TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Botanik

Charakterisierung der Proteinfamilie der Glutathion-S-Transferasen aus Arabidopsis thaliana in Saccharomyces cerevisiae

Matthias P. Krajewski

Vollständiger Abdruck der von der Fakultät für Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender:

Univ.-Prof. Dr. W. Schwab

Prüfer der Dissertation:

Univ.-Prof. Dr. E. Grill
 Priv.-Doz. Dr. Ph. Schmitt-Kopplin

Die Dissertation wurde am 22.11.2011 bei der Technischen Universität München eingereicht und durch die Fakultät für Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 02.02.2012 angenommen.

Für meine Familie.

Inhaltsverzeichnis

	Abkürzungsverzeichnis	VI
	Abbildungsverzeichnis	IX
1	Einleitung	1
1.1	Pestizide	1
1.1.1	Toxikodynamik	3
1.1.2	Toxikokinetik	7
1.1.3	Detoxifizierung von Xenobiotika	9
1.2	Glutathion-S-Transferasen	12
1.2.1	Glutathion- und Schwefelmetabolismus	17
1.2.2	Glutathion-S-Transferasen in S. cerevisiae	21
1.2.3	Glutathion-S-Transferasen in A. thaliana	25
1.3	Zielsetzung dieser Arbeit	30
2	Material und Methoden	31
2.1	Materialien	31
2.1	Gerätschaften	31
212	Chemikalien	32
2.1.2	Verwendete <i>F. coli</i> -Stämme	34
2.1.3	Verwendete <i>S. cerevisiae</i> -Stämme	35
2.1.5	Vektorsysteme	38
216	Kitsysteme	39
217	Verwendete Enzyme	39
2.2	Molekularbiologischen Methoden	40
2.2.1	DNA-Isolierung aus <i>E. coli</i>	40
2.2.2	Polymerasekettenreaktion	41
2.2.3	Agerosegelelektrophorese	42
2.2.4	DNA-Aufreinigung mittels Gelextraktion	42
2.2.5	Restriktionsverdau der Vektorsysteme und cDNA	43
2.2.6	Bestimmung der DNA-Konzentration	43
2.2.7	Ligation der DNA-Fragmente	44
2.2.8	Transformation von <i>E. coli</i>	44
2.2.9	Sequenzierung	44
2.2.10	Homologe Rekombination mit <i>S. cerevisiae</i> -Stämmen	45
2.2.10.	1 Isolierung der genomischen DNA aus <i>S. cerevisiae</i>	46
2.2.10.2	2 Transformation von <i>S. cerevisiae</i> -Stämmen	47
2.2.10.	3 Überprüfung der Deletionsmutanten in Hefe	48
2.2.11	Markerentfernung mittels loxP-Cre-Rekombinase	48
2.2.12	Plasmidisolierung aus <i>S. cerevisiae</i> -Stämmen	49
2.2.13	Kontroll-PCR isolierter Plasmide	49
2.3	Physiologische Methoden	50

2.3.1	Dosis-Wirkungs-Analyse von S. cerevisiae	50
2.3.2	Wachstumsversuche mit S. cerevisiae	50
2.3.3	Wurzelwachstumsanalyse von A. thaliana	50
2.4	Biochemische Methoden	52
2.4.1	Sphäroblastierung von S. cerevisiae	52
2.4.2	Quantifizierung des Proteingehalts	52
2.4.2.1	Reaktion mit Bicinchoninsäure	52
2.4.2.2	Methode nach Bradford	53
2.4.3	Enzymatische Bestimmung der Glutathion-S-Transferase-Aktivität	54
2.4.4	Expression der Arabidopsis Glutathion-S-Transferasen in S. cerevisiae	54
2.4.5	Immunologischer Nachweis der Genexpression	55
2.4.5.1	SDS-Polyacrylamid-Gelelektrophorese	55
2.4.5.2	Coomassie-Färbung	56
2.4.5.3	Westernblot	56
2.4.5.4	Verwendete Antikörper	56
2.5	Chemisch-biologische Methoden	58
2.5.1	Synthese ausgewählter Pestizid-Glutathion-Konjugate	58
2.5.2	Stabile Isotopenanalytik	59
2.5.3	Belastungstest der Hefezellkulturen mit Xenobiotika	61
2.5.4	Zellaufschluss der Hefezellkulturen	61
2.5.5	High Perfomance Liquid Chromatography (HPLC) zur Bestimmung der Substrat-	
	spezifität der Arabidopsis Glutathion-S-Transferasen	61
2.5.6	Ion cyclotron resonance fourier transform mass spectrometry (ICR-FT/MS)	63
2.5.6.1	Metabolomics der Arabidopsis Glutathion-S-Transferasen nach Belastung mit	
	Xenobiotika	64
2.5.6.2	Screening der Pestizide mit GST-defizienten Hefen	64
2.5.6.2 3	Screening der Pestizide mit GST-defizienten Hefen	64 65
2.5.6.2 3 3.1	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen	646565
2.5.6.2 3 3.1 3.1.1	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten	 64 65 65 68
2.5.6.2 3 3.1 3.1.1 3.1.2	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin	 64 65 65 68 71
2.5.6.2 3 3.1 3.1.1 3.1.2 3.2	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin Komplementationsanalyse mit Arabidopsis Glutathion-S-Transferasen	 64 65 65 68 71 74
2.5.6.2 3 3.1 3.1.1 3.1.2 3.2 3.2.1	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin Komplementationsanalyse mit Arabidopsis Glutathion-S-Transferasen Expression der Arabidopsis Glutathion-S-Transferasen in Hefe	 64 65 65 68 71 74 75
2.5.6.2 3 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin Komplementationsanalyse mit Arabidopsis Glutathion-S-Transferasen in Hefe Expression der Arabidopsis Glutathion-S-Transferasen in Hefe	 64 65 65 68 71 74 75 78
2.5.6.2 3 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin Komplementationsanalyse mit Arabidopsis Glutathion-S-Transferasen Expression der Arabidopsis Glutathion-S-Transferasen in Hefe Stabilisotopenmarkierung des 1-Chlor-2,4-Dinitrobenzol-Glutathion-Konjugates Substratspezifität der Arabidopsis Glutathion-S-Transferasen auf 1-Chlor-2,4-Dinitrobenzol-Glutathion-Konjugates	 64 65 65 68 71 74 75 78
2.5.6.2 3 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin Komplementationsanalyse mit Arabidopsis Glutathion-S-Transferasen Expression der Arabidopsis Glutathion-S-Transferasen in Hefe Stabilisotopenmarkierung des 1-Chlor-2,4-Dinitrobenzol-Glutathion-Konjugates Substratspezifität der Arabidopsis Glutathion-S-Transferasen auf 1-Chlor-2,4-Dinitrobenzol-Glutathion-Konjugates	 64 65 65 68 71 74 75 78 84
2.5.6.2 3 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.3	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin Komplementationsanalyse mit Arabidopsis Glutathion-S-Transferasen Expression der Arabidopsis Glutathion-S-Transferasen in Hefe Stabilisotopenmarkierung des 1-Chlor-2,4-Dinitrobenzol-Glutathion-Konjugates Substratspezifität der Arabidopsis Glutathion-S-Transferasen auf 1-Chlor-2,4-Dinitrobenzol, 4-chloro-7-nitro-2,1,3-benzoxadiazole, Chlorthalonil und Anilazin Metabolomics in Hefe	 64 65 65 68 71 74 75 78 84 92
2.5.6.2 3 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin Komplementationsanalyse mit Arabidopsis Glutathion-S-Transferasen Expression der Arabidopsis Glutathion-S-Transferasen in Hefe Stabilisotopenmarkierung des 1-Chlor-2,4-Dinitrobenzol-Glutathion-Konjugates Substratspezifität der Arabidopsis Glutathion-S-Transferasen auf 1-Chlor-2,4-Dinitrobenzol, 4-chloro-7-nitro-2,1,3-benzoxadiazole, Chlorthalonil und Anilazin Metabolomics in Hefe Metabolite profiling der Arabidopsis Glutathion-S-Transferasen mit Fenclorim,	 64 65 68 71 74 75 78 84 92
2.5.6.2 3 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin Komplementationsanalyse mit Arabidopsis Glutathion-S-Transferasen Expression der Arabidopsis Glutathion-S-Transferasen in Hefe Stabilisotopenmarkierung des 1-Chlor-2,4-Dinitrobenzol-Glutathion-Konjugates Substratspezifität der Arabidopsis Glutathion-S-Transferasen auf 1-Chlor-2,4-Dinitrobenzol, 4-chloro-7-nitro-2,1,3-benzoxadiazole, Chlorthalonil und Anilazin Metabolomics in Hefe Metabolite profiling der Arabidopsis Glutathion-S-Transferasen mit Fenclorim, Benoxacor, Chlorthalonil und Anilazin	 64 65 68 71 74 75 78 84 92 92
2.5.6.2 3 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1 4	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin Komplementationsanalyse mit Arabidopsis Glutathion-S-Transferasen Expression der Arabidopsis Glutathion-S-Transferasen in Hefe Stabilisotopenmarkierung des 1-Chlor-2,4-Dinitrobenzol-Glutathion-Konjugates Substratspezifität der Arabidopsis Glutathion-S-Transferasen auf 1-Chlor-2,4-Dinitrobenzol, 4-chloro-7-nitro-2,1,3-benzoxadiazole, Chlorthalonil und Anilazin Metabolomics in Hefe Metabolite profiling der Arabidopsis Glutathion-S-Transferasen mit Fenclorim, Benoxacor, Chlorthalonil und Anilazin Diskussion	 64 65 68 71 74 75 78 84 92 92 99
2.5.6.2 3 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1 4 4.1	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin Komplementationsanalyse mit Arabidopsis Glutathion-S-Transferasen Expression der Arabidopsis Glutathion-S-Transferasen in Hefe Stabilisotopenmarkierung des 1-Chlor-2,4-Dinitrobenzol-Glutathion-Konjugates Substratspezifität der Arabidopsis Glutathion-S-Transferasen auf 1-Chlor-2,4-Dinitrobenzol, 4-chloro-7-nitro-2,1,3-benzoxadiazole, Chlorthalonil und Anilazin Metabolomics in Hefe Metabolite profiling der Arabidopsis Glutathion-S-Transferasen mit Fenclorim, Benoxacor, Chlorthalonil und Anilazin Diskussion Die Proteinfamilie der Glutathion-S-Transferasen in der Hefe S. cerevisiae.	 64 65 68 71 74 75 78 84 92 92 99 99
2.5.6.2 3 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1 4 4.1 4.2	Screening der Pestizide mit GST-defizienten Hefen Ergebnisse Charakterisierung Glutathion-S-Transferase defizienter Hefen Enzymatik mit Glutathion-S-Transferase-Standardsubstraten Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin Komplementationsanalyse mit Arabidopsis Glutathion-S-Transferasen Expression der Arabidopsis Glutathion-S-Transferasen in Hefe Stabilisotopenmarkierung des 1-Chlor-2,4-Dinitrobenzol-Glutathion-Konjugates Substratspezifität der Arabidopsis Glutathion-S-Transferasen auf 1-Chlor-2,4-Dinitrobenzol, 4-chloro-7-nitro-2,1,3-benzoxadiazole, Chlorthalonil und Anilazin Metabolite profiling der Arabidopsis Glutathion-S-Transferasen mit Fenclorim, Benoxacor, Chlorthalonil und Anilazin Diskussion Die Proteinfamilie der Glutathion-S-Transferasen in der Hefe S. cerevisiae. Die Funktionen der Glutathion-S-Transferasen in Arabidopsis thaliana.	 64 65 68 71 74 75 78 84 92 92 99 9110

Zusammenfassung	
Summary	
Literaturverzeichnis	130
Anhang	i
Curriculum vitae	xi
Danksagung	xiii

Abkürzungsverzeichnis

A .thaliana	Arabidopsis thaliana
Abb.	Abbildung
ABC	ATP binding cassette
Amp	Ampicillin
APS	Ammoniumperoxodisulfat
<i>At</i> GST	Arabidopsis thaliana Glutathion-S-Transferase
ATP	Adenosintriphosphat
AtPCS1	Arabidopsis thaliana Phytochelatinsynthase 1
AtPCS2	Arabidopsis thaliana Phytochelatinsynthase 2
AZ	Anilazin
BCA	bicinchoninic acid
BITC	Benzylisothiocyanat
B. napus	Brassica napus; Raps
bp	base pairs
BSA	Bovine Serum Albumin
BX	Benoxacor
С	Cystein
CAR	Constitutive Androstane Receptor
CCC	Chemical Competent Cells
cDNA	komplementäre DNA
CDNB	1-Chlor-2,4-Dinitrobenzol
CDS	Coding Sequence
CG	Cysteinylglycin
C-OOH	Cumenhydroperoxid
Col	Columbia
CPC	Carboxypeptidase C
СРҮ	Carboxypeptidase Y
DHAR	Dehydroascorbatreduktase
DMSO	Dimethylsulfoxid
dNTP	Desoxyribonukleosid-5'-Triphosphat
DTT	Dithiothreitol
E. coli	Escherichia coli
EC	Enzyme comission number
EDTA	Ethylendiamintetraacetat
eGFP	enhanced green fluorescence protein
ESI	Elektrospray-Ionisation
EtBr	Ethidiumbromid
EtOH	Ethanol
eV	empty Vector
FC	Fenclorim
Gal	Galaktose
G. max	Glycine max; Sojabohne
GGT	γ-Glutamyl-Transpetidase
G. hirsutum	Gossypium hirsutum; Baumwolle

GLR	Glutathionreduktase
GPOX	Glutathionperoxidase
GRX	Glutaredoxin
GSH	Glutathion reduziert
GSSG	Glutathion oxidiert
GST	Glutathion-S-Transferase
GSTF	Glutathion-S-Transferase der phi Klasse
GSTL	Glutathion-S-Transferase der lambda Klasse
GSTT	Glutathion-S-Transferase der theta Klasse
GSTU	Glutathion-S-transferase der tau Klasse
GSTZ	Glutathion-S-transferase der zeta Klasse
GTO	Glutathion-S-transferase der omega Klasse
His	L-Histidin
ICR-FT	Ion cyclotron resonance fourier transform
HED	β-Hydroxyethylen-Disulfid
Kan	Kanamycin
kb	Kilobase
kDa	Kilodalton
KEGG	Kyoto Encyclopedia of Genes and Genomes
KPP _i	Kaliumpyrophosphat
LB	Luria-Bertani-Bakteriennährlösung
Leu	L-Leucin
LiAc	Lithiumacetat
LöMi	Lösungsmittel
m/z	Verhältnis Masse pro Ladung
MassTRIX	Mass Translator into Pathways
MeOH	Methanol
MQ	Millipore-Wasser
MRP	Multi drug Resistance-associated Protein
MS	Massenspektrometer
MSM	Murashige und Skoog-Medium
NADPH/H ⁺	Nicotinsäureamid-Adenin-Dinukleotid-Phosphat
NBD-Cl	4-Chloro-7-nitrobenzo-2-oxa-1,3-diazol
OD	Optische Dichte
O. sativa	Oryza sativa, Reis
PCR	Polymerase Chain Reaction
PCS	Phytochelatinsynthase
PDR	Pleiotropic Drug Resistance
PEG	Polyethylenglykol
PMSF	Phenylmethansulfonylfluorid
ppm	parts per million
PPAR	Peroxisom-Proliferator-aktivierter Rezeptor
PTS	Peroxisome Targeting Signal
PXR	Pregnane X Receptor
ROS	reactive oxygen species
RP-HPLC	Reversed Phase High Performance Liquid Chromatography
RT	Raumtemperatur

RXR	Retinoid X Receptor
S. cerevisiae	Saccharomyces cerevisiae
S. pombe	Schizosaccharomyces pombe Lindner; Spalthefe
SD	Synthetic Defined
SELEX	Systematic Evolution of Ligands by Exponential Enrichment
SIVA	Stabil Isotopen Verdünnungsanalyse
SOD	Superoxiddismutase
SPE	solid phase extraction
STRE	stress response elements
Suc	sucrose (Saccharose)
T. aestivum	Triticum aestivum (L.); Saatweizen
TAE	Tris-Acetat, EDTA
TBA	Terbuthylazin
TBS	Tris-buffered saline
TCA	Trichloressigsäure
TEF	Translation Elongation Faktor
TFA	Trifluoressigsäure
TPN	Chlorothalonil
TRX	Thioredoxin
üN-Kultur	übernacht Kultur
Ura	L-Uracil
UGT	UDP-Glucuronosyltransferase
UV	ultraviolett
v/v	Volumenanteil/Volumenanteil
VE-Wasser	Voll entsalztes Wasser
w/v	Gewichtsanteil/Volumenanteil
WT	Wildtyp
XR	xenobiotischer Rezeptor
XRE	Xenobiotic Response Element
YCF	Yeast cadmium factor protein
YPD-Medium	Yeast extract Peptone Dextrose-Media
Z. mays	Zea mays, Mais
γ-ΕС	gamma-Glutamylcystein

Abbildungsverzeichnis

Abb. 1	Pestizideinsatz in der industriellen Landwirtschaft	1
Abb. 2	Auswahl dreier Triazin-Derivate.	2
Abb. 3	Eingesetzte Herbizide.	4
Abb. 4	Wichtige tetrapyrrolische Verbindungen	6
Abb. 5	Die Metabolisierung von Xenobiotika.	7
Abb. 6	Transskriptionale Regulation durch Xenobiotische Rezeptoren	8
Abb. 7	Detoxifizierungsprozess von Xenobiotika in Hefe.	9
Abb. 8	Kristallstrukter der Gtt2p aus S. cerevisiae.	12
Abb. 9	Enzymatische Bestimmung der Glutathion-S-Transferase Aktivität.	13
Abb. 10	Substrate zur Bestimmung der GST-Aktivität.	14
Abb. 11	Reaktionen und Liganden der Arabidopsis GSTs.	16
Abb. 12	Das Glutathion-Molekül in S. cerevisiae.	17
Abb. 13	Biosynthese und Abbauwege von Glutathion in Arabidpsis thaliana.	18
Abb. 14	Auschnitt aus der evolutionären Entwicklung der TRX-Superfamilie zur	
	GST-Familie.	20
Abb. 15	Vergleich funktionaler Proteindomänen in S. cerevisiae.	22
Abb. 16	Phylogenetischer Baum der Arabidopsis GSTs.	25
Abb. 17	Vergleich der N-terminalen Domäne der Arabidopsis GSTs.	26
Abb. 18	Verwendete Vektoren zur Klonierung der Arabidopsis GSTs.	38
Abb. 19	Schematische Darstellung der homologen Rekombination in S. cerevisiae	45
Abb. 20	PCR-Analyse der Hefe-Deletionsmutanten.	66
Abb. 21	Enzymatische Aktivität GST-defizienter Hefemutanten von S. cerevisiae	
	(1).	68
Abb. 22	Enzymatische Aktivität GST-defizienter Hefemutanten von S. cerevisiae	
	(2).	69
Abb. 23	Wachstumsversuch von <i>S. cerevisiae</i> mit CDNB.	71
Abb. 24	Dosis-Wirkungs-Analyse mit Anilazin.	72
Abb. 25	PCR-Analyse des isolierten Plasmids aus S. cerevisiae.	74
Abb. 26	Expression der Arabidopsis GSTs in S. cerevisiae.	75
Abb. 27	Enzymatische Aktivität heterolog exprimierter <i>Arabidopsis</i> GST in der	
	Quintupelmutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$.	76
Abb. 28	Westernblot-Analyse der heterolog exprimierten <i>At</i> GSTF2, F8 und U19	77
Abb. 29	Prinzip der stabilen Isotopenanalytik.	78
Abb. 30	HPLC-Chromatogramme der TPN-GS-Konjugate.	79
Abb. 31	Standardsynthese für die stabile Isotopenanalytik.	80
Abb. 32	Synthese des isotopologischen Standards zum CDNB-GS-Konjugat.	81
Abb. 33	Stabile Isotopenanalyse der exprimierten <i>Arabidopsis</i> GSTU19 in Hefe	82
Abb. 34	Quantifizierung des CDNB-GS-Konjugates in Hefe.	83
Abb. 35	Die Fungizide Anilazin und Chlorthalonil.	84
Abb. 36	HPLC-Detektion der GS-Metabolite mit dem Fungizid Anilazin.	85
Abb. 37	ICR-FT/MS-Analyse ausgewählter GS-Metabolite	86
Abb. 38	S-Glutathionylierung von CDNB und NBD-Cl <i>in vivo</i>	88
Abb. 39	S-Glutathionylierung von Anilazin und Chlorthalonil <i>in vivo</i>	90
Abb. 40	S-Glutathionylierung von Fungiziden durch <i>At</i> GSTFs	91
		~ 1

Abb. 41	Metabolomics mit Arabidopsis GSTs in Hefe.	92
Abb. 42	GS-Metabolite von Fenclorim und Benoxacor in Hefe.	94
Abb. 43	GS-Metabolite von TPN in Hefe.	96
Abb. 44	GS-Metabolite von Anilazin in Hefe.	98
Abb. 45	Das heterologe Testsystem in Diskussion.	104
Abb. 46	Die Arabidopsis GSTF14.	107
Abb. 47	Die pflanzlichen Funktionen der Arabidopsis GSTs.	109
Abb. 48	Coexpressionen und Proteininteraktionen der Arabidopsis GSTs	113
Abb. 49	Der schwefelhaltige Sekundärmetabolismus.	116
Abb. 50	Biosynthese der indolischen Glucosinolate und des Camalexins	117
Abb. 51	Schematisierte Darstellung der Entgiftungsfunktionen der GSTs in Arabido-	
	psis thaliana	120
Abb. 52	Übersicht über die analysierten Pestizide.	121
Abb. 53	Schwefelmarkierung in S. cerevisiae.	123
Abb. 54	Indolische Triazine als Fungizide.	126

1 Einleitung

Xenobiotika (griech.: xenos, ζένος, ό, der Gast, gastliche Aufnahme, der Fremde; *bio – tikos*, βιοτικός, zum Leben gehörig, lebenswert; ζηρο-βιωτικός, ή, όν, "als Fremdes dem Organismus gehörig ... zum Leben") sind überwiegend organische, chemische Stoffe, die nicht in der Natur vorkommen und damit dem biologischen Stoffwechsel fremd sind. Pharmaka, Lebensmittelzusatzstoffe, Kosmetika, Dopingmittel, Halozinogene, synthetische Toxine, aber auch Pestizide und Schwermetalle, wie Blei, Kupfer, Cadmium, Arsen gehören zu diesen toxisch wirkenden Substanzen (Testa and Krämer, 2006).

1.1 Pestizide

In ihrem Kompendium 2008 präsentierte die OECD (<u>Organisation for Economic Co-operation</u> and <u>Development</u>) Datensätze zu Umweltaspekten der industriellen Landwirtschaft, die durch die FAO (<u>Food and Agriculture Organisation of the United Nations</u>) gestützt werden. Insbeson-

dere auf den weltweiten Pestizid-Einsatz wurde aufmerksam gemacht. Demzufolge liegen die Vereinigten Staaten von Amerika mit über 300 Tausend Tonnen Wirkstoffeinsatz im Jahr 2001 unangefochten an der Spitze (Abb. 1A). Die Bundesrepublik Deutschland setzte im Jahr 2007 nur rund ein Zehntel dieser Menge ein. Weltweit am stärkten verbreitet ist der Einsatz von Herbiziden, gefolgt von Fungiziden, Insektiziden und anderen Pestiziden (z.B. Akarizide, Algizide oder Bakterizide) (Abb. 1B). Da die meisten dieser Daten erst seit dem Jahr 2006f vorhanden waren, konnte die OECD keine näheren Angaben zum Einsatz an Pestiziden in den wirtschaftlichen Schwellenländern, insbesondere in den sog. BRIC Staaten (Brasilien, Russland, Indien, China) machen. Jedoch werden über 60 % der Baumwolle (Gossypium hirsutum) weltweit - absolut über 13 Millionen metrische Tonnen – in den BRIC Staaten produziert (Abb. 1C). Das lässt die Dimension des dortigen Xenobiotika-Einsatzes, primär des Defolianten-Einsatzes gegen den Baumwollkapselkäfer (Anthonomus grandis) erahnen. Die Persistenz vieler Pestizide, wie die von Atrazin (Abb. 2) als klassisches Triazin-Herbizid und als PS-II-Inhibitor (siehe 1.1.1), ist ein weltweites Problem. Rückstandsanalysen von bewirtschafteten Ackerflächen zeigen weltweit eine stetige Zunahme an organischen Schadstoffen (sog. key performace indicator der OECD) (OECD, Kompendium 2008).

Ein Ansatz aus der Grundlagenforschung, der die Aktualität der Diskussion über persistente Pestizide in landwirtschaftlichen Nutzflächen unterstützt, konnte Folgendes zeigen: Anstatt Bakterizide einzusetzen, kann man *E. coli* so umprogrammieren, dass es Herbizide aufspürt und anschließend zerstört (Sinha et al., 2010). Mit diesem Versuchsansatz aus der synthetischen Biologie konnte ein derartiger gentechnisch veränderter Organismus (GVO) entwickelt werden. SELEX (*Systematic Evolution of Ligands by Exponential Enrichment*) (Stoltenberg et al. 2007) bot die Möglichkeit, RNA-Sequenzen, die als Aptamere bekannt sind, ausfindig zu machen. Anhand derer wurden dann sog. synthetische *Riboswitches* entwickelt, die auf Atrazin als Ligand reagieren. Das *che*Z Gen – verantwortlich für die Motilität von *E. coli* – in Kombination mit dem heterolog

exprimierten *atz*A Gen aus *Pseudomonas*, das Atrazin mittels Chlorohydrolase (EC 3.8.1.8) zu Hydroxyatrazin (Abb. 2) entgiftet, konnte dieser *E. coli*-Stamm Atrazin aufspüren und zerstören. In der Forschung und Entwicklung von Herbiziden werden zunächst zwei grundsätzliche Ansätze verfolgt. Zum einen werden chemisch-organische Leitstrukturen von Herbiziden entwickelt, die unter toxikodynamischen Gesichtspunkten den Zielorganismus, hier Unkraut, möglichst lethal schädigen, und die Nutzpflanze am Leben erhalten. Die Basis hierfür kann eine vorhandene Kristallstrukturen der Zielenzyme bilden, deren Wirkmechanismen im Unkraut inhibiert werden sollen. Zum anderen nützt man toxikokinetisch die Abundanz und Substratspezifität von Enzymen des Entgiftungsmetabolismus (siehe 1.1.2) zu Gunsten der Nutzpflanze gegenüber Unkräutern aus. Beide Ansätze können miteinander verknüpft werden.

Die stetige Zunahme nicht nur der Persistenz von Herbiziden, sondern auch der Resistenz von Unkräutern gegenüber Herbiziden, ist eine Herausforderung. So sind seit 2011 in Deutschland 40 Unkrautarten bekannt, die eine Resistenz gegenüber Herbiziden durch natürliche Mutationen innerhalb ihrer Ziel-Gene gebildet haben (<u>http://www.weedscience.org/In.asp</u>). In den Jahren 2009f bildete allein das Acker-Fuchsschwanzgras (*Alopecurus myosuroides, blackgrass*) als nordeuropäisches Unkraut auf Weizenfeldern Herbizid-Resistenzen gegenüber mehreren sog. ALS- und ACCase-Inhibitoren (siehe 1.1.1) aus (<u>http://www.weedscience.org/Summary/UniqueCountry.as</u> <u>p?lstCountryID=18&FmCountry=Go</u>). Persistente Herbizide können ihrerseits mitverantwortlich an einer schnellen Resistenzbildung sein, da die natürliche Selektion der genetischen Diversität durch verbleibende Herbizide im Boden verstärkt wird (Powles and Yu, 2010).

1.1.1 Toxikodynamik

Für die Herbizid-Entwicklung ist die Erforschung der Wirkmechanismen von chemischen Stoffen entscheidend. Die Toxikodynamik beschäftigt sich mit der Frage, welche Wirkung das Xenobiotikum im Zielorganismus auslöst. Im Jahre 2010 sind bislang mehr als 20 verschiedene Wirkmechanismen, die lichtabhängige Prozesse, Wachstum und Zellteilung der Pflanzen betreffen, beschrieben worden (<u>http://www.hracglobal.com/</u>). Im Folgenden sollen vier unterschiedlichen Wirkmechanismen und Resistenzen in Pflanzen veranschaulicht werden.

Zwei Wirkstoffklassen sind die Photosynthese-Inhibitoren des Photosystems II und I, mit Atrazin bzw. Paraquat als prominente Vertreter (Abb. 2 und 3).

Das Photosynthese-System von Pflanzen, Algen und Cyanobakterien setzt sich aus einer Vielzahl an Proteinen zusammen (Hohmann-Marriott and Blankenship, 2011). Mittels Reaktionszentren in den jeweiligen Proteinkomplexen um das sog. Photosystem I (P700) und Photosystem II (P680), welche die Wellenlängen des Lichts bei $\lambda_{PSI} = 700$ nm und $\lambda_{PSII} = 680$ nm durch Interaktion von Antennenproteinen, Lichtsammelfallen und tetrapyrrolischen Pigmenten (u.a. Chlorophyll a und b) (Abb. 4C und 4D) an den Thylakoidmembranen spezifisch tunneln und absorbieren können, wird Lichtenergie durch die Spaltung von Wasser (Redoxpotenzial: $E_0^{\circ} = +0,815$ V) in chemische Energie umgewandelt, und zwar in Form von ATP, den Redoxäquivalenten NADPH und molekularem Sauerstoff. Dabei stellt das Photosystem I mit seinem Reaktionszentrum des [Fe-S]-Typs und seiner Lichtsammelfalle I eine komplexe Anordnung von derzeit identifizierten 17 Proteinen und 178 prosthetischen Gruppen dar (Amunts and Nelson, 2009, Amunts et al., 2010). Das Reaktionszentrum des [Fe-S]-Typs ist dadurch gekennzeichnet, dass der terminale Elektronenakzeptor der Elektronentransportkette (PSI: nicht-zyklisch) ein 4[Fe-S]-Cluster (siehe 1.2.2) darstellt.

Im Gegensatz dazu ist das Reaktionszentrum des Photosystems II vom Quinon-Typ und besteht aus derzeit 20 bekannten Proteinuntereinheiten und mehr als 50 Cofaktoren (Guskov et al., 2009). An der Thylakoidmembran wird durch Chlorophyll a und b zusammen mit den Antennenkomplexen CP47 und CP43 der Lichtsammenfalle II (Barros and Kuhlbrandt, 2009) die Energie bei $\lambda_{PSII} = 680$ nm durch die beiden heterodimerischen Proteinuntereinheiten D₁ und D₂, die das Reaktionszentrum bilden, zur Spaltung des Wassers verwendet. Anschließend erfolgt eine Ladungsseparierung der entstandenen Protonen und Elektronen. Beide Proteinuntereinheiten besitzen als prosthetische Gruppen die Plastoquinone A und B (Redoxpotenzial der Plastoquinole: E^c₀ = +0,100 V). Das Protein D₁, kodiert durch *psb*A (Hirschberg and McIntosh, 1983, Goloubinoff et al., 1984) koordiniert nun mittels Ser264 und Phe265 über Wasserstoffbrückenbindungen das Plastoquinon B. Dadurch wird der zyklische Elektronentransport eines Elektronenpaars über den

Cytochrom b_6 f-Komplex oder über Plastocyanine an das Photosystem I sichergestellt (Lancaster and Michel, 1999). Atrazin als PSII-Inhibitor verdrängt nun nicht kompetitiv das Plastoquinon B und unterbricht damit irreversibel die zyklische Elektronentransportkette (Powles and Yu, 2010). Die aufgebaute Energie in Form von ATP wird abgeleitet zur Bildung von Chlorophyll-Tripletts, die mit O_2 zu atomarem Sauerstoff reagieren. Dies ist der Beginn einer Lipidperoxidation und Ozonentwicklung in der Zelle (Fuerst and Normann, 1991). Etliche Unkrautarten entwickelten durch Punktmutationen im *psb*A Gen, die u.a. zu einem Aminosäure-Austausch Ser265 \rightarrow Gly265 führten, eine Resistenz gegenüber Atrazin (Powles and Yu, 2010). Darüber hinaus traten in den letzten Jahren verstärkt weitere Mutationen auf, die Atrazin als Unkrautbekämpfungsmittel teilweise wirkungslos werden ließen (Mengistu et al., 2005, Park and Mallory-Smith, 2006, Mechant et al., 2008).

Paraquat ist ein zweifach kationisch-geladenes Herbizid (Abb. 3) mit einem sehr hohen negativen Redoxpotenzial. Der Proteinkomplex des Photosystems I besteht aus zwei Proteinuntereinheiten als Reaktionszentrum, namentlich PsaA und PsaB, und einer Vielzahl weiterer Proteine, die zur Superfamilie der Transmembran-Helices gehören (Hohmann-Marriott and Blankenship, 2011). Letztlich werden im PSI durch Anregung des Systems bei $\lambda_{PSI} = 700$ nm die Elektronen, welche durch die Phytocyanine des PSII geliefert wurden, über Phyllochinone und drei 4[Fe-S]-Cluster in der nicht-zyklischen Elektronentransportkette an Ferredoxin transportiert. Hier erfolgt mittels der Ferredoxin-NADP⁺-Oxidoreduktase (FNR; EC 1.18.1.2) der Aufbau der Redoxäquivalente und weiteren ATPs. Paraquat hat in diesem Prozess ein größeres negatives Redoxpotenzial als die Phylochinone und reagiert mit einem Elektron der Transportkette ab. Das einfach geladene Kation des Paraquats reduziert nun Sauerstoff zum toxischen Superoxidanion (O₂). In den Folgereaktionen zerfällt dieses zu H₂O₂ und dem Hydroxylradikal (OH··), zwei hochtoxische Zellgifte. Eine Resistenz bei Unkrautarten wird möglicherweise durch die erhöhte Expression von Katalasen (EC 1.11.1.6) bzw. Superoxiddismutasen (SODs; EC 1.15.1.1) hervorgerufen (Fuerst and Vaughn, 1990), die reaktive Sauerstoffgruppen (ROS) entgiften können. Diese Resistenz beruht auf einem toxikokinetischen Mechanismus. Ebenso ist die Resistenz von Unkrautarten gegenüber den sog, AHAS- bzw. ALS-Inhibitoren (Acetohydroxylsäure-Synthase bzw. Acetolactat-Synthase), welche die Biosynthese der verzweigen Aminosäuren Leucin, Isoleucin, Valin blockieren (Stidham et al., 1991), u.a. auf eine verstärkte Aktivität der Cytochrom P450 Monooxygenasen (CYPs, P450s; EC 1.14.14.1) zurück zuführen (Powles and Yu, 2010) (siehe 1.1.2).

Die Acetyl-CoA Carboxylase (ACCase; EC 6.4.1.2) ist ein biotinyliertes Protein und ist in den Plastiden und im Zytosol lokalisiert. Sie liegt in Eukaryoten als Homodimer und in Prokaryoten als Heterodimer vor. Die katalytisch wirksame Domäne ist die Carboxyltransferase-Domäne (Zhang et al., 2003). Die ACCase katalysiert die ATP-abhängige Carboxylierung von Acetyl-CoA

zu Malonyl-CoA. Biotin ist als prostethische Gruppe an der Übertragung der Carboxylgruppe beteiligt. Aryloxyphenoxypropionsäure-Derivate, u.a. Fenoxaprop-P-ethyl (Abb. 3), und Cyclohexandione inhibieren diese Carboxylierung (Burton et al., 1991). Punktmutationen in der Carboxyltransferase-Domäne sind für Resistenzen verantwortlich. Insbesondere Leu1781 \rightarrow Ile1781 und Trp2027 \rightarrow Cys2027 kommen in *A. myosuroides* vor (Delye et al., 2002, Petit et al., 2010). Homozygote Pflanzen von *A. myosuroides* mit der Mutation Leu1781 \rightarrow Ile1781 weisen *per se* keine Wachstumsprobleme auf (Menchari et al., 2007). Derartige Beobachtungen sind entscheidend für die Entwicklung herbizidresistenter Nutzpflanzen. Punktmutationen, die zur Resistenzbildung führen, sollen keine negativen pleiotropen Effekte verursachen. Desweiteren sind alle hier beschriebenen Mutationen dominant. Die Resistenzmutation gegenüber Tubulin-inhibierenden Herbiziden wird über einen rezessiven Erbgang weitergegeben (Powles and Yu, 2010).

Glyphosat (Abb. 3) ist ein Inhibitor der 5-Enolpyruvatshikimat-3-Phosphat-Synthase (EPSPS; EC 2.5.1.19). Es blockiert die Biosynthese der aromatischen Aminosäuren u.a. Tryptophan, was zum Pflanzentot führt. Glyphosat wird weltweit eingesetzt und ist ein Beispiel dafür, dass bei massiv monotonem Einsatz des Herbizids, insbesondere beim Anbau von transgenen Pflanzen wie Soja (*Glycine max*), Mais (*Zea mays*), Baumwolle (*Gossypium hirsutum*) und Raps (*Brassica napus*), die natürliche Selektion innerhalb der Unkrautarten schnell zu resistenten Mutationen (hier: Pro106 \rightarrow Ser106 der EPSPS) führen kann (Powles and Yu, 2010).

1.1.2 Toxikokinetik

Wie unter 1.1.1 gezeigt können Resistenzmutationen in Unkrautarten auch über toxikokinetische Veränderungen innerhalb des Organismus erfolgen. Die Toxikokinetik beschäftigt sich mit der Fragestellung, wie ein Organismus auf die Verabreichung oder Exposition eines Xenobiotikums reagiert. Folglich geht es um die Metabolisierung von Fremdstoffen. Hier soll ein kurzer Überblick über Metabolisierungswege *per se* gegeben werden. Ausführlich wird die pflanzliche Entgiftung von Xenobiotika unter 1.1.3 behandelt. Schwerpunkt dieses Unterkapitels ist die transkriptionale Regulierung dieser Entgiftungsenzyme im menschlichen Körper durch verschiedene Rezeptoren (Omiecinski et al., 2011).

Bei der Metabolisierung von Fremdstoffen unterscheidet man in drei Phasen (Abb. 5). Phase I ist die sog. Transformationsphase. Hier werden lipophile Xenobiotika mittels Phase-I-Enzymen funktionalisiert. Die Hauptreaktionen dieser Enzyme sind xenobiotikumsspezifische N- und O-Dealkylierungen, aliphatische und aromatische Hydroxylierungen, N- und S-Oxidationen sowie Desaminierungen (Jakoby and Ziegler, 1990). Die prominentesten Vertreter dieser Phase-I-Enzyme sind Cytochrom P450 Monooxygenasen (CYPs). 1958 wurde diese Enzymklasse das erste Mal nachgewiesen (Klingenberg, 1958). Diese Flavoproteine mit Protoporphyrin IX (Abb. 4B) (siehe 1.2.3) als prostethischer Gruppe und meist NADPH als Cofaktor hydroxylieren exo- und endogene Substrate, wie Sterole, Steroide oder Prostaglandine (Testa and Krämer, 2007a). Neben Oxidation, Reduktion und Hydrolyse finden in Phase II diverse Konjugationen der Xenobioti-ka statt. Ziel dieser enzymatischen Konjugation mit unterschiedlicher Cosubstraten wie Sulfat, Glucuronsäuren, Glutathion, Methyl- und Acetyl-Resten, ist die Erhöhung der Hydrophilie zum Transport bzw. zur erleichterten Ausscheidung der Toxine aus dem Organismus. Folglich sind

Phase I	Phase II	Phase III
Transformation	Konjugation	Kompartimentierung
$\text{R-H} + \text{O}_2 + \text{[2H]} \rightarrow \text{R-OH} + \text{H}_2\text{O}$	Zytosol R-X + GSH \rightarrow X-H + GS-R —	Vakuole → γ-GluCysGly
	$2ATP + SO_4^2 \rightarrow PAPS + ATP + PP_i$	y-GluCys CysGly
	Glutathion-S-Transferasen Sulfotransferasen	Ŕ
Cytochrom P450 Mono- Oxygenasen	UDP-Glucuronosyltransferase N-Acetyltransferasen Methyl-Transferasen	ABC Transporter γ-Glutamyltranspepdtidase Carboxypeptidase

in Phase II sog. Transferase-Enzyme wie UDP-Glucuronosyltransferases (UGTs; EC 2.4.1.17), Sulfotransferasen (STs; EC 2.8.2.XX), N-Acetyltransferasen (NATs; Arylamin N-acetyl; EC 2.3.1.5), Methyl-Transferasen (MTs; EC 2.1.1.XX) und Glutathion-S-Transferasen (GSTs; EC 2.5.1.18) (siehe 1.2) beteiligt. In Phase III werden die entsprechenden Konjugate kompartimentiert. Die Hauptaktivität der Transferase-Enzyme findet im Zytosol statt. Mittels ABC-Transporter (ABC; <u>ATP binding cassette</u>) werden die Konjugate in die Vakuole transportiert. Hier werden sie entweder eingelagert oder zu den entsprechenden Kataboliten abgebaut (siehe 1.1.3).

In den toxikokinetischen Transkript-Wissenschaften geht es um die transkriptionale Regulierung dieser Entgiftungsenzyme. Im menschlichen Körper finden diese Regulierungen mittels xenobiotischen Rezeptoren (XRs) statt (Omiecinski et al., 2011). Einige Xenobiotika werden von den XRs erkannt und induzieren damit die Expression von Entgiftungsenzymen. Diese Rezeptoren regulieren alle drei Phasen (Kohle and Bock, 2009). XRs gehören zu den nuklearen Rezeptoren. Man unterscheidet hier in Steroidrezeptoren wie Estrogen, Androgen und in nicht-steroide Rezeptoren wie CAR (Constitutive Androstane Receptor), PXR (Pregnane X Receptor) und PPAR (Peroxisom-Proliferator-aktivierter Rezeptor) (Chambon et al., 2005). CAR ist dafür bekannt humane GSTs zu induzieren (Ueda et al., 2002). Auch Flavonoide (siehe 1.2.3) wurden als CAR-Modulatoren entdeckt (Yao et al., 2010). Generell sind diese nuklearen Rezeptoren aus drei Domänen aufgebaut, die jeweils zuständig sind für die Ligandenbindung, DNA-Bindung und Transaktivierung. Zur DNA-Bindung vollziehen viele dieser Rezeptoren eine Heterodimerisierung mit RXR (Retinoid X Receptor) (Mangelsdorf and Evans, 1995). Der humane PXR, zuerst 1998 entdeckt (Blumberg et al., 1998, Suino et al., 2004), ist ein nuklearer Schlüsselrezeptor. PXR bindet spezifisch Rifampicin (Mitro et al., 2007, Wada et al., 2009) und bildet wie CAR ein Heterodimer mit RXRa (Abb. 6). Durch die Ligandenbindung kommt es zur Interaktion zwischen Promotorgen-Sequenzen (XRE; Xenobiotic Response Element) des DR-3 oder NR-6 Motivs (Abb. 6).

Insbesondere die Isoformen von CYP3A4 sind hier Zielgene (Timsit and Negishi, 2007). Durch anschließende Expression von CYP3A4s werden u.a. das Insektizid Aldrin und Chloroxazon als chemische Leitstruktur der Aryloxyphenoxypropionsäure-Herbizide (siehe 1.1.1) metabolisiert (Testa and Krämer, 2007a).

1.1.3 Detoxifizierung von Xenobiotika

In der Entgiftungsphase II und III von Schwermetallen und Pestiziden sind die Enzyme Phytochelatinsynthase (PCS; EC 2.3.2.15) γ -Glutamyltranspeptidase (GGT; EC 2.3.2.2) und Glutathion-S-Transferase (GST; EC 2.5.1.18) (siehe 1.2) in Hefen und Pflanzen von Bedeutung (Abb. 7). Alle drei Proteinfamilien sind eng mit dem Schwefel- und Glutathionmetabolismus verknüpft (siehe 1.2.1).

Phytochelatine (PCs) sind ähnlich der Metallthioninen metallbindende Peptide, die wie Glutathion (GSH; γ-Glu-Cys-Gly; γ-ECG) nicht ribosomal synthetisiert werden (Cobbett and Goldsbrough, 2002) (siehe 1.2.1 und 4.1). Sie entgiften Schwermetalle, insbesondere Cadmium, durch Ausbildung von Chelatkomplexen. In Pflanzen wurden PCs das erste Mal 1985 nachgewiesen (Grill et al., 1985). Diese Chelatkomplexe bestehen aus thiolhaltigen Ketten, die aus GSH mittels PCS

synthetisiert werden (Grill et al., 1989). In Arabidopsis thaliana gibt es zwei Gene, die für PCS kodieren, namentlich PCS1 (At5g44070) und PCS2 (At1g03980) (Cazale and Clemens, 2001, Vatamaniuk et al., 2004). PCS2 scheint *in planta* keine bedeutende Rolle zu zukommen, obwohl sie, exprimiert in Hefe, eine funktionsfähige PCS ist (Cazale and Clemens, 2001). PCS1 gehört zur Klasse der Cysteinproteasen (Rea, 2006, Vestergaard et al., 2008) und übernimmt bei der PC-Synthese eine Doppelfunktion. Zum einen spaltet sie C-terminal Glycin von GSH ab. Zum anderen ist sie als y-Glu-Cys-Transpeptidase aktiv, indem sie die Ausbildung der Peptidbindung zwischen zwei γ -Glu-Cys-Molekülen katalysiert. So entstehen die thiolhaltigen Ketten (γ -Glu-Cys),-Gly (n=2-11). Induziert wird PCS1 insbesondere durch Cadmium. Aber auch GSTs (AtGSTF6 und F7) können ihrerseits durch Schwermetalle wie Aluminium induziert werden (Ezaki et al., 2004). Nach der S-Glutathionylierung eines Pestizids durch GSTs (siehe 1.2) kann das entsprechende Pestizid-GS-Konjugat C-terminal durch die PCS abgebaut werden (Beck et al., 2003, Grzam et al., 2006, Blum et al., 2007) (Abb. 7 und Abb. 13). Neben der PC-Synthese ist die PCS also auch als Phase-III-Enzym aktiv. In S. cerevisiae gibt es kein PCS-homolog, aber zwei Serincarboxypeptidasen, kodiert von CPC und CPY, die ebenfalls durch Cadmium induziert werden und aktiv GS-Konjugate am C-Terminus spalten können (Wünschmann et al., 2007, Wünschmann et al., 2010) (Abb. 7). CPC und CPY sind in der Vakuole lokalisiert, wohingegen PCS1 zytosolisch GS-Konjugate abbaut (Blum et al., 2010) (Abb. 13). Es konnte aber gezeigt werden, dass im Fall des Alachlor- und Fenclorim-GS-Konjugates die entsprechenden γ -Glu-Cys-Metabolite durch einen vakuolären Abbau entstehen (Wolf et al., 1996, Brazier-Hicks et al., 2008).

Desweiteren kann das GS-Konjugat auch N-terminal abgebaut werden. Verantwortlich dafür in Säugetieren, Pflanzen und Hefen sind GGTs. In Säugetieren beginnt die Phase III ausschließlich durch den GS-Konjugatabbau durch GGTs (Inoue et al., 1982). In *Arabidopsis thaliana* kodieren vier Gene für GGTs, namentlich *GGT1* (At4g39640), *GGT2* (At4g39650), *GGT3* (At1g69820) und *GGT4* (At4g29210), wobei *GGT3* ein Pseudogen ist (Ohkama-Ohtsu et al., 2007b) (siehe 1.2.1). In *S. cerevisiae* gibt es ein Gen, dass für eine GGT kodiert, namentlich *CIS2* (Ubiyvovk et al., 2006). Es konnte gezeigt werden, dass auch Cis2p das Biman-GS-Konjugat N-terminal abbauen kann (Wünschmann et al., 2010).

Der Hauptabbauort der GS-Konjugate ist die Vakuole (Abb. 7). ABC-Transporter transportieren diese GS-Konjugate in die Vakuole. In *Arabidopsis* ist dies Mrp1p und Mrp2p (*Multi drug Resistance-associated Protein*) (Rea, 2007) (Abb. 13). In *S. cerevisiae* ist dies insbesondere Ycf1p (*Yeast cadmium factor* 1) (Abb. 7). In Hefe kommt diesen ABC-Transportern eine besondere Rolle bei der Entgiftung zu. Zum einen transportieren sie GS-Konjugate in die Vakuole. Zum anderen können sie aber auch direkt Schwermetalle ohne weitere Modifikationen in die Vakuole schleusen oder auf direktem Wege über die Plasmamembran ausscheiden (Abb. 7). Ycf1p wird

durch den Transkriptionsfaktor Yap1p reguliert (Tan et al., 2008). Yap1p erkennt durch seine Sequenz TT/GAC/GTTA (YRE; <u>Yap1 recognition element</u>) spezifisch Cadmium (Hirata et al., 1994) und löst zusammen mit Met4p die Glutathionbiosynthese (siehe 1.2.1) und die Expression der entsprechenden ABC-Transporter aus (Abb. 7). Dies zeigt wie eng mechanistisch die Entgiftung von Xenobiotika in Form von Schwermetallen und Pestiziden in Hefe und Pflanze verknüpft ist.

1.2 Glutathion-S-Transferasen

Glutathion-S-Transferasen (GSTs; EC 2.5.1.18) als Phase-II-Enzyme gehören zur Superfamilie der Thioredoxine (TRXs) und kommen in vielen prokaryotischen und eukaryotischen Organismen vor (Vuilleumier, 1997, Dixon et al., 1998a, Dixon et al., 1998b, McGoldrick et al., 2005b, Allocati et al., 2009). Insbesondere ihre hohe Abundanz innerhalb monokotyler und dikotyler Planzen ist bemerkenswert. So gibt es mindestens 25 Vertreter dieser Proteinfamilie in der Sojabohne (*G. max*), 42 in Mais (*Z. mays*), 55 in *A. thaliana* (siehe 1.2.3), 59 in Reis (*Oryza sativa*) und 81 in der Pappel (*Populus trichocarpa*) (McGonigle et al., 2000, Lan et al., 2009, Dixon et al., 2009, Banerjee and Goswami, 2010, Chi et al., 2010).

Fig 1 | Overall structure of Gtt2. (A) Schematic representation of the Gtt2 homodimer. GTS molecules are shown as stick models and coloured according to their atom type (C, green; S, yellow; O, red). The G-site and H-site of subunit B are indicated by arrows. (B) The GTS-bound Gtt2 monomer, with the two domains in cyan and red. (C) Hydrogen bonds between GTS and Gtt2. (D) Superposition of apo-bound (light blue) and GTS-bound Gtt2 (light orange) showing the different position of the loop after helix- α 2 upon GTS binding. Cys, cysteine; G-site, GSH-binding site; GTS, glutathione sulphonate; H-site, hydrophobic substrate binding site; His, histine; Thr, threonine; Trp, tryptophan; Tyr, tyrosine; Val, valine.

Abb. 8 Kristallstrukter der Gtt2p aus *S. cerevisiae.* GSTs bilden eine dimere Proteinstruktur aus. Jede Untereinheit, wie hier (Fig. 1B) gezeigt, ist katalytisch unabhängig von der anderen und besteht aus dem konservierten N-Terminus (Rot), der sog. "G-Seite", und dem strukturell variablen C-Terminus (Cyan), der sog. "H-Seite". Wie die TRXs und GRXs besitzen sie zudem eine TRX-ähnliche Faltung. Jede "G-Seite" bindet ein GSH-Molekül, hier gezeigt durch die Bindung mit Glutathionsulphonat als GSH-Analog.

In den 70iger Jahren wurde das erste Mal eine GST in Zusammenhang mit der Resistenz von Mais gegenüber dem Triazin-Herbizid Atrazin entdeckt (Lamoureux et al., 1970, Lamoureux et al., 1973, Shimabukuro et al., 1970, Shimabukuro et al., 1973).

GSTs sind multifunktionale Proteine, die als Enzyme und als Ligandenträger im Entgiftungsprozess von zytotoxischen endogenen und exogenen Verbindungen mitwirken (Kreuz et al., 1996, Dixon and Edwards, 2009, Dixon et al., 2009, Dixon et al., 2010, Cummins et al., 2011). Sie haben wie TRXs und Glutaredoxine (GRXs) in ihrer Sekundärstruktur eine TRX-ähnliche Faltung, die aus vier oder fünf β -Strängen, umgeben von α -Helices, besteht (Abb. 8). Aufgrund dieser evolutionären Überlappung können GSTs eine Vielzahl an Reaktionen mit GSH als Cofaktor katalysieren. Sie können aktiv sein als Glutathionperoxidasen (GPOXs; EC 1.11.1.9), Thioltransferasen (TTs; EC 1.8.4.1), Glutathionreduktasen (GLRs; EC 1.8.1.7), Oxidoreduktasen, Isomerasen und Transferasen (Edwards and Dixon, 2005, Frova, 2006, Cummins et al., 1999) (Abb. 11A). Damit schützen GSTs den Organismus vor ROS. Ihre Hauptfunktion ist die als Transferase und damit die sog. S-Glutathionylierung. GSTs katalysieren die Konjugation von elektrophilen, lipophilen Verbindungen mit GSH (Abb. 9). Diese S-Glutathionylierung erhöht die hydrophile Eigenschaft der Verbindung, wodurch das GS-Konjugat in die Vakuole transportiert und dort separiert bzw. abgebaut werden kann (Blum et al., 2007, Ohkama-Ohtsu et al., 2007, Ohkama-Ohtsu et al., 2008, Wünschmann et al., 2010) (siehe 1.1.3).

