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Abstract— In this paper, we consider a cyber-physical ar-
chitecture where control applications are divided into multiple
tasks, spatially distributed over various processing units that
communicate via a shared bus. While control signals are
exchanged over the communication bus, they have to wait for
bus access and therefore experience a delay. We propose certain
(co-)design guidelines for (i) the communication schedule, and
(ii) the controller, such that stability of the control applications
is guaranteed for more flexible communication delay constraints
than what has been studied before. We illustrate the applicability
of our design approach using the FlexRay dynamic segment as
the communication medium for the processing units.

I. INTRODUCTION

Systems with tight conjoining of and coordination between com-
putational (cyber) units and physical resources are generally referred
as cyber-physical systems [1], [2]. Regulation of the interacting dy-
namics of the computational and the physical parts of such systems
necessitate careful co-design of the overall architecture. In this paper,
we address design considerations to facilitate the interaction between
control applications, that run on spatially distributed processing
entities, and the scheduling algorithms for managing these entities.

Our work may be referred to as control/communication archi-
tecture co-design. In particular, our results show that it is possible
to suitably design control applications that can work under more
flexible communication delay constraints, rather than requiring all
control messages to meet specified deadlines, which has been the
case so far. The architecture design problem now boils down to
designing the communication schedule that meets such flexible
delay constraints. This allows for a wider range of schedules and
communication architectures, compared to what is permissible with
strict delay constraints. We quantify the notion of flexibility and show
how control applications may incorporate this notion. Apart from
our specific technical contributions which involve both controller
design and (FlexRay) schedule synthesis, our work illustrates the
importance and advantages of architecture/algorithm co-design in
the context of cyber-physical systems.

The formal problem statement is formulated in Section II. The
proposed design guidelines and the significance of the proposed
methodology are described in Section III. In the subsequent Sec-
tion IV, we illustrate our design proposal from the perspective
of the communication architecture and the stability of control
applications. The proposed design methodology is applicable to any
cyber-physical control application. However, the significance of our
approach is more prominent when the delay in the communication
bus is time-varying. Hence, we illustrate the applicability of our
framework considering the FlexRay dynamic segment as the com-
munication medium. We developed a FlexRay control co-simulation
framework, that is described in Section V, in order to simulate
communication delays for different bus schedules and to analyze
control stability. Finally, our simulation results are discussed in
Section VI.

II. PROBLEM FORMULATION

In this research, we consider a discrete-time control system of the
form shown in (1).

x[k + 1] = Ax[k] +Bu[k] (1)
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Fig. 1. Timing Diagram.

where x[k] is the n × 1 vector for state variables and u[k] is the
control input to the system. A is a n × n system matrix, B is a
n × 1 vector and we assume that (A,B) is a controllable pair. The
sampling time of the controller is a constant h. Such systems usually
have two physical components: actuators (or plants)1 and sensors.
A controller is an algorithm to compute u[k] such that the states
x[k] behave according to the designer’s requirement. We consider
a distributed architecture where the actuators and the sensors are
spatially distributed and reside at different processing units (PUs)
connected via a communication bus. The controller algorithm (or
controller tasks) may run on the sensor or the actuator or on some
other PU.

We assume the states x[k] are measurable and that their values
are measured by the sensors. A state-feedback controller u[k] (as
per (2)) utilizes the feedback signals x[k]. The whole purpose of
any control design is to find suitable values of the controller gains
K such that x[k] follows the designer’s requirement. Another way
to describe the same control problem is that we choose K such that
the closed-loop dynamics (A + BK) is stable (i.e., all the Eigen
values of (A+BK) are within the unit circle).

u[k] = K1x1[k] +K2x2[k] · · ·Knxn[k]

⇒ u[k] = Kx[k] (2)

where K = [ K1 K2 · · ·Kn ] is known as state-feedback gains.
Now, we come to the issues related to a distributed control

architecture. The control input u[k] in (2) at the kth sampling
instant (or t = hk) utilizes the values of the states exactly at
t = hk. However, we can see from Fig. 1 that both, the sensor
data processing and the control input computation, consume a finite
amount of time τ before the control input is applied to the actuator.
The value of τ may be ignored when the actuator, the sensors and
the controllers reside in the same task within a PU. However, in the
case of distributed architectures, τ can be arbitrarily large. In this
work, we are interested in investigating design (or rather co-design)
considerations for the communication schedule parameters and the
controller gains such that x[k] → 0 as k → ∞ (i.e., asymptotic
stability) for a range of values of τ .

