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Zusammenfassung

Diese Arbeit untersucht den Entwurf von Quantisierern mit geringer Auflösung für zwei
ausgewählte Probleme in der Kommunikationstechnik: zum einen den Relais-Kanal mit
Mehrfachzugriff und Komprimierung der empfangenen Information am Relais, und zum
anderen den Punkt-zu-Punkt Kanal mit Intersymbolinterferenz, additivem Rauschen und
Analog-Digital-Wandlung am Empfänger. Für den Relais-Kanal mit Mehrfachzugriff wer-
den skalare und zweidimensionale Quantisierer für die am Relais vorliegende Information
entworfen, wobei der Fokus auf einem Verfahren geringer Komplexität liegt. Außerdem
wird die Zuteilung der Kompressionsraten für maximale Summenrate untersucht, wobei
das Protokoll am Relais darin besteht, die Empfangssequenzen mittels Vektorquantisierung
zu komprimieren und diese dann an die Senke weiterzuleiten. Anschließend wird der Ent-
wurf von Analog-Digital-Wandlern für Interferenz-Kanäle betrachtet, mit dem Ziel, die
erreichbare Informationsrate zu maximieren. Für rauschfreie Kanäle wird die minimal
nötige Alphabetgröße des Analog-Digital-Wandlers für maximale Informationsrate in Ab-
hängigkeit von der Größe des Sendealphabets bestimmt. Außerdem werden skalare und
zweidimensionale Analog-Digital-Wandler für verrauschte Kanäle entworfen. Abschließend
wird das vorgestellte Verfahren zum Entwurf von Analog-Digital-Wandlern ergänzt durch
die Kanalschätzung mittels eines adaptiv regelbaren Quantisierers mit nur einem Bit Auflö-
sung. Neben unterer Schranken für den mittleren quadratischen Fehler werden Schätz- und
Adaptionsverfahren entwickelt, welche die berechneten Schranken annähernd erreichen.

Abstract

In this work, the design of low-precision quantizers for two selected problems in commu-
nications is addressed: the multiple-access relay channel with compression of the received
signals at the relay, and the point-to-point link with intersymbol-interference, additive
noise, and analog-to-digital conversion at the receiver. For the multiple-access relay chan-
nel, scalar and two-dimensional quantizers are designed for log-likelihood ratios at the
relay yielding a low complexity scheme. The sum-rate optimal allocation of compression
rates using a compress-and-forward strategy is also considered. The low-precision analog-
to-digital converter design problem for intersymbol-interference channels is studied next,
where the focus is on maximizing the information rate over such channels. The smallest
possible size of the analog-to-digital converter alphabet yielding maximal information rate
is derived for noiseless channels as a function of the transmit alphabet size, and scalar and
two-dimensional converters are designed for noisy channels. Finally, the analog-to-digital
converter design problem is complemented by studying channel estimation using a single-
bit adaptively dithered quantizer. Lower bounds on the mean squared error are derived,
and dither and estimation schemes are proposed that are shown to closely approach the
lower bounds.





1
Introduction

Quantization is the process of assigning an element from a discrete set to each element
from a larger set. Often, the smaller set is finite, while the larger set may be infinite
and possibly uncountable. A particularly simple example of quantization is rounding of
a real-valued number to the nearest integer. Quantization may be formally represented
by a quantization function that is many-to-one: many elements from the larger set may
be mapped to the same element of the smaller, discrete set. Since this process cannot be
reversed, there is an unrecoverable loss of information associated with quantization.

In modern digital communication systems, quantization plays a pivotal role for two
main reasons: first, the signals to be communicated are often analog in nature, and they
need to be digitized at the transmitting side in order for the advantages of digital tech-
nology to be leveraged [Pro00, Section 3.4], for example easy storage and error-correction
coding, to name a few. Second, the received waveform as a continuous-time and ana-
log signal is sampled and quantized by an analog-to-digital converter at the front-end of
a digital receiver to allow the application of sophisticated digital signal processing algo-
rithms (e.g., equalization for channels with intersymbol-interference [BLM04, Chapters 8
and 9]) thereby enhancing the quality of detection and decoding. Beyond digital commu-
nication links, quantization is also used in a host of other applications such as wireless
sensor networks [SMZ07, RG06a, RG06b], remote sensing [Cam02], and biomedical appli-
cations [YS06].

For decades, the design of analog-to-digital converters for communication systems has
been driven by metrics that permit system designers to proceed with their design and
refinement unaware of the applications for which they will eventually be used. As a result,
metrics such as spurious free dynamic range or total harmonic distortion tend to dominate
the design of such systems [Kes05, Section 2-3]. However, if the precision of quantization
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is reduced (to as low as one bit per sample in the most extreme case), such a system-
agnostic design of the quantization step can have a severe impact on system performance.
The goal of this thesis is to explicitly design quantizers for communication problems. In
lieu of employing traditional metrics for that design, we use figures of merit suitable for
communications such as mutual information for coded systems, we develop algorithms for
the design of such quantizers, and we derive performance bounds taking the quantization
step into account. This thesis is organized as follows:

Chapter 2 reviews rate-distortion theory and introduces a tradeoff between rate and
relevant information contained in a quantization. Algorithms are given to compute the
rate-distortion curve as well as the rate-information tradeoff.

In Chapter 3, the multiple-access relay channel with two sources, a single relay, and
one destination is considered. For cases when the relay cannot decode without error, we
propose a framework for designing one- and two-dimensional quantizers for quantizing log-
likelihood ratios (or soft information) at the relay. These quantizers are mutual-information
preserving. Simulation results show that a) mutual-information preserving quantization
outperforms techniques for which the soft information is forwarded in an analog fashion to
the destination, b) two-dimensional quantization outperforms one-dimensional quantiza-
tion for source–relay links of different quality, and c) a diversity order of two can be gained
in block Rayleigh fading channels by having the relay adaptively select a two-dimensional
quantizer from a fixed set of quantizers shared with the destination, depending on the
channel state on the source–relay links.

We continue to consider the orthogonal multiple-access relay channel in Chapter 4, but
now with many sources and a compress-and-forward protocol, for which we address the
source coding rate allocation problem at the relay. In case of Gaussian codebooks at the
sources and Gaussian channels, we show that the sum-rate-optimal assignment of source
coding rate at the relay is given by water-filling. For general modulation alphabets at the
sources and finite-alphabet discrete memoryless channels, the source coding rate allocation
problem is formulated using the tradeoff between rate and relevant information for this
system, based on which we appropriately modify a standard cutting-plane algorithm to
numerically compute an optimal source coding rate vector at the relay. We also study a
variant of the compress-and-forward protocol without binning, known as noisy network
coding.

Analog-to-digital converters that maximize the information rate between the quantized
channel output sequence and the channel input sequence are designed in Chapter 5 for
discrete-time channels with intersymbol-interference, additive noise, and for independent
and identically distributed signaling. It is shown that optimized scalar quantizers with Λ
regions achieve the full information rate of log2(Λ) bits per channel use with a transmit
alphabet of size Λ at infinite signal-to-noise ratio; these quantizers, however, are not nec-
essarily uniform quantizers. Low precision scalar and two-dimensional analog-to-digital
converters are designed at finite signal-to-noise ratio, and an upper bound on the infor-
mation rate is derived. Simulation results demonstrate the effectiveness of the optimized
quantizers over conventional quantizers. The advantage of the new quantizers is further
emphasized by an example of a channel for which a simple slicer and a carefully opti-
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mized channel input with memory fail to achieve a rate of one bit per channel use at
high signal-to-noise ratio, in contrast to memoryless binary signaling and an optimized
quantizer.

In Chapter 6, the Bayesian parameter estimation problem using a single-bit dithered
quantizer is considered. This problem arises, e.g., for channel estimation under low-
precision analog-to-digital conversion at the receiver as considered in Chapter 5. Based
on the Bayesian Cramér-Rao lower bound, bounds on the mean squared error are derived
that hold for all dither strategies with strictly causal adaptive processing of the quantizer
output sequence. In particular, any estimator using the binary quantizer output sequence
is asymptotically (in the sequence length) at least 1.96 dB worse than the minimum mean
squared error estimator using continuous observations, for any dither strategy. Moreover,
dither strategies are designed that are shown by simulation to closely approach the derived
lower bounds, and are compared to existing approaches to dithering and estimation.

Finally, Chapter 7 summarizes the results and discusses open research problems that
are related to the work in this thesis.

Throughout, we use standard notation for probabilities, random variables, expectation,
entropies, and other mathematical expressions. Appendix F summarizes the mathematical
notation and contains a list of abbreviations.





2
Preliminaries

2.1. Rate-distortion theory

Let Y1, Y2, . . . , Yn be a string of independent and identically distributed (i.i.d.) discrete
random variables distributed according to PY , so that Yi takes on values in the finite set Y
of size |Y|. Assume that the string is to be transmitted over a noisy channel, and that the
channel supports only a rate smaller than H(Y ), the entropy of the source emitting the
string Y1, Y2, . . . , Yn. Therefore, by Shannon’s source coding theorem [Sha48], we cannot
perfectly reconstruct the source sequence at the receiver with high probability. But how
well can one do? To answer this type of question, one must first quantify the quality of
the reproduction. This is accomplished by defining a distortion function d : Y × Z → R

+
0

between Y and its representation Z ∈ Z. The maximum tolerable value of the average
distortion then specifies the fidelity criterion of the source coding system. Following [Sha59,
Ber71,CT06], for a bounded distortion function satisfying dmax = maxy,z d(y, z) <∞, the
minimum rate required to be able to reconstruct the source with an average distortion no
larger than D is given by the rate-distortion function

R(D) = min
PZ|Y

I(Y ;Z), (2.1)

where the minimum is over all conditional distributions PZ|Y that satisfy the constraint
on the average distortion given by

E [d(Y, Z)] =
∑

y,z

PZ|Y (z|y)PY (y)d(y, z) ≤ D. (2.2)
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The function R(D) has the following properties (cf. [CT06, Chapter 10] and [Yeu02, Chap-
ter 9]):

1. The function R(D) is a convex (∪) function of D.

2. R(D) is non-increasing in D.

3. R(D) = 0 for D ≥ Dmax, where Dmax = minz∈Z E[d(Y, z)].

4. R(0) ≤ H(Y ).

5. Properties 1 and 2 imply that R(D) is strictly decreasing for 0 ≤ D ≤ Dmax if
R(0) > 0. Property 2 implies that R(D) = 0 for all D ≥ 0 if R(0) = 0.

Example 2.1. The rate-distortion function for a binary source and reconstruction alpha-
bet (Y = Z = {0, 1}) with PY (0) = γ and Hamming distortion

d(y, z) =







0 if y = z

1 otherwise
(2.3)

is given by [CT06, Chapter 10]

R(D) =







Hb(γ)−Hb(D) if 0 ≤ D ≤ min{γ, 1− γ}
0 if D > min{γ, 1− γ},

(2.4)

where Hb(x) = −x log2(x)− (1− x) log2(1− x) denotes the binary entropy function. We
plot R(D) for γ = 0.11 in Figure 2.1. As expected, R(0) ≤ H(Y ) = 0.5, and R(D) = 0 for
D ≥ Dmax = γ.

For most other rate-distortion problems of interest, a closed-form solution for R(D) is
not available; however, Arimoto [Ari72] and Blahut [Bla72] independently developed an
algorithm to numerically compute the rate-distortion function. The algorithm is widely
known as the Blahut-Arimoto algorithm (BAA), and can also be used to numerically
calculate the capacity of an arbitrary discrete memoryless channel (DMC). We will briefly
review the algorithm for the computation of the rate-distortion function.

To derive the algorithm, we will restrict ourselves to R(0) > 0, because otherwise,
R(D) = 0 for all D ≥ 0. For R(0) > 0, the function R(D) is a convex and strictly
decreasing function of D for 0 ≤ D ≤ Dmax. Let λmax and λmin be the negative slope of
the R(D) curve at D = 0 and D = Dmax, respectively. Then for any λ, λmin ≤ λ ≤ λmax,
the tangent to the R(D) curve at the point (Dλ, R(Dλ)) has slope equal to −λ, and we
denote R(Dλ) by Rλ. At R(Dλ) + λDλ, the tangent intersects with the ordinate. We
illustrate the tangent with λ = 2 to (Dλ, Rλ) = (0.2, 0.278) in Figure 2.2. For a given
PZ|Y = P ′

Z|Y , we denote

P ′
Z(z) =

∑

y

PY (y)P ′
Z|Y (z|y) (2.5)
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Figure 2.1.: R(D) for a binary source with γ = 0.11 and Hamming distortion.
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Figure 2.2.: R(D) for a binary source with γ = 0.5 and Hamming distortion; the tangent
to (Dλ, Rλ) = (0.2, 0.278) and λ = 2 is also shown.
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IP ′
Z|Y

=
∑

y,z

PY (y)P ′
Z|Y (z|y) log2

(
P ′

Z|Y (z|y)

P ′
Z(z)

)

(2.6)

DP ′
Z|Y

=
∑

y,z

P ′
Z|Y (z|y)PY (y)d(y, z), (2.7)

and the point (DP ′
Z|Y
, IP ′

Z|Y
) lies on or above the rate-distortion curve R(D). The line

of slope −λ which passes through (DP ′
Z|Y
, IP ′

Z|Y
) has axis intercept with the ordinate of

IP ′
Z|Y

+ λDP ′
Z|Y

. Therefore, for any λ, λmin ≤ λ ≤ λmax, we have

R(Dλ) + λDλ = min
PZ|Y

{

IPZ|Y
+ λDPZ|Y

}

. (2.8)

Based on [CT06, Lemma 10.8.1], we can expand the definition of the rate-distortion func-
tion as a double minimization and insert the definition of mutual information to obtain

R(Dλ) + λDλ = min
PZ

min
PZ|Y

{
∑

y,z

PY (y)PZ|Y (z|y) log2

(

PZ|Y (z|y)
PZ(z)

)

+ λE [d(Y, Z)]

}

. (2.9)

The BAA now applies the method of alternating minimization [CT84] to (2.9). Starting
with an initial distribution P

(0)
Z|Y , we find the output distribution

P
(0)
Z (z) =

∑

y

PY (y)P (0)
Z|Y (z|y), (2.10)

which, according to [CT06, Lemma 10.8.1], is the output distribution minimizing the
mutual information. For that P (0)

Z and a particular λ ≥ 0, the conditional distribution
minimizing the mutual information subject to the distortion constraint is

P
(1)
Z|Y (z|y) =

P
(0)
Z (z)2−λd(y,z)

∑

z′

P
(0)
Z (z′)2−λd(y,z′)

, (2.11)

with which another iteration can be performed. Ciszár [Csi74] proved that the iterative
procedure converges, so that

(

D
P

(k)

Z|Y

, I
P

(k)

Z|Y

)

→ (Dλ, Rλ) (2.12)

as k →∞, and the entire rate-distortion curve can be covered by varying λmin ≤ λ ≤ λmax.
We summarize the algorithm in Algorithm 2.1.
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Algorithm 2.1 The Blahut-Arimoto algorithm.
1: Input: PY (y), Y , Z, d(y, z), λmin ≤ λ ≤ λmax, ǫ > 0
2: Initialization: randomly choose P (0)

Z|Y (z|y), k ← 1

3: P
(0)
Z (z)←

∑

y

PY (y)P (0)
Z|Y (z|y)

4: P
(1)
Z|Y (z|y)← P

(0)
Z (z)2−λd(y,z)

∑

z′

P
(0)
Z (z′)2−λd(y,z′)

5: while
∑

y,z

∣
∣
∣P

(k)
Z|Y (z|y)− P (k−1)

Z|Y (z|y)
∣
∣
∣ /(|Y| · |Z|) ≥ ǫ do

6: P
(k)
Z (z)←

∑

y

PY (y)P (k)
Z|Y (z|y)

7: P
(k+1)
Z|Y (z|y)← P

(k)
Z (z)2−λd(y,z)

∑

z′

P
(k)
Z (z′)2−λd(y,z′)

8: k ← k + 1
9: end while

10: PZ|Y (z|y)← P
(k)
Z|Y (z|y), PZ(z)←

∑

y

PY (y)PZ|Y (z|y)

11: Dλ ←
∑

y,z

PY (y)PZ|Y (z|y)d(y, z)

12: Rλ ←
∑

y,z

PY (y)PZ|Y (z|y) log2

(

PZ|Y (z|y)
PZ(z)

)

2.2. The tradeoff between mutual information and
rate

2.2.1. Problem formulation

One key requirement for determining a rate-distortion function is to choose a distortion
function a priori as a measure of goodness of the reproduction Z; for many applications, the
choice for d is made in favor of analytic tractability rather than perceptual meaningfulness
for the problem at hand [Gra90, Chapter 2.4]. By definition of the distortion function, we
also note that the fidelity criterion is based on a measure of closeness between Y and Z.
But what if one was not interested in “closely” representing Y in the reproduction Z, but
was instead aiming at extracting relevant features from Y about a third variable, say X?
This conceptually different question was asked by Tishby et al. in [TPB99], where they
formalized the problem and provided an algorithm in the spirit of the BAA to solve it.
A related problem was studied much earlier in [WW75], where the authors are concerned
with the properties of the problem and its application to selected topics in information
theory. The approach of [WW75] is as follows.

