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ABSTRACT

Virtual Machines (VMs) allow for platform-independent soft-
ware development and their use in embedded systems is in-
creasing. In particular, VMs are rewarding in the context of
mixed-criticality applications to provide isolation between
critical and non-critical tasks running on the same proces-
sor. In this paper, we study the design of a real-time system
based on a VM monitor/hypervisor that supports multiple
VMs/domains. Since each VM in the system runs several
real-time tasks, scheduling the VMs leads to a hierarchical
scheduling problem. So far, most published techniques for
analyzing hierarchical scheduling deal with the schedulabil-
ity problem, i.e., for a given hierarchical scheduler, testing
whether a set of real-time tasks meet their deadlines. In this
paper, we are rather concerned with the synthesis of hier-
archical/VM schedulers; that is, how to design a scheduler
such that all real-time tasks running on the different VMs
meet their deadlines. We consider a setup where the tasks
are scheduled on multiple VMs under fixed priorities accord-
ing to the Deadline Monotonic (DM) policy. The VMs are
scheduled under fixed priorities on a Rate Monotonic (RM)
basis using one or more processors. A partitioned scheduling
of VMs is considered, i.e., VMs are not allowed to migrate
from one processor to the other. In this context, we propose
a method for selecting optimum time slices and periods for
each VM in the system. Our goal is to configure the VM
scheduler such that not only all tasks are schedulable but
also the minimum possible resources are used. Finally, to
illustrate the proposed design technique, we present a case
study based on automotive control applications.

1. INTRODUCTION

In the automotive domain, for example, different func-
tionalities or applications are traditionally implemented on
different electronic control units (ECUs). This has led to
a large number of ECUs in modern cars, which complicates
wiring and increases cost. As a result, there is a strong focus
on integrating multiple applications on a single ECU. When
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Figure 1: VM architecture under consideration

many applications run concurrently on the same hardware,
they interact with each other as they share processing units,
memory, I/O devices, etc. The automotive software is very
complex and hard to test and validate ([19], [7]). Thus, if
multiple automotive applications run on the same ECU, it
is difficult to guarantee that an error in one application will
not affect the others.

A way to prevent errors from propagating is to implement
some sort of isolation between applications. Most modern
processors offer features such as user/supervisor modes and
MMU (Memory Management Unit). These already allow
for some isolation, particularly, between operating system
(OS) and user applications. However, an effective separa-
tion between single user-level applications is still required,
especially, if these have different levels of criticality. In our
previous example from the automotive domain, we would
like to avoid that general-purpose applications such as nav-
igation and multimedia interfere with safety-/time-critical
applications such as airbag control and brake system.

A wirtualization layer between hardware and software as
illustrated in Fig. 1 can be used to provide isolation be-
tween user-level applications. Such a virtualization layer is
normally referred to as virtual machine monitor or hypervi-
sor. The OS and the user applications now run on wirtual
machines or domains (VMs) and not directly on the hard-
ware. The VM monitor traps all requests directed to shared
resources (like processors, I/O devices, etc.) and adminis-
ters access to them by scheduling the VMs. This way, the
propagation of an error is restricted to a VM and cannot
affect the whole system.

Scope and contributions of this paper: The use of VMs
in embedded real-time applications results in a two-level hi-



erarchical scheduling problem. Here, the first-level or VM
scheduler assigns CPU time to VMs, whereas the second-
level or task scheduler administers time within a VM. In
order to guarantee all timing constraints, a careful configu-
ration of the VM scheduler is required.

Some techniques for analyzing hierarchical scheduling un-
der different scheduling policies are already known in the
literature. However, most of them focus on the schedulabil-
ity analysis of a fixed first-level/VM scheduler and not on
synthesizing such a scheduler. To the best of our knowledge,
there exists no previous work on how to design VM sched-
ulers for real-time applications. Moreover, existing schedu-
lability conditions derived for hierarchical scheduling do not
extend to this scenario in a straightforward manner.

In this paper, we study VMs that are scheduled under
fixed priorities and in a partitioned manner on multiple pro-
cessors, i.e., VMs are not allowed to migrate from a processor
to another. (Since VM migration is associated with a non-
negligible overhead, we believe this to be less practical in
embedded real-time systems where resources are limited.)
Further, we consider that multiple real-time tasks run on
each VM also on a fixed-priority basis. Although the tech-
nique presented in this paper remains valid for any priority
assignment, we assume that real-time tasks are assigned pri-
orities according to Deadline Monotonic (DM) whereas VMs
are scheduled under Rate Monotonic (RM) — see Fig. 1.

We propose a method for selecting efficient time parti-
tions for VMs such that all timing constraints are met and
the minimum possible resources are used. In principle, par-
titioning time between VMs consists of finding periods and
time slices for each VM in the system. The period assigned
to a VM determines its activation rate, whereas the time
slice determines the amount of CPU time that the VM is
allowed to utilize at each activation.

Clearly, the period assigned to a VM is dominated by
the smallest deadline among all tasks running on the VM
— a longer period leads to deadline misses, a shorter period
produces unnecessary context switches. However, selecting
optimum time slices for VMs is not as straightforward and
requires a non-trivial analysis.

