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Abstract—Maximizing passengers comfort is an important proposed in [9] requires a top-down view of a distant scene,
research topic in the domain of automotive systems engineering. which is hard to realize in automotive systems. Furthermore
In particular, an automatic adjustment of seat position according the road map as well as the human height can only be

gour%rév?ggrgsughtInsugaiugcsgg)ér|nvc\:lreeapsreesse£]rlealer\]/§\|/\l Or;eiﬁggoig estimated up to a scale factor, whereas the absolute height

estimate the height of approaching car drivers based on a single Of the driver is necessary for optimized seat pre-adjustsien
omnidirectional camera integrated with the side-view mirror In our setup — due to space and cost constraints — we

of a car. Towards this, we propose mathematical descriptions yse asingle omnidirectional camera attached to the side-
of standard parking scenarios, allowing for an accurate height view mirror of the car. The height of the camera from the

estimation. First, approaching drivers are extracted from image - .
frames captured by the camera. Second, the parking scenario an ground surface is assumed to be known. The absolute height

height are initially estimated based on gathered samples of angles Of approaching drivers can be determined if information on
to head and foot-points of an approaching driver. An iterative camera orientation relative to the road surface is avalabl

optimization process removes outliers and refines the initially But unfortunately, this orientation information is onlyrpally
estimated scenario and height. Finally, we present a number of ayajjaple due to missing position sensors and due to unknown
experimental results based on image sequences captured from . . . .
real-life ingress scenarios. pqulng §|tuat|ons. I_n this paper, we propose a met.hod for
driver height estimation by grouping the most standardipgrk
situations into five precisely defined scenarios. This setems
be a loss of generalization, but studies illustrate a distin
Passenger comfort related issues are now active resea{ghinance of one of the five scenarios in all variants of
topics in the area of automotive ergonomics, in particutar f general parking situations. For these scenarios, we int@d
ingress/egress to/from a car. An ergonomic adjustmentef t§pecific mathematical descriptions allowing for an absolut
seat position according to driver height significantly ases hejght estimation as well as an estimation of the driver's
the level of comfort. For this purpose, automatic passengfstance to the car during approaching. Firstly, our athari
seat adjustment has recently attracted a lot of attentign [gxtracts approaching drivers using Kalman-based estmati
However, one drawback of known solutions lie in Stori”%chniques and generates a set of head and émafles
individual driver height in the car system or in a persona\lhiﬁi) Vi € 0,...,n. Here, « represents the angle of the
key. This results in a number of problems. Storing the dls'rverhighest ands the angle of the lowest point of a driver as
height is not suitable for rental cars. Further, acciden#y Mseen by the camera (see Fig. 1). Due to an approximately
happen if a tall person mistakenly uses the key of a shorigleqd driver height (the height varies when walking), thetfoo
one and the system adjusts the seat according to the heighéﬁ)@es(&) are related to the head angles;) so thata can
the shorter person. To overcome these limitations, we [E®Pge expressed as a function= £(B). In other words, when
a new method to estimate the absolute height of approachifg driver moves straight towards the car, the foot angles
car drivers using an omnidirectional camera integratedh Wigpecify all head anglesa;) depending only on the driver
the side-view mirror of the car. The estimated height is US%ight and the parking situation. This property may be used
for pre-adjusting the seat for better ingress. to initially deduce the scenario from the characteristi€s o
function « = f(8) which is generated from the input data
(a4, Bi). Using this, an initial estimation of the driver's height
Tracking of people and height estimation using visionan be obtained. This is followed by an optimization protess
sensors is an important requirement for a growing varietgmoves outliers, to refine the scenario and to improve heigh
of applications such as activity recognition [2], pedestri estimation.
detection in the vehicle surroundings [3], [4], gait an&)[5]
and estimation of anthropometric data like height and size o
athletes or passengers [6], [7], [8]. Bovyrin et al. [9] mEnets A major challenge towards obtaining a general solution for
a robust method for 3D-road map detection and human heidigight estimation using a single camera lies in determining
estimation using a single perspective camera. The methibeé scale factor for absolute height estimation. To overom