Let (X,Y ) be a pair of random variables with joint probability mass function PXY , so
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that X and Y take on values in the finite sets X and Y of size |Y| = n and |X | = m,
respectively. The variable Y is to be mapped into a random variable Z ∈ Z such that
the conditional entropy H(X|Z) is minimal while the conditional entropy H(Y |Z) is no
smaller than s. Furthermore, we require that X and Z are conditionally independent given
Y , i.e., X ↔ Y ↔ Z forms a Markov chain. Then, for 0 ≤ s ≤ H(Y ), the function F (s)
is defined as [WW75]

F (s) = min
PZ|Y

H(X|Z) s.t. H(Y |Z) ≥ s, (2.13)

where the minimum is over all distributions PZ|Y such that H(Y |Z) ≥ s, and the afore-
mentioned Markov condition is satisfied since the optimization is over PZ|Y . Here, the
definition of F (s) is in terms of conditional entropies; we now introduce a function related
to F (s) which is in terms of mutual information expressions.

The information-rate function
We define the information-rate function I(R) for 0 ≤ R ≤ H(Y ) as

I(R) , max
PZ|Y

I(X;Z) s.t. I(Y ;Z) ≤ R, (2.14)

where the maximum is over all conditional distributions PZ|Y such that the mutual infor-
mation I(Y ;Z) is no larger than R. Since I(X;Z) = H(X) − H(X|Z) and I(Y ;Z) =
H(Y )−H(Y |Z), and since H(Y ) and H(X) are fixed, I(R) can be readily recovered from
F (s) by writing

I(R) = H(X)− F (H(Y )−R). (2.15)

Although (2.14) bears obvious resemblance to (2.1), there is no operational meaning of
R as a rate here, in contrast to R(D), which is an operational rate-distortion function.
Nevertheless, we still refer to I(R) as an information-rate function.

The function I(R) has a number of interesting properties, which can be readily obtained
from properties of F (s) derived in [WW75].

1. Based on [WW75, Theorem 2.3], we can conclude that I(R) is a concave (∩) function
of R, for 0 ≤ R ≤ H(Y ).

2. The maximum in (2.14) is attainable with Z taking at most n + 1 values, i.e., |Z|
need not be larger than n+ 1. This also follows from [WW75, Theorem 2.3].

3. The function I(R) is monotonically non-decreasing in R [WW75, Theorem 2.5]. By
the same theorem, we have that the constraint in (2.14) is binding, i.e., it can be
replaced by I(Y ;Z) = R.

4. Following [WW75, Theorem 2.6], I(R) ≤ R.

5. From [WW75, Theorem 4.1], we have I(R = 0) = 0 and I(R = H(Y )) = I(X;Y ).
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RRRR

I(R)I(R)I(R)I(R)

H(Y )H(Y )H(Y )

I(X;Y )I(X;Y )

Rmax

a) b) c) d)

Figure 2.3.: Sketches of I(R) for a) H(Y ) = I(X;Y ) = 0, b) H(Y ) > 0, I(X;Y ) = 0,
c) H(Y ) > 0, I(X;Y ) > 0, Rmax = H(Y ), and d) H(Y ) > 0, I(X;Y ) > 0,
Rmax < H(Y ).

6. Combining Properties 3 and 5 yields that I(R) = 0 for all 0 ≤ R ≤ H(Y ) if I(X;Y ) =
0. Moreover, with the definition of

Rmax , minR s.t. I(R) = I(X;Y ), (2.16)

the function I(R) is strictly increasing for 0 ≤ R ≤ Rmax if I(X;Y ) > 0.

We sketch the shapes of I(R) for various cases in Figure 2.3.

The rate-information function
It is also useful to introduce a dual formulation of the information-rate tradeoff, namely a
rate-information function. We have the following proposition.

Proposition 2.1. Define for 0 ≤ I ≤ I(X;Y ) the rate-information function as

R(I) , min
PZ|Y

I(Y ;Z) s.t. I(X;Z) ≥ I, (2.17)

where the minimum is over all conditional distributions PZ|Y such that the mutual infor-
mation between X and Z is at least I. Then R(I) is the inverse function of I(R) restricted
to the interval 0 ≤ R ≤ Rmax, i.e., if I∗ = I(R∗), then R(I∗) = R∗ for all 0 ≤ R∗ ≤ Rmax.

The proof of Proposition 2.1 is given in Appendix A. Since R(I) is the inverse function
of I(R) for 0 ≤ R ≤ Rmax, we can deduct its properties in a straightforward manner from
the properties of I(R):

1. The function R(I) is a convex (∪) function of I, for 0 ≤ I ≤ I(X;Y ).

2. The minimum in (2.17) is attainable with Z taking at most n+ 1 values.

3. The function R(I) is monotonically non-decreasing in I, and the inequality constraint
is binding, so that it can be replaced by I(X;Z) = I.
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4. We have R(I) ≥ I for 0 ≤ I ≤ I(X;Y ).

5. The function R(I) satisfies R(I = 0) = 0 and R(I = I(X;Y )) = Rmax.

6. If Rmax > 0 and I(X;Y ) > 0, the function R(I) is strictly increasing; otherwise,
R(I) = 0.

2.2.2. Computation of the information-rate function

The information-rate function I(R) can be computed in two different ways, the first one
being based on [WW75, Theorem 4.1], and the second using the iterative information
bottleneck algorithm from [TPB99].

We begin with the method of [WW75]. Denote by q the probability mass function of
Y , i.e., q = [PY (1), PY (2), . . . , PY (n)]T, and let T be the fixed m× n matrix with entries
[T ]i,j = PX|Y (i|j). We denote by ∆n the probability simplex of dimension (n − 1), and
for p ∈ ∆n, the function hn(p) is the entropy function, i.e., hn(p) = −∑n

j=1 pj log2(pj).
Following [WW75, Theorem 4.1], we define φ(p, λ) , hm(Tp)− λhn(p), and let ψ(·, λ) be
the lower convex envelope on ∆n of φ(·, λ). Then,

I(R) = hm(Tq)− max
0≤λ≤1

{ψ(q, λ) + λ(hn(q)−R)} . (2.18)

Hence, to compute I(R) for general T and q, one has to find the lower convex envelope on
∆n of φ(·, λ), which seems hard to find in closed form for general T and q. The function
is available in closed form for some special cases [WW75, Section IV] only.

Example 2.2 ([WW75, Section IV-A]). Let X,Y be such that X is the result of applying
Y to a binary symmetric channel (BSC) with error probability 0 < ǫ < 0.5, and let
PY (0) = q. Consequently,

T =

[

1− ǫ ǫ

ǫ 1− ǫ

]

(2.19)

and

q =

[

q

1− q

]

. (2.20)

Then, we have

H(Y ) = Hb(q) (2.21)

H(X) = Hb(q + ǫ− 2qǫ), (2.22)

and with (2.15) and [WW75], the information-rate function is given by

I(R) = Hb(q + ǫ− 2qǫ)−Hb

(

ǫ+ (1− 2ǫ)H−1
b (Hb(q)−R)

)

(2.23)

for 0 ≤ R ≤ Hb(q).
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Given the difficulties involving the computation of I(R) in closed form for general cases,
we next describe an algorithm to directly solve the optimization problem defining the
information-rate function. The algorithm was proposed in [TPB99] and is known as the
information bottleneck iterative algorithm. In order to be able to relate the information
bottleneck iterative algorithm to the previously introduced BAA, we work with the rate-
information function in the following. To establish the algorithm, it is useful to expand
the constraint on I(X;Z) in the definition of R(I), exploiting the Markov condition X ↔
Y ↔ Z, yielding

I(X;Z) = I(X;Y )− I(X;Y |Z). (2.24)

Hence, we obtain

R(I) = min
PZ|Y

I(Y ;Z) s.t. I(X;Y |Z) ≤ I(X;Y )− I, (2.25)

where I(X;Y ) does not depend on PZ|Y . Next, again exploiting the Markov condition, we
write

I(X;Y |Z) =
∑

x,y,z

PXY Z(x, y, z) log2

(

PXY |Z(x, y|z)
PX|Z(x|z)PY |Z(y|z)

)

(2.26)

=
∑

y,z

PY Z(y, z)
∑

x

PX|Y Z(x|y, z) log2

(

PY |Z(y|z)PX|Y Z(x|y, z)
PX|Z(x|z)PY |Z(y|z)

)

(2.27)

=
∑

y,z

PY Z(y, z)
∑

x

PX|Y (x|y) log2

(

PX|Y (x|y)
PX|Z(x|z)

)

(2.28)

=
∑

y,z

PY Z(y, z)DKL

(

PX|Y (·|y)||PX|Z(·|z)
)

(2.29)

= E
[

DKL

(

PX|Y (·|Y )||PX|Z(·|Z)
)]

, (2.30)

where

DKL

(

PX|Y (·|y)||PX|Z(·|z)
)

=
∑

x

PX|Y (x|y) log2

(

PX|Y (x|y)
PX|Z(x|z)

)

(2.31)

denotes the relative entropy or Kullback–Leibler distance between the distributions PX|Y(·|y)
and PX|Z(·|z). Inserting (2.30) into (2.25) yields

R(I) = min
PZ|Y

I(Y ;Z) s.t. E
[

DKL

(

PX|Y (·|Y )||PX|Z(·|Z)
)]

≤ I(X;Y )− I, (2.32)

and by defining the function

d̄(y, z) , DKL

(

PX|Y (·|y)||PX|Z(·|z)
)

, (2.33)

we observe that

R(I) = min
PZ|Y

I(Y ;Z) s.t. E
[

d̄(Y, Z)
]

≤ I(X;Y )− I, (2.34)
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is in the form of (2.1), with a minimization of I(Y ;Z) and an upper bound for the average
value of d̄. The key differences between (2.34) and (2.1), however, are the following:

⊲ In Problem (2.34), the function d̄(y, z) is dependent on the choice of PZ|Y , since
PX|Z is a function of PZ|Y , while in Problem (2.1), the distortion function d(y, z) is
independent of the choice of PZ|Y .

⊲ Problem (2.1) is a convex minimization problem since I(Y ;Z) is convex in PZ|Y
[CT06, Chapter 2], and since E [d(Y, Z)] is linear in PZ|Y , and therefore convex.
While in (2.17), both the objective function I(Y ;Z) and I(X;Z) are convex in PZ|Y ,
the non-convexity of the constraint I(X;Z) ≥ I renders (2.17) a non-convex problem.

Keeping the above in mind, we nevertheless view d̄(y, z) as the right “distortion” function
emerging from placing a constraint on I(X;Z) in (2.17).

The motivation for the information bottleneck iterative algorithm now is very similar to
the one for the BAA. Since for Rmax > 0 and I(X;Y ) > 0, R(I) is a convex and strictly
increasing function of I, the tangent of slope β > 0 through Rβ = R(Iβ) has intercept with
the ordinate of R(Iβ)− βIβ, and

R(Iβ)− βIβ = min
PZ|Y

{

I(Y ;Z)− βI(X;Z)
}

(2.35)

= min
PZ|Y

{

I(Y ;Z)− β [I(X;Y )− I(X;Y |Z)]
}

(2.36)

= min
PZ|Y

{

I(Y ;Z) + βE
[

d̄(Y, Z)
]}

− βI(X;Y ). (2.37)

The information bottleneck iterative algorithm [TPB99] proceeds in a very similar man-
ner to Section 2.1. We begin with an initial mapping P (0)

Z|Y (z|y), for which we obtain

P
(0)
Z =

∑

y

PY (y)P (0)
Z|Y (z|y). (2.38)

Assuming P
(0)
Z (z) 6= 0 for all z, we are now in a position to calculate the “distortion”

function, by computing

P
(0)
X|Z(x|z) =

1

P
(0)
Z (z)

∑

y

PXY (x, y)P (0)
Z|Y (z|y) (2.39)

d̄(0)(y, z) = DKL

(

PX|Y (·|y)||P (0)
X|Z(·|z)

)

. (2.40)

Given d̄(0)(y, z) and β > 0, we get the next mapping

P
(1)
Z|Y (z|y) =

P
(0)
Z (z)2−βd̄(0)(y,z)

∑

z′

P
(0)
Z (z′)2−βd̄(0)(y,z′)

, (2.41)
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serving as a starting point for the next iteration. The entire information bottleneck itera-
tive algorithm is summarized in Algorithm 2.2. Due to the non-convexity of the problem,
only local convergence can be guaranteed [TPB99]. Therefore, the algorithm concludes
with estimates (Îβ, R̂β) of (Iβ, Rβ), and one can execute the algorithm repeatedly with a
different initial mapping P (0)

Z|Y until a satisfactory solution is obtained.

Algorithm 2.2 The information bottleneck iterative algorithm [TPB99].
1: Input: PXY (x, y), X , Y , Z, β > 0, ǫ > 0
2: Initialization: randomly choose a valid mapping P (0)

Z|Y (z|y), k ← 1

3: P
(0)
Z (z)←

∑

y

PY (y)P (0)
Z|Y (z|y)

4: P
(0)
X|Z(x|z)←

(

1/P (0)
Z (z)

)∑

y

PXY (x, y)P (0)
Z|Y (z|y)

5: d̄(0)(y, z)← DKL

(

PX|Y (·|y)||P (0)
X|Z(·|z)

)

.

6: P
(1)
Z|Y (z|y)← P

(0)
Z (z)2−βd̄(0)(y,z)

∑

z′

P
(0)
Z (z′)2−βd̄(0)(y,z′)

7: while
∑

y,z

∣
∣
∣P

(k)
Z|Y (z|y)− P (k−1)

Z|Y (z|y)
∣
∣
∣ /(|Y| · |Z|) ≥ ǫ do

8: P
(k)
Z (z)←

∑

y

PY (y)P (k)
Z|Y (z|y)

9: P
(k)
X|Z(x|z)←

(

1/P (k)
Z (z)

)∑

y

PXY (x, y)P (k)
Z|Y (z|y)

10: d̄(k)(y, z)← DKL

(

PX|Y (·|y)||P (k)
X|Z(·|z)

)

11: P
(k+1)
Z|Y (z|y)← P

(k)
Z (z)2−βd̄(k)(y,z)

∑

z′

P
(k)
Z (z′)2−βd̄(k)(y,z′)

12: k ← k + 1
13: end while
14: PZ|Y (z|y)← P

(k)
Z|Y (z|y)

15: PZ(z)←
∑

y

PY (y)PZ|Y (z|y)

16: PX|Z(x|z)← (1/PZ(z))
∑

y

PXY (x, y)PZ|Y (z|y)

17: Îβ ←
∑

x,z

PZ(z)PX|Z(x|z) log2

(

PX|Z(x|z)
PX(x)

)

18: R̂β ←
∑

y,z

PY (y)PZ|Y (z|y) log2

(

PZ|Y (z|y)
PZ(z)

)

Example 2.3. We apply Algorithm 2.2 to the scenario of Example 2.2 with binary Y and
X resulting from applying Y to a BSC with error probability ǫ; we also choose |Z| = 3,
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q = 0.5, and ǫ = 0.11. In Figure 2.4, we plot the resulting information-rate curves
obtained analytically from Example 2.2, and the result of the numerical optimization
using Algorithm 2.2. Both curves coincide remarkably well, and we can also observe
I(R = 1) = I(X;Y ) = 0.5, which is the capacity of a BSC with ǫ = 0.11.

I
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)
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Figure 2.4.: The function I(R) for Example 2.2 and 2.3.

Example 2.4. As another illustration for an information-rate curve, let X = {−1, 0, 1},
and let PX(x) = 1/3 for all x ∈ X . The random variable Y ′ is given by

Y ′ = X +N, (2.42)

where N ∼ N (0, σ2) is independent of X. We choose σ2 = 0.1. The discrete random
variable Y is obtained from Y ′ by regular sampling from its distribution such that |Y| = 14.
We measure I(X;Y ) = 1.309 and H(Y ) = 3.406. For that pair (X,Y ) and |Z| = |Y| +
1 = 15, the information-rate function obtained with the information bottleneck iterative
algorithm is shown in Figure 2.5, as well as the information-rate tradeoff computed for
|Z| = 3 and |Z| = 2 in order to illustrate that I(R) cannot be swept out completely if |Z|
is small.
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Figure 2.5.: The function I(R) for Example 2.4.





3
Quantize-and-forward schemes for
the multiple-access relay channel

Diversity techniques have been widely studied as an effective means to combat multipath
fading effects inherent in wireless communication channels. Multiple transmit and/or
receive antennas can often provide a form of spatial diversity whenever the application
of simpler time or frequency diversity techniques is precluded due to delay or bandwidth
constraints. However, due to size limitations on the mobile devices of, e.g., a cellular
communication network, the placement of multiple antennas at such mobile terminals is
not always a feasible option. Cooperative diversity, first proposed in [SEA03a, SEA03b],
introduces spatial diversity without interfering with the size limitations of the terminals by
allowing nodes to cooperate in facilitating their transmissions. In some cases, cooperation
is achieved by employing a relay node whose sole purpose is to facilitate the transmissions
of other nodes. Besides the gain in reliability, relays are also envisioned to provide coverage
extension for cell-edge users of cellular networks [YHXM09] at reasonable cost, since relayed
transmission alleviates path-loss effects, thereby providing prolonged life time for battery-
powered nodes.

