
LMS-based Low-Complexity Game Workload Prediction for DVFS

Benedikt Dietrich1, Swaroop Nunna1, Dip Goswami1, Samarjit Chakraborty1, Matthias Gries2
1Institute for Real-Time Computer Systems, TU Munich, Germany

2Intel Labs, Braunschweig, Germany
Email: {benedikt.dietrich, swaroop.nunna, dip, samarjit}@rcs.ei.tum.de, matthias.gries@intel.com

Abstract—While dynamic voltage and frequency scaling
(DVFS) based power management has been widely studied
for video processing, there is very little work on game power
management. Recent work on proportional-integral-derivative
(PID) controllers for predicting game workload used hand-
tuned PID controller gains on relatively short game plays. This
left open questions on the robustness of the PID controller and
how sensitive the prediction quality is on the choice of the
gain values, especially for long game plays involving different
scenarios and scene changes. In this paper we propose a Least
Mean Squares (LMS) Linear Predictor, which is a regression
model commonly used for system parameter identification. Our
results show that game workload variation can be estimated
using a linear-in-parameters (LIP) model. This observation
dramatically reduces the complexity of parameter estimation as
the LMS Linear Predictor learns the relevant parameters of the
model iteratively as the game progresses. The only parameter
to be tuned by the system designer is the learning rate, which is
relatively straightforward. Our experimental results using the
LMS Linear Predictor show comparable power savings and
game quality with those obtained from a highly-tuned PID
controller.

I. INTRODUCTION

Graphics-intensive game applications gained significant
popularity in recent years. Although most of them are
available on high-end desktops, the advent of these appli-
cations on battery-powered mobile devices (e.g., laptops,
PDAs, cell phones and portable game consoles) is steadily
increasing. This recent development is resulting in a con-
stantly widening gap between the demand for computational
resources on portable devices and the corresponding energy
resources available through batteries [2]. In this context,
power management techniques play a significant role in
reducing this gap by increasing the energy efficiency of
these devices. Most of these devices are equipped with
dynamic voltage/frequency-scalable processors in which the
power dissipation per clock cycle is directly proportional to
its frequency and the square of the supply voltage. There-
fore, one can reduce energy consumption through dynamic
voltage/frequency scaling techniques, where the processor’s
clock frequency is dynamically adjusted in response to a
varying workload.

Over the last few years, DVFS based power manage-
ment schemes have been widely explored and successfully
applied to audio [3], digital signal processing, and video
frame decoding/encoding applications [1], [5], [12], [17].
However, the development of these schemes in the domain

of interactive game applications is still in its infancy. This
is mainly due to the fact that game applications are highly
interactive in nature, where the content is dynamically
generated, making it impossible to buffer frames, as it is
done in the case of audio or video processing applications.

In this context, recent work [10] has shown that
game frames exhibit sufficient workload variability, making
graphics-intensive game applications amenable to DVFS
schemes. Mallik et al. [13], [14] introduced a user-driven
DVFS approach wherein the user can manually switch to a
higher clock frequency whenever a drop in game quality is
observed during the game play. This approach requires user
intervention that may not always be desirable and restricts
the possibility of applying DVFS schemes at smaller time
intervals.

A. Problem Statement and Contributions

In particular, the DFVS techniques proposed by Gu and
Chakraborty [7]–[9] are based on proportional-integral-
derivative (PID) controllers, where the PID gain values had
to be hand-tuned. In other words, the proportional, integral
and derivative gain values had to be carefully chosen in
order to maximize both power savings and the quality of
the game play (measured by the number of frame deadline
misses). Questions on the robustness of the controller and
the sensitivity of frame-workload prediction quality on the
choice of the gain values were however left open.

Space of PID gain values: In this paper we first study
the influence of the choice of the PID gain values on
the quality of the game play (i.e., the number of frame
deadline misses) and the achieved power savings. Note that
an incorrect estimation of frame workload will result in a
wrong setting of the processor’s clock frequency. This can
either lead to frame deadline misses (if the workload was
underestimated) or higher power consumption (because of a
higher clock frequency setting). Our experiments – based on
the well-known Quake II game engine – show that for most
combinations of the proportional, integral and derivative gain
values, the PID controller becomes unstable. This leads to
large oscillations in the processor’s clock frequency setting,
which results in poor power savings and low game quality.
Further, even for the small choice of gain values – that
result in a stable controller – the variation in the number
of frame deadline misses is large. Hence, when using a PID

controller to predict frame workload, the gain values need
to be carefully chosen. The optimal choice of these values
heavily depends on the particular game play and can change
from one game scene to the next.