I. INTRODUCTION

II. RELATED WORK AND OUR CONTRIBUTION

Ill. HEIGHT ESTIMATION



Scenario 4, théarked on Slope Scenartescribes situations

m o~ / where one walks towards a vehicle parked in an inclined
\ \ position (see Fig. 1(d)).
b5 )

i l=h-cos~v-[1— tan (a + 77'61) — tan vy,e;
(b) Curbstone Tilt y o (5

with ~,.c; = —cosf -~ @)

Following Eq. 8, the distancé can be determined depending
on angleg and the camera tily.

d="h-cosy- (tan(B 4 Yrer) — tan ) 8)

(c) Slope (d) Parked on Slope

Fig. 1. This illustrates the most typical parking situations. The knowﬁ' Driver and Head/Foot Point Extraction

distanceh and the input angles, § are used for estimating the height ~ First, all people in the neighborhood of the car door are
L. tracked using Kalman-based foreground extraction teclasiq
[10]. In [11], Kalman-filtering is used to model the dynamic

o ] ) of the background and to extract foreground pixels. This
this difficulty, we defined mathematical models for the mo%pproach was extended in [10] to adapt illumination changes

standard parking situations (see Fig. 1) that allow an exaglq o petter suppress shadow pixels in gray-scaled images.

estimation of the driver heiglit The height can be estimated gpaqow pixels classified as valid foreground lead robusftei

using a functiory that depends on the input angless (i-e.,  estimation to fail since foot points of approaching driveas

L= g(, B)). be located at wrong image positions. Doing so, the car driver

and its silhouette can precisely be determined. A car driver

is the subject whose trajectory is approximately a straight
The Standardand Curbstonescenarios represent situationsine towards the car door. Samples of head and foot angles

where one walks straight ahead on the road< 0, Scenario (q;,3;) Vi € 0,...,n of the driver for a fixed directiord

0) or on an elevated footpath\(# 0, Scenario 1) towards (see Fig. 2) are determined using a Kalman-based gait model.

a horizontally parked vehicle (see Fig. 1(a)). Eq. 1 ex@®ssHere, o represents the angle of the highest ahdhe angle

this relation wheré: represents the distance from the camergsf the lowest point of the driver captured by the camera. A

A. Scenarios

to the road surface: gait model initially removes outliers using median filtgriand
tan o takes into account the variation of the extracted angleggur
l=(h—=A)- (1 - tanﬂ) (1) walking. This is necessary as we cannot expect that the hieigh

of walking pedestrians measured from the ground as seen by
The distance between driver and car can be computed folloiife camera remains constant as assumed in [9]. The physical
ing Eq. 2 height of pedestrians is constant,
d=(h—A)-(tanp)"! 2

The Curbstone Tilt Scenaridescribes tilt situations, where Intersections n x [a, ]

one walks straight ahead towards a tilted vehicle (Scerfario
see Fig. 1(b)). The height can be estimated taking into atcou
the forward tilty of the camera, as shown by Eq. 3: 0 = const

Trajectory

tan (o + Yrer)
tan (ﬂ + ’Vrel)
and the distance between driver and car following Eq. 4

th-COS’}“(l- >,%elzsin(9)-7 3)
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d=h-cosvy-(tan B + vyper) "t (4)

Fig. 2. Maximum detection range and data generation (head and foot
‘angles,n x [«, 8], fixed directiond) for height estimation.

% Initial Scenario Estimation

In the Slope Scenaricone walks upwards or downwards to
wards a horizontally parked vehicle (Scenario 3, see Fir))1(
The relative motion between the driver and the camera

parallel (see Eqg. 5) in contrast to Scenario 2. Each scenario requires a particular mathematical solution
to precisely determine the absolute driver height. Hertoe, t
p= . AnAotane) g, el —sinf -y (5) Scenario in question needs to be identified from the input dat
(tan 8 — tanyrer) (n x [o, 0]). As « can be expressed as a function @f a
Knowing the scenario and the driver height, the distahcan duadric functiona; = f(8;) = a8} + bj; + c is generated
be computed following Eq. 6: and interpolated from the input samplés;, 5;) (see Fig. 3).

As the characteristics of (8) vary with each scenario, the
d="h-(tan B — tany,.e;) ! (6) scenarios can initially be identified using the coefficient



o If ¢~ 0, the target scenario might be 0,1 or 4.

