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Abstract

We present a new model for the electricity spot price dynamics, which is able to
capture seasonality, low-frequency dynamics and extreme spikes in the market. Instead
of the usual purely deterministic trend we introduce a non-stationary independent
increments process for the low-frequency dynamics, and model the large fluctuations by
a non-Gaussian stable CARMA process. The model allows for analytic futures prices,
and we apply these to model and estimate the whole market consistently. Besides
standard parameter estimation, an estimation procedure is suggested, where we fit the
non-stationary trend using futures data with long time until delivery, and a robust
L1-filter to find the states of the CARMA process. The procedure also involves the
empirical and theoretical risk premia which – as a by-product – are also estimated.
We apply this procedure to data from the German electricity exchange EEX, where
we split the empirical analysis into base load and peak load prices. We find an overall
negative risk premium for the base load futures contracts, except for contracts close to
delivery, where a small positive risk premium is detected. Peak load contracts, on the
other hand, show a clear positive risk premium, when they are close to delivery, while
contracts in the longer end also have a negative premium.
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1 Introduction

In the last decades power markets have been liberalised world-wide, and there is a large

interest for modelling power spot prices and derivatives. Electricity spot prices are known

to be seasonally varying and mean-reverting. Moreover, a distinctive characteristic of spot

prices is the large spikes that occur due to sudden imbalances in supply and demand, for ex-

ample, when a large production utility experiences a black-out or temperatures are suddenly

dropping. Typically in these markets, different production technologies have big variations

in costs, leading to a very steep supply curve. Another characteristic of electricity is the lack

of efficient storage possibilities. Many spot price models have been suggested for electricity,

and we refer to Eydeland and Wolyniec [22] and Benth, Šaltytė Benth and Koekebakker [3]

for a discussion on various models and other aspects of modelling of energy markets.

In this paper we propose a two-factor arithmetic spot price model with seasonality, which

is analytically feasible for pricing electricity forward and futures contracts. The spot price

model consists of a continuous-time autoregressive moving average factor driven by a stable

Lévy process for modelling the stationary short-term variations, and a non-stationary long-

term factor given by a Lévy process. We derive futures prices under a given pricing measure,

and propose to fit the spot model by a novel optimisation algorithm using spot and futures

price data simultaneously. We apply our model and estimation procedure to price data

observed at the German electricity exchange EEX.

In a seminal paper by Schwartz and Smith [36] a two-factor model for commodity spot

prices is proposed. Their idea is to model the short-term logarithmic spot price variations

as a mean-reverting Ornstein-Uhlenbeck process driven by a Brownian motion, reflecting

the drive in prices towards their equilibrium level due to changes in supply and demand.

But, as argued by Schwartz and Smith [36], there may be significant uncertainty in the

equilibrium level caused by inflation, technological innovations, scarceness of fuel resources

like gas and coal etc.. To account for such long-term randomness in prices, Schwartz and

Smith [36] include a second non-stationary factor being a drifted Brownian motion, possibly

correlated with the short-term variations. They apply their model to crude oil futures traded

at NYMEX, where the non-stationary part is estimated from futures prices, which are far

from delivery. Mean-reversion will kill off the short-term effects from the spot on such futures,

and they can thus be applied to filter out the non-stationary factor of the spot prices.

This two-factor model is applied to electricity prices by Lucia and Schwartz [29]. Among

other models, they fit an arithmetic two-factor model with deterministic seasonality to elec-

tricity spot prices collected from the Nordic electricity exchange NordPool. Using forward

and futures prices they fit the model, where the distance between theoretical and observed

prices are minimised in a least-squares sense.
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A major criticism against the two-factor model considered in Lucia and Schwartz [29] is the

failure to capture spikes in the power spot dynamics. By using Brownian motion driven

factors, one cannot explain the sudden large price spikes frequently observed in spot data.

Multi-factor models, where one or more factors are driven by jump processes, may mend

this. For example, Benth, Kallsen and Meyer-Brandis [2] suggest an arithmetic spot model

where normal and spike variations in the prices are separated into different factors driven by

pure-jump processes. In this way one may model large price increases followed by fast speed

of mean-reversion together with a “base component”-behaviour, where price fluctuations are

more slowly varying around a mean level. Such multi-factor models allow for analytic pricing

of forward and futures contracts.

A very attractive alternative to these multi-factor models is given by the class of continuous-

time autoregressive moving-average processes, also called CARMA processes. These pro-

cesses incorporate in an efficient way memory effects and mean-reversion, and generalise

Ornstein-Uhlenbeck processes in a natural way (see Brockwell [11]). As it turns out, (C)ARMA

processes fit power spot prices extremely well, as demonstrated in Bernhardt, Klüppelberg

and Meyer-Brandis [7] and Garcia, Klüppelberg and Müller [24]. In [7] an ARMA process

with stable innovations, and in [24] a CARMA(2,1)-model driven by a stable Lévy process are

suggested and empirically fitted to power spot price data collected from the Singapore and

German EEX markets, respectively. A CARMA(2,1) process may be viewed on a discrete-

time grid as an ARMA(2,1) model (cf. [13]). By using a stable Lévy process to drive the

CARMA model, one is blending spikes and small innovations in prices into one process. We

remark in passing that a CARMA dynamics has been applied to model crude oil prices at

NYMEX by Paschke and Prokopczuk [31] and interest-rates by Zakamouline, Benth and

Koekebakker [41].

We propose a generalisation of the stable CARMA model of Garcia et al. [24] by including a

long-term non-stationary factor being a general Lévy process. The model allows for analytical

pricing of electricity futures, based on pricing measures, which preserve the Lévy property

of the driving processes. More precisely, we apply an Esscher measure transform to the non-

stationary part, and a transform which maps the stationary stable process into a tempered

stable. Due to the semi-affine structure of the model, the futures and forward prices become

explicitly dependent on the states of the CARMA model and the non-stationary factor.

The CARMA-based factor in the spot model accounts for the short-term variations in prices

and will be chosen stationary. By a CARMA model with a higher order autoregressive part

we may include different mean-reversion speeds, such that we can mimic the behaviour of a

multi-factor model accounting for spikes and base variations separately. The moving average

part is necessary to model the observed dependence structure. The stable Lévy process may

have very big jumps, which then can explain spike behaviour in the prices. The smaller

variations of the stable Lévy process model the base signal in power prices. As it turns out
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from our empirical investigations using market price data from the EEX, the non-stationary

long-term behaviour may accurately be modelled using a normal inverse Gaussian (NIG)

Lévy process. We filter out the non-stationary part from observing futures prices, which

are far from delivery. The influence of the stationary CARMA factor is then not present,

and the data shows a significant non-normal behaviour. This is in contrast to the choice

suggested in Schwartz and Smith [36] and applied in Lucia and Schwartz [29]. Moreover, we

find that a CARMA(2,1) model is accurately explaining mean-reversion and memory effects

in spot data.

A novelty of our paper apart from generalising existing one and two factor models, is our

estimation procedure. Lucia and Schwartz [29] propose an iterative algorithm for estimating

their two-factor model to NordPool electricity data, where they minimise the least-squares

distance between the theoretical and observed forward and futures prices to find the risk-

neutral parameters. In order to find the theoretical prices, they must have the states of

the two factors in the spot model accessible. Since these are not directly observable, they

choose an iterative scheme, where they start with a guess on the parameter values, find

the states minimising distance, update parameters by estimation, find the states minimising

the distance etc. until convergence is reached. We propose a different approach, utilising

the idea in Schwartz and Smith [36] that the non-stationary factor is directly observable,

at least approximately, from forward prices, which are far from delivery. We apply this to

filter out the non-stationary factor. The CARMA-part is then observable from spot prices,

where the seasonality and non-stationary term have been subtracted. Since we work with

stable processes, which do not have finite second moments, L2-filters cannot be used to

find the states of the CARMA-process. We propose a simple L1-filter being more robust

with respect to spikes in spot data to do this. The problem we are facing is to determine,

what contracts to use for filtering out the non-stationary part. To find an optimal “time-

to-maturity” which is sufficiently far from delivery, so that the futures prices behave as the

non-stationary factor and at the same time provide a sufficiently rich set of data, we use an

optimisation algorithm, which minimises the least-square distance between the empirical and

theoretical risk premium. In order to find the risk premia, we must have all the parameters

of the model available, which in turn can only be found, if we know which futures contracts

can be used for filtering the long-term factor. We implement an algorithm, which estimates

all model parameters for futures contracts with different times to maturities and minimises

the distance to the empirical risk premium.

We apply our model and estimation scheme to data from the German EEX (European

Energy Exchange) market where we use spot prices as well as futures prices of contracts

with a delivery period of one month. Our empirical studies cover both base load and peak

load contracts, where base load contracts are settled against the average of all hourly spot

prices in the delivery period. Peak load futures contracts are settled against the average of
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hourly spot prices in peak periods of the delivery period. The peak load period is the period

between 8 a.m. and 8 p.m., during every working day. As a first summary, we can say that

the results for both base and peak load data are in general rather similar. However, peak

load data show a more extreme behaviour. The average risk premium decays when time

to maturity increases, and is negative for contracts in the longer end of the futures curve.

This points towards a futures market, where producers use the contracts for hedging and in

return accept to pay a premium to insure their production, in accordance with the theory

of normal backwardation. The risk premium is completely determined by the effect of the

long-term factor, which induces a close to linear decay as a function of “time-to-maturity”.