Gu and Chakraborty [7] assume that workload variations
across game frames depend only on the game engine. As
mentioned above, this assumption does not hold in practice.
Hence, hand-tuning the PID gain values only once, at the
start of the game, leads to suboptimal performance. Further,
our experiments indicate a variation in workload values not
only across game plays (for the same game engine), but
also across different runs of the same game play (because
of the variations induced by the operating system).

Using a LMS Linear Predictor: Hence, optimally hand-
tuning the PID gain values is tedious, error-prone and not
practical for relatively long game plays with multiple scene
changes. To address this problem, we propose using a LMS
Linear Predictor, which is a regression model commonly
used for system parameter identification [4]. Our choice of
a LMS Linear Predictor is motivated by our experimental
results, which show that the game frame workload can
be accurately estimated using a linear-in-parameters (LIP)
model. LIP models are those for which output can be
represented as a linear combination of their inputs and a
number of system parameter values. In our case, these inputs
are previous frame workloads and the output is the predicted
workload of the next frame to be processed. The values of
the system parameters are iteratively learnt by the LMS
Linear Predictor. Hence, the LMS Linear Predictor auto-
tunes itself to model the game play at hand accurately. The
only parameter that needs to be tuned by the system designer
is the learning rate, which is relatively straightforward.

Using our proposed LMS Linear Predictor, we obtain
power savings and game quality that are comparable to
(and sometimes better than) those obtained using a PID
controller with carefully hand-tuned gain values. Once
again, it may be noted that the LMS Linear Predictor is
significantly easier to use and is practically more feasible
since it does not require hand-tuning its parameters for
different game plays/scenes.

Outlook: At this point it is natural to question the choice of
a PID controller in Gu and Chakraborty [7]. PID controllers
are used for systems that are more general than those that
may be modeled using LIP models, e.g., they may also
be used in the case of systems modeled as a collection of
differential and difference equations. Our main contribution
in this paper is the observation that the full generality
of PID controllers is not required for game workload
prediction, i.e., here LMS Linear Predictors would suffice.
This observation in turn simplifies the problem of suitably
tuning the parameter/gain values of the controller/LMS
Linear Predictor.

Organization of the paper: In the next section we briefly
outline the main features of DVFS schemes for games.
This is followed by a description of the PID controller in
Section III. Next, the simulation setup for tuning the PID
gain values is presented in Section IV. Results obtained
from using the PID controller are presented in Section V.
We describe our proposed LMS Linear Predictor in the
next section (Section VI), along with our methodology for
evaluating it in Section VII. Finally, Sections VIII and
IX describe our setup for measuring power consumption
and frame deadline misses, followed by some concluding
remarks in Section X.

Algorithm 1 Structure of DVFS scheme
1: Initialize Game and DVFS
2: for i = 0; i < Number of Frames; i + +; do
3: p[i] = predictor(e[i− 1]);
4: f [i] = quantize(p(i));
5: Scale frequency to f [i];
6: Process Frame;
7: Determine Required Processing Cycles c[i];
8: e[i] = c[i]− p[i];

9: end for

II. DVFS FOR GAME APPLICATIONS

DVFS-based power management schemes for games pri-
marily depend on estimating game frame workload values.
The clock frequency (and hence the supply voltage) of
the underlying processor is scaled to match the varying
workload of game frames. In this section, we briefly describe
the high-level structure of this scheme.

All the DVFS schemes discussed here have the following
structure: (i) the workload of a frame is predicted from
the workloads of previous frames using a control-theoretic
approach, (ii) based on prediction results and the desired
frame rate, the required clock frequency of the proces-
sor is computed, (iii) the processor’s frequency is scaled
accordingly, and (iv) the frame is eventually processed
(involving game AI, physics-related computations, etc.) and
rendered, and finally (v) the estimation error is computed
based on cycle-accurate measurements and is fed back to
the controller (see Algorithm 1).

An important question that arises here is the choice of
frame rate that leads to good gaming experience. User
perception studies reported by Claypool et al. [6] show that
game frame rate has a high impact on perceived game quality
and a frame rate of 30 appears to be optimal. In this paper
we therefore target a frame rate of 30 fps. This implies that
each frame has a deadline of 1/30-th of a second. Note that
unlike in video processing applications, a frame that misses
its deadline is not dropped; it only leads to a possibly poor
gaming experience.