1In this work, we do not differentiate between actuators and plants.
Because, the control inputs are directly applied to the actuators (e.g., the
wheel of a car) and actuators may or may not be connected to some bigger
plant (e.g., the car).
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Fig. 2. Stable and unstable samples.

A. Related Work
Effect of such communication delay, i.e., τ , on the stability of con-

trol applications is studied in [3], [4], [6] from a networked control
systems perspective. One of the major challenges in modeling such
communication delay in control theory is that the control signals
experience time-varying delay in many industrial communication
protocols (e.g., FlexRay, CAN, etc). In order to deal with such
time-variation in the feedback loop, one noticeable design restriction
found in the literature [4], [6] is that the maximum message
delay should be less than one sample interval of the discrete-time
control application under consideration (i.e., 0 < τmax < h). This
design restriction was relaxed in [3], [7] where the delay is upper-
bounded by a certain value which can be more than one sample. In
our proposed design method, such a restriction on the maximum
delay is not imposed. Another noticeable consideration in these
control-theoretic approaches is that the probability of occurrence
of sensor-to-actuator delay is uniformly distributed between their
minimum and maximum values. Moreover, it is assumed that the
communication schedules are given and designer has no control
over such communication schedules. Because of such restrictions,
controller design often becomes overly conservative and fails to
identify feasible designs (or are only applicable to stable plants or
plants with marginal instability, as in the example provided in [7]).
In contrast to such approaches, we study a co-design problem where
the designer can adjust both the control application as well as the
communication schedule. Some of previous work in this direction
may be found in [2], [5] where control applications are stabilized
using relatively simple assumptions on the communication bus.
However, most industrial communication buses have more complex
and unpredictable temporal behavior and the design methodology
should be able to adapt to such complex behaviors. In this paper,
we have illustrated the applicability our design methodology using
the FlexRay dynamic segment as the communicating medium.

III. MAIN RESULTS

Suppose the controller gains Kδ achieve asymptotic stability of
the system (1) with the control law u[k] = Kδx[k − δk], i.e., the
feedback signals are delayed by δk samples. Hence, the system (1)
will be asymptotically stable if all the feedback signals x[k], ∀k are
delayed by (δk−1)h < τ < δkh, i.e.,

⌈
τ
h

⌉
= δk samples. However,

there are sampling instants where
⌈
τ
h

⌉ �= δk. The sampling instants
with

⌈
τ
h

⌉
= δk are referred as stable samples and those with

⌈
τ
h

⌉ �=
δk are referred as unstable samples. We have explained this idea
with an example in Fig. 2 where the actuator utilizes u[4]=f(x[2]),
i.e., the feedback signal is two samples old. Now, we propose to
design the communication schedule and the controller according to
the following guidelines:

1) The communication bus parameters are chosen such that most
of the samples are stable. We say that most of the samples
are stable if the ratio between the total number of stable
samples μs and unstable samples μu over (μs+μu) (which is
sufficiently large) samples is lower-bounded by a sufficiently
large positive integer M , i.e., ( μs

μu
≥ M ). Hence, there might

be unstable samples with arbitrarily large amount of delay
(i.e., τ >> δkh) and also samples with τ << δkh. However,
their total number is upper bounded over certain time intervals.
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Fig. 3. Triggering of tasks Ts and Ta.

2) Controller gains Kδ are designed to achieve asymptotic stabil-
ity of the system (1) with the control law u[k] = Kδx[k−δk].

Therefore, we propose to design the communication schedule such
that most of the sample delays vary within a range of one sample
(δk − 1)h < τ < δkh and design the controller gains based on
such a range of delays (i.e., δk sample delays). Our claim is that the
controller gains Kδ (in (1)) stabilize even in the presence of certain
samples for which

⌈
τ
h

⌉ �= δk (proof is provided in the following
sections). Note that our focus is not on designing controller gains or
on synthesizing network schedules alone, rather we propose a design
guideline for both of them which brings the designer the following
advantages.