Due to technological difficulties [CJS+10,JCK+11] related to nodes receiving and trans-
mitting simultaneously in the same frequency band, orthogonal relayed transmission, where
the channels of the sources and the relay are orthogonal either in frequency or in time,
received a lot of attention recently [LTW04, MY04, Hau09]. However, the extra resources
allocated to the relay result in a loss of spectral efficiency, a loss that can be reduced
by allowing several users to share one relay for joint processing. We therefore focus on
the orthogonal multiple-access relay channel (MARC) [KvW00] in this chapter, where two
sources transmit independent information to a common destination via a single relay.
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In related work, diversity achieving schemes are proposed for distributed antenna sys-
tems [CKL06], and for the MARC using low-density parity-check codes [HSOB05] and
distributed turbo codes [Hau09], combined with network coding [ACLY00] by performing
joint network channel coding at the relay. Since the relay performs some form of (joint)
re-encoding of the source messages in such a decode-and-forward scheme [CEG79,LTW04],
it is common to that work that the relay node is required to decode the source messages
perfectly. However, even if the relay fails at fully recovering the source messages, the
information available at the relay can still be beneficial for decoding at the destination
if forwarded properly. For example, amplify-and-forward [LTW04] or soft-decode-and-
forward schemes [SV05] may be used; these methods have the additional advantage that
they avoid error propagation that occurs if residual bit errors remain at the relay after a
hard decision about the information sequence.

In more recent work [YK07], the authors combine soft decoding and analog forwarding
of beliefs from the relay with network coding in the MARC, in that they form and transmit
the beliefs about the network coded code bits of both users at the relay, thereby achieving
notable gains in symmetric additive white Gaussian noise (AWGN) channels. However,
the block of beliefs about the network coded code bits is sent to the destination in an
analog manner; furthermore, forming the beliefs about the network coded code bits turns
out to be disadvantageous especially in situations where the source–relay channels are of
different quality. In this chapter, we aim to compensate these disadvantages:

⊲ Building on the system in [YK07], we propose a framework for designing scalar
quantizers for the soft information at the relay. The framework is related to the
information bottleneck method in that we formulate the optimization problem for
designing such a quantizer as a tradeoff between quantization rate and obtained
mutual information (cf. Section 2.2), taking into account that the available rate on
the relay–destination link is (potentially severely) limited.

⊲ Noting that forming the beliefs about the network coded bits is particularly disad-
vantageous if the soft information of the two users at the relay has different reliability,
the proposed framework is extended to the design of two-dimensional quantizers op-
erating directly on the soft information of both users, without going through the
intermediate step of computing the likelihoods of the network coded message. In do-
ing so, the available rate on the relay–destination link is appropriately divided among
the two users, according to the quality of the soft information that is at hand for each
user at the relay. Moreover, by employing quantization at the relay, digital trans-
mission with its well-known advantages can be leveraged on the relay–destination
link.

This chapter is structured as follows. The system model is introduced in Section 3.1,
based on which we design quantizers that maximize mutual information in Section 3.2.
Numerical results for various channel models are shown in Section 3.3, before we end with
concluding remarks in Section 3.4.
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Source 1
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Relay Destination

γ1,d

γ1,r

γ2,d

γ2,r

γr,d

Figure 3.1.: The multiple-access relay channel. The relay only knows γ1,r and γ2,r.

3.1. System model

3.1.1. Sources

At each source i ∈ {1, 2}, a block of independent information bits Ui ∈ {0, 1}ki is encoded
with a channel code of rate ki/ni to a block of code bits Xi ∈ {0, 1}ni , which is then
modulated to the channel symbols Si ∈M

mi

i , where Mi is the modulation alphabet of size
Mi at the i-th source. In the rest of the chapter, we assume that the number of code bits
satisfies n = n1 = n2.

3.1.2. Channel model

The channel model is shown in Figure 3.1. In our model, the transmissions from the sources
and the relay are assumed to be orthogonalized either in frequency or in time. Despite
the suboptimality of this constraint, the restriction to orthogonal channels eases practical
implementation. Note that the restriction to orthogonal channels also includes a half-
duplex constraint often imposed on the relay for implementation reasons, so that the relay
cannot transmit and receive simultaneously in the same frequency band. Without loss of
generality, we assume the orthogonality to be guaranteed by time division; consequently, a
first slot is assigned to source 1, a second slot to source 2, and a third slot to the relay. Let
Sr ∈M

mr
r be the transmitted vector from the modulation alphabet Mr at the relay. For a

path-loss coefficient α and distances di,r, di,d, and dr,d between the terminals, the received
signals at the relay and at the destination are given by

Yr,i =
Hi,r
√

dα
i,r

Si + Nr,i, i ∈ {1, 2} (3.1)

Yd,i =
Hi,d
√

dα
i,d

Si + Nd,i, i ∈ {1, 2} (3.2)
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in time slot one and two, and by

Yd,r =
Hr,d
√

dα
r,d

Sr + Nd,r (3.3)

in the last slot. Here, Hi,r, Hi,d, and Hr,d are the complex channel fading coefficients
satisfying E[|Hi,r|2] = E[|Hi,d|2] = E[|Hr,d|2] = 1, and the additive noise variables are
independent circularly symmetric complex Gaussian random variables with zero mean and
variance normalized to unity. The average values of the signal-to-noise ratio (SNR) are
given as ρi,r = Pi/d

α
i,r, ρi,d = Pi/d

α
i,d, and ρr,d = Pr/d

α
r,d, where Pi and Pr are the powers of

the sources and the relay. Throughout, we make the common assumption that the receivers
know the instantaneous SNR values γi,r = |hi,r|2ρi,r, γi,d = |hi,d|2ρi,d, and γr,d = |hr,d|2ρr,d

of their channels, and that the transmitters only possess knowledge about the average
SNR. In particular, the relay is assumed to lack instantaneous channel state information
(CSI) of the source–destination channels due to their fading nature and limited signaling
from the destination to the relay.

3.1.3. Relay operations

The operations at the relay considered in our work are restricted to methods generating
and transforming soft information about the coded bits of each user for transmission to
the destination.

Generation of soft information

Upon reception of yr,1 and yr,2, the relay’s first option is to invoke soft demappers to
compute log-likelihood ratios (LLRs) ℓi = ℓ

(dem)
i ∈ R

n, i = 1, 2, about the coded bits,
where, for m = 1, 2, . . . , n,

ℓ
(dem)
i,m = ln

(

PXi,m|Yr,i,j
(xi,m = 0|yr,i,j)

PXi,m|Yr,i,j
(xi,m = 1|yr,i,j)

)

, j = ⌈m/ log2(Mi)⌉. (3.4)

Alternatively, the relay performs soft decoding to calculate ℓi = ℓ
(dec)
i ∈ R

n, i = 1, 2, where

ℓ
(dec)
i,m = ln

(

PXi,m|Yr,i
(xi,m = 0|yr,i)

PXi,m|Yr,i
(xi,m = 1|yr,i)

)

, m = 1, 2, . . . , n. (3.5)

Processing of soft information

The first strategy for processing the soft information (ℓ1, ℓ2) is the one of [YK07], where
the relay computes soft information about the network coded code bits based on (ℓ1, ℓ2).
Specifically, the relay first interleaves ℓ2 to avoid short cycles in the factor graph associated
with the iterative decoder introduced in Section 3.1.4, yielding the block ℓ′

2 ∈ R
n carrying
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soft information about x′
2, which is the interleaved version of x2. Then, the relay forms

the soft information ℓ ∈ R
n about x = x1 ⊕ x′

2, where [HOP96]

ℓm = ℓ1,m ⊞ ℓ′
2,m (3.6)

, ln

(

1 + eℓ1,m+ℓ′
2,m

eℓ1,m + eℓ′
2,m

)

(3.7)

≈ sign(ℓ1,m)sign(ℓ′
2,m) min

{

|ℓ1,m|, |ℓ′
2,m|

}

. (3.8)

The second strategy combines the computation of soft information about the network
coded code bits from [YK07] with scalar deterministic quantization of ℓ. More formally, the
relay employs a quantizer with quantization rule q(ℓ), q : R→ Z, yielding the compressed
version z ∈ Zn, where Z = {0, 1, . . . , N − 1} refers to the quantizer index set. Since
the quantizer is invariant for the entire block, the m-th component zm of z is given by
zm = q(ℓm), m = 1, 2, . . . , n. Transforming the quantization rule into a probability mass
function

PZ|L(z|ℓ) =







1 if q(ℓ) = z

0 otherwise,
(3.9)

we have the mass function PZ|X(z|x) associated with the quantization given as

PZ|X(z|x) =
∞∫

−∞
PZ|L(z|ℓ)pL|X(ℓ|x)dℓ, (3.10)

where pL|X is the density of the soft information L given X, which is assumed to be known
or obtained from measurement (cf. Section 3.2).

By investigating (3.8), we note that the reliability of the soft information ℓ is dominated
by min

{

|ℓ1,m|, |ℓ′
2,m|

}

, so that |ℓm| is limited by the weaker user at the relay. Such a
scenario occurs, e.g., if the source–relay links have different SNR. Therefore, in the third
proposed strategy for processing soft information at the relay, the exclusive or (XOR)
computation is omitted. Instead, the relay performs two-dimensional quantization of ℓ1

and ℓ′
2, which is described by the quantization rule q(ℓ1, ℓ2), q : R2 → Z, where again, Z is

the index set of the quantizer. As before, the quantizer is assumed invariant for the entire
block, so that the m-th element of z ∈ Zn is given by zm = q(ℓ1,m, ℓ

′
2,m), m = 1, 2, . . . , n.

Defining

PZ|L1L2(z|ℓ1, ℓ2) =







1 if q(ℓ1, ℓ2) = z

0 otherwise,
(3.11)

and writing pL1L2|X1X2(ℓ1, ℓ2|x1, x2) for the conditional density of the soft information at
the relay, the mass function PZ|X1X2(z|x1, x2) is obtained as

PZ|X1X2(z|x1, x2) =
∞∫

−∞

∞∫

−∞
PZ|L1L2(z|ℓ1, ℓ2)pL1L2|X1X2(ℓ1, ℓ2|x1, x2)dℓ1dℓ2, (3.12)
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Figure 3.2.: Iterative decoder.

where the density pL1L2|X1X2 is known or approximated by measurement.

Transmission from the relay

Utilizing a quantizer at the relay does not necessarily result in equiprobable quantization
indices {0, 1, . . . , N − 1} of the quantizer index set Z. Hence, the sequence z needs to
be source encoded, yielding the block of bits ur ∈ {0, 1}kr , which is then channel encoded
using a channel code of rate Rr = kr/nr to the code bits xr ∈ {0, 1}nr before modulation
to the symbols sr ∈M

mr
r .

3.1.4. Destination

The destination uses the iterative receiver [YK07] shown in Figure 3.2. It contains two
soft-in/soft-out (SISO) decoders using the received words yd,1 and yd,2 from the direct
links. Furthermore, since the code bits of the two users are coupled by the joint processing
at the relay, these two SISO decoders are connected by relay check nodes using yd,r from
the relay, drawn as gray squares in Figure 3.2. The relay check nodes allow exchange of soft
information between the component SISO decoders, so that the overall decoder resembles
a turbo decoder, in contrast to which, however, code bits of two independent sources are
coupled.

The operations of the relay check nodes of course depend on how the soft information at
the relay is processed and transmitted. Figure 3.3 shows a summary. In case of scalar quan-
tization at the relay, the destination first needs to recover an estimate ẑ of the quantizer
output at the relay depending on the success of decoding ur. At this point, we presume the
existence of a cyclic redundancy check (CRC) in ur, which we assume to be perfect in the
sequel. Then, in order to avoid catastrophic error propagation through the source decoder
in case of residual errors in ûr, the entire transmission from the relay is discarded in that
case, so that there is no exchange of soft information between the component decoders.
Otherwise, we can assume the source decoder output ẑ to correspond to the quantization
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Figure 3.3.: Relay check node for quantized transmission from the relay.

indices obtained at the relay node, i.e., ẑ = z. For one-dimensional quantization of ℓ at the
relay, the sequence z specifies the probability distribution PX|Z(xm|zm), m = 1, 2, . . . , n,
from which we obtain

ℓ(d,r)
m = ln

(

PX|Z(xm = 0|zm)
PX|Z(xm = 1|zm)

)

, m = 1, 2, . . . , n, (3.13)

which are the input to a check node (cf. Figure 3.4) with indicator function 1{xm=x1,m⊕x′
2,m},

so that we have

ℓ
(A)′
2,m = ℓ

(E)
1,m ⊞ ℓ(d,r)

m (3.14)

ℓ
(A)
1,m = ℓ

(E)′
2,m ⊞ ℓ(d,r)

m , (3.15)

for m = 1, 2, . . . , n.
For two-dimensional quantization of ℓ1 and ℓ′

2 at the relay, the situation is different in
that the soft information about x is not formed at the relay. Nevertheless, the quantization
at the relay specifies the distribution PZ|X1X2(zm|x1,m, x

′
2,m), m = 1, 2, . . . , n, which is

available given perfect reconstruction of z at the destination. Consequently, the coupling of
the two component decoders in the factor graph of the iterative decoder at the destination
occurs through the function nodes specified by PZ|X1X2(zm|x1,m, x

′
2,m), a section of which

is shown in Figure 3.5. For convenience, we describe the operations of that function node
in terms of likelihood ratios. To that end, define for ξ ∈ {0, 1}

ℓ(x1,m, x
′
2,m = ξ|zm) , ln

(

PZ|X1X2(zm|x1,m = 0, x′
2,m = ξ)

PZ|X1X2(zm|x1,m = 1, x′
2,m = ξ)

)

(3.16)

ℓ(x1,m = ξ, x′
2,m|zm) , ln

(

PZ|X1X2(zm|x1,m = ξ, x′
2,m = 0)

PZ|X1X2(zm|x1,m = ξ, x′
2,m = 1)

)

(3.17)
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Figure 3.4.: One section of the factor graph at the destination for scalar quantization,
where j = ⌈m/ log2(Mi)⌉.
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Figure 3.5.: One section of the factor graph at the destination for two-dimensional quan-
tization with messages µA(x1,m) and µE(x′

2,m), where j = ⌈m/ log2(Mi)⌉.
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Figure 3.6.: Relay check node for analog and soft bit transmission from the relay.

ℓ(x1,m, x
′
2,m|zm) , ln

(

PZ|X1X2(zm|x1,m = 0, x′
2,m = 1)

PZ|X1X2(zm|x1,m = 1, x′
2,m = 0)

)

. (3.18)

Then, for m = 1, 2, . . . , n, ℓ(A)
1,m and ℓ

(A)′
2,m are given by

ℓ
(A)
1,m = ln




1 + eℓ

(E)′
2,meℓ(x1,m=0,x′

2,m|zm)

eℓ
(E)′
2,me−ℓ(x1,m,x′

2,m|zm) + e−ℓ(x1,m,x′
2,m=1|zm)



 (3.19)

ℓ
(A)′
2,m = ln




1 + eℓ

(E)
1,meℓ(x1,m,x′

2,m=0|zm)

eℓ
(E)
1,meℓ(x1,m,x′

2,m|zm) + e−ℓ(x1,m=1,x′
2,m|zm)



 . (3.20)

Appendix B.1 contains a derivation of (3.19) and (3.20).

3.1.5. Reference schemes

In addition to point-to-point links without the use of the relay, we also consider analog
transmission of the soft information from the relay and transmission as soft bit as refer-
ence schemes. For analog transmission [YK07], we have sr = aℓ, where a is chosen such
that the power constraint at the relay is satisfied, i.e., E[|Sr,m|2] ≤ Pr. We also include
transmission as soft bit [LVWD06], so that sr,m = a tanh(ℓm/2). Again, the normalization
factor a ensures that the power constraint at the relay is met. For the sake of complete-
ness, Figure 3.6 shows the corresponding operations for those reference schemes at the
destination.

3.2. Quantizer design

In this section, we study the design of quantizers for application at the relay to allow
maximal exchange of soft information between the component decoders at the destination.
Throughout, we restrict the design framework to the case where the quantizer output can
be perfectly recovered at the destination.
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3.2.1. One-dimensional quantizers

The most common distortion function for the design of quantizers and for rate-distortion
problems involving real-valued random variables is the squared-error distortion for its
simplicity and convenience in analysis, despite its lack of perceptual meaningfulness for
some problems [Gra90]. As already pointed out in Section 2.2, finding the right distortion
function for a particular problem can be a difficult and controversial task. It seems to
be equally hard to choose a distortion function for the problem we consider here, namely
quantizing the soft information at the relay node. Therefore, we follow the approach taken
by Tishby et al. presented in Section 2.2, where they deal with the rate-distortion problem
in a different way using the notion of relevance through another variable. Instead of putting
the constraint on the average distortion for some distortion function chosen a-priori, the
constraint is that the quantization q(L) should contain some minimum level of information
about a third variable, the relevant variable, which, in our case, is the random variable
X = X1 ⊕X2. Given a random variable L representing the soft information at the relay,
the goal is to find a quantized version q(L) that contains as much relevant information as
possible, which is information about X. That is, instead of forcing, e.g., the squared error
between L and q(L) to be small, the goal is to preserve as much information as possible
in q(L) about X.