III. PID CONTROLLER BASED WORKLOAD PREDICTION

A controller is usually designed for achieving a desired
behavior of a dynamical system. In other words, a controller

computes appropriate input signal to the dynamical system
which results in desired system behavior. While computing
the input signal, the controller utilizes the current status of
the system (i.e., feedback signal) and its difference from
the desired behavior (i.e., error signal). Various controllers
are designed based on how they utilize the error signal.
A Proportional-Integral-Derivative (PID) controller is one
of the most commonly used controllers. The input signal
computed by a PID controller consists of three components,

1) Proportional: Pcomp(t) = Kp · e(t)
2) Integral: Icomp(t) = 1

KI
·
∑

TI
e(t)

3) Derivative: Dcomp(t) = (KD) · e(t) − e(t−TD)
TD

where e(t) is the error signal, Kp, KI , KD are proportional,
integral, derivative gains respectively and TI , TD are inter-
vals for integral and derivative components respectively. The
output of the PID controller is given by,

PIDoutput(t) = Pcomp(t) + Icomp(t) + Dcomp(t) (1)

Let c[i] and c̄[i] be the respective actual and estimated
workload values for the ith frame in terms of clock cycles.
Here, the goal is to predict the workload c̄[i + 1] of the
(i + 1)th frame by utilizing the actual workload c[i] of
the ith frame and the PID control signal computed using
Equation (1), i.e.,

c̄[i+ 1] = c[i] + PIDoutput[i]. (2)

Towards this, we compute PIDoutput[i] with
e(t) = c[i] − c̄[i] being the error signal and

PIDoutput[i] = Kp · e(t)
+ 1

KI
·
∑

TI
e(t)

+ KD · e(t) − e(t−TD)
TD

(3)

In order to achieve stable and optimal prediction perfor-
mance, the values of Kp, KI and KD need to be chosen
appropriately.

IV. SIMULATION SETUP

The highly dynamic nature of Quake II workload charac-
teristics and additional variations introduced by the underly-
ing OS necessitate an exhaustive exploration of the space of
PID gain values. Towards this, we developed a simulation
environment for a systematic evaluation of the performance
of both the PID controller and the LMS-based workload
predictor.

The DVFS algorithm shown in Algorithm 1 is replicated
in the simulation, where steps 6 and 7 of the algorithm, i.e.,
the processing of frames and the workload measurement is
replaced by a workload model. This workload model is based
on recorded workload profiles of Quake II game plays.

However, unlike video applications, in game applications
the content of every frame and hence its corresponding
workload depends on the processor frequency with which
the past frames have been rendered. Now, let the ith frame

Figure 1. Workload modeling based on fixed frequency recordings

Table I
RUN-TIMES FOR VARYING # OF SIMULATION RUNS

of Simulation Runs tsim [s] tgame [s] Ratio
400 116.4 78.7e+03 676

1600 206.3 31.2e+04 1515
442401 15650 86.3e+06 5512

at time t[i] require c[i] clock cycles and f [i] be the cor-
responding processor frequency. The time ∆t[i] taken for
rendering the ith frame is then given by c[i]/f [i]. Further,
the next frame will be rendered at time t[i+1] = t[i]+∆t[i].
After the ith frame has been rendered, the physics engine
calculates the player’s new position based on the player’s
speed and ∆t[i] (which is the real passage of time). The
position of the player and the next frame’s content therefore
depends on ∆t[i] and hence on the frequency f [i] (when the
frequency is higher, more frames are used to “fill” a certain
time interval).

This dependency prohibits the direct usage of recorded
workload profiles. To get around this, we assume that
workload profiles have a “linear” behavior over small time
scales. Thus, for each available processor frequency fi, the
corresponding workload profile Cfi

is recorded and trans-
formed from the frame to the time domain by interpolating
the missing values. For each frame pseudo-processed in
simulation with frequency fi, the corresponding workload
profile Cfi is evaluated as shown in Figure 1. The resulting
workload profile is denoted as CDV FS .

This workload model together with the replicated steps
of the DVFS scheme now allows accurate approximation of
the system behavior and an evaluation of different controller
settings for DVFS. The runtimes of the simulation compared
to concrete runtimes of the game are given for different runs
in Table I. A speedup of 5512× is achieved with a Matlab
implementation, which clearly shows the advantage of us-
ing a simulation-based approach for tuning the controller
parameters (gain values).