A. Significance of our results
• The above design method does not require any knowledge

of the worst-case delay experienced by the feedback signals.
The analysis to find the worst-case delay for common indus-
trial communication protocols such as CAN and FlexRay is
relatively complex and computationally expensive. Moreover,
controller design based on worst-case delays often leads to a
pessimistic design.

• As we can see from [3], [4], [6], controller design based on
time-varying delay often requires that the sensor-to-actuator
delay uniformly varies between the best-case and the worst-
case delays. Hence, it is assumed that the worst-case sensor-
to-actuator delay might occur as frequently as any other pos-
sible sensor-to-actuator delays. However, this is not a realistic
assumption for most of the commonly found communication
buses. Rather, it is more meaningful to choose scheduler
parameters that ensure, e.g., that the fraction of messages that
experience the worst-case delay is bounded by a predefined
constant. We follow this approach; our design method is based
on a range of delay values that are most likely to occur
(rather than bounding the worst-case delay). Hence, it is less
pessimistic than previous approaches.

IV. CONTROL/SCHEDULER CO-DESIGN

We start with the distributed control architecture described in
Section II. The plant is represented by continuous time states x(t)
and the task Ts reads the continuous states x(t) at the sampling
times t = hk with k = {0, 1, 2...}, and hk+1 −hk = h. The sensor
signal at t = hk is represented by x[k]. The task Tc processes x[k]
(or computes u[k]), sends the output to the task Ta, which applies
the control input to the actuator/system/plant. The communication
among the tasks Ta, Tc and Ts can either be via the communication
bus or directly, depending on the task mapping. We propose to
design the network such that the tasks Tc and Ta are triggered
synchronously (Fig. 3). In other words, both the tasks Tc and Ta

are triggered at t = hk with k = {0, 1, 2...}. In the following, we
illustrate the effects of such a design choice. Due to communication



delay, x[k] gets delayed by τ time units to reach the task Ta (Fig.
1). However, the earliest time at which task Ta triggers is t = hk+1,
i.e., at the next sampling instance. Therefore, the effective sensor-to-
actuator delay is given by δk =

⌈
τ
h

⌉
samples. The task Ta applies

control input u[k] = f(x[k − δk]) to the actuator. Therefore, any
delay between 0 < τ < h is effectively one sample delay with the
above architecture.

A. Control Scheme
Given the above architecture, we assume that we have a network

schedule and controller gains as per the design guidelines mentioned
in Section III. We apply the control input u[k] according to (3).
Hence, we apply the control input to the plant for the stable samples
and we do not apply any control input for the unstable samples.

u[k] = Kδx[k − δk], ∀ stable samples
= 0, ∀ unstable samples (3)

B. Asymptotic Stability of Control Applications
We consider the system (1) and the controller (3). For the stable

samples, the delayed control inputs are applied. Due to delay in
the control input, certain additional (or augmented) states appear
in the closed-loop system. The design of stable controller gain for
such augmented system is not the focus of this work. Hence, we
illustrate the idea with a small example for easier understanding
of the presented design guidelines. Consider a first order system
x[k + 1] = 1.1x[k] + u[k]. Let us consider u[k] = −0.2x[k − 1],
i.e., the input signal is delayed by one sample. When u[k] is applied,
the augmented system is as (4). The new state x0[k] is because of
the delay in the input signal. We denote the augmented states as

x̃[k] =

[
x0[k]
x[k]

]
and the augmented system matrix as Aa. Hence,

x̃[k+1] = Aax̃[k] +BKδx̃[k] = (Aa +BKδ)x̃[k]. We denote the
closed-loop system matrix as Acl = (Aa +BKδ). In this example,
Aa =

[
0 1 ; 0 1.1

]
and Acl =

[
0 1 ; −0.2 1.1

]
.

x0[k + 1] = x[k]

x[k + 1] = −0.2x0[k] + 1.1x[k]. (4)

As the control input with Kδ stabilizes (see (1)), Acl is stable
(in this example, the Eigen values of Acl are 0.23 and 0.87).
On the other hand, for unstable samples, u[k] = 0. Therefore,
the closed-loop system matrix is Aa for the unstable samples.
Often, the original system matrix A (before augmentation) or Aa

is unstable with some of the Eigen values being outside the unit
circle. Moreover, Aa is unstable if the original system matrix A
is unstable (it can be verified from the above example). Hence,
the overall system has some stable (stable samples) and unstable
(unstable samples) phases. We prove the stability of the overall
system with the help of the Lyapunov theorem [8].