Therefore, we first formulate the timing requirements for
a VM scheduled under a fixed-priority policy. These are
mainly dictated by the shortest deadline on the VM and
by the priority of the VM in the system. We then derive
schedulability conditions for the tasks running on that VM
and compute an estimate of the necessary time slice. This
estimate is used as initial value for the time slice, which can
then be improved towards the optimum in subsequent steps.
We show that the resulting method has pseudo-polynomial
complexity. Hence, we will be able to find an optimum time
slice in a limited number of iterations.

In addition, we present a case study in which we use sim-
plified versions of automotive applications such as engine
management and electronic stability control to demonstrate
our design technique. Further we compare two possible de-
sign cases with respect to their timing behavior. The first
case consists of scheduling each task of an application on
a separate VM. The second case deals with scheduling an
entire application (i.e., multiple tasks) on the same VM.
Scheduling single tasks on separated VMs is less relevant
from a practical point of view. However, this allows for a
higher processor utilization and it is interesting for compar-
ison purposes.

The remainder of the paper is organized as follows. First,
we give an overview of related work in Section 2 and intro-
duce models and notation used along the paper in Section 3.
In Section 4, we analyze the minimum requirements that a
VM has to fulfill to guarantee the schedulability of tasks run-
ning on it. Further, Section 5 presents our design technique
for VM schedulers. We finally discuss a set of experiments
on the basis of our case study in Section 6, whereas Section 7
summarizes the contributions presented in this paper.

2. RELATED WORK

The analysis of hierarchical scheduling has attracted a lot
of attention in the literature. As a result, there are already
a number of techniques for analyzing multilevel scheduling
(i.e., with more than one scheduler/scheduling level) under
different scheduling policies.

In [6], Deng and Liu presented an analysis of a two-level
hierarchical scheduling using a first-level scheduler based on
EDF (Earliest Deadline First). They considered tasks to
be sporadic and scheduled under different algorithms. How-
ever, since they used utilization bounds, some pessimism is
incurred in deriving schedulability conditions.

Kuo and Li [12] analyzed the hierarchical scheduling based
on RM and EDF, for which they assumed periodic tasks with
deadlines equal to periods. In [17], Mok et al. proposed a
bounded-delay processing supply for hierarchical scheduling,
for which they also assumed periodic tasks with deadlines
equal to periods. In contrast to [12] and [17], in this paper,
we consider the more general case of sporadic tasks with
deadlines that may be less than the minimum inter-arrival
time between two jobs.

Lipari et al. [15] presented a framework called PShED
(Processor Sharing with Earliest Deadline First). Here, ser-
vers (i.e., VMs in our case) are allowed to update their ur-
gency according to the deadline of the currently running
task. Since the VM scheduler used in this paper is based
on the current implementation of Xen, it is not possible to
change the priority of a VM according to the task that is
currently running on it. However, in order to achieve isola-
tion between applications on the different VMs, it is indeed
more meaningful to separate the priority of a VM from that
of its currently running task.

Shin and Lee [21] presented the periodic processing supply
model. Here, each VM receives a maximum fixed amount of
CPU time on a periodic basis. The periodic supply model
only guarantees that a VM executes once within its period
and, in worst case, the VM may finish executing towards
the end of its period. Both fixed- and dynamic-priority VM
schedulers can be described by the periodic supply model.
However, assuming that the VM may finish executing to-
wards the end of its period introduces additional (unde-
sired) pessimism, particularly, when VMs are scheduled un-
der fixed priorities.

Our analysis technique has similarities to that of Davis
and Burns [5]. That is, we also consider that both the tasks
as well as the VMs are scheduled under fixed priorities and
use the worst-case response time analysis. However, ap-
proaching this problem from the synthesis perspective, i.e.,
where suitable time slice and period need to be configured
for each VM in the system, leads us to different issues (than
those studied in [5]) as described later.

The hierarchical scheduling considered in this paper can
also be described using the EDP (Explicit Deadline Periodic)



processing supply model [8]. Nevertheless, in contrast to [8],
we are concerned with the case where periods and time slices
need to be selected for every VM in the system, which makes
additional analysis be necessary.

More recently, Shin and Lee [22] presented a compositional
method for analyzing EDF and RM hierarchical scheduling,
for which they considered periodic tasks with deadlines equal
to periods. In [20], Shin et al. proposed an analysis of
multiprocessor scheduling based on hierarchical scheduling
and processor clusters, which uses the periodic processing
supply model. This work was continued later by Easwaran
et al. [9].

The practical use of VMs has also been intensively stud-
ied in the literature. However, most related works in this
area focus on analyzing the performance and fairness of VM
scheduling policies [10, 3, 18]. A few other works study dif-
ferent scheduling techniques that take characteristics of VMs
into account. For example, scheduling techniques for VMs
with intensive I/O demand and throughput were studied in
[11] and [23], respectively.

In a previous work [16], we studied the real-time behavior
of the Xen hypervisor (an available open-source VM monitor
[1]). There we proposed and implemented a fixed-priority
variant of Xen’s SEDF (Simple EDF) scheduler. The pro-
posed scheduler in [16] distinguishes between real-time and
non-real-time VMs/domains and is used in the context of
the case study presented in this paper.

3. MODELS AND NOTATION

Here, we introduce both the models and the notation we
use. For ease of exposition, we will define some parameters
and variables later as it becomes necessary along the paper.