V. EVALUATING THE PID CONTROLLER

As described in Section III, the choice of PID con-
troller gains is crucial for the performance of the predictor.

Figure 2. We vary the PID controller gains in the range of interest for
Shooting 2. Each plane indicates a stable choice of PID gains (with KD =
constant and KI , KP varied)

Figure 2 shows the distribution of stable controller gains
for a particular game play (i.e., Shooting 2). It may be
noticed that only a small portion of the entire space of the
controller gains ensures prediction stability. The controller
gains with reasonable prediction performance (i.e., smaller
than 10% frame deadline miss) are indicated by the red
points. Note that the number of such points is limited and
distributed over the entire stable space of controller gains.
Hence, identifying gain values that lead to a controller with
acceptable performance is a nontrivial task. In the following
subsection we show how suitable gain values may be chosen.

A. PID Performance Space

We introduce two metrics to judge the prediction quality
and the performance of the resulting DVFS. The first metric
is the percentage of frames missing their deadlines, i.e.,
d. As described in Section II, we aim to achieve a frame
rate of 30 fps. Therefore, each frame has a deadline of 1

30
sec. The second metric is the average power consumption.
The average power P fix(fi), ∀fi ∈ F , is measured as
described in Section VIII. We compute p(f = fi) utilizing
the simulation setup. Subsequently, values of P fix(fi) are
used together with the frequency probabilities p(f = fi) to
compute the average power for one simulation run using the
following equation.

PDV FS =
∑
fi∈F

p(f = fi) · P fix(fi)

The performance of the PID controller is quantified using
two metrics. We obtain a performance space by plotting the
values of the metrics corresponding to various sets of PID
controller gains. For example, Figure 3 shows the resulting
performance space of the PID controller for a particular
game play (e.g., Level 2). In Figure 3, every point resembles
the values of the performance metrics for a specific set of
PID controller gains. The optimal choice of gains is marked
by the Pareto-front in Figure 3. It may be noted that the
average power consumption is in the range of 22 to 23 Watts
resulting in maximum possible savings of 35% (compared

Figure 3. Performance space for different choices of PID controller gains
for Level 2

Table II
WORKLOAD STATISTICS FOR THE UTILIZED GAME PLAYS

Game Play C
[
cycles
frame

]
σ
[
cycles
frame

]
dmax [%] dmin [%]

Explore 1 3.7e+07 3.7e+06 0.7 0.0
Explore 3 3.8e+07 3.2e+06 3.3 0.0
Shooting 1 4.1e+07 4.9e+06 71.8 0.0
Shooting 2 4.1e+07 4.1e+06 67.5 0.0

Level 2 4.0e+07 6.4e+06 66.6 0.2
Massive 1 4.5e+07 7.7e+06 86.5 1.8

to the maximum power consumption of the laptop, which
is 34 Watts). However, reducing the power consumption to
22 Watts comes at the cost of an unreasonably high number
of frames missing their deadline (i.e., over 25%). Moreover,
the variation in power consumption is small compared to
the maximum average power consumption in a laptop. It
may also be observed that the percentage of frames missing
their deadlines is highly influenced by the choice of the gain
values. Hence, we choose the set of gain values with the
lowest percentage of frame deadline misses (to maximize
game quality). Clearly, a systematic identification of suitable
controller gains is necessary for each game play/scene.

B. Selection of Game Plays

We used a number of game plays to evaluate the predic-
tor’s performance for diverse workload characteristics. We
recorded our own game plays to have realistic workload
profiles which commonly occur in Quake II. We recorded
four short game plays among which two (i.e., Shooting 1
and Shooting 2) include highly dynamic scenarios involving
events like enemy contact. The other two short game plays
resemble an exploration phase of the game with com-
paratively low workload (i.e., Explore 1 and Explore 3).
Additionally, we recorded a long game play (i.e., Level 2)
with average workload and dynamics. The dynamic behavior
of the predictor was also examined using Massive 1 which
is a well-known Quake II benchmarking demo with high
CPU demand and workload variation. Several runs have

been recorded for each game play to take the variations
caused by the underlying OS into account. The resulting
statistics of all game plays are shown in Table II where the
workload C and its standard deviation σ are given in terms
of processor cycles per frame. It is obvious that Massive 1
has the highest average workload and standard deviation
caused by the highly dynamic nature of this game play.
On the other hand, the exploration phases show the lowest
C and σ. The minimum (dmin) and the maximum (dmax)
percentage of frames missing their deadlines were obtained
by running the processor at the highest and the lowest
frequency respectively. It may be observed that a certain
percentage of frames missing their deadlines are present
even when the processor runs at the highest frequency. We
used these game plays for the evaluation of the prediction
quality of the PID controller and the LMS Linear Predictor.