For Lyapunov-based asymptotic stability, one needs to show the
existence of a Lyapunov function V(x[k]) such that (a) V(0)=0,
(b) V(x[k])>0, ∀k, and (c) V(x[k+1])-V(x[k])< 0, ∀k [8]. Basically,
the criterion (c) says that if the system energy function V(x[k])
decreases monotonically then the system (or equilibrium point)
is asymptotically stable. For the stable samples, the closed-loop
system dynamics is given by x̃[k + 1] = Aclx̃[k] and Acl is
stable. We assume that the Lyapunov function for the overall system
is V (x̃[k]) = x̃[k]TP x̃[k] where P is a positive definite matrix
(which is one of most commonly used Lyapunov functions for linear
systems). The criterion (a) and (b) hold for the proposed Lyapunov
function. We have to show that criteria (c) also holds in order to
prove that the overall system with stable and unstable phases is
asymptotically stable. Towards this, we have equation (5) (this is
the discrete-time version of the criterion presented in [9]). As the

system is “stable” at the stable samples, there exist some solution of
the positive definite matrix P satisfying AT

clPAcl − P = −I [9] at
the stable samples. Therefore, V (x̃[k+1])−V (x̃[k]) < 0 holds at the
stable samples and the energy function V (x̃[k]) decreases at these
samples. However, V (x̃[k]) might increase at the unstable samples
if Aa is unstable as the closed-loop system is x̃[k+1] = Aax̃[k] for
the unstable samples. The idea is to show that the total decrease in
energy at the stable samples is more than total increase in energy at
the unstable samples. In that case, V (x̃[k]) decreases over time and
the overall system is asymptotically stable in the Lyapunov sense.

V (x̃[k + 1])− V (x̃[k]) = x̃[k]T (AT
clPAcl − P )x̃[k]. (5)

Towards this, we choose communication schedules such that the
total number of stable (μs) and unstable (μu) samples over a time
interval is upper-bounded by a sufficiently large positive integer M .
Decrease in energy in the kth stable sample is given by V (x̃[k +
1])−V (x̃[k]) = −x̃[k]T Ix̃[k] (using (5) and AT

clPAcl−P = −I).
Now, if we start with k = 0 and μs stable samples, total decrease
in energy is given by (using x̃[k + 1] = Aclx̃[k]),

ΔEstable = −
μs−1∑
k=0

x̃[k]T Ix̃[k] = −x̃[0]T (I +AT
clAcl + (AT

clAcl)
2

+(AT
clAcl)

3...+ (AT
clAcl)

μs−1)x̃[0]. (6)

In the unstable samples, total energy increase is given by (as
x̃[k + 1] = Aax̃[k] for the unstable samples),

ΔEunstable = x̃[μs + μu]
TP x̃[μs + μu]− x̃[μs]

TP x̃[μs]

= x̃[μs]
T (Aμu

a )TP (Aμu
a )x̃[μs]− x̃[μs]

TP x̃[μs]

= x̃[μs]
T ((Aμu

a )TP (Aμu
a )− P )x̃[μs]

= x̃[0]T ((Aμs
cl )

T ((Aμu
a )TP (Aμu

a )− P )Aμs
cl )x̃[0]

(7)

The total change in energy in every (μs + μu) samples is
ΔE = (ΔEstable + ΔEunstable). It can be noticed that ΔE < 0
if condition in (8) holds for some positive definite matrix P .

