
1

Optimized Schedule Synthesis under Real-Time
Constraints for the Dynamic Segment of FlexRay

Reinhard Schneider?, Unmesh Bordoloi†, Dip Goswami?, Samarjit Chakraborty?
?TU Munich, Germany, †Linkoeping University, Sweden

Abstract— The design process for automotive electronics is
an iterative process, where new components and distributed
applications are added over several design cycles incrementally.
Hence, at each design iteration an existing communication
schedule is extended by new messages that have to be scheduled
appropriately. In this paper, the goal has been to synthesize
schedules under real-time constraints for the dynamic segment
of FlexRay with respect to the 64-cycle protocol specification. We
propose a flexible scheduling framework to generate all feasible
schedules for a set of messages satisfying real-time and protocol
constraints. Further, we present an optimization procedure to
retain schedules according to suitable design metrics. Even
though the size of the possible design space is exponential in
the number of messages, our proposed method keeps down the
schedule synthesis time to practically acceptable values as shown
in the experiments.

I. INTRODUCTION

Today, cars are becoming complex distributed embed-
ded systems with a proliferation in the number of micro-
controllers, sensors, actuators etc., which communicate over
a fieldbus. The design process of the electronic components
of such cars is an iterative process, where new features and
components are added at each design cycle, the system is
tested and validated and then the process is repeated [11],
[12]. At each design cycle, new distributed applications might
be added to the system which implies the addition of new
tasks to existing Electronic Control Units (ECUs) and new
messages to the existing communication network.

While scheduling such new messages, the goal is to satisfy
all the protocol as well as timing constraints. Moreover, the
schedules must be optimized according to specific design
objectives, e.g., schedules should be such that messages in
future iterations can easily fit into the system without having
to change existing schedules. In this work, our goal is to
synthesize schedules for the FlexRay protocol. We focus on
FlexRay because it is emerging as the de-facto protocol for
next generation cars, e.g., BMW has rolled out its 7 series
with a FlexRay-equipped brake-by-wire application [2]. As
the cost associated with FlexRay deployment is expected
to go down over the next few years, more x-by-wire
applications are expected to communicate over the FlexRay
bus. Consequently, efficient FlexRay schedule synthesis
techniques will become an ever-increasing challenge for
future automotive applications.

Our contributions: FlexRay is a hybrid communication pro-
tocol for automotive networks, i.e., it allows the sharing of
the bus between both time-triggered and event-triggered mes-
sages, offering the advantages of highly predictable temporal

behavior and efficient communication bandwidth usage.
In FlexRay, the time-triggered component is the static (ST)
segment and the event-triggered component is known as the
dynamic (DYN) segment. Because of the inherent difficulty
in analyzing the DYN segment, research has mostly focused
on the ST segment. In fact, researchers have also focused
on using the ST segment for incremental design, i.e., the
problem of adding new messages to existing schedules [12].
On the other hand, the DYN segment being an event-triggered
paradigm, actually offers more flexibility for such incremental
design. This is because the communication slots of the ST
segment are of fixed, and equal length, and are determined
during design time. Thus, unexpected message scheduling
requirements, which may come up during later stages of
development might not fit into the ST segment slots. Further,
certain application classes like those which demand high and
variable data volumes may require a FlexRay network that
mostly consist of the DYN segment. Such advantages offered
by the DYN segment have, unfortunately, not been tapped yet.
In light of the above facts, techniques to schedule messages
on the DYN segment have high significance, and in this paper,
we propose a mechanism for synthesizing such schedules with
a focus on real-time guarantees and design flexibility.

Our results are especially interesting because the scheduling
techniques proposed in this paper account for practically
relevant details of FlexRay that have not been modeled in
the existing literature on analysis for the FlexRay dynamic
segment [5], [9]. In particular, our proposed technique
synthesizes schedules from the perspective of the 64-cycle
matrix, which allows multiplexing, i.e., multiple messages
can be assigned the same priority (slot) if they are mapped to
the different cycles. The details of the 64-cycle matrix will be
described in Section II. Further, we synthesize and optimize
the schedules for a set of messages which makes our results
meaningful from a practical perspective.

Overview of our scheme: Our proposed scheme (illustrated
in Fig. 1) is an incremental schedule synthesis engine that
we run for every new application that is to be mapped on
the FlexRay DYN segment. As an input to the scheduler we
consider (i) the existing schedules that have been generated at
previous design cycles, (ii) the FlexRay network configuration
and (iii) the set of new messages, that is to be scheduled at
the current design cycle. Based on this input specification
we synthesize the schedules for the set of new messages
by applying several pruning techniques to discard infeasible
solutions.
At the first stage, our scheme prunes schedules that do not

2

1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

63

m2
m1

schedules from previous design cycles

existing schedules/network new messages to be scheduled

m1

m2

MApp

slots

cycles

schedule

synthesis

message

schedules

update for next

design cycle

Protocol constraints

(Section II)

Real-time constraints

(Section III)

Optimization

(Section IV)

64-cycle matrix

Fig. 1. Overview of our incremental schedule synthesis engine.