We denote by T a set of sporadic, independent, and fully
preemptive real-time tasks. Each task 7; in T is character-
ized by its relative deadline d;, its worst-case execution time
e; and its minimum inter-release time p;, i.e., the minimum
distance between two consecutive jobs of T;. For all tasks,
we assume that relative deadlines d; are less than or equal
to the respective minimum inter-release times p;.

As stated previously, we consider the design of real-time
systems based on a VM monitor/hypervisor that supports
multiple VMs/domains. The tasks in T are allocated to sev-
eral VMs, which then run on one or more processors/cores
in a partitioned manner. This results from the use of an
available VM monitor such as Xen, whose VM scheduler —
the standard SEDF and the extended fixed-priority version
used in this paper [16] — allocates VMs to fixed cores and
does not allow them to migrate.

Further, V denotes the set of all VMs/domains V; in the
system. Every V] is assigned a time slice s{ and a period py
— all parameters that are related to VMs will be represented
with the upper index z. The VM scheduler then allows every
VM to run a maximum amount of time si every p; time
units (clearly, si < p{ must hold for all VMs). Later, we
use T! C T to denote the subset of real-time tasks running
on a specific V.

VMs are scheduled under the RM and tasks under the
DM policy resulting in a DM over RM hierarchical schedul-
ing. Without loss of generality, we assume that tasks in T
and T' as well as VMs in V are sorted according to de-
creasing priorities. This way, a task T; has higher priority
(i-e., shorter deadline) than the task T;4+1. Similarly, V; has
higher priority (i.e., shorter period) than Vjyi.

In the next sections, we will analyze the worst-case re-
sponse time of real-time tasks under this constellation. Fur-
ther, we derive a set of equations that help configuring time
slices and periods for each VM in the system.

4. MINIMUM REQUIREMENTS FOR A VM

The concept of starvation length has been used in the
literature to designate the largest time interval without pro-
cessing supply, i.e., the worst-case waiting time between two
consecutive executions of a VM [22, 20, 9].

In order to simplify the analysis in this paper, we intro-
duce the term execution length to denominate the largest
time interval that it takes a VM to execute for sj time units
(i.e., to execute for an amount of time equal to its assigned
time slice). The execution length clearly depends on the
scheduling of VMs and has direct impact on the schedulabil-
ity of real-time tasks running on them. Hence, determining
the execution length is the first step towards a schedulability
analysis.

As stated above, we consider that VMs are scheduled ac-
cording to fixed priorities under RM. In addition, let us as-
sume that scheduling all VMs is feasible. In other words,
every V; can finish executing its assigned time slice s within
p{ time units from its release. The execution length of V; is
depicted in Fig. 2 and results from considering the following
two conditions:

1. Vi can first finish executing s time units as early as
possible.

2. All higher priority VMs are then released together with
the next execution of V.
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Figure 2: V;’s execution length

The first condition yields the largest time interval without
processing supply between two releases of Vi (i.e., pf — s7).
The second condition leads to the maximum higher-priority
interference during the next execution of V;. This maximum
interference reflects in that the next instance of V; takes the
longest to execute s time units. The point in time at which
V, finishes its execution can be found using known worst-case
response time analysis [13, 2]:

Ut M O
t(c+1) = sf —+ Z " -‘ S;-C. (1)
j=1

Pj

Recall that VMs in V are sorted according to decreasing
priority (i.e., according to increasing/non-decreasing peri-
ods under the RM policy). So, the second term of Eq. (1)
corresponds to all higher-priority VMs in the system. This
equation can be solved iteratively starting from t®) = s?
and until +t1) = ¢(©) is satisfied for some ¢ > 1. This value
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Figure 3: Schedulability condition for a task 7; running on V;

of ¢{¢*1) then is V}’s worst-case response time which we de-
note here by w{ — recall that all VM parameters are denoted
with the upper index x. As a result, V;’s execution length
L7 is given by:

Li =pi —si +wi. (2)

Further, we denote by dimin = mingll‘ (di) the smallest
deadline in T!, where |T'| represents the number of tasks in
T!. The worst-case execution time of the task with dj min
is denoted by e;,min — note that this is not necessarily the
minimum worst-case execution time in T'. The task with
di,min has the highest priority on V; and executes without
interruption as soon as Vj is activated. Let us now assume

that sy is at least equal to e min:

€l,min S Slx- (3)

So, in order that V; can always meet dj min, its execution
length LT must be less than or equal to dj min:

From Eq. (4), it can be seen that choosing sf to be smaller
than e; min forces us to reduce pf. Otherwise, Vi cannot
meet dj min in the worst case. However, a shorter p; can
potentially increase the number of context switches due to
Vi. For this reason, it is meaningful to select a value of sy
according to Eq. (3).

4.1 Schedulability on a VM

Most embedded applications consist of a set of several
real-time tasks. As a consequence, it is reasonable to allo-
cate all tasks composing such an application to a single VM.
To isolate the different applications from each other, these
should run on different VMs. From now on, we assume that
all tasks T; in T' (i.e., all tasks running on V;) belong to the
same application.

Further, we assume that all tasks belonging to an applica-
tion are schedulable on one processor. This is true in many
domains such as automotive where control applications typ-
ically run on separated single-core ECUs. As a consequence,
if a V; runs alone on one processor and s = p] holds, the
whole task set T' is schedulable. That is, the worst-case
response time of every T; € T' is less than or equal to its
deadline d;.