(I +AT
clAcl + (AT

clAcl)
2 + (AT

clAcl)
3...+ (AT

clAcl)
(μs−1)

−((Aμs
cl )

T ((Aμu
a )TP (Aμu

a )− P )Aμs
cl ) > 0. (8)

Hence, if condition (8) holds for every (μs + μu) samples,
the overall system with stable and unstable samples (or phases) is
asymptotically stable in the sense of Lyapunov. In this research, we
find the value of μs

μu
= M either experimentally or by simulation

(as described in the Section V).
The above proof holds when μu unstable samples occur after μs

stable samples. However, the proof can easily be extended to any
other orderings of unstable samples. The idea is to show that the
system is asymptotically stable as long the total change in energy is
negative over every (μs + μu) samples for any order of occurrence
of stable and unstable samples.

V. FLEXRAY CONTROL CO-SIMULATION FRAMEWORK

A. FlexRay Protocol

The FlexRay communication protocol [11] is organized as a
periodic sequence of communication cycles. Each cycle is of
fixed length gdCycle and is indexed by a cycle counter that is
incremented from 0 to 63 after which the counter is reset to 0. This



communication pattern that is repeated periodically is known as
the 64-cycle matrix. Further, every cycle consist of (i) a mandatory
static segment (ST), (ii) an optional dynamic segment (DYN), and
(iii) a segment for clock synchronization which is referred to as
Network Idle Time (NIT). In the following we will discuss the
communication specification of the DYN segment of FlexRay.

FlexRay dynamic segment: The DYN segment is partitioned into
equal-length minislots that are indexed by a minislot counter which
starts counting from 1 up to n minislots in every cycle. Additionally,
a slot counter counts the communication slots that indicate time win-
dows for admissible message transmissions. Each FlexRay message
mi is assigned a static schedule (Si, Bi, Ri) for uniquely specified
transmission points. A message mi can successfully be transmitted
via the DYN segment if the following requirements are satisfied:

• the assigned slot number Si ∈ SDY N is equal to the current
slot counter value of node N , where SDY N is the set of
available slot numbers in the DYN segment,

• the actual communication cycle is element of the set of feasible
cycles γn ∈ Γi where γn = (Bi + n × Ri) mod 64 with
n ∈ [0, 1, 2, ...], Ri = 2r for r ∈ [0...6] and Bi < Ri,

• the minislot counter must not exceed the specified value of
pLatestTx of node N .

The base cycle Bi indicates the first cycle within the 64-cycle
matrix and the cycle repetition rate Ri indicates the number of
cycles that elapse between two consecutive allowable message
transmissions. The parameter pLatestTx denotes the highest minislot
counter value for which a message transmission is allowed to begin
for a certain node N . If a message mi is ready for transmission
and the above defined conditions are fulfilled then the minislot
counter is incremented by multiple minislots (according to the
message size ci) during the transmission of mi whereas the slot
counter holds the value of Si. After successful transmission of
mi the slot counter is incremented with the next minislot. If the
minislot counter exceeded pLatestTx before mi got access to the
FlexRay bus, the message has to wait for the next admissible cycle
γn ∈ Γi to be transmitted in slot Si. In that case only one minislot
is consumed. If no message matches a dedicated slot counter and
cycle counter or there is no message ready for transmission, one
minislot is consumed as well, while the slot counter is incremented.

Message displacement: To illustrate the communication paradigm
of the DYN segment consider the example in Fig. 4. Let the cycle
length be gdCycle = 5ms, the number of ST slots s = 4 and the
number of minislots in the DYN segment n = 8. The slot counter in
the DYN segment starts counting communication slots from s+1 =
5. Further, let four messages m1, m2, m3 and m4 be scheduled
according to their tuples of the form (Si, Bi, Ri), e.g., (5, 0, 4),
(7, 0, 2), (7, 1, 2), (9, 0, 4). The message sizes ci are denoted in
terms of minislots by c1 = 3 and c2 = c3 = c4 = 2. Further,
we consider the last minislot where a transmission may start for all
messsages as pLatestTx = 7.