We see that for base load contracts the risk premium in the short end of the curve is only

slightly positive. The risk premium is negative for contracts starting to deliver in about two

months or later. On the other hand, peak load contracts have a clear positive risk premium,

which turns to a negative one for contracts with delivery in about four months or later. The

positive risk premium for contracts close to delivery tells us that the demand side (retailers

and consumers) of the market is willing to pay a premium for locking in electricity prices as

a hedge against spike risk (see Geman and Vasicek [23]).

Due to the German “Energiewende”, where carbon-intensive energy production is gradu-

ally substituted with renewable power sources like wind and photovoltaic, one may expect

different results on the risk premium in the short end of the German forward and futures

market. Power generated from wind and sun has priority into the German power system and

has recently caused prices to spike downwards and even become negative at some instances.

Hence, retailers may not have strong incentives to hedge short-term price risk any longer,

and we may expect the risk premium to be negative also in the short end of the forward

market. The data analysis performed in this paper covers a period, where renewable power

generation in the EEX area was small compared to the current situation. However, the model

and methods developed in the present paper go beyond the specific data sets analysed in

this paper. Moreover, given sufficiently long data history, it will be of interest in the future

to fit our model to data from the new market regime.

Our results are presented as follows. In Section 2 we present the two-factor spot model, and

we compute analytical futures prices along with a discussion of pricing measures in Section 3.

Section 4 explains in detail the estimation steps and the procedure applied to fit the model

to data. The results of this estimation procedure applied to EEX data is presented and

discussed in Section 5. We conclude in Section 6.

Throughout we use the following notation. For a matrix D we denote by D∗ its transposed,

and I is the identity matrix. For p ∈ N we denote by ep the p-th unit vector. The matrix

exponential eAt is defined by its Taylor expansion eAt = I +
∑∞

n=1
(At)n

n!
with identity matrix

I. We also denote by log+ x = max(log x, 0) for x ∈ R.
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2 The spot price dynamics

In most electricity markets, like the EEX, hourly spot prices for the delivery of 1 MW of

electricity are quoted. As is usual in the literature on electricity spot price modelling, one

assumes a continuous-time model and estimates it on the discretely observed daily average

spot prices. We refer, for instance, to Lucia and Schwartz [29] and Benth, Šaltytė Benth and

Koekebakker [3] for more details.

We generalise the α-stable (C)ARMA model of Bernhardt, Klüppelberg and Meyer-Brandis [7]

and Garcia, Klüppelberg and Müller [24] by adding a non-stationary stochastic component

in the trend of the spot dynamics. By modelling the trend as a combination of a stochastic

process and a deterministic seasonality function rather than only a deterministic seasonality

function, which seems common in most models, we are able to describe the low frequency

variations of the spot dynamics quite precisely. As it turns out, this trend will explain a

significant part of the futures price variations and lead to an accurate estimation of the risk

premium in the EEX market.

Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space satisfying the usual conditions of com-

pleteness and right continuity. We assume the spot price dynamics

S(t) = Λ(t) + Z(t) + Y (t), t ≥ 0, (2.1)

where Λ is a deterministic trend/seasonality function and Z is a Lévy process with zero

mean. The process Z models the low-frequency non-stationary dynamics of the spot, and

can together with Λ be interpreted as the long-term factor for the spot price evolution. The

process Y accounts for the stationary short-term variations. We will assume that Y and Z

are independent processes. We follow Garcia et al. [24] and Bernhardt et al. [7] and suppose

that Y is a stationary CARMA-process driven by an α-stable Lévy process.

2.1 The stable CARMA-process

We introduce stationary CARMA(p, q)-Lévy processes (see Brockwell [11]) and discuss its

relevant properties.

Definition 2.1 (CARMA(p, q)-Lévy process).

A CARMA(p, q)-Lévy process {Y (t)}t≥0 (with 0 ≤ q < p) driven by a Lévy-process L is

defined as the solution of the state space equations

Y (t) = b∗X(t) (2.2)

dX(t) = AX(t)dt+ epdL(t), (2.3)
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with

b =


b0
b1
...

bp−2
bp−1

 , ep =


0

0
...

0

1

 , A =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0
... 1

−ap −ap−1 −ap−2
... −a1

 .

where a1, . . . , ap, b0, . . . , bp−1 are possibly complex-valued coefficients such that bq = 1 and

bj = 0 for q < j ≤ p. For p = 1 the matrix A is to be understood as A = −a1.

The driving process L of Y will be a non-Gaussian α-stable Lévy process {L(t)}t≥0 with

characteristic function given by lnEeizL(t) = tφL(z) for z ∈ R, where,

φL(z) =

{
−γα|z|α(1− iβ(sign z) tan

(
πα
2

)
) + iµz for α 6= 1,

−γ|z|(1 + iβ 2
π
(sign z) log |z|) + iµz for α = 1.

(2.4)

The sign function is defined by sign z = −1 for z < 0, sign z = 1 for z > 0 and sign 0 = 0,

respectively. Further, α ∈ (0, 2) is the shape parameter, γ > 0 the scale, β ∈ [−1, 1] the

skewness, and µ the location parameter. If γ = 1 and µ = 0, then L is called standardised.

The parameter α ∈ (0, 2) determines the tail of the distribution function of L(t) for all t ≥ 0.

Moreover, only moments strictly less than α are finite, so that no second moment exists.

This implies also that the autocorrelation function does not exist. For further properties

on stable processes and Lévy processes, we refer to the monographs Samorodnitsky and

Taqqu [34] and Sato [35].

The solution of the SDE (2.3) is a p-dimensional Ornstein-Uhlenbeck (OU) process given by

X(t) = eA(t−s)X(s) +

∫ t

s

eA(t−u)epdL(u), 0 ≤ s < t, (2.5)

where the stable integral is defined as in Ch. 3 of Samorodnitsky and Taqqu [34]. From (2.2)

we find that Y is given by

Y (t) = b∗eA(t−s)X(s) +

∫ t

s

b∗eA(t−u)epdL(u), 0 ≤ s < t. (2.6)

Equations (2.2) and (2.3) constitute the state-space representation of the formal p-th order

SDE

a(D)Y (t) = b(D)DL(t), t ≥ 0, (2.7)
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where D denotes differentiation with respect to t, and

a(z) := zp + a1z
p−1 + · · ·+ ap (2.8)

b(z) := b0 + b1z + · · ·+ bqz
q (2.9)

are the characteristic polynomials. Equation (2.7) is a natural continuous-time analogue of

the linear difference equations, which define an ARMA process (cf. Brockwell and Davis [13]).

Throughout we assume that Y and X are stationary in the sense that all finite dimensional

distributions are shift-invariant. Based on Proposition 2.2 of Garcia et al. [24] (which sum-

marises results by Brockwell and Lindner [15]) we make the following assumptions to ensure

this:

Assumptions 2.2. Stationarity of CARMA-process.

(i) The polynomials a(·) and b(·) defined in (2.8) and (2.9), resp., have no common zeros.

(ii) E
[
log+ |L(1)|

]
<∞.

(iii) All eigenvalues of A are distinct and have strictly negative real parts.

Assumptions (ii) and (iii) imply that X is a causal p-dimensional OU process, hence also Y

is causal.

Remark 2.3. Our model is a significant generalisation of the two-factor dynamics of Schwartz

and Smith [36] and Lucia and Schwartz [29]. Among various models, Lucia and Schwartz [29]

suggested a two factor dynamics of the spot price evolution based on a short term Gaussian

OU process and a long-term drifted Brownian motion. In our framework a Gaussian OU

process would correspond to a Gaussian CARMA(1,0) process. It is clear that such a Gaus-

sian model cannot capture the large fluctuations in the spot price, like for example spikes,

and jump processes seem to be the natural extension. Based on the studies of Bernhardt et

al. [7] and Garcia et al. [24], α-stable processes are particularly suitable for the short-term

dynamics in the spot price evolution. Furthermore, empirical analysis of electricity spot price

data from Singapore and Germany in [7] and [24] shows strong statistical evidence for full

CARMA processes to capture the dependency structure of the data. As for the long-term

baseline trend, we shall see in Section 4 that a normal inverse Gaussian Lévy process is

preferable to a Gaussian process in a data study from the German electricity exchange EEX.

�

2.2 Dimensionality of CARMA-processes

A more standard model in electricity is to describe the spot by a sum of several OU processes,

where some summands describe the spike behaviour and others the baseline dynamics (see
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for example the model in Benth et al. [2]). A CARMA process is in a sense comparable to

such models, as we now discuss.

By Assumption 2.2(iii) A has full rank, i.e. it is diagonalisable with eAt = UeDtU−1. Here,

D is a diagonal matrix with the eigenvalues λ1, . . . , λp of A on the diagonal and U is the full

rank matrix having the eigenvectors of A as columns. Since all eigenvalues have negative real

parts, all components of eAt are mean-reverting. Each component of the vector eA(t−s)X(s)

from (2.6) will therefore mean-revert at its own speed, where the speed of mean-reversion is

a linear combination of the diagonal elements of eDt.

As we shall see in a simulation example of a CARMA(2,1)-process in Section 4.5, the model

captures the situation, where a first component has a slower rate of mean-reversion than

the second (see Fig. 5). This is similar to a two-factor spot model, where base and spike

components of the spot price evolution are separated into two OU processes with different

speeds of mean-reversion. The advantage of working with a stable CARMA process, as

we propose, is that it is possible to capture the distribution of the small and large jumps

in one distribution. Since extreme spikes are rather infrequently observed, it is difficult to

calibrate the spike component in a conventional two-factor model; this has been observed in

Klüppelberg et al. [26]. With our CARMA-model, we avoid the difficult question of spike

identification and filtering.