Let us denote by w; the worst-case execution demand of
a task T; € T within d; time units:

i—1
d;
'LZ)Z' =e; + E ’77—‘ €j. (5)
j=1 Pj

Recall that tasks in T' are sorted according to decreasing
priority (i.e., according to increasing/non-decreasing dead-
lines under the DM policy). So, the second term of Eq. (5)
corresponds to all higher-priority tasks on Vj.

In what follows, we assume that the worst-case execution
demand within d; time units is less than or equal to d; for
every T; € T!, i.e., w; < d; holds. Otherwise, it will not be
possible to schedule the task on a VM.

Now, for a task T; to meet its deadline on V;, the following
inequality must hold — see Fig. 3:

ki - si +min(sy, of (ti — ki - pp)) > s, (6)

where t; is equal to d; — (pf — si) and k;,; is computed by
L;—;J The function «f (¢) returns the amount of time that
V} is able to run in a time interval of length ¢. This function
assumes the critical instant for V;, i.e., V; is released together
with all higher-priority VMs at the beginning of the interval
of length ¢t.

In order to understand Eq. (6), let us first suppose that
min(s'f, aof (ti — ki ~pf)) = 0 such that we have:

kl,i . Sf Z UA)»L'.

In worst case, the event triggering task 7T; arrives together
with all higher-priority events (triggering all higher-priority
tasks on V}) exactly after V; runs out of time. In addition,
if Vi could execute its whole time slice immediately after
it was released, the waiting time until the next time slice
is the largest possible, i.e., pj — si. Because T; is released
together with all higher priority tasks on Vj, the execution
demand within its deadline is going to be w;, i.e., the highest
execution demand possible. As mentioned before, we assume
that w; < d; holds for all T; in the system. As a consequence,
T; can meet its deadline if V; can execute w; time units
before d; expires — see Fig. 3. So, for t; = d; — (pf — s7), Vi
executes ki ; = L;—%j times before d;. If ki ; - sf > w; holds,
T; is feasible on V;.

V; is executed k;,; times within ¢;. Therefore, the time in-
terval t; — ki ; - pf is the remainder of ¢; after k; ; executions
of Vi. The term min(sf,of (t; — kii - pi’)) in Eq. (6) repre-
sents V;’s additional execution time in ¢; — k;,; - p;’ assuming
the worst-case situation (i.e., V; is released together with all
higher-priority VMs). Clearly, V; cannot execute for longer



than si time units in a period p;. So, since t; —ki,; - pi < p{’
holds, Vi’s additional execution time in this interval is at
maximum equal to si depending on its worst-case response
time. Now, of (t) returns the maximum value of a variable
ef for which the following holds:

-1 t(c)
fletD) :egwrZ{ - w 5. (7)
=P

Recall that VMs are sorted according to decreasing pri-
ority. This equation can be solved iteratively starting from
tW = ef and until tTY = ¢(©) is satisfied for some ¢ > 1.
This value of ¢°™Y is then denoted by ¢¥ for which the sec-
ond condition must hold:

tf <ti—kuipr (8)

In other words, e is V}’s largest amount of execution time
leading to a worst-case response time (i.e., considering max-
imum interference by higher-priority VMs) that is less than
or equal to t; — ki ,; - p{ (the remaining time after k; ; com-
plete executions of V;). Since ¢; — ki; - pf < pi holds and
the V; can only execute a maximum of si time units (i.e.,
ef < s7), we will always able to find a value of €] in a finite
number of iterations.

5. DESIGNING THE VM SCHEDULER

So far, we have analyzed the minimal requirements for a
VM and the schedulability of a real-time task running on it.
In this section, we focus on selecting time slices and periods
for each VM such that all deadlines can be guaranteed.

As VMs are scheduled under RM, p determines the prior-
ity of a V;. Further, we know that pf must satisfy Eq. (4) for
Vi to schedule the task with the minimum deadline di min.
Hence, the VM executing the task with the minimum d; nin
in the system is the one with the highest priority.

The design procedure is illustrated in Fig. 4. We start
selecting the period and the time slice for the VM with the
highest priority. Then we continue with the lower priority
VMs in order of decreasing priorities. This is simply because
we need to know the parameters of higher-priority VMs to
be able to compute the worst-case response time of a lower-
priority VM.

5.1 The highest-priority VM

VMs are sorted according to decreasing priority, so the
highest-priority VM is Vi and the minimum dj mi» in the
system is d1,min. The worst-case response time of V7 is equal
to its time slice s{. Thus, its execution length becomes
LY = pf and Eq. (4) reduces to pf < di,min. If we now
select sT = e1,min according to Eq. (3), we can set p{ to be
equal to di,min-

The selected value of s{ allows meeting di min on Vi.
However, we need to configure s{ for all tasks on Vi to meet
their deadlines. For this purpose, we make use of Eq. (6).
Clearly, in the case of V1, the function of (t; — k1,; - pT) re-
duces to t; — k1,; - pf and Eq. (6) changes to:

k1, - sT + min(sT,t; — k1 - py) > Wi. 9)