C. Influence of Game Plays on PID Prediction

To investigate the influence of workload variations, we ran
exhaustive simulations for the above-mentioned game plays.
For each game play, we used our simulation setup to explore
the effect of the controller gain values. Such exhaustive
search results in performance spaces similar to the one
shown in Figure 3. We selected the set of gains resulting in
the lowest rate of frame deadline misses for every game play
(i.e., setE1, setE3 etc). Table III shows that the percentage
of deadline misses is the least when the controller gains
are optimized (indicated in bold). For example, the game
play Level 2 encounters minimum deadline misses of 6.71%
when the gain values setL2 is used. However, we get inferior
performance with gain values that are optimized for other
game plays, e.g., setE1 (14%) or setM1 (8.19%). It is
apparent from Table III that the percentage of frame deadline
misses may increase when the PID predictor uses non-
optimized controller gains.

However, the PID gains can also be optimized for all the
game plays taken together, i.e., setALL in Table III. This
set has been computed by merging the performance spaces
of all game plays. Nevertheless, the controller gains again
need re-optimization when a new game play is considered.
For example, we optimized the PID gains by considering
all the game plays listed in Table II except for the game
play Level 2. These PID gains were now used for Level 2,
which resulted in an unstable predictor for Level 2. Hence,
we can conclude that the PID predictor’s performance is
dependent on the nature of the game play and the controller
gains should be optimized for individual game plays to
obtain good prediction performance. Since all game plays
(or individual player profiles) cannot be known in advance,
it is desirable to have a predictor that adapts itself to the
current workload characteristics.

VI. LMS LINEAR PREDICTOR

The LMS Linear Predictor [11] is a statistical approach
mainly used for parameter identification of various dynam-
ical systems. Such approaches are suitable for systems that
are linear-in-parameters (LIP), i.e., the output of the system
can be modeled as a linear combination of system inputs and
(unknown) system parameters. The LMS Linear Predictor
learns the system parameters by recursively updating its
values over several iterations.

We use the LMS Linear Predictor for estimating the
workload c̄[i + 1] of the (i + 1)th frame by utilizing the
actual workloads of the previous frames. Towards this, we
represent the predictor output as a linear combination of
known workloads of previous frames and unknown predictor
coefficients. If c[i] represents the workload value of the ith

frame, then according to the general structure of a one-step
LMS Linear Predictor, the predicted workload of the (i+1)th

frame is given by,

c̄[i+ 1] =
n−1∑
k=0

w[k]c[i− k] = W [i]TC(k) (4)

where w[k], for k = 0, . . . , n − 1 are unknown predictor
coefficients and

W [i] = [w[0], w[1], . . . , w[n− 1]T (5)

and
C(k) = [c[i], c[i− 1], . . . , c[i− n+ 1]]T (6)

The goal is to learn W [i] adaptively such that c̄[i+ 1] in
Equation 4 results in the minimum error e[i] in Equation 7.

e[i] = c[i+ 1] − c̄[i+ 1] (7)

Therefore, from Equations 5 and 6 we have,

e[i] = c[i+ 1] − W [i]TC(k) (8)

The unknown predictor coefficients are initialized to 0
and after each prediction step, the coefficients are updated
according to Equation 9.

W [i+ 1] = W [i] + µ · e[i] · C(k) (9)

where µ is the learning rate. In order to reduce the sensitiv-
ity of the learning process to the choice of the learning rate
µ, we use a normalized version of Equation 9 that is given
by Equation 10.

W [i+ 1] = W [i] +
µ · e[i] · C(k)
||C(k)||2

(10)

The normalized version of LMS is less sensitive to the
learning rate µ (it being between 0 and 2). The values of
the prediction coefficients, being updated recursively as per
Equation 10, converge to the statistical mean [11] after a
sufficient number of iterations. The LMS Linear Predictor
significantly reduces the design parameter space compared
to the unbounded space in the case of PID controller gains.