We now formalize these ideas. In order to design a quantization function q with N
quantization regions, we aim at solving the optimization problem

I∗ = sup
q:R→Z

I(X; q(L)) s.t. |Z| = N. (3.21)

In order to compute an approximation of (3.21) in the following, we make a number of
simplifying assumptions. First, finely quantize the range of the continuous random variable
L with density pL(ℓ), yielding a random variable L̄ with finite range and mass function
PL̄(ℓ), so that L̄ is from a finite set L. The optimization problem at hand now is

q̄∗ = argmax
q̄:L→Z

I(X; q̄(L̄)) s.t. |Z| = N. (3.22)

The second step comprises a transformation of the mapping q̄, similar to before, into a
conditional mass function PZ|L̄(z|ℓ) = 1{q̄(ℓ)=z} allowing us to rewrite (3.22) as

P ∗
Z|L̄ = argmax

PZ|L̄∈P1

I(X;Z), (3.23)

where the constraint set

P1 =
{

PZ|L̄ : PZ|L̄(z|ℓ) ∈ {0, 1} ∀ z ∈ Z,∀ ℓ ∈ L,
∑

z

PZ|L̄(z|ℓ) = 1 ∀ ℓ ∈ L,

|Z| = N
}

(3.24)

ensures that the mapping PZ|L̄ is a valid conditional mass function, and that it represents
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a scalar deterministic quantizer with N quantization regions.
Before proceeding, consider the related problem

max
PZ|L̄∈P ′

1

I(X;Z), (3.25)

with

P ′
1 =

{

PZ|L̄ : PZ|L̄(z|ℓ) ≥ 0∀z ∈ Z,∀ℓ ∈ L,
∑

z

PZ|L̄(z|ℓ) = 1 ∀ℓ ∈ L, |Z| = N
}

. (3.26)

The set P ′
1 is a polyhedron, and therefore convex [BSS06]; also, P ′

1 is bounded and closed,
and therefore compact [BSS06, Section 2.2]. Further, I(X;Z) is convex in the distribution
PZ|L̄, for fixed PX and PL̄|X ; this is because I(X;Z) is convex in PZ|X for fixed PX [CT06],
and

PZ|X(z|x) =
∑

ℓ

PZ|L̄(z|ℓ)PL̄|X(ℓ|x) (3.27)

is linear in PZ|L̄ [BV04, Chapter 3.2.2]. Consequently, Problem (3.25) is a convex max-
imization over a compact polyhedral set, whose maximum is therefore attained at an
extreme point of P ′

1 [BSS06, Theorem 3.4.7]. However, to solve (3.25) with global optimal-
ity, one still needs to search all extreme points of P ′

1, which is prohibitively complex since
there are N |L| of those. Since all the extreme points of P ′

1 correspond to a distribution
PZ|L̄(z|ℓ) ∈ {0, 1}, ∀z ∈ Z,∀ℓ ∈ L, this also shows that scalar deterministic quantiza-
tion (as considered in (3.23)) is optimal, i.e., the mutual information I(X;Z) cannot be
improved by allowing randomized quantization, so that (3.23) and (3.25) have the same
maximizer.

In the following, we restrict the optimization to finding a locally optimal solution to
Problem (3.23).

Proposition 3.1. Solving Problem (3.23) is equivalent to solving

P ∗
Z|L̄ = argmin

PZ|L̄∈P1

E
[

DKL

(

PX|L̄(·|L̄)||PX|Z(·|Z)
)]

. (3.28)

Proof. By the chain rule for mutual information [CT06], we have

I(X; L̄, Z) = I(X;Z) + I(X; L̄|Z) = I(X; L̄) + I(X;Z|L̄). (3.29)

Since X ↔ L̄ ↔ Z forms a Markov chain, we have PX|L̄Z(x|ℓ, z) = PX|L̄(x|ℓ) as well as
I(X;Z|L̄) = 0, so that by (3.29) one obtains

I(X;Z) = I(X; L̄) + I(X;Z|L̄)
︸ ︷︷ ︸

=0

−I(X; L̄|Z) (3.30)

= I(X; L̄)−
∑

x,ℓ,z

PXL̄Z(x, ℓ, z) log2

(

PXL̄|Z(x, ℓ|z)
PX|Z(x|z)PL̄|Z(ℓ|z)

)

(3.31)
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= I(X; L̄)−
∑

ℓ,z

PL̄Z(ℓ, z)
∑

x

PX|L̄(x|ℓ) log2

(

PX|L̄(x|ℓ)
PX|Z(x|z)

)

(3.32)

= I(X; L̄)−
∑

ℓ,z

PL̄Z(ℓ, z)DKL

(

PX|L̄(·|ℓ)||PX|Z(·|z)
)

(3.33)

= I(X; L̄)− E
[

DKL

(

PX|L̄(·|L̄)||PX|Z(·|Z)
)]

. (3.34)

For I(X; L̄) is fixed for a given PXL̄, the maximization in (3.23) is equivalent to minimizing
the expected relative entropy E

[

DKL

(

PX|L̄(·|L̄)||PX|Z(·|Z)
)]

. �

Hence, the relative entropy between PX|L̄(·|ℓ) and PX|Z(·|z) can be seen as the distortion
function

d(ℓ, z) = DKL

(

PX|L̄(·|ℓ)||PX|Z(·|z)
)

=
∑

x

PX|L̄(x|ℓ) log2

(

PX|L̄(x|ℓ)
PX|Z(x|z)

)

(3.35)

for the problem at hand. Note that relative entropy emerged as the right distortion function
for the quantizer design problem by posing it as an optimization of relevant information.

In Problem (3.28), the probability distribution PXL̄ is fixed and known, and has to be
obtained numerically. Hence, PZ|L̄ is the only free variable. This is because PXL̄ is fixed,
and PZ and PX|Z are fully determined by PZ|L̄. Although the optimal distribution P ∗

Z|L̄
cannot be obtained in closed form, we propose an iterative optimization algorithm that
can be shown to converge to a Karush-Kuhn-Tucker (KKT) point [BSS06, Section 4.3]
of (3.25). The algorithm is given in Algorithm 3.1. Convergence of the algorithm follows
since the update of the mapping PZ|L̄ in line 11 of the algorithm is chosen such that the
average distortion of the new mapping is no worse than that of the previous mapping, and
from the concavity of I(X; L̄|Z) with respect to PZ|L̄.

In essence, this algorithm is reminiscent of the Lloyd algorithm [Llo82], where however,
in our algorithm, the distortion function d(ℓ, z) is given by the relative entropy (3.35),
and therefore depends on the mapping PZ|L̄. This is reflected in the update of line 10
of the algorithm. Algorithm 3.1 is also related to the iterative information bottleneck
algorithm [TPB99] (cf. Section 2.2), where Algorithm 3.1 can be recovered by choosing
the parameter β of [TPB99] to be β ≫ 0 to ensure that the mapping PZ|L̄(z|ℓ) ∈ {0, 1},
∀z ∈ Z,∀ℓ ∈ L, corresponds to a deterministic quantizer. As highlighted in Chapter 2,
the iterative algorithm of [TPB99] in turn is reminiscent of the celebrated BAA [Bla72] for
computing channel capacities and rate-distortion functions, with the main difference that
the algorithm for computing the mapping in the information bottleneck setting updates
the distribution PX|Z and also incorporates the dependency of the distortion d(ℓ, z) on
the mapping PZ|L̄ to be optimized. Relative entropy as a distortion function for vector
quantizer design was also employed in [DFA+10]; however, the algorithm in [DFA+10] is
explicitly formulated for quantizing LLRs, whereas the Algorithm 3.1 can be used to design
a quantizer for maximum mutual information irrespective of whether L̄ is an LLR or not, as
long as the joint probability mass function PXL̄ or an estimate thereof is available. Further,
from Algorithm 3.1, the connection to the information bottleneck principle [TPB99] is
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Algorithm 3.1 Algorithm to compute PZ|L̄.

1: Input: PXL̄(x, ℓ),Z, ǫ > 0
2: Initialization: randomly choose a valid mapping P (0)

Z|L̄(z|ℓ) ∈ {0, 1}, k ← 1

3: P
(0)
Z (z)←

∑

ℓ

PL̄(ℓ)P (0)

Z|L̄(z|ℓ)

4: P
(0)
X|Z(x|z)←

(

1/P (0)
Z (z)

)∑

ℓ

PXL̄(x, ℓ)P (0)

Z|L̄(z|ℓ)

5: d(0)(ℓ, z)← DKL(PX|L̄(·|ℓ)||P (0)
X|Z(·|z))

6: find, for each ℓ, z∗
ℓ = argminz d

(0)(ℓ, z), and set P (1)

Z|L̄(z|ℓ)← 1z=z∗
ℓ

7: while
∑

ℓ,z

∣
∣
∣P

(k)

Z|L̄(z|ℓ)− P (k−1)

Z|L̄ (z|ℓ)
∣
∣
∣ /(|L| ·N) ≥ ǫ do

8: P
(k)
Z (z)←

∑

ℓ

PL̄(ℓ)P (k)

Z|L̄(z|ℓ)

9: P
(k)
X|Z(x|z)←

(

1/P (k)
Z (z)

)∑

ℓ

PXL̄(x, ℓ)P (k)

Z|L̄(z|ℓ)

10: d(k)(ℓ, z)← DKL(PX|L̄(·|ℓ)||P (k)
X|Z(·|z))

11: find, for each ℓ, z∗
ℓ = argminz d

(k)(ℓ, z), and set P (k+1)

Z|L̄ (z|ℓ)← 1z=z∗
ℓ

12: k ← k + 1
13: end while
14: PZ|L̄(z|ℓ)← P

(k)

Z|L̄(z|ℓ)
15: PZ(z)←

∑

ℓ

PL̄(ℓ)PZ|L̄(z|ℓ)

16: PX|Z(x|z)← (1/PZ(z))
∑

ℓ

PXL̄(x, ℓ)PZ|L̄(z|ℓ)

17: I(X;Z)←
∑

x,z

PZ(z)PX|Z(x|z) log2

(

PX|Z(x|z)
PX(x)

)

18: H(Z)← −
∑

z

PZ(z) log2(PZ(z))

evident, which is a general framework for the tradeoff between rate and relevant mutual
information. Quantization of log-likelihood ratios was also considered in [Rav09] under
the assumption of them being conditionally Gaussian distributed.

Since the resulting mapping PZ|L̄ represents a scalar quantizer, the mutual information
is I(L̄;Z) = H(Z), which is also the rate of the resulting quantizer. Fixing N , the rate
of the quantizer is therefore upper bounded by log2(N). Since Problem (3.23) is a convex
maximization problem, Algorithm 3.1 is only guaranteed to find a solution satisfying the
necessary conditions for local optimality. In our attempt to find a good mutual-information
preserving quantizer, the algorithm is therefore repeatedly carried out with random starting
conditions until a satisfactory solution is obtained.
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3.2.2. Two-dimensional quantizers

As for one-dimensional quantization of ℓ, the framework for designing a two-dimensional
quantizer for ℓ1 and ℓ′

2 will be established using mutual information as a figure of merit,
but with a different expression as relevant information, whose choice will be motivated by
the following two arguments.

Inspection of the iterative decoding process at the destination

During that process, cf. Figure 3.2, the component decoders produce random variables
L

(E)
1 and L

(E)
2 with mutual information I(X1;L

(E)
1 ) and I(X2;L

(E)
2 ), which is the input

information to the corresponding relay check node. At this point, again assuming error-free
transmission of the quantizer output Z, we note that the relay check node in the receiver
processes Z and L

(E)
i to produce a-priori information for the corresponding component

decoder. Therefore, we would like the quantizer at the relay to be such that I(Xi;Z,L
(E)
j ),

i, j ∈ {1, 2}, i 6= j, is maximal, both for the information exchange from decoder 1 to
decoder 2, and vice versa. Since

I(Xi;Z,L
(E)
j ) = I(Xi;L

(E)
j ) + I(Xi;Z|L(E)

j ) (3.36)

= I(Xi;Z|L(E)
j ), (3.37)

where it is assumed that I(Xi;L
(E)
j )=0 for i 6= j, we are left with maximizing I(Xi;Z|L(E)

j ),

which is, however, hard to maximize due to its dependence on the variable L(E)
j that changes

its statistics with an increasing number of iterations. We therefore propose the following.
Observing that the extrinsic information L

(E)
j from component decoder j being perfectly

reliable corresponds to Xj being given, we optimize the mutual information I(Xi;Z|Xj)
instead of I(Xi;Z|L(E)

j ), thereby removing the dependency on the changing statistics of

L
(E)
j . Consequently, to allow maximal information transfer from decoder 1 to decoder 2,

I(X2;Z|X1) should be maximized, and analogously, for decoder 1 to receive maximal infor-
mation from decoder 2, I(X1;Z|X2) should be as large as possible. Various combinations
of these information expressions can be taken to form the relevant information term. We
propose to take the sum of I(X1;Z|X2) and I(X2;Z|X1) as the relevant information term,
i.e., Irel , I(X1;Z|X2) + I(X2;Z|X1).

Connection with one-dimensional quantization of soft information about
XORed code bits

In addition to the motivation above, we also establish a connection between the proposed
cost function Irel for two-dimensional quantization with the cost function employed for the
design of one-dimensional quantizers in the following proposition.

Proposition 3.2. Let L be the soft information about X = X1 ⊕X2 of two independent
and equally likely bits X1 and X2, and let q1 be the quantization function of a quantizer
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processing L, so that Z = q1(L). Further, assume that pLi|Xi
(ℓi|xi) satisfies the sym-

metry condition pLi|Xi
(ℓi|0) = pLi|Xi

(−ℓi|1). Then, I(X; q1(L)) = I(X1, X2; q1(L)) and
I(X1; q1(L)) = I(X2; q1(L)) = 0.

The proof is relegated to Appendix B.2. From Proposition 3.2 we see that maximiz-
ing I(X; q1(L)) corresponds to maximizing I(X1, X2; q1(L)), subject to I(X1; q1(L)) =
I(X2; q1(L)) = 0. For two-dimensional quantization using a quantization function q2 :
R× R→ Z, we relax the condition I(X1; q2(L1, L2)) = I(X2; q2(L1, L2)) = 0, but seek to
choose the quantization function q2 such that q2(L1, L2) carries as much information about
the pair (X1, X2) as possible, while carrying little information about X1 and X2 alone.
This is reflected in the choice of

Irel = I(X1; q2(L1, L2)|X2) + I(X2; q2(L1, L2)|X1) (3.38)

= 2I(X1, X2; q2(L1, L2))− I(X1; q2(L1, L2))− I(X2; q2(L1, L2)). (3.39)

To compute a two-dimensional quantizer, we finely quantize the ranges of the continuous
random variables L1 and L2 with densities pL1(ℓ1) and pL2(ℓ2) to obtain discrete variables
L̄1 ∈ L1 and L̄2 ∈ L2 with probability mass functions PL̄1

(ℓ1) and PL̄2
(ℓ2), where both

L1 and L2 are finite sets. Writing the mapping q̄ : L1 × L2 → Z as PZ|L̄1L̄2
(z|ℓ1, ℓ2) =

1{q̄(ℓ1,ℓ2)=z}, we pose the optimization problem we wish to solve as

P ∗
Z|L̄1L̄2

= argmax
PZ|L̄1L̄2

∈P2

Irel, (3.40)

where

P2 =

{

PZ|L̄1L̄2
: PZ|L̄1L̄2

(z|ℓ1, ℓ2) ∈ {0, 1},∀(z, ℓ1, ℓ2) ∈ (Z × L1 × L2)

∑

z

PZ|L̄1L̄2
(z|ℓ1, ℓ2) = 1,∀(ℓ1, ℓ2) ∈ (L1 × L2), |Z| = N

}

. (3.41)

Proposition 3.3. Solving Problem (3.40) is equivalent to solving

argmin
PZ|L̄1L̄2

∈P2

{

E
[

2DKL

(

PX1X2|L̄1,L̄2
(·, ·|L̄1, L̄2)||PX1X2|Z(·, ·|Z)

)]

(3.42)

−E
[

DKL

(

PX1|L̄1
(·|L̄1)||PX1|Z(·|Z)

)]

− E
[

DKL

(

PX2|L̄2
(·|L̄2)||PX2|Z(·|Z)

)]
}

.

Proof. Similar to the proof of Proposition 3.1, (X1, X2) ↔ (L̄1, L̄2) ↔ Z forms a Markov
chain and I(X1, X2; L̄1, L̄2) is fixed, so that maximizing Irel is equivalent to minimizing
2I(X1, X2; L̄1, L̄2|Z)− I(X1; L̄1|Z)− I(X2; L̄2|Z), which can be expressed in terms of rel-
ative entropies as in (3.42). �

To compute an approximate solution to (3.42), we can use an appropriately modified ver-
sion of Algorithm 3.1. The algorithm for the two-dimensional quantizer design is given in
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Type γr N Decision Border(s) ln

(
PX|Z (0|z)

PX|Z (1|z)

)

I(X; L̄) I(X; Z) H(Z)

MIC 0 dB 2 [0] [−5.61, 5.61] 0.985 0.964 1
MIC −2 dB 3 [−1.45, 1.45] [−3.55, 0, 3.55] 0.762 0.714 1.425
LM −2 dB 3 [−3.25, 3.25] [−4.91, 0, 4.91] 0.762 0.634 1.585
UF −2 dB 3 [−4.75, 4.75] [−6.05, 0, 6.05] 0.762 0.484 1.495

MIC −3 dB 5 [−2.30, −0.71, 0.71, 2.30] [−3.35, −1.30, 0, 1.30, 3.35] 0.505 0.485 2.286

Table 3.1.: Comparison of quantizer characteristics.