To find a proper value of s that satisfies a deadline d; >
d1,min, we assume that the second term on the left-hand

side of this inequality is zero. Replacing ki ; by L;—;J where
1

t; =d; — (p — st), we have:

di — (p7 — st .
\‘ i (pi 1)J'3:1t2wi~
Py
Now, removing the floor function, reshaping and equaliz-
ing to zero, we obtain a quadratic equation on s7:

(s7)" + (di = pY) - 57 — @i - pT = 0. (10)

For T; to be schedulable on Vi, at least one root of this
equation must be a real positive number. This root gives us
an approximated value of s{ for which T; can be scheduled.
We can then verify whether this value of s7 fulfills Eq. (9).
If k1 - sT + min(sT,t; — k1,s - pT) is exactly equal to wy;,
the obtained s is the minimum possible guaranteeing the
schedulability of T;. If it is greater than w;, then the ob-
tained s7 guarantees the schedulability of T; but a smaller
s{ is also possible. In case that the obtained s{ does not
fulfill Eq. (9) (which is possible since we have ignored the
term min(st,t; — k1,; - pf) and removed the floor function to
find s7), we will need to increase s7. T; can be scheduled
only if we can find a value of s7 that is less than or equal to
pi- In the latter two cases, we proceed as follows. We first
compute As{ as given below:

x ~ T . x x
AsT = ; — k1, - 81 — min(sT,t; — ki, - p1).

i itive, w v i Vi .
If As? is positive, we have to increase the value of s7. If
Asy is negative, we can decrease s7. Then, we compute:

> min(sy,t; — k1 - pi
771:]<71,i+[ (s = pl)—‘.

5i

This n7 is the number of times that Vi executes before
d; either entirely or partially. The idea is to distribute As?
between all these Vi instances/executions. Hence, we re-

AsT
compute s{ as the sum of the current value of s{ plus n’”l .
1

Clearly, s7 is going to increase if As7 is positive and decrease
for a negative Asf. Since recalculating s{ might change the
number of times V; executes before d;, we need to verify
again that the new s7 satisfies Eq. (9).

Complexity of the computation: In practice, VM mon-
itors do not allow configuring any arbitrary value for time
slices and periods of the VMs. These are normally dis-
cretized. That is, the value of time slices and periods are set
to multiples of a system-dependent constant k, i.e., s = ¢s-k
and pi = gp-k, where gs and g, are any possible integer num-
bers greater than zero. The next possible greater value of
s is thus (¢s +1) - x and so on. As a result, since s{ can be
at most equal to pf, the number of iterations required for
finding the optimum value of s{ is limited. In other words,
the described algorithm has pseudo-polynomial complexity.
Proceeding as discussed for every T; on Vi, we can find
the minimum possible s7 such that all tasks running on V;
can meet their deadlines. Next, we analyze how to configure
time slices and periods for the lower-priority VMs as well.

5.2 VMs with lower priority

A given lower-priority V; schedules a set of tasks. As al-
ready discussed, among the tasks running on V;, the one
with the minimum deadline d; ,in determines V;’s priority.
In this case, the worst-case response time wj’ is longer than
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Figure 4: Design procedure for VM schedulers

si and its execution length is given by Eq. (2). The problem
here is that w; also depends on s and we cannot directly
use Eq. (4) to find pf. We know, however, that p{ must
guarantee the schedulability of di min. Since the task with
di,min has the highest priority on V, it is going to execute
without delay as soon as V; gains CPU access. So, if we
set S{ = emin, We can at least guarantee the schedula-
bility of di,min. We can use this value of s to compute
wi applying Eq. (1). With sf and w}, we finally obtain
pf = dl,min + Slz - wf

These values of sf and p{ only guarantee that the task
with di min can be scheduled on V;. So, an s; needs to be
found such that all tasks on V; can meet their deadlines. A
new value of si changes also w{. However, we do not need
to recompute pi since V; can execute (with the value of pf
obtained above) € min time units before dj min in worst case
—recall that the task with di min has the highest priority on
Vi and executes always first.

In order to find an sf that also allows scheduling another
task with d; > dimin, we make use of Eq. (6). First, we
assume that min(sf, o (t; — kii - pi’)) = 0 on the left-hand
side of this inequality. Replacing k;; by L;—%j where t;, =
d; — (pf — si'), we have just as before:

di — (py — st R
{ i (plz l)Jszwz
P
Now, removing the floor function, reshaping and equaliz-
ing to zero, we obtain a quadratic equation on sj:

(1) + (di = pr') - s — i - pf = 0.

As for the previous case of V1, a task T; is schedulable on
V, if at least one root of this equation is a real positive num-
ber. Again, this root give us an approximated value of sy for
T;. We need to check whether this value of s7 fulfills Eq. (6).
If kii - s +min(sf, af (t; — ki - pi’)) is greater than ;, then
the obtained si can be reduced without compromising 7;’s
schedulability. Otherwise, if the obtained si’ does not fulfill
Eq. (6) (recall that min (s}, of (ti — ki,i - p’)) was assumed to
be zero and we removed the floor function), we will need to
increase si. In this latter case, T; can only be schedulable,

if there exists an s that is less than or equal to the period
pi assigned to the VM.