Table III
PERCENTAGE OF FRAME DEADLINE MISSES OF INDIVIDUALLY TUNED PID GAIN SETS AND OBTAINED RESULTS FOR LMS LINEAR PREDICTOR

PID LMS
Game Play setE1 setE3 setS1 setS2 setM1 setL2 setALL dLMS

Explore 1 0.00 0.33 0.66 0.82 0.49 0.49 0.49 0.25
Explore 3 0.70 0.19 0.44 0.44 0.50 0.56 0.50 0.76
Shooting 1 8.99 6.15 5.13 5.85 5.28 5.87 5.72 6.69
Shooting 2 6.65 5.47 6.41 4.77 6.78 7.89 6.99 6.61
Massive 1 20.76 16.08 14.65 16.20 13.43 14.30 13.82 15.17

Level 2 14.00 8.90 7.65 7.89 8.19 6.71 7.79 8.38

frame number

weight

0 2000 4000 6000 8000 10000 12000 14000
0

0.02

0.04

0.06

0.08

0.1

M
a

s
s

iv
e

1

E
x

p
lo

re
1

E
x

p
lo

re
3

S
h

o
o

ti
n

g
1

S
h

o
o

ti
n

g
2

E
x

p
lo

re
1

Figure 4. Convergence of LMS-Weights with varying game dynamics

VII. EVALUATING THE LMS LINEAR PREDICTOR

The Performance of LMS Linear Prediction is determined
by the order of the predictor and the learning rate µ. The
order of the predictor indicates the number of workload
values of the previous frames being utilized to model the
output of the predictor, i.e., n in Equation 4. If the order of
the predictor is too low then predictor coefficients will not
be able to accurately model the predictor output and will
not converge. However, an unnecessarily high order makes
the learning process computationally expensive. Hence, the
order of the predictor should be chosen considering a trade
off between the convergence of the coefficients and the com-
putational cost. The convergence of the predictor coefficients
(Figure 4) indicates that the dynamics of the predictor can
be modeled as a LIP system as per Equation 4. Moreover,
convergence in turn implies accurate approximation of the
system using an LMS Linear Predictor.

We experimentally found that an order of 10 is sufficient
to model Quake II game plays. Figure 4 depicts the varia-
tions of the weights over a sequence of frames. It is clear
that the weights converge after 6000 frames. As indicated in
the figure, we initiated switches between game plays during
the simulation to verify that convergence is preserved under
changing system dynamics. Therefore, it is observed that
Quake II system dynamics can be accurately approximated
by the LMS Linear Predictor.

The performance of prediction is affected by the choice
of learning rate µ. As can be seen in Figure 5, a very small
learning rate µ results in a significantly high percentage

Figure 5. Comparison of different start values of µ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

D
ea

dm
is

s
[%

]

µ

Explore1
Explore3
Level2
Massive1
Shooting1
Shooting2

Figure 6. % of missed deadlines for different values of µ for LMS

of deadline misses as the learning process is too slow for
appropriate adaptation of the weights. On the other hand,
a high learning rate results in overdrive effects, i.e., the
weights also learn noise. This especially affects dynamic
scenes for which the resulting processor frequency varies
abruptly. For LMS it is possible to plot the resulting percent-
age of deadline misses for different values of µ. Figure 6
shows the influence of µ on different game plays. From
Figure 6 one can also conclude that the optimal choice of
µ is consistent across game plays. Therefore, choosing the
optimal µ is more intuitive than choosing PID controller
gains. In this work, we use µ = 0.074 for all evaluated
game plays.

With LMS Linear Prediction it was possible to obtain
the same results as with the optimized PID controller (see
Table III). However, the process of finding an optimal µ
for LMS is relatively straightforward when compared to the
PID controller, since only a one dimensional parameter space
with a fixed range needs to be explored in case of LMS.

Figure 7. Measurement Setup

VIII. MEASUREMENT SETUP

In this section we briefly describe our experimental setup.
Our experiments employ the Quake II game engine which
forms the core of some of the most popular first person
shooter games like UFO:Alien Invasion, Anachronox and
Heretic II. The source code of Quake II is available under
GNU public license and has been modified to incorporate the
proposed DVFS power management algorithms. As many
of the existing portable devices do not support graphics
processing hardware, the graphic processing of the game
has been compiled to run completely in software in order
to ensure an appropriate evaluation of power measurements.
The software video mode of the game has been set to mode 5
which corresponds to a frame resolution of 960 x 720 pixels.
The modified source code has been compiled in release
mode with processor specific optimizations and the game
plays are run on Ubuntu 9.10 operating system with Linux
kernel version 2.6.31-20-generic.