satisfy the FlexRay protocol specification (see Section II).
At the second stage (discussed in Section III), schedules
violating specified real-time constraints are filtered out. This
pruning is done based on algebraic computations from which
we derive certain bounds on the scheduling parameters that
may be assigned to each new message. Hence, the feasible
design space can dramatically be restricted. Next, we apply
a timing model to check if the generated schedules satisfy
given message deadlines. Schedules where messages violate
the deadlines are discarded.
As the number of possible schedules might be exponential
in the number of new messages, schedule synthesis is a
computationally expensive problem. However, by applying
effective pruning strategies in both the above stages, a large
portion of the design space is discarded, which makes the
problem tractable and the approach efficient in practice.
Finally, all remaining schedules, i.e., those which satisfy
the FlexRay protocol and specified real-time constraints
are optimized according to multiple design objectives (see
Section IV). Here, a system designer may choose suitable
weights on several objectives that are relevant to his or her
design requirements, and retain the optimal schedules for all
new messages. In Section V we apply our scheme to several
use cases in order to show the applicability of our approach.
Fig. 1 illustrates our scheme. The three core components of
our scheduling engine, i.e., pruning based on protocol and
real-time constraints followed by an optimization procedure
are shown here. Further, it illustrates that new message
schedules generated in the current design cycle will become
a part of the input specification for the next design cycle.
This figure depicts the synthesized FlexRay schedules in the
form of a matrix, where two new messages m1 and m2 are
being added by allocating different cycles in slots 3 and 7.

Related work: In recent years, there has been a tremendous
interest in timing and schedulability analysis for the FlexRay
protocol. Techniques for scheduling messages in the static
segment of FlexRay have been described in [6], [12]. Methods
have been proposed in [7], [12] specifically to generate exten-
sible schedules suitable for the automotive electronics design
cycle. It may be noted that [6] generates schedules considering

minislot counter
cycle 0 cycle 1 cycle 2

DYN ST DYN STST DYN

m2 m1
1 2 3 4 5 … 1 2 3 4 5 6 7 … 1 2 3

1 2 3 4 … 12 3 4 56 7 … 12 3 4 5 …

slot counter
Fig. 2. Transmission over the DYN segment.

the 64-cycle matrix of the FlexRay protocol. However, all of
the above attempts ignored the DYN segment, which is the
focus of this paper.

Recently, there has been some research effort towards ana-
lyzing the timing properties of the DYN segment of FlexRay.
Notable among these are [5], [9]; but all of them assumed that
message schedules are given and tried to estimate the worst
case response time of the messages. In this paper, we propose
a framework to synthesize schedules for a set of messages in
the DYN segment of FlexRay.

The only known attempts to generate message schedules
on the FlexRay DYN segment were reported in [8] and [10].
In [10], the scheduling problem has been formulated as a
nonlinear integer programming problem and the objective was
to minimize the required size of the DYN segment. In [8], both
the ST and the DYN segment have been considered together.
The problem of assigning priorities to messages in the DYN
segment has been solved using a heuristic which optimizes the
schedule by maximizing the difference between the message
delay and its deadline. Although both papers are interesting
approaches towards schedule synthesis for the FlexRay DYN
segment, there are some drawbacks which might hinder their
applicability in practice.

The first drawback being that none of them consider the
iterative design process of the automotive electronics industry.
Thus, schedules generated are not optimized for flexibility.
Secondly, [8], [10] made certain simplifying abstractions on
the FlexRay protocol to make the analysis tractable. In particu-
lar, the 64-cycle matrix and protocol restrictions like pLatestTx
(which is described later) were not modeled. Clearly, such
abstractions restrict the applicability of these techniques in
practice. This paper addresses the challenge to synthesize
optimized message schedules under real-time constraints con-
sidering multiple design objectives.

II. THE FLEXRAY PROTOCOL

The FlexRay Communication protocol [4] is organized
as a periodic sequence (known as the 64-cycle matrix)
of communication cycles, where each cycle is of a fixed
length, denoted by gdCycle. As discussed in Section I,
each communication cycle is further subdivided into two
major segments: ST and DYN. Furthermore, the FlexRay
communication cycle also contains a mandatory Network
Idle Time (NIT) segment that is used to perform clock
synchronization. We will ignore the NIT segment in further
discussions because it does not interfere with the DYN
segment and hence, its blocking time may easily be account
for. In the following we discuss the protocol specification
centering around the DYN segment. First, we discuss the
DYN segment in the context of one communication cycle,
followed by its description in the context of the of the

3

64-cycle matrix.

Dynamic segment: The DYN segment is partitioned into
equal-length slots, which are referred to as “minislots”. Each
minislot is numbered by a minislot counter. The minislot
counter counts the number of minislots from the beginning
of the DYN segment, as shown in Fig. 2. Messages on the
DYN segment are assigned fixed priorities. At the beginning
of each DYN segment, i.e., when the minislot counter is one,
the highest priority message is allowed to be transmitted by
occupying the required number of minislots. However, if the
message is not ready, then only one minislot is consumed. In
either case, the bus is then given to the next highest-priority
message and the same process is repeated until the end of the
DYN segment. Fig. 2 shows an illustrative example for three
cycles. Let m1 be the highest priority message, which must
get access to the bus at the start of DYN segment. Thus, if m1

misses its turn, as shown in cycle 1 of the figure, one minislot
is wasted, after which the next higher priority message, m2 is
allowed access to the bus in cycle 1. In cycle 0 no messages
are ready.

Each minislot, where a message may be transmitted, is
numbered by the slot counter. The set of static slots is denoted
by SST = {1, ..., l}. If there are l number of ST slots, the slot
counter in the DYN segment starts at l+1. The set of dynamic
slots is given by SDYN = {l + 1, ..., n}. Hence, in Fig. 2
the slot counter for DYN segment starts from 4 (see cycle 0).
When a message transmission occupies multiple minislots, the
slot counter is increased only by one. For example, in cycle 1
of Fig. 2, m2’s transmission starts in minislot 2 and occupies 5
successive minislots. Thus, the minislot counter changes from
2 to 7 while the slot counter changes from 5 to 6.