3 The futures price dynamics

In commodity markets, futures contracts are commonly traded on exchanges, including elec-

tricity, gas, oil, and coal. In this section we derive the futures price dynamics based on the

α-stable CARMA spot model (2.1). Appealing to general arbitrage theory (see e.g. Duffie

[20], Ch.1), we define the futures price f(t, τ) at time t for a contract maturing at time τ by

f(t, τ) = EQ [S(τ) | Ft] , 0 ≤ t ≤ τ <∞ , (3.1)

where Q is a risk-neutral probability measure. This definition is valid as long as S(τ) ∈
L1(Q). In the electricity market, the spot cannot be traded, and every Q ∼ P will be a risk-

neutral probability (see Benth et al. [3]). For example, Q = P is a valid choice of a pricing

measure. In that case, the condition S(τ) ∈ L1(P ) is equivalent to a tail parameter α of the

stable process L being strictly larger than one, and a process Z with finite expectation. In

real markets one expects a risk premium and hence it is natural to use a pricing measure

Q 6= P . We will discuss possible choices of risk-neutral probability measures Q in Section 3.1.

Based on our spot price model, we find the following explicit dynamics of the futures price

for a given class of risk-neutral probability measures:
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Theorem 3.1. Let S be the spot dynamics as in (2.1), and suppose that Q ∼ P is such that

L and Z are independent Lévy processes under Q. Moreover, assume that the processes Z

and L have finite first moments under Q. Then the futures price dynamics for 0 ≤ t ≤ τ is

given by

f(t, τ) = Λ(τ) + Z(t) + b∗eA(τ−t)X(t) + (τ − t)EQ[Z(1)] + b∗A−1
(
I − eA(τ−t)

)
ep EQ[L(1)] .

Proof. Using (3.1), f(t, τ) = EQ[S(τ) | Ft] = Λ(τ) + EQ[Z(τ) | Ft] + EQ[Y (τ) | Ft]. Since Z

is a Lévy process under Q, we find

EQ[Z(τ) | Ft] = Z(t) + EQ[Z(τ)− Z(t) | Ft] = Z(t) + (τ − t)EQ[Z(1)] .

Now denote by M(u) = L(u) − EQ[L(1)]u for t ≤ u ≤ τ , which has zero mean. Then, by

partial integration,

EQ
[∫ τ

t

b∗eA(τ−u)ep dM(u)

]
= EQ

[
b∗epM(τ)− b∗eA(τ−t)epM(t)

]
−
∫ τ

t

b∗AeA(τ−u)ep EQ[M(u)]du = 0 ,

which implies EQ
[∫ τ

t

b∗eA(τ−u)ep dL(u)

]
= EQ[L(1)]

∫ τ

t

b∗eA(τ−u)ep du .

Hence, the CARMA part of the spot dynamics converts to

EQ[Y (τ) | Ft] = EQ
[
b∗eA(τ−t)X(t) +

∫ τ

t

b∗eA(τ−u)ep dL(u)|Ft
]

= b∗eA(τ−t)X(t)+EQ
[∫ τ

t

b∗eA(τ−u)ep dL(u)

]
= b∗eA(τ−t)X(t)+

∫ τ

t

b∗eA(τ−u)ep duEQ[L(1)]

= b∗eA(τ−t)X(t) + b∗A−1
(
I − eA(τ−t)

)
ep EQ[L(1)] .

Combining the terms yields the result.

In electricity markets the futures contracts deliver the underlying commodity over a period

rather than at a fixed maturity time τ . For instance, in the German electricity market

contracts for delivery over a month, a quarter or a year, are traded. These futures are

sometimes referred to as swaps, since during the delivery period a fixed (futures) price of

energy is swapped against a floating (uncertain) spot price. The futures price is quoted as

the price of 1 MWh of power and, therefore, it is settled against the average spot price over

the delivery period. Hence, the futures price F (t, T1, T2) at time 0 ≤ t ≤ T1 < T2 for a

contract with delivery period [T1, T2] is defined as

F (t, T1, T2) = EQ
[

1

T2 − T1

∫ T2

T1

S(τ)dτ
∣∣∣Ft] , (3.2)
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where we have assumed that settlement of the contract takes place at the end of the delivery

period, T2.

Using Theorem 3.1 we derive by straightforward integration the swap price dynamics

F (t, T1, T2) from (3.2).

Corollary 3.2. Suppose all assumptions of Theorem 3.1 are satisfied. Then,

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

Λ(τ)dτ + Z(t) +
b∗A−1

T2 − T1
(
eAT2 − eAT1

)
e−AtX(t) + ΓQ(t, T1, T2)

where

ΓQ(t, T1, T2) =

(
1

2
(T2 + T1)− t

)
EQ[Z(1)]− b∗A−2

T2 − T1
(
eAT2 − eAT1

)
e−Atep EQ[L(1)]

+ b∗A−1ep EQ[L(1)] .

Proof. By Fubini’s theorem, we find

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

f(t, τ) dτ .

Applying Theorem 3.1 and integrating yield the desired result.

The risk premium is defined as the difference between the futures price and the predicted

spot, that is, in terms of electricity futures contracts,

Rpr(t, T1, T2) = F (t, T1, T2)− E
[

1

T2 − T1

∫ T2

T1

S(τ) dτ | Ft
]
. (3.3)

From Cor. 3.2 we find that the theoretical risk premium for a given pricing measure Q is

R(t, T1, T2) = ΓQ(t, T1, T2)− ΓP (t, T1, T2)

=

(
1

2
(T2 + T1)− t

)
EQ[Z(1)]− b∗A−2

T2 − T1
(
eAT2 − eAT1

)
e−Atep (EQ[L(1)]− E[L(1)])

+b∗A−1ep (EQ[L(1)]− E[L(1)]) . (3.4)

Here, we used the assumption that Z has zero mean under P . The first term gives a trend

in ”time to maturity” implied by the non-stationarity part Z in the spot price dynamics.

”Time to maturity” is here interpreted as time left to the middle of the delivery period. The

two last terms are risk premia contributions from the CARMA short-term spot dynamics.

They involve an explicit dependence on the speeds of mean-reversion of the autoregressive

parts and the memory in the moving-average part. We will estimate the risk premium in

the empirical analysis of spot and futures data from the EEX.

11



3.1 Equivalent measure transforms for Lévy and α-stable pro-

cesses

In this subsection we discuss a class of pricing measures that will be used for the specification

of the futures price dynamics.

We require from the pricing measure that Z and L preserve the Lévy property and inde-

pendence. For this purpose, we consider probability measures Q = QL ×QZ , where QL and

QZ are measure changes for L and Z, respectively (leaving the other process unchanged).

Provided Z has exponential moments, a standard choice of measure change is given by the

Esscher transform (see Benth et al. [3], Section 4.1.1). Note that L, the α-stable process in

the CARMA-dynamics, does not have exponential moments.

We define the density process of the Radon-Nikodym derivative of QZ as

dQZ

dP

∣∣∣
Ft

= exp (θZZ(t)− φZ(θZ)t) , t ≥ 0, (3.5)

for a constant θZ ∈ R and φZ being the log-moment generating function of Z(1) (sometimes

called the cumulant function of Z). In order to make this density process well-defined,

exponential integrability of the process Z up to the order of θZ must be assumed. Under

this change of measure, the Lévy measure of Z will be exponentially tilted by θZ , that is,

if we denote the Lévy measure of Z (under P ) by ν(dx), then its Lévy measure under QZ

becomes νQZ (dx) = exp(θZ)ν(dx) (see Benth et al. [3], Section 4.1.1-4.1.2 for details).

To choose a risk-neutral measure QL is a more delicate task. We know from Sato [35],

Theorems 33.1 and 33.2, that equivalent measures Q exist for stable processes, however, it

seems difficult to construct one which preserves the stable property. As an alternative, one

may introduce the class of tempered stable processes (see e.g. Cont and Tankov [17], Chapter

9), and apply standard Esscher transformation on these.

A tempered stable process is a pure jump Lévy process, where the stable-like behaviour

is preserved for the small jumps. However, the tails are tempered and, therefore, extreme

spikes are less likely to be modelled with the tempered stable process. The Lévy measure is

given by

νTS(dx) =
c+e

θLx

x1+α
1(0,∞)(x) dx+

c−e
θL|x|

|x|1+α
1(−∞,0)(x) dx . (3.6)

Here, θL ≤ 0 and c−, c+ ∈ R+. A consequence of the tempering is that certain exponential

moments exist. Tempering of a stable distribution results in a tempered stable distribution,

and is analogous to taking an Esscher transform of the stable process using a negative

parameter θL on the positive jumps, and a positive parameter −θL on the negative jumps.

12



In particular, define q : R 7→ R as q(x) := eθLx 1(0,∞)(x) + eθL|x| 1(−∞,0)(x) for some constant

θL < 0. Suppose the stable process L has (under P ) the characteristic triplet (γL, 0, νL),

where

νL(dx) =
c+
x1+α

1(0,∞)(x) dx+
c−
|x|1+α

1(−∞,0)(x) dx

is the Lévy measure of L. The parameters c+, c− can be matched to the parameters in (2.4)

using Example 2.3.3 of Samorodnitsky and Taqqu [34]. Then the tempered stable measure

QL with characteristic triplet (γTS, 0, νTS) is equivalent to the physical probability measure P

(see Cont and Tankov [17], Proposition 9.8), with drift parameter γTS. For our application it

is of particular value to have finite expectations and to know the expectations of L(1) under

P and QL, corresponding to α ∈ (1, 2). In this case

γTS = γL +

∫
{|x|<1}

x(q(x)− 1)νL(dx) (3.7)

and the Lévy measure νTS is given by νTS(dx) = q(x)νL(dx).