In the following, we are especially interested in the delay of
message m4. In cycle 0, m1 is not transmitted, i.e., one minislot
is consumed, whereas m2 and m4 are being transmitted on the bus
in their assigned slots S2 = 7 and S4 = 9 consuming 2 minislots
each. At slot S4 = 9 the minislot counter value is equal to 6 which
is smaller than the specified pLatestTx value of 7. Consequently,
m4 is allowed to be transmitted in that cycle. However, in cycle 4,
message m1 is additionally transmitted to m2 which increases the
workload on the bus by another c1−1 minislots. Thus, at slot S4 = 9
the minislot counter exceeds the specified value of pLatestTx which
results in a displacement of m4, i.e., m4 can not be transmitted
in the current cycle and will be displaced to its next feasible cycle
γn ∈ Γ4, e.g., cycle 8. Therefore, m4 can experience delay of several
cycle lengths, i.e., several sample delays, depending on the number
of consecutive displacements. Note, that a transmission of m3 will
never affect the transmission of m4 as m3’s schedule only allocates
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odd cycles in the 64-cycle matrix, i.e., Γ3 = [1, 3, 5, ..., 63], whereas
m4 is assigned even cycles Γ4 = [0, 4, 8, ..., 60].

B. Simulator
System Description: We use the Elektrobit (EB) tresos Designer
Pro tool [10] to determine the FlexRay bus configuration parameters
such as gdCycle, pLatestTx, the proportion of the ST and DYN
segment and other protocol related parameters. Additionally,
message properties and schedule parameters of existing messages
are imported to the simulation framework.

Scheduler: Our scheduler (see Fig. 5) synthesizes all feasible
message schedules (Si, Bi, Ri) for a message mi that serves as
an input to the simulator. With feasible message schedules we
mean schedules that satisfy the FlexRay protocol (as previously
discussed). In order to avoid buffer overflows in the FlexRay
transmit buffers, we upper bound the admissible repetition rates by

Rmax,i = min(2

⌊
log2(

pi
gdCycle

)
⌋
, 64).

The simulation framework as depicted in Fig. 5 is made up
of two main modules: the FlexRay event simulator in order to
simulate communication delays, and the discrete-time system model
to simulate the discrete-time system. The FlexRay simulator is
implemented in SystemC and consists of several submodules: (i) the
FlexRay clock provides the FlexRay communication model with
the actual slot counter, minislot counter and cycle counter values,
(ii) an event generator generates input event streams based on the
system description and (iii) the FlexRay communication model
implements the FlexRay specification and computes the message
delays for the transmitted event streams. Further, the message
delays serve as an input to the discrete-time system model in order
to compute sensor-to-actuator delay and simulate the stability of the



system. In the following, we explain these modules in more detail.

FlexRay clock: At t = 0, the FlexRay clock is initialized with
cycle counter equal to 0 and slot counter equal to 1. On starting
the simulator the cycle counter is incremented from 0 to 63 after
which it is reset to 0 again. During every cycle the slot counter
is incremented according to event transmissions until the minislot
counter value is equal to the the last minislot of the DYN segment.
Further, the FlexRay clock synchronizes the event generator with
the global FlexRay time base.

Event generator: Every event ei ∈ E is characterized by the tuple
(Si, Bi, Ri, pi, oi, [rmin,i, rmax,i], ci) where Si is the dynamic
communication slot, Bi is the base cycle and Ri denotes the
repetition rate. An event activation is specified by a period pi
and an initial offset oi where oi determines the point in time at
which the first instance of ei is triggered. The kth instance eki
will be generated at tki = oi + k × pi and arrives at the transmit
buffer (TxB) at t∗i = tki + r∗i where r∗i ∈ [rmin,i, rmax,i] denotes
a response time that is randomly distributed between a lower and
an upper bound rmin,i > 0, rmax,i ≥ rmin,i respectively. The
message size ci is denoted in terms of minislots.

FlexRay communication model: Further, every event ei ∈ E is
statically assigned a transmit buffer that is configured with a filter
mask according to the assigned schedule parameters Si, Bi and Ri.
An event ei generated at time stamp ti is stored in the assigned
buffer where it waits until it gets access on the bus. Several instances
of ei = 〈e1i , e2i , ..., eni 〉 are stored in a first-in-first-out (FIFO) order.
The transmit buffer of any event ei is requested for transmission on
the FlexRay bus if (i) the slot counter of the FlexRay clock matches
the slot Si, (ii) the actual cycle counter matches γn ∈ Γi and (iii)
the minislot counter is within the specified pLatestTx bound. In case
the buffer is filled, the event at the head of the FIFO is removed and
gets transmitted on the FlexRay bus. After successful transmission
at time stamp ti