Each message mi is assigned a slot number Si, which
specifies that the message may be transmitted in the DYN
segment when Si is equal to the current value of slot counter.
Messages having a higher priority are assigned lower slot
numbers so that they have access to the bus first. For example,
in Fig. 2, m1 is assigned slot number S1 = 4 and m2 is
assigned slot number S2 = 5. In cycle 1, m2 gets access to
the bus when the slot counter becomes 5 after m1 misses its
turn when slot counter was 4.

Note that when its turn comes, a message is transmitted
only if the current minislot counter value is not greater than
pLatestTx which denotes the highest minislot counter value a
message transmission is allowed to begin for a certain ECU.
The value of pLatestTx is statically configured during design
time and depends on the maximum dynamic payload size that
is allowed to be transmitted by a certain ECU (please see [4]).

64-cycle matrix: In the above we described the DYN segment
which appears in each communication cycle. However, a set
of 64 such communication cycles is repeated in a periodic
sequence where each cycle is indexed by a cycle counter. The
cycle counter is incremented from 0 to 63 after which it is
reset to 0. Consequently, 64 consecutive communication cycles
constitute a communication pattern which is repeated.

To identify the actual transmission cycles within the 64-
cycle matrix two parameters are introduced: (i) the base cycle

Bi which denotes the offset within 64 communication cycles,
and (ii) the cycle repetition rate Ri, which indicates the
number of cycles that must elapse between two consecutive
allowable transmissions. We already discussed the slot number
Si associated with each message mi, which denotes the
communication slot within a cycle where the message will
be transmitted. Thus, any FlexRay message mi is assigned
Si, Bi, and Ri to uniquely specify admissible transmission
points within 64 cycles. In the rest of the paper we refer to
Θi = {Si, Bi, Ri} as the schedule of mi. Further, we refer to
the set of admissible cycles Γi as the cycle counter of Θi.

According to the FlexRay communication protocol ([1],
[4]), the following relations must hold among these parameters
for any schedule Θi:

FR1) Bi ∈ {0, ..., 63}.
FR2) Ri = 2r; r ∈ {0, ..., 6}.
FR3) Bi < Ri.
FR4) γn = (Bi + n · Ri) mod 64, n ∈ {0, 1, 2, ...} and

γn ∈ Γi.
It may be noted that when Ri = 1, Bi must be 0 due to FR3.
This setting implies that the message mi is allowed to be
transmitted in every cycle.

Illustrative examples: We will show two example schedules
to illustrate the 64-cycle scheduling mechanism. In the first
example (Fig. 3(a)), the ST segment is configured with 3 slots
and the DYN segment consists of 10 minislots. Let m1,m2 and
m3 be three DYN segment messages with associated schedules
Θ1 = {7, 0, 2}, Θ2 = {9, 1, 2}, Θ3 = {11, 0, 4}. It should
be pointed out that the marked cells in the 64-cycle matrix
show minislots in certain cycles where message transmissions
may begin. If a message is not ready for transmission, a
minislot goes empty as explained earlier. On the other hand,
if a message is ready, it will occupy the required number of
minislots in the same cycle to complete its transmission.

In the second example (Fig. 3(b)), we have considered
ST and DYN segments similar to the previous example with
messages m1, m2, m3 and m4 being mapped to the DYN
segment. The DYN segment messages have the schedules
Θ1 = {7, 0, 2}, Θ2 = {7, 1, 2}, Θ3 = {11, 0, 4}, Θ4 =
{11, 1, 2}. Here, identical slot numbers Si have been chosen
for messages m1, m2 and m3, m4 with non-identical values
of Ri and Bi. Such scheduling leads to slot multiplexing, i.e.,
the same slot is being used by multiple messages in different
cycles. For example, m1 is assigned slot 7 in the even cycles
and m2 in the odd cycles. Slot multiplexing improves the
bandwidth utilization as the resources (cycles) of one slot are
distributed to several messages. Thus, for any messages mi

and mj with schedules Θi and Θj which share the same slot,
the following condition holds:

Γi ∩ Γj = ∅, Sj = Si. (1)

Problem formulation: In this paper we propose a technique to
synthesize message schedules for the FlexRay DYN segment.
We denote MApp as the set of new application messages that
are to be scheduled on top of an existing network. Every such
message mi ∈ MApp is specified by the 3-tuple (ci, di, pi)

4

…

5 6 7 8 94 slot

cycle

0

1

2

3

4

5

6

62

63

…

.

.. …
1 2 3

m1

m1

m1

m1

m1

m2

m2

m2

m2

10 11

…
m3

m3

(a)

ST DYN

…

5 6 7 8 94 slot

cycle

0

1

2

3

4

5

6

62

63

…

.

.. …

1 2 3
m1

m1

m1

m1

m1

m2

m2

m2

m2

10 11

…
m3

m3

(b)

m4

m4

m4

m4

ST DYN

Fig. 3. The 64-cycle matrices for two examples.

where ci denotes the message size in terms of minislots, di
indicates the message deadline and pi is the minimum inter-
arrival distance between two consecutive data items arriving
from a task that will be packetized as a FlexRay message. The
goal is to synthesize all feasible schedule solutions ωk ∈ Ω
with ωk = {Θ1,Θ2, ...,Θn} for every mi ∈MApp that satisfy
the FlexRay specification and specified real-time constraints
without changing the existing schedules that have been syn-
thesized at previous design iterations. Further, we optimize
the set of feasible schedules Ω for the optimal ωopt,k ∈ Ω
according to multiple weighted design objectives.