Lemma 3.3. Let L be an α-stable Lévy process under P with α ∈ (1, 2). Find QL by stable

tempering for θL < 0 as in (3.6). Then the difference in mean of L(1) under QL and P is

given by

EQL [L(1)]− E[L(1)] = Γ(1− α)(−θL)α−1 (c+ − c−) , (3.8)

where Γ is the gamma function.

Proof. Using (3.7) and the Lévy-Khintchine formula (e.g. Cont and Tankov [17], Prop. 3.13)

for 1 < α < 2 we obtain

E[L(1)]− EQL [L(1)] = γL − γTS +

∫
{|x|>1}

x(νL − νTS)(dx)

= γL − γTS +

∫
{|x|>1}

x(1− q(x))νL(dx)

= c−

∫ 0

−∞
(1− eθL|x|) dx

x1+α
+ c+

∫ ∞
0

(1− eθLx) dx

x1+α

= −Γ(1− α)(−θL)α−1 (c+ − c−) , (3.9)

where we have used partial integration on the two integrals and l’Hospital’s rule to obtain

the last identity. This proves the result.

Remark 3.4. By altering θL one can match any relevant change of mean in the risk premium

EQ[L(1)] − E[L(1)], as long as this can be obtained by a negative choice of θL. This turns

out to be appropriate for our applications. �
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4 Fitting the model to German electricity data

Our data are daily spot and futures prices from July 1, 2002 to June 30, 2006 (available from

http://eex.com). We fitted our model both to base load and peak load data, respectively.

The futures contracts considered in this analysis are the Phelix-Base-Month-Futures and

the Phelix-Peak-Month-Futures. Base load futures contracts are settled against the average

of all hourly spot prices in the delivery period. Peak load futures contracts, on the other

hand, are settled against the average of the hourly spot prices in peak periods of the delivery

period. The peak period is counted as the hours between 8 a.m. and 8 p.m. every working

day during the delivery period. The time series of daily spot prices used for our combined

statistical analysis is taken to match the futures contracts: for the base load contracts we

use the full time series consisting of daily observations including weekends (i.e., we have 7

observations per week), while in the case of peak load contracts the weekends are excluded

(i.e., we have 5 observations per week).

Figures 1 and 2 show the spot and futures prices for both base load and peak load. From

these plots we can see similar patterns of the base and peak load data, however, peak load

data are more extreme. Note that all plots cover the same time period; however, for the

base spot data we have 1461 observations, whereas for the peak spot data we have only 1045

observations in the same period, due to the missing weekends.

The estimation procedure for our model consists of several steps, which are explained in the

following.

4.1 Seasonality function Λ

The estimation of the deterministic trend component Λ is a delicate question. A mis-

specification of the trend has a significant effect on the subsequent analysis, in particular, on

the risk premium. Motivated by the seasonality functions used in Bernhardt et al. [7] and

Garcia et al. [24], we take the seasonality function of the peak load contracts as a combination

of a linear trend and some periodic function

Λp(t) = c1 + c2t+ c3 cos

(
2πt

261

)
+ c4 sin

(
2πt

261

)
. (4.1)

Note that we choose a slightly simpler seasonality function than Bernhardt et al. [7] and

Garcia et al. [24], only taking the mean level, a linear trend and a yearly periodicity (mod-

elling the weather difference between summer and winter) into account. Weekly periodicity

in peak load contracts is not that pronounced, since weekends are not considered in peak

14
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Figure 1: Daily spot prices from July 1, 2002 to June 30, 2006, base load (top) and peak load

(bottom).

load data. Since no new trading information is entering during the weekend (trading takes

place during weekdays), we will adjust the periodicity to 261 and consider the peak load

contracts as a continuous process on all non-weekend days.

In the base load prices a clear weekly seasonality is visible. Weekend prices are in general

lower than during the rest of the week, and over the week one observes the pattern that

Monday and Friday have prices lower than in the middle of the week. Therefore we include

a weekly term in the base load seasonality function:

Λb(t) = c1 + c2t+ c3 cos

(
2πt

365

)
+ c4 sin

(
2πt

365

)
+ c5 cos

(
2πt

7

)
+ c6 sin

(
2πt

7

)
.(4.2)

Since time t is running through the weekends, a yearly periodicity of 365 is chosen.

In the following, we will analyse both data sets, base load data and peak load data (spot

and futures, respectively). For simplicity we will suppress the indices p for peak load and b

for base load.

The seasonality functions can be estimated using a robust least-squares estimate on the

data; see Table 4.1 for the resulting estimates. The first plot of Figure 3 shows the 1461
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Figure 2: Daily futures prices from July 1, 2002 to June 30, 2006, base load (top) and peak

load (bottom).

observations of the base data set together with the estimated trend and seasonality curve,

the second plot zooms into this plot and shows these curves for the first 200 observations.

From this second plot we can clearly see that the daily seasonality is captured by Λ quite

accurately. For the peak data over the same period (consisting of 1045 observations) we

get similar plots (hence, we omit them here), except of the fact that Λ does not show a

weekly seasonality in this case. The overall growth rate was very small during the data

period, justifying a linear term as a first order approximation. Note that we have introduced

the non-stationary stochastic process Z to absorb all stochastic small term effects in the

seasonality. This term will play a prominent role for the futures prices later.

c1 c2 c3 c4 c5 c6

Base 19.4859 0.0217 −2.8588 0.6386 −6.7867 2.8051

Peak 30.7642 0.0349 −2.5748 1.5762

Table 4.1: Estimated parameters of the seasonality function Λ(·).

.
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Subtracting the estimated seasonality function from the spot data leaves us with the reduced

model Z(·)+Y (·), where we have neglected in our notation the fact that we have subtracted

only an estimator of Λ(·).

spot price and estimated seasonality / July 1, 2002 to June 30, 2006 (base)

time
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Figure 3: Base spot prices and estimated seasonality function. Top: whole period (1461

observations). Bottom: first 200 observations.

Next we want to estimate both components Z and Y applying the deseasonalised spot price

data and the futures prices. We will exploit the fact that the futures prices far from delivery

will have a dynamics approximately given by the non-stationary trend component Z. Only

relatively close to delivery, large fluctuations in the spot price dynamics are reflected in the

futures prices. Since it is not clear how far away from delivery we need to be before the

approximation of futures prices by Z works well, we will use an optimisation routine to find

the optimal distance. For this purpose, we introduce the notation u := 1
2
(T1 +T2)− t, which

will be referred to as “time to maturity”.

Denote by û∗ the optimal time to maturity (we will define what we understand by “optimal”

below), where futures contracts with time to maturity u ≥ û∗ have a dynamics approximately

behaving like the non-stationary term. How big to choose û∗ is not possible to determine a

priori, since we must analyse the error in an asymptotic consideration of the futures prices

(see (4.3) and (4.4) below). This error is highly dependent on the parameters of the spot
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price model, which we do not yet know. In the end, û∗ will be chosen so that the error in

the risk premium estimation is minimal; cf. Section 4.6.

The estimation will, therefore, be repeated using different values of u∗ (this parameter will

sometimes be called threshold in the following); i.e., we choose a subset U∗ :=
[
u∗min, u

∗
max

]
⊆

[v/2,Mf ], where v is the average delivery period and Mf is the maximal time to maturity

observed in the futures data set, and perform the steps of the Sections 4.2–4.6 below repeat-

edly for u∗ ∈ U∗. For each value u∗ ∈ U∗ the error in the risk premium is calculated, and û∗

is the value which minimises this error among all u∗ ∈ U∗. This optimal threshold û∗ is then

considered as final choice of u∗ for the calculation of all estimates including the processes Z

and Y and for the CARMA parameters.

One should keep in mind that for too large u∗ there are only a few data points available with

u ≥ u∗, which yields unreliable estimates. Since we count the time to maturity as number of

trading days until the mid of the delivery period (which has length v), time to maturity is

always at least v/2; hence we do not consider any u∗ smaller than v/2. Overall, we decided

to choose u∗min = dv/2e (which is 16 for the base load and 11 for the peak load data) and

u∗max = Mf/2 (note that Mf is 200 days for the base load and 144 days for the peak load

contracts). As we will see later, the optimal û∗ in our data examples is quite small, so that

this choice of u∗max is completely satisfying.

Next, we want to explain in detail, how we separate Z and Y for a given fixed time to

maturity. Consequently, we perform the model estimation for all 1
2
(T1 +T2) ≤ u∗ ≤ 200(144)

and take all futures prices for the estimation procedure, whose time to maturity u ≥ u∗.