Algorithm 3.2. Similarly to Section 3.2.1, the mass functions PX1L̄1
and PX2L̄2

are obtained
numerically, and we run Algorithm 3.2 with different starting conditions to ensure that a
good two-dimensional quantizer is found. For a deterministic quantizer with quantization
rule q(ℓ1, ℓ2) we then have I(L̄1, L̄2;Z) = H(Z) as the rate of the resulting quantizer.

3.2.3. Examples of quantizers

In this section, we present some examples for quantizers obtained with Algorithms 3.1
and 3.2. In all cases, the underlying channel codes are recursive convolutional codes with
generator

G(D) =

(

1,
1 +D4

1 +D +D2 +D3 +D4

)

(3.43)

and information blocklength k = k1 = k2 = 1996. Binary phase shift keying (BPSK)
modulation is employed at the sources.

The first set of examples involves some illustration on how the designed quantizers look
for different values of the source–relay SNR γi,r and alphabet sizes N , in case of one-
dimensional quantizers for ℓ and BCJR soft decoders [BCJR74] at the relay. Here, we
assume symmetric source–relay channels, i.e., γr = γ1,r = γ2,r. Numerical characteristics
of the quantizers designed with the mutual information criterion (MIC) are summarized
in Table 3.1. As the source–relay SNR decreases, the number of quantization regions
required to achieve a mutual information I(X;Z) close to the limit I(X; L̄) increases,
leading to an increase in rate on the relay–destination link. To highlight the effectiveness
of the proposed quantizer design framework using mutual information as a figure of merit
compared to other well-known quantization methods, we also show the parameters of the
Lloyd-Max (LM) [Llo82] and uniform (UF) quantizer in Table 3.1 for γr = −2 dB and
N = 3. Evidently, both the LM and the UF quantizer require a higher rate than the
quantizer designed with the proposed algorithm, while preserving less relevant mutual
information.

In the second set of examples, the relay performs soft demapping only. Figure 3.7
depicts the partitioning of the (ℓ1, ℓ2)-plane into quantization regions as obtained by the
iterative optimization algorithm. Each of the resulting regions is color coded, with each
color corresponding to one symbol of the quantizer alphabet Z. Using N = 3 regions,
the quantizer is shown in Figure 3.7(a) for symmetric source–relay links at γ1,r = γ2,r =
4 dB. Note that this partition effectively mimics one-dimensional quantization of the soft
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Algorithm 3.2 Algorithm to compute PZ|L̄1L̄2
.

1: Input: PX1X2L̄1L̄2
(x1, x2, ℓ1, ℓ2),Z, ǫ > 0

2: Initialization: randomly choose a valid mapping P (0)

Z|L̄1L̄2
(z|ℓ1, ℓ2) ∈ {0, 1}, k ← 1

3: P
(0)
Z (z)←

∑

ℓ1,ℓ2

PL̄1L̄2
(ℓ1, ℓ2)P

(0)

Z|L̄1L̄2
(z|ℓ1, ℓ2)

4: P
(0)
X1X2|Z(x1, x2|z)←

(

1/P (0)
Z (z)

) ∑

ℓ1,ℓ2

PX1X2L̄1L̄2
(x1, x2, ℓ1, ℓ2)P (0)

Z|L̄1L̄2
(z|ℓ1, ℓ2)

5: P
(0)
X1|Z(x1|z)←

∑

x2

P
(0)
X1X2|Z(x1, x2|z)

6: P
(0)
X2|Z(x2|z)←

∑

x1

P
(0)
X1X2|Z(x1, x2|z)

7: d(0)(ℓ1, ℓ2, z)← 2DKL

(

PX1X2|L̄1L̄2
(·, ·|ℓ1, ℓ2)||P (0)

X1X2|Z(·, ·|z)
)

−DKL

(

PX1|L̄1
(·|ℓ1)||P (0)

X1|Z(·|z)
)

−DKL

(

PX2|L̄2
(·|ℓ2)||P (0)

X2|Z(·|z)
)

8: find, for each (ℓ1, ℓ2), z∗
ℓ1,ℓ2

= argminz d
(0)(ℓ1, ℓ2, z),

and set P (1)

Z|L̄1L̄2
(z|ℓ1, ℓ2)← 1z=z∗

ℓ1,ℓ2

9: while
∑

ℓ1,ℓ2,z

∣
∣
∣P

(k)

Z|L̄1L̄2
(z|ℓ1, ℓ2)− P (k−1)

Z|L̄1L̄2
(z|ℓ1, ℓ2)

∣
∣
∣ /(|L1| · |L2| ·N) ≥ ǫ do

10: P
(k)
Z (z)←

∑

ℓ1,ℓ2

PL̄1L̄2
(ℓ1, ℓ2)P

(k)

Z|L̄1L̄2
(z|ℓ1, ℓ2)

11: P
(k)
X1X2|Z(x1, x2|z)←

(

1/P (k)
Z (z)

) ∑

ℓ1,ℓ2

PX1X2L̄1L̄2
(x1, x2, ℓ1, ℓ2)P

(k)

Z|L̄1L̄2
(z|ℓ1, ℓ2)

12: P
(k)
X1|Z(x1|z)←

∑

x2

P
(k)
X1X2|Z(x1, x2|z)

13: P
(k)
X2|Z(x2|z)←

∑

x1

P
(k)
X1X2|Z(x1, x2|z)

14: d(k)(ℓ1, ℓ2, z)← 2DKL

(

PX1X2|L̄1L̄2
(·, ·|ℓ1, ℓ2)||P (k)

X1X2|Z(·, ·|z)
)

−DKL

(

PX1|L̄1
(·|ℓ1)||P (k)

X1|Z(·|z)
)

−DKL

(

PX2|L̄2
(·|ℓ2)||P (k)

X2|Z(·|z)
)

15: find, for each (ℓ1, ℓ2), z∗
ℓ1,ℓ2

= argminz d
(k)(ℓ1, ℓ2, z),

and set P (k+1)

Z|L̄1L̄2
(z|ℓ1, ℓ2)← 1z=z∗

ℓ1,ℓ2

16: k ← k + 1
17: end while
18: PZ|L̄1L̄2

(z|ℓ1, ℓ2)← P
(k)

Z|L̄1L̄2
(z|ℓ1, ℓ2)

19: PZ(z)←
∑

ℓ1,ℓ2

PL̄1L̄2
(ℓ1, ℓ2)PZ|L̄1L̄2

(z|ℓ1, ℓ2)

20: PX1X2|Z(x|z)← (1/PZ(z))
∑

ℓ1,ℓ2

PX1X2L̄1L̄2
(x1, x2, ℓ1, ℓ2)PZ|L̄1L̄2

(z|ℓ1, ℓ2)

21: PX1|Z(x1|z)←
∑

x2

PX1X2|Z(x1, x2|z)

22: PX2|Z(x2|z)←
∑

x1

PX1X2|Z(x1, x2|z)

23: I(X1, X2;Z)←
∑

x1,x2,z

PZ(z)PX1X2|Z(x1, x2|z) log2

(

PX1X2|Z(x1, x2|z)
PX1X2(x1, x2)

)
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Algorithm 3.2 (continued)

24: I(X1;Z)←
∑

x1,z

PZ(z)PX1|Z(x1|z) log2

(

PX1|Z(x1|z)
PX1(x1)

)

25: I(X2;Z)←
∑

x2,z

PZ(z)PX2|Z(x2|z) log2

(

PX2|Z(x2|z)
PX2(x2)

)

26: Irel ← 2I(X1, X2;Z)− I(X1;Z)− I(X2;Z)
27: H(Z)← −

∑

z

PZ(z) log2(PZ(z))
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(c) γ1,r − 4 dB, γ2,r = 1 dB.

Figure 3.7.: Quantizers obtained for two-dimensional quantization of ℓ1 and ℓ′
2 at the relay.

The quantizer in (c) is also suitable for γ1,r = −1 dB, γ2,r = 4 dB, and QPSK
modulation with soft demapping.

information ℓ about the XOR-coded bits. In contrast, if channel conditions on the source–
relay links are profoundly different, then the relay should preferably allocate more of the
rate available on the relay–destination channel to the stronger user, and this is exactly
achieved with the two-dimensional formulation of the quantization problem at the relay,
as shown in Figure 3.7(b) for again N = 3 regions, where γ1,r = −8 dB and γ2,r = −1 dB.
Note that in this rather extreme case, all the quantization rate is allocated to the second
user, whose soft information at the relay is vastly more reliable than the one of the first user.
Finally, Figure 3.7(c) displays a typical quantization mapping obtained for γ1,r = −4 dB,
γ2,r = 1 dB, and N = 5 regions.

3.3. Simulation results

3.3.1. Additive white Gaussian noise channels

We first show bit error rate (BER) results for AWGN channels, i.e., hi,r = hi,d = hr,d = 1,
and symmetric links, for which γd = γ1,d = γ2,d as well as γr = γ1,r = γ2,r. Both sources
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employ BPSK modulation. In the reference system without the aid of the relay, a recursive
convolutional code with generator [Bla03, Chapter 9.1]

G(D) =

(

1,
1 +D +D3 +D4

1 +D2 +D4
,
1 +D +D2 +D3 +D4

1 +D2 +D4

)

(3.44)

is used at the sources with k = k1 = k2 = 996 and n = 3000, yielding 6000 total uses
of the channel. In the system with the relay, the sources use the recursive convolutional
code with generator given in (3.43), again with k = k1 = k2 = 996 information bits and
n = 2000, so that a fair comparison with the reference system is guaranteed. Through-
out, γr = 4 dB, and the relay employs soft demodulation to obtain the soft information.
The scalar quantizer used at the relay is one with N = 3 quantization regions, for which
H(Z) = 1.257 < log2(3). Source coding at the relay is therefore beneficial to exploit the
additional redundancy in Z, and is performed with an arithmetic code [Ris76]. We also em-
ploy the corresponding two-dimensional quantizer (shown in Figure 3.7(a)) for comparison.
Taking γr,d = 3.5 dB ensures reliable transmission of z with a turbo code of appropriate
rate as specified in the Universal Mobile Telecommunication System (UMTS) [Eur01] stan-
dard, and 8-phase shift keying (PSK) modulation at the relay. Note that γr,d = 3.5 dB is
kept constant for analog and soft bit transmission as well. For comparison, we also show
the performance of a scheme with the resource allocation of the system including the relay
(i.e., k = 996 and n = 2000), but in which the information obtained from the relay is not
employed for decoding at the destination. The corresponding BER curves are shown in
Figure 3.8, from which we observe that the schemes with the relay considerably outperform
the reference point-to-point link; furthermore, quantized transmission provides a gain of
roughly 1 dB over analog transmission in the waterfall region of the BER curve.

Next, we show a comparison between soft demapping and soft decoding at the relay in
Figure 3.9, for symmetric source-relay channels. The system parameters are identical to
before, except that now γr = 0 dB and γr,d = 5 dB (at γr = 0 dB, the rate of the quantizer
for soft demapping is H(Z) = 1.56, so that a higher SNR is needed on the relay–destination
link for reliable transmission). We observe a significant gain from soft decoding at the relay
especially if the source–destination SNR is small. For larger values of γd, the point-to-point
link eventually outperforms the schemes including the relay, which can be explained by
noting that the fraction of resources allocated to both sources and the relay is constant
and equal to 1/3; an optimization of the resource allocation is beyond the scope of this
work. Also note the prominent error floor occurring for the schemes with soft decoding
at the relay, which can be explained as follows. Consider the output of the SISO decoder
operating on yd,1 (cf. Figure 3.2), and assume a high source–destination SNR γd and a
sufficient number of iterations. Further suppose that the magnitude of ℓ(E)

1,m is sufficiently
large, so that we have

ℓ
(A)′
2,m ≈ sign

(

ℓ
(E)
1,m

)

sign
(

ℓ(d,r)
m

) ∣
∣
∣ℓ(d,r)

m

∣
∣
∣ . (3.45)

Therefore, the reliability of ℓ(A)′
2,m is dominated by the reliability of ℓ(d,r)

m . The crucial point,

however, is that ℓ(A)′
2,m is fed into a SISO decoder as a-priori information without taking into
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Figure 3.8.: BERs for symmetric source–relay channels, soft demapping, γr = 4 dB, N = 3.

account that ℓ(d,r)
m was obtained by soft decoding at the relay. Note that a similar error

floor as in Figure 3.9 was also observed in [ALYM11] for soft decode-and-forward in the
relay channel with a single source. As a heuristic to alleviate the error floor while retaining
the benefits from soft decoding at the relay at small values of γd, one could rescale ℓ(d,r)

m ,
m = 1, 2, . . . , n, by multiplication with a factor a < 1, which is not pursued further in this
work.

In the symmetric scenario, the gain of two-dimensional quantization over scalar quantiza-
tion is marginal (cf. Figure 3.8); however, the picture changes for asymmetric source–relay
links, for which the error rates are shown in Figure 3.10. Again, k = k1 = k2 = 996, and
the sources employ the recursive convolutional code with generator in (3.43) and quater-
nary phase shift keying (QPSK) modulation, yielding m1 = m2 = 1000. We assume that
γ1,r = γd+3 dB and γ2,r = γd+8 dB, and that γr,d = 18 dB. The relay performs soft demap-
ping of its received signals followed by quantization with N = 5 regions and an arithmetic
encoder for source coding. Although some of the quantizers used in this scheme have H(Z)
very close to the limit of log2(5) and hence, the redundancy in Z is small, source coding is
used here to obtain a binary representation of z. On the relay–destination link, we use the
UMTS turbo code of appropriate rate and 256-quadrature amplitude modulation (QAM)
with mr = 1000. Note that for γd = −4 dB, the quantizer used at the relay is given in Fig-
ure 3.7(c). In the point-to-point link, the sources have k = k1 = k2 = 996 information bits,
and use the convolutional code with generator in (3.44) with QPSK modulation, so that
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Figure 3.9.: BERs for symmetric source–relay channels, γr = 0 dB, N = 3.

m1 = m2 = 1500. As expected, two-dimensional quantization considerably outperforms
one-dimensional quantization of the soft information about the XOR-coded bits where the
source–relay links have different SNR. The gains compared to the point-to-point link are
most pronounced for small source–destination SNR, with user 2 as the stronger user at
the relay doing clearly better than user 1.

3.3.2. Block fading channels

We now turn our attention to the performance of the proposed schemes in Rayleigh block
fading channels, where we assume that the fading variables Hi,r, Hi,d, and Hr,d are mutu-
ally independent and each distributed according to CN (0, 1). Throughout, we assume a
symmetric network, i.e., dr = d1,r = d2,r and dd = d1,d = d2,d. Further, the relay is placed
closer to the destination than to the sources. In particular, we set α = 3.52 [HT10] and
consider two cases:

⊲ Case 1: the relay is placed between the sources and the destination, with dr =
(9/10)dd. Consequently, ρr = ρd + 1.61 dB, so that the source–relay SNR is only a
little larger than the source–destination SNR.

⊲ Case 2: the relay is placed behind the destination, with dr = (3/2)dd, so that ρr =
ρd − 6.20 dB. The relaying scheme turns out to be useful even in this case in which
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Figure 3.10.: BERs for asymmetric source–relay channels, γ1,r = γd+3 dB, γ2,r = γd+8 dB,
N = 5.

the source–relay SNR is smaller than the source–destination SNR. This is in contrast
to decode-and-forward schemes, in which the requirement that the relay can decode
reliably requires a fairly high SNR on the source–relay links [Hau09].

Due to the proximity of the destination and the relay, we take ρr,d = ρd + 15 dB.
If the relay is present, the sources have k = k1 = k2 = 2000 information bits to trans-

mit, but now use the UMTS turbo code [Eur01] of rate 1/2 and BPSK modulation, so
that m1 = m2 = 4000. The relay and the destination share a set Q of two-dimensional
quantizers designed with the framework introduced in Section 3.2.2. Given the realiza-
tions of the received sequences (yr,1,yr,2) and of γ1,r and γ2,r, the relay selects the proper
quantizer in Q, computes the sequence z, source encodes that sequence with an arithmetic
encoder, and channel encodes using the UMTS turbo code of appropriate rate, yielding
the sequence sr ∈ M

mr
r with mr = 4000, where the modulation alphabet Mr at the re-

lay is chosen to be 16-QAM. In this example, the entropy coding step is useful both to
exploit the additional redundancy in the quantized sequence (depending on the actual
choice of the quantizer), and to perform the mapping to a binary string efficiently. We
compare two sets of quantizers. The first set Q1 contains one quantizer with N = 5
quantization regions for every pair of instantaneous SNR values γ1,r and γ2,r in the set
S1 = {−9 dB,−8 dB,−7 dB, . . . , 7 dB}. For this choice of S1, there are |Q1| = |S1|2 = 289
quantizers available at the relay. Consequently, signaling the relay’s quantizer choice to
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Figure 3.11.: Frame error rates for the MARC and the point-to-point link.

the destination requires at most 9 bits; we assume this signaling to be perfect in the sequel.
The other set Q2 of quantizers consists of one quantizer with N = 5 regions for every pair
of γ1,r and γ2,r in the set S2 = {−9 dB, 0 dB, 6 dB}, so that |Q2| = 9, resulting in 4 bits to
signal the quantizer choice.