Es gibt zahlreiche Kristallstrukturen von Pflanzen-, Pilz- und Säugetier-GSTs, die sich prinzipiell in ihrer Sekundärstruktur nicht unterscheiden (Thom et al., 2001, Ma et al., 2009). GSTs bilden

Abb. 9 Enzymatische Bestimmung der Glutathion-S-Transferase Aktivität. Zur Ermittlung der GST-Aktivität und damit zur Einschätzung eines möglichen Entgiftungspotenzials gegenüber anderen Xenobiotika wird in Bakterien, Pilzen, Hefen, Pflanzen Menschen 1-Chlor-2,4und Dinitrobenzol (CDNB) als Standardsubstrat nach Habig et al. 1974 verwendet. Die Konjugationsreaktion läuft nach dem S₁2-Mechanismus ab: GS⁻ als Nukleophil vollzieht einen Rückseitenangriff an das elektrophile Zentrum von CDNB bei zeitgleichem Verlassen der Abgangsgruppe (hier: Cl⁻).Das entstehende CDNB-GS-Konjugat kann dann bei einer spezifischen Wellenlänge $\lambda = 340$ nm detektiert werden.

aus zwei löslichen Monomeren ein Dimer (Abb. 8). Sie können Homo- und Heterodimere bilden (Dixon et al., 1998a). Jedes Monomer (~ 26 kDa) besteht aus einer N-terminalen und einer Cterminalen Domäne und ist katalytisch unabhängig vom anderen. Verbunden sind beide Domänen durch die TRX-ähnliche Faltung. Die katalytisch wichtigen Aminosäuren im konservierten N-Terminus sind Cystein, Serin und Tyrosin (Abb. 14A). Cystein und Serin kommen in Prokaryoten, Pilzen und Pflanzen vor, wohingegen der Tyrosinrest charakteristisch für Säugetier-GSTs ist (Frova, 2006). Im N-Terminus wird GSH koordiniert. Daher wird er auch als "G-Seite" (GSH-Bindestelle) bezeichnet. Diese drei Aminosäuren vermögen den pK_-Wert so zu reduziert, dass GSH als Thiolat-Anion vorliegt (Dixon et al., 2002). Dadurch kann ein nukleophiler Angriff durch GSH nach dem Mechanismus der S_N2-Substitution an ein elektrophiles Substrat erfolgen (Abb. 9). Der Cysteinrest ist zudem ausschlaggebend für die GPOX- und Thioltransferase-Aktivität von GSTs (siehe 1.2.3). Hier können sich gemischte Disulfide (GS-S-Protein) bilden. Die N-terminalen Domänen von G. max bzw. von Triticum aestivum können neben GSH auch noch die GSH-Derivate Homoglutathion bzw. Hydroxmethylglutathion koordinieren (Cummins et al., 2011). Die C-terminale Domäne ist strukturell sehr heterogen und verantwortlich für die Koordinierung unterschiedlicher Verbindungen. Diese Domäne ist letztlich ausschlaggebend für die Substratspezifität von GSTs und damit für die Entgiftungsfunktion. Da sie einen hohen Anteil hydrophober Aminosäuren hat, wird sie als "H-Seite" (Hydrophobe Substrat-Bindestelle) bezeichnet.

Zur Untersuchung der Substratspezifität von GSTs im katalytischen Entgiftungsprozess werden mehrere Standardsubstrate verwendet, namentlich 1-Chlor-2,4-Dinitrobenzol (CDNB), 4-Chloro-7-nitrobenzofurazan (NBD-Cl), Ethacrynsäure (EA) und Benzylisothiocyanat (BITC) (Abb. 10). Insbesondere die Verwendung von CDNB hat sich durchgesetzt (Habig et al., 1974). Ein negati-

ver Befund als CDNB-aktive GST besagt aber noch nichts hinsichtlich ihrer tatsächlichen katalytischen Entgiftungsfunktion. So führte der standardmäßige Einsatz von CDNB zur Bestimmung der bakteriellen GST-Aktivität dazu, dass eine Vielzahl an bakteriellen GSTs als solche nicht erkannt wurde, da diese phylogenetisch ähnlich der theta-Klasse sind (Abb. 14A). Diese Klasse besitzt keine signifikante Aktivität gegenüber CDNB (Vuilleumier, 1997).

Abb. 11 Reaktionen und Liganden der *Arabidopsis* **GSTs.** (A) Enzymatische Aktivitäten, die von GSTs in *Arabidopsis* katalysiert werden. Von oben nach unten: Glutathion-S-Transferase (1), Glutathioneperoxidase (2), Dehydroascorbatreduktase (3), Thioltransferase (4) und *cis-trans*-Isomerase (5). Das oxidierte GSH (GSSG) wird in einem zweiten Schritt mittels Glutathionreduktase (GLR) und dem Cosubstrat NADPH zu GSH reduziert. (B) Fenclorim (FC) und Benoxacor (BX) werden als Herbizidsafener von *At*GSTs entgiftet. Bei verschiedenen Verbindungen des (schwefelhaltigen) Sekundärmetabolismus in *Arabidopsis* übernehmen einzelne GSTs u.a. Ligandenfunktion (siehe 1.2.3).

1.2.1 Glutathion- und Schwefelmetabolismus

Das GST-Substrat Glutathion (GSH; γ-Glu-Cys-Gly; γ-ECG) (Abb. 12) wird nicht in den Ribosomen, sondern in den Chloroplasten und dem Zytosol synthetisiert. Dieses thiolische Tripeptid kommt in den meisten Organismen vor (Meister, 1988b). In Leguminosen kann neben GSH auch noch HomoGSH (γ-Glu-Cys-Ala) und in *T. aestivum* zudem HydroxymethylGSH (γ-Glu-Cys-Ser) vorkommen (Klapheck et al. 1992). Die Besonderheit des GSH-Moleküls und seiner Derivaten besteht darin, dass der Glutaminsäurerest nicht über die Carboxylgruppe in α-Position zur Aminogruppe an die Peptidbindung gebunden ist, sondern durch ihre γ-Carboxylgruppe. In *S. cerevisiae* kann GSH eine Zellkonzentration bis zu 10 mM erreichen (Penninckx, 2002). In *A. thaliana (Col-*0) ist der GSH-Gehalt kompartimentenabhängig und kann 1-6 mM betragen (Noctor et al. 2011). Das macht GSH noch vor ungebundenem Cystein zur größten Speicher- und Transportform von reduziertem Schwefel in *Arabidopsis* (Kopriva and Rennenberg, 2004). Innerhalb der Pflanzenzelle wird GSH durch den unspezifischen Oligopeptidtransporter OPT6 transportiert. OPT6 transportiert zudem GS-Konjugate in Phase III (Pike et al., 2009).

GSH ist ein multifunktionaler Metabolit, der zusammen mit TRXs, GRXs und GSTs sowohl an der Redoxhomöostase und Signalwirkung (siehe 1.2.2 und 1.2.3), als auch in der pathogenen Abwehr beteiligt ist (siehe 4.2). Desweiteren ist GSH Vorläufer der Phytochelatine (PCs) (siehe 1.1.3), die in der Entgiftung von Cadmium und anderen Schwermetallen beteiligt sind (Grill et al., 1987). Zudem reguliert GSH die Sulfatassimilation durch Inhibierung von Sulfattransportern und der ATP-Sulfurylase (Lappartient et al., 1999).

Besondere Bedeutung in *Arabidopsis* kommt der Biosynthese von GSH und seinem Abbau inkl. seiner GS-Konjugate zu (Abb. 13B) (siehe 1.1.3). 1994 wurden die GSH-synthetisierenden Enzyme in *Arabidopsis* identifiziert (May and Leaver, 1994). Das erste Enzym ist eine γ -Glu-Cys-Synthase (γ -ECS; EC 6.3.2.2), kodiert von *GSH1* (At4g23100). Gsh1p ist in den Plastiden lokalisiert (Wachter et al., 2005). *GSH2* (At5g27380) kodiert für zwei Transkripte einer GSH-Synthase

Abb. 12 Das Glutathion-Molekül in S. cerevisiae. Glutathion ist neben diverser Monosaccharide das zentrale Phase-II-Molekül. In S. cerevsiae kann der endogene GSH-Spiegel bis zu 10 mM betragen (Penninckx 2002). Als Tripeptid wird Glutathion ausgehend von Cystein über die Stufe des Dipeptids gebildet: mittels y-Glutamylcystein-Syntethase (ScGSH1) entsteht das y-Glutamylcystein und in einem nächsten Schritt mittels Glutathionsynthetase (ScGSH2) die tripeptidische Dicarbonsäure (siehe Abb. 13A)

(GSH-S; EC 6.3.2.3), wobei die kürzere, häufiger auftretende Form im Zytosol und die längere Variante in den Chloroplasten lokalisiert ist (alternatives Splicing). Der Knockout von *GSH1* ist embryolethal, der von *GSH2* lethal für Keimlinge (Cairns et al., 2006). Der Syntheseweg in *Arabidopsis* ist bekannt (Noctor et al., 2002, Mullineaux and Rausch, 2005) und ist mit anderen Organismen vergleichbar (Meister, 1988a, Martin et al., 2007) (Abb. 13A). Gegenstand der heutigen Forschung ist insbesondere der GSH-Abbauweg in *Arabidopsis*. Es ist vom tierischen Organismus bekannt, dass es zur Hydrolyse von GSH an der Plasmamembran einer γ-Glutamyltranspeptidase (GGT; EC 2.3.2.2) bedarf (Meister, 1988a) (siehe 1.1.3). Der weitere intrazelluläre Metabolismus des Dipeptides γ-GluCys zu 5-Oxoprolin (5-OP) mittels γ-Glutamyl-Cyclotransferase (GGC) und zur Glutaminsäure mittels 5-Oxoprolinase (5-OPase) ist in Tabak (*Nicotiana benthamiana*) sehr gut bekannt (Rennenberg et al., 1980) (Steinkamp and Rennenberg, 1984, Steinkamp et al. 1987). Zudem wurde in Mais und Gerste (*Hordeum vulgare*) eine GGT-Aktivität im Apoplast nachgewiesen (Masi et al., 2007, Ferretti et al., 2009).

In *Arabidopsis* ist der Abbauweg noch nicht vollständig geklärt. Daher ist Abb. 13B als ein möglicher Weg zu verstehen. Offene Fragen sind bzgl. der Lokalisierung und genauen Funktion einzelner Enzyme. Vier Gene kodieren für GGTs in *Arabidopsis*, namentlich GGT1-4 (Storozhenko

Abb. 13 Biosynthese und Abbauwege von Glutathion in *Arabidopsis thaliana.* (A) Kurze Darstellung der GSH-Biosynthese. Abkürzungen: APR, Adenosinphosphosulfatreduktase; CAD2, *cadmium insensitive 2* (Tab.1); GSH1, γ -ECS; GSH2, Glutathion-Synthetase; PAD2, *phytoalexin deficient 2*; SAT, Serin-Acetyl-Transferase; OASTL, O-Acetylserin-Thiollyase. (B) Mögliche Abbauwege des GSH und die Lokalisierung der entsprechenden Enzyme. Abkürzungen: 5-OPase, 5-Oxoprolinase; DP, Dipeptidase; GGC, γ -Glutamyl-Cyclotransferase; GGT, γ -Glutamyltranspeptidase; GST, Glutathion-S-Transferase; MRP, *Multi drug Resistance-associated Protein*; PCS, Phytochelatinsynthase. (•) Die *cad2-1* und *pad2-1* Mutanten spielt eine wichtige Rolle bei der pflanzeneigenen Immunantwort bei Pathogenbefall (siehe 4.2). (Abb. in Anlehnung an Noctor et al., 2011).

et al., 2002), wobei drei von ihnen aktive Enzyme sind (Ggt1p, Ggt2p und Ggt4p). GGT4 wurde ursprünglich als GGT3 und umgekehrt bezeichnet. GGT3 ist als Transkript nachgewiesen, aber nicht aktiv (Destro et al., 2011). Im Unterschied zu tierischen GGTs, sind GGT1 und GTT2 in *Arabidopsis* eher an der Zellwand und *At*GGT4 in der Vakuole lokalisiert (Grzam et al., 2007, Martin et al., 2007, Ohkama-Ohtsu et al., 2007b). In *Arabidopsis* gibt es aber kein Gen, das für GGC kodiert. Daher ist die Abbaumöglichkeit des Dipeptides γ -GluCys zu 5-OP mittels GGC nicht ganz klar (Abb. 13B). Das beste Homolog zur GGC in *Arabidopsis* wird von *OXP1* (At5g37830) kodiert (Ohkama-Ohtsu et al., 2008). Dieses Protein ist aber zytosolisch. Die Mutante *oxp1* akkumuliert hohe Konzentrationen von γ -GluCys. Es wird gemutmaßt, dass der Abbau zu 5-OP eher über dieses Enzym im Zytosol stattfindet, als in der Vakuole. Ein weiterer zytosolischer Abbauweg ist über die *At*PCS1 möglich (Blum et al., 2010). Hier konnte der GS-Konjugatabbau von entgifteten Xenobiotica nachgewiesen werden.

1.2.2 Glutathion-S-Transferasen in S. cerevisiae

Dieses Unterkapitel gibt einen Überblick über GSTs in *S. cerevisiae*. Da GSTs wie auch GRXs zur Superfamilie der TRXs gehören, muss der Blickwinkel auf GSTs um den auf GRXs erweitert werden. Aufgrund der evolutionären Überlappung innerhalb der TRXs kommt es funktional zur Überschneidung dieser detoxifizierenden Proteinfamilien (Abb. 14A). Dieser Umstand wird im Folgenden berücksichtigt.

Die Bäckerhefe *S. cerevisiae* ist ein gebräuchlicher eukaryotischer Modellorganismus, um Pflanzengene funktional zu charakterisieren. In *S. cerevisiae* gibt es neun Gene, die für Polypeptide mit GST bzw. GST-ähnlichen Sequenzen kodieren (Abb. 14C). Insbesondere der konservierte N-Terminus (Abb. 8) dieser Polypeptide macht einen Sequenzvergleich erst möglich.

GTT1 und *GTT2* stehen für Glutathion Transferasen 1 und 2 (Choi et al., 1998). Gtt1p wird dem Endoplasmatischem Retikulum (ER) und Gtt2p dem Zytosol zugeordnet. Die rekombinant exprimierten Proteine Gtt1p und Gtt2p sind aktiv gegenüber CDNB. Die Promotorregionen von *GTT1* und *GTT2* enthalten mehrere Kopien von <u>stress response elements</u> (STRE). Jedoch zeigten weder die einzelnen Mutanten $\Delta gtt1$ und $\Delta gtt2$, noch die multiple Mutanten $\Delta gtt1\Delta gtt2$ einen physiologischen Befund auf CDNB (Collinson and Grant, 2003). Kürzlich wurde mit Gtt2p zum ersten Mal eine Pilz-GST kristallisiert (Ma et al., 2009) (Abb. 8). Gtt2p besitzt im N-Terminus keine der drei üblichen Aminosäuren (Cystein, Serin oder Tyrosin) (Abb. 14A) und ist daher eher als atypisch einzustufen. Trotzdem kann Gtt2p in ihrem N-Terminus nachweislich GSH koordinieren. Gtt2p scheint eine größere Rolle in der Konjugation von NBD-Cl als von CDNB zu zukommen. Darüber hinaus wird in Zusammenhang mit Gtt2p diskutiert, ob sie möglicherweise mit der GGT Cis2p einen Proteinkomplex bildet, um Cadmium vom Zytosol in die Vakuole zu schleusen (Adamis et al., 2009).

Überraschenderweise sind zwei dithiolische GRXs, Grx1p und Grx2p, nicht nur als Oxidoreduktasen bzw. GPOXs aktiv (Luikenhuis et al., 1998, Collinson et al., 2002), sondern auch in der Lage CDNB zu konjugieren (Collinson and Grant, 2003). Diese beiden GRXs sind also nachweislich als GSTs aktiv, obwohl ihre Polypeptidsequenzen aufgrund fehlender Homologie nicht mit den GST-Sequenzen vergleichbar sind.

Vertreter der GRX-Proteinfamilie (Monomere: ~ 10 kDa) sind als GSH-abhängige Thioltransferasen (siehe 1.2.3) gewöhnlich an Redoxreaktionen, aber auch am Einbau von [Fe-S]-Clustern und an der Häm-Biosynthese beteiligt. Sie gehören wie TRXs, Proteindisulfidisomerasen, GPOXs und GSTs zur TRX-Superfamilie (Belli et al., 2002, Rouhier et al., 2010). Man unterscheidet hier anhand eines monothiolischen bzw. dithiolischen Mechanismus in zwei Unterfamilien (Herrero et al., 2006). Monothiolische GRXs sind aktiv bei GS-S-Protein-Bindungen, wohingegen dithiolische aktiv sind bei intramolekularen Proteindisulfidbrücken (Belli et al., 2002). Nur dithiolisch aktive GRXs katalysieren die Umsetzung von β -Hydroxyethylen-Disulfid (HED) zum entsprechenden GSH-haltigen Disulfid (Luikenhuis et al., 1998). Dabei wird über den Nterminalen Cysteinrest GSH koordiniert, ähnlich den GSTs (Herrero et al., 2006). Innerhalb dieser beiden Mechanismen werden GRXs nach ihrer Sequenz und ihrem konservierten aktiven Motiv in sechs Klassen eingeteilt (Rouhier et al., 2010). Bei der Klassifizerung spielt die Anzahl der Nterminalen GRX-Domänen und die Anwesenheit von TRX-ähnlichen Modulen eine Rolle. Kürzlich konnte nachgewiesen werden, dass sich die GRXs evolutionär durch Domänenkombination aus TRXs und GRXs entwickelt haben (Alves et al., 2009). Erstmalig wurde die Funktion eines GRXs in *E. coli* nachgewiesen werden (Holmgren, 1976). Die Pappel (*P. trichocarpa*) hat 38 Vertreter dieser Proteinfamilie (Rouhier et al., 2010). In *S. cerevisiae* sind gegenwärtig acht GRXs bekannt (Eckers et al., 2009) (Abb. 14B). *Sc*GRX1, 2 und 8 sind dithiolisch (Luikenhuis et al., 1998, Eckers et al., 2009), wohingegen *Sc*GRX3-7 monothiolisch sind (Rodriguez-Manzaneque et al., 1999, Mesecke et al., 2008a, Izquierdo et al., 2008). *Sc*GRX3-5 sind homolog zum hu-

manen PICOT Protein (Protein kinase C-interacting cousin of thioredoxin) (Belli et al., 2002). Grx3p und Grx4p sind im Nukleus lokalisiert (Molina et al., 2004). Die Mutante $\Delta grx5$ ist nicht lebensfähig und weist einen besonderen Phänotyp auf: Es kommt zur Akkumulation von Eisen innerhalb der Zelle und zu einer permanenten Carbonylierung der Zellproteine als Indikator von hohem oxidativem Stress, infolge einer Hydroxylradikalbildung (HO-) ausgelöst durch die Fenton-Reaktion (Rodriguez-Manzaneque et al., 1999). Grx5p ist in den Mitochondrien an der Bindung und dem Einbau von [Fe-S]-Clustern als Gerüstproteine (prosthetische Gruppen) für Metalloproteine beteiligt. Durch die Überexpression der Gene SSQ1 und ISA2, die in der Synthese und dem Einbau von [Fe-S]-Clustern beteiligt sind, kann der GRX5-Phänotyp unterdrückt werden (Rodriguez-Manzaneque et al., 2002). Die monothiolische Arabidopsis GRXcp, lokalisiert in den Chloroplasten, kann die Lysin Auxotrophie des GRX5-Phänotyps in Hefe komplementieren (Li et al., 2010). ScGRX6 und 7 sind im cis-Golgi lokalisiert (Mesecke et al., 2008b). Desweiteren besitzt ScGRX6 eine putative Transmembranpeptidsequenz (M1-I36), die für eine Lokalisierung im ER verantwortlich sein könnte. Über die N-terminale Domäne von ScGRX6 konnte erstmalig eine nichtkovalente Dimerisierung einer GRX nachgewiesen werden (Luo et al., 2010). Eine kovalente Dimerisierung erfolgt über den C-Terminus mittels [Fe-S]-Cluster.

*Sc*Grx6p weist wie Gtt2p GST-Aktivität gegenüber NBD-Cl auf (Luo et al., 2010). *Sc*GRX1, 2 und 6 sind folglich als GSTs gegenüber Xenobiotika aktiv. Alle drei besitzen STREs, die unter Kontrolle der Zinkfinger Transkriptionsfaktoren Msn2p und Msn4p stehen (Izquierdo et al., 2008). Eine mögliche Kombination hieraus könnte verantwortlich für die Heferesistenz gegenüber dem Herbizid 2,4-Dichlorphenoxyessigsäure (2,4-D) sein (Teixeira et al., 2004). Grx1p ist im Zytosol und Grx2p im Mitochondrium und Zytosol lokalisiert (Pedrajas et al., 2002). *GRX2* wird in zwei Formen mit unterschiedlichen Startcodons exprimiert (Mesecke et al., 2008b). Die kürzere Form bleibt im Zytosol und die längere Variante im Mitochondrium. Darüber hinaus kommt Grx2p bei der Sulfhydryl-Redoxsignalwirkung eine besondere Rolle zu. Sie ist verantwortlich für die Deglutathionylierung des glutathionylierten 20S Proteasom in Hefe (Silva et al., 2008). Dadurch wird die Chymotrypsin-ähnliche Aktivität dieses Proteinkomplexes wieder hergestellt.

GRX1 und 2 werden wie *GTT1* und 2 von STRE reguliert. Die funktionelle Verknüpfung dieser vier Entgiftungsenzyme in der multiplen Mutante $\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ führte zu einer signifikanten Reduktion der GST-Aktivität gegenüber CDNB *in vitro* (Collinson and Grant, 2003). Darüber hinaus weisen Grx1p und Grx2p eine gewisse Sequenzähnlichkeit zur humanen GST der omega-Klasse, namentlich *h*GSTO1-1, auf, die ihrerseits als Oxidoreduktase aktiv ist. Das zeigt die ausgeprägte funktionale Überlappung der GSTs mit TRXs, GRXs und GPOXs, mit GSH als besonderem Substrat (Penninckx, 2002).

S. cerevisiae besitzt ebenfalls drei GST-Vertreter der omega-Klasse, namentlich GTO1, GTO2,

GTO3 (Garcera et al., 2006). Gto1p weist die Signalsequenz des PTS-1-Typs auf und ist daher in den Peroxisomen lokalisiert, wohingegen Gto2p und Gto3p zytosolisch sind (Baretto et al. 2006). Alle drei Vertreter sind aktive Thioltransferasen gegenüber HED und zudem aktiv als DHARs (Garcera et al., 2006) (Abb. 11A). In A. thaliana sind ebenfalls vier GSTs der DHAR-Klasse bekannt (siehe 1.2.3). Die Aktivität der GTOs gegenüber HED lässt sie zur Klasse der dithiolischen GRXs gehören. Mittels Punktmutationen wurde jedoch nachgewiesen, dass nur ein Cysteinrest im aktiven Motiv benötigt wird, was für einen monothiolischen Mechanismus spricht (Garcera et al., 2006) (Abb. 15A). Die beiden monothiolischen ScGRX6 und 7 sind ebenfalls aktiv gegenüber HED (Mesecke et al., 2008a). Eine scharfe Abgrenzung ist also nicht möglich. Keine der drei beschrieben omega-GSTs in Hefe konjugiert CDNB, jedoch Ethacrynsäure (EA) (Abb. 10). EA besitzt im Gegensatz zu CDNB zwei Carboxylgruppen, hat per se also einen niedrigen pK_-Wert. Auf Transkriptebene konnte GTOI bei einer Belastung des Wildtyps (W303-1A) mit 200 µM CDNB nachweislich induziert werden. Bei der Mutante $\Delta gtol$ konnte zudem endogen ein niedrigeres GSH-Level detektiert werden. Sie scheint einen Einfluss auf den Schwefelmetabolismus (siehe 1.2.1) zu haben. Die multiple Mutante $\Delta gto 1 \Delta gto 2 \Delta gto 3 \Delta gtt 1 \Delta gtt 2$ zeigt einen Phänotyp bei Belastung mit Cadmium (Barreto et al., 2006).

Die Röntgenstrukturen zweier Isoformen des Hefe *eukaryotic translation elongation factor* eEF1B γ , kodiert von *TEF3* und *TEF4*, weisen die typische N-terminale Domäne der GSTs ("G-Seite") auf (Jeppesen et al., 2003, McGoldrick et al., 2005a). Zudem sind sie Vertreter der theta-Klasse sehr ähnlich (Koonin et al., 1994) (Abb. 14A). Wie auch Ure2p (*URE2: regulator of nitrogen catabolic gene expression*), sind diese beiden ribosomalen Proteine zu den GST-ähnlichen Polypeptiden zu zählen (McGoldrick et al., 2005b) (Abb. 14C). Tef4p besitzt im Unterschied zu Tef3p Ser11 anstatt Arg11 im N-Terminus (Abb. 15B). Das könnte ausschlaggebend für die katalytische Aktivität als GST sein. In *O. sativa* wurde sowohl mit dem rekombinant exprimierten Monomer EF-1 γ als auch mit dem nativen Komplex EF-1 $\beta\beta$ " γ eine enzymatische Aktivität gegenüber CDNB nachgewiesen (Kobayashi et al. 2001). Desweiteren scheint Tef4p im Entgiftungsprozess von Arsenat eine Rolle zu spielen (Todorova et al. 2007). Es ist bekannt, dass *h*GTOs an der Biotransformation von Arsenat über die Ausbildung von GSH-arsenischen Verbindungen beteiligt sind (Aposhian and Aposhian, 2006).

Abschließend lässt sich also festhalten, dass bei der Entgiftung von Xenobiotika über GS-Konjugate in Hefe nicht nur GSTs bzw. GST-ähnliche Proteine eine Rolle spielen, sondern auch einzelne Vertreter der GRX-Proteinfamilie berücksichtigt werden müssen. Dies macht deutlich, dass beide Proteinfamilien zur Superfamilie der TRXs gehören. *S. cerevisiae* weist bzgl. der Funktionalität dieser Proteinfamilien eine ähnlich komplexe Matrix wie die Modelpflanze *A. thaliana* auf.

1.2.3 Glutathion-S-Transferasen in A. thaliana

In *A. thaliana* sind gegenwärtig 55 Vertreter der GST-Proteinfamilie bekannt (Cummins et al., 2011). Man unterteilt sie anhand ihrer Polypeptidsequenzen und ihrer chromosomalen Lokalisierung in acht Klassen ein (Wagner et al., 2002, Dixon et al., 2009), namentlich phi (F), tau (U), theta (T), zeta (Z), lambda (L), DHAR und die Tetrachlorhydrochinon-Dehalogenase-ähnliche (TCHQD) Klasse (Abb. 16). Separiert davon gibt es ein MAPEG-ähnliches Protein in *A. thaliana* (Membran assoziiertes Protein des Eicosanoid und GSH Metabolismus), das aktiv gegenüber CDNB ist (Jakobsson et al., 1999). Bezieht man den Umstand mit ein, dass GSTZ2 und DAHR4 Pseudogene sind, die als inaktive Enzyme vorliegen, dann gibt es in *Arabidopsis* 53 lösliche GSTs (Dixon and Edwards, 2010a).

Die phi-, tau- und DHAR-Klasse sind pflanzenspezifisch und stellen zusammen mit 13, 28 und vier Vertretern in *Arabidopsis* die größten Klassen dar. Die phi-, tau-, theta- und zeta-Klasse besitzen Serin in der "G-Seite", wohingegen die lambda- und DHAR-Klasse, wie die omega-Klasse in Hefe, einen Cysteinrest besitzen (Abb. 17). Eine Ausnahme bzgl. des erwarteten Serinrestes bilden GSTF11, 12 und 14 (Abb. 17). Die beiden phi- und tau-Klassen katalysieren die klassische Glutathionylierung von Xenobiotika, wie CDNB (Dixon et al., 2009). Ein negativer Befund als CDNB-aktive GST besagt aber noch nichts hinsichtlich der tatsächlichen katalytischen Entgiftungsfunktion. Die *Arabidopsis* GSTs sind überwiegend im Zytosol lokalisiert (Dixon et al., 2009). Auf Besonderheiten wird im Folgenden hingewiesen.

Die Vertreter der phi-Klasse scheinen enzymatisch keinen essenziellen physiologischen Einfluss in *Arabidopsis* zu haben, da multiple knockdown Mutanten keinen Phänotyp zeigen (Sappl et al., 2009). Hier wurden mittels RNAi GSTF6, F7, F9 und F10 ausgeschaltet.

Sie scheinen überwiegend nicht-enzymatische, endogene Funktionen zu erfüllen. GSTF2 wurde als erste der *Arabidopsis* GSTs kristallisiert (Reinemer et al., 1996) und besitzt Ligandenfunktion gegenüber Naphtalinsäure und Indolessigsäure (Smith et al., 2003) (Abb. 11B).

Die Polypeptidsequenz der GSTF5 ist ungewöhnlich. Sie besitzt ähnlich wie GSTF4 einen 35 Aminosäure-langen Ausläufer mit vier Cysteinresten (Dixon and Edwards, 2010a) (Abb. 17).

Polycysteinsequenzen sind bekannt bei Schwermetallentgiftenden Enzymen wie z.B. der PCS (siehe 1.1.2). GSTF5 wird wie F6 und F12 in Zusammenhang mit Flavonoiden hochreguliert. Die Mutation von GSTF12, die einen Verlust des Proteins zur Folge hat, führt in *Arabidopsis* zu einem TT19-Phänotyp (<u>TRANSPARENT TESTA</u>) (Kitamura et al., 2010, Kitamura et al., 2004). Daraus wurde gefolgert, dass GSTF12 eine mögliche Rolle beim Transport von Anthocyanen und Proanthocyanidinen vom Zytosol in die Vakuole über ABC-Transporter hat. Ähnliche Phänotypen kommen mit dem Bronze-2- und dem AN9-Phänotyp in *Z. mays* und in der Petunie (*Petunia hybrida*) vor (Marrs et al., 1995, Mueller et al., 2000). Der Bronze-2-Phänotyp (GST der tau-Klasse) konnte durch Expression von GSTs aus *Vitis vinifera* komplemetiert werden (Conn et al., 2008).

GSTF9 und F10 aus *Arabidopsis* sind nah miteinander verwandt und liegen gemeinsam auf Chromosom 2 (Dixon and Edwards, 2010a). GSTF9 scheint eine endogene Rolle bei dem F-Box Protein COI1 und dem Phytohormon Jasmonsäure zu zukommen (Chua et al., 2010). Kürzlich wurde gezeigt, dass GSTF10 eine Rolle bei der Bindung von BAK1 (<u>Brassinosteroid-Insensitive 1-a</u>ssociated <u>K</u>inase 1) spielt (Ryu et al., 2009). Zudem reagiert GSTF10 auf Trockenstress.

Phylogenetisch ist GSTF13 näher monokotylen und anderen dikotylen GSTs als den Vertretern ihrer eigenen Klasse (Dixon and Edwards, 2010a). Wie GSTF12 hat auch sie N-terminal zwei Cysteinreste.

Zusammen mit GSTF2 und U19 ist GSTF8 die am besten charakterisierte *Arabidopsis* GST. Zunächst hat GSTF8 ein Signalpeptid für Chloroplasten (Thatcher et al., 2007). GSTF8 wird aber dahingehend gespliced, dass das Signalpeptid abgespalten wird und das daraus resultierende Protein im Zytosol bleibt (Thatcher et al., 2007). Darüber hinaus wird GSTF8 auch durch Pathogeninfektion sehr stark induziert (Perl-Treves et al., 2004, Jones et al., 2004) (siehe 4.2). Zudem ist dieser Vertreter enzymatisch als klassische GST aktiv. Zum einen katalysiert GSTF8 reversibel die Konjugation des Oxylipins (*15Z)-12-oxophyto-10,15-dienoic acid* (OPDA) (Abb. 11B) als Vorläufer der Jasmonsäure mit GSH (Dueckershoff et al., 2008). Zum anderen weist sie *in vitro* die höchste CDNB-Aktivität innerhalb der phi-Klasse auf (Dixon et al., 2009). In Zusammenhang mit endogenen GS-Konjugaten konnte in der *atggt4* Mutante nachgewiesen werden, dass das GS-OPDA-Konjugat in der Vakuole akkumuliert (Ohkama-Ohtsu et al., 2011).

Die tau-Klasse ist mit 28 Vertretern numerisch die größte GST-Klasse in *Arabidopsis*. Sie besitzt eine Reihe von nicht-enzymatischen und enzymatischen Funktionen. Mit Ausnahme der GSTU11 sind alle GSTs der tau-Klasse enzymatisch aktiv gegenüber CDNB (Dixon et al., 2009). Daher wird ihnen eine bedeutende Rolle im Entgiftungsprozess von Herbiziden zugeschrieben (Dixon et al., 2003, Thom et al., 2002). Darüber hinaus sind sie aktiv gegenüber dem Benzylisothiocyanat (BITC) (Abb. 10) und Cumenhydroperoxid (C-OOH). Nicht-enzymatisch binden sie eine Rei-

he von verschiedenen Fettsäure-GSH-Thiolester, wodurch sie möglichweise am intrazellulären Transport dieser endogenen Verbindungen beteiligt sein könnten (Dixon and Edwards, 2009).

GSTU1-10 werden überwiegend in den Wurzeln exprimiert (Dixon et al., 2010). Über GSTU1-6 ist wenig bekannt. GSTU6 und U7 zeigen eine starke Bindung mit C_{12-16} -Fettsäure-GSH-Thioestern, wohingegen GSTU9 und U10 eher C_{18} -Derivate binden (Dixon and Edwards, 2009). GSTU5 und 7 werden *in planta* als aktive Enzyme exprimiert (Dixon and Edwards, 2010a). Darüber hinaus wurde gezeigt, dass die heterologe Expression der *Zm*GSTU1 und U2 in *N. benthamiana* eine Akkumulation von tetrapyrrolischen Verbindungen verursacht (Dixon et al., 2008). Glutathion reagiert mit der Allyl-Gruppe des Protoporphyrinogen IX (Abb. 4A), einem Vorläufer des Chlorophyll a und b, zum entsprechenden GS-Konjugat. Dieses wird durch *Zm*GSTU1 und U2 als Ligand gebunden.

GSTU12 ist im Nukleus lokalisiert (Dixon et al., 2009), wohingegen GSTU13-18 weitestgehend nicht charakterisiert sind. Kürzlich wurde herausgefunden, dass die Expression von GSTU17 durch Photorezeptoren, insbesondere durch Phytochrom A (*phy*A), induziert wird. In diesem Zusammenhang zeigte sich *atgstu17* insensitiv gegenüber der Wurzelwachstumsinhibierung durch das Phytohormon Abscisinsäure (Jiang et al., 2010). Möglicherweise ist GSTU17 am Wachstum und an der pflanzlichen Entwicklung beteiligt.

Aus der Reihe GSTU19-28 ist GSTU19 am besten beschrieben. Sie ist endogen die am häufigsten vorkommende GST in Arabidopsis. Aufgrund hoher Redundanz führt aber auch der Knockout von GSTU19 zu keinem Phänotyp (Ülker et al., 2008). Zum einen wird sie durch Trockenheit induziert (Bianchi et al., 2002). Zum anderen bewirkt die Zugabe der Herbizidsafener Fenclorim (FC) und Benoxacor (BX) in Arabidopsis eine erhöhte Expression der GSTU19 (DeRidder et al., 2002), die organspezifisch in den Wurzeln stattfindet (DeRidder and Goldsbrough, 2006). GSTU19 konjugiert neben GSTF8, U7 und U24 auch FC mit GSH (Brazier-Hicks et al., 2008). Diese S-Glutathionylierung bildet den Startpunkt für eine zeitabhängige Bioaktivierung der endogenen Arabidopsis GSTs über spezifische FC-GS-Katabolite (Liu et al., 2009). Nicht-enzymatisch bindet GSTU19 biologisch aktive Liganden wie 2-S-Glutathionylchlorogensäure (Abb. 11B) und Fettsäure-GSH-Thiolester (Dixon and Edwards, 2009). GSTU20 ist coreguliert mit dem aliphatischen Glucosinolatmetabolismus (Hirai et al., 2009) (siehe 4.2). Über GSTU21-23 und 27 ist kaum etwas bekannt. GSTU24, 25 und U28 haben die höchste CDNB-Aktivität aller Arabidopsis GSTs (Dixon et al., 2009). Zudem ist GSTU25 aktiv als GPOX. Interessanterweise bindet GSTU25 spezifisch hydroxylierte Fettsäure-GSH-Thiolester (Dixon and Edwards, 2009). GSTU26 ist ebenfalls CDNB-aktiv (Nutricati et al., 2006).

Die DHAR-Klasse hat vier Vertreter in *A. thaliana*, wobei DHAR4 ein Pseudogen ist. Im Unterschied zu den anderen GST-Klassen sind DHARs als Monomere aktiv und erinnern hier eher an GRXs (siehe 1.2.2). Phylogenetisch kommen sie intrazellulären Chlorid-Kanälen (Frova, 2006) sehr nahe. Ihre Hauptreaktion ist die Reduktion der Dehydroascorbinsäure zur Ascorbinsäure (Vitamin C) mit GSH als Cofaktor (Edwards and Dixon, 2005) (Abb. 11A) Darüber hinaus wurde gezeigt, dass DHAR2 in der Katalase defizienten Mutante *cat2* zusammen mit der zytosolischen Apx1p (antioxidativ H_2O_2 -metabolisierende Peroxidase 1) coreguliert ist (Queval et al., 2007, Mhamdi et al., 2010). Wie *Sc*GTO1-3 sind auch DHAR1-3 inaktiv gegenüber CDNB. *At*DHAR3 ist wie *Sc*GTO1 peroxisomal lokalisiert (Reumann et al., 2009).

A. thaliana besitzt drei Vertreter der lambda-Klasse. GSTL1 und L3 sind zytosolisch lokalisert, wohingegen GSTL2 in den Chloroplasten detektiert wurde (Zybailov et al., 2008). GSTLs sind aktive GSH-abhängige Thioltransferasen. Kürzlich wurde über die Methode des sog. *Ligand-Fishings* (Dixon and Edwards, 2010b) in Zellextrakten aus *T. aestivum*, *A. thaliana* und *N. ben-thamiana* gezeigt, dass *Ta*GSTL1 und *At*GSTL1 eine Flavonoid-spezifische Doppelfunktion besitzen. Die im aktiven Cysteinrest glutathionylierte *At*GSTL1 ist in der Lage Quercitin (Abb. 11B) als Ligand zu binden. Gleichzeitig ist sie in der Lage das Quercitin-GS-Konjugat GSH-abhängig zu reduzieren. *At*GSTL2 bindet wie GSTU19 spezifisch Chlorogensäure, wobei hier die glutathionylierte Form der *At*GSTL2 weniger aktiv ist als das freie Enzym.

Die drei Vertreter der theta-Klasse haben eine schwache CDNB-Aktivität. Sie sind aber insbesondere als GPOX gegenüber C-OOH und Lipidperoxiden aktiv (Dixon et al., 2009). Alle drei GSTs der theta-Klasse besitzen ein PTS-Signal. Durch alternatives Splicing können T2 und T3 modifizierte Proteine bilden. Die ursprünglichen C-terminalen Domänen werden durch myb-ähnlichen Transkriptionsfaktoren modifiziert, was zu einer Unterdrückung des ursprünglichen Signals führt. Dadurch lokalisiert GSTT3 im Nukleus (Dixon and Edwards, 2010a).

Die zeta-Klasse besteht aus zwei Vertretern, namentlich GSTZ1 und 2, wobei nur GSTZ1 auf Transkriptlevel detektierbar ist. GSTZ1 wurde kristallisiert (Thom et al., 2001). Zudem ist sie im Tyrosinmetabolismus beteiligt und katalysiert dort die Isomerisierung von Maleylacetoacetat zu Fumarylacetoacetat (Fernandez-Canon and Penalva, 1998) (Abb. 11A). Der Mechanismus dieser *cis-trans*-Isomerisierung geht über den Thiolat-Angriff. Dabei wird die Doppelbindung temporär aufgehoben und es kann zur freien Drehung am C-Atom kommen.

Zusammenfassend lässt sich also sagen, dass bisher eine systematische Untersuchung der 53 löslichen *Arabidopsis* GSTs im Hinblick auf deren enzymatische Entgiftungsfunktion gegenüber Xenobiotika nur eingeschränkt (Abb. 47) mit dem Standardsubstrat CDNB *in vitro* durchgeführt wurde (Dixon et al., 2009). In diesem Zusammenhang sind 21 der 53 GSTs noch unbeschrieben, namentlich GSTF4, 5, 11-14 und mit GSTU1-6, 13-16, 18, 21-23, 27 mehr als die Hälfte der tau-Klasse.

1.3 Zielsetzung dieser Arbeit

Die Herausforderung bei der funktionalen Analyse der *Arabidopsis* GSTs als Phase-II-Enzyme besteht darin, dass viele Vertreter redundante enzymatische Funktionen *in planta* aufweisen (siehe 1.2.3). Diese hohe Redundanz führte dazu, dass multiple knockdown Mutanten, wie *atgstf6/7/9/10*, keinen Phänotyp zeigten (Sappl et al., 2009). Auch war der Knockout von Vertretern mit hoher Abundanz *in planta*, wie GSTU19, keine Gewährleistung für einen Phänotyp (Ülker et al., 2008). Für die Charakterisierung dieser Proteinfamilie stellten sich die sog. *forward* bzw. *reverse genetic approaches* als problematisch heraus.

Die Zielsetzung dieser Arbeit besteht nun darin, GST-defiziente *S. cerevisiae*-Stämme zu entwickeln, die *in vivo* eine systematische Charakterisierung der *Arabidopsis* GSTs erlauben.

Zu den Hauptfunktionen der *Arabidopsis* GSTs gehört die katalytische Entgiftung von Xenobiotika durch S-Glutathionylierung (Abb. 11A). Bisher erfolgte nur eingeschränkt *in vitro* eine systematische Untersuchung der 53 *Arabidopsis* GSTs im Hinblick auf ihre Entgiftungsfunktion gegenüber dem GST-Standardsubstrat CDNB (Dixon et al., 2009). Davon abgesehen sind 21 der 53 GSTs bis dato noch unbeschrieben, namentlich GSTF4, 5, 11-14 und mit GSTU1-6, 13-16, 18, 21-23, 27 mehr als die Hälfte der tau-Klasse (Abb. 16).

Mittels *S. cerevisiae* soll ein heterologes Testsystem zur Untersuchung der Substratspezifität von *Arabidopsis* GSTs bei der Entgiftung aufgebaut und etabliert werden. *S. cerevisiae* stellt den am besten charakterisierten, einzelligen, eukaryotischen Organismus dar. Gerade hinsichtlich des Katabolismus nach der S-Glutathionylierung von Xenobiotika weist *S. cerevisiae* eine große funktionale und mechanistische Übereinstimmung mit den pflanzlichen Stoffwechselwegen auf (Blum et al., 2007, Wünschmann et al., 2007, Wünschmann et al., 2010, Blum et al., 2010). Die beiden Carboxypeptidasen CPC und CPY in Hefe ähneln funktional der PCS1 aus *Arabidopsis*, die *γ*-Glutamyltranspeptidase CIS2 in Hefe ähnelt den *Arabidopsis* GGTs.

Die Expression der *Arabidopsis* GSTs in GST-defizienten *S. cerevisiae*-Stämmen ermöglicht folglich die Kompartimentierung der entgifteten Stoffwechselprodukte und damit den Metabolitenfluss zu berücksichtigen.

Grundlage stellt zunächst die Identifizierung der essenziellen, hefeeigenen Enzymaktivitäten dar. Hier liegt durch die funktionale Überlappung von GSTs mit TRXs und GRXs eine durchaus komplexe Matrix vergleichbar mit der Pflanze vor (siehe 1.2.2).

In einer GST-defizienten Hefematrix soll dann durch heterologe Expression der klonierten *Arabidopsis* GSTs ein GST-abhängiger Phänotyp unter induzierbaren Bedingungen komplementiert werden. Dies soll der Beginn der systematischen enzymatischen und metabolischen Untersuchungen im Folgenden sein.

2 Material und Methoden

2.1 Materialien

2.1.1 Gerätschaften

Gerät	Modell	Firma
Blotapparatur	Trans-Blot <i>semi dry</i>	BioRad
CCD-Kamera	ORCAII ERG	Hamamatsu Photonics
Feinwaage	Handy	Sartorius analytic
Eluationssäule-Schwerkraft	NAP TM -25 columns	GE Healthcare, illustra™
Gelelektrophoreseapparatur	E844 (400 V-400 mA)	Consort
HPLC	Summit	Dionex
ICR-FT/MS	APEX Qe Fourier, Apollo II source	Bruker (Bremen)
Inkubator	ED 53	WTC Binder
Inkubator	IPP 400	Memmert
Laminar Flow Workstation		Microflow
Magnetrührer	Stuart	Bibby
Millipore-Anlage	Millipore-H2O:MILLIPAK 40, 0,22 µm	Milli-Q academic
Minibeadbeater		Biospec Products,
		Bartlesville,
PCR-Cycler	Tgradient	Biometra
		Biomedizinische Analy-
		tik GmbH, Göttingen
pH-Meter	Multi Cat pH 526	WTW
Photometer	Ultrospec 3000 UV/Visible	Pharmacia Biotech,
	Spectrometer	Freiburg
Photometer	Reprostar 3	Camag
Plate Reader	HTS 7000 plus	Perkin Elmer
Plate Reader	Synergy 2	BioTek
SDS-Gelelektropherese-	PerfectBlue Doppelgelsystem Twin	peqlab
Apparatur	ExW S	
Thermomixer	comfort	Eppendorf
Thermoshaker	Laboshake	Gerhardt
Tischzentrifuge	5415D	Eppendorf
UV	P91D	Mitsubishi
Vortexer	MS1	IKA
Waage	BP 3100 S	Sartorius
Zentrifuge	Avanti J-25	Beckmann Coulter

2.1.2 Chemikalien

Bezeichnung	Hersteller	R-Sätze	S-Sätze
<u>_</u>			
l kB-ladder	Fermentas	-	
I-Chlor-2,4-Dinitrobenzol	Fluka	23/24/25-33-50/53	28-36/37-45-60-61
4-Chloro-/-nitrobenzo-2-oxa-1,3-	F1 1	26/20	
diazol	Fluka	36/38	-
Agar Bacteriological	Scharlau	-	-
Ammoniumacetat	Fluka	-	-
Ammoniumsulfat	Merck	-	-
Ampicillin	Roth	36/37/38-42/43	22-26-36/37
Bovine Serum Albumin	Roth	-	-
Calciumchlorid Anhydrat	Fluka	36	(2)-22-24
Chloroform	J. T. Baker	22-38-40-48/20/22	(2)-36/37
Chlorthalonil	Sigma	26-37-40-41-43-50/53	(1/2)-28-36/37/39-45-60-61
Dikaliumhydrogenphosphat	Merck	-	-
Dimethylsulfoxid	Sigma	-	-
Dinatriumtartatdihydrat	Fluka	-	-
Dithiothreitol	Merck	22-36/38	-
D-Sorbitol	Roth	-	-
Essigsäure	Fluka	10-35	(1/2)-23-26-45
Ethanol (100 %; v/v;)	AppliChem	11	(2)-7-16
Ethidiumbromid	Roth	22-26-68	(1/2)-28-36/37-45-63
Ethylendiamintetraacetat	J. T. Baker	36	(2)-26
Galaktose	Sigma	-	-
Glass Beads	Sigma	-	-
Glukose	Sigma	-	-
Glutathion _{red /ox}	Fluka	-	-
Glycerin (87,5 %; v/v;)	C L N GmbH	-	-
Isopropanol	Merck	11-36-67	(2)-7-16-24/25-26
Kaliumdihydrogenphosphat	Merck	-	-
Kaliumhydroxid	Serva	22-35	(1/2)-26-36/37/39-45
Kupfer(II)sulfat-2·H ₂ O	Merck	22-36/38-50/53	(2)-22-60-61
λ -DNA mit Hind III*	Intern	-	-
L-Adenin Hemisulfatsalz	Sigma	22	22-24/25
L-Arginin base	Serva	36	26
L-Histidin	Fluka	-	-
L-Isoleucin	Sigma	-	-
Lithiumacetat	Sigma	36	26-39
L-Leucin	Sigma	-	-
L-Lysin HCl	Sigma	_	-
L-Methionin	Sigma	_	_
L ording_dve (5x)	Fermentas		
L-Phenylalanin	Sigma		
L -Threonin	Sigma		
L-Tryptophan	Sigma		
	Sigilla	-	-

L-Tyrosin	Sigma	-	-
L-Uracil	Sigma	-	-
L-Valin	Sigma	-	-
Magnesiumsulfat Heptahydrat	Fluka	-	-
Mangansulfat	Merck	48/20/22-51/53	(2)-22-61
Natriumchlorid	Roth	-	-
Natriumhydrogencarbonat	Fluka	-	-
Natriumhydroxid	Fluka	35	(1/2)-26-37/39-45
Natriumlaurylphosphat	Sigma	11-21/22-36/37/38	26-36/37
Pepton	Sigma	-	-
Polyethylenglycol 4000	Fluka	-	-
Saccharose	Sigma	-	-
Salzsäure	Fluka	23-35	(1/2)-9-26-36/37/39-45
Tris·HCl	Sigma	36/38	26

* 300 μl der λ-DNA-Stammlösung (300 μg/μl) wurden mit 1,3 ml Buffer R (1x im Ansatz) versehen und mit Hind III für 1 h bei 37 °C verdaut. Anschließend erfolgte eine Hitzeinaktivierung des Restriktionsenzymes bei 85 °C. Nach Zugabe von 200 μl des Gelladepuffers (sechsfach Orange G) (siehe 2.2.3) betrug die Endkonzentration 50 ng/μl.

2.1.3 Verwendete E. coli-Stämme

Stamm	Genotyp	Quelle
DH5a	F-, φ80dlacZ_M15, (lacZYA-argF) U169, deoR, recA1, endA1,	Invitrogen
	hsdR17 (rk-, mk+), phoA, supE44, λ -, thi-1, gyrA96, relA1	(Karlsruhe)
XL1-Blue	endA1 gyrA96(nal ^R) thi-1 recA1 relA1 lac glnV44 F'[::Tn10	Invitrogen
	$proAB^+ lacl^q \Delta(lacZ)M15$] hsdR17(rK ⁻ mK ⁺)	(Karlsruhe)

Die Kultivierung von *E. coli* erfolgte in LB-Flüssigmedium (pH 7,0) im Schüttler bei 200 rpm/ min oder auf LB-Agarplatten bei 37 °C. Die Selektion der Transformanden erfolgte durch Zusatz des Antibiotikums Ampicillin bzw. Kanamycin im Nährmedium.

Medium	Komponenten	c _{absolut} in [g/l]
	Pepton	10
	Natriumchlorid	10
LB	Hefeexktrakt	5
	Agar (bei Festmedium)	15
	Ampicillin bzw. Kanamycin	100

2.1.4 Verwendete S. cerevisiae-Stämme

Stamm	Genotyp	Quelle	Nr _{intern}
BY4741	MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0	Euroscarf	#1505
		Acc.No. Y00000	
BY4742	MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Euroscarf	#1506
		Acc.No. Y10000	
$\Delta gttl$	BY4741; MATa; his3 Δ 1; leu2 Δ 0; met15 Δ 0; ura3 Δ 0;	Euroscarf	#1825
	YIR038c::kanMX4	Acc.No. Y05973	
$\Delta gtt2$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	Euroscarf	#1827
	YLL060c::kanMX4	Acc.No. Y01548	
$\Delta grxl$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	Euroscarf	#1821
	YCL035c::kanMX4	Acc.No. Y06681	
$\Delta grx2$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	Euroscarf	#1822
	YDR513w::kanMX4	Acc.No. Y04347	
$\Delta tef3$	BY4741; MATa; his3 Δ 1; leu2 Δ 0; met15 Δ 0; ura3 Δ 0;	Euroscarf	#2011
	YPL048w::kanMX4	Acc.No. Y02780	
$\Delta tef4$	BY4741; MATa; his3 Δ 1; leu2 Δ 0; met15 Δ 0; ura3 Δ 0;	Euroscarf	#2089
	YKL081w::kanMX4	Acc.No. Y04930	
$\Delta gtt l \Delta gtt 2$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	C. Hoffmann	#1829
	YLL060c::kanMX4, YIR038c::loxP:URA3:loxP		
$\Delta gtt 2 \Delta grx l$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	C. Hoffmann	#1831
	YLL060c::kanMX4, YCL035c::loxP		
$\Delta grx1\Delta tef4$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	Diese Arbeit	#2267
	YCL035c::kanMX4, YKL081w::loxP:URA3:loxP		
$\Delta grx2\Delta tef4$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	Diese Arbeit	#2269
	YDR513w::kanMX4, YKL081w::loxP:URA3:loxP		
$\Delta gtt1 \Delta grx2$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	Diese Arbeit	#2271
$\Delta tef4$	YDR513w::kanMX4, YDR513w::loxP:LEU2:loxP		
	YKL081w::loxP:URA3:loxP		
$\Delta gtt1 \Delta gtt2$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	C. Hoffmann	#1832
$\Delta grxl$	YIR038c::loxP, YLL060c::kanMX4, YCL035c::loxP		
$\Delta gtt1 \Delta gtt2$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	C. Hoffmann	#1835
$\Delta grx2$	YIR038c::loxP:URA3:loxP, YLL060c::kanMX4,		
	YDR513w::loxP		
$\Delta gtt1 \Delta gtt2$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	C. Hoffmann	#2019
$\Delta grx1 \ \Delta grx2$	YIR038c::loxP, YLL060c::kanMX4,		
	YCL035c::loxP, YDR513w::loxP		
$\Delta gtt 1 \Delta gtt 2$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	Diese Arbeit	#2542
$\Delta grx1 \Delta grx2$	YIR038c::loxP, YLL060c::kanMX4,		
$\Delta tef4$	YCL035c::loxP, YDR513w::loxP, YKL081w::loxP		
$\Delta gtol$	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Euroscarf	#1903
	YGR154c::kanMX4	Acc.No. Y14784	
$\Delta gto 2$	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Euroscarf	#1902
	YKR076w::kanMX4	Acc.No. Y14925	
$\Delta gto3$	BY4/42; MAT α ; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Euroscarf	#1904
	YMR251w::kanMX4	Acc.No. Y10836	

Stamm	Genotyp	Quelle	Nr
Δgto1	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Euroscarf	#1903
-	YGR154c::kanMX4	Acc.No. Y14784	
$\Delta gto 2$	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Euroscarf	#1902
-	YKR076w::kanMX4	Acc.No. Y14925	
$\Delta g to 3$	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Euroscarf	#1904
	YMR251w::kanMX4	Acc.No. Y10836	
$\Delta rod l$	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Euroscarf	#2012
	YOR018w::kanMX4	Acc.No. Y11794	
$\Delta g to 1 \Delta g to 2$	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Diese Arbeit	#1925
	YGR154c::loxP:HIS3:loxP, YKR076w::kanMX4		
$\Delta g to 1 \Delta g to 3$	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Diese Arbeit	#1927
	YGR154c::loxP:HIS3:loxP, YMR251w::kanMX4		
$\Delta g to 1 \Delta g to 2$	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Diese Arbeit	#2013
$\Delta gto3$	YGR154c::loxP, YKR076w::loxP,		
	YMR251w::kanMX4		
$\Delta g to 1 \Delta g to 2$	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Diese Arbeit	#2067
$\Delta g to 3 \Delta rod I$	YGR154c::loxP, YKR076w::loxP,		
	YMR251w::kanMX4, YOR018w::loxP:LEU2:loxP		
$\Delta gto 1 \Delta gto 2$	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Diese Arbeit	#2073
$\Delta g to 3 \Delta rod I$	YGR154c::loxP, YKR076w::loxP,		
$\Delta gttl$	YMR251w::kanMX4, YOR018w::loxP:LEU2:loxP,		
	YIR038c::loxP:HIS3:loxP		
$\Delta gto 1 \Delta gto 2$	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Diese Arbeit	#2076
$\Delta g to 3 \Delta rod I$	YGR154c::loxP, YKR076w::loxP,		
$\Delta gtt2$	YMR251w::kanMX4, YOR018w::loxP:LEU2:loxP,		
	YLL060c::loxP:HIS3:loxP		
$\Delta gto 1 \Delta gto 2$	BY4742; MATα; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0	Diese Arbeit	#2273
$\Delta g to 3 \Delta rod I$	YGR154c::loxP, YKR076w::loxP,		
$\Delta gtt1\Delta tef4$	YMR251w::kanMX4, YOR018w::loxP:LEU2:loxP,		
	YIR038c::loxP:HIS3:loxP,		
	YKL081w::loxP:URA3:loxP		
$\Delta cis2\Delta cpc$	BY4741; MATa; his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ 0;	J. Wünschmann	#2035
	YLR299w::kanMX; YBR139w::URA3		

Die Kultivierung von *S. cerevisiae* erfolgte in YP- bzw. Minimalmedium (pH 6,5 bzw. 5,8) im Schüttler bei 200 rpm/min oder auf Agarplatten bei 30 °C. Die Selektion der Transformanden erfolgte auf Minimalmedium (S) mit den entsprechenden Dropout-Lösungen.

