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ABSTRACT
State-of-the-art automatic reliability analyses as used in
system-level design approaches mainly rely on Binary Deci-
sion Diagrams (BDDs) and, thus, face two serious problems:
(1) The BDDs exhaust available memory during their con-
struction and/or (2) the final size of the BDDs is, sometimes
up to several orders of magnitude, larger than the available
memory. The contribution of this paper is twofold: (1)
A partitioning-based early quantification technique is pre-
sented that aims to keep the size of the BDDs during con-
struction at minimum. (2) A SAT-assisted simulation ap-
proach aims to deliver approximated results when exact anal-
ysis techniques fail because the final BDDs exhaust available
memory. The ability of both methods to accurately analyze
larger and more complex systems than known approaches is
demonstrated for various test cases.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and serviceability

General Terms
Reliability, design

Keywords
Reliability analysis, SAT-assisted simulation, early quantifi-
cation

1. INTRODUCTION
Although shrinking CMOS technology sizes allow to in-

tegrate more complex systems on a single chip and, thus,
have advantages for important design objectives like mone-
tary costs and volume consumption, the resulting increase
in process variation is a major issue regarding the reliabil-
ity of the designed components. The requirement to design
reliable systems from these unreliable components has made
reliability to become one of the main objectives of modern
automatic embedded system-level design approaches.

Formal state-of-the-art reliability analysis techniques like [5,
8] are based on the abstraction of the system-level design
to a Boolean function given as a Binary Decision Diagram
(BDD). The exponential worst-case complexity of BDDs leads
to two serious drawbacks for the scalability of the analysis
approaches: (1) The BDDs exhaust available memory during
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their construction and/or (2) the size of the final BDDs is
often up to several orders of magnitude larger than the avail-
able memory. These drawbacks are critical for the so-called
up-scaling, i.e., combining several subsystems and compo-
nents to form the complex overall system that results in an
explosion of the required memory. To make a contribution
towards scalable system-level reliability analysis techniques,
the work at hand proposes two approaches to cope with the
abovementioned problem of oversized BDDs.

Contributions. Several known automatic reliability anal-
yses rely on the use of temporary variables during the con-
struction of the BDDs. This arises for example from an
analysis that only considers hardware component defects,
but needs to consider the binding of processes to determine
the state of the system, i.e., whether the system works prop-
erly or not. The variables used for the process binding are
excluded using exists quantification, such that the final BDD
reflects the reliability based on component defects. Thus, in
contrast to the final BDD, the size of the temporary BDDs
at construction time is critical. To cope with this problem,
an early quantification approach based on a heuristic that is
tailored for system-level reliability analysis is proposed that
aims to quantify variables as early as possible to keep the
size of the BDDs during construction small.

For highly complex problems, the proposed early quantifi-
cation method might fail due to oversized BDDs as well. As
a remedy, the work at hand proposes a novel approach where
a simulation is assisted by a state-of-the-art SAT-solver to
approximate the reliability. This efficient simulation allows
to carry out a high number of simulation runs and, thus,
allows to trade the memory consumption of the BDD-based
approaches for runtime. The simulative approach is capable
of achieving a very accurate reliability analysis with a rea-
sonable overhead regarding runtime even for large and very
complex systems where known exact methods fail.

The proposed methodologies are compared to state-of-the-
art reliability analysis approaches on several test cases to give
evidence of their scalability.

Outline. The rest of the paper is outlined as follows:
Section 2 discusses related work. While the problem targeted
in this paper is outlined in Sec. 3, the the proposed reliability
analysis approaches are introduced in Sec. 4 and Sec. 5 .
Section 6 presents experimental results before the paper is
concluded in Sec. 7.