In the reference point-to-point system, the sources employ the UMTS turbo code [Eur01]
of rate 1/3 and k = k1 = k2 = 2000 with BPSK modulation, yielding m1 = m2 = 6000.
Our second reference system includes the relay, so that k = k1 = k2 = 2000 and m1 =
m2 = mr = 4000; here, the relay does perform one-dimensional quantization of ℓ, the
soft information about x = x1 ⊕ x′

2. In particular, SXOR = S1, so that the quantizer set
shared by the relay and the destination contains |QXOR| = 289 quantizers with N = 5
quantization regions each. The third reference system under consideration includes the
relay as well, so that k = k1 = k2 = 2000 and m1 = m2 = mr = 4000. However, instead
of two-dimensional quantization, the relay performs one-dimensional quantization of the
soft information ℓj of the user j with the stronger source–relay channel, while excluding
the weaker user in the cooperation. For the stronger user j, there is one quantizer with
N = 5 for each instantaneous SNR value γj,r in S1. Including the bit required to signal the
index of the stronger user at the relay, at most 6 signaling bits are needed. Note that the
destination performs maximum-ratio combining for that user included in the cooperation.

The simulation results in Figure 3.11 show the common frame error rate (CFER) of the
reference systems and the system with the relay, for both network geometries. Based on
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these curves we observe that the schemes involving the relay achieve second order diversity
for both case 1 and case 2, since the CFER decays proportional to ρ−2

d . However, if the
relay processes (ℓ1, ℓ

′
2) directly without going through the intermediate step of computing

the likelihood ratios of the XOR of the coded vectors, considerably better performance is
obtained, which is because the reliability of the XOR at the relay is undesirably dominated
by the weaker source–relay channel – a disadvantage avoided by joint quantization of the
soft information at the relay. Particularly, the system with the proposed two-dimensional
quantizers at the relay gains more than 10 dB compared to the point-to-point link at
relevant CFERs of 10−3. More importantly, simple one-dimensional quantization of the
stronger user at the relay is not sufficient to achieve second order diversity. It is also
important to note that the scheme involving joint quantization at the relay does not
require the set of available quantizers at the relay to be prohibitively large. In fact, we
observe that the system with 9 quantizers shared at the relay performs only marginally
poorer than the one with a set of 289 quantizers, at considerable lower signaling overhead.

3.4. Discussion

In this chapter, we studied the MARC with two users and noisy source–relay links pre-
venting successful decoding at the relay, so that the operations at the relay are limited to
schemes generating and processing soft information. One- and two-dimensional determin-
istic quantizers were designed for the soft information at the relay based on the notion of
relevant information, leading to an improvement over analog transmission methods from
the relay. Simulation results further suggest that two-dimensional quantization at the relay
outperforms schemes based on network coding the soft values in case of unequal channel
quality on the source–relay channels. To perform the quantization, the relay does not
require CSI about the source–destination links, a fact especially advantageous in wireless
fading channels where this information may not always be available at the relay. In a
Rayleigh block fading environment, the relay chooses a suitable quantizer from a fixed
set based on the SNR on the incoming links, and forwards its compressed estimate of the
received sequences to destination. We observe from numerical results that full diversity
order of two can be gained with this scheme. The scheme incurs small delay, since no
(soft) decoding is required at the relay node to achieve these gains. Further, we remark
that the only overhead created through cooperation is due to the signaling of the quan-
tizer choice at the relay to the destination, since the choice of the quantizer depends on
the source–relay SNRs, which are assumed to be unknown at the destination. An efficient
low-complexity implementation of two-dimensional quantization might be to approximate
the boundaries of the two-dimensional quantizers by hyperplanes, so that the quantization
can be found by comparing the vector of likelihoods (ℓ1,m, ℓ

′
2,m) to be quantized with a

number of hyperplanes.



4
Source coding rate allocation in
orthogonal compress-and-forward
relay networks

In Chapter 3, we designed scalar and two-dimensional symbol-by-symbol quantizers for the
relay node of a MARC with two sources, where the emphasis was on practical schemes of
low complexity. In this chapter, we generalize the work of Chapter 3 by considering an
arbitrary number of users transmitting information via a single relay, and by employing
vector quantization (with or without binning) at the relay. The goal is to optimize the
quantization at the relay to maximize the achievable sum-rate.

Capacity results for the relay channel with full- and half-duplex relays go back to [vdM77]
and [CEG79]; more recent work includes [LTW04, HZ05] and [SKM04a, KGG05] for the
MARC. In this chapter, we focus on the orthogonal MARC with M sources and compress-
and-forward (CF) [CEG79] at the relay, where the relay compresses its received values
before forwarding the estimates to the destination. CF methods are useful when the
relay cannot decode the source messages reliably [SKM04b, SKM04c], e.g., if the relay is
geographically placed closer to the destination than to the source(s). If the relay’s power
resources are limited, we show that determining which users to include in the cooperation,
and at which source coding rate, is critical to achieve a good sum-rate. Intuitively, the relay
should spend source coding rate only for those users with a sufficiently strong signal at the
relay and a weak direct link to the destination, allowing them to benefit from cooperation.
Specifically, for CF, we obtain the following results:

⊲ A water-filling source coding rate assignment at the relay maximizes the achievable
sum-rate for Gaussian modulation at the sources and Gaussian channels. This result
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Figure 4.1.: The multiple-access relay channel with M sources.

is similar to the one in [SY08] for the powers allocated by the relay for cooperation
with the different sources.

⊲ For general modulation alphabets at the sources and DMCs, we formulate the sum-
rate maximization problem as a tradeoff between mutual information and source
coding rate (cf. Section 2.2). We adapt the iterative information bottleneck algorithm
so that the information-rate tradeoff can be computed for each user individually.
Given this tradeoff, we show that the sum-rate maximization problem for M users
is a convex optimization problem, which we solve numerically with a cutting-plane
algorithm.

⊲ We compare the CF rate with the rate of a scheme in which the relay omits the
binning step, a strategy known as noisy network coding (NNC) [LKEGC11]. The
sum-rate optimal CF rate allocation is demonstrated to be sum-rate optimal for NNC
as well.

In Section 4.1 of this chapter, we summarize the system model and the cooperation
protocol for CF. Focusing on CF, the rate allocation problem is solved for Gaussian mod-
ulation and Gaussian channels in Section 4.2, and for general finite inputs and DMCs in
Section 4.3. NNC is considered in Section 4.4, and Section 4.5 concludes the chapter.

4.1. System model

4.1.1. Channel model

The system is shown in Figure 4.1. Like in Chapter 3, the relay is limited by a half-
duplex constraint, i.e., the relay cannot receive and transmit simultaneously in the same
frequency band. Further, the transmissions from the sources and the relay are assumed
to be orthogonal either in frequency or in time. Without loss of generality, we assume
the orthogonality to be guaranteed by time division, so that the first M time slots of
length αin each, αi > 0,

∑M
i=1 αi < 1, are assigned to the sources, and the last time slot of

length (1 −∑M
i=1 αi)n = ᾱn to the relay. Let Xi and Xr be the modulation alphabets at
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Figure 4.2.: Random binning.

source i and at the relay, respectively, so that Xi ∈ X αin
i is the transmitted vector from

an i.i.d. codebook of rate Ri at source i, and Xr ∈ X ᾱn
r is the transmitted vector from

an i.i.d. codebook of rate Rr at the relay. Then, the received signals at the relay and at
the destination are given by Yr,i ∈ Yαin

r,i , Yd,i ∈ Yαin
d,i , and Yd,r ∈ Y ᾱn

d,r , respectively; the
orthogonality assumption requires the channel transition probability to factor as

PYr,1...Yr,M Yd,1...Yd,M Yd,r|X1...XM Xr(yr,1, . . . , yr,M , yd,1, . . . , yd,M , yd,r|x1, . . . , xM , xr)

= PYd,r|Xr(yd,r|xr)
M∏

i=1

PYr,iYd,i|Xi
(yr,i, yd,i|xi) (4.1)

= PYd,r|Xr(yd,r|xr)
M∏

i=1

PYr,i|Xi
(yr,i|xi)PYd,i|Xi

(yd,i|xi). (4.2)

4.1.2. Cooperation protocol and achievable rates

The strategy at the relay considered in Sections 4.2 and 4.3 of this chapter is CF [CEG79,
Section VI]. In this protocol, the relay performs Wyner–Ziv coding [WZ76, Wyn78] to
compress its received sequences exploiting the side information available at the destination
for reconstruction. In our model, source coding is performed separately for each received
vector Yr,i, however, the allocation of source coding rate to user i at the relay is done
jointly. Specifically, the relay compresses the vector Yr,i to an estimate Ŷr,i(si) ∈ Ŷαin

r,i ,

si ∈ {1, 2, . . . , 2nR̂i}, where each Ŷr,i is generated i.i.d. according to the distribution

PŶr,i
(ŷr,i) =

∑

yr,i

PŶr,i|Yr,i
(ŷr,i|yr,i)PYr,i

(yr,i). (4.3)

Using a random uniform distribution of the indices si ∈ {1, 2, . . . , 2nR̂i} among 2nR̃i bins,
R̃i ≤ R̂i, the relay determines the index of the bin bi(si), bi ∈ {1, 2, . . . , 2nR̃i}, to which si

belongs, cf. Figure 4.2. Here, R̃i is the source coding rate with side information for user
i. Then, the relay sends a corresponding codeword Xr(b1(s1), b2(s2), . . . , bM(sM)) from a
codebook with 2nRr elements, where Rr =

∑M
i=1 R̃i. After successful decoding of Xr from

Yd,r, the destination uses the side information Yd,i and bi(si) to resolve the remaining
uncertainty within bin bi(si) about si, yielding the estimate Ŷr,i. Then, Yd,i and Ŷr,i are
used to jointly decode the message of user i.
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Achievable rates for the relay channel with CF are derived in [CEG79, Theorem 6],
[KGG05]. We specialize these rates to the M -user orthogonal MARC with CF in the
following proposition.

Proposition 4.1. The rate vector R = [R1, R2, . . . , RM ]T is achievable in the M -user
orthogonal MARC with CF at the relay if

Ri < αiI(Xi;Yd,i, Ŷr,i) = αi

[

I(Xi;Yd,i) + I(Xi; Ŷr,i|Yd,i)
]

, i = 1, 2, . . . ,M, (4.4)

and
M∑

i=1

αiI(Yr,i; Ŷr,i|Yd,i) ≤ ᾱI(Xr;Yd,r). (4.5)

We denote the set of rate vectors R satisfying (4.4) and (4.5) by RCF.

Proof. By [WZ76, CEG79], αiI(Yr,i; Ŷr,i|Yd,i) is the source coding rate for user i at the
relay with side information at the destination. Satisfying (4.5) ensures that the total
source coding rate for all users at the relay does not exceed the available rate ᾱI(Xr;Yd,r)
on the relay–destination link, so that Ŷr,i, i = 1, 2, . . . ,M , can be reconstructed reliably
at the destination. Then, the destination has Yd,i and Ŷr,i available to decode the message
from user i, so that αiI(Xi;Yd,i, Ŷr,i) is the rate bound for user i. �

4.2. Optimal allocation of source coding rate for
Gaussian modulation

In this section, we consider Gaussian channels and Gaussian modulation at the sources
and at the relay, i.e., Xi is from a Gaussian codebook of rate Ri with power Pi, and Xr

is from a Gaussian codebook of rate Rr with power Pr. The received signals Yr,i ∈ C
αin,

Yd,i ∈ C
αin, and Yd,r ∈ C

ᾱn at the relay and at the destination are given by

Yr,i = Hi,rXi + Nr,i (4.6)

Yd,i = Hi,dXi + Nd,i (4.7)

in time slot i, and

Yd,r = Hr,dXr + Nd,r (4.8)

in the last time slot, where Hi,r, Hi,d, and Hr,d are complex channel fading coefficients satis-
fying E[|Hi,r|2] = E[|Hi,d|2] = E[|Hr,d|2] = 1, and the additive noise vectors Nr,i, Nd,i, and
Nd,r are independent proper complex Gaussian with zero mean and unit variance. We as-
sume that the receivers know the instantaneous SNR values γi,r = |hi,r|2Pi, γi,d = |hi,d|2Pi,
and γr,d = |hr,d|2Pr of their channels. Additionally, the relay knows the instantaneous
SNRs of all source–destination channels and of the relay–destination channel.
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The rate region of Proposition 4.1 is specialized to the Gaussian setting as follows. For
Gaussian codebooks at the sources and Gaussian channels, we choose Ŷr,i = Yr,i + N̄r,i,
where N̄r,i ∼ CN (0, σ2

i ) is independent of Yr,i [HZ05]. We thus have

I(Yr,i; Ŷr,i|Yd,i) = h(Ŷr,i|Yd,i)− h(Ŷr,i|Yr,i, Yd,i) (4.9)

= h(Ŷr,i|Yd,i)− h(Ŷr,i|Yr,i). (4.10)

The conditional variance of Ŷr,i conditioned on Yd,i = yd,i is

Var(Ŷr,i|Yd,i = yd,i) = Var(hi,rXi +Nr,i + N̄r,i|Yd,i = yd,i) (4.11)

= |hi,r|2Var(Xi|Yd,i = yd,i) + Var(Nr,i|Yd,i = yd,i) + Var(N̄r,i|Yd,i = yd,i)

= |hi,r|2
Pi

1
|hi,d|2

Pi + 1
|hi,d|2

+ 1 + σ2
i , (4.12)

and consequently, we have

h(Ŷr,i|Yd,i) = log2

(

πe

(

1 + σ2
i +

γi,r

1 + γi,d

))

. (4.13)

Together with

h(Ŷr,i|Yr,i) = log2(πeσ
2
i ), (4.14)

(4.13) yields

I(Yr,i; Ŷr,i|Yd,i) = log2

(

1 +
1 + γi,r + γi,d

σ2
i (1 + γi,d)

)

, (4.15)

and setting R̃i = αiI(Yr,i; Ŷr,i|Yd,i) gives

σ2
i =

1 + γi,r + γi,d

(1 + γi,d)(2R̃i/αi − 1)
. (4.16)

Therefore (cf. [HZ05, Proposition 3] for the relay channel with a single source), the rate
vector R is achievable if

Ri < αi log2

(

1 + γi,d +
γi,r

1 + σ2
i

)

(4.17)

= αi log2 (1 + γi,d) + αi log2

(

2R̃i/αi(1 + γi,r + γi,d)

2R̃i/αi(1 + γi,d) + γi,r

)

(4.18)
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and
M∑

i=1

R̃i ≤ ᾱI(Xr;Yd,r) = ᾱ log2(1 + γr,d). (4.19)

Defining R̃ = [R̃1, R̃2, . . . , R̃M ]T, the rate allocation at the relay maximizing the achievable
sum-rate is the solution of the optimization problem

max
R̃

M∑

i=1

αi log2

(

2R̃i/αi(1 + γi,r + γi,d)

2R̃i/αi(1 + γi,d) + γi,r

)

s.t.
M∑

i=1

R̃i ≤ ᾱ log2(1 + γr,d), R̃i ≥ 0, i = 1, . . . ,M.

(4.20)

The solution to (4.20) is given in the following theorem.

Theorem 4.2. Let αi, hi,r, hi,d, hr,d, Pi, and Pr be fixed, and define

ξi ,
1 + γi,d

γi,r

. (4.21)

The sum-rate optimal source coding rate assignment R̃∗ at the relay node of an orthogonal
CF MARC with M users and Gaussian modulation satisfies

R̃∗
i =







αi log2

(

τ
γi,r

1 + γi,d

)

if τ ≥ ξi

0 if τ < ξi,

(4.22)

where τ is chosen such that

M∑

i=1

R̃∗
i = ᾱ log2(1 + γr,d). (4.23)

Proof. Problem (4.20) is a convex program. Using Lagrange multipliers λ ≥ 0 and νi ≥ 0,
i = 1, . . . ,M , we construct the functional

J(R̃, λ,ν) = −
M∑

i=1

αi log2

(

2R̃i/αi(1 + γi,r + γi,d)

2R̃i/αi(1 + γi,d) + γi,r

)

+λ

(
M∑

i=1

R̃i − ᾱ log2(1 + γr,d)

)

−
M∑

i=1

νiR̃i, (4.24)

and differentiation with respect to R̃ and setting to zero gives

∂J

∂R̃i

= − γi,r

2R̃i/αi(1 + γi,d) + γi,r

+ λ− νi = 0, (4.25)
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which implies
λ ≥ γi,r

2R̃∗
i
/αi(1 + γi,d) + γi,r

, i = 1, . . . ,M. (4.26)

Further, the KKT conditions [BV04, Chapter 5.5.3] require that, for i = 1, . . . ,M ,

νiR̃
∗
i =

(

λ− γi,r

2R̃∗
i
/αi(1 + γi,d) + γi,r

)

R̃∗
i = 0. (4.27)

Now, if λ < γi,r/(1 + γi,r + γi,d), (4.26) can hold only if R̃∗
i > 0, so that (4.27) implies

R̃∗
i = αi log2

(

1− λ
λ

γi,r

1 + γi,d

)

. (4.28)

Alternatively, if λ ≥ γi,r/(1 + γi,r + γi,d), then R̃∗
i = 0 by (4.26). Setting τ = (1− λ)/λ, we

find that

R̃∗
i =

(

αi log2

(

τ
γi,r

1 + γi,d

))+

(4.29)

is the optimal assignment maximizing the achievable sum-rate, where (x)+ denotes the
positive part of x, and τ is chosen so that

M∑

i=1

R̃∗
i = ᾱ log2(1 + γr,d). (4.30)

�

The solution in the theorem is a water-filling solution. Given the available rate on the
relay–destination link, the constant τ is chosen such that

∑M
i=1 R̃i = ᾱI(Xr;Yd,r). Further,

user i is included in the source coding at the relay only if τ ≥ ξi; no resources of the relay
are assigned to users for which τ < ξi. An example is illustrated in Figure 4.3. Informally
stated, by examining ξi, source coding rate is allocated to those users whose source–relay
SNR γi,r is large, and whose source–destination SNR γi,d is small.