Medium	Komponenten	$c_{absolut}$ in [g/l]
	Hefeextrakt	10
	Pepton	20
YP(D/G)	Agar (bei Festmedium)	15
	Glukose (D)	20
	Galaktose (G)	20

Medium	Komponenten	c _{absolut} in [g/l]
	YNB (Yeast Nitrogen Base)	17
Minimal-	Ammoniumsulfat	5
medium	Agar (bei Festmedium)	15
S(D/G/S)	Glukose (D)	20
	Galaktose (G)	20
	Saccharose (S)	20

Nach Autokavieren der Minimalmedien ohne Zucker wurden diese im Ansatz mit Dropout-Lösungen (1x) und mit Zuckerlösungen (2 %, w/v;) entsprechend der benötigten Selektionen bzw. Induktionen supplementiert.

Lösung	Komponenten	$c_{absolut}$ in [mg/l]
	L-Adenin Hemisulfatsalz	200
	L-Arginin HCl	200
	L-Histidin HCl Monohydrat	200
	L-Isoleucin	300
	L-Leucin	1000
Dropout	L-Lysin HCl	300
(10x)	L-Methionin	200
	L-Phenylalanin	500
	L-Threonin	2000
	L-Tyrosin	200
	L-Tryptophan	200
	L-Uracil	1500
	L-Valin	200

2.1.5 Vektorsysteme

Die pUG-Serie (pU27, pUG72 und pUG73) wurde für die Amplifikation der entsprechenden Deletionskassetten verwendet (Gueldener et al., 2002). Die flankierenden loxP-Seiten ermöglichen eine Entfernung des Selektionsmarkers mittels Cre-Rekombinase. Alle homologen Rekombinationen in *S. cerevisiae* wurden mit der pUG-Serie durchgeführt (siehe 2.1.4).

Die pSH-Serie (pSH47 und pSH62) sind Shuttlevektoren und *low copy* Plasmide (Abb. 18A). Sie wurden für die Expression der Cre-Rekombinase in *S. cerevisiae* konstruiert (Gueldener et al., 2002). Die Transkription des fusionierten Leserahmens erfolgt ausgehend von einem Galaktoseinduzierbaren Promotor (pGAL1). Dieses Vektorsytem wurde für die heterologe Expression der *Arabidopsis* GSTs verwendet. Alle klonierten *Arabidopsis* GSTs und ihre dazugehörigen Vektoren können im Anhang der Stammsammlung entnommen werden (siehe Anhang, iv).

Die pGREG-Serie (pGREG565) wurde für das *Drag&Cloning* entwickelt (Jansen et al., 2005) (Abb. 18B). Die Transkription des fusionierten Leserahmens erfolgt ebensfalls ausgehend von einem Galaktose-induzierbaren Promotor (pGAL1), gefolgt von einem N-terminalen GFP. Die Expression N-Terminaler GFP-Tags von *Arabidopsis* GSTs wurde für die Westernblot-Analyse durchgeführt.

Für die Klonierung von pGAL1::*At*GSTs wurden primär in der *multiple cloning site* die Restriktionsschnittstellen von BamHI/SalI, BamHI/XhoI bzw. EcoRI/SalI, EcoRI/XhoI verwendet. Die Oligonukleotidsequenzen der Primer können dem Anhang entnommen werden (siehe Anhang, ii).

2.1.6 Kitsysteme

Bezeichnung	Hersteller	Verwendungszweck
peqGold Gel Extraction Kit	PEQLAB	DNA-Gelextraktion
NucleoSpin Plasmid Extraction	Macherey-Nagel	Plasmid-Isolierung
Wizard Plus SV Minipreps DNA purification system	Promega	Plasmid-Isolierung

2.1.7 Verwendete Enzyme

Enzym	Puffer	Hersteller
BamHI	BamHI	Fermentas
BamHI _{fast}	FastDigest Green Buffer	Fermentas
EcoRI	EcoRI	Fermentas
EcoRI _{fast}	FastDigest Green Buffer	Fermentas
EcoRV	Tango	Fermentas
GST from equine liver	Tango	Sigma
Lyticase	Tris·HCl	Sigma
peqGOLD Pwo-DNA-Polymerase	Pwo	PEQLAB
RNase A	Tris·HCl	Carl Roth
SalI	Tris·HCl	Fermentas
Sall _{fast}	Rot	Fermentas
T4-Ligase	FastDigest Green Buffer	Fermentas
Taq-Polymerase	Ligase	Fermentas
XhoI	Taq	Fermentas

2.2 Molekularbiologische Methoden

2.2.1 DNA-Isolierung aus E. coli

Die DNA-Isolierung aus *E. coli* erfolgte gemäß den Herstellerangaben von PEQLAB, Macherey-Nagel und Promega (siehe 2.1.6). Für den Zellaufschluss wurde eine 5-10 ml Übernachtkultur verwendet.

Für die alkalische Lyse wurde eine Einzelkolonie von *E. coli* in 5-10 ml Flüssigmedium (LB_{Amp}) angeimpft und über Nacht bei 37 °C kultiviert. Nach Abzentrifugieren bei 16.000 x g für 1' wurde der Überstand verworfen und das Zellpellet in 100 μ l der Lösung 1 resuspendiert. Durch Zugabe von 200 μ l der Lösung 2 erfolgte die Lyse. Nach Inkubation für 5' bei RT wurde das Lysat mit 150 μ l der Lösung 3 neutralisiert und weitere 10' auf Eis inkubiert. Anschließend wurden die Zellwandbestände bei 16.000 x g für 5' bei 4 °C abzentrifugiert. 400 μ l des Überstandes werden in ein 1,5 ml Eppendorfgefäß überführt und mit 2,5 Volumenanteilen von 100 %igem Ethanol versetzt. Anschließend wird für 45' bei -20 °C inkubiert. Nach Zentrifugierem bei 16.000 x g für 30' bei 4 °C wird das Nukleinsäurepellet mit 200 μ l 70%igem Ethanol gewaschen. Nach Lufttrocknung wurde das Pellet in 45 μ l MQ-Wasser aufgenommen und anschließend mit 5 μ l RNase A (10 mg/ ml) versetzt und für 15' bei 37 °C inkubiert.

Bezeichnung	Komponenten	Konzentration
Lösung 1	Glukose	50 mM
	EDTA	10 mM
	Tris·HCl, pH 8,0	25 mM
Lösung 2	NaOH	200 mM
	SDS	1 % (w/v;)
Lösung 3	60 ml Kaliumacetat, pH 5,2	5000 mM
	11,5 ml Eisessig	100 % (v/v;)

Komponente	mponente Stammlösung Konzentration		Volumen in [µl]
Template	х	10-200 ng/µl	х
Puffer	10x	1x	2
MgCl ₂	25 mM	2,5 mm	2
dNTP-Mix	2,5 mM (jedes)	0,2 mm (jedes)	1,5
Primer_forward	20 µM	1 µM	1
Primer_reverse	20 µM	1 µM	1
DNA-Polymerase	у	0,2 U	У

2.2.2 Polymerasenkettenreaktion

Die Differenz auf 20 µl des einzelnen PCR-Ansatzes wird mit MQ-Wasser aufgefüllt. Die sich anschließende wurde im Tgradient (Biometra) durchgeführt.

Schritt	Temperatur in [°C]	Zeit in [min]
Initialdenaturierung	95	5
Denaturierung	95	0,75
Annealing _{Primer}	52-63 (in Abhängigkeit des Primers)	0,5
Elongation	72	1-2,5
Finale Elongation	72	10
Pause	22	∞

Für den Kontrollansatz der PCR wurde das Template durch autoklaviertes MQ-Wasser ersetzt. Zwischen Denaturierung und Elongation wurden 30 Zyklen gewählt.

2.2.3 Agarosegelelektrophorese

Zur Trennung und Identifizierung der verwendeten DNA-Fragmente wurde eine Agarosegelelektrophorese durchgeführt. Das Gel hatte einen prozentualen Agarose-Anteil von 0,8 bzw. 1,0 % in TAE (1x) (w/v;) und eine Ethidiumbromid-Konzentration von 100 ng/ μ l. Die Elektrophorese im elektrischen Feld wurde unter folgenden Bedingungen durchgeführt:

A in [mA]	U in [V]	t in [min]	
400	200	40	

Die Detektion der aufgetrennten DNA-Fragmente erfolgte mittels UV bei der Wellenlänge λ = 312 nm. Die Längenbestimmung erfolgte mittels 1 kb- DNA-Leiter bzw. λ -Hind III-Marker.

Bezeichnung	Komponenten	Konzentration	
EtBr-Stammlösung	EtBr	10 mg/ml	
Gelladepuffer (sechsfach Orange	Glycerol	50 % (v/v;)	
G)	Orange G	0,25 % (w/v;)	
	EDTA (pH 8,0)	1 mM	
TAE-Puffer (50x)	Tris·Base	2 M	
	Eisessig	5,71 % (v/v;)	
	EDTA (pH 8,0)	50 mM	
		4	

2.2.4 DNA-Aufreinigung mittels Gelextraktion

Zur homologen Rekombination (siehe 2.2.10), Klonierung der *Arabidopsis* GSTs (siehe 2.2.8) und Plasmidisolierung (siehe 2.2.12) wurden die entsprechenden DNA-Fragmente aus dem Gel ausgeschnitten und mittels Kitsystem nach Herstellerangaben (PeqGold Gel) gereinigt (siehe 2.1.6). Für die Eluation der gereinigten DNA wurden abweichend vom Protokoll nur 10-20 μ l Extraktionspuffer verwendet.

2.2.5 Restriktionsverdau der Vektorsysteme und cDNA

Nach der Amplifikation der *Arabidopsis* cDNA (siehe 2.2.2) und der Plasmidisolierung der Vektorsysteme pSH47, pSH62 und pGREG565 aus *E. coli* (siehe 2.2.1) wurden mittels Restriktionsenzymen die jeweiligen DNA-Fragmente verdaut und zur Ligation (siehe 2.2.7) eingesetzt. Primär wurden die Restriktionsenzyme BamHI, EcoRI, SalI und XhoI nach folgendem Schema verwendet.

Komponente	Volumen in [µl]		Komponente	Volumen in [µl]		Komponente	Volume	n in [µl]
	Vektor	Insert		Vektor	Insert		Vektor	Insert
pSH-Serie	50	-	pSH-Serie	50	-	pSH-Serie	50	-
cDNA	-	3	cDNA	-	3	cDNA	-	3
BamHI-Puffer	7	1	EcoRI-Puffer	7	1	EcoRI-Puffer	7	1
<u>BamHI</u>	5	2	<u>EcoRI</u>	5	2	EcoRI	5	2
Inkubation	90' bei 37 °C		Inkubation	90' bei	i 37 °C	Inkubation	90' bei	37 °C
Hitzeinaktivierung	20' bei	85 °C	Hitzeinaktivierung	inaktivierung 20' bei 85 °C		Hitzeinaktivierung	20' bei	85 °C
Sall	10	4	<u>SalI</u>	10	4	<u>XhoI</u>	10	4
Inkubation	70' bei	37 °C	Inkubation	70' be	i 37 °C	Inkubation	70' bei	i 37 °C

2.2.6 Bestimmung der DNA-Konzentration

Zur Bestimmung der DNA-Konzentration wurde der λ -Hind III-Marker eingesetzt. In guter semiquantitativer Näherung konnte so die DNA-Menge in der eigenen Probe bestimmt werden. Für die im Anschluss erfolgte Ligation (siehe 2.2.7) konnte so das optimale molare Verhältnis zwischen cDNA und Vektor (hier: 3:1) für die höchste Ligationseffizient nach folgender Formel berechnet werden.

ng _(Vektor)	X	kb _(Insert)	v Verhältnis	Insert
kt) (Vekt	or)	x vernatinis _(molar)	Vektor

2.2.7 Ligation der DNA-Fragmente

Die Ligationen wurden nach folgendem Schema durchgeführt. Zur Kontrolle wurde ein Religationsansatz parallel durchgeführt.

Komponente	Volumen in [µl]			
	Ligation	Kontrolle		
pSH-Serie	3	3		
Insert	1,5	-		
T4-Ligase-Puffer	1	1		
T4-Ligase	0,5	0,5		
MQ-Wasser	4	5,5		
Inkubation	60' bei 22 °C			

2.2.8 Transformation von E. coli

Die Transformation der entsprechenden Ligationsansätze (siehe 2.2.7) erfolgte über Hitzeschock in chemisch kompetente Zellen (CCCs). 90 μ l der CCCs wurden auf Eis aufgetaut und mit 10 μ l des jeweiligen Ligationsansatzes versetzt. Nach Inkubation auf Eis für 30' wurde der Transformationsansatz exakt 30" bei 42 °C (Hitzeschock) inkubiert. Anschließend erfolgte die Inkubation auf Eis für 5'. Die Zellen wurden mit 900 μ l LB-Medium (ohne Amp!!!) versetzt und für 60' bei 37 °C inkubiert. 100 μ l dieser Zellsuspension wurden auf LB_{Amp}-Platten ausplattiert und üN bei 37 °C inkubiert.

2.2.9 Sequenzierung

Nach positiven Restriktionsverdau der isolierten Plasmide (siehe 2.2.5 und 2.2.1) wurden die Klone entsprechend den Anforderungen des Dienstleisters (Eurofinstmwg operon, GATC) zur Sequenzierung vorbereitet.

2.2.10 Homologe Rekombination mit S. cerevisiae-Stämmen

Für die Deletion der Hefegene, die für Proteine mit GST-Aktivität kodieren, wurden die WT-Stämme BY4741 und BY4742 (siehe 2.1.4) verwendet. Abb. 19 zeigt eine schematische Darstellung der Vorgehensweise. Die Deletionskasetten (pUG-Serie, Gueldener et al., 2002) wurden mit den Primern zur homologen Rekombination amplifiziert (siehe Anhang i). Durch Entfernung des Markers konnten in den enstprechenden Deletionsmutanten die gleichen Selektionsmarker erneut verwendet werden.

Gen-Deletion	Primer	Primer	Plasmid	Selektion
GTO1 (YGR154c)	#1	#2	pUG27	loxP- <i>HIS3</i> -loxP
GTO2 (YKR076w)	#5	#6	pUG27	loxP- <i>HIS3</i> -loxP
GTO3 (YMR251w)	#9	#10	pUG72	loxP-URA3-loxP
GTT1 (YIR038c)	#13	#14	pUG72	loxP-URA3-loxP
<i>GTT2</i> (YLL060c)	#17	#18	pUG27	loxP- <i>HIS3</i> -loxP
GRX1 (YCL035c)	#21	#22	pUG27	loxP- <i>HIS3</i> -loxP
GRX2 (YDR513w)	#25	#26	pUG73	loxP-LEU2-loxP
TEF4 (YKL081w)	#33	#34	pUG72	loxP-URA3-loxP
ROD1 (YOR018w)	#29	#30	pUG73	loxP-LEU2-loxP

2.2.10.1 Isolierung der genomischen DNA aus *S. cerevisiae*

Für die Amplifizierung der Deletionskassetten (siehe 2.2.10) und für die Überprüfung der Insertionen (siehe 2.2.10.3) wurde die genomische DNA aus Hefe isoliert. Dazu wurde die Hefe aus 10 ml einer üN-Kultur bei 3.500 x g für 5' pelletiert. Nach einmaligem Waschen des Zellpellets mit MQ-Wasser wurde eine äquivalente Menge an Glassperlen auf das Pellet gegeben. Danach erfolgte die Zugabe von 500 µl des Lysispuffers. Das Gemenge wurde in einem 2 ml Eppendorfgefäß für 2' gevortext und anschließend auf Eis sedimentieren gelassen. Der Überstand wurde in ein 1,5 ml Eppendorfgefäß überführt und mit 275 µl Ammoniumacetat-Lösung versetzt. Die Lösung wurde bei 65 °C für 5' inkubiert. Nach erneuter Inkubation auf Eis für 5' wurde 500 µl Chloroform dazugegeben und das Eppendorfgefäß zweimal geschwenkt. Danach erfolgte eine Phasentrennung durch Zentrifugation bei 13.000 x g für 5'. Anschließend wurde die obere, wässrige Phase abgenommen und in ein weiteres 1,5 ml Eppendorfgefäß überführt. Der Rückstand wurde verworfen. Die wässrige Phase wurde mit 1 ml Isopropanol versetzt und für 15' bei RT inkubiert. Danach wurde bei 13.000 x g für 5' die ausgefällte DNA pelletiert. Der Überstand wurde verworfen und das DNA-Pellet mit 200 µl eiskaltem Ethanol (70 %; v/v;) gewaschen. Nach erneuter Zentrifugation und Verwerfen des Überstandes wurde das Zellpellet bei RT für 45' getrocknet. Nach Lufttrocknung wurde das Pellet in 19 µl MQ-Wasser aufgenommen und anschließend mit 1 µl RNase A (10 mg/ml) versetzt und für 15' bei 37 °C inkubiert (siehe 2.2.1).

Bezeichnung	Komponenten	Konzentration
Lysispuffer	Tris·HCl	100 mM
	EDTA	50 mM
	SDS	1% (w/v;)
Ammoniumacetat-Lösung	Ammoniumacetat, pH 7,0	7 M (26,98 g/ 50 ml)

2.2.10.2 Transformation von *S. cerevisiae*-Stämmen

Die Transformation von *S. cerevisiae* erfolgte mittels LiAc (Gietz and Woods, 2002). 20 ml einer YPD-Flüssigkultur wurden bis zu einer $OD_{600} = 1,0 (\equiv 3 \cdot 10^7 \text{ Zellen/ml})$ bei 30 °C inkubiert. Danach wurde das Zellpellet geerntet und einmalig mit sterilem MQ-Wasser gewaschen. Nach Zentrifugation bei 1.000 x g bei 4 °C für 5' wurde das Zellpellet mit 1 ml LiAc (100 mM) versetzt und in ein 1,5 ml Eppendorfgefäß überführt. Nach kurzem Abzentrifugieren für 30" wurde der Überstand verworfen und erneut in 500 µl LiAc (100 mM) aufgenommen. 50 µl Aliquots wurden für die Transformation verwendet. Dabei wurden 100 ng der amplifizierten Deletionskassetten (siehe 2.2.10) eingesetzt und in der tabellarisch dargestellten Reihenfolge pipettiert.

Komponenten	Konzentration	Volumen in [µl]	
PEG 4000	50 % (w/v;)	240	
LiAc	1 M	36	
carrier-DNA*	10 µg/ml	10	
DNA	100 ng /360 µl	х	
Auffüllen der Differenz im Ansat	360 µl		

Danach wurde der Ansatz durchgemischt und für 40' im Wasserbad bei 42 °C inkubiert. Danach erfolgte eine Zentrifugation des Ansatzes. Der Überstand wurde verworfen und das Pellet in 75 µl MQ-Wasser resuspendiert. Danach wurde der Ansatz auf SD-Agarplatten unter Berücksichtigung der entsprechenden Selektionsmarker ausplattiert und für 3 Tage bei 30 °C inkubiert.

* Zur Herstellung der *carrier*-DNA wurde Lachssperma (Sigma) in einer Konzentration von 10 mg/ml in TE (1x; pH 7,5) unter Rührer für 1 h bei RT gelöst. Anschließend wurde die Lösung mit Ultraschall zweimalig für 30" unter 100 % Leistung behandelt. In einem nächsten Schritt wurde die Lösung einmal mit Phenol pH 8,0 (gesättigt in TE), einmal mit einem Gemisch aus Phenol/ Chloroform (1+1; v/v;) und sechsmal mit Chloroform behandelt. Die Fällung der DNA erfolgte durch Zugabe 1/10 (v/v;) an Natriumacetat-Lösung pH 6,0 (3 M) und durch 2,5 (v/v;) eiskaltem Ethanol (70 %; v/v;). Danach wurde durch Zugabe von TE (1x) die Ausgangskonzentration wieder hergestellt und für 20' in kochendem Wasser denaturiert. Die Lagerung erfolgte bei -20 °C.

2.2.10.3 Überprüfung der Deletionsmutanten in Hefe

Nach der Inkubation der transformierten Hefestämme von 3 Tagen bei 30 °C wurde die genomische DNA putativ positiver Transformanden isoliert (siehe 2.2.10.1). Die Überprüfung auf eine Insertion der Deletionskassette an richtiger Position wurde mittels Primern (Euroscarf) überprüft (siehe Anhang i).

Gen-Deletion	Primer _{chk_for}	Primer _{chk_rev}	Plasmid	Selektion
GTO1 (YGR154c)	#3	#4	pUG27	loxP- <i>HIS3</i> -loxP
<i>GTO2</i> (YKR076w)	#7	#8	pUG27	loxP- <i>HIS3</i> -loxP
GTO3 (YMR251w)	#11	#12	pUG72	loxP-URA3-loxP
GTT1 (YIR038c)	#15	#16	pUG72	loxP-URA3-loxP
GTT2 (YLL060c)	#19	#20	pUG27	loxP- <i>HIS3</i> -loxP
GRX1 (YCL035c)	#23	#24	pUG27	loxP- <i>HIS3</i> -loxP
GRX2 (YDR513w)	#27	#28	pUG73	loxP-LEU2-loxP
TEF4 (YKL081w)	#35	#36	pUG72	loxP-URA3-loxP
ROD1 (YOR018w)	#31	#32	pUG73	loxP-LEU2-loxP

Die Trennung der DNA-Fragmente erfolgte mittels Agarosegelektrophorese (siehe 2.2.3). Der Vergleich mit den entsprechenden WT-Banden zeigte die erfolgreiche Deletion an

2.2.11 Markerentfernung mittels loxP-Cre-Rekombinase

Für die Herstellung der GST-defizienten Hefestämme (siehe 2.1.4) wurde an ansprechender Stelle die Selektionsmarker genomisch entfernt, um weitere Deletionen (2.2.10) vornehmen zu können. Die Verwendung der pUG-Serie (Gueldener et al., 2002) erlaubte die Markerentfernung mittels Cre-Rekombinase. Die entsprechenden Deletionsmutanten wurden mit den Plasmiden pSH47 (URA3) bzw. pSH62 (HIS3) transformiert (siehe 2.2.10.2), selektiert und in YPG-Flüssigkultur üN bei 30 °C inkubiert. Unter diesen Bedingungen wird die Cre-Rekombinase in Hefe exprimiert und schneidet die Deletionskassetten heraus (2.2.10). 100 Zellen dieser üN-Kultur wurden auf YPD-Platten ausplattiert und nach Inkubation für 2 Tage bei 30 °C auf die entsprechenden Selekionsmedien überstempelt. Die Hefekolonien, die exklusiv auf YPD wuchsen, wurden auf die Entfernung des Markers mittels PCR (2.2.10.3) überprüft. Danach erfolgte die Plasmidentfernung des positiven Hefestammes durch Verdünnung in YPD-Medium ohne Selektionsdruck.

Nach erneutem Ausplattieren auf YPD und Überstempeln auf das vorangehende Selektionsmedium, konnte so das Plasmid mit der Cre-Rekombinase entfernt werden.

2.2.12 Plasmidisolierung aus S. cerevisiae-Stämmen

Die in die Plasmide der pSH-Serie klonierten *Arabidopsis* GSTs wurden zunächst in die enstprechenden Hefestämme transformiert (siehe 2.2.10.2) und mit der genomischen DNA isoliert (siehe 2.2.10.1). Danach wurde die genomische DNA über das Kitsystem *peqGold Gel Extraction Kit* (siehe 2.1.6) für die Plasmid-DNA konzentriert.

2.2.13 Kontroll-PCR isolierter Plasmide

Die isolierten Plasmide (siehe 2.2.12) bildeten das Template für die Kontroll-PCR (siehe 2.2.2). Die entsprechenden Primerkombinationen bestanden stets aus einem Primer, der in der Promotorregion oder Terminatorregion des Plasmids gebunden wurde, und dem entsprechenden Primer der *Arabidopsis* CDS.

2.3 Physiologische Methoden

2.3.1 Dosis-Wirkungs-Analyse von S. cerevisiae

Zur Ermittlung der Vitalität der Hefestämme wurde zunächst eine Einzelkolonie des Hefestammes für 8 h in 5 ml einer YPD-Vorkultur bei 30 °C und 200 rpm inkubiert. Danach wurde die entsprechende Hauptkultur auf eine $OD_{600} = 0,02$ angeimpft und üN in 5 ml einer YPD-Vorkultur bei 30 °C und 200 rpm inkubiert. Am nächsten Tag wurde eine zweite Hauptkultur auf eine OD_{600} = 0,02 angeimpft und für 24 h in 10 ml einer YPD-Vorkultur bei 30 °C und 200 rpm inkubiert. Zur Bestimmung der Dosis-Wirkungs-Beziehung gegenüber Pestiziden wurde die Einzelkolonie eines Hefestammes für 8 h in 5 ml Minimalmedium bei 30 °C und 200 rpm inkubiert. Danach wurde der Hefestamm in 10 ml der Hauptkultur auf eine $OD_{600} = 0,05-0,1$ angeimpft und mit der jeweiligen Pestizidkonzentration versetzt. Die verwendeten Konzentrationen lagen zwischen 0,1 und 100 μ M. Es erfolgte eine Inkubation bei 30 °C und 200 rpm für 24 h.

2.3.2 Wachstumsversuche mit S. cerevisiae

Die Hefestämme wurden bzgl. der Vor- und Hauptkultur, wie unter 2.3.1 beschrieben, angeimpft und üN bei 30 °C und 200 rpm inkubiert. Die Hauptkultur wurde danach auf eine $OD_{600} = 2,0$ verdünnt und in einer Verdünnungsreihe auf Agarplatten mit Minimalmedium und CDNB gespottet. Es wurden 20 µl der Hefesuspensionen für den Wachstumsversuch auf 60 µM CDNB verwendet. Die LöMi-Kontrolle bestand aus Ethanol (0,1 %; v/v;).

2.3.3 Wurzelwachstumsanalyse vom A. thaliana

Das Wurzelwachstum wurde mit vier Tagen alten Keimlingen aus *Arabidopsis* (*Col*-0) durchgeführt. Zunächst wurden die Samen auf MS*-Medium ausgebracht und für zwei Tage im Kühlraum gelagert. Danach wurden die Platten für vier Tage in der Wachstumskammer bei RT gestellt. Im Anschluss wurden 12-15 Keimlinge mit einer Federpinzette auf MS-Medium mit Anilazin-Konzentrationen zwischen 0,1 und 100 μ M ausgebracht. Die LöMi-Kontrolle bestand aus DMSO (0,1 %; v/v;). Nach Inkubation für weitere vier Tage erfolgte die Auswertung der Wurzellänge.

^{*} Das MS-Medium bestand aus den tabellarisch aufgeführten Komponenten:

MS	Komponenten	$c_{absolut}$ in [g/l]
MS-Makrosalze (10x)	NH ₄ NO ₃	16,5
	KNO ₃	19,0
	CaCl ₂	3,32
	KH ₂ PO ₄	1,70
	$MgSO_4 \cdot 7 H_2O$	3,70
B5-Mikrosalze (400x)	$CoCl_2 \cdot 6 H_2O$	0,01
	$CuSO_4 \cdot 5 H_2O$	0,01
	Na ₂ EDTA	14,6
	H ₃ BO ₃	1,20
	KI	0,30
	$MnSO_4 \cdot 4 H_2O$	4,00
	$Na_2MoO_4 \cdot 2H_2O$	0,10
	$ZnSO_4 \cdot 4 H_2O$	0,80
	$FeSO_4 \cdot 7 H_2O$	11,2
Zucker	Saccharose	10,0
Puffer	MES, pH 5,8	1,00

2.4 Biochemische Methoden

2.4.1 Sphäroblastierung von S. cerevisiae

Für die Enzymatik der Hefestämme mit Pestiziden wurde das Rohprotein aus Hefezellen durch Sphäroblastierung wie früher beschrieben gewonnen (Wünschmann et al., 2010). Dazu wurde das Hefepellet der 200 ml Hauptkultur mit $OD_{600} = 1,0$ in 2,5 ml des Puffers A resuspendiert und anschließend für 10' bei 30 °C und 200 rpm inkubiert. Nach Zentrifugation bei 2.500 x g für 5' bei 4 °C wurde das Pellet einmalig mit 10 ml des Puffers B gewaschen und anschließend in 1,5 ml des Puffers B mit Lyticase resuspendiert. Es erfolgte eine Inkubation des Ansatzes für 60' bei 30 °C im Brutschrank. Nach zweimaligem Waschen des Ansatzes mit je 10 ml des Puffers B und Zentrifugation bei 1.000 x g für 10' bei 4 °C wurde der Hefe-Sphäroblast mit 1,5 ml des Kali-umphosphatpuffers (100 mM, pH 6,0) versetzt. Anschließend wurde das Zellextrakt auf Eis mit Ultraschall für 20'' und 70 % Leistung behandelt. Nach Zentrifugation des Extraktes bei 15.000 x g für 15' bei 4 °C wurde der Überstand für die Entsaltzung auf eine NAPTM-25-Säule entsprechend den Herstellerangaben (siehe 2.1.1) aufgetragen und das Rohproteinextrakt in 2,5 ml des Kaliumphosphatpuffers eluiert.

Bezeichnung	Komponenten	Konzentration
Puffer A	Tris·HCl, pH 9,0	100 mM
	DTT	10 mM
Puffer B	Sorbitol	1,2 M
	Tris·HCl, pH 7,2	20 mM
Enzym	Lyticase (in Puffer B)	4 mg/ 1,5 ml

2.4.2 Quantifizierung des Proteingehalts

2.4.2.1 Reaktion mit Bicinchoninsäure

Der Proteingehalt für die Durchführung der *in vitro* Analyse (siehe 2.4.3) wurde mittels Bicinchoninsäure bei der Wellenlänge $\lambda = 562$ nm gemessen (Smith et al. 1985).

2.4.2.2 Methode nach Bradford

Für den Nachweis der Genexpression der *Arabidopsis* GSTs im Zellrohextrakt von *S. cerevisiae* wurden 5 ml Hefezellkultur ($\equiv 1,5 \cdot 10^8$ Zellen) bei 15.000 x g und 4 °C für 5' pelletiert, einmalig mit MQ-Wasser gewaschen und anschließend in 240 µl Tris·HCl (50 mM, pH 8,0) resuspendiert. Nach Zugabe von 60 µl des Aufschlusspuffers (5x) erfolgte eine Inkubation für 10' auf Eis. Danach wurden die Proteine mit 50 µl Trichloressigsäure (100 %; w/v;) gefällt. Der Reaktionsansatz wurde für 30' bei -20 °C inkubiert und anschließend bei 16.000 x g und 4 °C zentrifugiert. Nach einmaligem Waschen des Zellpellets mit Aceton (80%; v/v;) wurde erneut für 30' bei 16.000 x g und 4 °C zentrifugiert. Das Zellpellet wurde bei RT getrocknet und in 100 µl des Laemmlipuffers (1x) (siehe 2.4.5.3) aufgenommen. Danach wurden die Ansätze für 5' bei 99 °C gekocht. Nach erneuter Zentrifugation wurden 10 µl des Überstandes für die SDS-Polyacrylamid-Gelelektrophorese (SDS-Page) (siehe 2.5.4.3) eingesetzt.

Bezeichnung	Komponente	Konzentration
Aufschlusspuffer (5x)	NaOH	1,25 mM
	β -Mercaptoethanol	5 % (v/v;)

Die Bestimmun der Proteinkonzentration erfolgte mit dem Biorad DC-Protein-Assay nach Angaben des Herstellers. Die Kalibriergerade wurde mitttels BSA erstellt.

2.4.3 Enzymatische Bestimmung der Glutathion-S-Transferase-Aktivität

Zur Bestimmung der Glutathion-S-Transferase-Aktivität *in vitro* wurden 300 µg des Rohproteins aus Hefe (siehe 2.4.1) verwendet. Alle weiteren Komponenten wurden nach folgendem Schema pipettiert:

Komponenten	Konzentration	Volumen in 200 µl
Kaliumphosphat-Puffer pH 6,0	100 mM	х
Rohprotein	1,5 mg/ml	y (≡ 300 µg)
Glutathion	10 mM	20
CDNB	6 mM	10
NBD-Cl	20 mM	2
Anilazin	10 mM	2
Auffüllen der jeweiligen Differenz im Ansatz mit Kaliumphosphatpuffer auf 200 ul		

Im Falle von CDNB und NBD-Cl erfolgte die Kinetik direkt mittels Platereader. Hier wurden die jeweilig spezifischen Wellenlängen $\lambda_{\text{CDNB-GS}}$ von 340 nm (Habig et al. 1974) bzw. $\lambda_{\text{NBD-GS}}$ von 419 nm (Ricci etal. 1994) verwendet. Die Analyse des Anilazin-GS-Konjugates erfolgte mittels HPLC (siehe 2.5.6) bei $\lambda_{1/2} = 254/285$ nm.

2.4.4 Expression der Arabidopsis Glutathion-S-Transferasen in S. cerevisiae

Für die heterologe Expression der *Arabidopsis* GSTs in Hefe wurden die Hefestämme in 5 ml Vorkultur mit der entsprechenden Plasmidselektion für 8 h auf Minimalmedium mit Saccharose als Kohlenstoffquelle bei 30 °C und 200 rpm inkubiert. Für den Wachstumsversuch wurde weiter verfahren wie unter 2.3.2 beschrieben. Zusätzlich wurde hier Galaktose zur Induktion der Genexpression durch den Gal1-Promotor eingesetzt. Für die Enzymatik (siehe 2.4.3) und die Belastungstests (siehe 2.5.3) wurden die Hefestämme in 200 ml Hauptkultur aus Minimalmedium unter induzierbaren Bedingungen auf eine OD₆₀₀ = 0,05-0,07 angeimpft und für 24 h bei 30 °C und 200 rpm inkubiert.

2.4.5 Immunologischer Nachweis der Genexpression

2.4.5.1 SDS-Polyacrylamid-Gelelektrophorese

Für die elektrophoretische Auftrennung von Proteinen wurde die Methode der diskontinuierlichen Elektrophorese nach (Laemmli, 1970) verwendet. Die Gelelektrophorese wurde in Elektrophorese-Einheiten (PerfectBlue Doppelgelsystem Twin ExW S) der Firma peqlab mit einem 12- bzw. 10%igen Trenngel und einem 4%igen Sammelgel durchgeführt. Vor dem Auftragen wurden die Proteinproben mit Laemmli-Puffer versehen und für 5' bei 99°C gekocht. Der Lauf erfolgte im Sammelgel bei 80 V und in den tabellarisch aufgeführten Trenngelen bei 120 V. Die dabei verwendeten Proteinmarker waren Protein Marker prestained, Broad Range (NEB, Biolabs) PageRuler[™] Prestained Protein Ladder (Fermentas).

Bezeichnung	12 % Trenngel	10 % Trenngel	4 % Trenngel
Acrylamidlösung	4,0 ml	3,35 ml	390 μl
destilliertes Wasser	3,35 ml	4,0 ml	2,3 ml
Trenngelpuffer	2,5 ml	2,5 ml	-
Sammelgelpuffer	-	-	255 μl
SDS (10 %; w/v;)	100 µl	100 µl	30 µl
TEMED	5 µl	5 µl	3 µl
APS	50 µl	50 µl	15 µl
Summe in [ml]	10	10	3

Bezeichnung	Komponente	Konzentration
Acrylamid-Lösung	Acrylamid	30 % (w/v;)
	Bisacrylamid	0,8 % (w/v;)
APS-Lösung	Ammoniumperoxodisulfat	10 % (w/v;)
Elektrodenpuffer (1x)	Tris	25 mM
	Glycin	192 mM
	SDS	0,1 % (w/v;)
Laemmli-Probenpuffer	Tris·HCl, pH 6,8	0,3 M
	SDS	10 % (w/v;)
	Glycerol	30 % (w/v;)
	Bromphenolblau	0,1 % (w/v)
	DTT	100 mM
Sammelgelpuffer	Tris·HCl, pH 6,8	0,5 M
SDS-Lösung	SDS	10 % (w/v;)
TEMED	TEMED	unverdünnt
Trenngelpuffer	Tris·HCl, pH 8,8	1,5 M

2.4.5.2 Coomassie-Färbung

Das SDS-Gel wurde für 2 h unter leichtem Schütteln in der Coomassie-Färbelösung inkubiert. Die Entfärbung des Gels mit Lösung 1 und anschließend mit Essigsäure (7 %, v/v;) erfolgte jeweils für 2 h.

Bezeichnung	Komponente	Konzentration
Färbelösung	Coomassie G250	0,05 g/l
	Coomassie R250	0,2 g/l
	Essigsäure	10 % (w/v;)
	Ethanol	0,8 % (v/v;)
Lösung 1	Essigsäure	10 % (v/v;)
	Ethanol	45 % (v/v;)

2.4.5.3 Westernblot

Nach der SDS-Page (siehe 2.4.5.3) wurden die Proteine auf eine Nitrozellulose-Membran (Whatman, Schleicher&Schuell, Protran, Drassel, Deutschland) im *semi-dry* Blotverfahren transferiert. Die Membran und sechs Lagen Filterpapier in Größe des SDS-Gels wurden in den Transferpuffer (pH 8,3) gelegt. Auf die Blotapparatur (Anode) wurden ohne Lufteinschluss drei Lagen Filterpapier, die Membran, das SDS-Gel und erneut drei Lagen Filterpapier in dieser Reihenfolge gelegt. Der Transfer erfolgte für 1 h bei 25 V.

Bezeichnung	Komponente	Konzentration
Transferpuffer	Tris·HCl	25 mM
	Glycin	192 mM
	Methanol, pH 8,3	20 % (v/v;)

2.4.5.4 Verwendete Antikörper

Zur Sättigung der unspezifischen Bindungsstellen des primären Anikörpers wurd nach dem Transfer (siehe 2.4.5.6) die Nitrozellulose-Membran für 1 h bei RT in der Blockierungslösung inkubiert. Danach erfolgte die Inkubation der Membran mit dem primären Antikörper für 1 h bei RT. Nach dreimaligem Waschen der Membran mit TBS/T (1x) für je 5' wurde die Membran mit dem sekundären Antikörper für 1 h bei RT inkubiert. Danach wurde erneut dreimal mit TBS/T für je 15' gewaschen. Die Detektion erfolgte mit dem *Pierce Super Signal West Femto Trial Kit* nach den Herstellerangaben. Die Auslese erfolgte mittels CCD-Kamera (*ORCAII ERG, Hamamatsu Photonics,* http://jp.hamamatsu.com) und der S*implePCI Imaging* Software (Version 5.0.0.1503, *Compix Inc., Imaging Systems*, USA).

Bezeichnung	Komponente	Konzentration
TBS (10x)	NaCl	1,5 M
	Tris·HCl, pH 7,5	0,2 M
TBS/T	TBS	1x
	Tween 20	0,05 % (w/v;)
Blockierungslösung	Milchpulver (in 1x TBS)	5 % (w/v;)
Antikörper	Santa-Cruz (USA)	1 zu 1.000
(Mouse-anti-α-GFP)		
Antikörper	Pierce (USA)	1 zu 10.000
(Goat-anti rabbit)		

2.5 Chemisch-biologische Methoden

2.5.1 Synthese ausgewählter Pestizid-Glutathion-Konjugate

Die Pestizid-Glutathion-Konjugate wurden im leicht Alkalischen mittels Säugetier-GST aus Pferdeleber (Sigma-Aldrich) aus Glutathion und den Verbindungen CDNB, NBD-Cl, Anilazin und Chlorthalonil (TPN) zu den entsprechenden Standards synthetisiert. Bei der Synthese des TPN-GS-Konjugates wurde sich an einem früheren Protokoll orientiert (Kim et al. 2004). Hier wurde die Synthese für das Di-Konjugat als bekanntes Ziel-Konjugat bei der Entgiftung optimiert (Marie-Therese Mackmull). TPN wurde in DMSO (100 %; v/v;) und GSH frisch in MQ-Wasser gelöst. Das nachfolgende Pipettierschema zeigt anhand von TPN stellvertretend die Vorgehensweise. CDNB, NBD-Cl und Anilazin wurden ebenfalls in einer Konzentration von 50 mM verwendet.

Komponenten	Konzentration	Volumen in [µl]
Tris·HCl, pH 7,8	20 mM	240
TPN	50 mM	1,5
GSH	50 mM	8
Säugetier-GST (Pferdeleber)	20 U/ml	0,5

Der Reaktionsansatz wurde bei 30 °C für 0,5-3 h inkubiert. Anschließend erfolgte die Trennung und Isolierung der Reaktionsprodukte mittel HPLC/UV bei entsprechenden Wellenlängen (siehe 2.5.5). Anhand der Peakfächenverteilung konnte die Konzentration des TPN-(GS)₂-Konjugates berechnet werden. Eine ähnliche Vorgehensweise trifft auf die drei anderen Pestizide zu.

2.5.2 Stabile Isotopenanalytik

Für die Analyse möglicher nicht-chromophorer Pestizid-GS-Konjugate (insbesondere Insektizide) wurden stabile isotopenmarkierte Standards verwendet. Hier kam eine Markierung durch Deuterium zum Einsatz. Die Synthese des stabile isotopenmarkierten Standards basierte auf der reduktiven Aminierung des Aldehyds durch die Aminogruppe des Pestizid-GS-Konjugates (Borch et al. 1971). Im Alkalischen reagiert Formaldehyd der GSH-Rest als primäres Amin über das Imminium-Ion in Anwesenheit von Cyanoborhydrid als Reduktionsmittel zum methylierten sekundären Amin. Die Verwendung von [${}^{1}H_{2}$]-Formaldehyd und [${}^{2}H_{2}$]-Formaldehyd bei dieser Dimethylmarkierung erfolgte ähnlich wie früher beschrieben (Hsu et al., 2003, Synowsky et al. 2009). Die Herstellung des markierten Standards wurde anhand des CDNB-GS-Konjugates etabliert. Der Reaktionsansatz betrug 1 ml und wurde in folgender Reihenfolge pipettiert:

Reaktions-Gemisch	Komponente	Konzentration
Standard-Synthese	Triethylammonium Bicarbonat, pH 8,5	100 μM
	CDNB-GS-Konjugat	100 μM
	$[^{2}H_{2}]$ -Formaldehyd	0,4 % (v/v;)
	Natriumcyanoborhydrid	2,5 mM

Danach erfolgte eine Inkubation bei 25 °C für 60'. Anschließend wurde der Reaktionsansatz mit Ammoniak (0,15 %; v/v;) und danach mit Ameisensäure versetzt (0,25 %; v/v;). Der Reaktionsansatz wurde auf eine C_{18} -Säule (SPE BakerbondTM C18) geladen. Die Säule wurde zuvor dreimalig mit je 5 ml MQ-Wasser und im Anschluss dreimalig mit je 5 ml Methanol (100 %; v/v;) beladen. Danach wurde das Reaktionsgemisch dreimalig auf die Säule unter leichtem Vakuum (SUPELCO, VISIPREPTM DL) (10 kPa) geladen. Nach dreimaligem Waschen mit je 5 ml MQ-Wasser wurde die Säule vollständig getrocknet und das derivatisierte, dimethylierte CDNB-GS-Konjugat mit 15 ml Methanol (100 %; v/v;) (dreimal mit je 5 ml) eluiert. Danach erfolgte die Überprüfung des Standards ([⁴H₂]-N,N-dimethyl-DNB- γ -ECG) mittels HPLC/UV (siehe 2.5.5) und ICR-FT/MS (siehe 2.5.6).

Für die Quantifizierung des CDNB-GS-Konjugates in Hefe wurden die Hefestämme, versetzt mit dem isotoplogen Standard, entsprechend aufgeschlossen (siehe 2.5.4) und 1zu50 mit Triethylammonium Bicarbonat (pH 8,5) verdünnt. Danach erfolgte die Derivatisierung des endogenen CDNB-GS-Konjugates mit Formaldehyd und im Anschluss die Quantifizierung mittels Kalibriergerade und unter Verwendung folgender Formeln:

$$\mathbf{c}_{(\text{Analyt})} = \frac{\mathbf{A}_{(\text{Analyst})}}{\mathbf{A}_{(\text{Standard})}} \cdot \mathbf{c}_{(\text{Standard})} \cdot 1/f$$

Faktor
$$f = \frac{A_{(Analyst)}}{c_{(Analyt)}} \cdot \frac{c_{(Standard)}}{A_{(Standard)}}$$

2.5.3 Belastungstest der Hefezellkulturen mit Xenobiotika

Für die Belastung mit Pestiziden wurden die Hefestämme wie unter 2.4.4 angeimpft und kultiviert. Nach 22-23 h erfolgte die Belastung mit den Pestiziden CDNB, NBD-Cl, Fenclorim, Benoxacor, Anilazin und Chlorthalonil für 1-2 h. Die Konzentrationen lagen für Fenclorim und Benoxacor bei 100 μ M, für CDNB 50 μ M und je 1 μ M für NBD-Cl, Anilazin und Chlorthalonil. Danach wurden die Hefezellkulturen geerntet, zweimalig mit MQ-Wasser gewaschen und das Pellet in ein 2 ml Reaktiongefäß für den Zellaufschluss (siehe 2.5.4) transferiert. Danach wurden die Extrakte zur stabilen Isotopenanalyse (siehe 2.5.2) und zu Metabolitensanalysen (siehe 2.5.2, 2.5.5 und 2.5.6) eingesetzt.

2.5.4 Zellaufschluss der Hefezellkulturen

Die Hefezellpellets aus 2.5.3 wurden mit dem gleichen Volumen an Glasperlen (Roth, Ø 0,25-0,5 mm) versetzt und zweimalig methanolisch mittels Minibeadbeater aufgeschlossen und extrahiert. Für die erste Extraktion wurden 500 μ l Methanol/Ameisensäure (100/0,1 %; v/v;) auf das Pellet gegeben und dreimal für je 30" im Minibeadbeater bei 4 °C aufgeschlossen. Nach Zentrifugation für 10' bei 4 °C wurde der Überstand in ein 1,5 ml Eppendorfgefäß überführt. Für die zweite Extraktion wurden 500 μ l Methanol/Ameisensäure (50/0,1 %; v/v;) eingesetzt und wie zuvor beschrieben extrahiert. Das 1 ml Extrakt (75 % Methanol; v/v;) wurde noch einmal zur weiteren Salzreduktion für 20.000 x g für 15' bei 4 °C zentrifugiert und in ein weiteres 1,5 ml Eppendorfgefäß überführt. Dieses methanolische Extrakt wurde für die entsprechenden Analysen (HPLC, ICR-FT/MS) verwendet.

2.5.5 *High Perfomance Liquid Chromatography* (HPLC) zur Bestimmung der Substratspezifität der *Arabidopsis* Glutathion-S-Transferasen

Die Analyse der Pestizid-GS-Konjugate (siehe 2.5.1 und 2.5.3) erfolgte durch chromatografische Trennung mittels *reverse phase* HPLC (Summit, DIONEX). Als stationäre Phase wurde eine C_{18} -Säule (Prontosil 120-3-C18; 100 mm x 2 mm i.d., 3 µm, Bischoff Chromatography, Leonberg, Deutschland). Die mobile Phase war ein saurer Methanol/Wassergradient. Die Auswertung erfolgte mit dem Programm Chromeleon Client 6.50. Die technischen Parameter und die Pestizid-spezifischen mobilen Gradienten werden im Folgenden aufgeführt.

Komponente	Modell
Autosampler	ASI-100 (gekühlt)
Fluoreszenz-Detektor	RF 2000
Interface	UCI-50
Pumpe	P680 Hochdruckgradientensystem
UV-Detektor	UVD340U

Metabolit	Flussrate in [ml/min]	Gradient (mobile Phase) in [min]
CDNB-GS-Konjugat	1,5	0': 25 % B, 0'-1': 25 % B, 1'-8' 60 % B, 8'-
$(\lambda = 340 \text{ nm})$		10' 60 % B, 10'-11' 80 % B, 11'-12' 80 %
		B, 12'-14' 25 % B, 14'-15' 25 % B.
		A: 10 % Methanol/ 0,1 % Ameisensäure (v/v;) B: 100 % Methanol (v/v;)
NBD-GS-Konjugat	1,5	0'-5': 0 % B, 5'-8': 30 % B, 8'-11' 30 % B,
$(\lambda = 419 \text{ nm})$		11'-13' 40 % B, 13'-16' 75 % B, 16'-18,5'
		0 % B, 18,5'-20' 0 % B.
		A: 10 % Methanol/ 0,1 % Ameisensäure (v/v;) B: 100 % Methanol (v/v;)
Anilazin-GS-Konjugat	1,5	0'-2': 25 % B, 2'-5' 50 % B, 5'-10' 75 % B,
$(\lambda_{1/2} = 254/285 \text{ nm})$		10'-11,5' 75 % B, 11,5'-13' 25 % B, 13'-15'
		25 % B.
		A: 10 % Methanol/ 0,1 % Ameisensäure (v/v;) B: 100 % Methanol (v/v;)
TPN-(GS) ₂ -Konjugat	0,4	0'-8': 0 % B, 8'-28' 75 % B, 28'-31' 75 %
$(\lambda_{1/2} = 254/340 \text{ nm})$		B, 31'-33' 0 % B, 33'-35' 0 % B.
		A: 40 % Methanol/ 1 % Essigsäure (v/v;) B: 100 % Methanol (v/v;)
2.5.6 Ion cyclotron resonance fourier transform mass spectrometry (ICR-FT/MS)

Zur Identifizierung putativer Pestizid-GS-Metabolite (Abb. 41) wurden die methanolischen Zellextrakte (siehe 2.5.4) mittels hochauflösendem Massenspektrometer ICR-FT/MS (Bruker APEX Qe, APOLLO II, 12 Tesla, Bremen, Deutschland) analysiert. Die Ionen wurden linear durch ein Hexapol-Quadrupol-Oktapol-System geschickt, ehe sie in der ICR-Zelle detektiert wurden. Der erste Hexapol fungierte als Eingangsresonator. Die Ionen könnten im darauf folgendem Quadrupol nach ihrem m/z-Verhältnis isoliert werden. In dieser Arbeit wurde aber ein sog. *non-targeted approach* durchgeführt. Die Oktapol-Apparatur hatte einen verhältnismäßig hohen Druck für sog. *collision induced dissociations* (CIDs), auf die in dieser Arbeit ebenfalls verzichtet wurde.

Mittels negativer Ionisation des Elektrosprays (ESI negativ) wurde eine Scanzahl von 300 verwendet. Jedes methanolische Extrakt (siehe 2.5.4) wurde 1zu25 mit 70 % Methanol (v/v;) verdünnt und in die Elektrospray-Quelle mit einer Flussrate von 2 μ l/min injiziert. Durch eine elektrische Potenzialdifferenz von 3.500 Volt zwischen der Elektrospray-Nadel und der konischen Gegenelektrode wurden die Ionen erzeugt. Die Ionen wurden zunächst in der Kollisionszelle des Oktapols für 100 ms akkumuliert, ehe alle Ionen zeitgleich in die ICR-Zelle geleitet wurden. So konnten die einzelnen Ionen für eine erhöhte Sensitivität leicht konzentriert werden ohne die ICR-Zelle zu überladen. Der Auswahlbereich der detektierten Massen lag zwischen den atomaren Masseneinheiten (m) 123 bis 2000. Der charakteristische Q1 Quadrupol-Parameter wurde auf 150 festgesetzt, um kleine Masseneinheiten oberhalb von m/z =123 effizient zu detektieren. Die Schwingungsamplitude des RF-Trichters betrug 100 V p-p, um Detektion dieser Massenbreite zu unterstützen. 2.5.6.1 *Metabolomics* der *Arabidopsis* Glutathion-S-Transferasen nach Belastung mit Xenobiotika

Zur Metabolitenanalyse wurde zunächst eine Kalibrierung des hochauflösendem MS mit Arginin (5-10 ppm in Methanol) durchgeführt. Nachdem die Arginin-Cluster erfolgreich detektiert wurden, wurden die methanolischen Hefeextrakte (siehe 2.5.4), die putative Pestizid-GS-Metabolite beinhalten, in der ICR-Zelle geleitet (siehe 2.5.6). Die verwendete Software für die Auswertung der detektierten Masseneinheiten war *DataAnalysis* Version 4.0 (Bruker Daltonics, Bremen, Deutschland). Das Signal-Rausch-Verhältnis wurde auf 4 festgelegt. Unter diesen Bedingungen wurden rund 10.000 Masseneinheiten detektiert, die auch isotopische Massen, hilfreich für die Metabolitenidentifizierung, beinhalteten. Zudem wurde eine interne Kalibrierung durch Fettsäurenreferenzen durchgeführt.

Im weiteren Verlauf der Auswertung wurden die Massenlisten als Text-Datei mit der Datenbank MassTRIX - *Mass Translator into Pathways* (Suhre and Schmitt-Kopplin, 2008) (<u>http://www.</u> helmholtz-muenchen.de/en/mips/workgroups/metabolomics/metabolomics-projects/masstrix/index.html) verglichen, um bekannte Verbindungen von unbekannten Masseneinheiten zu separieren. Das Fehlerfenster betrug hier stets zwischen 0,5 und 1 ppm.

2.5.6.2 Pre-Screening der Pestizide mit GST-defizienten Hefen

Die Vorversuche zu möglichen Pestizid-GS-Metabolite wurde mit den entsprechenden Hefestämmen durchgeführt, die mit Pestiziden in Konzentrationen zwischen 1-10 μ M belastet wurden (siehe. 2.5.3). Dabei wurde ein breites Pestizidspektrum von Herbiziden über Insektiziden bis zu Fungiziden getestet.

3 Ergebnisse

Der Ergebnisteil dieser Arbeit gliedert sich in drei Bereiche und ist vom Grundgedanken geleitet, dass sich die bis dato für die Charakterisierung der Proteinfamilie der GSTs aus *Arabidopsis thaliana* angewandten *forward* bzw. *reverse genetic approaches* nachweislich als problematisch herausstellten (Ülker et al., 2008, Sappl et al., 2009).