2. RELATED WORK
The importance of reliability as an objective in automatic

embedded system design is supported by a large number of
approaches that have been published in recent years. These
approaches aim to increase the reliability of the system by
checkpointing and dynamic voltage scaling [21], improved
scheduling techniques, cf. [10, 22], reliability-aware selection
of components [11], or introducing redundancy at component-
level [13, 17, 20], or process-level [5, 6, 8]. However, one can
observe that nearly all reliability-increasing techniques re-
sult in an increase of cost in one or even several objectives
like runtime, monetary costs, area consumption, or power
consumption. Thus, finding optimal system implementa-
tions with respect to multiple and often conflicting objec-
tives requires an accurate analysis technique for each objec-
tive. Most of the approaches discussed so far either perform



reliability analysis using simplified failure models like a con-
stant failure probability [13], rely on so-called series-parallel-
structures for the analysis that cannot model important em-
bedded system design aspects like resource reuse [3], or tar-
get reliability analysis at lower levels of abstraction using
extensive simulation [22]. State-of-the-art system-level reli-
ability analyses are presented in [8] and [5] that can analyze
arbitrary embedded systems at system-level using Boolean
functions encoded in BDDs. The scalability of the method-
ology proposed in [5] is improved by an application-specific
early quantification approach presented in [6]. In contrast,
the work at hand proposes a generalized early quantification
heuristic that even outperforms the approach from [6]. In [9],
the approach from [8] is extended by using a specific variant
of BDDs which perform better for the considered test cases
but are still suffering from the drawbacks of common BDDs.

Early quantification is a technique that aims to cope with
the size explosion of BDDs during their construction known
from several domains, most prominently from formal verifi-
cation, cf., e.g., [15]. A smorgasbord of approaches for early
quantification is available like [12, 19] with [7] being the most
closely related approach. In comparison, the approach pro-
posed in the work at hand uses a divide-and-conquer heuris-
tic based on finding cuts in a graph-based representation of
the dependencies between relations. Moreover, the relations
are not explicitly given, but are a result of the clustering of
conjunctions of terms. This heuristic is especially tailored
for Boolean functions that have a Conjunctive Normal Form
(CNF) related structure as typical for formal system-level
reliability analysis.

Monte-Carlo simulation has been widely studied as an ap-
propriate method to perform reliability analysis for large
systems with complex behavior, cf. [1]. To the best of the
authors knowledge, this is the first SAT-assisted simulation
approach that implements an efficient system-level reliability
analysis.

3. PROBLEM DEFINITION
Reliability analysis approaches commonly require to de-

termine the so-called reliability function R : R+ → R[0,1]

of the overall system that returns the probability of the life
time τLT of the system being greater than a certain time τ :

R(τ) = P[τLT > τ ] (1)

It holds that R(0) = 1 and R(∞) = 0. The reliability func-
tion allows to compute all important reliability-related mea-
sures like Mean-Time-To-Failure (MTTF) or the Mission-
Time (MT). To determine the reliability function, knowl-
edge about the state of the system in case of failures and
defects is needed. Thus, most formal reliability analysis
techniques rely on the so-called structure function ϕ. This
Boolean function ϕ : {0, 1}|X| → {0, 1} takes a vector x =
(x1, . . . ,xi, . . . ,x|X|) encoding the states of all system com-
ponents X, i.e., xi = 1 if a component i works properly and
xi = 0 if it failed, and returns the state of the system as
1 if the system works properly and 0 if the system failed,
respectively.

The main challenge for reliability analysis techniques is
the representation of ϕ by appropriate data structures that
are mostly based on Binary Decision Diagrams (BDDs) [2].
An example on how to derive the reliability function from a
BDD-encoded structure function can be found in [6] and is
outlined as follows: Using a specific Shannon-decomposition
as proposed in [16], the probability P of a proper working
system at time τ is determined by traversing the BDD rep-
resenting ϕ:

P(τ, ϕ) = Rx(τ) ·P(τ, ϕ|x=1)+(1−Rx(τ)) ·P(τ, ϕ|x=0) (2)

This function determines the probability of a structure func-
tion ϕ to evaluate to 1 at a given time τ , depending on
the reliability function Rx(τ) of each component x with
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Figure 1: Early quantification aims to quantify tem-
porary variables as early as possible to decrease the
maximum size of the data structure during the con-
struction process, cf. Eq. (5). The size of a trian-
gle shall correspond to the size of the resulting data
structure and ◦ = {∧,∨}.