We explain each step in the estimation procedure in detail:

4.2 Filtering the realisation of the non-stationary stochastic pro-

cess Z

Recall the futures price F (t, T1, T2) in Corollary 3.2. Since we assume that the high-frequency

CARMA term Y is stationary, it holds for fixed length of delivery T2 − T1 that

lim
T1,T2→∞

b∗A−1

T2 − T1
(
eAT2 − eAT1

)
e−AtX(t) = 0 (4.3)

lim
T1,T2→∞

b∗A−2

T2 − T1
(
eAT2 − eAT1

)
e−Atep EQ[L(1)] = 0 . (4.4)

Hence, in the long end of the futures market, the contribution from Y to the futures prices

may be considered as negligible. In particular, from the futures price dynamics (Corol-
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lary 3.2) we find for [T1, T2] far into the future (that is, t much smaller than T1) that

F̃ (t, T1, T2) := F (t, T1, T2)−
1

T2 − T1

∫ T2

T1

Λ(τ)dτ

≈ Z(t) + b∗A−1ep EQ[L(1)] +

(
1

2
(T1 + T2)− t

)
EQ[Z(1)]. (4.5)

Recalling the notation u := 1
2
(T1 + T2)− t coined “time-to-maturity”, we slightly abuse the

notation and introduce F̃ (t, u) := F̃ (t, T1, T2).

For u ≥ u∗, we approximate

µF̃ (u) := E[F̃ (t, u)]

≈ E[Z(t)] + b∗A−1ep EQ[L(1)] + uEQ[Z(1)]

= b∗A−1ep EQ[L(1)] + uEQ[Z(1)]

=: C + uEQ[Z(1)] , (4.6)

where we have used the zero-mean assumption of Z under P . This approximative identity

can now be used for a robust linear regression on the time to maturity u, in order to estimate

the real numbers C and EQ[Z(1)]. Knowing these two parameters enables us to filter out

the realisation of the process Z. According to Equation (4.5) we obtain

Ẑ(t) = Ẑ

(
1

2
(T1 + T2)− u

)
=

1

cardU(t, u∗)

∑
(u,T1,T2)∈U(t,u∗)

[
F̃ (t, T1, T2)− Ĉ − u ÊQ[Z(1)]

]
,

(4.7)

where U(t, u∗) :=
{

(u, T1, T2) ∈ R3 |u ≥ u∗ and ∃F (t, T1, T2) : 1
2
(T1 + T2)− t = u

}
.

Remark 4.1. Note that after estimating the CARMA parameters, we can also find an

estimate for EQ[L(1)] simply by taking ÊQ[L(1)] = Ĉ(b̂∗Â−1ep)
−1. �

Remark 4.2. We recall that the futures market at EEX is not open for trade during the

weekend. Therefore, using our estimation procedure, we do not get any observations of Z

during weekends. We will assume that Z is constant and equal to the Friday value over the

weekend, when filtering the non-stationary part of the spot in the base load model. One

may argue that this strategy could lead to observed large jumps of Z on Monday morning,

when all information accumulated over the weekend is subsumed at once. We will return to

this question in Section 5.1. �

4.3 Estimation of the CARMA parameters

Recall our spot price model (2.1)

S(t) = Λ(t) + Y (t) + Z(t), t ≥ 0.
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After Λ(·) and Z(·) have been estimated in Subsections 4.1 and 4.2, respectively, a realisation

of the CARMA-process Y can be found by subtracting both from the spot price. Figure 4

shows the estimated processes Z (bold line) and Y +Z (fine line) for both the base and the

peak load data, for the full period July 1, 2002 to June 30, 2006 and for u∗ = 16 exemplarily.

Obviously, the process Z captures the medium-range fluctuations and Y the short-range

fluctuations of the detrended and deseasonalised process Y + Z.

estimated processes Z and Y+Z / July 1, 2002 to June 30, 2006 (base)

time
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Figure 4: Estimated processes Z (bold line) and Y +Z (fine line) in the period July 1, 2002,

to June 30, 2006, for both the base load data (top) and the peak load data (bottom).

Again we keep in mind that the process Y is the result of some estimation procedure. There

exists a number of papers devoted to the estimation of the CARMA parameters in L2 (see

for instance Brockwell et al. [14], Tsai and Chan [37]). Methods can be based either directly

on the continuous-time process or on a discretised version. The latter relates the continuous-

time dynamics to a discrete time ARMA process. The advantage of this method is obvious,

since standard packages for the estimation of ARMA processes may be used in order to

estimate the parameters of the corresponding CARMA process. Some care, however, is

needed since this approach does not work in all cases. Brockwell and collaborators devote

several papers to the embedding of ARMA processes in a CARMA process; cf. [10, 12]. Not

every ARMA(p, q) process is embeddable in a CARMA(p, q) process.
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From Assumptions 2.2, it follows by Proposition 2 of Brockwell et al. [14] (cf. also Garcia

et al. [24], Prop. 2.5) that every CARMA(p, q) process Y observed at discrete times can be

represented as an autoregressive process of order p with a more complex structure than a

moving average process for the noise. For such a discretely observed CARMA process Y on

a grid with grid size h, denoting the sequence of observations by {yn}n∈N; i.e. yn , Y (nh),

Prop. 3 of Brockwell et al. [14] gives
p∏
i=1

(1− eλihB)yn = εn. (4.8)

Here, B is the usual backshift operator and {εn}n∈N is the noise process, which has repre-

sentation

εn =

p∑
i=1

κi
∏
j 6=i

(1− eλjhB)

∫ nh

(n−1)h
eλi(nh−u)dL(u) . (4.9)

The constants κi are given by κi := b(λi)/a
′(λi) and λ1, . . . , λp are the eigenvalues of A. The

process {εn}n∈N is (p− 1)-dependent. When L has finite variance, εn has a moving average

representation; cf. Brockwell et al. [13], Proposition 3.2.1. However, for the case of infinite

variance this is no longer true and causes problems.

Davis [18], Davis and Resnick [19] and Mikosch et al. [30] have proved that ordinary L2-

based estimation methods for ARMA parameters may be used for α-stable ARMA processes,

although they have no finite second moments. Moreover, Davis and Resnick [19] showed

that the empirical autocorrelation function of an α-stable ARMA process yields a consistent

estimator of the linear filter of the model, although the autocorrelation function of the process

does not exist. In [19] it has also been shown that the rate of convergence is faster than in the

L2-case. Since [18], [19], and [30] all assume a strong ARMA process, and Proposition 3.2.1

in [13] is not applicable here, these results cannot be transferred to our situation, where

{εn}n∈N is (p − 1)-dependent. However, the simulation study in Garcia et al. [24] gives

strong evidence that the estimates of the CARMA parameters are quite accurate. A formal

proof of the consistency is subject of current research.

Already in the analysis performed in Garcia et al. [24] the CARMA(2,1) process has been

found to be optimal. Although our model is slightly different, it turns out that this CARMA

dynamics is still preferable for Y based on the AIC model selection criterion. Hence, in the

following example we spell out the above equations for the case of a stable CARMA(2,1)

model.

Example 4.3. [The CARMA(2,1) process]

By applying (4.8) and (4.9) for the case of a CARMA(2,1) process, we find the discrete-time

representation for a gridsize h > 0,

yn =
(
eλ1h + eλ2h

)
yn−1 − e(λ1+λ2)h yn−2 + εn,
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where εn is given by

εn =

∫ nh

(n−1)h

(
κ1 e

λ1(nh−u) + κ2 e
λ2(nh−u)

)
dL(u)

+

∫ (n−1)h

(n−2)h

(
κ1 e

λ2h eλ1(nh−u) + κ2 e
λ1h eλ2(nh−u)

)
dL(u) .

The two integrals in the noise are independent. It is, however, not possible to recover the

noise by simple multiplication and subtraction as in the ARMA case. The actual relation of

two successive noise terms εn and εn+1 is based on the continuous realisation of {L(t)}t≥0 in

the relevant intervals, which is unobservable. �

For the mapping of the estimated ARMA parameters to the corresponding CARMA param-

eters we observe that equation (4.8) is a complex way to express that {e−λih}i=1,...,p are the

roots of the autoregressive polynomial φ(z) = 1 − φ1z − · · · − φpzp of the ARMA process.

We proceed, therefore, as follows for identifying the CARMA parameters from the estimated

ARMA process:

• Estimate the coefficients φ1, . . . , φp of the ARMA process

• Determine the distinct roots ξi for i = 1, . . . , p of the characteristic polynomial.

• Set λi = − log(ξi)/h, where we recall that h denotes the grid size.

Because of the simple structure of the autoregressive matrix A of the CARMA process we

can calculate the characteristic polynomial P of the matrix A as

P (λ) = (−1)p
(
λp + a1λ

p−1 + · · ·+ ap
)
.

Since the λi are the eigenvalues of A, we know that P (λi) = 0 for i = 1, . . . , p. Hence,

given the eigenvalues λi of the matrix A we obtain the coefficients a1, . . . , ap by the relation

a(z) = (z − λ1) · · · (z − λp) with a(·) given in (2.8).

We estimate the moving average parameters based on the emprical autocorrelation function,

which exists always. We apply a least absolute deviation algorithm to fit the linear filter of

the CARMA process. This linear filter is in the L2-case the autocorrelation function of y

and takes the form

γy(s) = b∗eA|s|Σb, s > 0,

where the matrix Σ is given by

Σ =

∫ ∞
0

eAuepe
∗
pe
A∗udu = −A−1epe

∗
p .
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In this representation, A−1 is the inverse of the operator A : X 7→ AX + XA∗ and can be

represented as vec−1 ◦ ((A⊗ Ip) + (Ip⊗A))−1 ◦ vec (see Pigorsch and Stelzer [32]). Using the

above procedure for the estimation of the moving average parameter b is based on second

order structure and, therefore, not straightforward for stable processes. In practice, however,

this procedure works and we can use it to estimate the moving average parameter b.