To find the minimum possible sf for T;, we will have to
compute Eq. (6) in an iterative manner because «of (t) is a
non-linear function. Since a valid si is at most equal to p},
we will be able to find a solution in a limited number of
iterations. However, a linear approximation of of (t) allows
us to reach a safe value of sf in less steps. Recall that
af (t) returns the largest ef for which Eq. (7) and (8) hold.
Now, Eq. (7) holds true if we replace t°*1) and () by the
convergence value tf. Removing the ceiling function and
reshaping, we can achieve an upper bound on ¢{:

el + 5(-1)

tl = T 71z
1-Ug,,

(11)

x
J

and Uj_qy = Zé;ll ;—;. Further,

to obtain a linear approximation of «f (t), we simply replace
t in Eq. (8) and solve for ef:

where Si;_;) = Sl s

j=1 Sja

ef <rii- (L=Ujny) — Sy, (12)

where r; =t; — ki,; - p{’. Using this approximation, we can
rewrite Eq. (6) in the following manner:

ki - s + min (sf, T (1 — U(ﬁ_l)) — Sﬁ_l)) > ;. (13)
We can proceed as previously calculating As{:
Asy = w; — ki ; - 8§ — min (slz,rm . (1 — U(zl,l)) — Sfl,l)) .

Further, we can obtain the number of times that V; is
activated before d; in the following way:

. 17 - 1 _Ux_ _Sx_
=kt min (sf, 71, - ( . { 1)) « ) '
j

Similar to the case of Vi, the idea is to distribute Asy
between these n; executions of V;. So, the approximated
minimum possible sf will be given by the current s plus



Aﬂ?. The value of sy increases if Asj is positive or de-
creases if Asy is negative. We again need to test whether
the new s7 complies with Eq. (13), because V; may execute
a different number of times with the new s{’. As in the case
of V1, a second iteration may be necessary to achieve the
best possible sf according to Eq. (13).

As stated before, we can also use the exact Eq. (6) instead
of (13) to find an optimal s — the procedure described above
does not change. However, this requires a greater number
of iterations since af (t) in (6) is a non-linear function and
needs to be solved iteratively.

Complexity of the computation: Similar to the case of
the highest priority VM, the complexity of the above de-
scribed algorithm is pseudo-polynomial. Even if the exact
expression of Eq. (6) is used for computing sf, the com-
plexity remains pseudo-polynomial. Eq. (6) requires indeed
more iterations, however, these are also pseudo-polynomially
bounded as explained in Section 4.1.

Proceeding as discussed for every T; on V;, we can find
the approximated (or optimum if we use (6)) minimum pos-
sible si guaranteeing the schedulability of all real-time tasks
running on Vj.

6. CASE STUDY

In this section, we consider two automotive control ap-
plications: Electronic Stability Control (ESC) and Engine
Management (EM). In principle, ESC improves the steering
capability of a vehicle by minimizing blocking and skidding
on the wheels. On the other hand, EM calculates the opti-
mum ignition point after every revolution of the car’s engine.
Both these applications have been simplified in this paper
and adapted to illustrate our design technique for the VM
scheduler.

Now, the ESC system considered here consists of two real-
time tasks: T3 and T5. These tasks perform calculations
and take decisions based on data collected from the wheel
sensors. The EM application is composed of three real-time
tasks: Ts, T4 and T5. The following table shows the different
task parameters.

Table 1: Real-time tasks

T; Di d; €;
Ty 5ms | 2.5ms | 1ms
T> | 5ms 5ms 2ms

Ts | 20ms ms 1ms
Ty | 20ms | 10ms | 3ms
Ts | 40ms | 40ms | 4ms

The inter-arrival times of the EM tasks (T3 to T5) depend
on the rotational speed of the engine, since sensors are lo-
cated on the crankshaft. Clearly, the minimum inter-arrival
times result from the highest possible rotational speed.

To schedule these two applications in our setup, we use
the Xen hypervisor (version 3.4) featuring the fixed-priority
VM scheduler presented in [16]. The system runs on an In-
tel Core 2 Duo platform operating at 2.16 GHz. Although
Xen was originally developed for x86, it is currently being
ported to architectures such as ARM and PowerPC that are
typically encountered in automotive electronics. In addi-
tion, there exist lately a great interest in using the general

purpose processing infrastructure in a modern car (typically
used in navigation and entertainment) to schedule real-time
applications. In this context, Xen seems to be is an interest-
ing solution for providing isolation between VMs/domains
running real-time and those running less critical tasks.

All VMs in Xen can only access hardware devices through
a so-called privileged domain or domain zero (dom0). The
OS running in dom0 must provide the device drivers for
accessing the hardware [4]. However, it is possible to assign
single hardware devices to an unprivileged domain (domU),
which then has to provide the necessary device drivers.

In this case study, we assign the NIC (Network Interface
Controller) to an unprivileged domain that we call network
domain (domN). This domN is the interface between all VMs
in the system and the communication network. In addition,
we denominate by domRT a VM running one or more real-
time tasks.

Now, we assume that sensors are connected to a bus and
this again is connected to an Ethernet network via a gate-
way. Our Xen system then receives packets arriving through
the NIC over this network. The number of multimedia or
entertainment applications is increasing rapidly in today’s
cars. Hence, it is not unusual to encounter technologies in
the automotive domain that are otherwise typical from the
desktop domain.

The deadlines in Table 1 express the maximum acceptable
reaction time to incoming packets (measured from the time
instant at which a packet arrives to the time instant at which
the response packet leaves the system). We analyze two
possible design cases:

A) Each real-time task runs on a separated domain.
B) All application tasks run together on the same domain.