Rx : R+ → R[0,1]. The desired reliability function R of
the overall system is then given by:

R(τ) = P(τ, ϕ) (3)

4. EARLY QUANTIFICATION
In many automatic reliability analysis approaches, tem-

porary variables Y represented by the binary vector y =
(y1, . . . ,yi, . . . ,y|Y |) are required in the structure function
construction process to determine the correct state of the
system, but are removed as soon as the overall structure is
generated to derive ϕ:

ϕ(x) = ∃y : ψ(x,y) (4)

Imagine the case where the state of the system depends
on both, the availability of hardware components and on
the ability of the system to correctly establish communi-
cation among processes. Thus, variables for the communi-
cating processes Y are needed to construct ψ(x,y), with

ψ : {0, 1}|X|+|Y | → {0, 1}. However, if the assumed failure
model is the defect of components, the process variables in
Y need to be existentially quantified1 to derive the desired
structure function ϕ(x). The existential quantification en-
sures that ϕ(x) evaluates to 1 only if there exists a feasible
process binding that establishes a correct communication for
a given state x of the hardware components. This leads to
BDDs exhausting available memory during the construction
process, although the BDD without the temporary variables
might fit the memory.

This size explosion during the construction of the data
structures is known from formal verification as well and can
be faced using so-called early quantification techniques. These
techniques aim to partition the problem into subproblems
such that temporary variables can be quantified as soon as
the construction of the BDD for each subproblem is com-
pleted. The resulting BDDs of the subproblems are com-
bined afterwards. Given the function smax : {0, 1}{0,1}

n

→
N that returns the maximum memory consumption of a

1∃y : ψ(x,y)|y=1 ∨ ψ(x,y)|y=0



Boolean function2 with n variables during the construction
of the BDD, it can be observed that

smax(∃y : g(x,y) ◦ h(x,y)) ≥ smax(∃y : g(x,y)◦
∃y : h(x,y)). (5)

with ◦ = {∧,∨}. That means, the earlier variables can be
quantified during the construction of the BDD, the smaller
is the maximum size of the BDD during construction. A
schematic representation of early quantification is depicted
in Fig. 1. When Boolean functions are combined using dis-
junction (logical or, ∨), early quantification becomes trivial
since it holds:

∃y : (g(x,y) ∨ h(x,y))⇔ ∃y : g(x,y) ∨ ∃y : h(x,y) (6)

On the other hand, Boolean functions combined using con-
junction (logical and, ∧) are challenging with respect to early
quantification. It holds:

∃y : (g(x,y) ∧ h(x,y))⇔ ∃y : g(x,y) ∧ ∃y : h(x,y),

iff ∀y ∈ Y : ¬c(g(x,y), y) ∨ ¬c(h(x,y), y) (7)

with c : {0, 1}{0,1}
|X|+|Y |

× Y → {0, 1} that evaluates to
1 if a variable is contained in a function, i.e., if the func-
tion is not invariant to a variable, and 0 if the variable is
not contained in the function, respectively. Thus, the condi-
tion states that an early quantification is only allowed if the
variables to quantify are contained in at most the function
g(x,y) or h(x,y). In most cases, the functions will share
variables and, thus, Eq. (7) is not applicable. To overcome
this problem, the work at hand proposes a transformation
of Eq. (7) to allow early quantification based on a special
partitioning of the variables Y . In this partitioning, three
sets are determined such that two sets Yg and Yh consist of
variables that are contained in one function only, while the
third set Yz consists of the variables that are shared by both
functions. With corresponding subvectors yg,yh,yz of y
being defined, it holds:

∃y : (g(x,y) ∧ h(x,y))⇔ ∃yz : (∃yg : g(x,y)∧
∃yh : h(x,y)) (8)

with (Yz ∪ Yg ∪ Yh) = Y ∧
∀y ∈ Yg : ¬c(h(x,y), y) ∧
∀y ∈ Yh : ¬c(g(x,y), y) ∧

∀y ∈ Yz : c(g(x,y), y) ∧ c(h(x,y), y)

Following this early quantification scheme allows to early
quantify the two functions g and h with respect to variables
that are contained in only one function, combine the result-
ing data structures using conjunction, and finally quantify
the variables contained in both functions. Thus, this ap-
proach is capable of making use of early quantification where
former approaches like [6], where early quantification is only
enabled if Eq. (7) is applicable, fail.