4.4 Estimation of the stable parameters

After estimating the autoregressive parameters, the noise {εn}n∈N can be recovered. Recall

that, by (p−1)-dependence, the noise terms of lags m > p−1 are independent. Motivated by

results for discrete-time stable ARMA processes, Garcia et al. [24] have applied estimation

methods for independent noise variables {εn}n∈N. They have also shown in a simulation

study that this results in reliable estimates. This procedure is also theoretically justfied by

composite likelihood theory (e.g. Varin, Reid and Firth [40], based on arguments going back

to Wald [38]), which shows that under quite general regularity conditions the dependence

in the likelihood function can be reduced or even ignored. Maximum composite likelihood

estimators are usually consistent and often satisfy a central limit theorem. A formal proof

of these results will appear elsewhere.

By a simple computation we can relate the estimated stable parameters of {εn}n∈N to the

α-stable process L. We show this for the CARMA(2,1) model in the next example:

Example 4.4. [Continuation of Example 4.3, cf. [24]]

Using Samorodnitsky and Taqqu [34], Property 3.2.2, a relation in distribution between the

α-stable process L and the noise process {εn}n∈N of the ARMA(2,1) model sampled on a

grid with grid size h can be established. To avoid ambiguities we will write (αL, γL, βL, µL)

for the parameters of the α-stable process L, if necessary. In particular, εn has an α-stable

distribution with parameters (αε, γε, βε, µε) given by

αε = αL = α

γε =
(∫ h

0

∣∣κ1 eλ1(h−u) + κ2 e
λ2(h−u)

∣∣α +
∣∣κ1 eλ2h eλ1(h−u) + κ2 e

λ1h eλ2(h−u)
∣∣α du)1/αγL

βε = βL
γαL
γαε

(∫ h

0

(κ1 e
λ1(h−u) + κ2 e

λ2(h−u))〈α〉 + (κ1 e
λ2h eλ1(h−u) + κ2 e

λ1h eλ2(h−u))〈α〉 du

)
µε = µL = µ for αε 6= 1

Note that, for a and p being real numbers, a〈p〉 := |a|psign(a) denotes the signed power

(Samorodnitsky and Taqqu [34], eq. (2.7.1)). Moreover, we can easily see that βε = βL, if

both κ1 and κ2 are positive.
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4.5 Recovering the states

In order to calculate the theoretical futures prices derived in Corollary 3.2 it is necessary to

recover the states X of the CARMA-process. Brockwell et al. [14] describe a rather ad-hoc

method to do this by using an Euler approximation.

In the linear state space model (2.2), the Kalman filter is the best linear predictor provided

the driving noise is in L2. Since α-stable Lévy processes for α ∈ (0, 2) do not have finite

second moments, the Kalman filter will perform unsatisfactorily. One possibility to resolve

this is to apply a particle filter, which does not require a finite second moment of the noise

process. However, the particle filter requires a density function instead, which poses a new

problem for α-stable processes. Integral approximations of α-stable densities exist, but they

are time consuming to calculate and simple expressions do not exist. One can use a particle

filter by simulating from the α-stable distribution, but this is also very time consuming. A

large number of paths need to be simulated in order to get a reasonable estimation (even when

using appropriate variance reducing methods like importance sampling). As an attractive

alternative, we introduce a simple L1-filter applicable to CARMA processes with finite mean.

Recall from (2.2)-(2.6) that we can work with the following state-space representation of the

CARMA process

yn = b∗xn, (4.10)

xn = eAhxn−1 + zn with zn =

∫ nh

(n−1)h
eA(nh−u)ep dL(u) (4.11)

Here, yn and xn are discrete observations of Y and X, respectively, on a grid with grid size

h.

Notice that given yn and xn−1 the value of b∗zn is determined and given by

b∗zn|yn,xn−1 = yn − b∗eAhxn−1. (4.12)

This will come to use in a moment when deriving the filter.

First, we make an ”Euler” approximation of the stochastic integral defining zn by

zn ≈
1

h

∫ nh

(n−1)h
eA(nh−u)ep du∆L(n, h) = −A−1(I − eAh)∆L(n, h)

h
,

where ∆L(n, h) = L(nh) − L((n − 1)h). Note that a traditional Euler approximation (see

Kloeden and Platen [25]) would use the left end-point value of the integrand in the approxi-

mation, whereas here we use the average value of the integrand over the integration interval.

We find

E[zn | yn,xn−1] ≈ −E[∆L(n, h)/h | yn,xn−1]A−1 (I − eAh) ep . (4.13)
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Multiplying (4.13) with b∗ and combining it with (4.12) gives

E[∆L(n, h)/h | yn,xn−1] ≈
yn − b∗eAhxn−1

−b∗A−1 (I − eAh) ep
. (4.14)

By plugging (4.14) into (4.13) we find

E[zn | yn,xn−1] ≈ −A−1 (I − eAh) ep
yn − b∗eAhxn−1

−b∗A−1 (I − eAh) ep
. (4.15)

We can use this as an L1-filter for zn. Applying (4.15), we can filter the states X of the

CARMA-process. Using the state equation (4.11) we find

E[xn | yn,xn−1] ≈ eAhxn−1 + E[zn | yn,xn−1]. (4.16)

We tested the filter on simulated data from a CARMA(2,1) process with the same parameters

as we estimate from our model for the base spot prices (see Table 5.3). The path of the

CARMA(2,1) process was simulated based on an Euler scheme on a grid size of 0.01 for

0 ≤ t ≤ 1461, and the α-stable Lévy process was simulated using the algorithm suggested

in Chambers, Mallows and Stuck [16]. The estimation of the states is done on a grid with

grid size h = 1. Figure 5 shows the estimated states (bold line) for both state components

together with the simulated states (fine line, mostly covered by the bold line). It is clearly

visible that the L1-filter gives a good approximation of the true states X driving the α-stable

CARMA process Y .

4.6 Risk premium comparison

In order to find the optimal threshold û∗ for filtering out the non-stationary process Z from

the futures data, we compare the empirically observed risk premium with its theoretical

counterpart.

Recall the risk premium Rpr in (3.4) implied by the futures price dynamics in Corollary 3.2.

By using v = T2 − T1 and recalling the notation u = 1
2
(T1 + T2)− t, we can rewrite Rpr for

u ≥ 1
2
(T2 − T1) and fixed v (being one month in our studies) to

Rpr(u
∗, u, v) = −1

v
b∗A−2

(
e

1
2
Av − e−

1
2
Av
)
eAuep (EQ[L(1)]− E[L(1)])

+ b∗A−1ep (EQ[L(1)]− E[L(1)]) + uEQ[Z(1)] . (4.17)

Note that we can estimate all parameters in (4.17) only depending on a chosen threshold

u∗. Hence, the risk premium in Equation (4.17) also depends on u∗. In order to find an
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Figure 5: Estimated states (bold line) and true states (fine line) of a simulated CARMA(2, 1)

process using the L1-filter.

optimal û∗ we compare the risk premium (4.17), which has been estimated on our model

assumptions, with the mean empirical risk premium based on the futures prices given by

R̃pr(u
∗, u, v) :=

1

v
b∗A−2

(
e

1
2
Av − e−

1
2
Av
)
eAuep E[L(1)]− b∗A−1ep E[L(1)]

+
1

cardU(u, v)

∑
t,T1,T2∈U(u,v)

[
F (t, T1, T2)−

1

T2 − T1

∫ T2

T1

Λ(τ)dτ (4.18)

− b∗A−1

T2 − T1
(
eAT2 − eAT1

)
e−At X(t)− Z(t)

]
.

Here,

U(u, v) :=
{
t, T1, T2 ∈ R ;

1

2
(T2 + T1)− t = u, T2 − T1 = v and F (t, T1, T2) exists

}
.

The dependence on the threshold u∗ is only implicit. The estimated sample paths of Z

and Y depend on u∗, therefore, also the CARMA parameters A,b, the stable parameters

(α, β, γ, µ) and the estimated sample paths of the states X also depend on u∗. In order

to compute R̃pr and Rpr all these estimated parameters are used. Consequently, by using
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different thresholds we will get different estimates and different risk premia. We want to

choose an optimal threshold û∗, such that the mean empirical risk premium R̃rp is as close

as possible to the model based risk premium Rpr. We apply a least-squares method, i.e. we

minimise (for fixed v) the mean square error between the two functions (R̃pr(u
∗, u, v))u≥ 1

2
v

and (Rpr(u
∗, u, v))u≥ 1

2
v with respect to all chosen thresholds u∗ ∈ U∗ for the estimation

procedure, cf. Section 4.1.

û∗ = argminu∗∈U∗

Mf∑
u=v/2

|R̃pr(u
∗, u, v)−Rpr(u

∗, u, v)|2

Here the dependence of the error function

f(u∗, v) :=

Mf∑
u=v/2

|R̃pr(u
∗, u, v)−Rpr(u

∗, u, v)|2 (4.19)

on u∗ is only implicit. In our data v corresponds to the average number of days per month

(i.e. v = 1461/48 = 30.44 for the base data and v = 1045/48 = 21.77 for the peak data), and

the number Mf is the longest time to maturity, which we recall from Section 4.1 being 200

for the base load contracts and 144 for the peak load. In order to calculate this minimum

we calculate the values of f(u∗, v) for all u∗ ∈ [v/2,Mf/2] ∩ N. Figure 6 shows the risk

premium error function f(u∗, v) for base load (left) and peak load (right). In both cases,

the minimum is attained at û∗ = 16. So our estimation procedure considers only base load

forward contracts with delivery at least (about) two weeks away, and peak load contracts

with delivery at least (about) three weeks away.