′ the slot counter is incremented by ci minislots. If
the buffer is empty or no buffer is requested for transmission the
slot counter is incremented with the next minislot. The delay dki of
message mi at sample k is computed as the deviation of the event
transmission time stamp tki

′, i.e., arrival of eki at the receiver, to the
event generation time stamp tki , formally written as dki = tki

′ − tki .
Once the simulation has finished all delays di = 〈d1i , d2i , ..., dni 〉
among all event instances ei = 〈e1i , e2i , ..., eni 〉 are passed to the
discrete-time system model for further processing.

Discrete-Time System Model: The discrete-time system model is
implemented in Matlab as a discrete time control system of the form
(1). We consider a distributed control architecture as depicted in
Fig. 6 with sampling period h. The sensor task Ts is triggered with
offset os, the controller task Tc is processed on the same processor
with offset oc > os+rmax,s where rmax,s is the worst-case response
time of Ts. Subsequently, the controller output is packetized in
message mc that is transmitted via the DYN segment of FlexRay
with period p = h and time delay d. The actuator task Ta is triggered
with an offset oa = os and performs the input to the plant. The
total end-to-end delay along the control path is computed as per⌈
τ
h

⌉
=

⌈
oc−os+dc

h

⌉
. Finally, the stability properties are observed for

every feasible schedule that is synthesized according to the FlexRay
protocol.

VI. RESULTS

System description: The FlexRay configuration parameters have
been specified using the EB Designer Pro tool. The cycle length is
set to gdCycle = 5ms with ST segment of length 2ms and 10 static
slots. The rest of the cycle has been distributed to the DYN segment
and NIT. Further, the DYN segment consists of 60 minislots where
the duration of one minislot is 0.05ms. The value pLatestTx was

Ts Tc Ta

actuatorcontroller

sensor

mc:(Sc,Bc,Rc)

Os Oah
Oc

Fig. 6. Distributed control system under simulation.

TABLE I
EXISTING FLEXRAY SCHEDULES.

index i (Si, Bi, Ri) oi in ms pi in ms [rmin,i, rmax,i] ci
1 (11, 0, 2) 1 20 [0.7,2.7] 4
2 (12, 0, 2) 2 20 [0.7,2.7] 4
3 (14, 2, 4) 2 40 [1.7,6.7] 3
4 (16, 0, 4) 3 50 [1.7,6.7] 3
5 (17, 7, 8) 12 100 [1.7,6.7] 3
6 (17, 4, 8) 14 100 [1.7,6.66] 3
7 (20, 2, 4) 18 80 [2.7,10.7] 5
8 (25, 0, 2) 0.1 20 [0.7,2.7] 4
9 (25, 1, 4) 17 100 [6.7,26.7] 6
10 (28, 0, 4) 21 60 [2,8] 4
11 (30, 1, 2) 11 50 [1.7,6.7] 5
12 (33, 0, 2) 28 20 [1,4] 4
13 (34, 0, 1) 2 20 [0.7,2.7] 4
14 (38, 0, 2) 30 40 [1.3,5.3] 5

set to 50 for all messages in the network, i.e., the last minislot where
a message transmission may begin is when minislot counter is equal
to pLatestTx. In order to provide results of practical relevance
we consider an existing FlexRay network with several messages
being mapped on the DYN segment. The message properties are
depicted in Table I, i.e., schedule parameters Si, Bi, Ri, task offsets
oi and periods pi, uniformly distributed response times between
[rmin,i, rmax,i] and message sizes ci in minislots. We simulate a
distributed controller architecture as depicted in Fig. 6 with the
following system properties:

• discrete-time control system of form as shown in (1), with A
= [0.4 0.60 0.7;-0.56 -0.9 -0.6;-3.6 -1.2 -2.8], and B = [0.1;
0.7; 0.5]. It can be noticed that the Eigen values of the open-
loop system matrix A are [-1.5717 -1.4 -0.3283]. As two of the
Eigen values are outside the unit circle, the open-loop system
(original plant) is highly unstable.