In several reliability analysis techniques, partitioning is
used to speed-up the analysis process by preventing outsized
BDDs. Commonly, these approaches rely on domain-specific
knowledge about the structure of the system for the parti-
tioning, cf. [6]. Given Eq. (8), the work at hand proposes
a partitioning that partitions temporary variables based on
a given Boolean function solely and, thus, does not need to
take into account the given application and/or architecture.

For the partitioning and without loss of generality, a
Boolean function ψ(x,y) of the form ψ(x,y) =

∧
t∈T t(x,y)

is assumed since disjunctions can be trivially early quanti-
fied following Eq. (6). Each term t ∈ T is a Boolean function

2the set of all Boolean functions with n variables is written
as {0, 1}{0,1}

n

= {ϕ|ϕ : {0, 1}n → {0, 1}}

ya yb yc yd ye

(a) dependency-graph

ya yb yc yd ye

Yg Yz Yh

(b) a feasible partitioning that enables early-quantification

ya yb yc yd ye

Yh

(c) a feasible partitioning that disables early-quantification

Figure 2: (a) The dependency graph for the Boolean
function ψ(x,y) = (yb ∨ yc) ∧ (yc ∨ yd) ∧ (yb ∨ ya) ∧
(yd ∧ ye) as well as two feasible partitions (b) Yg =
{yb, ya}, Yh = {yd, ye}, Yz = {yc} and (c) Yg = ∅, Yh =
{ya, yb, yc, yd, ye}, Yz = ∅.

t : {0, 1}|X|+|Y | → {0, 1}. Given ψ in the above form, the
structure function is defined as follows:

ϕ(x) = ∃y :
∧
t∈T

t(x,y) (9)

It is assumed that each term contains at least one variable
y ∈ Y . Otherwise, these terms trivially fulfill Eq. (7) and,
thus, can be analyzed independently.

For the partitioning, a dependency graph D = (Y,Ey) is
defined. Each node y ∈ Y represents a temporary variable
that shall be quantified. An edge Ey = {(y, ỹ)|y, ỹ ∈ Y ∧∃t ∈
T : c(t(x,y), y)∧c(t(x,y), ỹ)} between nodes is drawn if two
variables y and ỹ are contained in the same term of the given
Boolean function.

Consider the following example of a Boolean function
ψ(x,y) = (yb ∨ yc) ∧ (yc ∨ yd) ∧ (yb ∨ ya) ∧ (yd ∧ ye). The
dependency graph for ψ can be found in Fig.2(a). Following
Eq. (8), several feasible partitions Yg, Yh, Yz are available
like Yg = {ya, yb}, Yh = {yd, ye}, Yz = {yc}, cf. Fig. 2(b), or
Yg = ∅, Yh = {xa, xb, xc, xd, xe}, Yz = ∅, cf. Fig. 2(c). While
the first partition can be considered good since it allows to
early quantify 4 variables with only one variable being left
for quantification after combining the functions, the latter
partition can be considered bad since no variable can be
quantified early. A good partitioning fulfills the following
minimum-requirement:

min : max(|Yg|+ |Yz|, |Yh|+ |Yz|) (10)

In other words, a good partitioning aims to determine two
large partitions Yg and Yh while trying to keep variables Yz
that are included in both partitions at minimum, such that
many variables can be quantified early and only few variables
are left for quantification after the functions are combined.
This requirement allows a maximum benefit from the early
quantification approach given in Eq. (8).

In the following, an algorithm is presented that makes use
of the proposed early quantification scheme to construct the
structure function ϕ.