We remark that the optimal threshold being so small as û∗ = 16 for base load contracts

suggests that the stationary CARMA component in the spot price dynamics has very little

impact on forward prices in the market. The delivery period seems to average out the

influence of the spike component. For peak load contracts the influence of the stationary

spike component is more apparent, although not very big either. However, we must look at

contracts at least one week farther out on the forward curve in this case. These results hint

to an approximative estimation procedure, where one simply uses all forward contracts in

the filtering of the non-stationary component. This should be working well for the base load

data, as in fact only very few contracts are left out of the filtering.

Below we present a summary of the estimation algorithm.

The algorithm

Estimate Λ(·) as in (4.2) for the base load model and as in (4.1) for peak load model, and

subtract from S(·).
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Figure 6: The risk premium error function for base data (left) and peak data (right), for

v/2 ≤ u∗ ≤Mf/2. In both cases, f has its minimum at û∗ = 16.

For each threshold u∗ ∈ U∗:

• Approximate µF̃ (u) = C + uEQ[Z(1)] for u ≥ u∗ and estimate C, EQ[Z(1)] by linear

regression (4.6);

• filter Z by (4.7);

• model Y = S−Λ−Z as CARMA(2,1) process, estimate the coefficients a1, a2, b0 (recall

that b1 = 1) and estimate the parameters (αL, γL, βL, µL) of L;

• estimate EQ[L(1)] using (4.7);

• filter states of X = (X1, X2)
∗ using (4.16);

• calculate Rpr(u
∗, u, v) as in (4.17) using the estimated parameters and states from the

former steps;

• calculate R̃pr(u
∗, u, v) as in (4.18) using the estimated parameters and states from the

former steps and the futures data.

Now define the mean square error of the estimated Rpr(u
∗, u, v) and R̃pr(u

∗, u, v) based on

all different thresholds u∗ ∈ U∗. The optimal threshold is found to be û∗.
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5 Estimation results

We now report the other results from the estimation procedure, when using the optimal

threshold û∗ = 16 both for base and peak load data. In this section we discuss the estimated

values and their implications.

5.1 Distributional properties of the filtered sample path of Z

For the filtered Z which was found using (4.7) we can derive certain properties. Both for the

base and the peak data, the realisation of Z shows uncorrelated increments, see Figure 7.
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Figure 7: Empirical autocorrelation functions for the increments of Z, for base data (left)

and peak data (right).

Figure 8 shows QQ-plots for the increments of Z versus a corresponding normal distribution,

both for base data (left) and peak data (right). The empirical variances of the increments

are 0.35 and 2.78 for the base and peak data, respectively. From these plots we conclude

that for both data sets the increments of Z have heavier tails than the Gaussian distribution,

and that this feature is even more pronounced for the peak data.

Kernel density estimates suggest that the increments of Z can be described quite well using a

normal inverse Gaussian (NIG) distribution (we refer to Barndorff-Nielsen [1] for a discussion

on the NIG distribution and its properties). The bold lines in Figure 9 show log-density esti-

mates for the increments of Z for the base data (left) and the peak data (right), respectively.

For comparison, we also plot the log-density curves of NIG distributions (fine solid lines)

and normal distributions (dashed curves) that have been fitted to the increments of Z via

maximum likelihood (the parameters for the NIG distributions can be found in Table 5.2).

Clearly, the NIG distribution gives a much better fit than the normal distribution. Hence,

we identify the non-stationary process Z with a normal inverse Gaussian Lévy process.
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Figure 8: QQ-plots for the increments of Z against suitable normal distributions, for base

data (left) and peak data (right). The reference distributions are N(0,0.35) and N(0,2.78)

for base and peak data, respectively.
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Figure 9: Log-densities for the increments of Z (bold solid) as well as for NIG distributions

(fine solid) and normal distributions (dashed) that have been fitted to these increments, for

base data (left) and peak data (right).

Remark 5.1. Recall that futures contracts are only traded on weekdays and, therefore, no

variability in Z during weekends is observed. For base load contracts we have thus assumed

that Z is constant during weekends for filtering purposes, but only considered weekdays data

for analysing the distributional properties of Z. As we already mentioned in Section 4.2,

this strategy could lead to larger up– or downward movements of Z on Mondays, when all

information accumulated over the weekend is subsumed at once. However, we do not find

such a behaviour in the estimated increments of Z. We conducted a Brown-Forsythe test to

check the null hypothesis of variance homogeneity between the group of all Friday/Monday

increments and the group of the remaining daily increments. For our situation this test

seems to be a better choice than the Levene test since we have data which is havier tailed

than the normal distribution. On the usual 5% level, the test does not reject the hypothesis

of variance homogeneity between the Friday/Monday increments and the remaining daily
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αZ βZ δZ µZ
Base load 0.6451 0.0998 0.2206 −0.0346

Peak load 0.2371 −0.0083 0.6582 0.0230

Table 5.2: Estimated parameters of the NIG distribution Q for the increments of Z. Since we

assume that E[Z] = 0, the parameters have been estimated conditionally on this assumption.

increments in the base data. This supports our reasoning that no relevant information

enters the futures market over the weekends. Indeed, this can be expected, since the futures

deal with a product to be delivered quite far in the future; hence, only really influential news

with a long-range impact should affect the market. �

5.2 Estimation of the CARMA parameters

The autocorrelation and partial autocorrelation function of the data suggest that there are

two significant autoregressive lags, but also a relevant moving average component. Also

the AIC and BIC criterion confirm that a CARMA(2,1) model leads to the best fit. The

estimated parameters of a CARMA(2,1) model are given in Table 5.3.

CARMA parameters Stable parameters

a1 a2 b0 αL βL γL E[L(1)]

Base load 1.4854 0.0911 0.2861 1.6524 0.3911 6.4072 0.0566

Peak load 2.3335 0.2263 0.6127 1.3206 0.0652 6.5199 −0.0448

Table 5.3: Estimates of the CARMA parameters and of the parameters of the stable process

L.

For the estimated parameters (â1, â2) in the autoregression matrix A the eigenvalues of A

are real and strictly negative, being λ1 = −0.0641, λ2 = −1.4213 for the base load and

λ1 = −0.1014, λ2 = −2.2319 for the peak load. Our parameters satisfy Assumptions 2.2.

Hence, the estimated model is stationary.

The estimates of αL (1.6524 for base and 1.3206 for peak) confirm that extreme spikes are

more likely in the peak load data. As we conclude from the positive signs of the skewness

parameter βL, positive spikes are more likely to happen than negative spikes for both data

sets. Note, however, that a direct comparison of the values of βL for the base and the

peak load data is misleading, due to the significantly different parameters αL. Indeed, if

we calculate the empirical skewness for the estimated εn (cf. Section 4.4) directly, we get a
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̂EQ[Z(1)] Ĉ ̂EQ[L(1)] θ̂Z θ̂L
Base load −0.0243 1.6587 −0.5282 −0.1093 −0.0021

Peak load −0.0382 3.5678 −1.3178 −0.0168 −0.0552

Table 5.4: Estimates of parameters determining the risk.

value of 0.28 for the base load data and 1.59 for the peak load data (cf. the comment on

βε = βL in Example 4.4; for the base load data (κ1, κ2) = (0.1636, 0.8364), and for the peak

load data (κ1, κ2) = (0.2400, 0.7600)).

5.3 Market price of risk and risk premium

We next present the results on the risk premium and the parameters for the market price of

risk, based on our statistical analysis of base and peak load contracts with threshold û∗ = 16

days in both cases. Estimates of the relevant parameters are presented in Table 5.4.

Recall that ̂EQ[Z(1)] and Ĉ are estimated by regression based on the approximation (4.6);

using the estimates of the CARMA model from Table 5.3, we derive an estimate of EQ[L(1)].

Having both EQ[L(1)] and EQ[Z(1)] estimated, we can compute the parameters in the re-

spective measure transforms of the NIG Lévy process Z and the stable process L. For an

NIG Lévy process we use the fact that an Esscher transformed NIG(αZ , βZ , δZ , µZ) random

variable Z is again NIG distributed with parameters (αZ , βZ + θZ , δZ , µZ) (see e.g. Benth et

al. [3], p. 99). Using the mean of an NIG distributed random variable it holds that

EQ[Z(1)] = µZ +
δZ(βZ + θZ)√
α2
Z − (βZ + θZ)2

,

where θZ is the market price of risk for Z. Since estimates for the parameters αZ , βZ , δZ
and µZ are known from Table 5.2, we can use the estimate for EQ[Z(1)] together with the

above equality to obtain an estimate of θZ , which results here in θ̂Z = −0.1093 for the base

load and in θ̂Z = −0.0168 for the peak load data. Since θZ is estimated negative, more

emphasis is given to the negative jumps and less emphasis to the positive jumps of Z in the

risk-neutral world Q. We see from the estimate on the risk-neutral expectation of Z that

the contribution from the non-stationarity factor of the spot on the overall risk premium is

negative. This is natural from the point of view of the hedging needs of producers. The

non-stationary factor induces a long-term risk, which is the risk producers want to hedge

using futures contracts.

Lucia and Schwartz [29] also find a negative market price of risk associated to the non-

stationary term in their two-factor models, when analysing data from the NordPool market.
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We recall that they propose a two-factor model, where the non-stationary term is a drifted

Brownian motion. The negative market price of risk appears as a negative risk-neutral drift,

which corresponds to a contribution to the risk premium similar to our model. We refer

to Benth and Sgarra [6] for a theoretical analysis of the Esscher transform in factor models

applied to power markets.