The case A is more inefficient from the perspective of
RAM memory usage, because a domain requires around
20MBytes (when instantiating the Debian Lenny OS with
real-time patches), while a task only needs approximately
0.5MBytes. (If mini-os is used — this a small operating sys-
tem provided by Xen — only 4MBytes will be required for
a domain.) On the other hand, using one task per domain
allows for a higher utilization. This is because we can choose
the time slice and the period of a each VM to fit the specific
requirements of the only task running on it.

In what follows we compare these two design cases. Nev-
ertheless, the first step towards whichever design case is to
configure domN in a proper manner, which is the entry point
of external events to the system.

6.1 The network domain

For the reason that domN is the interface between any
domRT and the network, it is as critical as the most critical
domain. All real-time tasks from the highest- to the lowest-
priority one are released by packets arriving via domN from
the network. As a consequence, to allow for preemptive
scheduling, domN needs to be assigned the highest priority
among all domRTs running on the same core.

The time slice and the period of domN will be denoted by
s% and p%; respectively. To find a suitable value for s%;, we
need to consider that neither the NIC nor its drivers in domN
can prioritize packets. However, we can enforce that only a
maximum number of n packets need to be processed at any
point in time. This way, it is possible to bound the blocking



time due to lower-priority packets. This can be achieved by
allocating at most n tasks to the system that receive/send
packets over the network. Recall that the case d; < p; is
considered, so if the system does not miss any deadline, there
will be always at most n packets to process. (The system
reacts to a packet coming from a sensor before the next
packet from the same sensor arrives.) In this case, s% can
be chosen as follows: s3y = n - en, where ey stands for the
worst-case processing time of a packet in whichever direction
(i.e., incoming/outgoing). Considering the two applications
mentioned above, we have five tasks that have access to the
network, i.e., n = 5. If now ey = 0.06ms, s% must be at
least equal to 0.3ms to be able to process five packets per
period.

Now, if di,min is the minimum deadline among all d; in
the whole system, p%; has to be configured such that this
most critical deadline can be met. The worst-case response
time to di,min is illustrated in Fig. 5. Here, V1 (i.e., the do-
main/VM reacting to d1,min) is released after domN finishes
executing. In addition, the worst-case p% results from con-
sidering that V; finishes before the next activation of domN
— see Fig. 5. Recall that s%; was selected such that a packet
of every task (either incoming or outgoing) can be processed
within p%;. V1’s outgoing packet has to wait up to the next
period of domN to be sent. This is because domN might
have already used its whole slice in the current period.

Incoming Outgoing
packet packet
domRT |
A ”
Y
domN S)]cv |va | -
t ~ p}cv R t
WCRT
Figure 5: Worst-case response time (WCRT) to
dl min

From Fig. 5, the following inequality must hold for the
system to meet di,min: sy + PR < di,min, and we can now
obtain pX; = di,min—sx. Thus, as di min = 2.5, pjr = 2.2ms
allows reacting to di,min in time.

Design case A: From the point of view of the design, it is
easy to tune the VM scheduler in this case. The fact that
we have one real-time task per domain leads to five different
domains (a domain for each of the tasks in Table 1).

Clearly, we assign priorities according to the DM policy,
since this results in the optimal priority assignment [14]. So,
the domain running 71 has the highest priority, whereas the
domain running 75 the lowest. The periods and time slices
can be simply set according to the task parameter. That
is, the domain running 77 is assigned p7 = p1 = 5ms and
s = e1 = Ims, while p5 = pa = bms and s5 = e2 = 2ms are
the parameters of the domain running 7%, and so on. The
whole system is then feasible, if the worst-case response time
of each domain/VM is less than or equal to the deadline of
the task running on it.

Design case B: The second design case is the focus of this
paper. Here we schedule each single application on one do-

main/VM. For the considered case, that is, the ESC tasks
Ty and Ty are scheduled together on one domain, while T3
to T5 are scheduled on a separated domain. Recall from Sec-
tion 4.1 that higher-priority VMs/domains have influence on
the design of lower-priority ones. Since domN has to have
the highest priority on the core it runs, it is going to af-
fect the configuration of the other domains running on the
same core. Hence, we need first to determine on which core
domN is going to run. It seems reasonable to allocate domN
together with the EM domain to the same core and to let
the ESC domain run on the other core. This is because the
EM tasks (T35 to T5) have a total utilization of 0.3, while the
ESC tasks show a utilization of 0.6.

Let us illustrate the design of the ESC domain. Proceed-
ing as in Section 5.1, we select pLgc = di1 = 2.5ms since dy
is the minimum deadline. We also know that s gc > e1 =
1ms is needed in order that this domain can schedule 7.

Now, for T to be schedulable, we need to recompute
sBgc- First, we compute the T»’s worst-case execution de-
mand within dy (i.e., W2) using Eq. (5) — only T} is consid-
ered since T7 and 75 run alone on the same VM. As it can be
seen, w2 = 3ms is less than d2 = 5ms, which is a necessary
condition for the design procedure to be valid. Further, we
can apply Eq. (10) where the time slice s{ is given here by
sEgc and the period p{ is pEgc, respectively:

(shsc)® +(5—2.5) - sheo —3-25=0.