4.1 Preprocessing
Given a Boolean function of the form given in Eq. (9),

several well-known preprocessing techniques are applied. Im-
portant in this context is the rule of absorption that allows
to eliminate terms. The effect can be visualized by the corre-
sponding dependency graph before and after preprocessing:
Due to absorption, edges (y, ỹ) ∈ Ey can be removed if terms
can be excluded such that two variables y and ỹ are not con-
tained in the same term anymore. The resulting graph has
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Figure 3: The dependency graph for the Boolean
function ψ(x,y) = (yt ∨ yu)∧ (yv ∨ yw)∧ (yv ∨ yu ∨ yw) (a)
before and (b) after the preprocessing.

Algorithm 1 dac(Y ′) - Divide-and-Conquer.

Require: Y ′ ⊆ Y
1: if |Y ′| < ε then return ∃y :

∧
t∈ρ(Y ′) t(x,y)

2: else
3: (Yg, Yh) := divide(Y ′)
4: g(x,y) := dac(Yg)
5: h(x,y) := dac(Yh)
6: Yz := Y ′ \ (Yg ∪ Yh)
7: T ′ := ρ(Yz) \ (ρ(Yg) ∪ ρ(Yh))
8: z(x,y) := g(x,y) ∧ h(x,y) ∧

∧
t∈T ′ t(x,y)

9: return ∃y : z(x,y)
10: end if

a decreased problem complexity and, in some cases, decays
to a set of independent subgraphs, cf. Fig. 3. These sub-
graphs can, following Eq. (7), be analyzed independently. In
particular, the resulting subgraphs in the dependency graph
correspond to the partitioning approach presented in [6].
However, in [6], domain-specific knowledge is used to find
these independent subgraphs, based on a special analysis of
the system during the construction of the Boolean function
from the structure of the system. In contrast, the approach
proposed in the work at hand is applicable to any given struc-
ture function.

4.2 Divide-and-Conquer Algorithm
In the following, an algorithm is used that recursively uses

Eq. (8) to implement an efficient early quantification ap-
proach in a divide-and-conquer fashion: Given the set of
components X = {x1, . . . , x|X|} of a Boolean function ϕ(x),
the set of temporary variables Y that are quantified, and

the function ρ : 2Y
′
→ 2T with ρ(Y ′) = {t|t ∈ T ∧ y ∈

Y ′ ∧ c(t, y)} that allows to obtain all terms that contain at
least one variable y ∈ Y ′ ⊆ Y , the approach can be formu-
lated as follows:

ϕ(x) = dac(Y ) (11)

The recursion is performed by the function dac that is out-
lined in Alg. 1. The algorithm requires the temporary vari-
ables that need to be considered for the current partition, cf.
line 0. If the number of temporary variables in the partition
is less than a given ε, the recursion ends and the partition is
transformed into a BDD. If the partition contains too many
temporary variables, the recursion works as follows: After
the two partitions Yg and Yh are determined using the divide
function, cf. line 3, the BDDs for the partitions Yg and Yh
are constructed and early quantified following the recursion
scheme, cf. lines 4 and 5. After Yz is determined in line 6,
the partitions are combined using conjunction in line 8 and
a quantification with respect to the variables Yz in line 9
completes the recursion.

4.3 Divide
As outlined in Eq. (10), determining a good partition

is crucial for the effectiveness of the proposed early quan-

Algorithm 2 order(Y ) - Ordering the nodes of the depen-
dency graph.