III. REAL-TIME CONSTRAINTS

As discussed in the previous section, our goal is to
synthesize message schedules such that the hard real-time
constraints of the messages are satisfied, i.e., delays suffered
by the messages must not exceed their deadlines. The two
key parameters in a message schedule that affect message
delays are the repetition rate Ri and the slot Si. On the
one hand, Ri determines how many communication cycles a
message will have to wait in case it missed its slot in a cycle.
On the other hand, the slot Si determines the priority of a
message to access the bus within the present cycle. Hence,
the choice of both these parameters are crucial to satisfy
real-time constraints. In the following, we discuss how we
may compute necessary upper bounds on these parameters
for each message mi such that the message delays are safely
bounded. There might still be many admissible values of Ri

and Si for a message mi within these bounds. However, these
bounds might not be sufficient bounds with respect to the
message deadlines, i.e., mi might miss its deadline for any
Θi with Ri ≤ Rmax,i and Si ≤ Smax. Hence, we will also
present a delay model to compute the message delay for any
schedule Θi of mi, based on which we may discard choices
of schedules which do not satisfy the real-time constraints.

A. Computing bounds on repetition rate

Given a repetition rate Ri, the FlexRay bus potentially
provides the assigned slot Si to transmit a message mi every
Ri cycles, i.e., within a time interval of Ri·gdCycle. We define,
the sampling period of the FlexRay bus for message mi as the
interval length Ri ·gdCycle. Note that this sampling rate of the
FlexRay bus for mi has to satisfy the minimum inter-arrival
distance pi of two consecutive data items processed by the

m5 missed its slot

m5 missed its slot

m5 missed its slot

m5 is transmitted m5 is transmitted

second instance of m5

overwrites first instance

second instance of

m5 is transmitted

ST DYN

cycle 0 cycle 1 cycle 2 cycle 3

cycle 0 cycle 1 cycle 2 cycle 3

pmin,5

a)

b)

t0

t1

m5

m5m5

t0 t1

Fig. 4. Scenarios for message transmission with different repetition rates a)
R5 = 2, b) R5 = 1.

sender task. This problem is easily solved if the local ECU
clocks are synchronized to the slots in the FlexRay bus, like
in the ST segment. In such a scenario, pi = Ri · gdCycle is
a sufficient condition in order to successfully transmit every
instance of mi. In contrast to the ST segment, the location
of the communication slots in the DYN segment can vary
from cycle to cycle as it depends on the actual transmission
of messages that are assigned higher priorities, i.e., smaller
slot numbers (see Section II). Thus, in the DYN segment, the
precise time at which a message is ready for transmission can
be before or after the corresponding dynamic communication
slot was ready. Consequently, a bus sampling rate equal to
the maximum message rate does not provide safe transmission
points. In the worst case, data can not be transmitted on the bus
before a new value is produced by the application as illustrated
in Fig. 4(a). Message m5 has a repetition rate of R5 = 2. The
minimum sender task period p5 is defined by p5 = 2 ·gdCycle.
In cycle 0, m5 just missed its slot S5 at t0 and at t1 = t0 +pi
the next slot S5 is not yet ready as messages having higher
priority than m5 are transmitted first. Thus, the first instance of
m5 is overwritten by the second instance of m5 which finally
gets transmitted on the bus in cycle 2.

To reflect the sampling constraints in the DYN segment, we
require that the FlexRay sampling rate has to be at least twice
the message activation rate. This is illustrated in Fig. 4(b).
The message m5 is now assigned a repetition rate of 1 and
can therefore safely be transmitted on the bus before the next
instance of m5 is computed and written to the transmit buffer
of the FlexRay controller. Formally, we obtain the following
mathematical inequalities:

Ri ≤
pi

2gdCycle
(2)

As the repetition rate is only defined by a power of two
and is limited to 64 (see FR2 in Section II), the maximum
repetition rate is computed as:

Rmax,i = min(2blog2(
pi

2gdCycle)c, 64) (3)

Note that according to FR3, we have Bmax,i < Rmax,i for
the maximum base cycle Bmax,i.

5

B. Computing bounds on slot range

As in the case of the repetition rate, we will now derive
bounds on the admissible slot range. Note that a message mi in
the DYN segment can get delayed by several cycles if the min-
islot counter exceeds the specified pLatestTx value. In that
case mi is displaced because of interference from messages
having higher priorities. In such scenarios, mi is delayed to the
next feasible communication cycle γn ∈ Γi, where it may get
displaced once again. Thus, the displacement of a message in
the DYN segment may lead to unbounded message delays. In
this work, we are interested in synthesizing message schedules
where the delays are safely bounded and satisfy hard real-time
constraints. Hence, our goal is to synthesize message schedules
that allocate only those slots Si where message transmissions
are guaranteed without the risk of displacement. Towards this,
we compute a slot called Smax, which is the last slot in
the DYN segment that may be assigned to any message. By
assigning slot numbers Si ≤ Smax, the schedule guarantees
message transmission without any displacement, i.e., the delay
is safely bounded. As the displacement of mi depends on the
transmission of existing messages having a higher priority we
introduce a matrix A that accounts for the slots and cycles that
are allocated by such existing schedules. Let A be a n ×m
system matrix where n = 64 and m = |SDYN |. Ai,j indicates
whether cycle i ∈ {0, 1, 2, ..., 63} of slot j ∈ SDYN is already
allocated by an existing message schedule:

Ai,j =

{
0, if not allocated
1, if allocated by a schedule

(4)

Algorithm 1 Computing the bound on the slot range.
Input: System matrix A

1: wi = 0, ∀i ∈ {0, ..., 63}
2: for all i ∈ {0, ..., 63} do
3: for all j ∈ SDY N do
4: if Ai,j=1 then
5: wi = wi + ci,j
6: else
7: wi = wi + cmax

