses occur predominantly around the lower tire bearing, the two lower spokes and
the central hub, thus tracing the flow of forces from the loading area to the support, while
the rest of the structure remains unstressed. According to the symmetry in geometry and
boundary constraints, the stress solution is completely symmetric and exhibits the typical
stress concentration phenomena at reentrant sharp curves (see front view of Figure 7.25). Due
to the superposition of tensile membrane and bending stress, the maximum von Mises stress
occurs at the sharp reentrant bend, where the loaded boundary ring bends into the main
cylinder of the tire bearing (bottom-up view of Figure 7.26).
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Chapter 8

Summary and conclusions

The present work intends to contribute to a more efficient interaction between geometrical
models and finite element analysis to alleviate the discretization challenge for complex ge-
ometries. In this context, the main focus was placed on two specific concepts: the finite cell
method and isogeometric analysis.

In the framework of the finite cell method, four new aspects were discussed: The inde-
pendence of the finite cell concept from a special high-order basis; the B-spline version of
the finite cell method, which applies high-order and high-continuity B-spline bases within the
FCM concept; the extension of the finite cell method to geometrically nonlinear problems; and
the combination of the finite cell method with the hp-d -adaptive approach as a possibility for
local mesh refinement. The main results of this part can be summarized as follows:

◦ The finite cell method can be characterized as a seamless geometry-through-analysis pro-
cedure, which combines the fictitious domain approach with a high-order approximation
basis, adaptive integration and weak imposition of unfitted Dirichlet constraints.

◦ Basis functions of the p-version of the finite element method and B-splines constitute
suitable high-order Ansatz spaces, which successfully instantiate the characteristic FCM
properties, i.e. smooth extension of solution fields beyond the physical domain and high
rates of convergence under p-refinement. In addition, both FCM versions were shown to
yield optimal rates of convergence under h-refinement and a high quality of stresses on
geometric boundaries that cut through finite cells.

◦ For geometrically nonlinear problems, the straightforward extension of the standard
FCM formulation using the same nonlinear kinematics over the complete domain leads
to the loss of uniqueness of the deformation map in the penalized fictitious domain.

◦ A possible way out is a modified geometrically nonlinear FCM formulation, based on
repeated deformation resetting, which assumes for the fictitious domain the deformation-
free reference configuration after each Newton iteration. The uniqueness issue can be
completely circumvented, since the deformation map of the fictitious domain does not
need to be computed. Deformation resetting is equivalent to performing repeated linear
analyses in the fictitious domain, which considerably reduces the computational cost.
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◦ For the imposition of unfitted Dirichlet boundary conditions in a geometrically nonlinear
context, a simple penalty formulation, which can be easily linearized in a consistent
manner, yields excellent stress and displacement results on the Dirichlet boundary and
preserves high rates of convergence.

◦ Both FCM versions inherit the robustness of the corresponding high-order basis. They
are able to accurately represent very large deformation states despite the presence of the
fictitious domain and severe distortion of the physical parts of the finite cell meshes.

◦ The finite cell method provides a seamless geometry-through analysis procedure for voxel
based geometrical models, since it is able to directly operate on the voxel information
without any preprocessing, segmentation of the voxel data or time-consuming mesh
generation. This was illustrated by the large deformation analysis of a CT-based metal
foam sample, for which accurate results could be achieved with both FCM versions.

◦ While the overall solution characteristics were found to be equivalent, a detailed com-
parison reveals specific strengths of each FCM version: For knot span and p-version
discretizations with a comparable number of degrees of freedom, the B-spline version
tends to yield more accurate results due to the higher-order continuity of its basis. The
p-version tends to be computationally more efficient due to a lower degree of population
and bandwidth of the stiffness matrix.

◦ Hierarchical hp-d adaptivity constitutes a suitable method for local mesh refinement in
the framework of the finite cell method. In particular, it preserves the easy meshing
property as a key advantage of the FCM concept.

◦ While an hp-d -adaptive p-version of the FCM can be based on overlays of linear hierar-
chical basis functions, the hp-d -adaptive B-spline version can use overlays of hierarchical
subdivision B-splines. In a proof of concept, both FCM versions were applied for local
mesh refinement around material interfaces and singular points, which led to a consid-
erable improvement of convergence rates and motivates future work beyond this thesis.

In the framework of isogeometric analysis, a hierarchical refinement procedure based on
the intuitive concept of B-spline subdivision was derived, which combines full analysis suit-
ability with direct generalization to higher dimensions, in particular 3D, and a straightforward
implementation in tree data structures. Theoretical concepts, algorithmic and implementa-
tion aspects for hierarchical refinement of B-splines as well as their extension to NURBS were
discussed in detail. The main results of this part can be summarized as follows:

◦ Hierarchical refinement of B-splines and NUBRS as described in this work was suc-
cessfully tested as a basis for adaptive tensor-product isogeometric analysis of some
elementary fluid and structural analysis problems.