Require: Y
Ensure: P is an ordered set
1: D(Y,Ey) := createDependencyGraph(Y )
2: while P 6= Y do
3: Select y ∈ Y \ P with max(w(y, P ))
4: P := P ∪ {y}
5: end while
6: return P

tification approach. This partitioning is performed by the
divide function. This function aims to find a set of candi-
date partitions and determines the best partitioning with
respect to Eq. (10). Therefore, the divide algorithm per-
forms an ordering of the nodes Y to derive an ordered set
P = (y1 < . . . < yi < . . . < y|Y |), cf. Alg. 2, first: The
ordering algorithm starts with an empty ordered set P and
generates the required dependency graph, cf. lines 0 and 1.
It iteratively adds new nodes to the set with the next node
to add being the one with the maximum weight, cf. lines 3
and 4. The weight w of a node is defined as follows:

w(y, P ) =

{
wi(y)
wo(y)

, if wo(y) > 0

wi(y), else.
(12)

with wi(y) = |{ỹ |ỹ ∈ Y ∧ (y, ỹ) ∈ Ey ∧ ỹ ∈ P}|
wo(y) = |{ỹ |ỹ ∈ Y ∧ (y, ỹ) ∈ Ey ∧ ỹ /∈ P}|

Given the ordered set P , the divide function determines
the best cut with respect to Eq. (10) by a linear search in
the ordered set that results in two sets G = {y1, . . . , yi} and
H = {yi+1, . . . , y|Y |}. Given G and H, the desired subsets
Yg and Yh are derived by

Yg = {y|y ∈ G ∧ @ỹ ∈ H : (y, ỹ) ∈ Ey} (13)

Yh = {y|y ∈ H ∧ @ỹ ∈ G : (y, ỹ) ∈ Ey} (14)

and returned by the divide function.

5. SAT-ASSISTED SIMULATION
This section proposes a novel SAT-assisted Monte-Carlo

simulation technique. With growing system complexity, an-
alytical methods may become impracticable or even unusable
because the final BDDs exhaust available memory as well.
An alternative category of reliability analysis techniques that
allow to target more complex systems are based on simula-
tion, i.e., Monte-Carlo simulation. Simulation has the draw-
backs of accurateness being related to the number of per-
formable simulation runs. On the other hand, the memory
needed by the introduced formal methods can be traded for
runtime and, thus, the problem of outsized BDDs is avoided.
By a state-of-the-art SAT-solver based on the DPLL back-
tracking algorithm [4], a very compact data structure, i.e., a
Conjunctive Normal Form (CNF) is tested for satisfiability
to determine the current system state whenever needed by
the simulation. This enables to carry out hundreds of simu-
lation runs in a very short time, even for large and complex
systems where known exact methods fail. If the system func-
tion is not directly given in CNF like in [8, 6], several efficient
techniques are known to transform any Boolean function into
CNF, cf. [18].

The iterative SAT-assisted Monte-Carlo simulation
approach works as follows: First, a set Γϕ of N times-to-
failure is determined for the overall system encoded in ϕ(x)
by

Γϕ =

N⋃
i=0

mcs(ϕ(x)) (15)



Algorithm 3 mcs(ϕ(x)) - SAT-assisted Monte-Carlo simu-
lation.
Require: ϕ(x)
Ensure: Γ is an ordered set
1: Γ := timesToFailure(X)
2: for (x, γ) ∈ Γ do
3: ϕ(x) := ϕ(x) ∧ ¬x
4: if ¬ sat(ϕ(x)) then
5: return γ // time to failure
6: end if
7: end for

The function mcs : {0, 1}{0,1}
n

→ R+ carries out one simula-
tion run based on a given structure function ϕ(x). The func-
tion mcs is outlined in Alg. 3. The algorithm first computes
a set Γ of times-to-failure in ascending order that contains a
specific time to failure γ for each component x ∈ X of the
structure function using the function timesToFailure : 2X →
2(X×R+), cf. line 1. The time-to-failure of each system com-
ponent x is determined by using inverse transform sampling
based on the reliability function Rx(τ) of the component:

γ = R−1
x (r) (16)

with r ∈ R[0,1] being a random number. For each element
(x, τ) ∈ Γ and with respect to the order of Γ, the structure
function ϕ is combined with a negated component variable
¬x using conjunction, cf. line 3. This corresponds to the
component x being failed. The SAT-solver is invoked using
the function sat : {0, 1}{0,1}

n

→ {0, 1} that returns true if
the structure function can be satisfied, i.e., if the overall sys-
tem works properly. If the overall system failed, cf. line 4,
the time-to-failure of the component that failed last corre-
sponds to the overall system time-to-failure and is returned
in line 5.