Daher wurde in dieser Arbeit in einem ersten Schritt ein heterologes Testsystem mit der Bäckerhefe *S. cerevisiae* für die funktionale Charakterisierung der *Arabidopsis* GSTs entwickelt. Dazu wurden ausgewählte, hefeeigene Gene von *S. cerevisiae*, die für GSTs bzw. GST-ähnliche Proteine kodieren, mittels homologer Rekombination deletiert. Die so hergestellten multiplen GST-defizienten Hefestämme wurden dann durch Wachstumsversuche mit unterschiedlichen Pestiziden und enzymologisch auf ihre GST-Aktivität hin untersucht (siehe 3.1).

In einem zweiten Schritt wurden konsequent einzelne Stämme dieser charakterisierten GST-defizienten Hefen mit den in dieser Arbeit klonierten *Arabidopsis* GSTs transformiert. Durch heterologe Expression der *Arabidopsis* GSTs wurde im Anschluss eine Komplementationsanalyse mit verschiedenen Pestizidklassen durchgeführt und so die Substratspezifität der *Arabidopsis* GSTs *in vivo* bestimmt (siehe 3.2).

In einem letzten Schritt wurden metabolomische Versuche der heterolog exprimierten *Arabidopsis* GSTs in Hefe durchgeführt. Nach möglicher S-Glutathionylierung eines Pestizids durch einzelne Vertreter der *Arabidopsis* GSTs wurde unter Einsatz hochauflösender Massenspektrometrie nach möglichen GST/GSH-abhängigen Pestizid-GS-Kataboliten gesucht. Dabei konnte in diesem heterologen Testsystem die Kompartimentierung möglicher Pestizid-GS-Katabolite berücksichtigt werden (siehe 3.3).

3.1 Charakterisierung Glutathion-S-Transferase defizienter Hefen

Für die funktionale Charakterisierung der *Arabidopsis* GSTs *in vivo* wurden zunächst GSTdefiziente Hefestämme von *S. cerevisiae* hergestellt. Dafür wurden alle Gene in *S. cerevisiae* (http://www.yeastgenome.org/), die für GSTs bzw. GST-ähnliche Polypeptidsequenzen kodieren, durch multiplen Sequenzvergleich mittels CLUSTALW des Programms MEGA5 (http://www. megasoftware.net/) verglichen (Abb. 14C). Die phylogenetischen Bäume in Abb. 14C und Abb. 16 wurden mittels MEGA5 *Prodist* (JTT Methode) und *Neighbor* (UPGMA Methode) berechnet. Vergleicht man phylogenetisch die neun Polypeptidsequenzen von *GTT1*, *GTT2*, *URE2*, *TEF3*, *TEF4*, *YGR201C*, *GTO1*, *GTO2* und *GTO3* in *S. cerevisiae*, so liegt mit Ausnahme der drei omega-GSTs und Tef3p/Tef4p kein nennenswerter Verwandtschaftsgrad vor. Die phylogenetische Anordnung der GST-Klassen in *Arabidopsis thaliana* (Abb. 16) bringt ebenfalls keine bedeutenden strukturellen Informationen, wie bereits früher beschrieben (Dixon and Edwards, 2010a). Diese schwache phylogenetische Aussagekraft in beiden eukaryotischen Organismen liegt darin begründet, dass primär die konservierten N-terminalen Domänen der GSTs mit ihren wichtigen Aminosäuren für die Koordinierung von GSH, namentlich Serin, Cystein und Tyrosin, einen Sequenzvergleich erst überhaupt ermöglichen. Die strukturelle Heterogenität der C-terminalen Domänen verhindert im Umkehrschluss eine höhere phylogenetische Bedeutung.

Desweiteren müssen für eine GST-defiziente Hefe zusätzlich acht GRXs in *S. cerevisiae* berücksichtigt werden (Abb. 14B). Das Fehlen von Grx8p im phylogenetischen Baum ist auf einen zu großen phylogenetischen Abstand zu den beiden anderen dithiolischen GRXs Grx1p und Grx2p in *S. cerevisiae* zurück zuführen. Hier ließe sich die Phylogenie mit den entsprechenden GRX-Polypeptidsequenzen nicht mehr darstellen.

Für die Herstellung der GST-defizienten Hefestämme in *S. cerevisiae* war die homologe Rekombination Methode der Wahl (Gueldener et al., 2002). So wurden in dieser Arbeit zunächst 26 GST-defiziente Hefestämme verwendet (siehe 2.1.4), wobei mit den Hefestämmen $\Delta gtt1$, $\Delta gtt2$, $\Delta grx1$, $\Delta grx2$, $\Delta tef3$, $\Delta tef4$, $\Delta gto1$, $\Delta gto2$, $\Delta gto3$ und $\Delta rod1$ 10 Mutanten zum Einsatz kamen, die bei Euroscarf erhältlich waren (siehe 2.1.4). Zudem wurden in dieser Arbeit mit BY4741 und BY4742 zwei unterschiedliche Genotypen verwendet. Bei den Deletionen der Gene *GTT1*, *GTT2*, *GRX1*, *GRX2* und *TEF4* (Abb. 14C) im genetischen Hintergrund von BY4741 (Abb. 22) wurde sich an früheren Publikationen orientiert (Collinson and Grant, 2003). Die drei omega-GSTs in *S. cerevisiae* wurden im genetischen Hintergrund von BY4742 deletiert (Abb. 21). *S. cerevisiae*-Stämme mit diesem Genotyp sind Methionin-auxotroph (siehe 2.1.4) und bieten die Möglich-

keit zu schwefelmetabolomischen Versuchen ähnlich zu SILAC (*stabil isotope labeling by amino acids in cell cultures*) (u.a. Geiger et al., 2011) mit dem schweren stabilen Schwefelisotop ³⁴S (siehe 4.3). Durch den Einsatz beider Genotypen sollte bei der Herstellung der GST-defizienten Hefestämme für die funktionale Charakterisierung der *Arabidopsis* GSTs deren xenobiotische Entgiftungsfunktionen und gegebenenfalls der endogene Schwefel- und Glutathionmetabolismus berücksichtigt werden.

Anhand der multiplen Hefemutante $\Delta gto 1 \Delta gto 2 \Delta gto 3$ wird im Folgenden die prinzipielle Vorgehensweise für alle anderen 15 multiplen Hefemutanten dieser Arbeit (siehe 2.1.4) dargestellt (Abb. 20).

Die Einfachmutante $\Delta gto3$ (BY4742) war der genetische Hintergrund für die Gendeletion von GTO1 mittels homologer Rekombination nach Gueldener et al., 2002 (siehe 2.2.10). Nach erfolgreicher Selektion der entsprechenden Doppelmutante $\Delta gto1 \Delta gto3$ (siehe 2.1.4) und erneuter homologer Rekombination wurde die Dreifachmutante $\Delta gto 1 \Delta gto 2 \Delta gto 3$ auf die Entfernung der Selektionsmarker hin überprüft. Durch die Verwendung der Deletionsplasmide pUG27 für GTO1 und pUG73 für GTO2 (Gueldener et al., 2002) konnte nach erfolgreicher Rekombination die Selektionsmarker mittels Cre-Rekombinase, exprimiert durch einen Galaktose-induzierbaren Promotor im low copy Plasmid pSH47 (Gueldener et al., 2002), wieder herausgeschnitten werden. Danach konnten erneut weitere Gendeletionen durchgeführt werden. Zur Überprüfung der Deletion wurde mittels PCR und Primersequenzen, die Up- und Downstream des deletierten Genes binden (Euroscarf), die isolierte genomische Hefe-DNA amplifiziert (Abb. 20). Das DNA-Fragment von GTO3 bei ca. 900 bp resultiert aus der Amplifikation mit der Primersequenz von *GTO3-Upstream* (360 bp) und einem Primer, der in der *KanMX4*-Selektionskassette von $\Delta gto3$ (Euroscarf) bindet. Die genomische WT-Bande erschien bei ca. 1750 bp (YMR251w: 1101 bp; exkl. Up- und Downstream-Primer). Das WT-Fragment von GTO1 (~ 1600 bp) setzte sich zusammen aus 1071 bp (YGR154c) und den Upstream (374 bp) – und Downstream (250 bp) – Fragmenten. Das WT-Fragment von GTO2 (~ 1700 bp) hatte eine Länge von 1113 bp (YKR076w) inkl. der Up- und Downstream-Fragmente von 267 bzw. 397 bp.

Auf diese Weise wurden alle weiteren 15 Mutanten (siehe 2.1.4) auf ihre entsprechenden Genloci hin untersucht. Wie anhand der sich deutlich unterscheidenden DNA-Fragmente nach der Markerentfernung in $\Delta gto 1 \Delta gto 2 \Delta gto 3$ (Abb. 20) gezeigt, konnten die Deletionen mitsamt den Markerentfernungen genomisch eindeutig nachgewiesen werden. Danach erfolgte die Eintragung in die Stammsammlung mit der entsprechenden internen Nummerierung (siehe 2.1.4).

3.1.1 Enzymatik mit Glutathion-S-Transferase Standardsubstraten

Nach der Herstellung multipler Deletionsmutanten in *S. cerevisiae*, wurden diese enzymatisch untersucht. Die Enzymatik wurde ähnlich nach Collinson and Grant, 2003 durchgeführt. Es wurde allerdings mit 300 µg die vierfache Menge an Rohprotein beim Enzymaktivitätsnachweis verwendet (Collinson and Grant, 2003).

Zunächst wurden keine signifikanten Unterschiede in der GST-Aktivität der beiden Wildtyp Genotypen BY4741 und BY4741 nachgewiesen (Abb. 21 und Abb. 22). Abb. 21 zeigt die CDNB-Aktivität der multiplen Mutanten ausgehend von $\Delta gto1\Delta gto2\Delta gto3$. Die Gendeletionen von *GTO1-3* bewirkten eine Reduktion der *in vitro* GST-Aktivität in Hefe von ~ 25 % verglichen mit dem WT BY4742. Zudem zeigte die Einfachmutante $\Delta rod1$ (ROD1: <u>Resistance to ortho-dinitrobenzene 1</u>) ebenfalls eine verminderte CDNB-Aktivität (Wu et al., 1996). Die Deletion von *ROD1* in $\Delta gto1\Delta gto2\Delta gto3$ zeigte keinen Effekt auf die CDNB-Aktivität. Durch weitere Deletionen der Gene *GTT1* und *TEF4* konnte die GST-Aktivität in der entstanden multiplen Mutante $\Delta gto1\Delta gto2\Delta gto3\Delta rod1\Delta gtt1\Delta tef4$ auf ~25 % Restaktivität verglichen mit dem WT BY4742 gesenkt werden. Die Deletion von *TEF4* im Hintergrund von $\Delta gto1\Delta gto2\Delta gto3\Delta rod1\Delta gtt1$ bewirkte eine signifikante Reduktion der CDNB-Aktivität um ~50 % (Abb. 21). Trotz einer Reduktion der GST-Aktivität in Summe von ~75 % in dieser multiplen Mutante $\Delta gto1\Delta gto2\Delta gto3\Delta rod1\Delta gtt1\Delta tef4$ konnte keine erhöhte Sensitivität beim Wachstum auf CDNB verglichen mit den WT BY4742 festgestellt werden (siehe 3.1.2).

Neben den Genen *GTO1-3*, *GTT1*, *GTT2*, *ROD1*, *TEF3* und *TEF4* wurden auch Gendeletionen mit *GRX1* und *GRX2* durchgeführt (Abb. 22). Die Mutante $\Delta tef4$ zeigte eine deutliche Reduktion der GST-Aktivität auf CDNB verglichen mit dem WT BY4741 und mit der Mutante

Abb. 21 Enzymatische Aktivität GST-defizienter Hefemutanten von *S. cerevisiae* (1). Es wurden unterschiedliche Deletionsmutanten, hier mit dem Fokus auf *GTO1*, *GTO2*, *GTO3*, *ROD1* und *TEF4*, getestet. Die Bedingungen für die *in vitro* Analyse sind denen aus Collinson and Grant, 2003 ähnlich. Anstelle des Einsatzes von 75 µg Rohprotein wurden hier 300 µg Rohprotein pro Ansatz verwendet. $\Delta tef3$ (Abb. 22A). Tef3p hat im Unterschied zu Tef4p in der N-terminalen Domäne ein Arg11 anstatt Ser11 (Abb. 15B). Dadurch fehlt hier eine der drei als wichtig erwiesenen Aminosäuren (Ser, Cys, Tyr) zur GSH-Koordinierung (Dixon and Edwards, 2010a), die entscheidend für einen nukleophilen Angriff an das Xenobiotikum ist (siehe 1.2). Beide Einfachmutanten zeigten aber keine signifikante Reduktion der NBD-Cl-Aktivität (Abb. 22B). Die Doppelmutante $\Delta gtt1\Delta gtt2$ hingegen zeigte hier ~25 % weniger GST-Aktivität auf (Abb. 22B). Die Deletion von *GRX1* bzw. *GRX2* in diesem Mutantenhintergrund führte zu einer leicht erhöhten CDNB-Aktivität im Vergleich zum WT BY4741 (Abb. 22A) und zu keiner Veränderung der NBD-Cl-Aktivität verglichen mit der Doppelmutante $\Delta gtt1\Delta gtt2$. Die Deletion von *GRX1* in der Mutante $\Delta tef4\Delta grx1$ zeigte eine Reduktion der GST-Aktivität um ~50 % verglichen mit dem WT BY4741. Die Tripelmutante $\Delta gtt1\Delta gtt2\Delta grx2$ als Komplementär von $\Delta tef4\Delta grx1$ zur Quintupelmutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx2$ zeigte ebenfalls eine um ~33 % erniedrigte NBD-Cl-Aktivität. Die

Quadrupelmutante $\Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$ zeigte keine nennenswerte Verminderung der CDNB-Aktivität verglichen mit dem WT BY4741 (Abb. 22A) wie früher beschrieben (Collinson and Grant, 2003), aber eine erneute Reduktion der NBD-Cl-Aktivität verglichen zu $\Delta gtt1 \Delta gtt2 \Delta grx2$ auf (Abb. 22B).

Über die Quintupelmutante $\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$ lässt sich als Ergebnis Folgendes festhalten:

Sie weist die niedrigste GST-Aktivität gegenüber beiden Standardsubstraten CDNB und NBD-Cl auf, nämlich ~33 % CDNB-Aktivität bzw. ~25 % NBD-Cl-Aktivität verglichen mit dem WT BY4741. Desweiteren ist aus der *in vitro* Analyse der GST-defizienten Hefestämmen ersichtlich, dass im Falle von CDNB die Gendeletion von *TEF4* entscheidend zur Reduktion der GST-Aktivität in *S. cerevisiae* war (Abb. 22A). Im Falle von NBD-Cl trug die Deletion aller fünf Gene in Kombination zur verminderten GST-Aktivität bei (Abb. 22B).

Entscheidendes Kriterium für das experimentelle Fortfahren mit der Quintupelmutante $\Delta tef 4 \Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$ unter Vernachlässigung der niedrigeren CDNB-Aktivität in der multiplen Mutante $\Delta gto 1 \Delta gto 2 \Delta gto 3 \Delta rod 1 \Delta gtt 1 \Delta tef 4$ (Abb. 21) war die detektierbare Sensitivität von $\Delta tef 4 \Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$ auf CDNB *in vivo* (Abb. 23D) (siehe 3.1.2).

3.1.2 Wachstumsversuch auf 1-Chlor-2,4-Dinitrobenzol und Anilazin

Nachdem die durchgeführte enzymatische Analyse mit den multiplen Mutanten einen Überblick über die GST-Aktivitäten *in vitro* ergab (siehe 3.1.1), wurden die Mutanten unter toxikodynamischen Gesichtspunkten untersucht. In Abb. 23 sind die Ergebnisse zu ausgewählten multiplen Mutanten gezeigt. Abb. 23B zeigt die Dosis-Wirkungs-Beziehung des WT BY4741 und der Quintupelmutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ mit dem GST-Standardsubstrat CDNB. CDNB wurde in Konzentrationen von 0,1 bis 100 µM eingesetzt. Die jeweiligen Hefestämme wurden in der Hauptkultur auf eine OD₆₀₀ = 0,05 an geimpft und für 24 h mit der entsprechenden Konzentration an CDNB bei 30 °C inkubiert. Zu jeder Konzentration wurden eine Dreifachbestimmung und mindestens zwei unabhängige Experimente durchgeführt. Bei einer CDNB-Konzentration von 30

Abb. 23 Wachstumsversuch von *S. cerevisiae* mit CDNB. (A) Der WT BY4741 und die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ wurden für 24 h bei 30 °C in einer YPD-Flüssigkultur inkubiert. (B) Dosis-Wirkungs-Beziehung des WT BY4741 und der Quintupelmutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$. Die verwendeten Konzentrationen von CDNB lagen zwischen 0,1 und 100 μ M. (C) Die angezeigten Hefestämme wurden üN bei 30 °C als Flüssigkultur inkubiert. Es wurden je 20 μ l jeder Hefezellkultur auf SD-Festmedium mit der Lösungsmittel-Kontrolle (0,1 % EtOH, v/v;) bzw. 60 μ M CDNB (D) gespottet. Es erfolgte eine Inkubation für fünf Tage bei 30 °C.

 μ M waren deutliche Unterschiede zwischen dem WT BY4741 und der multiplen GST-Mutante ersichtlich (Abb. 23B). Hier wies der WT BY4741 eine leichte Wachstumsinhibierung von ~25 % im Vergleich zur unbelasteten WT-Probe auf. Im Gegensatz dazu war das Wachstum der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ schon halbiert (> 50 % Inhibierung im Vergleich zur unbelasteten Probe). Der WT BY4741 wies eine Wachstumsinhibierung um 50 % bei einer Konzentration von 50 μ M CDNB auf.

Diese Wachstumsunterschiede zwischen dem WT BY4741 und der multiplen Mutante

Abb. 24 Dosis-Wirkungs-Analyse mit Anilazin. (A) Vier Tage alte Keimlinge des *Arabidopsis* WTs (*Col*-0) wurden auf MS-Festmedium mit Anilazin in Konzentrationen zwischen 0,1 - 100 μ M für vier Tage behandelt. 100 % entsprachen einem absolutem Wurzelwachstum des WT (*Col*-0) von 11,1 ± 1,3 mm auf MS-Medium mit 0,1 % DMSO. (B) Der Hefestamm WT BY4741 und die beiden multiplen Mutanten $\Delta gto1\Delta gto2\Delta gto3$ und $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ wurden für 24 h bei 30 °C in einer SD-Flüssigkultur mit Anilazin belastet. Die Konzentrationen lagen ebenfalls zwischen 0,1 und 100 μ M Anilazin. (C) Die belasteten Keimlinge aus (A) wurden mit 0,1 % Ameisensäure extrahiert und mittels HPLC/UV aufgetrennt und detektiert. Bei $\lambda = 254$ nm konnten mögliche AZ-GS-Metabolite detektiert werden. Die spätere exakte MS-Analyse der beiden angezeigten Doppelpeaks ordnet diese klar dem (Di)- bzw. (Mono)-AZ-GS-Konjugat zu (siehe Abb. 35 und 36). (Anm.: Die Doppelpeaks bei 6 bzw. 8 Minuten sind auf eine unzureichende HPLC-Auftrennung aufgrund beginnender Kristallisation des Kaliumphosphatpuffers auf der C₁₈-Säule zurückzuführen. Allerdings handelte es sich hier um einen ersten Screen.)

 $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ konnten am besten bei einer Konzentration von 60 μ M CDNB gezeigt werden (Abb. 23D). Die Hauptkulturen des WT BY4741, der Einfachmutante $\Delta tef4$, der Quadrupelmutante $\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ und der Quintupelmutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ wurden von der üN-Vorkultur auf eine OD₆₀₀ = 2,0 eingestellt und anschließend wie angezeigt verdünnt (Abb. 23C und 23D). Aus den jeweiligen Konzentrationsreihen wurden je 20 μ l für den Spottversuch verwendet. Zur Kontrolle wurde nur das Lösungsmittel (0,1 % Ethanol; v/v;) zum SD-Festmedium gegeben (Abb. 23C). Nach einer Inkubationszeit von fünf Tagen bei 30 °C zeigte die Quintupelmutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ die stärkste Wachstumsinhibierung, gefolgt von der Mutante $\Delta tef4$. Die Gendeletionen von *GTT1*, *GTT2*, *GRX1* und *GRX2* in der entsprechenden Quadrupelmutante führten zu keiner erkennbaren Wachstumsinhibierung (Abb. 23D). Wie bei der enzymatischen Bestimmung der GST-Aktivitäten gezeigt (Abb. 22A), führte auch die Deletion von *TEF4 in vivo* zu einer erhöhten Sensitivität gegenüber CDNB. In keiner weiteren Hefemutante (siehe 2.1.4) konnte unter diesen angegeben Bedingungen eine erhöhte CDNB-Sensitivität nachgewiesen werden.

Da beim späteren Screening diverser Pestizide (siehe 3.2.2) u.a. das Fungizid Anilazin positiv auf S-Glutathionylierung durch Arabidopsis GSTs getestet wurde, wurde mit diesem Fungizid ebenfalls ein Wachstumsversuch durchgeführt (Abb. 24A). Sowohl der A. thaliana WT (Col-0), als auch die Hefestämme WT BY4741, $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ und $\Delta gto1\Delta gto2\Delta gto3$ wurden jeweils mit Konzentrationen von 0,1 bis 100 µM an Anilazin belastet. Die Lösungsmittel-Kontrolle im Falle der Arabidopsis Keimlinge war 0,1 % DMSO (v/v;) bzw. 0,1 % Ethanol (v/v;) im Falle von S. cerevisiae. Vier Tage alte Arabidopsis Keimlinge wurden zu je 12 bis 15 an der Zahl auf MS-Platten umgesetzt und für weitere vier Tage entsprechend belastet. Bei den Hefestämmen wurden die entsprechenden Hauptkulturen auf eine $OD_{600} = 0,05$ an geimpft und für 24 h bei 30 °C inkubiert. Der WT (Col-0) wies bei einer Konzentration von 10 µM Anilazin eine Wachstumsinhibierung von ~ 50 % auf (Abb. 24A). Die multiplen Mutanten $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ und *Agto1Agto2Agto3* wiesen im Vergleich zum WT BY4741 keine Wachstumsunterschiede auf (Abb. 24B). Desweiteren lag der LD₅₀ in Hefe in einer vergleichbaren Konzentrationsbreite wie im Arabidopsis WT (Col-0) (Abb. 24B). Nach der viertägigen Belastung wurden die Arabidopsis Keimlinge mit 0,1 % Ameisensäure versetzt und extrahiert (Abb. 24C). In Abhängigkeit von der eingesetzten Konzentration und der eintretenden Wachstumsinhibierung waren eine Reihe neuer Substanzen, möglicherweise Anilazin-GS-Metabolite, mittels RP-HPLC aufgetrennt und bei der Wellenlänge $\lambda = 254$ nm detektiert worden (Abb. 24C) (siehe 3.2.2). Die Arabidopsis Keimlinge nahmen folglich das Fungizid Anilazin auf.

3.2 Komplementationsanalyse mit *Arabidopsis* Glutathion-S-Transferasen

Für die Klonierung der 53 *Arabidopsis* GSTs wurden zum einen cDNA-Klone von RIKEN und ABRC verwendet (siehe 2.2.2). Zum anderen, wenn nicht erhältlich, wurde RNA aus *Arabidopsis* (*Col*-0) isoliert und mittels cDNA-Synthese (Quiagen Kit) in cDNA umgeschrieben und die entsprechende CDS amplifiziert. Nach erfolgreicher Klonierung in die Shuttlevektoren pSH62 (HIS-Selektionsmarker) bzw. pSH47 (URA-Selektionsmarker) und der sich anschließenden Verifizierung durch Sequenzierung (siehe 2.1.5 und 2.2.9) wurden die Plasmide in die Hefemutanten $\Delta tef4$, $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ und $\Delta gto1\Delta gto2\Delta gto3$ transformiert (siehe Anhang vii). Nach erfolgreicher Selektion auf den entsprechenden Medien (SD_{-his} bzw. SD_{-Ura}) wurde die genomische DNA aus Hefezellkulturen isoliert und mittels Gelextraktions-Kit (PEQLAB) gereinigt und konzentriert. Nach der Plasmidisolierung wurde eine Kontroll-PCR zur Überprüfung auf einen positiven Plasmidbefund durchgeführt.

Abb. 25 zeigt stellvertretend für alle klonierten GSTs die Amplifizierung von *At*GSTF7, F9 und F14 aus pSH62. Der PCR-Ansatz wurde stets so gewählt, dass ein Primer in der Promotorregion des Gal1p oder in der Terminatorregion CYC1 des Plasmides und der entsprechende zweite Primer am Start- oder am Stopcodon der *Arabidopsis* CDS bindet.

So wurden in dieser Arbeit 41 *Arabidopsis* GSTs erfolgreich kloniert und in Hefe transformiert (siehe Anhang iii-vii). Neun weitere GSTs wurden von N. Kowalski kloniert. Damit wurden bis dato 50 der 53 GSTs aus *Arabidopsis* kloniert. Lediglich GSTF11, U9 und L2 wurden bisher nicht kloniert.

3.2.1 Expression der Arabidopsis Glutathion-S-Transferasen in Hefe

Zunächst wurden die *Arabidopsis* GSTF2, F8 und U19 heterolog in der Einfachmutante $\Delta tef4$ und in der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ exprimiert (Abb. 26). Dazu wurden die entsprechenden Hefestämme unter den gleichen Bedingungen, wie unter 3.1.2 beschrieben, mit 60 μ M CDNB belastet. Die Hauptkulturen hatten als Kohlenstoffquelle Saccharose (2 %; w/v;). Unter diesen Bedingungen wurde zunächst der Gal1-Promotor von pSH62 nicht induziert. Folglich zeigten sowohl die transformierten Stämme von $\Delta tef4$, als auch die von $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ eine vergleichbare Sensitivität gegenüber CDNB wie in Abb. 23D auf (siehe 3.1.2). Durch Substitution der Saccharose mit Galaktose (2 %; w/v;) wurde der Gal1-Promotor induziert. Die Expression der *Arabidopsis* GSTF8 und U19 komplementierte die Sensitivität der entsprechenden Mutanten (Abb. 26). Beide Expressionen unterscheiden sich kaum in ihrem Wachstumsergebnis. Sowohl die exprimierte AtGSTF8, als auch AtGSTU19 brachten die Hefemutanten $\Delta tef4$ und $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ annähernd auf das Wachstumsniveau des WT BY4741 zurück (Abb. 26). Lediglich AtGSTF2 komplementierte nicht signifikant.

Neben dem Wachstumsversuch wurde zudem eine *in vitro* Analyse mit den Standardsubstraten CDNB und NBD-Cl und dem Fungizid Anilazin durchgeführt (Abb. 27). Das CDNB- bzw. NBD-

Cl-GS-Konjugat konnte jeweils bei der spezifischen Wellenlange $\lambda = 340$ nm bzw. $\lambda = 419$ nm bestimmt werden (Habig et al., 1974, Ricci et al., 1994). Die S-Glutathionylierung von Anilazin *in vitro* wurde mittels RP-HPLC bei den Wellenlängen $\lambda_{1/2} = 254/285$ nm nachgewiesen. Die enzymatischen Bedingungen des zellfreien Heferohextraktes waren ähnlich wie früher beschrieben (Wünschmann et al., 2010). Es wurden die enzymatischen GST-Aktivitäten des WT BY4741, der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ und dieser Quintupelmutanten, die jeweils AtGSTF2, F8 und U19 exprimierten, bestimmt. Die multiple Mutante $\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$ wies auch gegenüber dem Fungizid Anilazin eine erheblich niedrigere Aktivität verglichen mit dem WT BY4741 auf (Abb. 27). AtGSTF2 zeigte keine S-Glutathionylierung von CDNB und NBD-Cl über die Hintergrund-Aktivität von $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ hinaus (Abb. 27). Es wurde aber eine doppelt so hohe Anilazin spezifische GST-Aktivität wie im WT BY4741 detektiert. Die heterolog exprimierte GSTF8 zeigte gegenüber CDNB und Anilazin eine vergleichbare enzymatische Aktivität mit dem WT BY4741. Zudem konnte auch eine NBD-Cl-Aktivität in vitro nachgewiesen werden. Die Arabidopsis GSTU19 wies eine sehr hohe Substratspezifität gegenüber NBD-Cl auf (Abb. 27). Ihr Wert lag mit $81,4 \pm 9,2$ pkat/mg um das vierfache über dem des WT-Wertes von 17.9 ± 3.5 pkat/mg und um das fünfzigfache über dem Wert der multiplen Mutante mit 1,6 \pm 0,4 pkat/mg. Zudem wies *At*GSTU19 eine deutliche Aktivität gegenüber CDNB

und dem Fungizid Anilazin auf.

Zur Überprüfung auf ein vergleichbares Proteinlevel der exprimierten Arabidopsis GSTs in Hefe wurden GSTF2, F8 und U19 mittels Drag&Drop Cloning (Jansen et al., 2005) zusätzlich als N-terminale GFP-Fusionsproteine über den Shuttlevektor pGREG565 (Euroscarf) kloniert. Die pGREG-Serie besteht aus dem gleichen Gall-Promotor- und CYC1-Terminatorsystem wie die pSH-Serie (Gueldener et al., 2002). Die multiple Mutante $\Delta tef 4 \Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$ wurde nach erfolgreichem Drag&Drop Cloning mit den entsprechenden Plasmiden transformiert, selektiert und unter nicht- bzw. Galaktose-induzierbaren Bedingungen für 24 h bei 30 °C inkubiert. Nach der Zellernte und sich anschließendem Proteinaufschluss erfolgte eine Proteinauftrennung mittels 10 % igem SDS-Page (Abb. 28). Nach Separierung wurden die Proteine auf eine Nitrozellulose transferiert und dort mit ihnen ein immunologische Nachweis mittels GFP-Antikörper als primären Antikörper durchgeführt. Nach einer Inkubationszeit von 30 Minuten (siehe 2.4.5.5) konnte ein ca. 52 kDa großes fluoreszierendes Proteinfragment mittels CCD-Kamera detektiert werden (Abb. 28). Das GFP-Protein hat ein Molekulargewicht von ca. 27 kDa und das GST-Monomer von ca. 25-26 kDa. Bei gleichem Volumeneinsatz der Proteinextrakte von 10 µl wiesen die GFP-Fusionsproteine von AtGSTF2, F8 und U19 vergleichbare Proteinlevel in der multiplen Mutante $\Delta tef 4 \Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$ auf (Abb. 28). Durch die Verwendung des Galaktose-induzierbaren Promotorssystems konnte die Genexpression der Arabidopsis GSTs sehr gut gesteuert werden (Abb. 28). Folglich basieren die Ergebnisse des Wachstumsversuches und der in vitro Analyse auf vergleichbaren Proteinleveln der verschiedenen Arabidopsis GSTs in Hefe und sind damit Ergebnisse unterschiedlicher Substratspezifitäten.

3.2.2 Stabile Isotopenmarkierung des 1-Chlor-2,4-Dinitrobenzol-Glutathion-Konjugates

Das Quantifizierungsprinzip der stabilen Isotopenanalytik basiert darauf, dass der Standard zur Quantifizierung isotopolog dem Analyten ist (Abb. 29). Folglich wurde in dieser Arbeit der entsprechende isotopologe Standard für unterschiedliche Pestizid-GS-Konjugate (Analyten) nach nachgewiesener *in vivo* S-Glutathionylierung durch *Arabidopsis* GSTs synthetisiert.

(Anm. des Autors: Ziel dieser Methodenetablierung war es, mögliche nicht-chromophore Pestizid-GS-Konjugate massenspektrometrisch quantitativ erfassbar zu machen. Da in dieser Arbeit mit dem ICR-FT/MS, ohne Kopplung an eine flüssig-chromatografische Trennung, ein hochauflösenden MS bewusst für einen primär *non-targeted approach* verwendet wurde, ist die eingesetzte stabile Isotopenmarkierung als eine sehr gute semi-quantitative Methode und folglich nicht im Rahmen einer Pestizid-Rückstandsanalytik zu verstehen. In bewusster Abgrenzung zur Vorgehensweise für ein quantitatives Metabolitenscreening mittels SILAC, gekoppelt an eine LC-MS/ MS, - denkbar für [¹⁵N]- oder [³⁴S]-Glutathion-Metabolite (siehe 4.3) - wurde hier eine Methode, diesem primär *non-targeted approach* angemessen, etabliert.)

Zunächst wurden die entsprechenden GS-Konjugate von CDNB, NBD-Cl, Chlorthalonil (TPN) und Anilazin nach nachgewiesener S-Glutathionylierung (Abb. 38 und 39) synthetisiert. Im Folgenden wird stellvertretend für alle chromophoren GS-Konjugate in dieser Arbeit die Standardsynthese der TPN-GS-Konjugate gezeigt. Die Synthese des isotopologen Standards wird nach der GS-Konjugat-Synthese anhand des CDNB-GS-Konjugates gezeigt.

Abb. 35B zeigt alle vier möglichen TPN-GS-Konjugate. 200 µl des enzymatischen Reaktionsansatzes von TPN, in dem *in vitro* mittels Pferdeleber GST TPN glutathionyliert wurde (siehe 2.5.1), wurden mittels HPLC/UV unter den angegebenen Bedingungen (siehe 2.5.5) und wie schon früher methodisch beschrieben (Kim et al., 2004) aufgetrennt und bei der Wellenlängen $\lambda = 254$ nm

Abb. 29 Prinzip der stabilen Isotopenanalytik. Die stabile Isotopenanalytik ist eine häufig eingesetzte Methode in der toxikologischen Rückstandsanalytik von Lebensmitteln und Bedarfsgegenständen. Bei dieser Methode ist der verwendete Standard isotopolog dem Analyten (hier: Pestizid-GS-Konjugat). Analyt und Standard weisen daher beinahe identische physikalisch-chemische Eigenschaften auf. Der detektierbare Massenshift des Standards im MS lässt sehr genaue Aussagen über Aufarbeitungsverlust, Matrixeinfluss und quantitativer Mengen des Analyten zu.

(Abb. 30) detektiert. Wie früher beschrieben (Kim et al., 2004) konnten die jeweiligen Peaks den GS-Konjugaten von TPN zu geordnet werden. Unter den angegeben Bedingungen konnte kein TPN-(GS)₄-Konjugat detektiert werden:

Peak	Retentionszeit [min]	Retentionszeit [min]	RP-HPLC/UV
(Abb. 30C)	diese Arbeit	Kim et al., 2004	Detektion bei $\lambda = 254$ nm
С	7,746	7,445	TPN-(GS) ₃ -Konjugat
В	14,584	14,061	TPN-(GS) ₂ -Konjugat
А	21,832	-	TPN-GS-Konjugat
TPN	33,398	-	Chlorthalonil

Die zeitliche Differenz der Analyten-Retentionen von ca. 0,4 Minuten in dieser Arbeit zu Kim et al., 2004 bei gleicher mobilen Phase und Gradientelution (siehe 2.5.5) liegt darin begründet, dass sich in dieser Arbeit die C_{18} -Säule (Prontosil 120-3-C18; 100 mm x 2 mm i.d., 3 µm, Bischoff Chromatography) von der stationären Phase bei Kim et al., 2004 unterschied (C_{18} -Säule: Zorbax; 150 mm x 4,6; i.d., 3,5 µm; Agilent Technologies).

Darüber hinaus konnte nach Inkubation des *in vitro* Reaktionsansatzes für 3 h bei 30 °C das $(GS)_2$ -Konjugat als prominentester Peak detektiert werden (Abb. 30C). Wie früher beschrieben (Kim et al., 2004) war das (Mono)-GS-Konjugat ein Intermediat der überwiegend stattfindenden S-Glutathionylierung von TPN zum TPN-(GS)₂-Konjugat (Abb. 30C). Das Screening mittels hochauflösendem MS auf TPN-GS-Metabolite in Hefe (siehe 3.3.1) bestätigte diesen früheren Befund von Kim et al., 2004. Daher wurde im Falle von TPN das (Di)-GS-Konjugat *in vivo* quantifiziert. Bei CDNB, NBD-Cl und Anilazin wurde jeweils das (Mono)-GS-Konjugat quantifiziert (siehe 3.2.3 und 3.3.1). Anhand der eingesetzten Edukte und entstandenen Produkte von TPN konnte bei der Wellenlänge $\lambda = 254$ nm die Konzentration des TPN-(GS)₂-Konjugates ermittelt werden. Der synthetisierte Standard wurde schließlich zur Kalibrierung eingesetzt.

In gleicher Weise wurden die Standards der GS-Konjugate von NBD-Cl, Anilazin und CDNB *in vitro* mittels Pferdeleber-GST (siehe 2.3.1) synthetisiert, wobei bei NBD-Cl nach 3 h ausschließlich das GS-Konjugat bei $\lambda = 419$ nm mittels HPLC/UV detektiert wurde. Darüber hinaus war im gleichen Reaktionsschema mit CDNB üN 95 % des CDNBs zum CDNB-GS-Konjugat reagiert. Bei Anilazin war nach 1 h *in vitro* ausschließlich das (Mono)-GS-Konjugat und restliches Anilazin detektierbar.

Anhand des CDNB-GS-Konjugates wurde die stabile Isotopenmarkierung, leicht modifiziert wie früher beschrieben (Hsu et al., 2003, Synowsky et al., 2009), für nicht-chromophore Pestizide (siehe 2.5.2) etabliert (Abb. 31). Die Synthese des isotopologen Standards für das CDNB-GS-Konjugat basiert auf der reduktiven Aminierung der primären Aminogruppe des CDNB-GS-Konjugates (Abb. 32A). Für die Derivatisierung und Dimethylierung (Abb. 31) wurde Formaldehyd bzw. [${}^{2}H_{2}$]-Formaldehyd (0,4 %; v/v;) und Natriumcyanoborhydrid (2,5 mM) für 1 h bei 25 °C

verwendet.

Bei der spezifischen Wellenlänge $\lambda = 340$ nm des CDNB-GS-Konjugates (Habig et al., 1974) wurden 100 µM des Konjugates als Edukt der Synthese mittels HPLC aufgetrennt und detektiert (Abb. 32A). Nach Derivatisierung von 100 µM CDNB-GS-Konjugates mit Formaldehyd bzw. [²H₂]-Formaldehyd (Abb. 31) und sich anschließender Festphasenextraktion (siehe 2.5.2) wurden jeweils zwei Peaks, die 0,65 bzw. 0,69 Minuten später als das Edukt eluieren, nachgewiesen (Abb. 32B und C). Mittels ICR-FT/MS wurden beide isolierte Peaks als [¹H₄]-N,N-Dimethyl-DNB- γ -ECG (Abb. 32B) bzw. [²H₄]-N,N-Dimethyl-DNB- γ -ECG (Abb. 32C) identifiziert (Abb. 33):

Chromatogramm	Retentionszeit	UV-Detektion	MS-Detektion (ICR-FT; ESI negativ; m/z = [M-H] ⁻)			
(Abb. 32)	[min]	$(\lambda = 340 \text{ nm})$	theoretisch	gemessen	Abweichung [ppm]	
А	5,87	CDNB-GS-Konjugat	472,07799	472,07754	0,30	
В	6,46	$[^{1}H_{4}]$ -N,N-Dimethyl-DNB- γ -ECG	500,10929	500,10926	0,06	
С	6,42	[² <i>H</i> ₄]-N,N-Dimethyl-DNB- <i>γ</i> -ECG	504,13439	504,13429	0,20	

Abb. 32 Synthese des isotoplogischen Standards zum CDNB-GS-Konjugat. Die Chromatogramme (A)-(C) zeigen nach chromatografischer Trennung und Detektion bei der spezifischen Wellenlänge $\lambda = 340$ nm in alphabetischer Reihenfolge das CDNB-GS-Konjugat, bei [¹H₄]-N,N-dimethyl-DNB- γ -ECG und [²H₄]-N,Ndimethyl-DNB- γ -ECG als isotopologen Standard. (D) Die C-D Bindung ist "etwas stärker" als die C-H Bindung (Effekt der reduzierten Masse). Unter angegeben Bedingungen war nach 1 h kein CDNB-GS-Konjugat mehr detektierbar.

In einem nächsten Schritt wurden die methanolischen Hefeextrakte (siehe 2.5.3 und 2.5.4) nach Belastung mit 50 μ M CDNB für 1 h mit Formaldehyd bzw. [²H₂]-Formaldehyd unter beschriebenen Bedingungen (siehe 2.5.2) derivatisiert und mittels hochauflösendem MS detektiert (Abb. 33). Abb. 33A zeigte das nicht derivatisierte Extrakt der exprimierten *Arabidopsis* GSTU19 in der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ mit dem CDNB-GS-Konjugate bei m/z = 472 in negativer ESI. Nach Derivatisierung und Festphasenextraktion wurde das leichte bzw. schwere dimethylierte CDNB-GS-Konjugat bei m/z = 500 bzw. 504 detektiert (Abb. 33B und C). Ein Gemisch zu gleichen Teilen aus beiden Extrakten zeigte vergleichbare Intensität zwischen dem [¹H₄]-N,N-Dimethyl-DNB- γ -ECG und seinem markierten Standard (Abb. 33D). Die natürliche Abundanz von Deuterium beträgt nur 0,015 %.

In einem letzten Schritt wurde das CDNB-GS-Konjugat *in vivo* mittels isotopenmarkiertem Standard quantifiziert (Abb. 33). Dafür wurden der WT BY4741, die multiple Mutante

 $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ und die jeweiligen multiplen Mutanten, transformiert mit Arabidopsis GSTF2, F8 oder U19, unter nicht- bzw. Galaktose-induzierbaren Bedingungen mit 50 µM CDNB für 40 Minuten belastet, methanolisch aufgeschlossen und mit Formaldehyd derivatisiert (siehe 2.5.3 und 2.5.4).

Die Quantifizierung des CDNB-GS-Konjugates erfolgte mittels ICR-FT/MS bzw. HPLC/UV (Abb. 34). Für die Konzentrationsberechnung des Analyten mittels ICR-FT/MS wurden zunächst $[{}^{1}H_{4}]$ - bzw. $[{}^{2}H_{4}]$ -N,N-Dimethyl-DNB- γ -ECG in Konzentrationen von 0,2-10 μ M verwendet (siehe 2.5.6), um so den Faktor *f*, der das Verhältnis zwischen Analyt und Standard bei unterschiedlichen Konzentrationen widerspiegeln soll, zu ermitteln. Dieser Faktor *f* betrug 0,98 (siehe 2.5.2). Danach wurden die derivatisierten methanolischen Hefeextrakte, gespiked mit $[{}^{2}H_{4}]$ -N,N-Dimethyl-DNB- γ -ECG in geeigneten Probenkonzentrationen, nach der Festphasenextraktion quantifiziert.

Die Ergebnisse der Quantifizierung *in vivo* zeigten, dass das CDNB-GS-Konjugat nach 40 Minuten in der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ im Vergleich zum WT BY4741 deutlich reduziert war (Abb. 34). Unter Galaktose-induzierbaren Bedingungen bewirkte die Expression der *Arabidopsis* GSTF8 und U19 eine deutliche S-Glutathionylierung von CDNB (Abb. 34). Zudem sind die ermittelten quantitativen Daten zwischen ICR-FT/MS (Abb. 34A) und HPLC/UV (Abb. 34B) prozentual miteinander vergleichbar. Der Unterschied in den absoluten Werten betrug 32 %. Dieser quantitative Unterschied ist für diesen primär *non-targeted approach* vertretbar.

Probenextrakte mit [' H_4]-N,N-dimethyl-DNB- γ -ECG als isotopogologem Standard versetzt und mit Formaldehyd derivatisiert. (B) Die methanolischen, nicht-derivatisierten Hefeextrakte aus (A) wurden mittels in die HPLC aufgetrennt. Das CDNB-GS-Konjugate wurde bei $\lambda = 340$ nm detektiert. Die GST-Aktivität der heterolog exprimierten AtGSTU19 wurde jeweils auf 100 % gesetzt. (absolute Werte von AtGSTU19: ICR-FT/MS, 93 ± 16 nmol/10⁹ Zellen; HPLC-UV, 122 ± 4 nmol/10⁹ Zellen.)

3.2.3 Substratspezifität der *Arabidopsis* Glutathion-S-Transferasen auf 1-Chlor-2,4-Dinitrobenzol, 4-chloro-7-nitro-2,1,3-benzoxadiazole, Chlorthalonil und Anilazin

Nachdem die Analytik des Hefesystems mit den GST-Standardsubstraten CDNB und NBD-Cl etabliert wurde (siehe 3.1 bis 3.2.2), wurden die *Arabidopsis* GSTs metabolisch auf ihre Substratspezifität gegenüber weiteren Pestiziden *in vivo* untersucht.

In einem ersten Schritt wurden mögliche Pestizid-GS-Metabolite mittels HPLC aufgetrennt und deren unterschiedlichen Peakmuster mittels UV bei den entsprechenden Wellenlängen detektiert. In einem zweiten Schritt wurden die prominenten Peaks eines jeden Chromatogramms isoliert und massenspektrometrisch identifiziert. Bei einem möglichen Nachweis eines Pestizid-GS-Konjugates, ausgelöst durch die Expression einer *Arabidopsis* GST in Hefe, wurde der entsprechende Standard synthetisiert (siehe 3.2.2) und eine Quantifizierung des GS-Konjugates vorgenommen. In einem letzten Schritt wurde als Alternative zu den GS-Konjugaten auch nach möglichen Pestizid-GS-Kataboliten mittels hochauflösendem Massenspektrometer gesucht (siehe 3.3).

Für die HPLC-Detektion wurden zunächst die entsprechenden Hefezellkulturen u.a. mit CDNB, NBD-Cl, Chlorthalonil und Anilazin belastet und methanolisch aufgeschlossen (siehe 2.5.3 und 2.5.4). Abb. 35B zeigt alle möglichen GS-Konjugate von Anilazin und Chlorthalonil. 200 μ l der 1 ml Extrakte wurden mittels HPLC aufgetrennt und bei der Wellenlänge $\lambda = 254$ nm detektiert. Bei dieser Wellenlänge wurden die jeweiligen Chromophore am stärksten angeregt, um so mögliche GS-Metaboliten auch bei schwacher Konzentration im Extrakt auflösen zu können. Das Lösungsmittel der Extrakte stimmte jeweils mit den HPLC-Startbedingungen für die mobile Phase überein. Abb. 35 zeigt unterschiedliche chromatografische Peakmuster nach Belastung der angezeigten Hefezellkulturen mit 1 μ M Anilazin bei 30 °C für 1 h. Simultan dazu wurden die Proben

von Anilazin bei der spezifischeren Wellenlänge $\lambda = 285$ nm aufgezeichnet.

Der WT BY4741 zeigte neben dem Matrixpeak zwei weitere Peaks bei $t_1 = 6,13 \text{ min und } t_2 = 7,46 \text{ min}$ (Abb. 35A). Der markierte Peak Nr. 1 war bei der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ unter den angegeben Bedingungen (siehe 2.5.5) nicht mehr detektierbar (Abb. 35B). Die Expressionen der *Arabidopsis* GSTF4 bzw. U5 bewirkten eine starke Zunahme der Peakflächen im Vergleich zum Referenzchromatogramm der multiplen Mutante (Abb. 35C und D). Bei GSTF4 war die Peakfläche bei $t_1 = 6,01$ min deutlich größer als bei $t_2 = 7,43$ min (Abb. 35C). Bei GSTU5 war das Intensitätsverhältnis dieser beiden prominenten Peaks genau entgegengesetzt (Abb. 35D). Wie allen vier Chromatogrammen zu entnehmen ist, handelte es sich bei diesen zwei Peaks um die beiden möglichen GST-abhängigen Hauptmetabolite von Anilazin (Abb. 35B) nach 1 h. Zudem tauchten in den Chromatogrammen von GSTF4 und U5 zusätzliche Peaks (*) auf, die mögliche weitere GSH-abhängige Metabolite darstellten (Abb. 35C und D). Diese konnten sowohl im WT BY4741, als auch in der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ nicht mehr nachgewiesen werden.

Galaktose-induzierten Bedingungen für 1 h bei 30 °C mit 1 μ M Anilazin inkubiert. Die Analysen der methanolischen Probenextrakte mittels HPLC/UV weisen nach Auftrennung und Detektion bei $\lambda = 254$ nm unterschiedliche Peakmuster auf. (1) Anilazin-(GS)₂-Konjugat; (2) Anilazin-GS-Konjugat; (siehe Abb. 38) * weitere mögliche Anilazin-GS-Katabolite.

Zur Identifizierung der Peaks Nr. 1 und Nr. 2 wurden diese nach der chromatografischen Trennung mittels HPLC isoliert, eingedampft und je in 200 μ l 70 %igem Methanol (v/v;) aufgenommen. 40 μ l dieser Proben wurden mit 960 μ l an 70 %igem Methanol (v/v;) versetzt und mittels ICR-FT/MS analysiert (siehe 2.5.6). So konnte Peak Nr. 1 eindeutig dem (Di)-GS-Konjugat und Peak Nr. 2 dem (Mono)-GS-Konjugate von Anilazin zugeordnet werden (Abb. 37). (Anm. des Autors: Die in Abb. 37 dargestellten Strukturformeln stellen nur eine mögliche Konstitution der GS-Konjugate von Anilazin dar (Abb. 35). Dies ist der Übersichtlichkeit geschuldet. Die exakte Bestimmung der Konstitutionsisomere mittels ¹H-NMR-Spektroskopie war nicht Inhalt dieses primär *non-targeted approaches*.) Im Einklang mit den natürlichen Abundanzen der stabilen Isotope von ¹³C (1,07 %) und den Verhältnissen zwischen ³⁵Cl und ³⁷Cl (75,78 und 24,22 %) wurde eindeutig das Isotopenmuster der beiden Verbindungen mit Abweichungen < 0,5 ppm detektiert:

Metabolit 1	neutral	Ladung	gemessen*	theoretisch	[ppm]	Intensität
γ-ECG-AZ-γ-ECG	$C_{29}H_{37}CIN_{10}O_{12}S_2$	-1	815,16460	815,16496	0,44	5,28E+07
$[^{13}C_1]$ - γ -ECG-AZ- γ -ECG	$C_{29}H_{37}CIN_{10}O_{12}S_2$	-1	816,16799	816,16819	0,25	1,88E+07
$[^{37}Cl_1]$ - γ -ECG-AZ- γ -ECG	$C_{29}H_{37}CIN_{10}O_{12}S_2$	-1	817,16203	817,16228	0,31	2,22E+07
$[{}^{13}C_1 - {}^{37}Cl_1] - \gamma - \text{ECG-AZ-}\gamma - \text{ECG}$	$C_{29}H_{37}CIN_{10}O_{12}S_2$	-1	818,16520	818,16534	0,17	7,58E+06
Metabolit 2	neutral	Ladung	gemessen*	theoretisch	[ppm]	Intensität
γ-ECG-AZ	$C_{19}H_{21}Cl_2N_7O_6S$	-1	544,05766	544,05783	0,31	2,97E+09
$[^{13}C_1]$ - γ -ECG-AZ	$C_{19}H_{21}Cl_2N_7O_6S$	-1	545,06104	545,06111	0,13	6,09E+08
$[^{37}Cl_1]$ - γ -ECG-AZ	$C_{19}H_{21}Cl_2N_7O_6S$	-1	546,05472	546,05498	0,48	1,95E+09
$[{}^{13}C_{1} - {}^{37}Cl_{1}] - \gamma$ -ECG-AZ	$C_{19}H_{21}Cl_2N_7O_6S$	-1	547,05807	547,05819	0,22	3,99E+08
$[^{37}Cl_2]$ - γ -ECG-AZ	C19H21Cl2N7O6S	-1	548,05175	548,05200	0,46	3,16E+08
$[^{13}C1_1 - {}^{37}Cl_2] - \gamma - ECG - AZ$	$C_{19}H_{21}Cl_2N_7O_6S$	-1	549,05502	549,05528	0,47	6,63E+07

* Die gemessenen monoisotopischen Massen beziehen sich auf die muliple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$, in der *At*GSTU5 heterolog unter Belastung mit 1 µM AZ bei 30 °C für 1 h exprimiert wurde.

Die frühere Retentionszeit des (Di)-GS-Konjugates (Abb. 36C) trotz größerer Masse verdeutlichte die starke hydrophile Zunahme durch eine zweifache Glutathionylierung. Da hier bei Anilazin wie im auch im Falle von CDNB, NBD-Cl und Chlorthalonil ein positiver Befund auf eine S-Glutathionylierung durch *Arabidopsis* GSTs in Hefe vorlag, wurde nach der Standardsynthese (siehe 3.2.2) eine Quantifizierung der *in vivo* gebildeten chromophoren GS-Konjugate mittels HPLC/UV durchgeführt (Abb. 38 und 38). Nach Extraktion (siehe 2.5.3 und 2.5.4) wurden 200 µl der jeweiligen Proben chromatografisch aufgetrennt und bei den jeweiligen spezifischen Wellenlängen detektiert. Die angezeigten Standardabweichungen basieren auf drei unabhängigen Experimenten.

Das **CDNB-GS-Konjugat** wurden bei $\lambda = 340$ nm (Habig et al., 1974) unter den entsprechenden HPLC-Bedingungen (siehe 2.5.5) aufgetrennt und detektiert. Die angezeigten Hefezellkulturen (Abb. 38A) wurden für 40 Minuten mit 50 µM CDNB belastet. Die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ wies eine erheblich niedrigere CDNB-GS-Konjugatbildung im Vergleich zum WT BY4741 auf (Abb. 38A). Insgesamt wurden 37 der 41 in dieser Arbeit klonierten *Arabidopsis* GSTs analysiert. 21 der 37 analysierten *Arabidopsis* GSTs (57 %) lagen in ihrer Aktivität mindestens zweifach über der Matrixaktivität der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$, namentlich GSTF4, F6, F8, F9, F10, GSTU1, U3, U5-8, U13, U17-19, U24-27 und GSTT1 und T2 (Abb. 38A). Diese wurden folglich für positiv auf S-Glutathionylierung befunden. 15 der 19 analysierten GSTs der tau-Klasse (79 %) wiesen CDNB-Aktivität auf, wohingegen nur 5 der 10 getesteten GSTs der phi-Kasse CDNB-aktiv waren. GSTU5, U8 und U25 wiesen die höchsten Aktivitäten aller 37 *Arabidopsis* GSTs auf. GSTF4 und F8 glutathionylierten CDNB am stärksten im Vergleich zu den acht anderen GSTFs (Abb. 38A).