8: end if
9: if wi ≤ min(pLatestTx) then

10: Smax,i = j
11: end if
12: end for
13: end for

14: Smax = minSmax,i

Given A, Smax is computed according to Alg. 1. We iterate
over all cycles i in every slot j ∈ SDYN (lines 2 and 3)
and check if the total workload w(i) per cycle exceeds the
minimum pLatestTx value of all nodes ECUs in the network
(line 9). Towards this we sum up the maximum possible
workload per slot for every cycle. For Ai,j = 1 the maximum
resource consumption in terms of minislots is denoted by
the message size ci,j that may be consumed in cycle i in
slot j (line 5). If Ai,j = 0 (line 7) naturally one minislot
is consumed. However, to ensure that future messages may
allocate this empty slot, we specify a maximum admissible
message size, i.e., cmax = c(maxPayload) where the value
of maxPayload ≤ 254bytes is a design choice of the system
designer. Finally, we take the minimum Smax among all cycles

DYN

Delay = 2 gdCycle + ((c1 + c2) – 2) tMS + c5 tMS = 10.12 ms

ST DYN ST

m1

m1m2

m2m5

m5 just

missed

its slot
m5

DYN

Delay component 3

Delay component 2Delay component 1

. . .

Fig. 5. The worst case delay scenario for m5.

(line 14) to obtain a safe bound on the slot range for the 64-
cycle matrix. As Alg. 1 illustrates the computation of Smax

also exploits on the existing message sizes. Thus, the value
Smax can increase, i.e., the slot range may improve over
several design iterations because the actual sizes of messages
added in previous iterations might be smaller than cmax and
therefore relax the computation of the total workload w(i).

C. Delay model

In this section we derived bounds on the slot range Smax

and the maximum repetition rate Rmax,i such that message
delays are safely bounded. Using these bounds we are able to
significantly restrict the design space for the set of admissible
schedules. Moreover, there might be many different schedules
Θi within Smax and Rmax,i that might not satisfy specified
real-time constraints. This is because the worst case delay Di

of mi in the DYN segment depends on the higher priority
messages as well, which might interfere with mi leading to
deadline violations. In order to discard schedules which might
violate deadlines, we propose a timing model to compute the
worst-case delay Di of a message mi. If Di > di, where di is
the deadline of mi, the schedule does not satisfy the real-time
constraints and will therefore be discarded.
In the following, we will utilize a running example to explain
the proposed timing model. Towards this, consider a FlexRay
configuration with gdCycle = 5ms that is divided into a
ST segment of 2ms and a DYN segment of 3ms. Let the
number of ST segment slots be |SST | = 10 and the number
of minislots per DYN segment nMS = 300. The duration of
one minislot is considered as tMS = 0.01ms. We consider
six messages being transmitted over the DYN segment with
schedules Θ1 = {11, 0, 4}, Θ2 = {12, 0, 2}, Θ3 = {11, 1, 2},
Θ4 = {13, 1, 4}, Θ5 = {14, 0, 2} and Θ6 = {15, 0, 1}. Mes-
sage priorities are determined according to the slot numbers
Si in descending order, i.e., S1 = 11 denotes highest priority.
Message sizes in minislots are c1 = c3 = 3, c2 = c6 = 5,
c4 = 4 and c5 = 6.

The worst-case delay experienced by any message transmit-
ted in the DYN segment is made up of three delay components.
The first delay component captures the bus blocking time due
to the repetition rate Ri. If mi arrives just after the beginning
of the slot Si, then it has to wait for its next slot after Ri

cycles, e.g, if m5 arrives just after slot 14 in any of the cycles
γn ∈ Γ5, it has to at least wait for 2 cycles, i.e., 2 · gdCycle
= 10 ms for its next slot S5. Therefore, the bus blocking time
accounts for Ri · gdCycle (see Fig. 5).

The second delay component is contributed by messages
having higher priority than mi that are transmitted in the

6

…

m1 m2

11 12 13 14 1510 slot

m1

cycle

0

1

2

3

4

5

6

62

63

…

m2

m2

m2

m3

m3

m3

m4

m4

m5

m5

m5

m5

m6

m6

m6

m6

m6

m6

m6

Group 1

Group 2

.

.

.

…

1 2 …

ST DYN

Fig. 6. Groups of the DYN segment messages.

same cycle. In other words, the transmission of another DYN
segment message mj can affect the delay of mi, if the priority
of mj is higher than mi’s as well as the cycle counters of mi

and mj have at least one common element, i.e., Γi ∩ Γj 6= ∅.
In our example, the transmission of m5 is not influenced by
m6 because m6 has lower priority than m5. Messages mi,
i ∈ {1, 2, 3, 4} have higher priority than m5. However, as
Γ1 ∩Γ2 ∩Γ5 6= ∅ and Γ3 ∩Γ4 ∩Γ5 = ∅, only m1 and m2 can
affect the delay of m5 (see Fig. 5). To formalize the above idea,
we divide the messages into groups. A group Gk = {i, j, ...}
is a set of message indices such that Γi∩Γj∩... 6= ∅. There are
two groups in the above example, i.e., G1 = {1, 2, 5, 6} and
G2 = {3, 4, 6} as Γ1∩Γ2∩Γ5∩Γ6 6= ∅ and Γ3∩Γ4∩Γ6 6= ∅
(Fig. 6). Message m5 belongs to group G1 and the messages
m1 and m2 have higher priorities than m5. In the worst
case scenario, both m1 and m2 are transmitted before the
transmission of m5. The additional delay is computed as
(c1 − 1 + c2 − 1) · tMS = 0.06 ms (note, that one minislot is
consumed even if no message is being transmitted). Further,
certain messages can belong to more than one group. For
example, m6 is in both G1 and G2. For m6, the delay due
to the transmission of higher priority messages in G1, i.e.,
m1, m2 and m5 is ((c1 + c2 + c5) − 3) · tMS = 0.11 ms.
Similarly, for G2 we obtain ((c3 + c4)− 2) · tMS = 0.05 ms.
Therefore, m6 experiences the worst case delay in G1. The
delay experienced by any message mi due to the transmission
of messages having higher priority is given by:

max
∀k

∑
j

(cj − 1) · tMS ,∀j ∈ Gk s.t. Sj < Si. (5)