Given the times-to-failure Γϕ, the desired reliability func-
tion of the system as given in Eq. (1), is approximated as
follows:

R(τ) ≈ |{γ|γ ∈ Γ ∧ γ > τ}|
N

(17)

6. EXPERIMENTAL RESULTS
To give evidence of the effectiveness of the proposed ap-

proaches, a comparison to state-of-the-art reliability analy-
sis approaches is given: (1) The proposed early quantifica-
tion method (EQ) and the SAT-assisted simulation approach
(SAT) are compared to a reliability analysis without early
quantification like [5] (COMMON) and the partitioning tech-
nique presented in [6] (GLRHT08). As described in Sec. 4.1,
GLRHT08 corresponds to the preprocessing proposed in the
work at hand and is compared based on this preprocessing
in order to be independent of the system model used in [6].
(2) The SAT-assisted Monte-Carlo simulation is compared
to the reliability analysis presented in [8] that does not use
temporary variables such that a comparison to early quan-
tification techniques is impossible. For comparison, a similar
algorithm (IH08*) is used that is based on BDDs instead of
the so-called TPDDs proposed in [8] that, however, leads to
a data structure of comparable size and complexity.
Testsuite. For the comparison of the proposed and state-
of-the-art approaches, a testsuite containing various system-
level design specifications is arranged: The testsuite con-
tains both, real-world as well as synthetic test cases. The
real-world examples exhibit a certain structure in both ap-
plication and architecture that is the result of the structured
development process. This structure often allows for a bet-
ter partitioning and an easier analysis. On the other hand,
the synthetic examples lack that certain structure because
these examples are randomly generated. This randomness

commonly makes analysis harder and often leads to signifi-
cantly larger data structures when compared to structured
test cases of equal size. 7 real-world specifications from the
data-streaming as well as the automotive domain are cho-
sen. The complexity of the real-world test cases ranges from
about 50 tasks with 30 available resources up to about 250
tasks with about 1000 available resources. Moreover, 8 syn-
thetic test cases are generated. The complexity of the syn-
thetic test cases ranges from 50 tasks with 25 available re-
sources to 150 tasks with 75 available resources. For each of
the 15 test cases, 10 implementations of different complexi-
ties with respect to the BDD sizes are generated: Using very
few resources with marginal task redundancy creates imple-
mentations of low complexity, whereas using many resources
with a high amount of task redundancy results in implemen-
tations of high complexity. The result is a testsuite of 150
test cases that covers a broad variety of test instances rang-
ing from small examples up to highly-complex real-world test
cases that also max out state-of-the-art design space explo-
ration and performance evaluation approaches, cf. [14]. The
experiments are carried out on an Intel Pentium 4 3.00 GHz
Dual Core machine with 1.5 GB RAM. The number of sim-
ulation runs for the SAT approach is set to 2000.

The results for the comparison of SAT, EQ, GLRHT08,
and COMMON are depicted in Fig. 4:
Runtime. The scatter plots show that in very few cases, the
overhead resulting from proposed early quantification can
slightly increase runtime τRT . However, for more complex
systems to analyze, the runtime of EQ is significantly lower
than the runtime of both former approaches COMMON and
GLRHT08. The runtime of the proposed SAT approach is
significantly larger for all test cases where the exact methods
were able to deliver feasible results. However, the advantage
of SAT lies in its scalability, discussed in the following.
Scalability. Since the paper focuses on the scalability of
the proposed methods, the number of test cases, where no
feasible analysis was possible due to outsized BDDs, is taken
as a measure for scalability. The COMMON approach per-
forms worst and fails in 95 test cases. GLRHT08 performs
better, but still fails in 35 cases. The proposed EQ approach
fails only in 18 cases and never failed where one of the known
approaches succeeded. Thus, the proposed early quantifica-
tion approach outperforms known approaches on reasonable
complex test cases. However, only the proposed SAT ap-
proach was able to solve each test case. Note that one test
case from the automotive area was one order of magnitude
larger with respect to the number of components compared
to all other test cases. Thus, the proposed SAT-assisted
simulation approach has the best performance in terms of
scalability. However, it should be replaced by the proposed
early quantification approach whenever possible to take ad-
vantage of the lower runtime and exact results of EQ.
Accuracy. Since EQ, GLRHT08, and COMMON are exact
approaches with the SAT approach only being an approx-
imation of the reliability function of the system, the rela-
tive error in percent is determined based on the 132 test
cases where an exact reliability function could be derived.
The relative error is determined based on the Mean-Time-
To-Failure MTTF =