Das **NBD-GS-Konjugat** wurden bei $\lambda = 419$ nm (Ricci et al., 1994) unter den entsprechenden HPLC-Bedingungen (siehe 2.5.5) aufgetrennt und detektiert. Die angezeigten Hefezellkulturen (Abb. 38B) wurden für 30 Minuten mit 1 µM NBD-Cl belastet. Die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ wies auch hier eine erheblich niedrigere NBD-GS-Konjugatbildung im Vergleich zum WT BY4741 auf (Abb. 38B). Insgesamt wurden 38 der 41 klonierten Arabidopsis GSTs analysiert. 23 der 38 analysierten *Arabidopsis* GSTs (61 %) lagen in ihrer Aktivität mindestens zweifach über der Matrixaktivität der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$, namentlich GSTF4, F8, GSTU2-8, U10-13, U15, U19, U24-27, GSTL3, DAHR3 sowie GSTT1 und T2 (Abb. 38B). Diese wurden folglich für positiv auf S-Glutathionylierung befunden. 15 der 23 analysierten GSTs der tau-Klasse (65 %) waren NBD-Cl-aktiv, wohingegen nur GSTF4 und F8 der 10 analysierten GSTFs (20 %) NBD-Cl glutathionylierten (Abb. 38B). Mit GSTU5, U13 und U15 wiesen erneut drei Vertreter der tau-Klasse die höchsten Aktivitäten aller getesteten GSTs auf. Innerhalb der tau-Klasse entgifteten die phylogenetisch verwandten Stämme GSTU1-

10 und GSTU11-18 (Abb. 16) NBD-Cl stärker als GSTU19-28.

Zusammenfassend lässt sich für die S-Glutathionylierung der GST-Standardsubstrate CDNB und NBD-Cl festhalten, dass weit über die Hälfte der getesteten *Arabidopsis* GSTs *in vivo* enzymatisch aktiv waren. Die GSTs der tau-Klasse entgifteten diese Substrate am stärksten. Lediglich GSTF4 und F8 aus der phi-Klasse waren gegenüber beiden Substraten aktiv. Zudem zeigten zwei GSTs der theta-Klasse, namentlich GSTT1 und T2, ebenfalls CDNB- und NBD-Cl-Aktivität.

Das Anilazin-GS-Konjugat wurde bei den Wellenlängen $\lambda_1 = 254$ nm bzw. bei $\lambda_2 = 285$ nm unter den entsprechenden HPLC-Bedingungen (siehe 2.5.5) aufgetrennt und detektiert. Die angezeigten Hefezellkulturen (Abb. 39A) wurden für 30 Minuten mit 1 µM Anilazin belastet. Die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ wies eine deutlich niedrigere Anilazin-GS-Konjugatbildung im Vergleich zum WT BY4741 auf (Abb. 39A). Insgesamt wurden 33 der 41 klonierten *Arabidopsis* GSTs analysiert. 28 der 33 analysierten *Arabidopsis* GSTs (85 %) lagen in ihrer Aktivität mindestens zwifach über der Matrixaktivität der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$, namentlich GSTF2-4, F6-11, F14, GSTU1-3, U5-8, U10, U12-14, U17-19, U23-26 und GSTT2 (Abb. 39A). Diese wurden folglich für positiv auf S-Glutathionylierung befunden. 18 der 22 analysierten GSTs der tau-Klasse (82 %) wiesen Anilazin-Aktivität auf. Nur GSTU4, U15, U16 und U27 waren nicht aktiv. Dagegen konnten alle getesteten GSTs der phi-Klasse (100 %) Anilazin glutathionylieren (Abb. 39A). GSTU5, U8, U18 und U25 wiesen zusammen mit GSTF2, F4, F6 und F8 die höchsten Aktivitäten aller 33 *Arabidopsis* GSTs auf. Zudem wies GSTT2 im Gegensatz zu GSTT1 eine bemerkenswert hohe Aktivität gegenüber Anilazin auf (Abb. 39A).

Für die Quantifizierung der S-Glutathionylierung von Chlorthalonil (TPN) war das **TPN-(GS)**₂-**Konjugat** der Hauptmetabolit *in vivo*. In Übereinstimmung mit früheren Daten war das (Mono)-GS-Konjugat nur ein Intermediat der eigentlichen S-Glutathionylierung (Kim et al., 2004). Das TPN-(GS)₂-Konjugat wurden bei den Wellenlängen $\lambda_1 = 254$ nm bzw. bei $\lambda_2 = 340$ nm unter den entsprechenden HPLC-Bedingungen (siehe 2.5.5) aufgetrennt und detektiert. Die angezeigten Hefezellkulturen (Abb. 39B) wurden für 1 h mit 1 µM TPN belastet. Die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtr2\Delta grx1\Delta grx2$ wies eine niedrigere TPN-(GS)₂-Konjugatbildung im Vergleich zum WT BY4741 auf, hatte aber noch ~40 % Restaktivität (Abb. 39B). Insgesamt wurden 38 der 41 klonierten *Arabidopsis* GSTs analysiert. 33 der 38 analysierten *Arabidopsis* GSTs (87 %) lagen in ihrer Aktivität mindestens zweifach über der Matrixaktivität der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$, namentlich GSTF3-10, F14, GSTU1-8, U10-14, U17-19, U22, U24-27, GSTL1 und GSTT1 und T2 (Abb. 39A). Diese wurden folglich für positiv auf S-Glutathionylierung befunden. Mit Ausnahme von GSTF2 und F14 alle GSTs der phi-Klasse (80 %) aktiv gegenüber TPN. Ebenfalls konnten beide getesteten GSTs der theta-Klasse, GSTT1

und T2, TPN katalytisch umsetzen (Abb. 39B). Neben GSTU24 und U25 wiesen erneut GSTF4 und F8-10 die höchsten Aktivitäten aller 38 getesteten *Arabidopsis* GSTs auf. Innerhalb der tau-Klasse entgifteten die phylogenetisch verwandten Stämme GSTU11-15 kaum TPN im Gegensatz zu NBD-Cl (Abb. 38B und 39B).

Zusammenfassend lässt sie als Ergebnis der S-Glutathionylierung der Fungizide Anilazin und Chlorthalonil festhalten, das über 80 % der getesteten *Arabidopsis* GSTs aktiv gegenüber diesen beiden Substraten waren. Desweiteren entgifteten die GSTs der phi-Klasse aktiver als die tau-Klasse beide Substrate und wiesen hier im Gegensatz zu den GST-Standardsubstraten die höchsten enzymatischen Aktivitäten auf. Darüber hinaus war GSTF2 ausschließlich aktiv gegenüber Anilazin (Abb. 39A) und damit gegenüber keinem weiteren in dieser Arbeit getesteten Pestizid. GSTT2 setzte zudem alle vier Substrate enzymatisch um.

3.3 *Metabolomics* in Hefe

3.3.1 *Metabolite profiling* der *Arabidopsis* Glutathion-S-Transferasen mit Fenclorim, Benoxacor, Anilazin und Chlorthalonil

Nachdem die Identifizierung der Pestizid-GS-Konjugate abgeschlossen und die S-Glutathionylierungen von CDNB, NBD-Cl, Anilazin (AZ) und Chlorthalonil (TPN) durch die *Arabidopsis* GSTs *in vivo* quantifiziert worden waren (siehe 3.2.3), wurde unter Verwendung hochauflösender Massenspektrometrie (ICR-FT/MS) (siehe 2.5.6) das Metaboliten-Profil der Pestizide Fenclorim (FC), Benoxacor (BX), AZ und TPN untersucht.

Grundlage für dieses Pestizid-GS-Metaboliten Screening bildete der bekannte mögliche Abbauweg von GS-Konjugaten (Abb. 41A), der früher in *S. cerevisiae* anhand des Standardsubstrates

GS-Biman beschrieben wurde (Wünschmann et al., 2010) und der große Übereinstimmungen mit dem pflanzlichen Abbauweg der GS-Konjugate in *A. thaliana* hat (Blum et al., 2007, Blum et al., 2010) (siehe 1.2.1). Anhand postulierter Aktivitäten der Carboxypeptidasen CPC und CPY, der γ -Glutamyltranspeptidase CIS2 und möglichen β -Lyasen in *S. cerevisiae* nach S-Glutathiony-lierung durch endogene Hefe oder heterolog exprimierte *Arabidopsis* GSTs wurde systematisch nach diesen *per se* möglichen GS-Abbauprodukten (Abb. 41A) von FC, BX, AZ und TPN in Hefe gesucht. Die beiden Herbizidsafener FC und BX können zweifach glutathionyliert (Abb. 41C und 41D), die beiden Fungizide AZ und TPN können bis zu drei- bzw. vierfach glutathionyliert werden (Abb. 35B). Da unter den angegebenen Bedingungen eine zweifache S-Glutathionylierung der höchste Glutathionylierungsgrad war, wurde somit höchstens auf 16 postulierte Abbauprodukte, vom entsprechenden Pestzid-GS-Konjugat bis hin zum modifizierten thiolischen Pestizid (Abb. 41B) gescreent (siehe 2.5.6).

Dafür wurden zu jedem möglichen Abbauprodukt anhand der entsprechenden Summenformel die theoretische monoisotopische Masse bei einer Ladung von -1 im negativen Elektrospray berechnet und mit den gemessenen Massen der Probenextrakte verglichen (Abb. 41). Das ICR-FT/MS zusammen mit der Software *DataAnalysis* Version 4.0 (Bruker Daltonics, Bremen, Deutschland) bot so die Möglichkeit die Pestizid-GS-Metabolite im ursprünglichen Hefeextrakt nach externer Kalibrierung mit Arginin (5-10 ppm) und interner Kalibrierung (verschiedene Fettsäurereferenzen) in Abweichungen < 1,0 ppm zu erfassen (siehe Anhang viii-x). Zusätzlich - wie schon unter 3.2.3 mit Abb. 37 gezeigt - konnten z.T. die spezifischen Isotopenmuster der jeweiligen Pestizid-GS-Metabolite in Abhängigkeit von ihrer vorliegenden Konzentration im Hefeextrakt nachgewiesen werden.

Alle entsprechend belastetend Hefeproben wurden hierfür, wie unter 2.5.3 und 2.5.4 beschrieben, in 1 ml 70 %igem Methanol (v/v;) aufgenommen und 1zu25 mit demselben verdünnt. Dies stellte für den *non-targeted approach* die optimale Probenverdünnung zur Ionisierung im negativen Elektrospray und für die Detektion einer möglichst hohen Massenanzahl dar (siehe 2.5.6.1).

Die **Fenclorim-GS-Metabolite** wurden in den angezeigten Hefezellkulturen nach Belastung mit 100 μ M FC für 2 h detektiert (Abb. 42A). Die exakten Massen, Fehlerabweichungen und Intensitäten sind dem Anhang zu entnehmen (siehe Anhang viii). Aufgrund einer nachweisbaren einfach S-Glutathionylierung von FC durch *At*GSTF8 wurden vier mögliche GS-Katabolite erwartet (Abb. 41A) und drei von ihnen detektiert (Abb. 42C). Die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ wies eine niedrigere FC-GS-Konjugatbildung im Vergleich zum WT BY4741 auf (Abb. 42C). Als Konsequenz daraus wurden unter diesen Bedingungen (siehe 2.5.6) keine weiteren GS-Katabolite mehr nachgewiesen. Die jeweiligen Expressionen der *Arabidopsis* GSTF2, F8 und U19 führten zu einem Anstieg der FC-GS-Metabolite (Abb. 42C). GSTF8 und U19 wiesen vergleichbare Intensitäten des FC-GS-Konjugates und den weiteren Kataboliten auf. In keinen der fünf Proben konnte das FC-CysGly-Konjugat als vierter erwartete Metabolit nachgewiesen werden (Abb.

BY4/41 und der multiplen Mutante $\Delta tef 4 \Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$, die jeweils AtGSTF2, F8 und U19 überexprimierte, wurden für 2 h mit 100 µM FC bzw. 100 µM BX belastet. (A) und (B) bzw. (D) und (E) zeigen stellvertretend das Screeningverfahren auf FC bzw. BX anhand der exprimierten AtGSTF8 in Hefe. Die ICR-FT/MS Spektren zeigen die entsprechenden GS-Konjugate nach Aufnahme dieser Xenobiotika durch die Hefe. Exakte Massen, Fehlerabweichungen und Intensitäten können dem Anhang entnommen werden (siehe Anhang viii). Abkürzung: N.D., *not determined*.

42C). Hier schien eine mögliche Aktivität der γ -Glutamyltranspeptidase CIS2 gegenüber dem FC-GS-Konjugat in Hefe auszubleiben.

Desweiteren wurde mit Benoxacor ein zweiter Herbizidsafener in vivo untersucht (Abb. 42D-F). Die Benoxacor-GS-Metabolite wurden in den angezeigten Hefezellkulturen nach Belastung mit 100 µM BX für 2 h detektiert (Abb. 42D). Die exakten Massen, Fehlerberechnungen und Intensitäten sind ebenfalls dem Anhang zu entnehmen (siehe Anhang viii). Das BX-GS-Konjugat wurde nicht wie vermutet, sondern modifiziert, ohne zweites Chloratom in α -Position (Abb. 41D) zu GSH, detektiert (Abb. 42F). Das BX-GS-Konjugat mit dem zweiten Chloratom substituiert durch ein H-Atom, wurde wie früher beschrieben (Miller et al., 1996) nachgewiesen. Aufgrund dieser nachweisbaren einfach S-Glutathionylierung von BX durch AtGSTF8 wurden vier mögliche GS-Katabolite erwartet (Abb. 41A) und drei von ihnen detektiert (Abb. 42C). Wie im Falle der FC-GS-Metabolite konnte kein entsprechendes BX-CysGly-Konjugat nachgewiesen werden (Abb. 42F). Darüber hinaus war in der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ keine S-Glutathionylierung von BX nachweisbar. Zudem lag auch im WT BY4741 eine nur schwache S-Glutathionylierung von BX verglichen mit den exprimierten Arabidopsis GSTs vor. Sowohl GSTF2 und F8, als auch GSTU19 glutationylierten BX (Abb. 42F). Von diesen drei analysierten Arabidopsis GSTs wies GSTF8 die höchste Aktivität gegenüber BX auf. Hier konnte das BX-y-GluCys-Konjugat als Intermediat einmal detektiert werden.

Zusammenfassend lässt sich also sagen, dass die Herbizidsafener FC und BX in Hefe aufgenommen und z.T. endogen glutathionyliert wurden. Die Expression der *Arabidopsis* GSTF2, F8 und U19 brachte deutliche Unterschiede in der GST-abhängigen Metabolisierung, im Einklang mit früheren Ergebnissen (Brazier-Hicks et al., 2008), zum Vorschein.

Die **Chlorthalonil-GS-Metabolite** wurden in den angezeigten Hefezellkulturen nach Belastung mit 1 μ M TPN für 1 h detektiert (Abb. 43). Die exakten Massen, Fehlerberechnungen und Intensitäten sind dem Anhang zu entnehmen (siehe Anhang viii). Aufgrund der nachweisbaren zweifach S-Glutathionylierung von TPN - das TPN-(GS)₂-Konjugat wurde zudem als Hauptmetabolit nach 1 h *in vivo* quantifiziert (siehe 3.2.3) - wurden 15 mögliche GS-Metabolite erwartet (Abb. 41A) und 12 von ihnen detektiert (Abb. 43). Erneut konnten weder das TPN-CysGly-Konjugat, noch das TPN-(CysGly)₂-Konjugat nachgewiesen werden (Abb. 43). Desweiteren war das TPN-(γ -GluCys)₂-Konjugat unter angegeben Bedingungen nicht nachweisbar. Kinetisch ließ sich folglich ein sehr schneller Abbau des TPN-(GS)₂-Konjugates nach 1 h nachweisen. Alle weiteren 12 GS-Metabolite wurden in Summe einmal durch Expression der *At*GSTU25 in der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ nachgewiesen (Abb. 43). Diese hohe metabolische Aktivität in Hefe, ausgelöst durch die Expression dieser *At*GST25, steht in sehr guter Übereinstimmung mit der höchsten hier nachgewiesenen Konzentration des TPN-(GS)₂-Konjugates aller getesteten

Arabidopsis GSTs (Abb. 39B).

Generell verursachte die Expression der *Arabidopsis* GSTF11, U15 und U25 unter Belastung mit TPN erhebliche Störungen im metabolischen Fluss verglichen mit dem WT BY4741 und der multiplen Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ (Abb. 43). Zunächst zeigten, mit Ausnahme der exprimierten GSTU25, der WT BY4741, die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ und GSTF11 und GSTU15 vergleichbare Intensitäten des TPN-GS-Konjugates (Abb. 43). GSTU25 zeigte hier die geringste Intensität. Jedoch wies GSTU25 zusammen mit dem WT BY4741 die höchsten Intensitäten des TPN-(GS)₂-Konjugates auf. Hier war die S-Glutathionylierung durch die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ um Faktor 10 in der Intensität verringert (Abb. 43). Darüber hinaus konnte anhand des Isotopenmusters von ³⁵Cl und ³⁷Cl eindeutig das monothiolische Cys-TPN-SH und das dithiolische TPN-(SH)₂ in Abweichungen < 0,5 ppm nachgewiesen werden (Abb. 43) (Anm.: Der Autor war sich bewusst, dass die dargestellten Strukturformeln in Abb. 43 nur eine Möglichkeit darstellten. Die exakte Bestimmung der Struktur- und Konstitutionsisomere mittels ¹H-NMR-Spektroskopie war nicht Inhalt dieses primär *non-targeted approaches*. Dies trifft auch auf Abb. 44 im Folgenden zu.):

Monoisotop	neutral	Ladung	gemessen*	theoretisch	[ppm]	Intensität
C-TPN-SH	$C_{11}H_7Cl_2N_3O_2S_2$	-1	345,92840	345,92840	0,00	3,69E+07
$[^{13}C_1]$ -C-TPN-SH	$C_{11}H_7Cl_2N_3O_2S_2$	-1	346,93186	346,93169	0,48	4,71E+06
$[^{37}Cl_1]$ -C-TPN-SH	$\mathrm{C}_{11}\mathrm{H}_{7}\mathrm{Cl}_{2}\mathrm{N}_{3}\mathrm{O}_{2}\mathrm{S}_{2}$	-1	347,92552	347,92544	0,21	2,40E+07
Monoisotop	neutral	Ladung	gemessen*	theoretisch	[ppm]	Intensität
HS-TPN-SH	$C_8H_2Cl_2N_2S_2$	-1	258,89642	258,89637	0,18	5,62E+06
$[^{37}Cl_1]$ -HS-TPN-SH	$C_8H_2Cl_2N_2S_2$	-1	260,89338	260,89339	-0,02	6,19E+06

* Die gemessenen monoisotopischen Massen beziehen sich auf die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$, in der *At*GSTU25 heterolog unter Belastung mit 1 µM TPN bei 30 °C für 1 h exprimiert wurde.

Die detektierten Intensitäten der **Anilazin-GS-Metabolite** zeigten deutlich, dass hier ein langsamerer Abbau nach 1 h im Vergleich zu TPN stattfand (Abb. 43). Hier wurden generell weniger niedermolekulare Pestizid-GS-Katabolite nach 1 h detektiert als nach Belastung mit 1 μ M TPN (Abb. 43). Die angezeigten Hefezellkulturen wurden nach Belastung mit 1 μ M AZ für 1 h metabolisch untersucht. Die exakten Massen, Fehlerberechnungen und Intensitäten sind dem Anhang zu entnehmen (siehe Anhang ix und x). Aufgrund der nachweisbaren zweifach S-Glutathionylierung von AZ wurden 15 mögliche GS-Metabolite erwartet (Abb. 41B) und 13 von ihnen detektiert (Abb. 44). 37 der 41 klonierten *Arabidopsis* GSTs wurden analysiert. Die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ wies eine niedrigere AZ-GS-Konjugat nachweisbar. Das γ -ECG-AZ-C war nur in den multiplen Mutanten $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$, die jeweils GSTF4 und GSTU25, exprimierten, nachweisbar. Das AZ-(γ -GluCys)₂-Konjugat wurde nur bei GSTF8 und GSTU3 nachgewiesen (siehe Anhang ix und x).

Im Gegensatz zu beiden Herbizidsafenern FC, BX und dem Fungizid TPN wurde bei AZ in keiner der insgesamt 39 analysierten Proben der monothiolische und dithiolische Metabolit von AZ nachgewiesen. Jedoch konnten hier das AZ-(CysGly)₂-Konjugat, das Cys-AZ-CysGly und das AZ-CysGly-Konjugat im Unterschied zu FC, BX bzw. TPN (Abb. 41 und 42) nachgewiesen werden (Abb. 44).

GSTF10 sowie GSTU5, U6, U13, U18 und GSTT2 wiesen nach 1 h die höchsten Intensitäten des AZ-GS-Konjugates und GSTF10 die höchste Intensität des AZ-(GS)₂-Konjugat auf. Dieses Ergebnis war in guter Übereinstimmung mit den *in vivo* Daten der Quantifizierung (Abb. 39A). Desweiteren ließ sich bei GSTF2, F3, F4, F6 und F8-10 ein bereits deutlich fortgeschrittener Abbau zu niedermolekularen GS-Metaboliten nachweisen (Abb. 44). In diesem Zusammenhang zeigte die phi-Klasse eine sehr hohe Anilazin-GS-Konjugat Konzentrationen nach 30 Minuten *in vivo* auf (Abb. 39A). GSTU8, U13 U17-18 und U25 als Vertreter der tau-Klasse wiesen einen ähnlichen intensiven Abbau nach 1 h wie die oben benannten GSTs der phi-Klasse auf.

4 Diskussion

Das Ziel dieser Arbeit war es, einen GST-abhängigen Phänotyp in der Bäckerhefe *S. cerevisiae* herzustellen als eine Grundlage für die funktionale Charakterisierung der *Arabidopsis* GSTs *in vivo*. Obwohl Hefe ein einzelliges eukaryotisches Modelsystem ist, liegt in Bezug auf GSTs eine komplexe Matrix vor. Mit 16 multiplen Hefemutanten, die alleine in dieser Arbeit im Hinblick auf ihre GST-Aktivität charakterisiert wurden (siehe 3.1), war eine Vielzahl an Gendeletionen mit GRXs und GSTs nötig, um mit der Quintupelmutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ einen GSTabhängigen Phänotyp zu finden. Danach konnten die *Arabidopsis* GSTs erfolgreich in dieser Hefemutante exprimiert und hinsichtlich ihrer Entgiftungsfunktion charakterisiert werden.

4.1 Die Proteinfamilie der Glutathion-S-Transferasen in der Hefe S. cerevisiae

Aufgrund der evolutionären Überlappung der GSTs mit GRXs innerhalb der TRX-Superfamilie (Frova, 2006), liegt in S. cerevisiae mit acht GRXs und neun GSTs bzw. GST-ähnlichen Proteinen ein ausdifferenziertes System an GSH-abhängigen Proteinen vor (Abb. 14B und 14C). Alle 17 Proteine sind an einer Vielzahl an endogenen Funktionen innerhalb des Schwefel- und Glutathionmetabolismus beteiligt (siehe 1.2.1). Stellt man die 53 GSTs in A. thaliana den neun GSTs in S. cerevisiae phylogenetisch gegenüber, so sind die Hefe-GSTs weitaus weniger miteinander verwandt (Abb. 14C und Abb. 16). Dies zeigt sich besonders deutlich bei Gtt1p und Gtt2p, die, wie auch in dieser Arbeit gezeigt (Abb. 22), CDNB- bzw. NBD-Cl-aktiv sind (Choi et al., 1998, Ma et al., 2009), aber keine der drei Aminosäuren Ser, Cys und Tyr in ihrer N-terminalen Domäne (Abb. 14A und Abb. 17) für die Koordinierung von GSH besitzen. Zudem ist zwischen diesen beiden GSTs der phylogenetische Abstand besonders groß (Abb. 14C). Enzymatisch manifestiert sich diese phylogenetische "Heterogenität" in einem breiten Funktionsspektrum. Für die enzymatische Entgiftungsfunktion von Xenobiotika in Hefe mussten folglich mit Grx1p und Grx2p auch zwei dithiolische GRXs, die CDNB-aktiv sind (Collinson et al., 2002, Collinson and Grant, 2003), berücksichtigt und mit Grx6p ein monothiolischer Vertreter, der NBD-Cl-aktiv ist (Luo et al., 2010), mit ins Kalkül bezogen werden.

Bei den durchgeführten Deletionsversuchen in Hefe wurden zwei Gesichtspunkte berücksichtigt. Zum einen sollten die Deletionsmutanten mit den Genen *GTT1*, *GTT2*, *GRX1*, *GRX2* und *TEF4* (Abb. 22) eine mögliche Kombination für die Charakterisierung der xenobiotischen Entgiftungsfunktionen bereitstellen. Zum anderen sollten multiple Mutanten insbesondere mit dem Genverlust von *GTO1-3* (Abb. 21) bei der funktionalen Charakterisierung der *Arabidopsis* GSTs ggf. auch den endogenen Schwefel- und Glutathionmetabolismus mit einschließen.

Die Deletion der Gene GTO1-3 führte in der Mutante $\Delta gto1 \Delta gto2 \Delta gto3$ zu einer Reduktion der CDNB-Aktivität um ~25 % verglichen mit dem WT BY4742 (Abb. 21), obwohl keine der drei omega-GSTs rekombinant CDNB glutathionyliert (Garcera et al., 2006). Es konnten über MS-Analyse keine signifikanten Veränderungen im GSH-Level detektiert werden (Daten nicht gezeigt), was möglicherweise einen Einfluss auf die S-Glutathionylierung haben könnte (Garcera et al., 2006). Darüber hinaus zeigte der Wachstumsversuch mit WT BY4741 (Abb. 22), dass eine Belastung mit 200 µM CDNB wie bei WT W303-1A (Baretto et al. 2006) nicht möglich war. Gto1p, Gto2p und Gto3p katalysieren aber die Konjugation mit Ethacrynsäure (EA) (Abb. 10) (Garcera et al., 2006). Allerdings zeigten bei den eigenen Wachstumsversuchen weder $\Delta gto I$, $\Delta gto2, \Delta gto3, \Delta gto1 \Delta gto2, \Delta gto1 \Delta gto3, noch \Delta gto1 \Delta gto2 \Delta gto3 eine erhöhte Sensitivität gegen$ über EA (Daten nicht gezeigt). In diesem Falle lag ein erheblicher Unterschied zwischen der in vitro Analyse rekombinanter Proteine und der eigentlichen Toxikodynamik im lebenden Organismus vor. Dies unterstreicht den Ansatz, die Arabidopsis GSTs mittels Expression in Hefe als eukaryotischen Organismus in vivo zu charakterisieren. Zudem war es auffällig, dass die weiteren Deletionen von GTT1 und GTT2 in diesem omega-GST-defizienten Hefestamm keine nennenswerten Veränderungen in der CDNB-Aktivität verursachten (Abb. 21). Eine mögliche Begründung liegt darin, dass in der multiplen Mutante $\Delta gto 1 \Delta gto 2 \Delta gto 3 \Delta rod 1 \Delta gtt 1 \Delta gtt 2$ die Proteine Tef3p, Tef4p, Grx1p, Grx2p und Grx6p redundante Effekte bei der Entgiftung auslösen könnten. Redundante Funktionen von GSTs in GST-defizienten Arabidopsis Mutanten sind bekannt (Ülker et al., 2008, Sappl et al., 2009). Da diese multiple Hefemutante aber keinen Phänotyp auf Cadmium zeigte, wie dies bei $\Delta gto 1 \Delta gto 2 \Delta gto 3 \Delta gtt 1 \Delta gtt 2$ der Fall ist (Barreto et al., 2006), wird vermutet, dass möglicherweise ABC-Transporter das CDNB-Molekül, ähnlich wie die ABC-Transporter Pca1p bzw. Zrc1p bei Cadmium (Wysocki and Tamas, 2010), direkt und ohne Modifikationen aus der Zelle ausschleusen bzw. direkt in die Vakuole transportieren. Auf regulatorischer Ebene der ABC-Transporter könnten hier Transkriptionsfaktoren der PDR-Reihe (Pleiotropic Drug Resistance) maßgeblichen Einfluss haben (siehe 4.3). Den aussagekräftigsten Hinweis auf eine mögliche Alternative zur GST/GSH-abhängige Entgiftung in vivo gab die multiple Mutante $\Delta gto 1 \Delta gto 2 \Delta gto 3 \Delta rod 1 \Delta gtt 1 \Delta tef 4$. Es ist bemerkenswert, dass die Deletion von TEF4 alleine eine Reduktion der CDNB-Aktivität von zusätzlich ~50 % in dieser Mutante auslöste (Abb. 21). Gleichzeitig bewirkte aber die um ~80 % geminderte GST-Aktivität dieser multiplen Mutante im Vergleich zum WT BY4742 keine erhöhte Sensitivität gegenüber CDNB (Daten nicht gezeigt).

Ist der eukaryotic translation elongation factor eEF1By Tef4p von S. cerevisiae in vivo das Schlüsselenzym für die Entgiftung des GST-Standardsubstrates CDNB?

Bei der enzymatischen Charakterisierung der Deletionsmutanten mit GTT1, GTT2, GRX1, GRX2 und TEF4 (Abb. 22) ist auffällig, dass unabhängig vom genetischen Hefehintergrund die Deletion des eukaryotic translation elongation factor eEF1By, in S. cerevisiae kodiert von TEF3 und TEF4, maßgeblich für die Reduktion der GST-Aktivität gegenüber CDNB verantwortlich ist (Abb. 22A). Tef4p bildet eigentlich die γ-Untereinheit des eEF1B-Komplexes und übernimmt die Regulation des eEF1A-Komplexes (Tef1p/Tef2p) an den Ribosomen (Jeppesen et al., 2003). Die zweite Isoform Tef3p besitzt ein Arg11 im Gegensatz zu Ser11 bei Tef4p (Abb. 15B), und ist katalytisch inaktiv gegenüber CDNB (Abb. 22A). Dies zeigt die Bedeutung der Aminosäurereste Ser, Cys, Tyr für die Koordinierung von GSH in der "G-Seite". Interessanterweise zeigte aber $\Delta tef4$ keine reduzierte Aktivität gegenüber NBD-Cl (Abb. 22B). Hier scheint also die "H-Seite" und damit ein substratspezifischer Effekt von Tef4p auf CDNB ausschlaggebend zu sein. Einen Hinweis auf einen Elongationsfaktor, der funktional aktiv als GST ist, ist in O. sativa zu finden. Hier wurde sowohl mit dem rekombinanten Monomer EF-y, als auch mit dem nativen Komplex EF-1 $\beta\beta^{\gamma}\gamma$ eine enzymatische S-Glutathionylierung von CDNB nachgewiesen (Kobayashi et al. 2001). Möglicherweise kommt Tef4p bei der ribosomalen Proteinbiosynthese auch eine zusätzliche Schutzfunktion vor Toxinen zu, ähnlich wie dies kürzlich für Katalasen und GPOXs als aktive Schutzenzyme der nuklearen DNA gezeigt wurde (Fabrini et al., 2010). Darüber hinaus kann der CDNB-Phänotyp von $\Delta tef4$ und $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ mit der Arabidopsis GSTF8 und U19 komplementiert werden (Abb. 26). Dies unterstreicht eine mögliche Doppelfunktion und hier die eines ribosomalen Schutzes vor Toxinen durch Tef4p in vivo. Desweiteren wird der Cofaktor von Tef4p, nämlich GSH, nicht ribosomal, sondern im Zytosol bzw. gegebenenfalls in den Chloroplasten synthetisiert (siehe 1.2.1). Bei einem ribosomalen Angriff des Toxins, der gegebenenfalls eine Inhibierung der Proteinbiosynthese zur Folge hätte, wären die Glutathionbiosynthese (Abb. 13A) und damit die Toxinentgiftung in Phase II (Abb. 5) nicht zwangsläufig gefährdet. Damit scheint dem Elongationsfaktor Tef4p in S. cerevisiae eine zentrale Position in der Entgiftung von Xenobiotika zu zukommen. Im Gegensatz dazu scheinen GTT1, GTT2, GRX1 und GRX2 eine untergeordnete Rolle bei der Entgiftung von CDNB zu spielen. Wider Erwarten zeigte die multiple Mutante $\Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$ lediglich eine Reduktion der CDNB-Aktivität um ~25 % verglichen mit dem WT BY4741 (Abb. 22A). In früheren Experimenten konnte eine Reduktion um ~75 % gezeigt werden (Collinson and Grant, 2003). In dieser Arbeit konnte nachgewiesen werden, dass der Einsatz von 75 µg Rohprotein zur Bestimmung der GST-Aktivität, wie früher beschrieben, aus analytischer Sicht zu einem Verlust der detektierbaren GST-Aktivität in

vitro führt. Bei 75 µg Proteineinsatz wurde an der analytischen Nachweisgrenze gemessen. Bei der Quantifizierung an der Nachweisgrenze können gemäß der Gauß'schen Normalverteilung 50 % der analysierten Werte, hier in Form des CDNB-GS-Konjugates bei $\lambda = 340$ nm (Habig et al., 1974), nicht mehr nachgewiesen werden. Erst der Einsatz der drei- bis vierfachen Menge an Rohprotein (im eigenen Ansatz 300 µg; siehe 2.4.3) ermöglicht eine zuverlässige quantitative Aussage über die GST-Aktivität. Hier befindet man sich analytisch an bzw. über der sog. Bestimmungsgrenze. Damit konnte der Unterschied zwischen den eigenen und früheren Ergebnissen analytisch erklärt werden. Die zusätzliche Deletion von TEF4 in der multiplen Mutante $\Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$ bewirkt eine Restaktivität der entsprechenden Quintupelmutante von ~25 % verglichen mit dem WT BY4741 (Abb. 22A). Damit hat diese Mutante eine signifikant niedrigere GST-Aktivität in vitro. Zudem korreliert das in vitro Ergebnis mit dem Wachstumsversuch (Abb. 23). Bei einer Belastung des WT BY4741 und der Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ mit 30 µM CDNB zeigte die Mutante bereits eine Wachstumsinhibierung von über 50 % verglichen zum Kontrollansatz (Abb. 23B). Der WT BY4741 zeigt hingegen nur eine geringe Inhibierung von 20 %. Zur Visualisierung dieser Wachstumsunterschiede wurden der Spottversuch mit 60 µM CDNB durchgeführt (Abb. 23C und 23D). Hier weist bereits der WT BY4741 eine Wachstumsinhibierung von ~60 % auf. Die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ weist hier nur noch ein marginales Wachstum nach fünftägiger Inkubation bei 30 °C auf. Damit zeigt die Quintupelmutante den gesuchten GST-abhängigen Phänotyp auf CDNB. Die Aussagekraft dieses Experimentansatzes wird bei der Komplementation des Phänotyps durch die Arabidopsis GSTF8 und U19 unter den gleichen Rahmenbedingungen unterstrichen (Abb. 26).

Abschließend sei angemerkt, dass die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ auch die geringste GST-Aktivität gegenüber dem zweiten Standardsubstrat NBD-Cl aufweist (Abb. 22B). Hier weist die Quadrupelmutante $\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ eine deutliche Reduktion von ~70 % in ihrer NBD-Cl-Aktivität auf. Die Deletion von *GTT2* scheint entscheidend gewesen zu sein und stimmt mit früheren Ergebnissen überein (Ma et al. 2009). Der Beitrag durch die Deletion von *TEF4* in diesem Hintergrund ist marginal verglichen mit der Reduktion in der CDNB-Aktivität (Abb. 22A). Daran lässt sich sehr gut erkennen, dass selbst bei der Auswahl der GST-Standardsubstrate darauf zu achten ist, eine Hefematrix zu verwenden, die bei strukturell unterschiedlichen Xenobiotika einen analytischen Readout ermöglicht. Die Einfachmutante $\Delta tef4$ ermöglichte bei NBD-Cl keine Aussage über die GST-Aktivität (Abb. 22B). Da bereits die multiple Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ nur noch ~15 % Restaktivität gegenüber NBD-Cl verglichen mit dem WT BY4741 aufwies (Abb. 22B), wurde auf eine weitere Deletion von *GRX6*, die ebenfalls NBD-Cl-Aktivität aufweist (Luo et al., 2010), in diesem genetischen Hintergrund verzichtet. Es sollte eine vergleichbare Vitalität der Mutante mit dem WT BY4741 gewährleistet bleiben (Abb. 23A). Daher wurde für die Komplementationsanalyse im Folgenden die Quintupelmutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ als die am besten geeignete Hefematrix zur funktionalen Charakterisierung der *Arabidopsis* GSTs eingestuft.

Interagieren Proteine des GST-abhängigen Metabolismus in Hefe mit der Arabidopsis GSTF14?

Zu Beginn dieses Kapitels wurde darauf verwiesen, dass *S. cerevisiae* in seinem GST-abhängigen Metabolismus mit acht GRXs und neun GSTs bzw. GST-ähnlichen Proteinen (Abb. 14B und 14C) ein komplexes eukaryotisches Netzwerk aus 17 Proteinen aufweist. Bevor nun im nachfolgenden Kapitel die pflanzlichen Funktionen der *Arabidopsis* GSTs im Ganzen behandelt werden, soll hier das vorliegende Ergebnis zu *Arabidopsis* GSTF14 gesondert diskutiert werden. An diesem Punkt der Arbeit wird die Frage aufgeworfen, ob das für die Charakterisierung von pflanzlichen GSTs entwickelte heterologe Testsystem über die Komplementation direkter Entgiftungsfunktionen (siehe 4.2) hinaus auch mögliche Komplementationen weiterer GST-abhängiger Hefefunktionen bereitstellt.

In dieser Arbeit wurde erstmalig die vollkommen unbeschriebene Arabidopsis GSTF14 funktional in vivo charakterisiert. Ausgangspunkt dieser Fragestellung ist die Tatsache, dass durch heterologe Expression der Arabidopsis GSTF14 in der Hefemutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ eine S-Glutathionylierung des Fungizids Anilazin nachgewiesen wurde (Abb. 39A). Die Besonderheit liegt darin, dass GSTF14 wie GSTF11 und 12 kein Serin in erwarteter Position 11 aufweisen (Abb. 17). Daraus wurde bisher (Dixon and Edwards, 2010a) geschlossen, dass GSTF14 aufgrund dieses fehlenden, aber zur GSH-Koordinierung notwendigen Serinrestes in der "G-Seite", keine klassischen GST-Reaktionen (Abb. 11A) katalysieren sollte. In dieser Arbeit wurde die Bedeutung dieses Serinrestes unterstrichen. ScTef3p mit Arg11 wies im Gegensatz zu ScTef4p mit Ser11 keine S-Glutathionylierung des GST-Standardsubstrates CDNB auf (Abb. 22A). Im Falle von GSTF12 wurde eine mögliche Ligandenfunktion für Anthocyane und Proanthocyanidine in planta in Betracht gezogen (Kitamura et al., 2004, Kitamura et al., 2010). In dieser Arbeit lag aber der gemessene Wert der S-Glutathionylierung von Anilazin bei Expression der AtGSTF14 mit 11.9 ± 3.5 nmol/10⁹ Zellen um das fünffache über dem Wert der heterologen Testmatrix mit $2,4 \pm 0,3$ nmol/10⁹ Zellen (Abb. 39A). Es stellt sich die Frage, ob in diesem besonderen Fall eine tatsächliche enzymatische S-Glutathionylierung nachgewiesen wurde oder ob eine mögliche Interaktion mit endogenen Hefeproteinen diese S-Glutathionylierung bewirken könnte.

Die Datenbankrecherche mittels STRING (Szklarczyk et al., 2011) (<u>http://string-db.org</u>) hinsichtlich GSTs und GST-ähnliche Proteine in *S. cerevisiae* stellt Daten zu Coexpressionen und Protein-Protein-Interaktionen (funktional und/oder physikalisch) bereit (Abb. 45A). Betrachtet man nun

die in der Hefemutante $\Delta tef 4 \Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$ deletierten Gene GTT1, GTT2, GRX1, GRX2 und TEF4, so interagieren in S. cerevisiae die beiden dithiolischen GRXs Grx1p und Grx2p als Monomere mit dem Thioredoxin Trx2p (Draculic et al., 2000, Vignols et al., 2005). Trx2p interagiert (Izawa et al., 1999) wiederum mit dem Transkriptionsfaktor Yap1p, der in Hefe den ABC-Transporter Ycflp bei der Entgiftung von Cadmium reguliert (Abb. 7). Desweitern interagieren Gtt1p und Gtt2p funktional miteinander und sind zudem in der Lage Homodimere zu bilden (Choi et al., 1998). Eine Heterodimerisierung konnte nicht nachgewiesen werden. Es ist aber bekannt, dass phylogenetisch sehr nah verwandte pflanzliche GSTs Heterodimere ausbilden können. In Zea mays wurde eine Heterodimerisierung innerhalb der Typ III GSTs (tau-Klasse) zwischen den Untereinheiten V und VI in planta nachgewiesen (Dixon et al., 1998). Die heterologe Expression der Untereinheiten von ZmGST V und VII mittels Tandemvektorsystem in E. coli zeigte ebenfalls eine Heterodimerisierung (Dixon et al., 1999). Darüber hinaus wurde das Heterodimer zwischen den Untereinheiten der Arabidopsis GSTF7 und F10 in planta nachgewiesen (Dixon et al., 2005). Folglich liegt die Vermutung nahe, dass die S-Glutathionylierung von Anilazin durch AtGSTF14 trotz fehlendem Serinrestes auf eine mögliche Heterodimerisierung mit endogenen Hefe-GSTs in vivo zurückzuführen sein könnte. GTO2 wird zudem mit GTT1 coexprimiert (Abb. 45A). Aufgrund dieser Datenlage wäre es also denkbar, dass die exprimierte AtGSTF14 die Funktion von Gtt1p bei einer möglichen Coexpression mit GTO2 komplementierte. Die anschließende Dimerisierung zwischen beiden Untereinheiten könnte die S-Glutathionylierung von Anilazin bei

Expression von AtGSTF14 erklären. Vergleicht man in diesem Zusammenhang die Polypeptidsequenzen von AtGSTF7 und F10, die nachweislich heterodimerisieren, in der Datenbank NCBI mittels BLAST[®] (http://www.ncbi.nlm.nih.gov/), dann sind 39 % beider Polypeptidsequenzen über eine Länge von 200 Aminosäuren identisch, 60 % weisen sehr ähnliche Aminosäuren (u.a. Leu \rightarrow Ile u.Ä.) auf und nur 1 % ist lückenhaft. Der Vergleich der Polypeptidsequenzen kodiert von *GTO2* und *At*GSTF14 ermöglicht keine Aussage. Das liegt darin begründet, dass GSTs der omega-Klasse mit ihrem N-terminalen Cysteinrest in der "G-Seite" mehr der DHAR- und lambda-Klasse (Abb. 17) und *At*GSTF14 eher dem Serintyp und damit der phi- und tau-Klasse der *Arabidopsis* GSTs gleichen (Abb. 17). Folglich scheint aufgrund dieser phylogenetischen Distanz eine Heterodimerisierung zwischen GSTs der endogenen omega- und heterolog exprimierten phi-Klasse in der Hefemutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ sehr unwahrscheinlich zu sein.

Stellt man aber die Frage, welche Polypeptidsequenzen der deletierten Gene in der Quintupelmutante $\Delta tef 4 \Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$ die größte Übereinstimmung mit der Arabidopsis GSTF14 aufweisen, dann ist dies eindeutig Gtt2p (Saccharomyces Genome Database, SGD, http://www. yeastgenome.org/). 27 % beider Polypeptidsequenzen sind über eine Länge von 186 Aminosäuren identisch, 45 % weisen sehr ähnliche Aminosäuren (u.a. Asn \rightarrow Asp u.Ä.) auf und 10 % sind lückenhaft (BLAST[®]). Aufgrund der Deletion von GTT2 scheidet eine mögliche Heterodimerisierung aus. GTT2 wird aber mit GTO1 coexprimiert (Abb. 45A). Auffällig sind zudem 17 Aminosäuren in der C-terminalen Region beider Proteine (Abb. 45B). Die Datenbank-Plattform ExPaSy (http://expasy.org/) mit seiner Datenbank PROSITE gibt einen Hinweis auf mögliche Phosphorylierungsseiten bei Tyr159 und Ser166 (AtGSTF14) bzw. Tyr175 und Ser182 (ScGTT2). Keine weitere Arabidopsis GST stimmt mehr an dieser Stelle mit ScGtt2p überein als AtGSTF14. Sucht man anhand der 17 Aminosäuren von ScGtt2p in der Datenbank TAIR (http://www.arabidopsis. org/), dann erhält man als einzigen Hinweis AtGSTF14. Die Datenbank PhosPhAt (Durek et al., 2010) (http://phosphat.mpimp-golm.mpg.de/) gibt bis dato keinen Eintrag auf eine experimentell nachgewiesene Phosphorylierung von AtGSTF14. Eine derartige post-translationale Modifikation ist aber für AtGSTF8 (C-terminal zwischen Leu190 und Arg200) und F9 (N-terminal zwischen Val5 und Lys14) massenspektrometrisch erfasst.

Die Datenbanken STRING und SGD geben einen Hinweis darauf, dass in *S. cerevisiae* Gtt2p physikalisch mit der anorganischen Pyrophosphatase 1 (IPP1; EC 3.6.1.1), einer sog. Protonengradienten abhängigen (H⁺)-PPase, interagiert (Krogan et al., 2006). *IPP1* (YBR011C) interagiert ihrerseits mit *PPA1* (Salminen et al., 2002, Gavin et al., 2002, Gavin et al., 2006). In der Literatur wurde *PPA1* z.T. synonym für *IPP1* und *VMA16* (YHR028W) verwendet (SGD). *VMA16* kodiert für die c"-Untereinheit der proteolipidischen V₀-Domäne der vakuolären, membranintegrierten (H⁺)-ATPase in Hefe. Der vakuoläre Typ der (H⁺)-ATPase (V-ATPase, VHA) ist eine hochkomplexe Proteinmaschinerie (Schumacher and Krebs, 2010), die neben ABC-Transportern und Aquaporinen an Transmembran-Transporten und damit bei Kompartimentierungen zahlreicher Metabolite (Martinoia et al., 2007) beteiligt ist. Die V₁-Domäne der V-ATPase hydrolysiert ATP zu Pyrophosphat. Dieses Pyrophosphat kann dann z.B. zytosolisch durch eine (H⁺)-PPase, in Hefe kodiert durch IPP1, gespalten werden. Diese endotherme Reaktion bewirkt eine Änderung im Membranpotenzial und wird dann durch die c"-Untereinheit der V-ATPase in der Vo-Domäne dazu verwendet, Protonen in die Vakuole zu schleusen (Schumacher and Krebs, 2010). Möglicherweise könnte in diesem Prozess AtGSTF14 ähnlich wie schon früher für AtGSTF2 und F12 gezeigt (Smith et al., 2003, Kitamura et al., 2010, Kitamura et al., 2004) eine Ligandenfunktion beim Transport des endogen gebildeten GS-Konjugates in die Vakuole übernehmen. Erst kürzlich zeigten Untersuchungen zu biotischem Stress in Arabidopsis, dass die pflanzliche Kälteakklimatisierung eine erhöhte Abundanz der V-ATPase auslöst (Schulze et al., 2011). Diese pH-Wertänderung in der Vakuole geht einher mit einem verstärkten Transport von Dicarbonsäuren in die Vakuole. Davon ausgehend, dass das in Hefe gebildete Anilazin-GS-Konjugat funktional eine Dicarbonsäure ist (Abb. 41B), wäre es denkbar, dass es als solche über ABC-Transporter verstärkt in die Vakuole geschleust wird und somit die endogene S-Glutathionylierung von Anilazin metabolisch hochreguliert. In Bezug auf den vakuolären Transport von Xenobiotika in S. cerevisiae wird vermutet, dass bei der Entgiftung von Cd(GS), (Abb. 7) Gtt2p mit der y-Glutamyltranspeptidase Cis2p einen Cd-Komplex bildet, um so Cd²⁺ über den ABC-Transporter Ycf1p in die Vakuole zu schleusen (Adamis et al., 2009). Darüber hinaus wurde erst kürzlich in Cucumis sativus bei der Entgiftung von Cd²⁺ gezeigt, dass die Abtrennung und der Transport von Cadmium in den Tonoplasten und/oder die Vakuole aktiv auch über eine Protonengradienten abhängige (H⁺)-ATPase erfolgen kann (Migocka et al., 2011). Die Einfachmutante von S. cerevisiae, der VMA16 als wichtige Untereinheit der (H⁺)-ATPase fehlt, zeigt z.B. eine erhöhte Sensitivität gegenüber dem GS-Konjugat der Phenylarsensäure 4-(N-(S-Glutathionylacetyl)amino-Phenylarsensäure (GSAO) (Dilda et al., 2005). GSAO ist ein Inhibitor der Angiogenese und kann in den Epithelzellen wiederum über eine γ -Glutamyltranspeptidase abgebaut werden (Dilda et al., 2008). Es ist also nicht auszuschließen, dass die ermittelte S-Glutathionylierung von Anilazin bei Expression der AtGSTF14 in der Hefemutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ möglicherweise indirekt eine erhöhte Bildung des GS-Konjugates bewirkt. In diesem Fall hätte man über das heterologe Testsystem keine direkte enzymatische Entgiftungsfunktion durch AtGSTF14 nachgewiesen, sondern ihre mögliche Rolle in einem interagierenden Netzwerk erfasst.

Eine abschließende Überlegung, welche die S-Glutathionylierung von Anilazin durch die heterolog exprimierte *At*GSTF14 zudem erklären könnte, basiert auf einer weiteren post-translationalen Modifikation von *At*GSTF14. *At*GSTF14 lässt zwar ein Ser11 vermissen, besitzt aber N-terminal ein Cys10 (Abb. 46A). Es ist bekannt, dass die DHAR- und lambda-Klasse aus Arabidopsis unter oxidativen Stressbedingungen in ihren jeweiligen N-terminalen Cysteinresten glutathionyliert werden können (Dixon and Edwards, 2010b). Beide GST-Klassen sind aktive Thioltransferasen und besitzen daher Oxidoreduktase-Aktivität gegenüber Disulfiden (Abb. 10A). Diese Protein-S-SG Modifikation aktiviert AtGSTL1 dahingehend, dass es das Flavonoid Quercitin (Abb.11B) als Ligand binden kann (Dixon and Edwards, 2010b). Die so aktivierte AtGSTL1 glutathionyliert als Thioltransferase Quercitin zum entsprechenden GS-Konjugat und liegt selbst wieder in der deglutathionylierten Form des Protein-SH vor. Möglicherweise basiert die S-Glutathionylierung von Anilazin durch AtGSTF14 auf diesem katalytischen Mechanismus. In S. cerevisiae wurde nachgewiesen, dass die beiden Thioredoxine TRX1 und TRX2 primär für die Deglutathionylierung von Proteinen verantwortlich sind (Greetham et al., 2010). GRX1 und GRX2 spielen hier eine untergeordnete Rolle. Möglicherweise kann eine in Hefe endogen glutathionylierte und so aktivierte AtGSTF14 Anilazin als Ligand binden. Bei der reduktiven Deglutathionylierung durch Trx2p entsteht dann das entsprechende GS-Konjugat (Abb. 46B). Trx2p interagiert funktional mit Grx1p, Grx2p und dem Transkriptionsfaktor Yap1p (Abb. 45A). In der Hefemutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ sind beide dithiolischen GRXs deletiert. Möglicherweise führt die heterologe Überexpression der *At*GSTF14 hier zu einer verstärkten (De-)Glutathionylierung und so aktivierten AtGSTF14 durch Trx2p, die letztlich zur Bildung des Anilazin-GS-Konjugates führt (Abb. 46B). Unterstützt wird diese Überlegung durch eine ebenfalls nachgewiesene

S-Glutathionylierung von Anilazin durch *At*GSTF11 (Abb. 39A). *At*GSTF11 weist zwar weder einen Ser11, noch ein Cys10 auf (Abb. 17). Der Vergleich der Polypeptidsequenzen von *At*GSTF11, F12 und F14 zeigt aber im Unterschied zu allen anderen GSTs der *Arabidopsis* phi-Klasse einen konservierten Cysteinrest in Postion 20 bzw. 22 auf (Abb. 17). Der zuvor beschriebene katalytische Mechanismus an Cys20 von *At*GSTF11 würde zudem erklären, warum bei Überexpression der *At*GSTF11 alle erfassten Anilazin-GS-Metabolite nach Belastung mit Anilazin für 1 h (Abb. 44) deutlich höhere Intensitäten verglichen mit der Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ aufweisen. Bei Expression der *At*GSTF11 wies das Anilazin-GS-Konjugat die fünffache Intensität im Vergleich zur Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ auf (siehe Anhang ix und x). Desweiteren wurde hier im Gegensatz zur Mutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ das Anilazin-GS-Konjugat eine höhere Ligandenaffinität als Anilazin. Diese mögliche post-translationale Modifikation und funktionale Interaktion zwischen *Sc*Trx2p und *At*GSTF11 und *At*GSTF14 könnte also die detektierten Anilazin-GS-Konjugat bei beiden phi-Klassen-GSTs erklären.

Beide Überlegungen zur S-Glutathionylierung von Anilazin durch die *Arabidopsis* GSTF14 in der Hefemutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ zeigen die Möglichkeiten auf, die das in dieser Arbeit entwickelte heterologe Testsystem bietet. So können mittels *S. cerevisiae* als eukaryotischem Modelorganismus komplexe Fragestellungen in Bezug auf GST-abhängige Proteinfunktionen *in vivo* spezifisch an eine einzige *Arabidopsis* GST adressiert werden und auf diesem Wege ein möglicher Ringschluss *in planta* vollzogen werden. Die Bedeutung beider Überlegungen für die weiterführende Analytik wird unter 4.3 ausführlich behandelt.