The third component in the delay value is the communi-
cation time of the message. For example, the communication
time of m5 is c5 · tMS , i.e., 0.06 ms. Therefore, the overall
worst case delay for m5 = (10 + 0.06 + 0.06) ms = 10.12 ms
(Fig. 5). The total delay experienced by any message mi that
is mapped on the DYN segment with corresponding schedule
Θi = {Si, Bi, Ri} is computed as:

Di = Ri · gdCycle+ max
∀k

∑
j

(cj − 1) · tMS + ci · tMS , (6)

∀j ∈ Gk s.t. Sj < Si.

Now, we are ready to present our algorithm (Alg. 2) to

synthesize all possible schedules (denoted by the set Ω)
which satisfy: (i) the FlexRay protocol constraints (Section II),
and (ii) the real-time constraints (described in this section).
Therefore, we generate the schedules bounded by Smax and

Algorithm 2 Schedule synthesis under protocol and real-time
constraints.
Input: Existing schedules Θj , messages to be scheduled mi ∈MApp, deadlines di

1: Ω = {}
2: for all Si ≤ Smax do
3: for all Ri ≤ Rmax,i do
4: for all Bi < Ri do
5: if (Si 6= Sj) ∨ (Γi ∩ Γj = ∅), ∀i, j then
6: Di = computeDelay()
7: if Di ≤ di, ∀i ∈ {1, ..., n} then
8: ω = {Θ1, ...,Θn}
9: Add ω to set of feasible schedules Ω

10: end if
11: end if
12: end for
13: end for

14: end for

Rmax,i that satisfy the protocol constraints according to FR1
to FR4 (lines 2 to 4) and Eq. 1 (line 5). Next, we compute
message delays according to the proposed delay model (line
6) for every mi ∈ MApp. Only if all messages meet their
deadlines we retain the feasible solution ωk ∈ Ω (lines 7 to
9) otherwise the solution is discarded.

IV. OPTIMIZATION

In the previous section, we discussed how to synthesize
a set of schedules for new messages mi ∈ MApp on top of
existing schedules. However, there can be potentially many
different solutions from Alg. 2 that are valid with respect to
the protocol and specified real-time constraints. Given the set
of feasible schedules Ω, the challenge is to determine the
optimal ωk ∈ Ω according to specific design objectives. On
the one hand, each schedule Θi should guarantee specified
real-time constraints during the entire development cycle, e.g.,
messages having a high priority that may be accommodated
in the future should not cause deadline violations of existing
messages having a lower priority. In order to meet this design
requirement a schedule shall provide sufficient slack, i.e.,
the schedule Θi should be such that a message mi can
tolerate additional delay caused by interference of future
messages having higher priorities. On the other hand, the
network schedule should provide sufficient available slots and
cycles in order to accommodate additional future messages
satisfying their specified real-time constraints. Consequently,
the optimization problem according to multiple, potentially
contradictory, design objectives is a major challenge we want
to address in what follows.

Schedule optimization: In the following we outline an
optimization procedure to determine the optimal ωopt,k =
{Θ1, ...,Θn} from the set of feasible schedules Ω. Further, our
procedure allows the system designer to balance the different
metrics according to his or her design needs. First, we quantify
the total number of dynamic communication slots where the
delay is safely bounded by Smax − l with l denoting the
number of static slots. Further, the higher the slot number Si

7

that is assigned to a new message mi the more slots with small
numbers denoting high priorities might be available in order to
schedule future messages, i.e., the flexibility and extensibility
for the synthesis of future schedules is improved. Second, we
want to account for the available communication cycles in
the 64-cycle matrix. Recall from FR2 that within an empty
slot Si, a message mi can be assigned any repetition rate
Ri = 2r with r ∈ {0, ..., 6}, i.e., Ri ∈ {1, 2, 4, 8, 16, 32, 64}.
For each of these repetition rates there are Ri base cycle values
available as Bi < Ri (see FR3). For example, with a repetition
rate Ri = 2, mi might have a base cycle Bi ∈ {0, 1}, with
Ri = 4, mi might have any base cycle Bi ∈ {0, 1, 2, 3}. Thus,
the total number of choices to schedule mi in an empty slot Si

is computed as
∑|R|

i=1Ri = 1+2+4+8+16+32+64 = 127.
Let m1 be a message with Θ1 = {S1, 0, 2}, we want to
compute the number of available choices in S1 in order to
schedule a future message m2 in the same slot. Consequently,
the number of remaining choices in S1 that are available for
m2 is computed as 0 + 1 + 2 + 4 + 8 + 16 + 32 = 63, where
each term in this sum captures the number of choices of each
repetition rate Ri. Thus, the higher the repetition rate of mi

the more schedules are available for future messages in Si.
Finally, the slack of a message mi is defined as si = di −Di

which is the difference between the message delay and its
deadline. This means a smaller slack for mi may lead to
deadline violations if interfering messages having a higher
priority are schedules in future. Note, that the slack not only
depends on the slot number Si but also on the interference
due to higher priority messages in every cycle γn ∈ Γi of Si

and the bus blocking time Ri · gdCycle.
We define the objective Ψi for a message mi as

Ψi = λi1

(
Si − l

Smax − l

)
+λi2

(
Ri

Rmax,i

)
+λi3

(
si

di − ci · tMS

)
.