∫∞
0
R(τ)dτ that is derived from the

approximated and exact reliability functions. The relative
error for 2000 simulation runs per test case is 1.51% with
a standard deviation of 1.02%. For a reliability analysis at
system-level, the accuracy can be considered very good, es-
pecially with respect to the SAT approach having its main
application where known exact methods fail. For compari-
son, the relative error for 500 test-runs is 4.01% with a stan-
dard deviation of 2.08% while the relative error for 4000 runs
is 1.18% with a standard deviation of 0.94%.

The results of the comparison of SAT and IH08* can be
found in Fig. 5. The memory-consuming BDDs that result
from the analysis of both transient and permanent faults al-
low to highlight the scalability of the SAT approach. While



101 102 103 104 105
101

102

103

104

105

τRT in [ms] for COMMON

τ R
T

in
[m

s]
fo

r
E

Q

101 102 103 104 105
101

102

103

104

105

τRT in [ms] for GLRHT08

τ R
T

in
[m

s]
fo

r
E

Q

101 102 103 104 105
101

102

103

104

105

τRT in [ms] for SAT

τ R
T

in
[m

s]
fo

r
E

Q

Figure 4: Comparison of the time consumption τRT of the proposed SAT-assisted simulation (SAT), the
proposed early quantification approach (EQ), the partitioning presented in [6] (GLRHT08), and a common
analysis without early quantification (COMMON) for 150 selected test cases. Note that test cases where an
approach ran out of memory are set to the maximum value on the corresponding axis. Axes are given in
loglog-scale.
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Figure 5: Comparison of the time consumption τRT
of the proposed SAT-assisted simulation (SAT) and
the analysis proposed in [8] (IH08*) for 150 selected
test cases. Note that test cases where IH08* ran
out of memory is set to the maximum value on the
x-axis. Axes are given in loglog-scale.

SAT was able to analyze every test case successfully, IH08*
was able to deliver feasible results in 12 test cases only and
failed for 138 test cases. This shows the ability of the SAT-
assisted simulation to increase scalability and its good per-
formance, especially when more sophisticated analysis tech-
niques lead to outsized BDDs already for relatively small test
cases.

7. CONCLUSION
This paper proposes two approaches to tackle the problem

of memory-exhausting Binary Decision Diagrams (BDDs) in
state-of-the-art automatic system-level reliability analysis of
embedded systems. The contributions of this paper are (1) a
symbolic early quantification technique that keeps the size of
the BDDs during construction small and (2) a SAT-assisted
simulation approach that allows to deliver appropriate re-
sults for large and complex systems where the final BDDs
used in exact approaches exhaust available memory. A test-
suite of 150 test cases consisting of synthetic examples as
well as problem instances from the data-streaming and au-
tomotive domain have been used to show the scalability of
the proposed approaches. The presented early quantification
approach outperforms known exact methods and decreased
the number of test cases where the BDDs exhausted avail-
able memory by nearly 50% compared to the best known
approach. The SAT-assisted simulation was capable of an-
alyzing all given test cases at the costs of an increased run-
time. Thus, the presented approaches in the work at hand
enable the application of reliability analysis techniques to
problems of industrial relevance where known approaches
from literature failed due to the problem size.

In the future, other early quantification approaches shall
be applied to formal reliability analysis and compared to the
proposed approach. Moreover, the applicability of the SAT-
assisted simulation approach to take the repair of resources
into account shall be investigated.
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