4.3. Rate allocation for arbitrary modulation
alphabets and discrete memoryless channels

In this section, we study the rate allocation problem at the relay for general finite modula-
tion alphabets Xi and Xr at the sources and at the relay, respectively, and arbitrary DMCs
with finite output alphabets Yr,i and Yd,i. The distribution PŶr,i|Yr,i

specifying the mapping

from Yr,i ∈ Yr,i to Ŷr,i ∈ Ŷr,i needs to be chosen carefully for each user to obtain a small
source coding rate R̃i = αiI(Yr,i; Ŷr,i|Yd,i) and a large mutual information I(Xi; Ŷr,i|Yd,i).
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User 1 User 2 User 3 User 4 User 5 User 6

τ

ξi

Figure 4.3.: Water-filling for M = 6 users.

We formulate the sum-rate maximization problem as

max
P

Ŷr,1|Yr,1
,P

Ŷr,2|Yr,2
,...,P

Ŷr,M |Yr,M

M∑

i=1

αiI(Xi; Ŷr,i|Yd,i)

s.t.
M∑

i=1

αiI(Yr,i; Ŷr,i|Yd,i) ≤ ᾱI(Xr;Yd,r),

(4.31)

where we regard PXi
, i ∈ {1, 2, . . . ,M}, and PXr as fixed. Essentially, this is an opti-

mization over a weighted sum of mutual information expressions, subject to a sum-rate
constraint. To solve (4.31), we first study the tradeoff between relevant information and
required source coding rate for each user separately. Based on that tradeoff we will then
introduce a cutting-plane algorithm for computing an optimal solution to (4.31).

4.3.1. The information-rate tradeoff

The tradeoff between rate and mutual information presented in Chapter 2 can be extended
to the tradeoff between I(Xi; Ŷr,i|Yd,i) and I(Yr,i; Ŷr,i|Yd,i). To that end, we define, for the
i-th user and a fixed joint distribution of (Xi, Yd,i, Yr,i), the function

Ii(ri) , max
P

Ŷr,i|Yr,i

I(Xi; Ŷr,i|Yd,i) s.t. I(Yr,i; Ŷr,i|Yd,i) ≤ ri, (4.32)

where 0 ≤ ri ≤ H(Yr,i|Yd,i). Similar to Chapter 2, a Markov condition Xi ↔ Yr,i ↔ Ŷr,i

is introduced by restricting the mapping to Ŷr,i to be of the form PŶr,i|Yr,i
. The function

Ii(ri) is characterized by the following two theorems.
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Theorem 4.3. The function Ii(ri) is concave and monotonically non-decreasing in the
domain 0 ≤ ri ≤ H(Yr,i|Yd,i), and every point of Ii(ri) can be achieved with Ŷr,i taking at
most |Yr,i|+ 1 values.

The proof of the theorem is based on applying the same techniques as in [WW75, Section
II] to H(Xi|Ŷr,i, Yd,i) and H(Yr,i|Ŷr,i, Yd,i). We state the proof in Appendix C.1.

Theorem 4.4. The function Ii(ri) further has the following properties:

a) We have Ii(ri = 0) = 0 and Ii(ri = H(Yr,i|Yd,i)) = I(Xi;Yr,i|Yd,i).

b) If I(Xi;Yr,i|Yd,i) = 0, then Ii(ri) = 0 for all 0 ≤ ri ≤ H(Yr,i|Yd,i).

c) Define
ri,max = inf ri s.t. Ii(ri) = I(Xi;Yr,i|Yd,i). (4.33)

If I(Xi;Yr,i|Yd,i) > 0, then Ii(ri) is strictly increasing for 0 ≤ ri ≤ ri,max.

Proof. See Appendix C.2. �

4.3.2. Rate allocation for M users

Using the definition of Ii(ri), we can restate the sum-rate maximization problem given
in (4.31) as

max
r≥0

αTI(r) s.t. αTr ≤ Ir,d, (4.34)

where α = [α1, . . . , αM ]T, r = [r1, . . . , rM ]T, I(r) = [I1(r1), . . . , IM(rM)]T, and Ir,d =
ᾱI(Xr;Yd,r). Since Ii is a concave function in ri and the constraints are linear inequality
constraints, Problem (4.34) is a convex optimization problem. If a method is available
to compute the value and a subgradient of Ii at ri, Problem (4.34) can be solved by
standard convex optimization methods, such as cutting-plane methods [BSS06]. However,
to evaluate Ii at ri, we need to solve Problem (4.32).

4.3.3. Evaluation of the function Ii

Except for the conditioning on Yd,i, the optimization in (4.32) defining Ii was studied
in [TPB99] in the context of the information bottleneck method, and Tishby et al. also
provided an iterative algorithm [TPB99] to solve the corresponding optimization, cf. Chap-
ter 2. We will derive a version of that algorithm adapted to Problem (4.32) encountered
here.

Throughout, suppose that I(Xi;Yr,i|Yd,i) > 0, since otherwise Ii(ri) = 0 for all 0 ≤ ri ≤
H(Yr,i|Yd,i) due to Theorem 4.4. Therefore, Ii(ri) is concave and strictly increasing, and
the tangent of slope 1/β, β > 0, through the point Ii(ri(β)) has axis intercept with the
ordinate of Ii(ri(β))− (1/β)ri(β). Moreover, we have

Ii(ri(β))− 1
β
ri(β) = max

P
Ŷr,i|Yr,i

{

I(Xi; Ŷr,i|Yd,i)−
1
β
I(Yr,i; Ŷr,i|Yd,i)

}

(4.35)
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=
1
β

min
P

Ŷr,i|Yr,i

{

I(Yr,i; Ŷr,i|Yd,i)− βI(Xi; Ŷr,i|Yd,i)
}

. (4.36)

By the chain rule of mutual information [CT06] and since Xi ↔ Yr,i ↔ Ŷr,i forms a Markov
chain, we have

I(Xi;Yr,i, Ŷr,i|Yd,i) = I(Xi; Ŷr,i|Yd,i) + I(Xi;Yr,i|Ŷr,i, Yd,i) (4.37)

= I(Xi;Yr,i|Yd,i) + I(Xi; Ŷr,i|Yr,i, Yd,i)
︸ ︷︷ ︸

=0

. (4.38)

Rewriting (4.37) and (4.38) yields

I(Xi; Ŷr,i|Yd,i) = I(Xi;Yr,i|Yd,i)− I(Xi;Yr,i|Ŷr,i, Yd,i), (4.39)

where I(Xi;Yr,i|Yd,i) does not dependent on PŶr,i|Yr,i
. Similarly, by the chain rule of mutual

information and since Yd,i ↔ Yr,i ↔ Ŷr,i forms a Markov chain, we obtain the identity

I(Yr,i; Ŷr,i|Yd,i) = I(Yr,i; Ŷr,i)− I(Yd,i; Ŷr,i) = I(Yr,i; Ŷr,i) +H(Ŷr,i|Yd,i)−H(Ŷr,i). (4.40)

By inserting (4.39) and (4.40) into (4.36), we have

Ii(ri(β))− 1
β
ri(β) (4.41)

=
1
β

min
P

Ŷr,i|Yr,i

{

I(Yr,i; Ŷr,i) + βI(Xi;Yr,i|Ŷr,i, Yd,i) +H(Ŷr,i|Yd,i)−H(Ŷr,i)
}

− I(Xi;Yr,i|Yd,i).

To see that (4.41) is in a form which allows the application of an alternating minimization
algorithm in the spirit of the information bottleneck iterative algorithm given in Algo-
rithm 2.2, we define the function

d(yr,i, ŷr,i) , β
∑

yd,i

PYd,i|Yr,i
(yd,i|yr,i)DKL

(

PXi|Yr,iYd,i
(·|yr,i, yd,i)

∣
∣
∣

∣
∣
∣PXi|Ŷr,iYd,i

(·|ŷr,i, yd,i)
)

−
∑

yd,i

PYd,i|Yr,i
(yd,i|yr,i) log2

(

PŶr,i|Yd,i
(ŷr,i|yd,i)

)

+ log2

(

PŶr,i
(ŷr,i)

)

. (4.42)

By inserting (4.42) into the minimization of (4.41), we observe that

min
P

Ŷr,i|Yr,i

{

I(Yr,i; Ŷr,i) + βI(Xi;Yr,i|Ŷr,i, Yd,i) +H(Ŷr,i|Yd,i)−H(Ŷr,i)
}

= min
P

Ŷr,i|Yr,i

{

I(Yr,i; Ŷr,i) + E
[

d(Yr,i, Ŷr,i)
]}

.
(4.43)

Equation (4.43) is now in a similar form as (2.37), and it is straightforward to modify
the corresponding alternating minimization algorithm. Beginning with an initial mapping
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P
(0)

Ŷr,i|Yr,i
, we obtain the distributions

P
(0)

Ŷr,i
(ŷr,i) =

∑

yr,i

PYr,i
(yr,i)P

(0)

Ŷr,i|Yr,i
(ŷr,i|yr,i) (4.44)

P
(0)

Ŷr,iYd,i
(ŷr,i, yd,i) =

∑

yr,i

PYr,iYd,i
(yr,i, yd,i)P

(0)

Ŷr,i|Yr,i
(ŷr,i|yr,i) (4.45)

P
(0)

Ŷr,i|Yd,i
(ŷr,i|yd,i) =

1
PYd,i

(yd,i)
P

(0)

Ŷr,iYd,i
(ŷr,i, yd,i) (4.46)

P
(0)

Xi|Ŷr,iYd,i
(xi|ŷr,i, yd,i) =

1

P
(0)

Ŷr,iYd,i
(ŷr,i, yd,i)

∑

yr,i

PXiYr,iYd,i
(xi, yr,i, yd,i)P

(0)

Ŷr,i|Yr,i
(ŷr,i|yr,i), (4.47)

assuming that PYd,i
(yd,i) 6= 0 and P (0)

Ŷr,iYd,i
(ŷr,i, yd,i) 6= 0. Using (4.44) to (4.47), we compute

d(0)(yr,i, ŷr,i) = β
∑

yd,i

PYd,i|Yr,i
(yd,i|yr,i)DKL

(

PXi|Yr,iYd,i
(·|yr,i, yd,i)

∣
∣
∣

∣
∣
∣P

(0)

Xi|Ŷr,iYd,i
(·|ŷr,i, yd,i)

)

−
∑

yd,i

PYd,i|Yr,i
(yd,i|yr,i) log2

(

P
(0)

Ŷr,i|Yd,i
(ŷr,i|yd,i)

)

+ log2

(

P
(0)

Ŷr,i
(ŷr,i)

)

. (4.48)

Given d(0)(yr,i, ŷr,i) and β > 0, the next mapping is obtained by computing

P
(1)

Ŷr,i|Yr,i
(ŷr,i|yr,i) =

P
(0)

Ŷr,i
(ŷr,i)2−d(0)(yr,i,ŷr,i)

∑

ŷ′
r,i

P
(0)

Ŷr,i
(ŷ′

r,i)2
−d(0)(yr,i,ŷ′

r,i
)
, (4.49)

which is used as a starting point for the next iteration. The update (4.49) can be fur-
ther simplified since the last addend in (4.48) cancels with P

(0)

Ŷr,i
(ŷr,i) after exponentiation

in (4.49). Defining the function

d̄(0)(yr,i, ŷr,i) = β
∑

yd,i

PYd,i|Yr,i
(yd,i|yr,i)DKL

(

PXi|Yr,iYd,i
(·|yr,i, yd,i)

∣
∣
∣

∣
∣
∣P

(0)

Xi|Ŷr,iYd,i
(·|ŷr,i, yd,i)

)

−
∑

yd,i

PYd,i|Yr,i
(yd,i|yr,i) log2

(

P
(0)

Ŷr,i|Yd,i
(ŷr,i|yd,i)

)

, (4.50)

where clearly

d̄(0)(yr,i, ŷr,i) ≥ 0, ∀(yr,i, ŷr,i) ∈
(

Yr,i × Ŷr,i

)

, (4.51)

the simplified update rule is

P
(1)

Ŷr,i|Yr,i
(ŷr,i|yr,i) =

2−d̄(0)(yr,i,ŷr,i)

∑

ŷ′
r,i

2−d̄(0)(yr,i,ŷ′
r,i

)
. (4.52)
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I(Xi; Yr,i|Yd,i)

Figure 4.4.: The function Ii(ri) from Example 4.1.

We summarize the overall algorithm in Algorithm 4.1. As for the iterative information
bottleneck algorithm, we repeatedly execute Algorithm 4.1 to ensure that Īi(ri(β)) is close
to I(ri(β)), and by varying β > 0, one can cover the entire Ii(ri) curve. In the following, it
is assumed that Īi(ri(β)) = Ii(ri(β)), i.e., given some parameter β > 0, we are in a position
to compute the triple (ri(β), Ii(ri(β)), I ′

i(ri(β))), where the slope I ′
i(ri(β)) at ri(β) is given

by 1/β.

Example 4.1. Suppose that both the source–relay channel and the source–destination
channels are BSCs with uniform inputs and crossover probabilities given by ǫi,r = 0.01
and ǫi,d = 0.05, respectively. For such a setting, we have H(Yr,i|Yd,i) = 0.324 and
I(Xi;Yr,i|Yd,i) = 0.243, and Figure 4.4 shows the curve of Ii(ri) obtained numerically
with Algorithm 4.1.

4.3.4. Cutting-plane algorithm

By virtue of Algorithm 4.1, we have access to the function Ii(ri) only through a parametriza-
tion via β. However, in order to solve Problem (4.34) by standard methods, what is needed
is a method to compute a pair (Ii(ri), I ′

i(ri)) for a given value of ri. Obviously, the missing
link is a method to compute the value of β that corresponds to a given ri. It follows
straightforwardly from Theorems 4.3 and 4.4 that ri(β) is increasing in β; consequently,
β(ri) can be found by bisection. In each step of the bisection, Algorithm 4.1 is called for a
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Algorithm 4.1 Algorithm to compute (ri(β), Īi(ri(β)).
1: Input: PXiYd,iYr,i

(xi, yd,i, yr,i), Xi, Yd,i, Yr,i, β > 0, ǫ > 0

2: Initialization: randomly choose a valid initial mapping P (0)

Ŷr,i|Yr,i
(ŷr,i|yr,i), k ← 1

3: P
(0)

Ŷr,i
(ŷr,i)←

∑

yr,i

PYr,i
(yr,i)P

(0)

Ŷr,i|Yr,i
(ŷr,i|yr,i)

4: P
(0)

Ŷr,iYd,i
(ŷr,i, yd,i)←

∑

yr,i

PYr,iYd,i
(yr,i, yd,i)P

(0)

Ŷr,i|Yr,i
(ŷr,i|yr,i)

5: P
(0)

Ŷr,i|Yd,i
(ŷr,i|yd,i)←

1
PYd,i

(yd,i)
P

(0)

Ŷr,iYd,i
(ŷr,i, yd,i)

6: P
(0)

Xi|Ŷr,iYd,i
(xi|ŷr,i, yd,i)←

1

P
(0)

Ŷr,iYd,i
(ŷr,i, yd,i)

∑

yr,i

PXiYr,iYd,i
(xi, yr,i, yd,i)P

(0)

Ŷr,i|Yr,i
(ŷr,i|yr,i)

7: d̄(0)(yr,i, ŷr,i)← β
∑

yd,i

PYd,i|Yr,i
(yd,i|yr,i)DKL

(

PXi|Yr,iYd,i
(·|yr,i, yd,i)

∣
∣
∣

∣
∣
∣P

(0)

Xi|Ŷr,iYd,i
(·|ŷr,i, yd,i)

)

−
∑

yd,i

PYd,i|Yr,i
(yd,i|yr,i) log2

(

P
(0)

Ŷr,i|Yd,i
(ŷr,i|yd,i)

)

8: P
(1)

Ŷr,i|Yr,i
(ŷr,i|yr,i)←

2−d̄(0)(yr,i,ŷr,i)

∑

ŷ′
r,i

2−d̄(0)(yr,i,ŷ
′
r,i

)

9: while
∑

yr,i,ŷr,i

∣
∣
∣
∣P

(k)

Ŷr,i|Yr,i
(ŷr,i|yr,i)− P (k−1)

Ŷr,i|Yr,i
(ŷr,i|yr,i)

∣
∣
∣
∣ /(|Yr,i| · |Ŷr,i|) ≥ ǫ do

10: P
(k)

Ŷr,i
(ŷr,i)←

∑

yr,i

PYr,i
(yr,i)P

(k)

Ŷr,i|Yr,i
(ŷr,i|yr,i)

11: P
(k)

Ŷr,iYd,i
(ŷr,i, yd,i)←

∑

yr,i

PYr,iYd,i
(yr,i, yd,i)P

(k)

Ŷr,i|Yr,i
(ŷr,i|yr,i)

12: P
(k)

Ŷr,i|Yd,i
(ŷr,i|yd,i)←

1
PYd,i

(yd,i)
P

(k)