The experiments have been performed on a laptop
equipped with a 1.86GHz Intel R© Pentium R© M Processor
and 1.5 GB RAM. The processor supports Enhanced In-
tel SpeedStep R© Technology and offers frequency scaling
between five different frequency levels that correspond to
800MHz, 1066MHz, 1333MHz, 1600MHz and 1866MHz.
In order to obtain a precise processor cycle count, the cycle
measurements have been performed with the help of the
RDTSC (read-time stamp counter) instruction. The RDTSC
instruction was incorporated into the source code of Quake II
along with DVFS algorithms and cycle counts corresponding
to the processing of each frame were logged during the game
play.

The power measurements were performed at the output
of the laptop’s AC Adaptor as shown in Figure 7. A
Texas Instruments microcontroller MSP430 was employed to
measure both, the DC voltage v(t) and the current i(t) with
the help of a shunt resistor and an amplifier. The average
power consumption P was then calculated according to

P =
1
l

t=l∑
t=0

v(t)i(t)T ,

where l is the duration of the game and 1
T corresponds to the

sampling rate, which was set to 1kHz. The microcontroller
was operated via a serial connection from the laptop and the

Table IV
AVERAGE POWER CONSUMPTION FOR AVAILABLE FREQUENCIES

Frequency [MHz] 800 1066 1333 1600 1866

Power [Watt] 21.1 23.3 25.8 29.1 33.0

power measurements were logged for every game play. The
control interface for operating the microcontroller was also
integrated into the Quake II source code in a way that the
measurements through the controller could be started and
stopped at the beginning and the end of a game play. In
this manner, we ensured synchronization between the start
and the stop of the game play and its corresponding power
measurements. Moreover, we were also able to reproduce
the measurements for different runs of the same game play
under identical settings.

The given setup provided measurements corresponding
to the power consumption of the entire laptop. During the
measurements the battery was removed from the laptop so as
to avoid measuring the power consumed for re-charging the
battery as well. Additionally, we ensured that the settings of
the laptop remain constant for all the measurements (i.e., we
maintained the same settings for display brightness, switched
off the wireless LAN and removed all the devices connected
to the laptop except the microcontroller used for measuring
power consumption).

Table IV shows the laptop’s average power consump-
tion for all available frequencies of the processor. In our
simulation, these recordings were used to approximate real
power consumption. As we measured the system’s total
power consumption, our measurements include the power
consumption of, for example, memory or front-side bus,
which highly depends on the load of the system [16]. There-
fore, we acquired power measurements for each utilized
Quake II demo and all available frequencies together with
the corresponding workload profiles. A maximum variation
of 2.4% in average power consumption was observed. We
conclude from this data that 36% of the power (compared to
maximum power consumption of the laptop) may be saved at
the maximum by running the system in the lowest frequency
all times. This, however, will result in an unreasonably high
percentage of deadline misses, significantly reducing game’s
quality. In the following section we show how we minimized
both the deadline misses and the power consumption.

IX. MEASUREMENT RESULTS

A. Power Savings

We incorporated the LMS Linear Predictor into the Quake
II source code. Table V gives the measured average power
consumption (PLMS) for each game play using the LMS
Linear Predictor with a µ of 0.074. Results (PPID) ob-
tained using the PID controller based workload predictor are
comparable to those obtained using LMS PLMS . The last
column shows the achieved power savings of LMS compared
to the power consumed if the laptop clocked at the highest

Table V
POWER CONSUMPTION OF PID-BASED WORKLOAD PREDICTOR AND

LMS LINEAR PREDICTOR FOR DIFFERENT GAME PLAYS

Game Play PPID PLMS Savings [%]
Explore 1 21.42 21.6 34.5
Explore 3 21.71 21.9 33.6
Shooting 1 23.1 23.6 28.5
Shooting 2 25.2 24.8 24.8
Massive 1 25.1 23.9 27.6

Level 2 23.7 23.2 29.7

frequency. It may be noted that between 24.8% and 34.5%
of power is saved depending on the characteristics of the
game play.