(7)
The weights λ1 and λ2 are suitably chosen by the system

designer in order to account for the slot and cycle availability
for future messages and λ3 is chosen to weight the message
slack. Each term in Eq. 7 is normalized by its maximum value.
Overall, the optimal solution can be defined as the schedules
ωopt,k = {Θ1, ...,Θn} that maximize the cost function

Ψ(ωk) =

n∑
i=1

Ψi. (8)

Hence, we define the overall optimal cost Ψ∗(ωopt,k) as

Ψ∗(ωopt,k) = max
k=1,...,|Ω|

Ψ(ωk). (9)

V. EXPERIMENTAL RESULTS

In this section we illustrate the applicability of our proposed
scheduling engine through detailed experimental results.

Experimental setup: The proposed scheduling engine
has been implemented in Matlab. The experiments have
been carried out on a XP machine with a dual core 1.8
GHz processor with 3 GB RAM. We used the Elektrobit

Tresos Designer Pro 2009.a V4.4 [3] tool to determine the
FlexRay bus configuration parameters. Thus, the values
we obtained satisfied the protocol specifications and are
practically relevant. The FlexRay cycle length was set to
5ms with the length of the DYN segment set to 3.615ms.
The rest of the FlexRay cycle was distributed between the
ST segment of 17 static slots and the NIT segment. The
number of minislots in one DYN segment was configured
to 241 and each minislot duration was of 0.015ms. The
value of maxPayload was set to 128 bytes. To provide
meaningful results we considered 14 existing schedules
mj , with j ∈ {1, ..., 14}, that represent legacy components
covering basic system functionalities. Table I gives an
overview of message schedules Θj = {Sj , Bj , Rj}, payload
sizes Pj denoted in bytes and message sizes cj in minislots.
For the purpose of illustrative examples, we considered a new
application that consists of three messages mi ∈ MApp, with
i ∈ {15, 16, 17}, that is to be scheduled on top of the existing
FlexRay network from Table I. The message properties are
given by the deadlines di, the minimum inter-arrival periods
pi and the total message sizes in minislots ci. We considered
the following message properties: p15 = 30ms, d15 = 30ms,
c15 = 4, p16 = 50ms; d16 = 50ms, c16 = 5 and p17 = 50ms,
d17 = 20ms, c17 = 3.

Schedule synthesis and optimization: Using Eq. 3 the
static bounds on the repetition rates have been computed
as Rmax,15 = 2, Rmax,16 = 4 and Rmax,17 = 4. Fur-
ther, using Alg. 1 we derived Smax = 41 considering the
existing schedules from Table I as an input. Hence, the
slot range where the delay is safely bounded is defined as
S∗DYN = {18, 19,, 41}. In total our scheduling engine
evaluated 631,096 schedules where 384,682 solutions have
been discarded due to deadline violations. Thus, the optimiza-
tion procedure has been applied to |Ω| = 246, 414 feasible
solutions in order to synthesize the optimal schedules. The
total runtime was approximately 10 minutes. We demonstrate
the applicability of our schedule synthesis engine by sev-
eral illustrative use cases for different weights. For better
readability we write λ1, λ2, λ3 instead of λi1, λi2, λi3 with
i = {15, 16, 17}. Table II shows the schedules Θ15, Θ16, Θ17

for the optimal cost Ψ∗(ωopt,k) for every use case. Note, that
depending on the choice of λi1, λ

i
2, λ

i
3 there may be more than

one optimal cost Ψ∗(ωopt,k).

(Table II, case 1): Maximizing slot availability
Messages m15 and m17 have been multiplexed within slot
41. Hence, they share the highest admissible slot number
S15 = S17 = Smax, i.e., the lowest available priority has
been assigned to both the messages. As no more cycles are
available in Smax, i.e., Γ15 ∪ Γ17 = {0, 1, 2, ..., 63}, m16

has been assigned the second highest slot number S16 = 40.
Consequently, slots with low slot numbers (high priorities)
are available for future messages. As no constraint on the
repetition rates has been specified (as λ2 = 0), there are
many available choices for R16 ≤ Rmax,16 and B16 < R16.

(Table II, case 2): Maximizing cycle availability

8

TABLE I
EXISTING FLEXRAY SCHEDULES.

index j schedule Θj payload Pj in bytes size cj in minislots
1 {18, 0, 2} 8 3
2 {21, 1, 4} 8 3
3 {22, 0, 2} 8 3
4 {24, 2, 4} 10 3
5 {25, 0, 1} 12 3
6 {27, 0, 2} 8 3
7 {30, 0, 1} 6 2
8 {35, 3, 4} 6 2
9 {36, 0, 2} 8 3
10 {37, 1, 2} 6 2
11 {38, 0, 2} 8 3
12 {42, 1, 2} 16 4
13 {44, 0, 8} 8 3
14 {44, 1, 2} 8 3

As Ψ∗(ωopt,k) only depends on the repetition rates Ri

we obtain a large set of optimal solutions. All messages
are assigned their maximum feasible repetition rates for
every slot Si ∈ S∗DYN with respect to their deadline
constraints, i.e., R15 = Rmax,15, R16 = Rmax,16, and
R17 = 2 < Rmax,17 as the deadline d17 = 20ms will be
violated for R17 = Rmax,17 = 4 (see Eq. 7).