	、 、	
	v SXX CX CX SXX SXX SXX SXX	
	E SELESSESSESSESSESSESSESSESSESSESSESSESSE	
:		
\$	``````````````````````````````````````	
COTES		
GOTE2		
GOTEC		
00110		
GSTF/		
GSTF8		
GSTF4		
GSTF5	0 - 0 0 - + 0 0 0 + +	
GSTF14	0 - 0 0 - 0 + +	
GSTF13	0 0 0 0 0 0 0 +	
GSTF9	+ + + 0 - 0 0 - 0 + - + - + + - +	
GSTF10	+ + + 0 - 0 0 - + + + + + - +	
GSTF11	0 0 0 0 0 0 0 - + 0 0 +	
GSTF12		
GSTU1	+ + + 0 - 0 0 - 0 + + + - +	
GSTU2		
GSTU4		
GSTU3		
GSTUS		
CSTUS		
GSTU/		
GSTU8		
GSTU9	+ + + 0 - 0 0 + 0 - 0 0 0 0	
GSTU10	+ + + 0 - 0 0 + 0 - 0 + + +	
GSTU11	+	
GSTU12	+ + - 0 - 0 0 - 0 - + + - + + +	
GSTU13	+ + + 0 - 0 0 + 0 - 0 + - + + + + +	
GSTU14	+ 0 - 0 - 0 - 0 - + + +	
GSTU15	0 0 0 0 - 0 0 - 0 - 0 +	
GSTU16	+ + + 0 - 0 0 + 0 - + - + 0 + + + -	
GSTU17	+ + + 0 - 0 0 + 0 + + + - + + - +	
GSTU18	+ + + 0 - 0 0 + 0 - + + + - + +	
GSTU19	+ + + + + + + + - 0 - + + + + + +	
GSTU21	+ + + 0 0 0 0 - 0 - 0 - 0 0 0 0 - 0	
GSTU24	+++0++0-0-0-+++- ++	
GSTU25	+ + + 0 - 0 0 + 0 - 0 + +	
GSTU20	$+ + + \circ - \circ \circ + \circ - + \circ \circ \circ + + + + + + + +$	
GSTU22		
GSTU23		
CSTU25		
GSTU20		
GSTU27		
GSIII		
GSTT2	+ - + 0 - 0 0 - + - + + +	
GSTT3	+ - + 0 - 0 0 - 0 - 0 0 0 + + -	
GSTL1	++	
GSTL2	+-	
GSTL3	++ +	
DHAR1	00-0-+00000000	
DHAR2	++	
DHAR3	+ +	

Abb. 47 Die pflanzlichen Funktionen der *Arabidopsis* GSTs. Übersicht über Substrate , Liganden, proteomische Abundanzen und Maxima organspezifischer Genexpressionen der *Arabidopsis* GSTs. Literatur: ¹Dixon et al., 2009; ²DeRidder et al., 2002; ³DeRidder et al., 2006; ⁴Brazier-Hicks et al., 2008; ⁵Skipsey et al., 2011; ⁶Dixon and Edwards, 2009; ⁷Smith et al., 2003; ⁸Kitamura et al., 2004, 2010; ⁹Dixon and Edwards, 2010b; ¹⁰Dueckersdorf et al., 2008; ¹¹Rya et al., 2009; ¹²Chua et al., 2010; ¹³Jiang et al., 2010; ¹⁴Perl-Treves et al., 2004; ¹⁵Jones et al., 2004; ¹⁶Hirai et al., 2005; ¹⁷Sønderby et al., 2010a; ¹⁸Sua et al., 2011; ¹⁹Sappl et al., 2009; ²⁰Dixon and Edwards, 2010a; ²¹Dixon et al., 2010; * Diese Arbeit. + Nachgewiesen bzw. assoziiert. - nicht nachgewiesen. \circ nicht analysiert.

4.2 Die Funktionen der Glutathion-S-Transferasen in Arabidopsis thaliana

Dieses Kapitel setzt sich nun mit den Funktionen der *Arabidopsis* GSTs hinsichtlich des xenound endobiotischen Stoffwechsels auseinander. Der aktuelle Forschungsstand (Abb. 47) im Bereich der *Arabidopsis* GSTs zeigt den Trend auf, dass den GSTs der phi-Klasse (Abb. 16) eine bedeutende Rolle im schwefelhaltigen Sekundärmetabolismus (Abb. 49) bei antimikrobiell-aktiven Substanzen (Abb. 50) zukommt. Anhand der Datenlage in dieser Arbeit zu den Substratspezifitäten der *Arabidopsis* GSTs gegenüber Fungiziden soll der aktuelle Forschungstrend (Dixon et al., 2010, Sønderby et al., 2010a, Cummins et al., 2011, Geu-Flores et al., 2011, Su et al., 2011, Dubreuil-Maurizi et al., 2011) im Folgenden diskutiert werden.

In dieser Arbeit wurden in vivo 41 der 53 Arabidopsis GSTs (Abb. 16) mittels des GST-defizienten Hefestammes $\Delta tef 4 \Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$ in S. cerevisiae auf ihre xenobiotischen Entgiftungsfunktionen untersucht. Dabei reichte das getestete Pestizidspektrum von Insektiziden über Herbizide, u.a. ACCase- und ALS-Inhibitoren (siehe 1.1.1) sowie Herbizidsafenern (Abb. 42), bis hin zu Fungiziden (Abb. 39, 40, 43, 44). Dabei wurden 23 Vertreter der tau-Klasse, 10 der phi-Klasse, drei der DHAR-Klasse, zwei der lambda-Klasse, zwei der theta-Klasse und zudem GSTZ1 in Hefe heterolog exprimiert, mit Pestiziden belastet und auf mögliche S-Glutathionylierungen massenspektrometrisch untersucht (siehe 2.5.6). So wurden in Summe Vertreter aus sechs der acht GST-Klassen in A. thaliana (siehe 1.2.3) getestet. Folglich ermöglichte das in dieser Arbeit entwickelte heterologe Testsystem einen umfassenden Blick auf eine Vielzahl von Pestizid- und pflanzlichen GST-Klassen. Diese Datensätze sind Ausgangspunkt der nachfolgenden Diskussion. Bis dato waren 21 der 53 Arabidopsis GSTs hinsichtlich ihrer enzymatischen Entgiftungsfunkionen weitestgehend unbeschrieben, namentlich GSTF4, 5, 11-14, GSTU1-6, U13-16, 18, 21-23 und 27 (Abb. 47). Abgesehen von GSTF5, F12, F13 und U21 waren alle weiteren 17 Vertreter unter den 41 Arabidopsis GSTs, die in dieser Arbeit charakterisiert wurden. Es wurden systematisch 41 GSTs auf die GST-Standardsubstrate CDNB und NBD-Cl (Habig et al., 1974, Ricci et al., 1994) (Abb. 38) und auf die zwei Fungizide Anilazin und Chlorthalonil (Abb. 39) untersucht. Dabei ist die ermittelte Substratspezifität der phi-Klasse gegenüber den beiden antimikrobiellaktiven Substanzen Anilazin und Chlorthalonil äußerst bemerkenswert (Abb. 47). Denn zunächst zeigte die phi-Klasse der Arabidopsis GSTs nur eine marginale Entgiftungsfunktion in vivo gegenüber dem GST-Standardsubstrat CDNB auf (Abb. 38A). Dies ist in sehr guter Übereinstimmung mit früheren in vitro Analysen (Dixon et al., 2009). Die ebenfalls marginale GST-Aktivität gegenüber NBD-Cl (Abb. 38B) ließe erneut, wie schon früher postuliert (Sappl et al., 2009, Dixon et al., 2009), den Schluss zu, dass alleinig die tau-Klasse der Arabidopsis GSTs für die xenobiotische Entgiftung in planta verantwortlich wäre. Nur AtGSTU20 aus der tau-Klasse mit seinen 28 Vertretern (Abb. 17) weist in vitro keine CDNB-Aktivität auf (Dixon et al., 2009). In dieser Arbeit konnte eine hohe CDNB- und NBD-Cl-Aktivität der tau-Klasse in vivo gezeigt werden (Abb. 38). Zudem wird dieser Befund dadurch bestätigt, dass insbesondere GST-Vertreter der tau-Klasse durch Herbizidsafener (Riechers et al., 2010) induziert werden und diese glutathionylieren können. So wird in Arabidopsis bevorzugt der Reis Herbizidsafener Fenclorim (4,6-Dichlor-2-Phenylpyrimidin) von AtGSTU7, U19 und U24 glutathionyliert (Brazier-Hicks et al., 2008). Erst kürzlich wurde AtGSTU24 hinsichtlich ihrer Safenerantwort in planta auf 21 weitere Methyl- und Phenyl-Derivate von Fenclorim untersucht (Skipsey et al., 2011), um deren mögliche Bedeutung für O. sativa zu beleuchten. Desweiteren setzt die durch den Herbizidsafener Benoxacor (Abb. 42) induzierbare AtGSTU19 die Chloracetanilide Alachlor, Acetochlor und Metolachlor (DeRidder et al., 2002) um. Aber auch in den Nutzpflanzen Mais und Weizen werden überwiegend GSTs der tau-Klasse bei der xenobiotischen Stressantwort genannt. So setzen in Zea mays GSTUs Atrazin, Fluordifen und Chloracetanilide um (Dixon et al., 1999). Nach Belastung von Keimlingsgewebe in Weizen mit den Herbizidsafener Cloquintocet-mexyl werden besonders die Genexpression von GSTU1-3 induziert (Zhang et al., 2007). Dies scheint der tau-Klasse der Arabidopsis GSTs eine bedeutende Rolle in der xenobiotischen Stressantwort gegenüber Agrochemikalien zukommen zu lassen.

Dieser bisherigen Erkenntnis ist aber hinzuzufügen, dass alle 10 heterolog in Hefe exprimierten GSTs der 13 phi-Klassen-Vertreter das Fungizid Anilazin glutathionylieren (Abb. 39A) können. Auf eine mögliche besondere Rolle von *At*GSTF11 und F14 bei der *in vivo* S-Glutathionylierung wurde bereits hingewiesen (siehe 4.1). Durch Expression von *At*GSTF2-F4, F6-F11 und F14 lagen die Werte zur S-Glutathionylierung von Anilazin um das drei- bis sechzigfache über dem Wert der Hintergrund-Aktivität der Hefemutante $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ (Abb. 39A). Mit Ausnahme von *At*GSTF2 führten alle exprimierten Vertreter der phi-Klasse zu einer sehr hohen Aktivität verglichen mit dem WT BY4741 gegenüber dem zweiten getesteten Fungizid Chlorthalonil (Abb. 39B). Die signifikant hohe Substratspezifität der phi-Klasse auf diese beiden antimikrobiell-aktiven Substanzen wirft folgende, grundlegende Frage auf:

Ist die phi-Klasse der Arabidopsis GSTs in planta an zentraler Position bei der Metabolisierung exo- und endogener antimikrobiell-aktiver Substanzen?

Die pflanzeneigene Immunantwort bei pathogenen Befall in *A. thaliana* (Tab. 1) besteht aus einem komplexen Netzwerk an regulatorischen Mechanismen und metabolischen Signalwirkungen. Auf regulatorischer Ebene sind in diesem Zusammenhang die Schlüsselworte PAMPS/MAMPS, FLS2, Flg22, BAK1 und BRI1 zu nennen. Diese werden im Folgenden näher in Zusammenhang

mit der Fragestellung an die phi-Klasse der Arabidopsis GSTs diskutiert.

Auf metabolischer Ebene beim pflanzlichen Befall durch pathogene Organismen trifft man im Sekundärmetabolismus auf die Stoffklasse der Phytoalexine. Phytoalexine (Abb. 50) sind induzierbare, antimikrobiell-aktive Substanzen, die nach Infektion oder Stress im pflanzlichen Organismus entstehen können. Zu dieser Stoffklasse gehört u.a. das Camalexin (3-Thiazol-2⁺-yl-Indol) als Hauptvertreter der Phytoalexine in *A. thaliana* (Wittstock and Burow, 2010). Es akkumuliert nach mikrobiellem Pathogenbefall (Glawischnig, 2007). Zur pathogenen Abwehr bei Befall mit Fraßschädlingen besitzt *A. thaliana* zudem aliphatische und indolische Glucosinolate (Wittstock and Halkier, 2002, Sønderby et al., 2010a). Eine zentrale Rolle spielt hier das indolische Glucosinolat 4-Methoxyindol-3-ylmethylglucosinolat (4M3IG) (Abb. 50). Toxikokinetisch kommt es zudem bei dieser endogenen Stressantwort in *Arabidopsis* zum Zusammenspiel von Entgiftungsenzymen aller drei Phasen (Abb. 5) (Tab. 1), namentlich Cytochrom P450 Monooxygenasen (CYPs), GSTs der phi-Klasse und der Glutathion-abhängigen Phytochelatinsynthase (PCS) sowie den γ -Glutamyltranspeptidasen (GGTs). (Bednarek et al., 2009, Clay et al., 2009, Bottcher et al., 2009, Sanchez-Vallet et al., 2010, Sønderby et al., 2010b, Su et al., 2011, Geu-Flores et al., 2011,

Name	AGI Code	Kurzbeschreibung		
PAD2 At4g23100		Phytoalexin defizient 2: Mutation in GSH1 (Abb. 13), cad2-1 Mutante, erhöhter		
	_	Pathogenbefall durch <i>Pseudomonas syringae</i> (Dubreuil-Maurizi et al., 2011).		
PAD3	At3g26830	Phytoalexin defizient 3: Mutation in CYP71B15 (Abb. 50), defekter Biosynth		
		seschritt bei Dihydrocamelexinsäure zu Camalexin (Zhou et al., 1999).		
PAD4	At3g52430	Phytoalexin defizient 4: Lipase-ähnliches Gen, involviert in der Salicylsäure		
		Signalwirkung und Pathogenabwehr, Flg22 (Zipfel et al., 2004).		
PENI	At3g11820	Penetration 1: kodiert für Syntaxin-verwandetes Protein, pen1-1 Mutante, en		
		höhter Pathogenbefall durch Blumeria graminis (Collins et al., 2003).		
PEN2	At2g44490	<u>Pen</u> etration 2: kodiert für β -O-Glycosylhydrolase, atypische Myrosinase (Abb.		
		49), erhöhter Pathogenbefall durch <i>Blumeria graminis</i> (Lipka et al., 2005).		
PEN3	At1g59870	enetration 3: kodiert für ABC-Transporter, PDR (pleiotropic drug resistent),		
		pen3-1 Mutante, Blumeria graminis (Stein et al., 2006).		
CAD1	At5g44070	Cadmium sensitiv 1: cad1 Mutanten, Punktmutationen in der AtPCS1, defekt i		
		der Bildung von Phyochelatinen bei der Cadmiumentgiftung (Ha et a., 1999)		

Tabi 1 - Witchtige Gene in 21 abiaopsis manana bei dei fininanantwort auf 1 atnogenbera	ab. 1 Wichtige (Gene in Arabidopsis thalia	<i>ina</i> bei der Immunantwo	rt auf Pathogenbefal
---	------------------	----------------------------	-------------------------------	----------------------

Dubreuil-Maurizi et al., 2011).

Im Folgenden wird nun die regulatorische und metabolische Ebene bei der pflanzeneigenen Immunantwort auf Pathogenbefall in einen möglichen Zusammenhang mit der phi-Klasse der *Arabidopsis* GSTs gestellt und abschließend das Ergebnis dieser Arbeit eingeordnet.

Die pflanzeneigene Immunantwort bei pathogenem Befall kann in *A. thaliana* auf zwei möglichen Abwehrmechanismen basieren. Zum einen können spezifisch sog. Effektoren, die der pathogene Organismus in der Wirtspflanze freisetzt, die Genexpression von krankheitsbekämpfenden Proteinen induzieren (Dubreuil-Maurizi et al., 2011). Zum anderen kann eine umfassende Immunantwort durch sog. *pathogen- or <u>microbe-associated molecular pattern</u> (PAMPS/MAMPS) aktiviert werden. Diese PAMPS werden in Pflanzen und Menschen gleichermaßen von sog. <i>pattern-<u>re</u>cognition <u>receptors</u> (PRRs) erkannt (O'Neill, 2011). In <i>Arabidopsis thaliana* wird dieser PRR z.B. kodiert vom FLS2 (<u>Flagellin sensensing receptor 2</u>). FLS2 (At5g46330) gehört zum Typ der <u>leucin-<u>rich repeat receptor-like kinase</u> (LRR-RLK) und ist an der Plasmamembran lokalisiert. FLS2 ist der Rezeptor bakteriellem Flagellins, mit u.a seinen 22 konservierten Aminosäuren (Flg22) (Meindl et al., 2000, Ramos et al., 2004). Bei Pathogenbefall löst Flg22 eine Dimerisierung zwischen FLS2 und BAK1 (SERK3; At4g33430), einer <u>Brassinosteroid-Insensitive 1</u> (*BRI1*)-<u>associated Kinase 1, in planta</u> aus (Chinchilla et al., 2007). In ihrer Doppelfunktion kann BAK1 als Corezeptor zudem BRI1 (*brassinosteroid receptor 1*) (At4g39400) an der Plasmamembran binden, wobei eine Brassinosteroid-induzierte Signalwirkung die pflanzliche Entwicklung</u>

Abb. 48 Coexpressionen und Proteininteraktionen der Arabidopsis GSTs. Die GSTs aus A. thaliana weisen ein Netzwerk an Coexpressionen und Protein-Protein-Interaktionen auf (Datenbank STRING, http://string-db. org). [†]In diesem Zusammenhang wird z.T. direkt auf folgende Primärliteraturdaten verwiesen: Marchand et al., 2010, Rya et al., 2009. Diese Abbildung kompletiert die Datenlage bei biotischem und abiotischem Stress (Abb. 47). Abkürzungen: PAD3, phytoalexin deficient 3; BAK1, Brassinosteroid-Insensitive 1-Associated Kinase 1; LDOX, Leucoanthocyanidin Dioxygenase; LHAC6, PSI light harvesting complex gene 6. Kinase*, At1g03740, ATP-abhängige Proteinkinase; Kinase**, cyclindependent kinase CYCA3;3.

in Gang setzt. Als Kinase phosphoryliert BAK1 die E3 Ubiquitin Ligasen PUB12 (At2g28830) und 13 (At3g46510) (Lu et al., 2011). Die so aktivierte PUB12 und PUB13 poly-ubiquitinylieren FLS2, wodurch es letztlich zu einem Flagellin-induzierten Abbau von FLS2 kommt. Die Brassinosteroid-induzierte Signalwirkung und die pflanzliche Immunantwort auf bakterielles Flagellin führen zu einer stressbedingten Überreaktion in der Pflanze und zur Bildung von reactive oxygen species (ROS) in Form des hochtoxischen Zellgiftes H2O2. Damit ist BAK1 ein positiver Regulator des programmierten Zelltods bei Pathogenbefall (Oh et al., 2011). Die Poly-Ubiquitinylierung von FLS2 durch PUB12/13, der damit verbundene Abbau und die ausbleibende Heterodimerisierung von FLS2 mit BAK1 korreliert negativ mit dem programmierten Zelltod (Lu et al., 2011). Durch diese MAMPS werden zudem sog, nicht-mitogene Proteinkinasen an der Plasmamembran aktiviert, wodurch es auf metabolischer Ebene in der pflanzlichen Signalwirkung zur Induktion von antimikrobiell-aktiven Substanzen, den sog. Phytoalexinen, kommt. 2009 wiesen Clay et al. anhand der pen2 und pen3 Mutanten (Tab. 1) in Arabidopsis nach, dass Flg22 die Bildung des indolischen Glucosinolates 4-Methoxyindol-3-ylmethylglucosinolat (4M3IG) als Phytoalexin (Abb. 50) induziert und damit einhergehend eine Zellwandverstärkung und Kallosedeposition bewirkt. Kallose als polymerisches β -1,3-Glucan ist Teil der Zellwand und wird am pathogenen Angriffsort aufgebaut. Dabei benötigt die Aufnahme von Flg22 über die Wurzeln FLS2 und

BAK1 (Clay et al., 2009).

In diesem Zusammenhang ist es bemerkenswert, dass erstens *At*GSTF10 am stärksten in der Wurzel, und hier in den Leitbündelzellen, exprimiert wird (Dixon et al., 2010) und dass zweitens *At*GSTF10 eine *Yeast-2-Hybrid* Interaktion mit BAK1 in derer N-terminalen Domäne (1-59) aufweist (Ryu et al., 2009). Die Runterregulierung von *At*GSTF10 durch RNAi in *bak1* Mutanten führt physiologisch zu einem frühen Seneszenz-Phänotyp (Ryu et al., 2009). Zudem sind die Blattrosetten bläulich gefärbt, was möglicherweise auf eine Akkumulation von Anthocyanen in diesen Mutanten zurückzuführen ist. Die Überexpression von *At*GSTF10 in den *bak1* Mutanten führte hingegen zu keinem Phänotyp. Gleichzeitig weisen die *bak1-3* und *bak1-4* Mutanten (zwergenhafter Phänotyp) eine erhöhte Anfälligkeit gegenüber mikrobiellen Pathogenen und echten Pilzen, in Folge einer reduzierten Sensitivität gegenüber Flagellin und einer verminderten ROS-Bildung, auf (Chinchilla et al., 2007). Interessanterweise wurde erst kürzlich gezeigt, dass die *bak1-5* Mutante (Cys408 → Tyr408) bei Belastung mit dem bakteriellen Elizitor Flg22 eine signifikante Verminderung in der ROS-Bildung aufweist (Schwessinger et al., 2011). Dies zeigt also, dass bei Pathogenbefall in den *bak1* Mutanten das Gleichgewicht im programmierten Zelltod gestört ist.

2009 wurde von Sappl et al., nachgewiesen, dass neun der 53 *Arabidopsis* GSTs bei Belastung mit Flg22 verstärkt exprimiert werden (Abb. 47). Zu diesen gehören *At*GSTZ1, L1, GSTU11-13,

U17 sowie GSTF3, F8 und F10. Mit Ausnahme von GSTF3 und U17 weisen alle übrigen sechs Vertreter ihre jeweiligen Genexpressionsmaxima ebenfalls in der Wurzel auf (Abb. 47). Zudem löst der biotische Stress durch Chitin als Pilzelizitor verstärkt eine Expression von GSTU10, U17, Z1 sowie von GSTF8 und F10 aus. In Zusammenhang mit dem Pathogenbefall-assoziierten programmierten Zelltod und der Bildung von ROS in Form von H₂O₂ ist es auffällig, dass von diesen neun GSTs nur GSTU17, F3, F8 und F10 eine Substratspezifität gegenüber Cumenhydroperoxid (Dixon et al., 2009) besitzen. Sie sind nachweislich aktiv als Glutathionperoxidasen. Möglicherweise sind also GSTF3, F8 und F10 verstärkt durch die Entgiftung von H₂O₂ am fine tuning des programmierten Zelltods beteiligt. In diesem Zusammenhang ist auch die Entgiftungsfunktion der beiden phylogenetisch sehr eng miteinander verwandten GSTF2 und F3 gegenüber Anilazin (Abb. 39A) zu erwähnen. 93 % beider Polypeptidsequenzen sind über eine Länge von 196 Aminosäuren identisch, 96 % weisen sehr ähnliche Aminosäuren (u.a. Asn \rightarrow Asp u.Ä.) auf und weisen keine Lücke auf (BLAST®). Beide sind im Proteom von Arabidopsis zu finden (Abb. 47). Unter induzierbaren Bedingungen des Gal1-Promotors im heterogen Testsystem führt die Expression von GSTF2 zu einer erhöhten Aktivität in vivo gegenüber Anilazin im Vergleich zu GSTF3 auf (Abb. 39A). GSTF2 wird im Gegensatz zu GSTF3 nicht in Zusammenhang mit Flg22 erwähnt (Sappl et al., 2009). Möglicherweise kommt GSTF3 bei der Metabolisierung von antimikrobiell-aktiven Substanzen eher eine redundante Funktion von GSTF2, insbesondere aber nach Pathogenbefall, in planta zu.

Die Brassinosteroid-induzierte Signalwirkung bei der pathogenen Immunantwort, ausgelöst durch Phosphorylierungen durch BRI1 und ihrem Corezeptor BAK1, bewirkt auch eine Veränderung im Hormonhaushalt der Pflanze. Besonders die Signalwirkung der Phytohormone Salicylsäure und Jasmonsäure spielen eine wichtige Rolle bei der Pathogenabwehr gegen necrotrophe Mikroorganismen (Glazebrook, 2005, Acosta and Farmer, 2010). Das F-Box Protein COI (Coronatine Insensitive 1) (At2g39940) in Arabidopsis bindet als Rezeptor das Isoleucin-Derivat der Jasmonsäure (Yan et al., 2009). Die coil Mutante ist männlich steril und weist eine veränderte Blütenentwicklung auf (Xie et al., 1998). Zudem weist sie eine erhöhte Anfälligkeit gegenüber Pathogenbefall auf (Reymond et al., 2000). Ein durchgeführter proteomic approach zur WT-Blüte (Col-0) im Vergleich zur coil Mutanten-Blüte (Chua et al., 2010) zeigte, dass in der coil Mutante 17 Proteine, u.a. GSTF9 zusammen mit DHAR2, ein geringeres Proteinlevel aufweisen. Zusammen mit dem veränderten Proteinlevel von β -Glucosidasen und Myrosinase-Bindeproteinen könnte in der coil Mutante die chemische Signalwirkung, ausgelöst durch zu flüchtigen Isothiocyanaten (ITC) abgebaute Glucosinolate (Abb. 49A), gestört sein. Gerade Myrosinasen spielen bei einem invasiven Pathogenbefall eine große Rolle (Lipka et al., 2008). Durch den Befall mit Fraßschädlingen wird das Pflanzengewebe zerstört, wodurch Glucosinolate (Abb. 49) mit endogenen β -Thio-Glucosidasen, den sog. Myrosinasen, (TGGs; EC 3.2.1.147) in Kontakt treten und ein Signalwirkung zur Pathogenabwehr entfalten (Wittsock and Burow, 2010). Diese Enzyme spalten die thioglycosidische Bindung der Glucosinolate und das freigesetzte Aglycon zerfällt spontan zum entsprechenden flüchtigem Nitril, Epithionitril oder Isothiocyanat (Abb. 49A). In *Arabidopsis* kodieren sechs Gene (TGG1-6) für klassische Myrosinasen und ein Gen für eine atypische Myrosinase, die sog. *PEN2* (Xu et al., 2004) (Tab. 1). *PEN2* (At2g44490) hat einen aktiven Glutaminsäurerest (Glu1183), der eigentlich charakteristisch für β -O-Glycosyl-Hydrolasen ist. Pen2p ist aber als peroxisomale β -Glucosidase in der Lage insbesondere indolische Glucosinolate zu hydrolysieren (Lipka et al., 2005). Durch die bereits erwähnte *pen2-1* Mutante (Tab. 1) konnte zum ersten Mal nachgewiesen werden, dass auch in intaktem Pflanzengewebe das Glucosinolat 4M3IG als antimikrobielles Toxin zur Abwehr gegen den Mehltaupilz *Blumeria graminis* verantwortlich ist (Bednarek et al., 2009).

In Zusammenhang mit dem Abbauweg von Glucosinolaten (Abb. 49A) weisen *At*GSTF8 und F9 als einzige Vertreter der phi-Klasse *in vitro* eine S-Glutathionylierung des Benzylisothiocyanates (Dixon et al., 2009) auf (Abb. 49B und 49C). Darüber hinaus glutathionyliert *At*GSTF8 das Oxylipin (*15Z*)-*12-oxophyto-10,15-dienoic acid* (OPDA) als Vorläufer der Jasmonsäure (Dueckershoff et al., 2008). Zusammengenommen zeichnet sich das Bild, dass die Aktivitäten von *At*GSTF8 und F9 *in planta* darauf beruhen, antimikrobiell-aktive Substanzen für deren Transport

Abb. 49 Der schwefelhaltige Sekundärmetabolismus. (A) Myrosinasen spalten β -Thioglucosidasen in Pflanzen β -thioglycosidische Verbindungen und setzen dabei Zuckerreste (Glykone) und schwefelhaltige Verbindungen (Aglykone) frei. Diese Aglykone können zu Isothiocyanaten, Nitrilen und Epithionitrilen zerfallen. (B) Das BITC ist das Modelsubstrat zur Bestimmung der GST-Aktivität gegenüber endogenen Isothioyanaten. (C) Ein mögliches BITC-GS-Konjugat kann bei der spezifischen Wellenlänge $\lambda = 274$ nm detektiert werden (Kolm et al., 1995). Abkürzungen: PEN2, Penetration 2 (Tab. 1); TGG, β -Thio-Glucosidase. (•) Die *pen2-1* Mutante spielt eine wichtige Rolle im Glucosinolatmetabolismus (siehe 4.2).

Abb. 50 Biosynthese der indolischen Glucosinolate und des Camalexins. Schematische Darstellung der Glucosinolat- und Camalexinbiosynthese beginnend bei L-Tryptophan. Die Substitution des Tryptophans mit einer Methoxyl-Gruppe führt zu 4MI3G, ein zentraler Metabolit in Zusammenhang mit *PEN2* und *PEN3* (Tab. 1). Abkürzungen: 4MI3G, 4-Methoxyindol-3-ylmethylglucosinolat; CYP, Cytochrom P450 Monooxygenase; GGP, γ -Glutamylpeptidase; GGT, γ -Glutamyltranspeptidase; PAD3, *phytoalexin deficient 3* (Tab. 1); PEN, Penetration (Tab. 1); SOT, Sulfotransferase; SUR, C-S-Lyase ; UGT, UDP-Glycosyltransferase. (•) Die *pad3-1* Mutante spielt eine wichtige Rolle in der Camalexinbiosynthese (siehe 4.2). Abb. in Anlehnung an Sønderby et al, 2010 und Geu-Flores et al. 2011.

zum Wirkungsort, u.a. von der Wurzel in die Blütenblätter, bereitzustellen. Erst kürzlich wurde gezeigt (Khokon et al., 2011), dass exogen in Arabidopsis verabreichtes Allylisothiocyanat die Öffnung der Spaltöffnungen induziert und die Bildung von ROS und Stickoxid forciert. Die S-Glutathionylierung von Oxilipiden und lipidischen ITCs erhöht deren Hydrophilie und setzt zugleich temporär deren reaktiven funktionellen Gruppen außer Kraft (Abb. 49C). Wenn zudem BAK1 mit GSTF10 N-terminal heterodimerisieren kann (Ryu et al., 2009), könnte möglicherweise die phylogenetisch eng verwandte GSTF9 (Abb. 17) in einem interagierenden Netzwerk ihrerseits durch Phosphorylierung aktiviert werden. Die Datenbank PhosPhAt (Durek et al., 2010) (<u>http://phosphat.mpimp-golm.mpg.de/</u>) gibt einen Eintrag bei *At*GSTF9. Es wurde massenspektrometrisch nachgewiesen, dass sie N-terminal phosphoryliert werden kann (VYGPHFApSPK). Seit den 90iger Jahren sind GSTs dafür bekannt im pflanzlichen Sekundärmetabolismus aktiv zu sein (Marrs et al., 1995, Kitamura et al., 2004, Conn et al., 2008, Kitamura et al., 2010). Bei der Beantwortung der Frage, woher das Schwefelatom des Thiazol-Rings in Camalexin (Abb. 50) bei der Biosynthese in Arabidopsis thaliana stammt, wurde lange Zeit davon ausgegangen, dass dies auf eine direkte Cysteinylierung seines Vorläufers Indol-3-Acetonitrils (IAN) (Abb. 50) beruht, da nachweislich nur das Cys-IAN substratspezifisch von CYP71B15 zur Dihydrocamalexinsäure (Abb. 50) metabolisiert wurde (Schuhegger et al., 2006, Bottcher et al., 2009). 2007 wiesen Parisy et al. nach, dass es in der pad2-1 Mutante (phytoalexin deficient 2) (Tab. 1), in welcher der Aminosäure-Austausch S298 \rightarrow N298 in der y-Glutamyl-Cysteinyl-Ligase (Abb. 13A) zu einer defekten de novo Glutathionbiosynthese (20 % GSH-Gehalt verglichen mit dem Wildtyp), führt, bei Pathogenbefall mit Pseudomonas syringae und/oder Phytophtora brassicae zu keiner Akkumulation des Camalexins kam (Parisy et al., 2007). Die *pad2-1* Mutante war nach Pathogenbefall stets Camalexin-defizient. Bei einer direkten Cysteinylierung des IANs hätten aber die Biosyntheseschritte zu Camalexin (Abb. 50) erfolgen können. Hier lag ein erster Hinweis vor, dass die Biosynthese des Camalexins möglicherweise GSH-abhängig ist. Verstärkt wurde dieser Hinweis dadurch, dass auch die cad2-1 Mutante (cadmium sensitive 2) (Tab. 1) einen pad2-1-ähnlichen Phänotyp zeigte (Parisy et al., 2007). Beide Mutanten sind verstärkt anfällig gegenüber pathogenem Befall aufgrund eines reduzierten Camalexingehaltes in planta. Interessenterweise wurde erst kürzlich (Okuma et al., 2011) der Nachweis anhand der cad2-1 Mutante erbracht, dass das geringere GSH-Level in den Schließzellen die Abscisinsäure-induzierte Schließung der Spaltöffnungen verringert. In der cad2-1 Mutante ist ebenfalls die Glutathionbiosynthese, hier durch eine sechs bp lange Deletion im Gen, das für die γ -Glutamyl-Cysteinyl-Ligase kodiert (Abb. 13A), vermindert (Cobbett et al., 1998). Die cadl Mutante (Tab. 1) weist eine Punktmutation in der AtPCS1 auf und ist bei der Cadmiumentgiftung defekt in der Biosynthese der Phytochelatine (Ha et al., 1999). 2011 wurde von Su et al. gezeigt, dass im Arabidopsis Wildtyp (Col-0) durch die konstitutive Überexpression von MKK9 als einem Vertreter der drei Kinase-Module der mitogenaktivierten Proteinkinasen bei Pathogenbefall (siehe oben), eine verstärkte Camalexinbiosynthese stattfand, die einher ging mit der Akkumulation von GSTF2, F6 und F7 auf Proteinlevel. Nur die anschließend in Hefe heterolog exprimierte Arabidopsis GSTF6 konnte IAN katalytisch zum GS-IAN-Konjugat (Abb. 50) glutathionylieren (Su et al., 2011). Daraus wurde geschlossen, dass AtGSTF6 direkt an der Camalexinbiosynthese in planta beteiligt ist. Zudem wurde MKK9 in der gstf6 Mutante überexprimiert. Dies führte nicht zum Erliegen der Camalexinbiosynthese. Hier waren aber die Genexpression von GSTF9-12, GSTU16-18 und U27 hochreguliert. Es wurde von einem möglichen redundanten Effekt ausgegangen (Su et al., 2011). Bereits früher wurden GSTF9-11 in Zusammenhang mit einer möglichen Coregulierung im Glucosinolatmetabolismus erwähnt (Hirai et al., 2005, Sønderby et al., 2010a). Pflanzenphysiologische Untersuchungen (Dubreuil-Maurizi et al., 2011) der pad2-1 Mutante brachten zum Vorschein, dass bei Pathogenbefall durch Phytophtora brassicae ein höheres Transkriptlevel von GSTF6 vorliegt. Die Datenbank STRING (Szklarczyk et al., 2011) gibt zudem einen Hinweis darauf, dass GSTF6 mit PAD3 (Tab. 1) coexprimiert wird (Abb. 48). PAD3 kodiert für die CYP71B15 (Abb. 50). Der *pad3-1* Mutante fehlt ein Nukleotid (\rightarrow verfrühtes Stopcodon), wohingegen die *pad3-2* Mutante eine Punktmutation hat (Gly \rightarrow Ala) (Zhou et al., 1999). Damit scheint der Arabidopsis GSTF6 eine zentrale Rolle in der Camalexinbiosynthese zu zukommen. Desweiteren zeigt die pad2-1 Mutante eine beeinträchtigte Produktion von H₂O₂ bei Pathogenbefall auf (Dubreuil-Maurizi et al., 2011). Möglicherweise führt also die Störung des Glutathionmetabolismus auch zu Störungen des programmierten Zelltods bei Pathogenbefall. Die pad2-1 Mutante weist darüber hinaus eine erhöhte Bildung von Stickstoffmonoxid auf. Bei der Entgiftung von Cadmiun könnte es folglich verstärkt zu einer Nitrosylierung der gebildeten Phytochelatine kommen. In Arabidopsis Zellkulturen (Laer) wurden derartige Nitrosyl-Modifikation bereits nachgewiesen (Elviri et al., 2010). Interessanterweise ist zudem das Redoxpotential in der pad2-1 Mutante gestört. Gerade die y-Glutamyl-Cysteinyl-Ligase liegt z.T. in oxidierter Form (Protein-S-SR) vor. Die heterologe Expression der humanen GRXI (Dubreuil-Maurizi et al., 2011) komplementierte diesen Phänotyp. In ähnlichem Zusammenhang weist die Datenbank STRING (Szklarczyk et al., 2011) darauf hin, dass AtGSTF9 mit einer AtTRX eine mögliche funktionale Proteininteraktion aufweist (Abb. 48).

Ordnet man nun abschließend das eigene Ergebnis zur ermittelten Substratspezifität der phi-Klassen GSTs gegenüber den exogen verabreichten antimikrobiell-aktiven Substanzen Anilazin und Chlorthalonil ein, so gewinnt man einen in sich stimmigen Eindruck. Gerade die zuvor diskutierten AtGSTF6, F8-F10 zusammen mit AtGSTF2 und F4 weisen nicht nur in ihrer Breite, sondern auch in ihrer Spitze die höchsten Entgiftungsaktivitäten aller 41 getesteten Arabidopsis GSTs gegenüber beiden Fungiziden auf (Abb. 39). Zusammen mit den Daten zu Coexpressionen und Protein-Protein-Interaktionen (Abb. 47), den nachgewiesenen Dimerisierungen, den möglichen post-translationalen Modifikation durch Phosphorylierungen und S-Glutathionylierungen (siehe auch 4.1) mit ihren Signalwirkungen und den bekannten Beteiligungen im Glutathion- und Glucosinolatmetabolismus (Abb. 47) bei der pflanzeneigenen Immunantwort auf pathogenem Befall, scheint der phi-Klasse der Arabidopsis GSTs in planta eine zentrale Rolle bei der Bereitstellung und Entgiftung antimikrobiell-aktiver Substanzen zu zukommen. Ein gutes Stück von diesem endogenen Stoffwechsel entrückt scheint die tau-Klasse der Arabidopsis GSTs stets an der unmittelbaren Entgiftung von Xenobiotika ("straight forward GSTs"), insbesondere aber bei Herbiziden und Herbizisafenern (DeRidder et al., 2002, DeRidder and Goldsbrough, 2006, Brazier-Hicks et al., 2008, Skipsey et al., 2011) beteiligt zu sein. Dabei unterstreicht aber die überlappende Entgiftungsfunktion der tau- und der phi-Klasse bei beiden Fungiziden (Abb. 39) einzig die hohe Substratspezifität der phi-Klasse der Arabidopsis GSTs und damit ihre besondere Rolle bei der Entgiftung antimikrobiell-aktiver Substanzen (Abb. 51).

4.3 Das heterologe Testsystem - eine SWOT-Analyse

Zielsetzung dieser Arbeit war es, GST-defiziente Hefestämme zu entwickeln, die in vivo eine systematische Charakterisierung der 53 GSTs aus Arabidopsis thaliana erlauben (siehe 1.3). Mittels Saccharomyces cerevisiae als eukaryotischem Modelsystem wurde ein heterologes Testsystem entwickelt, das in Addition zu bisherigen forward bzw. reverse genetic und proteomic approaches (Brazier-Hicks et al., 2008, Ulker et al., 2008, Sappl et al., 2009) eine funktionale Untersuchung der Arabidopsis GSTs hinsichtlich ihrer xenobiotischen Entgiftungsfunktionen ermöglicht. Nachdem 16 multiple Hefemutanten in dieser Arbeit hergestellt und diese hinsichtlich der GST-Standardsubstrate CDNB und NBD-Cl (Habig et al., 1974, Ricci et al., 1994) charakterisiert worden waren (Abb. 21 und Abb. 22), wurde mit der Quintupelmutante $\Delta tef 4 \Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$ und denen in dieser Hefematrix heterolog exprimierten AtGSTF2, F8 und U19 das eukaryotische Testsystem etabliert (Abb. 26-28). Bei diesen drei GSTs handelte es sich um die am besten in der Literatur beschriebenen GSTs aus Arabidopsis (Abb. 47). So konnte anhand der getesteten Herbizidsafener Benoxacor und Fenclorim und der massenspektromerisch erfassten Glutathionmetabolite, unter Galaktose-induzierbaren Bedingungen für die in das Gal1p-Vektorsystem der pSH-Serie (Gueldener et al., 2002) klonierten Arabidopsis GSTs, das heterologe Testsystem auf seine Funktionsfähigkeit hin erfolgreich überprüft werden (Abb. 42). Zudem konnte durch heterologe Expression von AtGSTF2, F8 und U19 in der Einfachmutante $\Delta tef4$ nachgewiesen werden, dass dem eukaryotic translation elongation factor eEF1By Tef4p in S. cerevisiae eine besondere Rolle bei der xenobiotischen Stressantwort auf CDNB zu kommt (siehe 4.1). Desweiteren wurde anhand der in der Hefematrix $\Delta tef 4 \Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$ heterolog exprimierten AtGSTU19 eine stabile Isotopenanalytik in ähnlicher Weise wie früher bereits beschrieben (Hsu et al., 2003, Synowsky et al., 2009) etabliert (Abb. 31-33). Die Methylierung der GS-Konjugate über [$^{1}H_{2}$]-Formaldehyd und $[^{2}H_{2}]$ -Formaldehyd eröffnete so die Möglichkeit auch nicht-chromophore Pestizid-GS-Konjugate in Hefeextrakten massenspektrometrisch quantitativ erfassbar zu machen (Abb.

34). Anschließend wurden systematisch 41 der in dieser Arbeit klonierten *Arabidopsis* GSTs auf ihre enzymatischen Substratspezifitäten gegenüber CDNB, NBD-Cl und den beiden Fungiziden Anilazin und Chlorthalonil (Abb. 38 und Abb. 39) untersucht. So konnten neben den beiden GST-Standardsubstraten CDNB und NBD-Cl mit den Herbizidsafenern Fenclorim und Benoxacor und den beiden Fungiziden Anilazin und Chlorthalonil insgesamt sechs Pestizide unterschiedlicher Wirkungs- und Strukturklassen in diesem Hefesystem getestet werden (Abb. 52).

In einem abschließenden letzten Punkt dieser Arbeit soll nun das entwickelte heterologe Testsystem einer SWOT-Analyse (<u>Strengths/Weaknesses-Opportunities/Threats</u>) unterzogen werden, um so Leitlinien für die weiterführende Analytik innerhalb des *Arabidopsis*-GST-Projektes zu entwickeln.

Strengths: Das heterologe Testsystem (HTS) lässt zuverlässige Aussagen bzgl. der Aufnahme von Xenobiotika durch Arabidopsis GSTs zu. Unter Galaktose-induzierbaren Bedingungen können über mindestens sechs Klassen der Arabidopsis GSTs hinweg spezifische Fragestellungen in Zusammenhang mit xenobiotischem Stress formuliert werden (Abb. 38 und Abb. 39). Nimmt man als Beispiel die phylogenetisch sehr nah miteinander verwandten GSTF2/F3, GSTU3/U4 oder GSTU17/18 (Abb. 16) in Bezug auf deren unterschiedlichen Aktivitäten gegenüber Anilazin (Abb. 39A), so kann man mittels HTS signifikante Unterschiede in den Substratspezifitäten detektieren. Folglich ist das HTS eine biologisch sensitive Methode. Darüber hinaus steht mit den GST-defizienten Hefestämmen $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$, $\Delta gto1\Delta gto2\Delta gto3$ und mit dem Hefestamm $\Delta cis2\Delta cpc\Delta cpy$ (Wünschmann et al., 2010), in dem der Abbauweg (Abb. 41) der Pestizid-GS-Konjugate blockiert ist, nun ein umfassendes Set an Hefemutanten des Detoxifizierungsprozesses (Abb. 7) zur Verfügung.

Weaknesses: Limitierend ist das entwickelte HTS durch seine artifizielle Überexpression der *At*GSTs *in vivo*. Regulatorische Mechanismen wie sie z.B. bei der pflanzeneigenen Immunantwort in *Arabidopsis* diskutiert wurden (siehe 4.2), können mittels HTS nicht berücksichtigt werden. In Zusammenhang mit dem Glucosinolatmetabolismus fehlen in *S. cerevisiae* auch die benötigten Enzyme, wie z.B. Myrosinasen. Desweiteren bietet zwar das HTS die Möglichkeit Kompartimentierungen der Metabolite zu berücksichtigen, doch sind nicht alle Enzyme in beiden eukaryotischen Organismen gleich lokalisiert. So sind u.a. die beiden Carboxypeptidasen CPC und CPY in Hefe vakuolär aktiv (Wunschmann et al., 2007), wohingegen die Phytochelatinsynthase *At*PCS1 in *Arabidopsis* zytosolisch aktiv im Abbau der GS-Konjugate (Blum et al., 2010) ist. Dies kann möglicherweise zu unterschiedlichen Katabolitenprofilen der GS-Konjugate in Hefe und Pflanze führen.

Opportunities: Gerade die drei Hefemutanten $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$, $\Delta gto1\Delta gto2\Delta gto3$ und $\Delta cis2\Delta cpc\Delta cpy$ bieten die Chance nach Pestizidbelastung und hochauflösender MS-Analyse (ICR-FT/MS) eine mögliche AtGST-spezifische Pestizidmetabolisierung detektierbar zu machen. Für umfangreiche Biotransformationen der Pestizide könnte der Einsatz einer Isotopenmarkierung hilfreich sein. Da in dieser Arbeit gezielt nach schwefelhaltigen Verbindungen gesucht wurde, erscheint es sinnvoll, das HTS um eine ³⁴S-Markierung zu erweitern. Ähnlich wie bei der Verwendung von ²H-, ¹³C- und ¹⁵N-markierten Aminosäuren für quantitative *Proteomics* mittels SILAC (stabil isotope labeling by amino acids in cell cultures) (Ong et al., 2002, Gruhler et al., 2005, Romijn et al., 2005, Geiger et al. 2011), kann die ³⁴S-Markierung in Hefe die Suche nach putativen schwefelhaltigen Metaboliten unterstützen (Abb. 53). Erst kürzlich wurde eine LC-ESI-MS/MS Methode für ³⁴S-Markierungen in Arabidopsis thaliana entwickelt (Hsieh et al., 2011). Allerdings geschieht der Einsatz der ³⁴S-Markierungen im HTS unter der Annahme, dass die z.T. biotransformierten Pestizide noch glutathionyliert werden können. Alle 41 klonierten Arabidopsis GSTs wurden auch in die multiple Hefemutante $\Delta gto 1 \Delta gto 2 \Delta gto 3$ des Genotyps BY4742 (siehe 2.1.4) transformiert. Zum einen ermöglicht die Auxotrophie dieses Genotyps auf Methionin eine Supplementation des Minimalmediums mit ³⁴SO₄²⁻ zur Markierung (Abb. 53). Zum anderen sind die omega-GSTs in S. cerevisiae möglicherweise stärker als alle übrigen GSTs im Schwefel- und Glutathionmetabolismus involviert (Barreto et al., 2006). Desweiteren bietet das HTS auch die Möglichkeit die C-terminalen Domänen der AtGSTs zu untersuchen. Im Falle der sehr eng miteinander verwandten AtGSTF2 und F3 (siehe 4.2) ist es möglich, die Frage nach den entscheidenden Aminoäuren, die ausschlaggebend für die unterschiedlichen Anilazin-Aktivitäten sind, und damit nach den "H-Seiten" (Abb. 8) der Arabidopsis GSTs zu stellen.

Threats: In Kapitel 4.2 wurde ausführlich auf die organspezifischen Genexpressionsmaxima der *Arabidopsis* GSTs (Dixon et al., 2010) hingewiesen. Das HTS ist kaum in der Lage pflanzliche Entwicklungsphasen zu berücksichtigen. Daher kann das entwickelte HTS nur ein unterstützen-

Abb. 53 Schwefelmarkierung in S. cerevisiae. Anhand von GSH im hochauflösenden MS-Spektrum wird der Einbau der Schwefelmarkierung mit 34S in multiplen Mutante $\Delta gto1 \Delta gto2 \Delta gto3$ (BY4742) gezeigt. Die ³⁴S-Markierung erfolgt durch Zugabe von markiertem SO₄²⁻ in das Minimalmedium. Ca. 85-90 % des ³²S können so durch ³⁴S substituiert werden (abzüglich der natürlichen Abundanz von ${}^{32}S$ mit ~ 4,2 % und ${}^{34}SO_{4}^{2}$ von ~ 90 % Reinheit).

des Werkzeug für die weiterführende Analyse in planta sein.

Auswahl der Arabidopsis Mutanten (W-T): Da bekanntlich forward bzw. reverse genetic approaches für die funktionale Charakterisierung der Arabidopsis GSTs in planta aufgrund eines fehlenden Phänotyps von GST-defizienten Arabidopsis Mutanten (Ulker et al., 2008, Ryu et al., 2009, Sappl et al., 2009, Su et al., 2011) problematisch sind, ist das Grundprinzip der Komplementation von GST-defizienten Arabidopsis Mutanten durch gezielte Überexpression endogener GSTs, wie dies heterolog in S. cerevisiae anhand der multiplen Hefemutante $\Delta tef 4 \Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$ angewandt wurde (Abb. 26), eine sehr große Herausforderung. Findet man mittels HTS ein Pestizid, das nur von wenigen (< 10 %) Arabidopsis GSTs katalytisch glutathionyliert werden, dann ist der Komplementationsansatz in z.B. RNA-Interferenzlinien ein möglicher Weg in planta. Zudem könnte eine systematische Überexpression der 53 Arabidopsis GSTs mittels p35S::GSTXY im Wildtyp (Col-0) die Suche nach einem Phänotyp in Richtung "Gain-Of-Function-Mutanten" unterstützen. Um die Aussagekraft des HTS hinsichtlich der Entgiftungsfunktion der phi-Klasse (Abb. 39A) vor dem Hintergrund der pflanzeneigenen Immunantwort auf Pathogenbefall zu überprüfen, könnten die pad2-1, cad2-1 und pen2-1 Mutanten in Arabidopsis (Tab. 1) physiologischen Tests mit dem antimikrobiell-aktivem Anilazin unterzogen werden. Gegebenenfalls könnte so in einem ersten Schritt auf Transkriptionslevel untersucht werden, ob ein möglicher Zusammenhang von HTS-Anilazin-Pflanze zu den Arabidopsis GSTF6, F7, F9 und F10 besteht. In diesem Zusammenhang wären auch Tests mit der multiplen Knockdown Mutante atgstf6/7/9/10 (Sappl et al., 2009) sehr interessant. In Abhängigkeit des physiologischen Befundes könnte dann auf Metabolitenebene die ³⁴S-Markierungen (Hsieh et al., 2011) zum Einsatz kommen, um den schwefelhaltigen Sekundärmetabolismus (Abb. 49) näher zu untersuchen.

Signaltransduktionsprozesse (S-T): Das HTS bietet für die weiterführende Analytik die Möglichkeit funktionale und physikalische Protein-Protein-Interaktionen der Arabidopsis GSTs in vivo zu untersuchen. Die verwendeten Vektorsysteme der pSH-Serie (Gueldener et al., 2002) bieten im genetischen Hefehintergrund von BY4741 und BY4742 die Möglichkeit drei unterschiedliche Proteine zu exprimieren. Die Tripelexpression von Arabidopsis GSTs war erfolgreich (N. Kowalski, Daten nicht gezeigt). Wie unter 4.1 diskutiert, sollte es möglich sein, Proteininteraktionen aufgrund von Phosphorylierungen im HTS über Co-Imnunopräzipitationsexperimente nachzuweisen. So könnten z.T. pflanzliche Signaltransduktionsprozesse, in denen möglicherweise Arabidopsis GSTs eine Rolle spielen, im HTS unter Berücksichtigung von Kompartimentierungen konstruiert werden. Der unter 4.1 angesprochene mögliche katalytische Mechanismus von AtGSTF11, F12 und F14 durch Interaktion mit ScTrx2p kann durch Kombination aus heterologer Expression der AtGSTs in den Mutanten $\Delta tef4\Delta gtt1\Delta gtt2\Delta grx1\Delta grx2$ sowie $\Delta trx2$ (Euroscarf) und rekombinanter Proteinanalytik nachgewiesen werden. Zudem könnte eine mögliche posttranslationale Modifikation von *At*GSTF11, F12 und F14 durch S-Glutathionylierung unter Einsatz von ³⁴S-Markierung in entsprechenden Hefezellkulturen massenspektrometrisch mittels ICR-FT/MS detektiert werden. Desweiteren kann eine mögliche Ligandenfunktion von *At*GSTF11, F12 und F14 gegenüber Anilazin und dem Anilazin-GS-Konjugat zweifelsfrei über isothermale Titrationskalorimetrie, ähnlich wie bereits früher beschrieben (Dixon and Edwards, 2010b), geklärt werden.

Transkriptionsfaktoren (W-O): In Kapitel 1.1.2 wurde unter der Toxikokinetik beschrieben, wie im menschlichen Organismus PXR (pregnane x receptor) mit PXRa einen Proteinkomplex bildet, der aktiv als Transkriptionsfaktor die Expression von Cytochrom P450 Monooxygenasen induziert. Dabei bindet dieser Transkriptionsfaktor an die Promotorgensequenz als XRE (xenobiotic response element) und induziert so die Genexpression humaner Phase-I-Enzymen bei xenobiotischer Exposition. Im Zusammenhang mit der pflanzeneigenen Immunantwort bei Pathogenbefall in Arabidopsis sind die Transkriptionsfaktoren MYB28, MYB29 und MYB76 in der aliphatische Glucosinolatbiosynthese (Sønderby et al., 2010b) involviert. Zudem wurde erst kürzlich in Arabidopsis bei Belastung mit dem Herbizidsafener Fenclorim gezeigt (Skipsey et al., 2011), dass die xenobiotische Stressantwort auf Transkriptionslevel nicht nur mit AtGSTU24, sondern auch mit der Oxylipin Signalwirkung verbunden ist. Das HTS könnte die Möglichkeit bieten, Teile der transkriptionalen Regulation der xenobiotischen Stressantwort aus der Pflanze in Hefe nachzubauen. Dafür reichte eine bloße heterologe Expression eines pflanzlichen Transkriptionsfaktors nicht aus. Ein mögliches XRE müsste in S. cerevisiae chromosomal integriert werden, ähnlich wie dies bereits bei Einbau des ABRE (abscisic acid response element) in Hefe gezeigt wurde (G. Czap, Daten nicht gezeigt). Wichtige endogene Transkriptionsfaktoren des HTS sind PDR1 (YGL013C) und PDR3 (YBL005W) (pleiotropic drug resistance) (Delaveau et al., 1994). Pdr1p und Pdr3p können in vivo heterodimerisieren (Mamnun et al., 2002) und binden an das PDRE (*pleiotropic drug response element*) des spezifischen Gens. Ein wichtiges Gen hierbei ist PDR5 (YOR153W), das für einen ABC-Transporter (Abb. 7) an der Plasmamembran in S. cerevisiae kodiert und beteiligt am vakuolärem Transport von Xenobiotika ist (Balzi et al., 1994). Folglich bieten das HTS auch die Möglichkeit putative transkriptionale Regulierungen einzelner Arabidopsis GSTs nachzukonstruieren.