• controller gains Kδ = [−1.8622 − 0.2858 − 1.0355] are
designed to achieve asymptotic stability of the system with
control law u[k] = Kδx[k − δk], with δk = 1

• the minimum ratio of stable and unstable samples for which
the closed-loop system is asymptotically stable with the above
controller gains is experimentally found to be Mref = 52

• sampling period h = 40ms
• task offsets os = oa = 0.1ms, oc = 0.4ms > os + rmax,s

• response time r∗c for controller task Tc is uniformly distributed
between [1.3ms, 5.3ms]

• FlexRay bus schedules (Sc, Bc, Rc) for controller message mc

generated by the scheduler
For the purpose of our experiments we carried out 120

simulations with a different schedules (Sc, Bc, Rc) for mc at each
simulation run. The size of the message mc is c15 = 4 minislots.
The period of the controller task Tc is same as the sampling
interval h, i.e., p15 = 40ms. The simulation time was set to 100sec
which corresponds to 2500 generated samples at a sampling period
h = 40ms. During each simulation we plotted the distribution of
sensor-to-actuator delay τ and analyzed the asymptotic stability of
the discrete-time system. We illustrate our observations for three
example schedules that have been synthesized for mc.
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Fig. 7. Delay distribution for mc : (40, 0, 2) and the corresponding x1[k].
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Fig. 8. Delay distribution for mc : (45, 0, 4) and the corresponding x1[k].

Example 1: The controller message mc has been assigned the
schedule (40, 0, 2). Fig. 7 illustrates the delay distribution for
the sensor-to-actuator delay. The delay is distributed between
τmin = 3.7ms and τmax = 14.1ms which corresponds to a
constant sample delay of

⌈
τ
h

⌉
= δk, ∀k, i.e., all sample instances

have been stable. The delays lie in two distinct regions. The
distance between the two regions is around Rc · gdCycle which is
the time a message must wait in case (i) the message just misses its
slot, and (ii) the message got displaced (as described in Section V).
As expected, the system is asymptotically stable as x[k] → 0 for
k → ∞ (see Fig. 7). As the time-variation of all the state variables
x[k] are very similar, we show only x1[k] to explain our results.
We can notice some initial oscillation in x1[k] because the original
system is highly unstable. Nevertheless, the controller gains are
able to achieve asymptotic stability.

Example 2: Here, mc has been assigned the schedule (45, 0, 4),
i.e., a slot with higher slot number Sc and repetition rate Rc than
in example 1 (which means lower priority). The corresponding
delay distribution is depicted in Fig. 8. The sensor-to-actuator
delay varies between τmin = 3.95ms and τmax = 44.5ms, i.e.,
there exists a sample k for which

⌈
τ
h

⌉
> 1. In this example

36 unstable samples could be observed, i.e., M = 70 > Mref .
Hence, the system is still stable as x[k] → 0 for k → ∞ (see Fig. 8).

Example 3: Finally, we observe the case where the number of
unstable samples is high, e.g., M = 11 < Mref . This is depicted
in Fig. 9 where mc is assigned the schedule (48, 0, 4). We observed
243 unstable samples where the sensor-to-actuator delay was dis-
tributed between τmin = 4.1ms and τmax = 84.5ms, i.e., some
of the unstable samples even suffer from a delay of

⌈
τ
h

⌉
=3. In that

case, asymptotic stability could not be achieved (see Fig. 9).

VII. CONCLUDING REMARKS

In this paper we have shown that by appropriately designing con-
trol algorithms, important control performance metrics such as stabil-
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Fig. 9. System is unstable for mc : (48, 0, 4) and the corresponding x1[k].

ity can still be guaranteed even when certain control messages violate
their timing properties. This requires careful control/communication-
architecture co-design, which was the focus of this paper. To illus-
trate our techniques, we chose the dynamic segment of a FlexRay bus
as the communication medium. In contrast to current practice, where
the time-triggered (and hence predictable) static segment of FlexRay
is used for time-critical control algorithms, our work illustrates that
careful system co-design allows for greater design flexibility. We
believe that such “co-design” will be the hallmark of the cyber-
physical systems design paradigm. As a part of future work, we plan
to augment our methodology with a formal analysis of the dynamic
segment of FlexRay.
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