◦ Hierarchical refinement of B-splines leads to adaptive meshes with highly localized refine-
ment, and no propagation away from the areas of interest was experienced. A comparison
of adaptive hierarchical with standard uniform refinement shows that the computational
effort in terms of degrees of freedom can be in general reduced about one order of mag-
nitude at a comparable level of accuracy.
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◦ The isogeometric paradigm assumes that the initial geometry description is already ex-
act. Therefore, the initial unrefined NURBS patch can be maintained for the description
of the geometry throughout the refinement process in the sense of a sub-parametric finite
element scheme. Under these premises, only minor adjustments are necessary to directly
generalize concepts and algorithms of hierarchical B-spline refinement to NURBS.

◦ All beneficial characteristics fully carry over to three-dimensional solid NURBS dis-
cretizations, for which other refinement techniques such as T-splines have not been
shown to be applicable yet.

◦ The B-spline version of the FCM was applied for embedded domain analysis of a ship pro-
peller and a rim of a car wheel, whose geometry description was given by complex CAD
based T-spline surfaces. The examples demonstrate the potential of embedded domain
analysis for a full automation of the discretization process for CAD based geometrical
models irrespective of their geometric complexity.

◦ In this context, hierarchical refinement of NURBS can considerably increase the flexibil-
ity of B-spline based embedded domain methods in terms of adaptive resolution of local
features in geometry and solution fields, while due to its simplicity and straightforward
implementation, the key advantage of automated mesh generation for complex geome-
tries can be fully maintained.

The results of the first part show that the finite cell method is able to fully profit from the
advantages of its high-order approximation basis, such as high-rates of convergence or robust-
ness against severe mesh distortion, while at the same time it is able to seamlessly integrate
a range of important sub-methods, such as algorithms for geometric nonlinearity, Nitsche’s
method or hp-d adaptivity. We therefore believe that the finite cell method is a very flexible
tool that offers an unprecedented combination of high accuracy at a moderate computational
effort, full automation of the discretization process irrespective of the geometric complexity in-
volved, and applicability to almost any geometrical model. Based on the results of the second
part, we think that hierarchical refinement in this form has great potential to establish itself
as a straightforward, efficient and versatile technique for local refinement in NURBS based
isogeometric analysis. In addition, we are convinced that embedded domain methods such as
the B-spline version of the finite cell method can open the door for a seamless IGA design-
through-analysis procedure for complex engineering parts and assemblies, where a plethora of
highly relevant and very promising aspects still need to be examined. Examples comprise the
performance optimization of adaptive integration schemes, which could dramatically increase
the computational efficiency, the analysis of topology changes and moving boundaries, for
which embedded domain methods offer significant advantages over ALE-type approaches, or
the introduction of embedded domain suitable coupling schemes for multiphysics problems,
which stand at the forefront of today’s challenges in computational science and engineering.
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[52] Cirak F, Ortiz M, Schröder P. Subdivision surfaces: A new paradigm for thin-shell
finite-element analysis. International Journal for Numerical Methods in Engineering, 2000;
47(12):2039–2072.

[53] Codina R. On stabilized finite element methods for linear systems of convection-diffusion-
reaction equations. Computer Methods in Applied Mechanics and Engineering, 2000; 188(1-
2):61–82.

[54] Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld R. Analysis-aware modeling: Under-
standing quality considerations in modeling for isogeometric analysis. Computer Methods
in Applied Mechanics and Engineering, 2010; 199:335–356.

[55] Cottrell JA, Reali A, Bazilevs Y, Hughes TJR. Isogeometric analysis of structural vibra-
tions. Computer Methods in Applied Mechanics and Engineering, 2006; 195:5257–5296.



Bibliography 131

[56] Cottrell JA, Hughes TJR, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD
and FEA. Wiley: New York, 2009.

[57] Common Versatile Multi-purpose Library for C++, developed at the University of
Geneva; http://tech.unige.ch/cvmlcpp/ (October 13th, 2011)

[58] de Berg M, Cheong O, van Kreveld M, Overmars M. Computational Geometry: Algo-
rithms and Applications. Springer: Heidelberg, 2008.

[59] Del Pino S, Pironneau, O (2003) A fictitious domain based general pde solver. In: Numer-
ical methods for scientific computing: Variational problems and applications. Kuznetsov Y,
Neittanmaki P, Pironneau O (eds), CIMNE, Barcelona
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[70] Düster A. High order finite elements for three-dimensional, thin-walled nonlinear con-
tinua. PhD thesis, Lehrstuhl für Bauinformatik, Technische Universität München, Shaker:
Aachen, 2001.
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[192] Šoĺın P, Segeth K, Doležel I. Higher-order Finite Element Methods. Chap-
man&Hall/CRC:Boca Raton, 2004.

[193] Stein E (ed). Error-controlled Adaptive Finite Elements in Solid Mechanics. Wiley:
Chichester, 2002.

[194] Sueli E, Mayers DF. An Introduction to Numerical Analysis. Cambridge University
Press: Cambridge, 2003.

[195] Sukumar N, Chopp DL, Moës N, Belytschko T. Modeling holes and inclusions by level
sets in the extended finite-element method. Computer Methods in Applied Mechanics and
Engineering, 2001; 190:6183–6200.

[196] Suri M. Analytical and computational assessment of locking in the hp finite element
method. Computer Methods in Applied Mechanics and Engineering, 1996; 133:347–371.
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