« If ¢ <0, the appropriate scenario might bg2> 0) or

3(y<0).

o If ¢ > 0, the target scenario might be (3 > 0) or 2

(v <0).

our algorithm computes an array of angles= g; ' (5;,1;)
using the extracted input valugs and the computed heights

l;. Next, a comparison matrix based on synthetic and measured
« values is built. Based on this matrix, an algorithm chooses
the o values — and therefore the heights — that represent the

Using the above, it is not possible to distinguish betwedfast possible divergence. The most adequate height vaifiges
Scenarios 0, 1 and 4, or Scenario 2 and 3. This can be sol#§gnario are the ones that result in a better similarity eetw
by scenario refinement and optimization of height estinmatiothe synthetic and the original data. This data is then used

as input for further iterations. The process stops if these a
no significant changes compared to previous iteration steps

2( i and the final height and scenario is determined using LMS.
o The iteration also stops if there is a wrongly classifiediahit
5 0‘0\‘ Trajectory scenario and therefore the height estimations within theyar
O, S BN %ﬁ;ﬁ;g’g‘:ﬁ)ﬁ vary too much. In such a case, a default value is provided
Scenario 1 . 25° N, allowing for an acceptable seat position both for short atld t
Scenario . \ g p p
—4F5em=¥; B ] drivers. Fig. 4 illustrates the proposed algorithm in a kloc
) > NN .
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Fig. 3. This figure illustrates the characteristics of functien= f(3) + subjects

based on the set of input anglex [«, 3] for different scenarios. The
y-axis intersection point = f(0) is used for scenario classification.

D. Height Estimation and Refinement

Egs. (1-7) describe the approaching driver's height in the
five different scenarios. Since the driver’'s heighi Egs. (1-
7) is a constant (which we wish to determine) and does not
change within one scenario, we can obtain (Eq. 9) (see below)

)

A specific mathematical characteristic of Scenarios 0 and 1
is their approximately constant ratig = iiﬁ%j ~ const .
This can be used to distinguish Scenario 4 from Scenarios 0
and 1 (r; # const). For each of the Scenarios 2 and 3, we
compute an array of height estimations, which are solutions
to the equationg; = g; Vi, j € 0,...,n. In other words, each
array location contains different values of the estimateid/.

For such a given array, let z = max A[n] , y = min A[n]

l= g0<a0aﬂ0) = gl(ala 61) == gn(anvﬂn)

andd = z — y. From the two arrays corresponding to theig 4. Block diagram of the proposed height prediction algorithm.

scenarios 2 and 3, the one with the smallerepresents the
correct scenario. To approximately determine the heighlef
curbstoneA, additional information like the lowest and the
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IV. EXPERIMENTAL RESULTS

highest border of the curbstone is necessary and is exdracteThe proposed method was implemented in a car proto-
from the image frames captured by the camera. Calculatitygpe for individual height-based seat pre-adjustmentss Th
the average of all height values for an identified scenarimplementation was tested and validated with both simuorteti
using least mean square (LMS) is not the most adequated real-life experiments. We set up experiments for se@nar
solution due to the large influence of outliers. To possiblglassification using various camera and road orientatidhs.
refine the scenario, we developed a method that relies detection rate for scenario classification is presentecbieTl.
generating additional synthetic anglesover those captured We also conducted experiments with previously measured sub
by the camera as follows. For each of the possible scenarigts under various scenarigg— 4). Driver heights could be



Scen.| Rate | Misclassfied Scenario

0/1 92% | 0/1: - 2:2% 3:2% 4:4%

2 93% | 0/1: 1% 2: - 3:4% 4:2%

3 91% | 0/1: 2% 2:5% 3:- 4: 2%

4 89% | 0/1: 8% 2:3% 3:0% 4:-
TABLE |

ACCURACY RATE OF SCENARIO CLASSIFICATION

estimated with an accuracy of ufe-3cm (see Fig. 5) within @
three iteration steps. Within the domain of ergonomics, an
accuracy up tdcem for individual seat pre-adjustments is con-
sidered to be sufficient. However, high-heel shoes or lyddrst
influences height measurements significantly. Unfortupate
these cannot be compensated for as only the highest and thg
lowest points of the walking subjects were extracted. Fdur

(b)
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Fig. 6. Examples of height estimation for (a) a short lady, and (b) a
tall man, using our car-prototype.
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prevention. As a part of future work, we plan to develop

a more general model to capture combinations of scenarios