Using the relations γα = c+ + c− and β = (c+ − c−)/(c+ + c−) in the stable parameters as

calculated in Example 2.3.3 of Samorodnitsky and Taqqu [34] and plugging in the estimated

parameters from Table 5.3, we find

ĉ+ =
1

2
(1 + βL)γαLL = 14.9715 and ĉ− =

1

2
(1− βL)γαLL = 6.5532

for the base load data, and

ĉ+ =
1

2
(1 + βL)γαLL = 6.3342 and ĉ− =

1

2
(1− βL)γαLL = 5.5587

for the peak load data. Then by using (3.9) we can derive an estimate for θL by

θ̂L = −

(
̂EQ[L(1)]− Ê[L(1)]

Γ(1− α̂L)(ĉ+ − ĉ−)

) 1
α̂L−1

which leads to θ̂L = −0.0021 for the base lead data and to θ̂L = −0.0552 for the peak load

data. The market price of risk for the CARMA-factor noise L is also negative, however, unlike

the non-stationary factor a negative sign does not necessarily lead to a negative contribution

to the risk premium. As we already see in the estimate of the constant C in the regression

(4.6), we get a positive contribution to the risk premium. There will also be a term involving

time to maturity, which will converge to zero in the long end of the futures curve. This part

of the risk premium may contribute both positively or negatively. The CARMA factor is

thus giving a positive risk premium for contracts, which start delivering reasonably soon.

Since this factor is accounting for the short term variations, and in particular the spike risk

of the spot, we may view this as a result of consumers and retailers hedging their price risk

and, therefore, accepting to pay a premium for this. This conclusion is in line with the

theoretical considerations of Benth, Cartea and Kiesel [4], who showed – using the certainty

equivalence principle – that presence of jumps in the spot price dynamics will lead to a

positive risk premium in the short end of the futures curve. Bessembinder and Lemmon [8]

explain the existence of a positive premium in the short end of the futures market by an

equilibrium model, where skewness in spot prices induced by spikes is a crucial driver.

As we know from the third summand in Equation (4.17), the risk premium is dominated by

a linear trend for most times to maturity except very short ones. In the latter case, the first

summand of Equation (4.17) is dominating, leading to a small exponential decay when time
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Figure 10: The estimated risk premium Rpr (bold smooth line) and the empirical risk premium

R̃pr (fine line), for base load data (left) and peak load data (right).

to maturity tends to 0. A plot of the empirical risk premium versus the theoretical one is

given in Figure 10.

We see that for base load contracts the positive risk premium in the short end of the curve

is not that pronounced, however, it is detectable. The risk premium is negative for contracts

starting to deliver in about two months. On the other hand, peak load contracts have a clear

positive risk premium, which changes to a negative one for contracts starting to deliver in

about four months. This form of the risk premium is in line with the analysis of Geman and

Vasicek [23]. Interesting here is the difference between base and peak load contracts. Base

load futures have a longer delivery period than peak loads, since they are settled against

more hours. This means that extreme prices are more smoothed out for base load contracts.

The sensitivity towards spikes is more pronounced for peak load contracts since they settle

during those hours when spikes typically occur. Hence, peak load contracts are much more

spike sensitive than base load contracts, which we see reflected in the risk premium having

a bigger and more visible positive part in the short end of the futures curve. The study

of Longstaff and Wang [28] on the PJM (Pennsylvania, New Jersey and Maryland) market

shows that the risk premium may vary over time, and indeed change sign. Their analysis is

performed on hourly prices in the balancing market as being the spot, and the day ahead

hourly prices as being futures contracts. Hence, the analysis in Longstaff and Wang [28] is

valid for the very short end of the futures curve.

Our findings for the EEX are in line with the empirical studies in Benth et al. [4], which

applies a two factor model to analyse the risk premium in the EEX market. Their model

consists of two stationary processes, one for the short term variations, and another for

stationary variations mean-reverting at a slower speed. Their studies confirm a change in

sign of the risk premium as we observe for our model. Moreover, going back to Lucia and
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Schwartz [29], they find a positive contribution to the risk premium from their short-term

variation factor, when applying their analysis to NordPool data. This shows that also in

this market there is a tendency towards hedging of spike risk in the short end of the futures

curve. On the other hand, our results for the EEX market are at stake with the findings

in Kolos and Ronn [27]. They perform an empirical study of many power markets, where

they estimate market prices of risk for a two-factor Schwartz and Smith model. In the EEX

market, they find that both the short and the long term factors contribute negatively5 for

the EEX market. However, interestingly, the PJM market in the US, which is known to have

huge price variations with many spikes observed, they find results similar to ours. We find

our results natural in view of the spike risk fully accounted for in the short term factor, and

the natural explanation of the hedging pressure from producers in the non-stationary factor.

Our statistical analysis also strongly suggest non-Gaussian models for both factors, which is

very different to the Gaussian specification of the dynamics in [27].

As mentioned in the Introduction, the German EEX market has in recent years undergone a

structural change on the supply side as a result of the so-called “Energiewende”. The building

of renewable power generation plants, like wind farms and photovoltaic installations, has been

strongly politically supported and is now responsible for a large share of the capacity. Of

course, these renewable power sources can only produce, when the weather conditions allow,

which makes the generation dependent on wind speed and cloud cover. On the other hand,

renewable power has priority into the German grid at a minimum tariff, leading to market

prices spiking downwards, or even becoming negative over short periods. This poses a major

risk for gas- and coal-fired power utilities as they may have to generate electricity at a loss.

Consequently, retailers have a significantly reduced short-term price risk exposure. One may

conjecture from this in the current situation that there may be a negative risk premium also

in the short end of the forward market, as carbon-based power companies hedge short-term

price risk. This will certainly be checked when the market conditions have been long enough

in power to allow for statistical assessment.

5.4 Simulation using parameters from fitted model

To check whether our model is able to reproduce the important characteristics of the em-

pirical data (as seasonality, spikes, and low-frequency fluctuations) we finally simulate from

our model using the parameters estimated in the empirical analysis. Figure 11 shows simu-

lated spot prices for base and peak period and, hence, can be considered a simulation-based

analogue to Figure 1. The model obviously produces spikes and short-term fluctuations,

low-frequency fluctuations as well as the correct seasonal pattern for both the base and the

5In their paper, the signs are positive due to the choice of parametrisation of the market price of risk

35



peak data. The exact location of the spikes and the low-frequency fluctuations is, of course,

random.
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Figure 11: Simulated spot prices using the estimates from the base data analysis (top) and

the peak data analysis (bottom).

6 Conclusion

In this paper we suggest a two-factor arithmetic spot model to analyse power spot and

futures prices. After removal of seasonality, a non-stationary long term factor is modelled

as a Lévy process, while the short term variations in the spot price is assumed to follow

a stationary stable CARMA process. An empirical analysis of spot price data from the

German power exchange EEX shows that a stable CARMA processes is able to capture the
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extreme behaviour of electricity spot prices, as well as the more normal variations when the

market is in a quite period.

As in Lucia and Schwartz [29] we use a combination of a deterministic function and a non-

stationary term to model the low frequency long term dynamics of the spot. Empirical data

suggests that futures curves and spot prices are driven by a common stochastic trend, and

it turns out that this is very well described by a normal inverse Gaussian Lévy process.

This leads to realistic predictions of futures prices. Moreover, a CARMA(2,1) process is

statistically the best model for the short term variations in the spot dynamics. Since α-

stable processes are not in L2, we introduce a robust L1-filter in order to recover the states

of the CARMA process required for the estimation of the risk premium.

We apply the Esscher transform to produce a parametric class of market prices of risk for the

non-stationary term. The α-stable Lévy process driving the CARMA-factor is transformed

into a tempered stable process in the risk-neutral setting. The spot price dynamics and the

chosen class of risk-neutral probabilities allow for analytic pricing of the futures. A crucial

insight in the futures price dynamics is that the stationary CARMA effect from the spot

price is vanishing for contracts far from delivery, where prices essentially behave like the

non-stationary long-term factor.

We propose a statistical method to fit our new spot and futures model to real data. The

estimation is performed using spot and futures data together, where we applied futures prices

in the far end of the market to filter out the non-stationary factor in the spot. We choose a

threshold for what is sufficiently “far out” on the futures curve by minimising the error in

matching the theoretical risk premium to the empirical version. For this minimisation over

thresholds, we need to re-estimate the whole model for all reasonable thresholds.

Our model and calibration technique is used on spot and futures data collected at the EEX.

Moreover, in order to gain full insight into the risk premium structure in this market, we

study both peak load and base load futures contracts with delivery over one month. The

base load futures are settled against the hourly spot price over the whole delivery period,

while the peak load contracts only deliver against the spot price in the peak hours from 8

a.m. to 8 p.m. on working days. Our model and estimation technique seem to work well in

both situations.

We find that base load futures contracts have a risk premium, which is close to linearly

decaying with time to delivery. The risk premium is essentially governed by the long term

factor. There is evidence of a positive premium in the short end of the futures curve. For

peak load contracts, which are much more sensitive to spikes, the positive premium in the

short end is more distinct, but also here the premium decays close to linearly in the long end

of the market. These observations are in line with other theoretical and empirical studies
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of risk premia in electricity markets, which argue that the risk premia in power markets

are driven by hedging needs. Our findings also show that we should have an exponential

dampening of the premium towards maturity, resulting from the CARMA factor of the spot.
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