Protein-Engineering (S-O): Das HTS wurde primär in dieser Arbeit entwickelt, um spezifisch einzelnen Vertretern der *Arabidopsis* GSTs *in vivo* eine enzymatische Entgiftungsfunktion gegenüber Xenobiotika nachzuweisen. Dabei wurden die Hefezellkulturen mit unterschiedlichen Pestizidklassen belastet, methanolisch aufgeschlossen und mittels hochauflösenden Massenspektrometer (ICR-FT/MS) auf mögliche Pestizid-GS-Metabolite hin untersucht. Mit Anilazin und Chlorthalonil wurden zwei Fungizide positiv auf S-Glutathionylierung durch *Arabidopsis* GSTs, und hier insbesondere durch Vertreter der phi-Klasse, getestet. Derzeit sind in Deutschland (http:// www.bvl.bund.de) und damit in der Europäischen Union > 250 Fungizide gesetzlich zugelassen. An dieser Stelle kann das HTS ein Verfahren für ein high-throughput screening auf Fungizide darstellen. Die heterologe Expression der AtGSTFs, gekoppelt an ³⁴S-markierte Zellkulturen und hochauflösende MS-Analyse, böte hier die Voraussetzung eines standardisierten Screeningverfahrens. Zum einen könnten die so generierten Datensätze einen Beitrag dazu leisten, transgene Pflanzen zu entwickeln, die durch Überexpression endogener GSTs eine erhöhte Resistenz gegenüber Fungiziden aufweisen. Zum anderen könnten diese Datensätze auch für ein gezieltes Protein-Engineering von pflanzlichen GSTs herangezogen werden. Ein Ansatzpunkt dabei bieten die phylogenetisch sehr nah verwanden AtGSTF2 und F3 (Abb. 16). Beide unterscheiden sich deutlich in ihrer Anilazin-Aktivität (Abb. 39A) und sind zugleich am stärksten phylogenetisch aller Arabidopsis GSTs verwandt. Es ist bekannt, dass die C-terminalen Domänen der GSTs für die Substratspezifität von Pestiziden verantwortlich sind (Wagner et al., 2002). Im Falle von AtGSTF2 und F3 sind beide "H-Seiten" vergleichsweise stark konserviert (BLAST[®]). Hier bestünde die berechtigte Chance durch gezielte Punktmutationen in AtGSTF2 und F3 essenzielle Aminosäuren für die Koordinierung von Anilazin als einem Triazin-Derivat (Abb. 2) ausfindig zu machen. Verbindet man derartige Erkenntnisse mit GST-Kristallstrukturen der C-Termini, wie sie z.T. schon für pflanzliche GSTs existieren (Reinemer et al., 1996, Thom et al., 2001, Thom et al., 2002), könnten neue chemische Leitstrukturen von Fungiziden, die zudem eine geringe Persistenz in Böden aufweisen sollten, entwickelt werden. Interessanterweise wurden erstmalig mit indolischen Triazin-Derivaten (Abb. 54) eine neue Klasse antimikrobiell-aktiver Substanzen erfolgreich gegen phytopathogene Pilze wie Fusarium (siehe 1.1.1) (Abb. 1) und Alternaria in vitro getestet (Xu and Fan, 2011). Möglicherweise steht hier ein Ringschluss aus der phi-Klasse der

Arabidopsis GSTs und ihren Entgiftungsfunktionen endo- und exogener antimikrobiell-aktiven Substanzen bevor.

Wie aus der SWOT-Analyse und den daraus resultierenden Leitlinien für die weiterführende Analytik zu erkennen ist, wurden in dieser Arbeit Grundstein und Ansatzpunkte für die weitere Erforschung der Glutathion-S-Transferasen in *Arabidopsis thaliana* gelegt.

Zusammenfassung

Die weltweit zunehmende Toxinbelastung der Ackeranbauflächen durch den Einsatz von Pestiziden ist mittelfristig eine große Herausforderung. Die stetige Zunahme der Weltbevölkerung von gegenwärtig 7,1 auf geschätzte 9,6 bis 10,1 Milliarden Menschen bis zum Jahre 2050 verschärft die Problematiken, die durch persistente Xenobiotika in fruchtbaren Böden und durch Herbizid-Resistenzbildungen in Unkrautarten aufkommen.

Diese Arbeit setzte sich mit der xenobiotischen Entgiftungsfunktion pflanzlicher Glutathion-S-Transferasen (GSTs) mittels *Saccharomyces cerevisiae* als Modelorganismus auseinander. GSTs können Nutzpflanzen vor Pestiziden durch deren Konjugation mit dem Tripeptid Glutathion schützen.

Anhand eines GST-defizienten Hefestammes, in dem die gezielte Deletionen von fünf Genen, die für endogene GSTs bzw. GST-ähnliche Proteine kodieren, namentlich *GTT1*, *GTT2*, *GRX1*, *GRX2* und *TEF4*, zur erhöhten Sensitivität gegenüber Xenobiotika führten, konnten erstmalig *in vivo* 41 der 53 GSTs aus *Arabidopsis thaliana* in *S. cerevisiae* funktional charakterisiert werden.

Die nachweislich hohe Substratspezifität der *Arabidopsis* GSTs spiegelte sich besonders deutlich in den Fungiziden Anilazin und Chlorthalonil wider. Es wurde nicht nur gezeigt, dass Fungizide *in planta* mittels GSTs metabolisiert werden können, sondern, dass primär die 13 GSTs der phi-Klasse auf Anilazin als abiotischen Stress mit S-Glutathionylierung antworten. Der phi-Klasse kommt eine neue Bedeutung in der Entgiftung von Xenobiotika zu. Damit könnte eine Basis für die gezielte Entwicklung transgener Pflanzen mit erhöhter Fungizid-Resistenz gegenüber Anilazin geschaffen werden.

Durch Einsatz hochauflösender Massenspektrometrie konnten zudem nach Bildung der Pestizid-Glutathion-Konjugate xenospezifische Unterschiede im Katabolitenprofil anhand des N-terminalen bzw. C-Terminalen Konjugatabbaus beobachtet werden. Dies ließe in Abhängigkeit von der Kompartimentierung gezielte Untersuchungen in *Arabidopsis* zu, in der die γ-Glutamyltranspeptidasen GGT1 und GTT2 tonoplastisch, GGT4 vakuolär und die Carboxypeptidase PCS1 zytosolisch *in planta* aktiv sind.

Mit dem in dieser Arbeit entwickelten heterologen Testsystem ist eine systematische funktionale Charakterisierung von pflanzlichen GSTs im exo- und endogenen Stoffwechsel möglich. Die Komplementation des GST-abhängigen Phänotyps in der Bäckerhefe *S. cerevisiae* durch gezielte Expression pflanzlicher GSTs lässt Rückschlüsse auf ihre Bedeutung *in planta* zu.

Summary

The global increase in toxin stress on agricultural farmland by using pesiticides is in a medium term perspective a huge challange. The on-going growth of the world population from currently 7.1 to estimated 9.6 to 10.1 billion people by the year 2050 intensifies the problems that will come up through persistent xenobiotics in fertile soils and herbicide-resistance developed by weed species.

This work sat down with the xenobiotic detoxification functions of plant glutathione-S-transferases (GSTs) using *Saccharomyces cerevisiae* as a model organism. GSTs can protect crops against pesticides by their conjugation with the tripeptide glutathione.

Using a GST-deficient yeast strain in which targeted deletions of five genes coding for endogenous GSTs or GST-like proteins, namely *GTT1*, *GTT2*, *GRX1*, *GRX2* and *TEF4*, have resulted in an increased sensitivity to xenobiotics, for a first time 41 of the 53 *Arabidopsis* GSTs could be *in vivo* functionally characterized using *S. cerevisiae*.

The high substrate specifity of the *Arabidopsis* GSTs was clearly shown particularly with the fungicides anilazine and chlorothalonil. It was demonstrated not only that fungicides can be metabolized by GSTs *in planta*, but that mainly the 13 phi-class members of the *Arabidopsis* GSTs responded to anilazine as an abiotic stress with S-Glutathionylation. This suggests a new more prominant role of the *Arabidopsis* phi-class GSTs in the detoxification of xenobiotics. This could provide a basis for focused development of transgenic plants with enhanced fungicide resistance against anilazine.

By using high-resolution mass spectrometry xenospecific differences in the catabolite profiles were observed after glutathione conjugate formations, possibly caused by alternative degradation pathways. As a function of compartmentalization this might allow focused research in *Arabidopsis* in which the γ -glutamyltranspeptidases GGT1 and GGT2 are tonoplastic, GGT4 is vacuolar and the carboxypeptidase PCS1 is cytosolic activ *in planta*.

The developed heterologous test system of this work allows a systematic functional characteriziation of plant GSTs in regard to their exo- and endogenous metabolism. By complementation of the GST-dependent phenotype in yeast through targeted expression of plant GSTs one can draw conclusions about their significance *in planta*.

Literaturverzeichnis

ACOSTA, I. F. & FARMER, E. E. 2010. Jasmonates. In: The Arabidopsis book (pp. 1-13). Rockville, Maryland, USA: American Society of Plant Biologists. <u>http://dx.doi.org/10.1199/tab.0012</u>.

ADAMIS, P. D., MANNARINO, S. C. & ELEUTHERIO, E. C. 2009. Glutathione and gammaglutamyl transferases are involved in the formation of cadmium-glutathione complex. FEBS Lett, 583, 1489-92.

ALLOCATI, N., FEDERICI, L., MASULLI, M. & DI ILIO, C. 2009. Glutathione transferases in bacteria. FEBS J, 276, 58-75.

ALVES, R., VILAPRINYO, E., SORRIBAS, A. & HERRERO, E. 2009. Evolution based on domain combinations: the case of glutaredoxins. BMC Evol Biol, 9, 66.

AMUNTS, A. & NELSON, N. 2009. Plant photosystem I design in the light of evolution. Structure, 17, 637-50.

AMUNTS, A., TOPORIK, H., BOROVIKOVA, A. & NELSON, N. 2010. Structure determination and improved model of plant photosystem I. J Biol Chem, 285, 3478-86.

APOSHIAN, H. V. & APOSHIAN, M. M. 2006. Arsenic toxicology: five questions. Chem Res Toxicol, 19, 1-15.

BALZI, E., WANG, M., LETERME, S., VAN DYCK, L. & GOFFEAU, A. 1994. PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. J Biol Chem, 269, 2206-14.

BANERJEE, S. & GOSWAMI, R. 2010. GST profile expression study in some selected plants: in silico approach. Mol Cell Biochem, 336, 109-26.

BARRETO, L., GARCERA, A., JANSSON, K., SUNNERHAGEN, P. & HERRERO, E. 2006. A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism. Eukaryot Cell, *5*, 1748-59.

BARROS, T. & KUHLBRANDT, W. 2009. Crystallisation, structure and function of plant lightharvesting Complex II. Biochim Biophys Acta, 1787, 753-72.

BECK, A., LENDZIAN, K., OVEN, M., CHRISTMANN, A. & GRILL, E. 2003. Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates. Phytochemistry, 62, 423-31.

BEDNAREK, P., PISLEWSKA-BEDNAREK, M., SVATOS, A., SCHNEIDER, B., DOUBSKY, J., MANSUROVA, M., HUMPHRY, M., CONSONNI, C., PANSTRUGA, R., SANCHEZ-VAL-LET, A., MOLINA, A. & SCHULZE-LEFERT, P. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323, 101-6.

BELLI, G., POLAINA, J., TAMARIT, J., DE LA TORRE, M. A., RODRIGUEZ-MANZA-NEQUE, M. T., ROS, J. & HERRERO, E. 2002. Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein. J Biol Chem, 277, 37590-6.

BIANCHI, M. W., ROUX, C. & VARTANIAN, N. 2002. Drought regulation of GST8, encoding

the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiol Plant, 116, 96-105.

BLUM, R., BECK, A., KORTE, A., STENGEL, A., LETZEL, T., LENDZIAN, K. & GRILL, E. 2007. Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J, 49, 740-9.

BLUM, R., MEYER, K. C., WÜNSCHMANN, J., LENDZIAN, K. J. & GRILL, E. 2010. Cytosolic action of phytochelatin synthase. Plant Physiol, 153, 159-69.

BLUMBERG, B., SABBAGH, W., JR., JUGUILON, H., BOLADO, J., JR., VAN METER, C. M., ONG, E. S. & EVANS, R. M. 1998. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev, 12, 3195-205.

BORCH, R. F., BERNSTEIN, M. D., & DURST, H. D. 1971. J American Chemical Society, 93, 2897-2904.

BOTTCHER, C., WESTPHAL, L., SCHMOTZ, C., PRADE, E., SCHEEL, D. & GLAWISCH-NIG, E. 2009. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell, 21, 1830-45.

BRAZIER-HICKS, M., EVANS, K. M., CUNNINGHAM, O. D., HODGSON, D. R., STEEL, P. G. & EDWARDS, R. 2008. Catabolism of glutathione conjugates in Arabidopsis thaliana. Role in metabolic reactivation of the herbicide safener fenclorim. J Biol Chem, 283, 21102-12.

CAIRNS, N. G., PASTERNAK, M., WACHTER, A., COBBETT, C. S. & MEYER, A. J. 2006. Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol, 141, 446-55.

CAZALE, A. C. & CLEMENS, S. 2001. Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett, 507, 215-9.

CHAMBON, P. 2005. The nuclear receptor superfamily: a personal retrospect on the first two decades. Mol Endocrinol 19, 1418–1428.

CHI, Y., CHENG, Y., VANITHA, J., KUMAR, N., RAMAMOORTHY, R., RAMACHANDRAN, S. & JIANG, S. Y. 2010. Expansion Mechanisms and Functional Divergence of the Glutathione S-Transferase Family in Sorghum and Other Higher Plants. DNA Res.

CHINCHILLA, D., ZIPFEL, C., ROBATZEK, S., KEMMERLING, B., NURNBERGER, T., JONES, J. D., FELIX, G. & BOLLER, T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 448, 497-500.

CHOI, J. H., LOU, W. & VANCURA, A. 1998. A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem, 273, 29915-22.

CHUA, L., SHAN, X., WANG, J., PENG, W., ZHANG, G. & XIE, D. 2010. Proteomics study of COI1-regulated proteins in Arabidopsis flower. J Integr Plant Biol, 52, 410-9.

CLAY, N. K., ADIO, A. M., DENOUX, C., JANDER, G. & AUSUBEL, F. M. 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323, 95-101. COBBETT, C. & GOLDSBROUGH, P. 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol, 53, 159-82.

COLLINS, N. C., THORDAL-CHRISTENSEN, H., LIPKA, V., BAU, S., KOMBRINK, E., QIU, J. L., HUCKELHOVEN, R., STEIN, M., FREIALDENHOVEN, A., SOMERVILLE, S. C. & SCHULZE-LEFERT, P. 2003. SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 425, 973-7.

COLLINSON, E. J. & GRANT, C. M. 2003. Role of yeast glutaredoxins as glutathione S-transferases. J Biol Chem, 278, 22492-7.

COLLINSON, E. J., WHEELER, G. L., GARRIDO, E. O., AVERY, A. M., AVERY, S. V. & GRANT, C. M. 2002. The yeast glutaredoxins are active as glutathione peroxidases. J Biol Chem, 277, 16712-7.

COLLINS, S. R., KEMMEREN, P., ZHAO, X. C., GREENBLATT, J. F., SPENCER, F., HOL-STEGE, F. C., WEISSMAN, J. S. & KROGAN, N. J. 2007. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics, 6, 439-50.

CONN, S., CURTIN, C., BEZIER, A., FRANCO, C. & ZHANG, W. 2008. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot, 59, 3621-34.

CUMMINS, I., COLE, D. J. & EDWARDS, R. 1999. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J, 18, 285-92.

CUMMINS, I., DIXON, D. P., FREITAG-POHL, S., SKIPSEY, M. & EDWARDS, R. 2011. Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev, 43, 266-80.

DELAVEAU, T., DELAHODDE, A., CARVAJAL, E., SUBIK, J. & JACQ, C. 1994. PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Mol Gen Genet, 244, 501-11.

DELYE, C., WANG, T. & DARMENCY, H. 2002. An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim. Planta, 214, 421-7.

DERIDDER, B. P., DIXON, D. P., BEUSSMAN, D. J., EDWARDS, R. & GOLDSBROUGH, P. B. 2002. Induction of glutathione S-transferases in Arabidopsis by herbicide safeners. Plant Physiol, 130, 1497-505.

DERIDDER, B. P. & GOLDSBROUGH, P. B. 2006. Organ-specific expression of glutathione S-transferases and the efficacy of herbicide safeners in Arabidopsis. Plant Physiol, 140, 167-75.

DESTRO, T., PRASAD, D., MARTIGNAGO, D., BERNET, I. L., TRENTIN, A. R., RENU, I. K., FERRETTI, M. & MASI, A. 2011. Compensatory expression and substrate inducibility of gamma-glutamyl transferase GGT2 isoform in Arabidopsis thaliana. J Exp Bot, 62, 805-14.

DILDA, P. J., DON, A. S., TANABE, K. M., HIGGINS, V. J., ALLEN, J. D., DAWES, I. W. & HOGG, P. J. 2005. Mechanism of selectivity of an angiogenesis inhibitor from screening a genome-wide set of Saccharomyces cerevisiae deletion strains. J Natl Cancer Inst, 97, 1539-47.

DILDA, P. J., RAMSAY, E. E., CORTI, A., POMPELLA, A. & HOGG, P. J. 2008. Metabolism of the tumor angiogenesis inhibitor 4-(N-(S-Glutathionylacetyl)amino)phenylarsonous acid. J Biol Chem, 283, 35428-34.

DIXON, D. P., COLE, D. J. & EDWARDS, R. 1998a. Purification, regulation and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type-III GSTs. Plant Mol Biol, 36, 75-87.

DIXON, D. P., COLE, D. J. & EDWARDS, R. 1999. Dimerisation of maize glutathione transferases in recombinant bacteria. Plant Mol Biol, 40, 997-1008.

DIXON, D. P., CUMMINS, L., COLE, D. J. & EDWARDS, R. 1998b. Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol, 1, 258-66.

DIXON, D. P. & EDWARDS, R. 2008. Binding and glutathione conjugation of porphyrinogens by plant glutathione transferases. J Biol Chem, 283, 20268-20276.

DIXON, D. P. & EDWARDS, R. 2009. Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. J Biol Chem, 284, 21249-56.

DIXON, D. P. & EDWARDS, R. 2010a. Glutathione transferases. In: The Arabidopsis book (pp. 1-15). Rockville, Maryland, USA: American Society of Plant Biologists.

DIXON, D. P. & EDWARDS, R. 2010b. Roles for stress-inducible lambda glutathione transferases in flavonoid metabolism in plants as identified by ligand fishing. J Biol Chem, 285, 36322-9.

DIXON, D. P., HAWKINS, T., HUSSEY, P. J. & EDWARDS, R. 2009. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot, 60, 1207-18.

DIXON, D. P., LAPTHORN, A. & EDWARDS, R. 2002. Plant glutathione transferases. Genome Biol, 3, REVIEWS3004.

DIXON, D. P., MCEWEN, A. G., LAPTHORN, A. J. & EDWARDS, R. 2003. Forced evolution of a herbicide detoxifying glutathione transferase. J Biol Chem, 278, 23930-5.

DIXON, D. P., SKIPSEY, M., GRUNDY, N. M. & EDWARDS, R. 2005. Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiol, 138, 2233-44.

DIXON, D. P., SKIPSEY, M. & EDWARDS, R. 2010. Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 71, 338-50.

DRACULIC, T., DAWES, I. W. & GRANT, C. M. 2000. A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae. Mol Microbiol, 36, 1167-74.

DUBREUIL-MAURIZI, C., VITECEK, J., MARTY, L., BRANCIARD, L., FRETTINGER, P., WENDEHENNE, D., MEYER, A. J., MAUCH, F. & POINSSOT, B. 2011. Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression and hypersensitive response. Plant Physiol.

DUECKERSHOFF, K., MUELLER, S., MUELLER, M. J. & REINDERS, J. 2008. Impact of cyclopentenone-oxylipins on the proteome of Arabidopsis thaliana. Biochim Biophys Acta, 1784,

1975-85.

DUREK, P., SCHMIDT, R., HEAZLEWOOD, J. L., JONES, A., MACLEAN, D., NAGEL, A., KERSTEN, B. & SCHULZE, W. X. 2010. PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res, 38, D828-34.

ECKERS, E., BIEN, M., STROOBANT, V., HERRMANN, J. M. & DEPONTE, M. 2009. Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: the catalytic redox mechanism redux. Biochemistry, 48, 1410-23.

EDWARDS, R. & DIXON, D. P. 2005. Plant glutathione transferases. Methods Enzymol, 401, 169-86.

EZAKI, B., SUZUKI, M., MOTODA, H., KAWAMURA, M., NAKASHIMA, S. & MATSUMO-TO, H. 2004. Mechanism of gene expression of Arabidopsis glutathione S-transferase, AtGST1, and AtGST11 in response to aluminum stress. Plant Physiol, 134, 1672-82.

ELVIRI, L., SPERONI, F., CARERI, M., MANGIA, A., DI TOPPI, L. S. & ZOTTINI, M. 2010. Identification of in vivo nitrosylated phytochelatins in Arabidopsis thaliana cells by liquid chromatography-direct electrospray-linear ion trap-mass spectrometry. J Chromatogr A, 1217, 4120-6.

FABRINI, R., BOCEDI, A., PALLOTTINI, V., CANUTI, L., DE CANIO, M., URBANI, A., MARZANO, V., CORNETTA, T., STANO, P., GIOVANETTI, A., STELLA, L., CANINI, A., FEDERICI, G. & RICCI, G. 2010. Nuclear shield: a multi-enzyme task-force for nucleus protection. PLoS One, 5, e14125.

FERNANDEZ-CANON, J. M. & PENALVA, M. A. 1998. Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue. J Biol Chem, 273, 329-37.

FERRETTI, M., DESTRO, T., TOSATTO, S. C., LA ROCCA, N., RASCIO, N. & MASI, A. 2009. Gamma-glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast. New Phytol, 181, 115-26.

FUERST, E. P. & NORMAN, M. A. 1991. Interaction of herbicides with photosynthetic electron Transport. Weed Science, 39, 458-464.

FUERST, E. P. & VAUGHN, K. C. 1990. Mechanism of paraquat resistance. Weed Tech, 4, 150-156.

FROVA, C. 2006. Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng, 23, 149-69.

GARCERA, A., BARRETO, L., PIEDRAFITA, L., TAMARIT, J. & HERRERO, E. 2006. Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases. Biochem J, 398, 187-96.

GAVIN, A. C., ALOY, P., GRANDI, P., KRAUSE, R., BOESCHE, M., MARZIOCH, M., RAU, C., JENSEN, L. J., BASTUCK, S., DUMPELFELD, B., EDELMANN, A., HEURTIER, M. A., HOFFMAN, V., HOEFERT, C., KLEIN, K., HUDAK, M., MICHON, A. M., SCHELDER, M., SCHIRLE, M., REMOR, M., RUDI, T., HOOPER, S., BAUER, A., BOUWMEESTER, T., CA-SARI, G., DREWES, G., NEUBAUER, G., RICK, J. M., KUSTER, B., BORK, P., RUSSELL, R. B. & SUPERTI-FURGA, G. 2006. Proteome survey reveals modularity of the yeast cell ma-
chinery. Nature, 440, 631-6.

GAVIN, A. C., BOSCHE, M., KRAUSE, R., GRANDI, P., MARZIOCH, M., BAUER, A., SCHULTZ, J., RICK, J. M., MICHON, A. M., CRUCIAT, C. M., REMOR, M., HOFERT, C., SCHELDER, M., BRAJENOVIC, M., RUFFNER, H., MERINO, A., KLEIN, K., HUDAK, M., DICKSON, D., RUDI, T., GNAU, V., BAUCH, A., BASTUCK, S., HUHSE, B., LEUTWEIN, C., HEURTIER, M. A., COPLEY, R. R., EDELMANN, A., QUERFURTH, E., RYBIN, V., DREWES, G., RAIDA, M., BOUWMEESTER, T., BORK, P., SERAPHIN, B., KUSTER, B., NEUBAUER, G. & SUPERTI-FURGA, G. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141-7.

GEIGER, T., WISNIEWSKI, J., COX, J., ZANIVAN, S., KRUGER, M., ISHIHAMA, Y. & MANN, M. 2011. Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nature Protocols, 6, 147-157.

GEU-FLORES, F., MOLDRUP, M. E., BOTTCHER, C., OLSEN, C. E., SCHEEL, D. & HALKI-ER, B. A. 2011. Cytosolic {gamma}-Glutamyl Peptidases Process Glutathione Conjugates in the Biosynthesis of Glucosinolates and Camalexin in Arabidopsis. Plant Cell, 23, 2456-69.

GIETZ, R. D. & WOODS, R. A. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol, 350, 87-96.

GLAWISCHNIG, E. 2007. Camalexin. Phytochemistry, 68, 401-6.

GLAWISCHNIG, E., HANSEN, B. G., OLSEN, C. E. & HALKIER, B. A. 2004. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc Natl Acad Sci U S A, 101, 8245-50.

GLAZEBROOK, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 43, 205-27.

GOLOUBINOFF, P., EDELMAN, M. & HALLICK, R. B. 1984. Chloroplast-coded atrazine resistance in Solanum nigrum: psbA loci from susceptible and resistant biotypes are isogenic except for a single codon change. Nucleic Acids Res, 12, 9489-96.

GREETHAM, D., VICKERSTAFF, J., SHENTON, D., PERRONE, G. G., DAWES, I. W. & GRANT, C. M. 2010. Thioredoxins function as deglutathionylase enzymes in the yeast Saccharomyces cerevisiae. BMC Biochem, 11, 3.

GRILL, E., LOFFLER, S., WINNACKER, E. L. & ZENK, M. H. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A, 86, 6838-42.

GRILL, E., WINNACKER, E. L. & ZENK, M. H. 1985. Phytochelatins: the principal heavymetal complexing peptides of higher plants. Science, 230, 674-6.

GRILL, E., WINNACKER, E. L. & ZENK, M. H. 1987. Phytochelatins, a class of heavy-metalbinding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A, 84, 439-443.

GRUHLER, A., SCHULZE, W. X., MATTHIESEN, R., MANN, M. & JENSEN, O. N. 2005. Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectro-

metry. Mol Cell Proteomics, 4, 1697-709.

GRZAM, A., MARTIN, M. N., HELL, R. & MEYER, A. J. 2007. gamma-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Lett, 581, 3131-8.

GRZAM, A., TENNSTEDT, P., CLEMENS, S., HELL, R. & MEYER, A. J. 2006. Vacuolar sequestration of glutathione S-conjugates outcompetes a possible degradation of the glutathione moiety by phytochelatin synthase. FEBS Lett, 580, 6384-90.

GUELDENER, U., HEINISCH, J., KOEHLER, G. J., VOSS, D. & HEGEMANN, J. H. 2002. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res, 30, e23.

GUSKOV, A., KERN, J., GABDULKHAKOV, A., BROSER, M., ZOUNI, A. & SAENGER, W. 2009. Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol, 16, 334-42.

HA, S. B., SMITH, A. P., HOWDEN, R., DIETRICH, W. M., BUGG, S., O'CONNELL, M. J., GOLDSBROUGH, P. B. & COBBETT, C. S. 1999. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell, 11, 1153-64.

HABIG, W. H., PABST, M. J. & JAKOBY, W. B. 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem, 249, 7130-9.

HERRERO, E., ROS, J., TAMARIT, J. & BELLI, G. 2006. Glutaredoxins in fungi. Photosynth Res, 89, 127-40.

HIRAI, M. Y., KLEIN, M., FUJIKAWA, Y., YANO, M., GOODENOWE, D. B., YAMAZAKI, Y., KANAYA, S., NAKAMURA, Y., KITAYAMA, M., SUZUKI, H., SAKURAI, N., SHIBATA, D., TOKUHISA, J., REICHELT, M., GERSHENZON, J., PAPENBROCK, J. & SAITO, K. 2005. Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem, 280, 25590-5.

HIRATA, D., YANO, K. & MIYAKAWA, T. 1994. Stress-induced transcriptional activation mediated by YAP1 and YAP2 genes that encode the Jun family of transcriptional activators in Saccharomyces cerevisiae. Mol Gen Genet, 242, 250-6.

HIRSCHBERG, J. & MCINTOSH, L. 1983. Molecular Basis of Herbicide Resistance in Amaranthus hybridus. Science, 222, 1346-9.

HOHMANN-MARRIOTT, M. F. & BLANKENSHIP, R. E. 2011. Evolution of photosynthesis. Annu Rev Plant Biol, 62, 515-48.

HOLMGREN, A. 1976. Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci U S A, 73, 2275-9.

HSIEH, C. L., YEH, K. W., DE KOK, L. J., PAN, R. N., KUO, Y. H. & TSENG, M. H. 2011. Simultaneous Determination of Sulphur metabolites in Arabidopsis thaliana via LC-ESI-MS/MS and (34) S-metabolic Labelling. Phytochem Anal. DOI 10.1002/pca.1361.

HSU, J. L., HUANG, S. Y., CHOW, N. H. & CHEN, S. H. 2003. Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem, 75, 6843-52.

INOUE, M., OKAJIMA, K. & MORINO, Y. 1982. Metabolic coordination of liver and kidney in mercapturic acid biosynthesis in vivo. Hepatology, 2, 311-6.

IZAWA, S., MAEDA, K., SUGIYAMA, K., MANO, J., INOUE, Y. & KIMURA, A. 1999. Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem, 274, 28459-65.

IZQUIERDO, A., CASAS, C., MUHLENHOFF, U., LILLIG, C. H. & HERRERO, E. 2008. Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway. Eukaryot Cell, 7, 1415-26.

JAKOBSSON, P. J., MORGENSTERN, R., MANCINI, J., FORD-HUTCHINSON, A. & PERS-SON, B. 1999. Common structural features of MAPEG -- a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci, 8, 689-92.

JAKOBY, W. B. & ZIEGLER, D. M. 1990. The enzymes of detoxication. J Biol Chem, 265, 20715-8.

JANSEN, G., WU, C., SCHADE, B., THOMAS, D. Y. & WHITEWAY, M. 2005. Drag&Drop cloning in yeast. Gene, 344, 43-51.

JEPPESEN, M. G., ORTIZ, P., SHEPARD, W., KINZY, T. G., NYBORG, J. & ANDERSEN, G. R. 2003. The crystal structure of the glutathione S-transferase-like domain of elongation factor 1Bgamma from Saccharomyces cerevisiae. J Biol Chem, 278, 47190-8.

JIANG, H. W., LIU, M. J., CHEN, I. C., HUANG, C. H., CHAO, L. Y. & HSIEH, H. L. 2010. A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol, 154, 1646-58.

JONES, A. M., THOMAS, V., TRUMAN, B., LILLEY, K., MANSFIELD, J. & GRANT, M. 2004. Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochemistry, 65, 1805-16.

KHOKON, M. A., JAHAN, M. S., RAHMAN, T., HOSSAIN, M. A., MUROYAMA, D., MINA-MI, I., MUNEMASA, S., MORI, I. C., NAKAMURA, Y. & MURATA, Y. 2011. Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis. Plant Cell Environ, 34, 1900-6.

KIM, Y. M., PARK, K., JOO, G. J., JEONG, E. M., KIM, J. E. & RHEE, I. K. 2004. Glutathionedependent biotransformation of the fungicide chlorothalonil. J Agric Food Chem, 52, 4192-6.

KITAMURA, S., MATSUDA, F., TOHGE, T., YONEKURA-SAKAKIBARA, K., YAMAZAKI, M., SAITO, K. & NARUMI, I. 2010. Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. Plant J, 62, 549-59.

KITAMURA, S., SHIKAZONO, N. & TANAKA, A. 2004. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 37, 104-14.

KLINGENBERG, M. 1958. Pigments of rat liver microsomes. Arch Biochem Biophys, 75, 376-86.

KOBAYASHI, S., KIDOU, S. & EJIRI. 2001. Detection and characterization of glutathione s-

transferase activity in rice EF-1 $\beta\beta$ ' and EF-1 γ expressed in escherichia coli. Biochem Biophys Res Comm, 288, 509-514.

KOHLE, C. & BOCK, K. W. 2009. Coordinate regulation of human drug-metabolizing enzymes, and conjugate transporters by the Ah receptor, pregnane X receptor and constitutive androstane receptor. Biochem Pharmacol, 77, 689-99.

KOLM, R. H., DANIELSON, U. H., ZHANG, Y., TALALAY, P. & MANNERVIK, B. 1995. Isothiocyanates as substrates for human glutathione transferases: structure-activity studies. Biochem J, 311, 453-459.

KOONIN, E. V., MUSHEGIAN, A. R., TATUSOV, R. L., ALTSCHUL, S. F., BRYANT, S. H., BORK, P. & VALENCIA, A. 1994. Eukaryotic translation elongation factor 1 gamma contains a glutathione transferase domain--study of a diverse, ancient protein superfamily using motif search and structural modeling. Protein Sci, 3, 2045-54.

KOPRIVA, S. & RENNENBERG, H. 2004. Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot, 55, 1831-42.

KREUZ, K., TOMMASINI, R. & MARTINOIA, E. 1996. Old Enzymes for a New Job (Herbicide Detoxification in Plants). Plant Physiol, 111, 349-353.

KROGAN, N. J., CAGNEY, G., YU, H., ZHONG, G., GUO, X., IGNATCHENKO, A., LI, J., PU, S., DATTA, N., TIKUISIS, A. P., PUNNA, T., PEREGRIN-ALVAREZ, J. M., SHALES, M., ZHANG, X., DAVEY, M., ROBINSON, M. D., PACCANARO, A., BRAY, J. E., SHEUNG, A., BEATTIE, B., RICHARDS, D. P., CANADIEN, V., LALEV, A., MENA, F., WONG, P., STAROSTINE, A., CANETE, M. M., VLASBLOM, J., WU, S., ORSI, C., COLLINS, S. R., CHANDRAN, S., HAW, R., RILSTONE, J. J., GANDI, K., THOMPSON, N. J., MUSSO, G., ST ONGE, P., GHANNY, S., LAM, M. H., BUTLAND, G., ALTAF-UL, A. M., KANAYA, S., SHILATIFARD, A., O'SHEA, E., WEISSMAN, J. S., INGLES, C. J., HUGHES, T. R., PAR-KINSON, J., GERSTEIN, M., WODAK, S. J., EMILI, A. & GREENBLATT, J. F. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440, 637-43.

LAEMMLI, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-5.

LAMOUREUX, G. L., SHIMABUKURO, R. H., SWANSON, H. R. & FREAR, D. S. 1970. Metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in excised sorghum leaf sections. J Agric Food Chem, 18, 81-6.

LAMOUREUX, G. L., STAFFORD, L. E., SHIMABUKURO, R. H. & ZAYLSKIE, R. G. 1973. Atrazine metabolism in sorghum: catabolism of the glutathione conjugate of atrazine. J Agric Food Chem, 21, 1020-30.

LAN, T., YANG, Z. L., YANG, X., LIU, Y. J., WANG, X. R. & ZENG, Q. Y. 2009. Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Cell, 21, 3749-66.

LANCASTER, C. R. & MICHEL, H. 1999. Refined crystal structures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid. J Mol Biol, 286, 883-98.

LAPPARTIENT, A. G., VIDMAR, J. J., LEUSTEK, T., GLASS, A. D. & TOURAINE, B. 1999.

Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J, 18, 89-95.

LI, L., CHENG, N., HIRSCHI, K. D. & WANG, X. 2010. Structure of Arabidopsis chloroplastic monothiol glutaredoxin AtGRXcp. Acta Crystallogr D Biol Crystallogr, 66, 725-32.

LIPKA, U., FUCHS, R. & LIPKA, V. 2008. Arabidopsis non-host resistance to powdery mildews. Curr Opin Plant Biol, 11, 404-11.

LIPKA, V., DITTGEN, J., BEDNAREK, P., BHAT, R., WIERMER, M., STEIN, M., LANDTAG, J., BRANDT, W., ROSAHL, S., SCHEEL, D., LLORENTE, F., MOLINA, A., PARKER, J., SO-MERVILLE, S. & SCHULZE-LEFERT, P. 2005. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science, 310, 1180-3.

LIU, J., BRAZIER-HICKS, M. & EDWARDS, R. 2009. A kinetic model for the metabolism of the herbicide safener fenclorim in Arabidopsis thaliana. Biophys Chem, 143, 85-94.

LU, D., LIN, W., GAO, X., WU, S., CHENG, C., AVILA, J., HEESE, A., DEVARENNE, T. P., HE, P. & SHAN, L. 2011. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science, 332, 1439-42.

LUIKENHUIS, S., PERRONE, G., DAWES, I. W. & GRANT, C. M. 1998. The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell, 9, 1081-91.

LUO, M., JIANG, Y. L., MA, X. X., TANG, Y. J., HE, Y. X., YU, J., ZHANG, R. G., CHEN, Y. & ZHOU, C. Z. 2010. Structural and biochemical characterization of yeast monothiol glutaredoxin Grx6. J Mol Biol, 398, 614-22.

MA, X. X., JIANG, Y. L., HE, Y. X., BAO, R., CHEN, Y. & ZHOU, C. Z. 2009. Structures of yeast glutathione-S-transferase Gtt2 reveal a new catalytic type of GST family. EMBO Rep, 10, 1320-6.

MANGELSDORF, D. J. & EVANS, R. M. 1995. The RXR heterodimers and orphan receptors. Cell, 83, 841-50.

MAMNUN, Y. M., PANDJAITAN, R., MAHE, Y., DELAHODDE, A. & KUCHLER, K. 2002. The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mol Microbiol, 46, 1429-40.

MARCHAND, C. H., VANACKER, H., COLLIN, V., ISSAKIDIS-BOURGUET, E., MA-RECHAL, P. L. & DECOTTIGNIES, P. 2010. Thioredoxin targets in Arabidopsis roots. Proteomics, 10, 2418-28.

MARRS, K. A., ALFENITO, M. R., LLOYD, A. M. & WALBOT, V. 1995. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature, 375, 397-400.

MARTIN, M. N., SALADORES, P. H., LAMBERT, E., HUDSON, A. O. & LEUSTEK, T. 2007. Localization of members of the gamma-glutamyl transpeptidase family identifies sites of gluta-thione and glutathione S-conjugate hydrolysis. Plant Physiol, 144, 1715-32.

MARTINOIA, E., MAESHIMA, M. & NEUHAUS, H. E. 2007. Vacuolar transporters and their essential role in plant metabolism. J Exp Bot, 58, 83-102.

MASI, A., DESTRO, T., TURETTA, L., VAROTTO, S., CAPORALE, G. & FERRETTI, M. 2007. Localization of gamma-glutamyl transferase activity and protein in Zea mays organs and tissues. J Plant Physiol, 164, 1527-35.

MAY, M. J. & LEAVER, C. J. 1994. Arabidopsis thaliana gamma-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc Natl Acad Sci U S A, 91, 10059-63.

MCGOLDRICK, S., MCCARTHY, T. V. & SHEEHAN, D. 2005a. The 110kDa glutathione transferase of Yarrowia lipolytica is encoded by a homologue of the TEF3 gene from Saccharomyces cerevisiae: cloning, expression, and homology modeling of the recombinant protein. Biochem Biophys Res Commun, 337, 1125-32.

MCGOLDRICK, S., O'SULLIVAN, S. M. & SHEEHAN, D. 2005b. Glutathione transferase-like proteins encoded in genomes of yeasts and fungi: insights into evolution of a multifunctional protein superfamily. FEMS Microbiol Lett, 242, 1-12.

MCGONIGLE, B., KEELER, S. J., LAU, S. M., KOEPPE, M. K. & O'KEEFE, D. P. 2000. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol, 124, 1105-20.

MECHANT, E., DE MAREZ, T., HERMANN, O. & BULCKE, R. 2008. Resistance of Chenopodium albumto photosystem II-inhibitors. Commun Agric Appl Biol Sci, 73, 913-7.

MEINDL, T., BOLLER, T. & FELIX, G. 2000. The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell, 12, 1783-94.

MEISTER, A. 1988a. Glutathione metabolism and its selective modification. J Biol Chem, 263, 17205-8.

MEISTER, A. 1988b. On the discovery of glutathione. Trends Biochem Sci, 13, 185-8. MENCHARI, Y., DELYE, C. & LE CORRE, V. 2007. Genetic variation and population structure in black-grass (Alopecurus myosuroides Huds.), a successful, herbicide-resistant, annual grass weed of winter cereal fields. Mol Ecol, 16, 3161-72.

MENGISTU, L. W., CHRISTOFFERS, M. J. & LYM, R. G. 2005. A psbA mutation in Kochia scoparia (L) Schrad from railroad rights-of-way with resistance to diuron, tebuthiuron and metribuzin. Pest Manag Sci, 61, 1035-42.

MESECKE, N., MITTLER, S., ECKERS, E., HERRMANN, J. M. & DEPONTE, M. 2008a. Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into ironsulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins. Biochemistry, 47, 1452-63.

MESECKE, N., SPANG, A., DEPONTE, M. & HERRMANN, J. M. 2008b. A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance. Mol Biol Cell, 19, 2673-80.

MHAMDI, A., QUEVAL, G., CHAOUCH, S., VANDERAUWERA, S., VAN BREUSEGEM, F. & NOCTOR, G. 2010. Catalase function in plants: a focus on Arabidopsis mutants as stressmimic models. J Exp Bot, 61, 4197-220.

MIGOCKA, M., PAPIERNIAK, A., KOSATKA, E. & KLOBUS, G. 2011. Comparative study of the active cadmium efflux systems operating at the plasma membrane and tonoplast of cucumber

root cells. J Exp Bot, 62, 4903-16.

MIKKELSEN, M. D., HANSEN, C. H., WITTSTOCK, U. & HALKIER, B. A. 2000. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem, 275, 33712-7.

MILLER, K. D., IRZYK, G. P., FUERST, E. P., MCFARLAND, J. E., BARRINGER, M., CRUZ, S., EBERLE, W. J. & FÖRY, W. 1996a. Time course of benoxacor metabolism and identification of benoxacor metabolites isolated from suspension-cultured Zea mays cells 1 h after Treatment. J. Agric Food Chem, 44, 3326-3334.

MILLER, K. D., IRZYK, G. P., FUERST, E. P., MCFARLAND, J. E., BARRINGER, M., CRUZ, S., EBERLE, W. J. & FÖRY, W. 1996b. Identification of metabolites of the herbicide safener benoxacor isolated from suspension-cultured Zea mays cells 3 and 24 h after treatment. J Agric Food Chem, 44, 3335-3341.

MITRO, N., MAK, P. A., VARGAS, L., GODIO, C., HAMPTON, E., MOLTENI, V., KREUSCH, A. & SAEZ, E. 2007. The nuclear receptor LXR is a glucose sensor. Nature, 445, 219-23.

MOLINA, M. M., BELLI, G., DE LA TORRE, M. A., RODRIGUEZ-MANZANEQUE, M. T. & HERRERO, E. 2004. Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins. J Biol Chem, 279, 51923-30.

MUELLER, L. A., GOODMAN, C. D., SILADY, R. A. & WALBOT, V. 2000. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol, 123, 1561-70.

MULLINEAUX, P. M. & RAUSCH, T. 2005. Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res, 86, 459-74.

NAFISI, M., GOREGAOKER, S., BOTANGA, C. J., GLAWISCHNIG, E., OLSEN, C. E., HAL-KIER, B. A. & GLAZEBROOK, J. 2007. Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell, 19, 2039-52.

NOCTOR, G., GOMEZ, L., VANACKER, H. & FOYER, C. H. 2002. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot, 53, 1283-304.

NOCTOR, G., QUEVAL, G., MHAMDI, A., CHAOUCH, S. & FOYER, C. H. 2011. Glutathione. In: The Arabidopsis book, 9, 1-32.

NUTRICATI, E., MICELI, A., BLANDO, F. & DE BELLIS, L. 2006. Characterization of two Arabidopsis thaliana glutathione S-transferases. Plant Cell Rep, 25, 997-1005.

OECD Environmental Data. Compendium 2008. Agriculture, p. 22, (<u>http://www.oecd.org/da-taoecd/56/45/41255417.pdf</u>).

O'NEILL, L. A. 2011. Plant science. Innate immunity in plants goes to the PUB. Science, 332, 1386-7.

ONG, S. E., BLAGOEV, B., KRATCHMAROVA, I., KRISTENSEN, D. B., STEEN, H., PAN-DEY, A. & MANN, M. 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics, 1, 376-86.

OHKAMA-OHTSU, N., OIKAWA, A., ZHAO, P., XIANG, C., SAITO, K. & OLIVER, D. J. 2008. A gamma-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiol, 148, 1603-13.

OHKAMA-OHTSU, N., RADWAN, S., PETERSON, A., ZHAO, P., BADR, A. F., XIANG, C. & OLIVER, D. J. 2007a. Characterization of the extracellular gamma-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis. Plant J, 49, 865-77.

OHKAMA-OHTSU, N., SASAKI-SEKIMOTO, Y., OIKAWA, A., JIKUMARU, Y., SHINODA, S., INOUE, E., KAMIDE, Y., YOKOYAMA, T., HIRAI, M. Y., SHIRASU, K., KAMIYA, Y., OLIVER, D. J. & SAITO, K. 2011. 12-Oxo-phytodienoic acid--Glutathione Conjugate is Transported into the Vacuole in Arabidopsis. Plant Cell Physiol, 52, 205-20

OHKAMA-OHTSU, N., ZHAO, P., XIANG, C. & OLIVER, D. J. 2007b. Glutathione conjugates in the vacuole are degraded by gamma-glutamyl transpeptidase GGT3 in Arabidopsis. Plant J, 49, 878-88.

OH, M. H., WU, X., CLOUSE, S. D. & HUBER, S. C. 2011. Functional importance of BAK1 tyrosine phosphorylation in vivo. Plant Signal Behav, 6, 400-5.

OMIECINSKI, C. J., VANDEN HEUVEL, J. P., PERDEW, G. H. & PETERS, J. M. 2011. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci, 120 Suppl 1, S49-75.

PARISY, V., POINSSOT, B., OWSIANOWSKI, L., BUCHALA, A., GLAZEBROOK, J. & MAUCH, F. 2007. Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J, 49, 159-72.

PARK, K. W. & MALLORY-SMITH, C. A. 2006. psbA mutation (Asn266 to Thr) in Senecio vulgaris L. confers resistance to several PS II-inhibiting herbicides. Pest Manag Sci, 62, 880-5.

PEDRAJAS, J. R., PORRAS, P., MARTINEZ-GALISTEO, E., PADILLA, C. A., MIRANDA-VIZUETE, A. & BARCENA, J. A. 2002. Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments. Biochem J, 364, 617-23.

PENNINCKX, M. J. 2002. An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res, 2, 295-305.

PERL-TREVES, R., FOLEY, R. C., CHEN, W. & SINGH, K. B. 2004. Early induction of the Arabidopsis GSTF8 promoter by specific strains of the fungal pathogen Rhizoctonia solani. Mol Plant Microbe Interact, 17, 70-80.

PETIT, C., BAY, G., PERNIN, F. & DELYE, C. 2010. Prevalence of cross- or multiple resistance to the acetyl-coenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in black-grass (Alopecurus myosuroides Huds.) in France. Pest Manag Sci, 66, 168-77.

RAMOS, H. C., RUMBO, M. & SIRARD, J. C. 2004. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol, 12, 509-17.

REYMOND, P., WEBER, H., DAMOND, M. & FARMER, E. E. 2000. Differential gene ex-

pression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell, 12, 707-20.

PIKE, S., PATEL, A., STACEY, G. & GASSMANN, W. 2009. Arabidopsis OPT6 is an oligopeptide transporter with exceptionally broad substrate specificity. Plant Cell Physiol, 50, 1923-32.

ROMIJN, E. P., CHRISTIS, C., WIEFFER, M., GOUW, J. W., FULLAONDO, A., VAN DER SLUIJS, P., BRAAKMAN, I. & HECK, A. J. 2005. Expression clustering reveals detailed coexpression patterns of functionally related proteins during B cell differentiation: a proteomic study using a combination of one-dimensional gel electrophoresis, LC-MS/MS, and stable isotope labeling by amino acids in cell culture (SILAC). Mol Cell Proteomics, 4, 1297-310.

POWLES, S. B. & YU, Q. 2010. Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol, 61, 317-47.

QUEVAL, G., ISSAKIDIS-BOURGUET, E., HOEBERICHTS, F. A., VANDORPE, M., GAKIE-RE, B., VANACKER, H., MIGINIAC-MASLOW, M., VAN BREUSEGEM, F. & NOCTOR, G. 2007. Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J, 52, 640-57.

REA, P. A. 2006. Phytochelatin synthase, papain's cousin, in stereo. Proc Natl Acad Sci U S A, 103, 507-8.

REA, P. A. 2007. Plant ATP-binding cassette transporters. Annu Rev Plant Biol, 58, 347-75.

REINEMER, P., PRADE, L., HOF, P., NEUEFEIND, T., HUBER, R., ZETTL, R., PALME, K., SCHELL, J., KOELLN, I., BARTUNIK, H. D. & BIESELER, B. 1996. Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture. J Mol Biol, 255, 289-309.

RENNENBERG, H. 1982. Glutathione metabolism and possible biological roles in higher plants. Phytochemistry, 21, 2771-2781.

RENNENBERG, H., STEINKAMP, R. & POLLE, A. 1980. Evidence for the participation of a 5-oxo-prolinase in degradation of glutathione in Nicotiana tabacum. Z Naturforsch C, 35, 708-11.

REUMANN, S., QUAN, S., AUNG, K., YANG, P., MANANDHAR-SHRESTHA, K., HOLBROOK, D., LINKA, N., SWITZENBERG, R., WILKERSON, C. G., WEBER, A. P., OL-SEN, L. J. & HU, J. 2009. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol, 150, 125-43.

RICCI, G., CACCURI, A. M., LO BELLO, M., PASTORE, A., PIEMONTE, F. & FEDERICI, G. 1994. Colorimetric and fluorometric assays of glutathione transferase based on 7-chloro-4-nitro-benzo-2-oxa-1,3-diazole. Anal Biochem, 218, 463-5.

RIECHERS, D. E., KREUZ, K. & ZHANG, Q. 2010. Detoxification without intoxication: herbicide safeners activate plant defense gene expression. Plant Physiol, 153, 3-13.

RODRIGUEZ-MANZANEQUE, M. T., ROS, J., CABISCOL, E., SORRIBAS, A. & HERRE-RO, E. 1999. Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol, 19, 8180-90.

RODRIGUEZ-MANZANEQUE, M. T., TAMARIT, J., BELLI, G., ROS, J. & HERRERO, E. 2002. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell, 13, 1109-21.

ROUHIER, N., COUTURIER, J., JOHNSON, M. K. & JACQUOT, J. P. 2010. Glutaredoxins: roles in iron homeostasis. Trends Biochem Sci, 35, 43-52.

RYU, H. Y., KIM, S. Y., PARK, H. M., YOU, J. Y., KIM, B. H., LEE, J. S. & NAM, K. H. 2009. Modulations of AtGSTF10 expression induce stress tolerance and BAK1-mediated cell death. Biochem Biophys Res Commun, 379, 417-22.

SALMINEN, A., PARFENYEV, A. N., SALLI, K., EFIMOVA, I. S., MAGRETOVA, N. N., GOLDMAN, A., BAYKOV, A. A. & LAHTI, R. 2002. Modulation of dimer stability in yeast pyrophosphatase by mutations at the subunit interface and ligand binding to the active site. J Biol Chem, 277, 15465-71.

SANCHEZ-VALLET, A., RAMOS, B., BEDNAREK, P., LOPEZ, G., PISLEWSKA-BEDNA-REK, M., SCHULZE-LEFERT, P. & MOLINA, A. 2010. Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant J, 63, 115-27.

SAPPL, P. G., CARROLL, A. J., CLIFTON, R., LISTER, R., WHELAN, J., HARVEY MILLAR, A. & SINGH, K. B. 2009. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J.

SCHUHEGGER, R., NAFISI, M., MANSOUROVA, M., PETERSEN, B. L., OLSEN, C. E., SVATOS, A., HALKIER, B. A. & GLAWISCHNIG, E. 2006. CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol, 141, 1248-54.

SCHULZE, W. X., SCHNEIDER, T., STARCK, S., MARTINOIA, E. & TRENTMANN, O. 2011. Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. Plant J.

SCHWESSINGER, B., ROUX, M., KADOTA, Y., NTOUKAKIS, V., SKLENAR, J., JONES, A. & ZIPFEL, C. 2011. Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet, 7, e1002046.

SHIMABUKURO, R. H., SWANSON, H. R. & WALSH, W. C. 1970. Glutathione conjugation: atrazine detoxication mechanism in corn. Plant Physiol, 46, 103-7.

SHIMABUKURO, R. H., WALSH, W. C., LAMOUREUX, G. L. & STAFFORD, L. E. 1973. Atrazine metabolism in sorghum: chloroform-soluble intermediates in the N-dealkylation and glutathione conjugation pathways. J Agric Food Chem, 21, 1031-6.

SILVA, G. M., NETTO, L. E., DISCOLA, K. F., PIASSA-FILHO, G. M., PIMENTA, D. C., BARCENA, J. A. & DEMASI, M. 2008. Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome. FEBS J, 275, 2942-55.

SINHA, J., REYES, S. J. & GALLIVAN, J. P. 2010. Reprogramming bacteria to seek and destroy an herbicide. Nat Chem Biol, 6, 464-70.

SKIPSEY, M., KNIGHT, K. M., BRAZIER-HICKS, M., DIXON, D. P., STEEL, P. G. & ED-WARDS, R. 2011. Xenobiotic responsiveness of Arabidopsis thaliana to a chemical series derived from a herbicide safener. J Biol Chem, 286, 32268-76.

SMITH, A. P., NOURIZADEH, S. D., PEER, W. A., XU, J., BANDYOPADHYAY, A., MUR-PHY, A. S. & GOLDSBROUGH, P. B. 2003. Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. Plant J, 36, 433-42.

SMITH, P. K., KROHN, R. I., HERMANSON, G. T., MALLIA, A. K., GARTNER, F. H., PRO-VENZANO, M. D., FUJIMOTO, E. K., GOEKE, N. M., OLSON, B. J. & KLENK, D. C. 1985. Measurement of protein using bicinchoninic acid. Anal Biochem, 150, 76-85.

SØNDERBY, I. E., BUROW, M., ROWE, H. C., KLIEBENSTEIN, D. J. & HALKIER, B. A. 2010b. A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiol, 153, 348-63.

SØNDERBY, I. E., GEU-FLORES, F. & HALKIER, B. A. 2010a. Biosynthesis of glucosinolatesgene discovery and beyond. Trends Plant Sci, 15, 283-90.

STEINKAMP, R. & RENNENBERG, H. 1984. γ-Glutamyltranspeptidase in tobacco suspension cultures: catalytic properties and subcellular localization. Physiol Plant, 61, 251-256.

STEINKAMP, R., SCHWEIHOFEN, B. & RENNENBERG, H. 1987. γ-Glutamylcyclotransferase in tobacco suspension cultures: catalytic properties and subcellular localization. Physiol Plant, 69, 499-503.

STEIN, M., DITTGEN, J., SANCHEZ-RODRIGUEZ, C., HOU, B. H., MOLINA, A., SCHUL-ZE-LEFERT, P., LIPKA, V. & SOMERVILLE, S. 2006. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell, 18, 731-46.

STOROZHENKO, S., BELLES-BOIX, E., BABIYCHUK, E., HEROUART, D., DAVEY, M. W., SLOOTEN, L., VAN MONTAGU, M., INZE, D. & KUSHNIR, S. 2002. Gamma-glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties. Plant Physiol, 128, 1109-19.

SU, T., XU, J., LI, Y., LEI, L., ZHAO, L., YANG, H., FENG, J., LIU, G. & REN, D. 2011. Glutathione-Indole-3-Acetonitrile Is Required for Camalexin Biosynthesis in Arabidopsis thaliana. Plant Cell.