The two roots of this equation are 1.76 and —4.26. Clearly,
the negative root can be discarded. So, the approximated
value of s§gc is 1.76. With this s%gc, we can compute
ty =5 — (2.5 — 1.76) = 4.26 and kpsc2 = [4%] = 1. Then,

we verify whether s3gc = 1.76 satisfies Eq. (9) where k1 ; =
kesc,2:

1-1.76 + min(1.76,4.26 — 1 - 2.5) > 3,

which happens to hold. Consequently, we compute next the
value of As%gc:

Aspsc =3—1-1.76 — min(1.76,4.26 — 1 - 2.5) = —0.52.
Then, we calculate the corresponding nzgc:

min(1.76,4.26 — 1-2.5)] 5
1.76 T

77%50214“’7

This nEgc is the number of times that the ESC domain
executes before dz. Then, we can recompute sggc:

(—0.52)
2

Replacing again s gc = 1.5 in Eq. (9), we can see that
this is the minimum possible value of s%go. So, the ESC
domain can meet all deadlines if s;5c = 1.5ms and pEgc =
2.5ms.

Since the EM domain runs together with the higher-priority
domN on the same core, we need to use the method de-
scribed in Section 5.2 to find the necessary time slice and
period. Due to lack of space, we do not show this whole pro-
cedure here, but this is similar to the one shown above. The
resulting parameters for the EM domain are s%;; = 3.85ms
and pE = 6.7ms.

SIESC = 176 -+ = 15

6.2 Experimental Comparison

In this section, we show the results of a set of experiments
that we have conducted upon this setup. Fig. 6 to 10 show



the response times of 11 to T5 with respect to an increasing
higher-priority CPU load. This is the processor utilization
produced by higher-priority domains running on both cores.

A remote computer was connected to our setup via Eth-
ernet and simulates the sensors generating packets for the
different real-time tasks in the system. For every measure-
ment (i.e., for every marker on the curves) and each of the
figures, 20,000 different packets were sent over the network
to each task in the system.

On average, in Fig. 6, the response time of 71 is below its
deadline of 2.5ms until around 70% of higher-priority load.
There is not much difference between the two compared de-
sign cases. The variability (jitter) in the response time is
represented by vertical bars. Also from the point of view of
jitter, there is no significant difference between case A and
B in what respects to T1.

In Fig. 7, the average response time of 75 is less than
d2 = 5ms up to approximately 50% of higher-priority load.
Here, the average response time is better (less) for case A
and a higher-priority load in the range of zero to 30%. This is
an expected behavior, since T> shares the time slice with T3
in case B. However, T% can still meet its deadline up to 50%
of higher-priority load. There is no meaningful difference
between the two compared design cases with respect to T3’s
jitter — also represented by vertical bars in Fig. 7.

For T3 in Fig. 8, the response time is always less than
ds = Tms irrespective of the higher-priority load. There
is no significative difference between case A and B, neither
with respect to average response time nor to jitter. This
behavior is probably because T35 has a comparatively large
deadline and small worst-case execution time.

In Fig. 9, the response time of T} is always less than its
deadline 10ms at least until a higher-priority load of 65%.
Again, we could not observe any mentionable difference be-
tween case A and B for neither the average response time
nor the jitter.

Finally, Fig. 10 illustrates the response time of 75 for both
design cases considered. As it can be seen, there is no dead-
line miss until around 80% higher-priority load. Here again,
this relatively good behavior is most likely a consequence of
Ts’s large deadline and small execution time. For the task
Ts, we can observe again that case A leads to a better av-
erage response time when the higher-priority load is below
35% of the total.

7. CONCLUDING REMARKS

In this paper, we proposed a method to design/synthesize
a fixed-priority VM scheduler in the context of embedded
real-time applications. We considered the case where mul-
tiple real-time tasks run on multiple VMs. Since time slices
and periods need to be selected for every VM in the sys-
tem, the design of a VM scheduler differs from the known
techniques for analyzing hierarchical scheduling.

As expected, the period of a VM is determined by the
minimum deadline that has to be scheduled on that VM.
On the other hand, the selection of an efficient time slice re-
quires an iterative procedure. By considering the minimum
requirements for a VM and the schedulability condition of a
task running on that VM, we first compute an estimate of
the VM’s time slice. This is used as an initial value, which
can then be improved towards the optimum in a reduced
number of subsequent steps.
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In addition, to illustrate the proposed design technique,
we presented a case study consisting of two automotive ap-
plications running upon the Xen hypervisor. The Xen ver-
sion considered here was previously extended by a fixed-
priority real-time VM scheduler.

Based on our setup, we compared the case where each
real-time task runs on a dedicated VM to the case where
a whole application (i.e., multiple tasks) runs on a single
VM. From this comparison, we observed that the average
response time improves when only one task is scheduled on
a VM. This is expectable, since it is possible to configure
the VM to the specific requirements of one task if the latter
runs exclusively on that VM. On the other hand, running
several tasks on the same VM allows for a better use of RAM
memory, which is a scarce resource in embedded systems.

As future work, we plan to extend the presented approach
to consider more general scheduling algorithms and, in par-
ticular, we are interested in analyzing the effect of VM /task
migration in designing a VM scheduler under real-time con-
straints.
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