(Table II, case 3): Maximizing slack
As already discussed in the previous section slack not only
depends on the slot number Si but also on the bus blocking
time Ri · gdCycle as the worst-case delay experienced by any
message mi increases with Ri (see Eq. 7). Hence, for Ri = 1,
the blocking time is minimal and the optimal schedules Θi

are such that Si and Ri are minimized. The drawback of a
purely slack optimized schedule is the high reservation of
unused bandwidth as one complete slot is reserved for every
message mi regardless of the actual message periods.

(Table II, case 4): Maximizing cycle availability and slack
If we equally weight both objectives we resolve the
drawback of use case 2 and 3. High priority slots have been
assigned while the repetition rates have been maximized,
i.e., an efficient bandwidth utilization. Moreover, the slot
assignment could even be improved compared to use case
3 as the relaxation of Ri allows multiplexing of m17 in slot 18.

(Table II, case 5): Maximizing slot and cycle availability
Similarly, slot and cycle availability can be optimized together
in order to maximize the extensibility, i.e., more future
messages having a high priority may be accommodated. Note,
that m15 and m16 have been multiplexed in slot Smax = 41.

(Table II, case 6): Maximizing slot availability and slack
The combination of design metrics must not necessarily
harmonize well as objectives can be contradictory. Here, λ1

maximizes Si (see use case 1) whereas λ3 minimizes Si and
Ri (see use case 3), i.e., the result is a trade-off for both
objectives. The slot optimization is worse than in use case 1,
as there is no multiplexing available, the slack optimization
performs worse than in use case 3 as only the repetition rate
is minimized whereas the slot number is high because of λ1.

TABLE II
RESULTS FOR DIFFERENT WEIGHTS λ1 , λ2 , λ3 AND Bi < Ri .

Case (λ1, λ2, λ3) Θ15 Θ16 Θ17

1 (1, 0, 0) [41, 1, 2] [40, B16, R16] [41, 0, 2]
2 (0, 1, 0) [S15, B15, 2] [S16, B16, 4] [S17, B17, 2]
3 (0, 0, 1) [23, 0, 1] [20, 0, 1] [19, 0, 1]
4 (0, 0.5, 0.5) [20, B15, 2] [19, B16, 4] [18, 1, 2]
5 (0.5, 0.5, 0) [41, 1, 2] [41, 2, 4] [40, B17, 2]
6 (0.5, 0, 0.5) [41, 0, 1] [40, 0, 1] [39, 0, 1]

In this section we discussed the fundamental effects of dif-
ferent weights on the schedule parameters Si, Bi, Ri ∈ Θi

using the proposed optimization procedure. Further, different
weights can also be applied to individual messages mi ∈
MApp according to Eq. 7. Finally, we would like to note that
our optimization framework can easily be extended by new
user defined objectives that target other design requirements.

VI. CONCLUDING REMARKS

In this paper, we presented an incremental schedule
synthesis approach for the DYN segment of FlexRay. The
synthesized schedules satisfy the FlexRay protocol and
meet specified real-time constraints. Our work considers the
64-cycle matrix properties of the FlexRay communication
protocol while generating schedules for the DYN segment in
an incremental manner. Further, we proposed an optimization
procedure in order to retain schedules according to specific
design metrics and illustrated its applicability by several
design use cases. This work laid the groundwork towards
schedule synthesis for the FlexRay DYN segment and it may
be extended in multiple directions, e.g., schedule optimization
towards more complex design objectives. Finally, we are
interested in incorporating our scheduling framework into
a tool-chain which may interact with industry accepted
interfaces like Field Bus Exchange Format (FIBEX).

Acknowledgement: This work was supported in part by the
DFG (Germany) through the SFB/TR28 Cognitive Automo-
biles. REFERENCES

[1] AUTOSAR. Specification of FlexRay Interface, Ver. 3.0.3. www.
autosar.org.

[2] BMW brake system relies on FlexRay. http://www.
automotivedesignline.com/news/218501196, July 2009.

[3] Elektrobit Tresos. www.elektrobit.com.
[4] The FlexRay Communications System Specifications, Ver. 2.1. www.

flexray.com.
[5] A. Hagiescu, U. D. Bordoloi, S. Chakraborty, P Sampath, P. V. V.

Ganesan, and S. Ramesh. Performance analysis of FlexRay-based ECU
networks. In DAC, 2007.

[6] M. Lukasiewycz, M. Glaß, P. Milbredt, and J. Teich. FlexRay Schedule
Optimization of the Static Segment. In CODES+ISSS, 2009.

[7] P. Pop, P. Eles, T. Pop, and Z. Peng. An approach to incremental design
of distributed embedded systems. In DAC, 2001.

[8] T. Pop, P. Pop, P. Eles, and Z. Peng. Bus access optimisation for flexray-
based distributed embedded systems. In DATE, 2007.

[9] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of
the FlexRay communication protocol. Real-Time Systems, 39:205–235,
2008.

[10] E.G. Schmidt and K. Schmidt. Message scheduling for the flexray
protocol: The dynamic segment. IEEE Trans. Vehicular Technology,
58(5), 2009.

[11] S. Thiel and A. Hein. Modelling and using product line variability in
automotive systems. IEEE Software, 2002.

[12] W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-
Vincentelli. Extensible and scalable time triggered scheduling. In Int’l
Conference on Application of Concurrency to System Design, 2005.