B. Linux Power Management

Linux is equipped with a widely-used Ondemand Gov-
ernor [15] for power management. We ran the game plays
with the Ondemand Governor (with default settings) enabled
and logged the current frequencies, workload profiles and
average power consumption. We observed that with the On-
demand Governor, it is possible to obtain approximately 7%
power savings (for all game plays), whereas the LMS Linear
Predictor achieves power savings of up to 34.5%. As Quake
II is programmed as endless loop, the Ondemand Governor
will always detect high system utilization. Consequently,
voltage/frequency scaling cannot be enabled during most of
the time.

X. CONCLUDING REMARKS

In this paper we have proposed a LMS Linear Predictor-
based practical DVFS scheme for game applications. Our
experimental results show that the LMS Linear Predictor
does not always perform better than a hand-tuned PID
controller. There exist game plays for which the PID
controller performs better, when such a game is among the
set of games for which the PID values were optimized.
At the same time, there also exist game plays for which
the LMS Predictor performs better. The main reason for
proposing the LMS Predictor is that it does not require
hand-tuning of the controller parameters, which is tedious
and can be error prone. It gives similar performance as
the PID controller, but with significantly less effort, and
is more amenable for implementation in real-life settings
(where all game plays and player profiles are not known
in advance). As a part of future work, we plan to combine
this with power management schemes for other subsystems
of a mobile device such as its wireless interface and display.

Acknowledgments: The work reported in this paper was
partially funded through a joint project with Intel Labs
Braunschweig. Thanks are also due to our shepherd Bronis
R. de Supinski for the many helpful comments which helped
in improving the paper.

REFERENCES

[1] A. Acquaviva, L. Benini, and B. Ricco. An adaptive algorithm
for low-power streaming multimedia processing. In Design,
Automation and Test in Europe (DATE), March 2001.

[2] B. Anand, A. L. Ananda, M. C. Chan, L. T. Le, and R. K.
Balan. Game action based power management for multiplayer
online game. In ACM Workshop on Networking, Systems, and
Applications for Mobile Handhelds (MobiHeld), 2009.

[3] T. D. Burd, T. Pering, A. Stratakos, and R. W. Brodersen. A
dynamic voltage scaled microprocessor system. IEEE Journal
of Solid-State Circuit, 35(11):1571–1580, November 2000.

[4] E. F. Camacho and C. Bordons. Model Predictive Control.
Springer-Verlag, 2004.

[5] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram. Frame-
based dynamic voltage and frequency scaling for a MPEG
decoder. In International Conference on Computer-Aided
Design (ICCAD), November 2002.

[6] M. Claypool, K. Claypool, and F. Dama. The effects of
frame rate and resolution on users playing first person shooter
games. In ACM/SPIE Multimedia Computing and Networking
(MMCN), January 2006.

[7] Y. Gu and S. Chakraborty. Control theory-based DVS for
interactive 3D games. In Design Automation Conference
(DAC), June 2008.

[8] Y. Gu and S. Chakraborty. A hybrid DVS scheme for
interactive 3D games. In IEEE Real-Time Technology and
Applications Symposium (RTAS), April 2008.

[9] Y. Gu and S. Chakraborty. Power management of interactive
3D games using frame structures. In International Conference
on VLSI Design (VLSID), January 2008.

[10] Y. Gu, S. Chakraborty, and W. T. Ooi. Games are up for
DVFS. In Design Automation Conference (DAC), July 2006.

[11] S. Haykin. Adaptive Filter Theory. Prentice Hall, Englewood
Cliffs, NJ, USA, 1991.

[12] C. J. Hughes and S. V. Adve. A formal approach to frequent
energy adaptations for multimedia applications. In Intl. Symp.
on Computer Architecture (ISCA), June 2004.

[13] B. Lin, A. Mallik, P. A. Dinda, G. Memik, and R. P. Dick.
User- and process-driven dynamic voltage and frequency
scaling. In IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2009.

[14] A. Mallik, B. Lin, G. Memik, P. A. Dinda, and R. P.
Dick. User-driven frequency scaling. Computer Architecture
Letters, 5(2), 2006.

[15] V. Pallipadi and A. Starikovskiy. The ondemand governor -
past, present, future. In Linux Symposium, Aug 2006.

[16] D. C. Snowdon, S. Ruocco, and G. Heiser. Power man-
agement and dynamic voltage scaling: Myths and facts. In
Workshop on Power Aware Real-time Computing, September
2005.

[17] W. Yuan and K. Nahrstedt. Practical voltage scaling for
mobile multimedia devices. In ACM Multimedia (MM),
October 2004.