SUHRE, K. & SCHMITT-KOPPLIN, P. 2008. MassTRIX: mass translator into pathways. Nucleic Acids Res, 36, W481-4.

SUINO, K., PENG, L., REYNOLDS, R., LI, Y., CHA, J. Y., REPA, J. J., KLIEWER, S. A. & XU, H. E. 2004. The nuclear xenobiotic receptor CAR: structural determinants of constitutive activation and heterodimerization. Mol Cell, 16, 893-905.

SYNOWSKY, S. A., VAN WIJK, M., RAIJMAKERS, R. & HECK, A. J. 2009. Comparative multiplexed mass spectrometric analyses of endogenously expressed yeast nuclear and cytoplasmic exosomes. J Mol Biol, 385, 1300-13.

SZKLARCZYK, D., FRANCESCHINI, A., KUHN, M., SIMONOVIC, M., ROTH, A., MINGUEZ, P., DOERKS, T., STARK, M., MULLER, J., BORK, P., JENSEN, L. J. & VON

MERING, C. 2011. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res, 39, D561-8.

TAN, K., FEIZI, H., LUO, C., FAN, S. H., RAVASI, T. & IDEKER, T. G. 2008. A systems approach to delineate functions of paralogous transcription factors: role of the Yap family in the DNA damage response. Proc Natl Acad Sci U S A, 105, 2934-9.

TEIXEIRA, M. C., TELO, J. P., DUARTE, N. F. & SA-CORREIA, I. 2004. The herbicide 2,4-dichlorophenoxyacetic acid induces the generation of free-radicals and associated oxidative stress responses in yeast. Biochem Biophys Res Commun, 324, 1101-7.

TEST, B. & KRÄMER, S. D. 2006. The biochemistry of drug metabolism - An introduction Part 1. Principles and overview. Chemistry & Biodiversity, 3, 1059.

TEST, B. & KRÄMER, S. D. 2007a. The biochemistry of drug metabolism - An introduction Part 2. Redox reactions and their enzymes. Chemistry & Biodiversity, 4, 262-275.

THATCHER, L. F., CARRIE, C., ANDERSSON, C. R., SIVASITHAMPARAM, K., WHELAN, J. & SINGH, K. B. 2007. Differential gene expression and subcellular targeting of Arabidopsis glutathione S-transferase F8 is achieved through alternative transcription start sites. J Biol Chem, 282, 28915-28.

THOM, R., CUMMINS, I., DIXON, D. P., EDWARDS, R., COLE, D. J. & LAPTHORN, A. J. 2002. Structure of a tau class glutathione S-transferase from wheat active in herbicide detoxification. Biochemistry, 41, 7008-20.

THOM, R., DIXON, D. P., EDWARDS, R., COLE, D. J. & LAPTHORN, A. J. 2001. The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism. J Mol Biol, 308, 949-62.

TIMSIT, Y. E. & NEGISHI, M. 2007. CAR and PXR: the xenobiotic-sensing receptors. Steroids, 72, 231-46.

TODOROVA, T., T., VUILLEUMIER, S. A. & KUJUMDZIEVA, A. 2007. Role of glutathione S-transferases and glutathione in arsenic and peroxide resistance in Saccharomyces cerevisiae: a reverse genetic analysis approach. Biotech Biotech Equip, 21, 348-352.

UBIYVOVK, V. M., BLAZHENKO, O. V., GIGOT, D., PENNINCKX, M. & SIBIRNY, A. A. 2006. Role of gamma-glutamyltranspeptidase in detoxification of xenobiotics in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. Cell Biol Int, 30, 665-71.

UEDA, A., HAMADEH, H. K., WEBB, H. K., YAMAMOTO, Y., SUEYOSHI, T., AFSHARI, C. A., LEHMANN, J. M. & NEGISHI, M. 2002. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol Pharmacol, 61, 1-6.

UNITED STATES DEPARTMENT OF AGRICULTURE. 2009. Top 10 der Baumwolle produzierenden Länder weltweit nach Produktionsmenge im Zeitraum 2008 und 2009 (in 1.000 metrischen Tonnen. statista 2010, <u>http://de.statista.com/</u>.

ÜLKER, B., PEITER, E., DIXON, D. P., MOFFAT, C., CAPPER, R., BOUCHE, N., EDWARDS, R., SANDERS, D., KNIGHT, H. & KNIGHT, M. R. 2008. Getting the most out of publicly available T-DNA insertion lines. Plant J, 56, 665-77.

VATAMANIUK, O. K., MARI, S., LANG, A., CHALASANI, S., DEMKIV, L. O. & REA, P. A. 2004. Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with gamma-glutamylcysteine during catalysis: stoichiometric and site-directed mutagenic analysis of arabidopsis thaliana PCS1-catalyzed phytochelatin synthesis. J Biol Chem, 279, 22449-60.

VESTERGAARD, M., MATSUMOTO, S., NISHIKORI, S., SHIRAKI, K., HIRATA, K. & TA-KAGI, M. 2008. Chelation of cadmium ions by phytochelatin synthase: role of the cysteine-rich C-terminal. Anal Sci, 24, 277-81.

VIGNOLS, F., BREHELIN, C., SURDIN-KERJAN, Y., THOMAS, D. & MEYER, Y. 2005. A yeast two-hybrid knockout strain to explore thioredoxin-interacting proteins in vivo. Proc Natl Acad Sci U S A, 102, 16729-34.

VUILLEUMIER, S. 1997. Bacterial glutathione S-transferases: what are they good for? J Bacteriol, 179, 1431-41.

WACHTER, A., WOLF, S., STEININGER, H., BOGS, J. & RAUSCH, T. 2005. Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J, 41, 15-30.

WADA, T., GAO, J. & XIE, W. 2009. PXR and CAR in energy metabolism. Trends Endocrinol Metab, 20, 273-9.

WAGNER, U., EDWARDS, R., DIXON, D. P. & MAUCH, F. 2002. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol, 49, 515-32.

WITTSTOCK, U. & HALKIER, B. A. 2002. Glucosinolate research in the Arabidopsis era. Trends Plant Sci, 7, 263-70.

WITTSTOCK, U. & BUROW, M. 2010. Glucosinolate Breakdown in Arabidopsis: Mechanism, Regulation and Biological Significance. In: The Arabidopsis book (pp. 1-13). Rockville, Maryland, USA: American Society of Plant Biologists. <u>http://www.bioone.org/doi/full/10.1199/tab.0134</u>

WOLF, A. E., DIETZ, K. J. & SCHRODER, P. 1996. Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole. FEBS Lett, 384, 31-4.

WU, A. L., HALLSTROM, T. C. & MOYE-ROWLEY, W. S. 1996. ROD1, a novel gene conferring multiple resistance phenotypes in Saccharomyces cerevisiae. J Biol Chem, 271, 2914-20.

WÜNSCHMANN, J., BECK, A., MEYER, L., LETZEL, T., GRILL, E. & LENDZIAN, K. J. 2007. Phytochelatins are synthesized by two vacuolar serine carboxypeptidases in Saccharomyces cerevisiae. FEBS Lett, 581, 1681-7.

WÜNSCHMANN, J., KRAJEWSKI, M., LETZEL, T., HUBER, E. M., EHRMANN, A., GRILL, E. & LENDZIAN, K. J. 2010. Dissection of glutathione conjugate turnover in yeast. Phytochemistry, 71, 54-61.

XIE, D. X., FEYS, B. F., JAMES, S., NIETO-ROSTRO, M. & TURNER, J. G. 1998. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 280, 1091-4.

XU, H. & FAN, L. L. 2011. Antifungal agents. Part 4: Synthesis and antifungal activities of novel indole[1,2-c]-1,2,4-benzotriazine derivatives against phytopathogenic fungi in vitro. Eur J Med

Chem, 46, 364-9.

XU, Z., ESCAMILLA-TREVINO, L., ZENG, L., LALGONDAR, M., BEVAN, D., WINKEL, B., MOHAMED, A., CHENG, C. L., SHIH, M. C., POULTON, J. & ESEN, A. 2004. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol, 55, 343-67.

YAN, J., ZHANG, C., GU, M., BAI, Z., ZHANG, W., QI, T., CHENG, Z., PENG, W., LUO, H., NAN, F., WANG, Z. & XIE, D. 2009. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell, 21, 2220-36.

YAO, R., YASUOKA, A., KAMEI, A., KITAGAWA, Y., TATEISHI, N., TSURUOKA, N., KISO, Y., SUEYOSHI, T., NEGISHI, M., MISAKA, T. & ABE, K. 2010. Dietary flavonoids activate the constitutive androstane receptor (CAR). J Agric Food Chem, 58, 2168-73.

ZHANG, H., YANG, Z., SHEN, Y. & TONG, L. 2003. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase. Science, 299, 2064-7.

ZHANG, Q., XU, F., LAMBERT, K. N. & RIECHERS, D. E. 2007. Safeners coordinately induce the expression of multiple proteins and MRP transcripts involved in herbicide metabolism and detoxification in Triticum tauschii seedling tissues. Proteomics, 7, 1261-78.

ZHOU, N., TOOTLE, T. L. & GLAZEBROOK, J. 1999. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell, 11, 2419-28.

ZIPFEL, C., ROBATZEK, S., NAVARRO, L., OAKELEY, E. J., JONES, J. D., FELIX, G. & BOLLER, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428, 764-7.

ZYBAILOV, B., RUTSCHOW, H., FRISO, G., RUDELLA, A., EMANUELSSON, O., SUN, Q. & VAN WIJK, K. J. 2008. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One, 3, e1994.

Bezeichnung	#	Sytematischer Name	Primer_for Sequenz $(5' \rightarrow 3')$	Bezeichnung	#	Sytematischer Name	Primer_forSequenz $(5^{\circ} \rightarrow 3^{\circ})$
GT01_del	-	YGR154c	GAGGAAAATACTCGTAAAAATAATCATAAA CAGTA AGCCATGA AGCTTCGTACG	GT01_del	5	YGR154c	TAAATATATGTGTGTGTAAGAAAATATTAG A AGTTTTTCAGC ATAGGGGCCACTAGTAGATC
GTO1 chk	ŝ	YGR154c	CTTGGGTGAAGTTGAAGTTG	GTO1 chk	4	YGR154c	AAATCGAGAAAAGACAAATGC
GT02_del	5	YKR076w	CGAGAATTTACCCAAACCCTGCGCAAGATA	GT02_del	9	YKR076w	GAGATTATAGACATTTGATTATTTAATTACAG
GTO2 chk	٢	YKR076w	AATAAGAAATGCAGCTGAAGCTTCGTACG	GT02 chk	~	YKR076w	CCATCTTTATTCACCTCTTC
GT03_del	6	YMR251w	TCCATCTCTTCTTGCAACCACGGCAAGC	GT03_del 1	0	YMR251w	TGTGTGCGTGCTAATCGAAAGAAAAAAAAAAAAAA
	:		TGGAGCTALGCAGCTGAAGCTTCGTACGC		(ITGAGCATAGGCCACTAGTGGATC
GT03_chk	Ξ	YMR251w	AATATACCGCCCCTATATGTATGT	GT03_chk 1	2	YMR251w	CCAGCACCATTTAGTCATAG
GTT1_del	13	YIR038c	CTAAAATGAGGGGAAAAGGTAAATCAAG GAAGCAT	GTT1_del 1	4	YIR038c	GGCTGCTAGTGCCGTACGAACGCAA CAAAACGGTTT
GTT1 chk	15	YIR038c	GCCAAGGCTAGCCTAATA	GTT1 chk 1	9	YIR038c	CAACTGAACTATGGCGTGAC
GTT2 ^{_del}	17	YLL060c	AACTTGGTGCTCTATATAAAGTACCTACAAA	GTT2 ^{_del} 1	8	YLL060c	CCACGTACCACGCAAAACTTGTCT
I			GGATA	I			CAAACTTGTCTCAAGTAGCCACT
GTT2_chk	19	YLL060c	GTGCGCGTGAACTGTAGGAA	GTT2_chk 2	0	YLL060c	CCGCGGCAATATCGATGCAA
GRX1_del	21	YCL035c	AATTATACAAATAGACAAAACCTCAGAAGGA	GRX1_del 2	2	YCL035c	AAACCTGTGTGCATGGAAAAAACTTTGTCTCCCTT
			AAAA				
GRX1_chk	23	YCL035c	TCATGCACAAGTGAGCTGTC	GRX1_chk 2	2	YCL035c	AGACGTACGAGAGCCTAAAG
GRX2_del	25	YDR513w	GATTAACGGACACTCCAACTACTGTTATATAT	GRX2_del 2	9	YDR513w	TAAATATTATGAAGGGGATATTAGCGTAATTTAAAC
			TGTTTCATG				TAGCA
GRX2_chk	27	YDR513w	GATCAAATGCCTCTCGGCAA	GRX2_chk 2	× 8	YDR513w	AGCAAATTGGGGCAGATG
ROD1_del	29	YOR018w	TCATCACCATTCGCTTCTTCTTCCTCCATAA	ROD1_del 3	000	YOR018w	TTGTCGAAATTTCGAAGACAAAAAAAAAAG
			GTAATAATGCAGCTGAAGCTTCGTACG				CAGTCTAGCATAGGCCACTAGTGGATCTG
ROD1_chk	31	YOR018w	TTTATTTTGAAGACCGAAAACTACG	ROD1_chk 3	22	YOR018w	CAAGAACTGGTCCGATATTATTCAC
TEF4_del	33	YCL035c	ACTCAATTCTTTGATTTTGGCCCTCGATAGATT	TEF4_del 3	4	YCL035c	TTGGGAAGAAAATATGGAAGAAGAAGAGTTATTGA
			CAAGATGCAGCTGAAGCTTCGTACGC				GATTAGCATAGGCCACTAGTGGGATCTG
TEF4_chk	35	YCL035c	CTCATTACACACCTTTGCCTCTATT	TEF4_chk 3	36	YCL035c	AATATTGTTAGAGTAACCGCAGCAG

	GC TC AC AC GCC TTTC AACATG AACATG AC AC AC AC AC AC AC AC AC AC AC AC AC
$z (5^{\circ} \rightarrow 3^{\circ})$	ATIGICTCT TradetCTCT ATTCTTTCT ATTCTTTCT ATTCTTTCT ATTCTTTCT
forSequen	AGACTTA CGCTTGAC CGCTTGAC CGCTTGAC CGCTTGAC AGATCTAC AGATCTAC AGATCTAC AGATCTAC AACATTC AACAATCG AACATCG CCTGGGGC CTGGGGCA AACCTTCC AACCTCC AACCTCC AACCTCC AACCTCC CTTGGGCA AACCTTCC AACCTTCC AACCTTCC CTTGGGCA CTTGGGCA CTTGGGCA CTTGGGCA CTTCCCCA AACCTTCC CTTCCCAA AACCTTCC CTTCCCAA AACCTTCC CTTCCCAA AACCTTCC CTTCCCAA CTTCCCCAA AACCTTCC CTTCCCCAA AACCTTCC CTTCCCCAA AACCTTCC CTTCCCCAA AACCTTCC CTTCCCCAC CTTCCCCCAA CCTCCCCAA CTTCCCCCAA CCTTCCCAA CTTCCCCCAA CTTCCCCCAA CTTCCCCCCAA CCTTCCCAA CCTTCCCCAA CTTCCCCCCAA CCTTCCCCAA CCTTCCCCAA CCTTCCCCCAA CCTTCCCCAA CCTTCCCCAA CCTTCCCCAA CCTTCCCCCAA CCTTCCCCCAA CCTTCCCCCCCC
Primer	CTTAGGC CTTAGGC CTTAGGC CTTAGGC CTTAGGC CTTAAGGC CTTAAGGC CTTAAGGC CTTAAGGC CTTAAGG CCTAAGGC CCTAAGCC CCTAAGGC CCTAAGCC CCTAACCC CCTAAGCC
	TAGTCGA TAGTCG
	ATAL ATAL ATAL ATAL ATAL ATAL ATAL ATAL
#	$\begin{array}{c} 38\\ 44\\ 44\\ 44\\ 55\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56$
ichnung	salt salt salt salt salt salt salt salt
Beze	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
Primer_forSequenz $(5^{\circ} \rightarrow 3^{\circ})$	MINGGATCCATGGCGGAGAAGAAGAAGAGGAGG MINGGATCCATGGCGGAGAAGAAGAAGAGGAGG MINGGATCCATGGCGGAGAAGAAGAAGAAG MINGGATCCATGGCGGAGAAGAAGAAGAAGTG MINGGATCCATGGCGGAGAAAAGAAGAAGTG ATAGGATCCATGGCGGAGAAAAGAAA
Bezeichnung	UI_BamHI UZ_BamHI UZ_BamHI UZ_BamHI US_BamHI UG_EcoRI UI_BamHI UI_BamHI UI_BamHI UI1_BamHI UI1_BamHI UI1_BamHI UI2_BamHI UI3_BamHI UI3_BamHI UI3_BamHI UI3_BamHI UI2_BamHI U22_BamHI U22_BamHI U22_BamHI T2_BamHI F1_F1_F1_F1_F1_F1_F1_F1_F1_F1_F1_F1_F1_F
#	$\begin{array}{c} 37\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37\\$
AGI Code	At2g29490 At2g29490 At2g29460 At2g29460 At2g29460 At2g29440 At1g29440 At1g29930 At1g79930 At1g79930 At1g7170 At1g7170 At1g7170 At1g7170 At1g7170 At1g7170 At1g7170 At1g7170 At1g7170 At1g7170 At1g7170 At1g7170 At1g7170 At1g7170 At1g7170 At1g7170 At1g7190 At1g7190 At1g7190 At1g7190 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7200 At1g7270 At1g7270 At1g7270 At1g7270
AtGST	UI U2 U2 U3 U3 U3 U3 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1

Organismus	Stamm	Plasmid	Selektionskassette	Ausgangsvektor	Stammsammlung
E. coli	DH5a	pGAL1	Amp, HIS3	pSH62	#2481
E. coli	DH5a	pGAL1::AtGSTF2	Amp, HIS3	pSH62	#2484
E. coli	DH5a	pGAL1::AtGSTF3	Amp, HIS3	pSH62	#2497
E. coli	DH5a	pGAL1::AtGSTF4	Amp, HIS3	pSH62	#2493
E. coli	XL1blue	pGAL1::AtGSTF6	Amp, HIS3	pSH62	#2517
E. coli	DH5a	pGAL1::AtGSTF7	Amp, HIS3	pSH62	#2500
E. coli	DH5a	pGAL1::AtGSTF8	Amp, HIS3	pSH62	#2520
E. coli	DH5a	pGAL1::AtGSTF9	Amp, HIS3	pSH62	#2494
E. coli	DH5a	pGAL1::AtGSTF10	Amp, HIS3	pSH62	#2521
E. coli	XL1blue	pGAL1::AtGSTF11	Amp, HIS3	pSH62	#2506
E. coli	XL1blue	pGAL1::AtGSTF14	Amp, HIS3	pSH62	#2508
E. coli	DH5a	pGAL1::AtGSTU1	Amp, HIS3	pSH62	#2496
E. coli	DH5a	pGAL1::AtGSTU2	Amp, HIS3	pSH62	#2491
E. coli	DH5a	pGAL1::AtGSTU3	Amp, HIS3	pSH62	#2507
E. coli	XL1blue	pGAL1::AtGSTU4	Amp, HIS3	pSH62	#2514
E. coli	DH5a	pGAL1::AtGSTU5	Amp, HIS3	pSH62	#2501
E. coli	XL1blue	pGAL1::AtGSTU6	Amp, HIS3	pSH62	#2526
E. coli	DH5a	pGAL1::AtGSTU7	Amp, HIS3	pSH62	#2502
E. coli	XL1blue	pGAL1::AtGSTU8	Amp, URA3	pSH47	#2523
E. coli	XL1blue	pGAL1::AtGSTU10	Amp, HIS3	pSH62	#2516
E. coli	XL1blue	pGAL1::AtGSTU11	Amp, HIS3	pSH62	#2503
E. coli	XL1blue	pGAL1::AtGSTU12	Amp, HIS3	pSH62	#2515
E. coli	XL1blue	pGAL1::AtGSTU13	Amp, HIS3	pSH62	#2504
E. coli	XL1blue	pGAL1::AtGSTU14	Amp, URA3	pSH47	#2524
E. coli	XL1blue	pGAL1::AtGSTU15	Amp, HIS3	pSH62	#2510
E. coli	XL1blue	pGAL1::AtGSTU16	Amp, HIS3	pSH62	#2512
E. coli	XL1blue	pGAL1::AtGSTU17	Amp, HIS3	pSH62	#2535
E. coli	DH5a	pGAL1::AtGSTU18	Amp, HIS3	pSH62	#2519
E. coli	DH5a	pGAL1::AtGSTU19	Amp, HIS3	pSH62	#2485
E. coli	XL1blue	pGAL1::AtGSTU22	Amp, HIS3	pSH62	#2511
E. coli	XL1blue	pGAL1::AtGSTU23	Amp, HIS3	pSH62	#2518
E. coli	DH5a	pGAL1::AtGSTU24	Amp, HIS3	pSH62	#2492
E. coli	DH5a	pGAL1::AtGSTU25	Amp, HIS3	pSH62	#2498
E. coli	XL1blue	pGAL1::AtGSTU26	Amp, HIS3	pSH62	#2513
E. coli	XL1blue	pGAL1::AtGSTU27	Amp, HIS3	pSH62	#2527
E. coli	DH5a	pGAL1::AtGSTT1	Amp, HIS3	pSH62	#2509
E. coli	DH5a	pGAL1::AtGSTT2	Amp, HIS3	pSH62	#2495
E. coli	XL1blue	pGAL1::AtGSTL1	Amp, URA3	pSH47	#2525
E. coli	XL1blue	pGAL1::AtGSTL3	Amp, HIS3	pSH62	#2530
E. coli	DH5a	pGAL1::AtGSTZ1	Amp, HIS3	pSH62	#2499
E. coli	XL1blue	pGAL1::AtDHAR1	Amp, HIS3	pSH62	#2528
E. coli	XL1blue	pGAL1::AtDHAR2	Amp, HIS3	pSH62	#2529
E. coli	DH5a	pGAL1::AtDHAR3	Amp, HIS3	pSH62	#2522
S. cerevisiae	BY4741	pGAL1::eGFP	Amp, LEU2	pGREG565	#3833
S. cerevisiae	BY4741	pGAL1::eGFP:AtGSTF2	Amp, LEU2	pGREG565	#2543

E. coli	XL1blue	pGAL1::eGFP:AtGSTF4	Amp, LEU2	pGREG565	#3838
S. cerevisiae	BY4741	pGAL1::eGFP:AtGSTF8	Amp, LEU2	pGREG565	#2545
S. cerevisiae	BY4741	pGAL1::eGFP:AtGSTU19	Amp, LEU2	pGREG565	#2544

Stamm	Bezeichnung	Plasmid	Selektionskassette	Genotyp	Stammsammlung
BY4741	Wildtyp	pGAL1	HIS3	siehe Anhang ii	#2486
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1	HIS3	siehe Anhang ii	#2487
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTF2	HIS3	siehe Anhang ii	#2489
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTF3	HIS3	siehe Anhang ii	#3806
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTF4	HIS3	siehe Anhang ii	#3829
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTF6	HIS3	siehe Anhang ii	#3830
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTF7	HIS3	siehe Anhang ii	#3803
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTF8	HIS3	siehe Anhang ii	#2539
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTF9	HIS3	siehe Anhang ii	#3804
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTF10	HIS3	siehe Anhang ii	#3807
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTF11	HIS3	siehe Anhang ii	#3782
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTF14	HIS3	siehe Anhang ii	#3805
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU1	HIS3	siehe Anhang ii	#3799
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU2	HIS3	siehe Anhang ii	#3779
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU3	HIS3	siehe Anhang ii	#3783
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU4	HIS3	siehe Anhang ii	#3808
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU5	HIS3	siehe Anhang ii	#3800
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU6	HIS3	siehe Anhang ii	#3809
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU7	HIS3	siehe Anhang ii	#3801
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU8	URA3	siehe Anhang ii	#2532
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU10	HIS3	siehe Anhang ii	#2558
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU11	HIS3	siehe Anhang ii	#2559
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU12	HIS3	siehe Anhang ii	#3810
BY4741	$\Delta tef 4 \Delta gtt 1 \Delta gtt 2 \Delta grx 1 \Delta grx 2$	pGAL1::AtGSTU13	HIS3	siehe Anhang ii	#3811
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU14	URA3	siehe Anhang ii	#2533
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU15	HIS3	siehe Anhang ii	#3802
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU16	HIS3	siehe Anhang ii	#2535
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU17	HIS3	siehe Anhang ii	#3832
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU18	HIS3	siehe Anhang ii	#3812
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU19	HIS3	siehe Anhang ii	#2490
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU22	HIS3	siehe Anhang ii	#2536
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU24	HIS3	siehe Anhang ii	#3780
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU25	HIS3	siehe Anhang ii	#3781
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU26	HIS3	siehe Anhang ii	#3813
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTU27	HIS3	siehe Anhang ii	#3761
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTT1	HIS3	siehe Anhang ii	#2551
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTT2	HIS3	siehe Anhang ii	#2552
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTL1	URA3	siehe Anhang ii	#2534
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTL3	HIS3	siehe Anhang ii	#3762
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtGSTZ1	HIS3	siehe Anhang ii	#2553
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtDHAR1	HIS3	siehe Anhang ii	
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtDHAR2	HIS3	siehe Anhang ii	
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::AtDHAR3	HIS3	siehe Anhang ii	#3784
BY4741	Wildtyp	pGAL1::eGFP	LEU2	siehe Anhang ii	#2540

BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::eGFP	LEU2	siehe Anhang ii	#2543
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::eGFP:AtGSTF2	LEU2	siehe Anhang ii	#2544
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::eGFP:AtGSTF8	LEU2	siehe Anhang ii	#2545
BY4741	$\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$	pGAL1::eGFP:AtGSTU19	LEU2	siehe Anhang ii	#2546
BY4741	$\Delta tef4$	pGAL1	HIS3	siehe Anhang ii	#2547
BY4741	$\Delta tef4$	pGAL1::AtGSTF2	HIS3	siehe Anhang ii	#2548
BY4741	$\Delta tef4$	pGAL1::AtGSTF8	HIS3	siehe Anhang ii	#2549
BY4741	$\Delta tef4$	pGAL1::AtGSTU19	HIS3	siehe Anhang ii	#2550
BY4742	Wildtyp	pGAL1	HIS3	siehe Anhang ii	#3773
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1	HIS3	siehe Anhang ii	#3774
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTF2	HIS3	siehe Anhang ii	
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTF3	HIS3	siehe Anhang ii	#3764
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTF4	HIS3	siehe Anhang ii	#3777
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTF6	HIS3	siehe Anhang ii	#3778
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTF7	HIS3	siehe Anhang ii	#3796
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTF8	HIS3	siehe Anhang ii	#3827
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTF9	HIS3	siehe Anhang ii	#3797
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTF10	HIS3	siehe Anhang ii	#3815
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTF11	HIS3	siehe Anhang ii	#3787
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTF14	HIS3	siehe Anhang ii	#3798
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTU1	HIS3	siehe Anhang ii	#3792
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTU2	HIS3	siehe Anhang ii	#3822
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTU3	HIS3	siehe Anhang ii	#3788
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTU4	HIS3	siehe Anhang ii	#3816
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTU5	HIS3	siehe Anhang ii	#3793
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTU6	HIS3	siehe Anhang ii	#3817
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU7	HIS3	siehe Anhang ii	#3794
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTU8	URA3	siehe Anhang ii	#3835
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU10	HIS3	siehe Anhang ii	#3824
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU11	HIS3	siehe Anhang ii	#3823
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU12	HIS3	siehe Anhang ii	#3818
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU13	HIS3	siehe Anhang ii	#3819
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU14	URA3	siehe Anhang ii	#3836
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU15	HIS3	siehe Anhang ii	#3795
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU16	HIS3	siehe Anhang ii	#3825
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU17	HIS3	siehe Anhang ii	#3763
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU18	HIS3	siehe Anhang ii	#3820
BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTU19	HIS3	siehe Anhang ii	
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU22	HIS3	siehe Anhang ii	
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU23	HIS3	siehe Anhang ii	#3831
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU24	HIS3	siehe Anhang ii	#3785
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU25	HIS3	siehe Anhang ii	#3786
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU26	HIS3	siehe Anhang ii	#3821
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTU27	HIS3	siehe Anhang ii	#3826
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTT1	HIS3	siehe Anhang ii	#3789
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTT2	HIS3	siehe Anhang ii	#3790

BY4742	$\Delta gto1 \Delta gto2 \Delta gto3$	pGAL1::AtGSTL1	URA3	siehe Anhang ii	#3775
BY4742	$\Delta g to 1 \Delta g to 2 \Delta g to 3$	pGAL1::AtGSTL3	HIS3	siehe Anhang ii	#3776
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtGSTZ1	HIS3	siehe Anhang ii	#3791
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtDHAR1	HIS3	siehe Anhang ii	#3766
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtDHAR2	HIS3	siehe Anhang ii	#3767
BY4742	$\Delta gto 1 \Delta gto 2 \Delta gto 3$	pGAL1::AtDHAR3	HIS3	siehe Anhang ii	#3765
BY4741	$\Delta cis2\Delta cpc$	pGAL1::AtGSTU25	HIS3	siehe Anhang ii	#3828

Fenclorim-Glutathion-Metabolite:

Metabolit	Neutral	Ladung	gemessen*	theoretisch	[ppm]	WT BY4741	Mutante**	AtGSTF2	AtGSTF8	AtGSTU19
γ-ECG-FC	C20H22CIN5O6S	-1	494,09068	494,09066	-0,04	1,87E+07	1,49E+06	5,69E+06	2,79E+07	2,66E+07
γ -EC-FC	$\mathrm{C}_{18}\mathrm{H}_{19}\mathrm{ClN}_4\mathrm{O}_5\mathrm{S}$	-1	437,06931	437,06916	-0,3	1,70E+07	N.D.	3,13E+06	1,80E+07	2,71E+07
CG-FC	$\mathrm{C_{15}H_{15}ClN_4O_3}$	-1	N.D.	333,07599	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
C-FC	$\mathrm{C_{13}H_{12}ClN_{3}O_{2}S}$	-1	308,02657	308,02660	0,1	1,21E+06	N.D.	N.D.	2,11E+06	3,09E+06
FC-SH	C10H7CIN2S	-1	220,99450	220,99457	0,3	1,38E+07	N.D.	1,03E+07	3,11E+07	3,07E+07

* Die gemessene Masse bezieht sich auf WT BY4741

** $\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$

Benoxacor-Glutathion-Metabolite:

Metabolit	Neutral	Ladung	gemessen*	theoretisch	[ppm]	WT BY4741	Mutante**	AtGSTF2	AtGSTF8	AtGSTU19
γ-ECG-BX-Cl	C21H27CIN4O8S	-1	529,11654	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
γ -ECG-BX	$\mathrm{C_{21}H_{28}N_4O_8S}$	-1	495,15551	495,15532	0,38	3,44E+06	N.D.	N.D.	1,13E+07	5,32E+06
γ -EC-BX	$C_{19}H_{25}N_3O_7S$	-1	438,13404	438,13376	0,64	N.D.	N.D.	N.D.	1,38E+06	N.D.
CG-BX	$C_{16}H_{20}N_{3}O_{5}S$	-1	365,10509	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
C-BX	$\mathrm{C_{14}H_{18}N_2O_4S}$	-1	309,09145	309,09150	-0,16	N.D.	N.D.	9,24E+05	4,30E+06	1,99E+06
BX-SH	C ₁₁ H ₁₃ NO ₂ S	-1	222,05942	222,05946	-0,18	N.D.	N.D.	N.D.	1,89E+06	1,43E+06

* Die gemessene Masse bezieht sich auf WT BY4741

** $\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$

Chlorthalonil-Glutathion-Metabolite:

Metabolit	Neutral	Ladung	gemessen*	theoretisch	[ppm]	WT BY4741	Mutante**	AtGSTF11	AtGSTU15	AtGSTU25
γ-ECG-TPN	C ₁₈ H ₁₆ Cl ₃ N ₅ O ₆ S	-1	533,98122	533,98141	0,4	3,99E+08	1,88E+08	2,33E+08	4,35E+07	2,79E+08
γ-EC-TPN	$C_{16}H_{13}Cl_3N_4O_5S$	-1	476,95990	476,95995	0,1	1,48E+07	9,45E+06	1,34E+07	7,44E+06	1,24E+07
CG-TPN	C13H9Cl3N4O3S	-1	N.D.	404,93882	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
C-TPN	C ₁₁ H ₆ Cl ₃ N ₃ O ₂ S	-1	347,91733	347,91735	0,1	N.D.	2,48E+07	6,94E+07	1,34E+07	8,11E+07
γ-ECG-TPN-γ-ECG	C ₂₈ H ₃₂ Cl ₂ N ₈ O ₁₂ S ₂	-1	805,08805	805,08854	0,6	1,23E+08	8,57E+07	8,51E+06	1,04E+08	2,08E+07
γ-ECG-TPN-CG	C26H29Cl2N7O11S2	-1	748,06679	748,06708	0,4	3,50E+07	1,92E+07	N.D.	1,08E+07	N.D.
γ-EC-TPN-γ-EC	C24H26Cl2N6O10S2	-1	N.D.	691,04561	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
γ-ECG-TPN-CG	C23H25Cl2N7O9S2	-1	676,04564	676,04595	0,5	N.D.	2,16E+07	N.D.	5,44E+07	5,49E+06
*** γ -ECG-TPN-C	C21H22Cl2N6O8S2	-1	619,02413	619,02448	0,6	5,71E+07	9,66E+07	2,00E+07	2,55E+08	3,96E+07
*** CG-TPN-y -EC	C21H22Cl2N6O8S2	-1	619,02413	619,02448	0,6	5,71E+07	9,66E+07	2,00E+07	2,55E+08	3,96E+07
C-TPN-y-EG	C19H19Cl2N5O7S2	-1	562,00326	562,00302	-0,4	N.D.	N.D.	N.D.	1,57E+07	N.D.
CG-TPN-CG	C18H18Cl2N6O6S2	-1	N.D.	537,00335	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
C-TPN-CG	C ₁₆ H ₁₅ Cl ₂ N ₅ O ₅ S ₂	-1	489,98210	489,98189	-0,4	N.D.	N.D.	N.D.	1,26E+07	N.D.
C-TPN-C	$C_{14}H_{12}Cl_2N_4O_4S_2$	-1	432,96036	432,96043	0,2	N.D.	2,10E+07	1,08E+07	1,15E+08	1,41E+07
C-TPN-SH	$C_{11}H_7Cl_2N_3O_2S_2$	-1	345,92824	345,9284	0,5	2,88E+07	3,77E+07	6,65E+06	3,69E+07	9,54E+06
HS-TPN-SH	$C_8H_2Cl_2N_2S_2$	-1	258,89632	258,89637	0,2	3,37E+07	1,44E+07	N.D.	5,62E+06	3,77E+06

* Die gemessene Masse bezieht sich auf WT BY4741 bzw. auf die Mutante** . Darüber hinaus wurde in allen Fällen das spezifische Isotopenmuster von ³⁵Cl und ³⁷Cl detektiert.

** $\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$

*** Strukturisomere

Metabolit	Neutral	Ladung	gemessen*	theoretisch	[ppm]	WT BY4741	Mutante**
γ-ECG-AZ	C19H21Cl2N7O6S	-1	544,05734	544,05783	0,90	5,98E+08	5,31E+07
γ -EC-AZ	C17H18Cl2N6O5S	-1	487,03671	487,03637	-0,70	5,83E+07	9,62E+06
CG-AZ	C14H14Cl2N6O3S	-1	415,01541	415,01524	-0,41	1,84E+08	3,47E+07
C-AZ	C12H11Cl2N5O2S	-1	357,99389	357,99377	-0,34	4,93E+08	7,00E+07
γ-ECG-AZ-γ-ECG	C29H37ClN10O12S2	-1	815,16418	815,16496	0,96	1,10E+08	N.D.
γ -ECG-AZ-EC	C27H34ClN9O11S2	-1	758,14306	758,14350	0,58	N.D.	N.D.
γ -EC-AZ- γ -EC	C25H31ClN8O10S2	-1	701,12160	701,12203	0,61	N.D.	N.D.
γ-ECG-AZ-CG	C24H30ClN9O9S2	-1	686,12177	686,12237	0,87	8,15E+07	N.D.
***	C22H27CIN8O8S2	-1	629,10048	629,10090	0,67		N.D.
*** CG-AZ-γ -EC	C22H27CIN8O8S2	-1	629,10048	629,10090	0,67	2,10E+08	N.D.
C-AZ-γ-EG	C20H24ClN7O7S2	-1	572,07970	572,07944	-0,45		N.D.
CG-AZ-CG	C19H23CIN8O6S2	-1	557,07956	557,07977	0,38	1,54E+07	N.D.
C-AZ-CG	C17H20CIN7O5S2	-1	500,05835	500,05831	-0,08	2,49E+07	N.D.
C-AZ-C	C15H17ClN6O4S2	-1	443,03671	443,03685	0,32	6,14E+06	N.D.
C-AZ-SH	C12H12CIN5O2S2	-1	N.D.	356,00482	N.D.	N.D.	N.D.
HS-AZ-SH	C9H7CIN4S2	-1	268,97271	268,97279	0,30	N.D.	N.D.

Anilazin-Glutathion-Metabolite (1):

* Die gemessene Masse bezieht sich auf WT BY4741 bzw. *At*GSTF4**. Darüber hinaus wurde bei den Anilazin (mono)-GS-Metaboliten das spezifische Isotopenmuster von ³⁵Cl und ³⁷Cl detektiert.

** $\Delta tef4 \Delta gtt1 \Delta gtt2 \Delta grx1 \Delta grx2$

*** Strukturisomere

AtGSTF2	AtGSTF3	AtGSTF4	AtGSTF6	AtGSTF7	AtGSTF8	AtGSTF9	AtGSTF10	AtGSTF11	AtGSTF14
7,43E+08	3,02E+08	4,43E+08	5,47E+08	3,68E+07	5,61E+08	1,13E+08	1,40E+09	2,37E+08	5,09E+07
8,34E+07	1,19E+07	4,26E+07	7,35E+07	N.D.	4,91E+07	6,13E+06	1,38E+08	1,77E+07	N.D.
2,04E+08	1,75E+08	9,84E+07	1,56E+08	1,30E+07	1,70E+08	2,08E+07	1,96E+08	3,87E+07	2,35E+07
5,87E+08	4,10E+08	1,91E+08	4,03E+08	5,80E+07	5,03E+08	7,93E+07	4,31E+08	1,78E+08	4,49E+07
7,89E+07	N.D.	2,93E+08	1,26E+08	N.D.	1,33E+08	1,56E+07	1,13E+08	2,29E+07	N.D.
N.D.	N.D.	8,52E+06	N.D.						
N.D.	N.D.	N.D.	N.D.	N.D.	6,51E+06	N.D.	N.D.	N.D.	N.D.
5,60E+07	6,45E+06	2,82E+08	1,03E+08	N.D.	1,09E+08	1,12E+07	6,25E+07	1,37E+07	N.D.
1,48E+08	1,95E+07	6,27E+08	2,86E+08	N.D.	3,15E+08	4,18E+07	2,00E+08	4,33E+07	7,69E+06
1,48E+08	1,95E+07	6,27E+08	2,86E+08	N.D.	3,15E+08	4,18E+07	2,00E+08	4,33E+07	7,69E+06
8,65E+06	7,14E+06	1,02E+07	7,67E+06	8,03E+06	N.D.	N.D.	7,43E+06	8,25E+06	9,69E+06
8,52E+06	N.D.	4,55E+07	1,20E+07	N.D.	1,93E+07	N.D.	6,79E+06	N.D.	N.D.
1,52E+07	N.D.	8,48E+07	3,09E+07	N.D.	4,93E+07	5,43E+06	1,37E+07	N.D.	N.D.
1,65E+07	N.D.	5,01E+07	2,16E+07	N.D.	4,50E+07	5,53E+06	1,14E+07	N.D.	N.D.
N.D.									
N.D.	N.D.	N.D.	N.D.	N.D.	5,26E+06	N.D.	N.D.	N.D.	N.D.

Metabolit	AtGSTU1	AtGSTU:	2 AtGST	'U3 AtG	STU4	AtG	STU5	AtGSTU6	AtGSTU7	AtGSTU8	AtGSTU10
γ-ECG-AZ	5,61E+08	3,41E+08	3 7,02E+	-08 3,25	5E+07	2,97	7E+09	1,33E+09	7,72E+08	4,75E+07	9,93E+07
γ-EC-AZ	3,92E+07	2,30E+0	7 6,06E+	-07 7,19	9E+06	4,15E+08		1,94E+08	4,11E+07	1,29E+07	7,08E+06
CG-AZ	1.41E+08	9.17E+0	7 2.15E+	-08 1.16	5E+07	3,14E+08		1.43E+08	2.54E+08	1.24E+07	1.62E+07
C-AZ	2.15E+08	1.30E+08	3 4.02EH	-08 3.8	5E+07	6,06E+08		3.68E+08	3.75E+08	2.68E+07	1.91E+07
v-ECG-AZ-v-ECG	2.09E+07	2 38E+0	7 231E-	-07 N	JD	5 28E+07		1 15E+08	6.63E+06	1 78E+08	ND
y-ECG-AZ-EC	5,00E+06	2,50E+0	N D	0, I	UD.	ND		N D	N D	ND	ND
y EC AZ y EC	ND	N.D.	7 24E-	-06 N	UD.	N D		N.D.	N.D.	N.D.	N.D.
» ECG AZ CG	1.D. 2.01E±07	1 62E±0	7,24E	-07 N	ID.	2 56E+0		N.D.	N.D. 7 12E±06	1.54E±08	N.D.
y-ECG-AZ-CG	5,01E±07	2,02ET0	7 5,43ET	-07 N	I.D.	2,50		0,02E+07	1,00E+07	1,34E+08	N.D.
*** y-ECG-AZ-C	5,6/E+0/	4,13E+0	0,53E1	-07 N	I.D.	D. 1,40		1,/3E+08	1,80E+07	2,84E+08	N.D.
*** CG-AZ-y -EC	5,6/E+0/	4,13E+0	/ 6,53EH	5,53E+07 N		1,40E+08		1,73E+08	1,80E+07	2,84E+08	N.D.
C-AZ-y-EG	7,50E+06	9,59E+00	5 N.D	. 8,92	2E+06	7,77E+06		7,42E+06	7,29E+06	1,56E+07	N.D.
CG-AZ-CG	N.D.	N.D.	N.D	. N	I.D.	N.D.		7,91E+06	N.D.	2,77E+07	N.D.
C-AZ-CG	8,00E+06	N.D.	1,22E+	1,22E+07 N		.D. N		7,15E+06	N.D.	4,54E+07	6,57E+06
C-AZ-C	8,81E+06	N.D.	7,94E+	-06 N	N.D.		I.D.	N.D.	N.D.	2,97E+07	N.D.
C-AZ-SH	N.D.	N.D.	N.D	. N	N.D.		I.D.	N.D.	N.D.	N.D.	N.D.
HS-AZ-SH	N.D.	N.D. N.D.		. N	N.D.		I.D.	N.D.	N.D.	N.D.	N.D.
Metabolit	AtGSTU1	1 AtGSTU	12 AtGS	TU13 At	GSTU14	AtC	GSTU15	AtGSTU16	AtGSTU17	AtGSTU18	AtGSTU19
γ-ECG-AZ	1,45E+08	1,45E+08 4,40E+08		+09 1,9	1,92E+08		9E+07	9,13E+07	1,44E+08	1,19E+09	6,84E+08
γ-EC-AZ	1,40E+07	E+07 7,03E+07		2,1	2,14E+07		N.D.	8,86E+06	1,72E+07	9,20E+07	6,52E+07
CG-AZ	2,06E+07	5,94E+07 5,94E+07		2,2	2,24E+07		4E+07	2,48E+07	2,71E+07	2,24E+08	1,56E+08
C-AZ	4,04E+07	2,39E+(08 7,33E	+08 4,9	4,96E+07		27E+07	1,06E+08	4,83E+07	3,93E+08	4,60E+08
γ-ECG-AZ-γ-ECG	N.D.	1,44E+(07 3,06E	+07 9,1	9,16E+06		N.D.	N.D.	2,03E+08	1,87E+08	5,10E+07
γ-ECG-AZ-EC	ND	ND	NJ)	ND		N.D.	ND	ND	N.D.	N.D.
ν-EC-AZ-ν-EC	ND	ND	NI)	ND		ND	ND	ND	ND	ND
ν-ECG-AZ-CG	ND	1.08E+(07 230F	+07	N D		ND	ND	1 23E+08	1 87E+08	4 97E+07
*** v-FCG-AZ-C	N.D.	3.61E+()7 1.06E	+08	N.D.		N D	N D	3.04E+08	3 30E+08	8 37E+07
*** CG AZ ** EC	N.D.	2.61E+(7 1,00E	1.00	N.D.		N.D.	N.D.	2.04E+00	2 20E±08	8,37E+07
C AZ = FG	N.D.	7.52E+(1,00E	+03	1 74E±07			1.17E±07	1.99E±07	1.24E±07	1.28E+07
C-AZ-7-EG	N.D.	7,55E+(7.50	1,1	1,74E+07			ND	1,000-07	1,24E+07	0.40E+07
CO-AZ-CO	N.D.	N.D.	9,320		N.D.		N.D.	N.D.	1,43ET07	5,05E±07	9,49E+00
C-AZ-CG	N.D.	N.D.	8,288	+00	N.D.		N.D.	N.D.	2,99E+07	4,52E+07	1,01E+07
C-AZ-C	N.D.	N.D.	N.I).	N.D.		N.D.	N.D.	1,85E+07	1,77E+07	1,02E+07
C-AZ-SH	N.D.	N.D.	N.I).	N.D.		N.D.	N.D.	N.D.	N.D.	N.D.
HS-AZ-SH	N.D.	N.D.	N.I).	N.D.		N.D.	N.D.	N.D.	N.D.	N.D.
Metabolit	AtGSTU22	AtGSTU24	AtGSTU25	AtGSTU26	6 AtGST	U27	AtGST	Γ1 AtGST	AtGSTL1	AtGSTL3	AtGSTZ1
γ-ECG-AZ	1,51E+08	1,02E+09	7,34E+08	3,96E+08	8,36E	+07	5,55E+	07 1,10E+0	09 2,18E+07	5,49E+07	3,95E+07
γ -EC-AZ	1,41E+07	7,72E+07	7,07E+07	2,57E+07	5,90E	+06	N.D.	1,49E+0)8	8,28E+06	N.D.
CG-AZ	2,38E+07	3,38E+08	1,55E+08	1,17E+08	3,18E	+07	2,52E+	07 2,59E+0	08 1,21E+07	1,30E+07	1,31E+07
C-AZ	5,58E+07	5,15E+08	3,36E+08	1,53E+08	5,61E	+07	3,16E+	07 7,00E+0	07 3,75E+07	5,37E+07	5,10E+07
γ-ECG-AZ-γ-ECG	N.D.	2,58E+07	6,48E+07	N.D.	N.E) .	N.D.	7,57E+0	07 N.D.	N.D.	N.D.
γ-ECG-AZ-EC	N.D.	N.D.	9,24E+06	N.D.	N.E).	N.D.	N.D.	N.D.	N.D.	N.D.
γ-EC-AZ-γ-EC	N.D.	N.D.	N.D.	N.D.	N.E).	N.D.	N.D.	N.D.	N.D.	N.D.
γ-ECG-AZ-CG	N.D.	2,91E+07	7,31E+07	8,64E+06	N.E).	N.D.	4,23E+(07 N.D.	N.D.	N.D.
*** y-EUG-AZ-U	N.D.	9,22E+07	1,52E+08	1,05E+07	N.E). \	7,34E+	UG 7,01E+(07 6,38E+06	8,49E+06	N.D.
···* UG-AZ-γ-EU	N.D.	9,22E+07	1,52E+08	1,03E+0/	N.L	⊥06	0.00E	06 044E+0	0,38E+00	ο δ,49E+06	N.D.
CG-AZ-CG	N.D.	0,49E⊤00 N D	0,09E+00	>,72E+00 N D	0,03É' N F))	9,09E+	00 0,00E+(N D	ND	1,55E+0/	ND
C-AZ-CG	N.D.	9.96F+06	2.67E+07	N D	N F)	ND.	1 40F+0	07 6 14F+04	ND	ND
C-AZ-C	N.D	7.42E+06	1.72E+07	N D	NE).	ND.	N D	N D	ND	N.D.
C-AZ-SH	N.D.	N.D.	N.D.	N.D.	N.E).	N.D.	N.D.	N.D.	N.D.	N.D.
HS-AZ-SH	N.D.	N.D.	N.D.	N.D.	N.E).	N.D.	N.D.	N.D.	N.D.	N.D.

Curriculum vitae

Survey

- I was born in Hersbruck a.d. Pegn. District of Nuernberger Land the second of two children to Hans-Peter and Waltraud Krajewski on July 7, 1983. I was raised in Hersbruck and Förrenbach.
- My nationality is German.

Professional Experience

Since February 1, 2008 to August 20, 2011
 I have been doctoral candidate and scientific assistant at the Technical University of Munich, chair of botany, headed by Prof. Dr. Erwin Grill.

University education

Since march 5, 2010 until February 25, 2012
 I have been a student in the 4th semester at the College of Higher Education in Deggendorf. I am pursuing the Master of Business Administration in General Management (FIBAA accredited) at the Center of Further Education dimt (Deggendorf Institute of Management & Technology). Leader of the degree course is Prof. Dr. Thomas Bartscher. The delivery of the certificate is expected on February 25, 2012.

 Patween Sentember and December 2011. Lwill write my mester thesis in

Between September and December 2011 I will write my master thesis in the field of "International sales and marketing management" with Prof. Dr. Jürgen Schwill.

- From October 2003 until October 2007
 I studied food chemistry at the Technical University of Munich in the chair of food chemistry headed by Prof. Dr. Peter Schieberle. On October 4, 2007, I successfully passed my first state examination in food chemistry after 8 semesters (regular period of study in 2007: 9 semesters).
- In the summer vacation of 2006
 I could successfully pass a research internship in food toxicology under the supervision of Prof. Dr. Michael Rychlik with the task assignment ,,Development of a GC/MS method for the analysis of type A Trichothecenes" on which I lectured on January 22, 2007.

School education

- In the years 1993 to 2002
 I attended the preparatory school Röthenbach a.d. Pegn. now called: "Geschwister-Scholl-Gymnasium." In June 2002 I received my higher education entrance qualification. I have pleasant memories of StD Rainer Bachmann (†), who awakened and supported my interest in chemistry.
- From september1990 until september 1993
 I attended the elementary school "Am Forstersberg".
- In september 1989 I started at the elementary school of Happurg - District of Nuernberger Land.

Non-school related education

 In the years from 2002 to 2003
 I provided a 10 months civilian service in the senior residence Karl-Heller-Stift Röthenbach a.d. Pegn. – under the responsibility of the Nuernberg City Mission.

Knowledge in languages and software

- I have a good command of spoken and written English.
 I can understand specialist literature without any difficulties.
 On November 18, 2010, I passed the TOEIC test.
 In connection with my MBA studies I went abroad from April 3 until April 13, 2011 for a stay at Kent Business School, University of Kent.
- I have a basic knowledge of Russian and Spanish.
- I am very well versed in MS Office (Word, Excel, Powerpoint, Visio).
- I have a good knowledge in Adobe CS5 (Bridge, Illustrator, Photoshop, In-Design).
- I know the basic terms of the software SAP R/3.
- I am well familiar with the branch specific software Chromeleon (DIONEX) and DataAnalysis 4.0 (Bruker Daltonics).

Publication

• Wünschmann J., Krajewski M., Letzel T., Huber E.M., Ehrmann A., Grill E., Lendzian K.J. 2010. *Dissection of glutathione conjugate turnover in yeast*. Phytochemistry, 71, pp. 54-61.

Danksagung

Die Fertigstellung dieser Dissertation ist ein guter Anlass, den Ablauf mindestens der letzten drei Jahre zu bedenken. Und zu danken. Zuerst Herrn Prof. Dr. Erwin Grill, der mir die Möglichkeit gegeben hat, an seinem Lehrstuhl zu promovieren. Und mir darüber hinaus die Zeit einräumte, meine weiteren Studien zu vollführen. Sodann danke ich herzlich Frau Prof. Christine Gietl für den Anstoß zu einer Promotion an diesem Lehrstuhl. – Dankbar bin ich Beate und Johanna für die guten Zeiten, die wir einander gönnen konnten. – Schließlich danke ich allen Kolleginnen und Kollegen, die mich während meiner Promotion sinnvoll unterstützt haben. Besondere Dankesgrüße gehen dabei an Herrn Dr. Alexander Christmann, nach Wien an Herrn Dr. Arthur Korte und an das Helmholtz Zentrum München an Herrn Priv.-Doz. Dr. Philippe Schmitt-Kopplin, Herrn Dr. Basem Kanawati und Frau Dr. Agnes Fekete.

Ich danke sehr herzlich meiner Familie.

Meinem Vater Hans-Peter, der mir stets mit gutem Rat zur Seite stand. Für seine Lebenseinstellung (Sirach 25,5), die er mir mit auf meinen Lebensweg gibt. Meiner Mutter Waltraud für ihre besondere Fürsorglichkeit nicht nur, aber besonders während der angesprochenen Jahre. – Meinem Bruder Stefan für seine Brüderlichkeit und Treue. Für die Zeiten, die wir in den letzten Jahren zusammen mit unseren Promotionen und mit dem MBA General Management verbracht haben. Sie sind mir schon jetzt unvergessen. - Sei bedankt dafür!

Ich danke herzlich meinem Freund aus Kindergartenzeiten, dem MPI-Doktoranden Christian Schwemmer. Er ist mir seit nunmehr einem Viertel Jahrhundert ein treuer Gefährte. Und so würdige ich dankend ihn und unsere kurzweiligen Gesprächsthemata, die wir auf den Wegen zu unseren Promotionsansiedelungen und zurück hatten. Fahrend oder wieder einmal im Stau stehend. Auf der Autobahn A9 zwischen Allershausen und Röthenbach a.d. Pegn. Zwischen politischem Disput und dem Erraten der Kfz – Anagramme, zwischen Einsteins Theorien, Planck'scher Führung in Erdenkontingente und dem "Passieren der Grenze" beim "goldenen M" auf Höhe des mittelfränkischen Greding. Diese "Motionen" waren ein guter Brückenschlag so unterschiedlicher "Welten".

Tausendschöner Dank an meine Freunde und Feiertruppe in Nürnberg. Sie standen mir gerade in persönlich schweren Zeiten bei. – Ingredienzien.

- Ich danke allen MBA-Kollegen. Wir hatten eine super Zeit in England bei Orange Boom und Spitfire!