Ŷr,iYd,i
(ŷr,i, yd,i)

13: P
(k)

Xi|Ŷr,iYd,i
(xi|ŷr,i, yd,i)←

1

P
(k)

Ŷr,iYd,i
(ŷr,i, yd,i)

∑

yr,i

PXiYr,iYd,i
(xi, yr,i, yd,i)P

(k)

Ŷr,i|Yr,i
(ŷr,i|yr,i)

14: d̄(k)(yr,i, ŷr,i)← β
∑

yd,i

PYd,i|Yr,i
(yd,i|yr,i)DKL

(

PXi|Yr,iYd,i
(·|yr,i, yd,i)

∣
∣
∣

∣
∣
∣P

(k)

Xi|Ŷr,iYd,i
(·|ŷr,i, yd,i)

)

−
∑

yd,i

PYd,i|Yr,i
(yd,i|yr,i) log2

(

P
(k)

Ŷr,i|Yd,i
(ŷr,i|yd,i)

)

15: P
(k+1)

Ŷr,i|Yr,i
(ŷr,i|yr,i)←

2−d̄(k)(yr,i,ŷr,i)

∑

ŷ′
r,i

2−d̄(k)(yr,i,ŷ
′
r,i

)

16: k ← k + 1
17: end while
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Algorithm 4.1 (continued)

18: PŶr,i|Yr,i
(ŷr,i|yr,i)← P

(k)

Ŷr,i|Yr,i
(ŷr,i|yr,i)

19: PŶr,i
(ŷr,i)←

∑

yr,i

PYr,i
(yr,i)PŶr,i|Yr,i

(ŷr,i|yr,i)

20: PŶr,iYd,i
(ŷr,i, yd,i)←

∑

yr,i

PYr,iYd,i
(yr,i, yd,i)PŶr,i|Yr,i

(ŷr,i|yr,i)

21: PŶr,i|Yd,i
(ŷr,i|yd,i)←

1
PYd,i

(yd,i)
PŶr,iYd,i

(ŷr,i, yd,i)

22: PXi|Ŷr,iYd,i
(xi|ŷr,i, yd,i)←

1
PŶr,iYd,i

(ŷr,i, yd,i)

∑

yr,i

PXiYr,iYd,i
(xi, yr,i, yd,i)PŶr,i|Yr,i

(ŷr,i|yr,i)

23: ri(β)←
∑

yr,i,ŷr,i

PŶr,i|Yr,i
(ŷr,i|yr,i)PYr,i

(yr,i) log2




PŶr,i|Yr,i

(ŷr,i|yr,i)

PŶr,i
(ŷr,i)





−
∑

yd,i,ŷr,i

PŶr,i|Yd,i
(ŷr,i|yd,i)PYd,i

(yd,i) log2




PŶr,i|Yd,i

(ŷr,i|yd,i)

PŶr,i
(ŷr,i)





24: Īi(ri(β))←
∑

xi,yd,i,ŷr,i

PXi|Ŷr,iYd,i
(xi|ŷr,i, yd,i)PŶr,iYd,i

(ŷr,i, yd,i) log2

(
PXi|Ŷr,iYd,i

(xi|ŷr,i, yd,i)

PXi|Yd,i
(xi|yd,i)

)

particular β, yielding a triple (ri(β), Ii(ri(β)), I ′
i(ri(β))). Clearly, each of these triples pro-

vides information about the function Ii. However, using a standard method, only the triple
corresponding to the solution β(ri) of the bisection procedure is taken into account. Based
on this observation, we propose a modified cutting-plane algorithm to solve Problem (4.34)
that exploits all available information.

The proposed method is a variation of the standard outer linearization method (OLM)
[BSS06], which is based on an outer approximation of the graph of αTI(r) by tangential
hyperplanes. Let r∗ denote a maximizer of (4.34), and let r(β) = [r1(β1), . . . , rM(βM)]T,
f(r) = αTI(r), and suppose δ > 0 is the desired tolerance. The algorithm is as follows:

1. Choose

βmin = [βmin,1, βmin,2, . . . , βmin,M ]T (4.53)

βmax = [βmax,1, βmax,2 . . . , βmax,M ]T (4.54)

such that r(βmin) ≤ r∗ ≤ r(βmax). Set r−2 = r(βmin) and r−1 = r(βmax).

2. Initialization: Run Algorithm 4.1 for an initial vector β0 = 0.5(βmax +βmin), yielding
r0 = r0(β0) and compute f0 = f(r0). The subgradient g0 = ∇f(r0) is given by
g0,i = αi/β0,i. Set b0 = f0 − gT

0 r0, fLB = −1, and k = 1.
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3. At iteration k, solve the linear program

max
(s,r)

s s.t. gT
j r + bj ≥ s, j = 0, . . . , k − 1,

r(βmin) ≤ r ≤ r(βmax), αTr ≤ Ir,d.
(4.55)

Let (s∗
k, r

∗
k) be a maximizer of (4.55). Set fUB = s∗

k.

4. The standard OLM [BSS06] proceeds by evaluating f and ∇f at r∗
k. As pointed out

before, the function value f(r∗
k) and subgradient ∇f(r∗

k) can only be computed by
searching for the corresponding β∗

k. Therefore, a vector rk close to r∗
k is determined

as follows. Let

rU,i = min{rj,i|rj,i ≥ r∗
k,i, j = −2, . . . , k − 1} (4.56)

rL,i = max{rj,i|rj,i ≤ r∗
k,i, j = −2, . . . , k − 1}. (4.57)

Note that rL ≤ r∗
k ≤ rU. Let βU and βL correspond to rU and rL, respectively. Set

βk = 0.5(βU +βL). Run Algorithm 4.1 using βk, yielding rk = rk(βk), and compute
fk = f(rk). If fk > fLB and αTrk ≤ Ir,d, set fLB = fk and rLB = rk.

5. If fUB−fLB ≥ δ, compute gk = ∇f(rk) and bk = fk−gT
k rk, increment k, and go to

step 3). Otherwise, set r∗ = rLB.

In contrast to the standard OLM, the iterates r∗
k may not change over multiple iterations,

even if r∗
k 6= r∗. Still, in this case βk converges to β∗

k, which implies that the overall
algorithm converges to the optimal solution r∗ (under the previously stated assumption
that Ii(ri(β)) = Īi(ri(β)) holds).

4.3.5. Numerical example

One example is given in the following for M = 4 sources and BSCs as source–relay and
source–destination channels with i.i.d. Xi, where the crossover probabilities are

ǫd = [ǫ1,d, ǫ2,d, ǫ3,d, ǫ4,d]T = [0.1, 0.2, 0.05, 0.01]T (4.58)

ǫr = [ǫ1,r, ǫ2,r, ǫ3,r, ǫ4,r]
T = [0.05, 0.01, 0.03, 0.02]T. (4.59)

The time sharing variables are αi = 0.2 for all i, so that ᾱ = 0.2, and by choosing
I(Xr;Yd,r) = 1 we obtain Ir,d = 0.2. Then, setting |Ŷr,i| = 3, we obtain

rmax = [H(Yr,1|Yd,1), H(Yr,2|Yd,2), H(Yr,3|Yd,3), H(Yr,4|Yd,4)]
T (4.60)

= [0.58, 0.73, 0.39, 0.19]T, (4.61)

and I(rmax) = [0.30, 0.65, 0.20, 0.05]T. The solution provided by the proposed modified
OLM after 25 iterations is r∗ = [0.18, 0.72, 0.10, 0]T and αTI(r∗) = 0.1621, with a tolerance
of δ = 10−4. The individual tradeoff between relevant information and rate for each user
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Figure 4.5.: Information-rate-tradeoff for each user in the numerical example.

is shown in Figure 4.5 with the iterates of the algorithm plotted as circles. Note that the
algorithm computes an increased number of samples of Ii(ri) in proximity to the optimal
points, which are also marked in Figure 4.5. As expected, those users with a strong
source–relay link and a weak source–destination channel are assigned a large source coding
rate. Comparing this with the uniform rate allocation runif = [0.25, 0.25, 0.25, 0.25]T yields
αTI(runif) = 0.1138, a loss of roughly 30 % compared to αTI(r∗).

4.4. Relation to Noisy Network Coding

NNC [ADT11,LKEGC11] is a recently proposed scheme for communicating messages be-
tween multiple sources and destinations over a noisy network. Applied to the relay channel,
NNC is variant of the CF protocol with quantization at the relay but without binning.
For the relay channel with a single user, the rates achievable with CF and NNC are the
same [LKEGC11]. For networks with multiple users and/or multiple relays, however, NNC
may give a larger rate region than CF [LKEGC11]. In this section, we show that the rate
region for the M -user orthogonal MARC with NNC is the same as the rate region of CF
when

∏M
i=1 PŶr,i|Yr,i

is optimized for maximal sum-rate. Hence, the sum-rate optimization
techniques presented in Sections 4.2 and 4.3 also apply to NNC.
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4.4.1. Description of NNC and achievable rates

Like for the CF scheme, the relay compresses its received vectors Yr,i to an estimate
Ŷr,i(si) ∈ Ŷαin

r,i , si ∈ {1, 2, . . . , 2nR̂i}, where each Ŷr,i is generated i.i.d. according to the
distribution given in (4.3). In contrast to the CF protocol, however, the binning step is
omitted, and the relay sends a corresponding codeword Xr(s1, s2, . . . , sM) from a codebook
with 2nRr elements, where now Rr =

∑M
i=1 R̂i. Instead of employing a two-step decoder

that first recovers Ŷr,i(si), i = 1, 2, . . . ,M , and then uses Ŷr,i(si) and Yd,i to recover Xi,
the destination performs decoding jointly on Yd,r and Yd,i, i = 1, 2, . . . ,M .

Achievable rates for NNC are given in [LKEGC11, Theorem 2], which we specialize to
the orthogonal MARC in the following proposition.

Proposition 4.5. The rate vector R is achievable in the orthogonal MARC with M users,
NNC, and separate compression of the received vectors Yr,i at the relay if

∑

i∈I
Ri <

∑

i∈I
αiI(Xi; Ŷr,i, Yd,i) (4.62)

∑

i∈I
Ri <

∑

i∈I
αiI(Xi;Yd,i) + ᾱI(Xr;Yd,r)−

M∑

i=1

αiI(Yr,i; Ŷr,i|Xi, Yd,i), (4.63)

for all subsets I ⊆ {1, 2, . . . ,M}. The set of rate vectors R satisfying (4.62) and (4.63)
for all I is denoted by RNNC.

Proof. Proposition 4.5 can be readily obtained from [LKEGC11, Theorem 2]. �

4.4.2. NNC and CF

We have the result that any rate achievable with CF is also achievable with NNC.

Proposition 4.6. For the orthogonal MARC with M users and some fixed distribution
∏M

i=1 PŶr,i|Yr,i
, we have RCF ⊆ RNNC.

Proof. See Appendix C.3. �

At the sum-rate optimal distribution, the NNC rate region is characterized as follows.

Theorem 4.7. Consider the orthogonal MARC with M users and NNC. For the distri-
bution

∏M
i=1 P

∗
Ŷr,i|Yr,i

that maximizes the total achievable sum-rate
∑M

i=1 Ri we have

ᾱI(Xr;Yd,r) =
M∑

i=1

αiI(Yr,i; Ŷr,i|Yd,i). (4.64)

Thus, for the sum-rate optimal distribution, the NNC rate region is given by

Ri < αiI(Xi; Ŷr,i, Yd,i), i = 1, 2, . . . ,M. (4.65)
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Proof. See Appendix C.4. �

Since (4.64) holds, Condition (4.5) is satisfied with equality, and any rate vector sat-
isfying (4.65) also satisfies (4.4). Thus, at the sum-rate optimal distribution, any rate
achievable with NNC may also be achieved with CF. Theorem 4.7 also implies that the
sum-rate maximizing distribution for NNC can be found by solving the optimization prob-
lem

max
P

Ŷr,1|Yr,1
,P

Ŷr,2|Yr,2
,...,P

Ŷr,M |Yr,M

min

{
M∑

i=1

αiI(Xi; Ŷr,i, Yd,i), (4.66)

M∑

i=1

I(Xi; Ŷr,i, Yd,i) + ᾱI(Xr;Yd,r)−
M∑

i=1

αiI(Yr,i; Ŷr,i|Yd,i)

}

,

which, in contrast to Problem (4.31), is an unconstrained optimization of a minimum
of two terms. Due to Theorem 4.7, (4.31) and (4.66) have the same optimum and the
same optimizer. Likewise, for the Gaussian scenario (cf. Section 4.2) and NNC, the sum-
rate optimal vector σ2,∗ = [σ2,∗

1 , σ2,∗
2 , . . . , σ2,∗

M ]T of variances of N̄r,i is the solution of the
optimization problem

max
σ2≥0

min

{
M∑

i=1

αi log2

(

1 + γi,d +
γi,r

1 + σ2
i

)

, (4.67)

M∑

i=1

αi log2

(

1 + γi,d +
γi,r

1 + σ2
i

)

+ ᾱ log2(1 + γr,d)−
M∑

i=1

αi log2

(

1 +
1 + γi,r + γi,d

σ2
i (1 + γi,d)

)}

.

Note that we write the optimization problem in terms of σ2
i here, since there is no notion

of the rate R̃i in the NNC scheme. The solution to (4.67) can be readily obtained by
inserting the solution provided in Theorem 4.2 into (4.16), yielding

σ2,∗
i =







1 + γi,r + γi,d

τγi,r − (1 + γi,d)
if τ ≥ ξi

∞ if τ < ξi,
(4.68)

where τ is chosen such that

M∑

i=1

αi log2

(

1 +
1 + γi,r + γi,d

σ2,∗
i (1 + γi,d)

)

= ᾱ log2(1 + γr,d). (4.69)

In summary, the sum-rate maximizing solutions to the source coding rate allocation prob-
lems in (4.20) and (4.31) for CF also provide sum-rate maximizing solutions for NNC.

Finally, we point out that for M = 1, any rate achievable with NNC can also be achieved
with CF.

Corollary 4.8. Consider the orthogonal MARC with M = 1 user and any fixed distri-
bution PŶr,1|Yr,1

, and suppose that R1 is in the NNC rate region. Then R1 can also be
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achieved with CF.

Corollary 4.8 follows from Theorem 4.7. However, an extension of Corollary 4.8 to
M > 1 may not hold, as the following example shows.

Example 4.2. Suppose that M = 2, consider the Gaussian scenario of Section 4.2, and
assume that γ1,r = γ2,r = γ1,d = γ2,d = γr,d = 10. We further choose α1 = α2 = ᾱ = 1/3,
and σ2

1 = σ2
2 = 2/3. With this choice, we obtain

1.1531 = ᾱ log2(1 + γr,d) <
2∑

i=1

αiI(Yr,i; Ŷr,i|Yd,i)
︸ ︷︷ ︸

=0.65

= 1.3, (4.70)

or, equivalently,

ᾱ log2(1 + γr,d)−
2∑

i=1

αiI(Yr,i; Ŷr,i|Yd,i) = −0.1468, (4.71)

so that (4.5) does not hold. Moreover, for i = 1, 2, we have

αiI(Xi;Yd,i) = αi log2(1 + γi,d) = 1.1531 (4.72)

αiI(Xi; Ŷr,i|Yd,i) = αi log2

(

1 +
γi,r

(1 + σ2
i )(1 + γi,d)

)

= 0.2093 (4.73)

αiI(Xi; Ŷr,i, Yd,i) = αi log2

(

1 + γi,d +
γi,r

(1 + σ2
i )

)

= 1.3625. (4.74)

Hence, we obtain the NNC rate region as

R1 < α1I(X1; Ŷr,1, Yd,1) = 1.3625 (4.75)

R2 < α2I(X2; Ŷr,2, Yd,2) = 1.3625 (4.76)

R1 +R2 <
M∑

i=1

αiI(Xi; Ŷr,i, Yd,i) + ᾱ log2(1 + γr,d)−
2∑

i=1

αiI(Yr,i; Ŷr,i|Yd,i) = 2.5781, (4.77)

which is illustrated in Figure 4.6. To apply the CF protocol to that system, one has to
pick (Ŷ ′

r,1, Ŷ
′

r,2) and hence σ2′
i > σ2

i for at least one i such that

ᾱ log2(1 + γr,d) ≥
2∑

i=1

αiI(Yr,i; Ŷ
′

r,i|Yd,i), (4.78)

which necessarily implies

αiI(Xi; Ŷ
′

r,i, Yd,i) < αiI(Xi; Ŷr,i, Yd,i) (4.79)

for at least one i. Consequently, since the CF achievable region is rectangular for M = 2
as long as (4.78) holds, it cannot cover the entire NNC region. For instance, let σ2′

1 = σ2
1 =
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Figure 4.6.: Rate regions for Example 4.2.

2/3, and choose σ2′
2 such that (4.78) holds with equality. We thus obtain σ2′

2 = 1.0336 and
the CF bounds

R1 < α1I(X1; Ŷ
′

r,1, Yd,1) = 1.3625 (4.80)

R2 < α2I(X2; Ŷ
′

r,2, Yd,2) = 1.3308, (4.81)

which are also depicted in Figure 4.6. Note that (4.80) and (4.81) also provide the rate
bounds for NNC with the above choice of σ2′

1 and σ2′
2 . Alternatively, pick (Ŷ ′′

r,1, Ŷ
′′

r,2) with
σ2′′

1 = σ2′′
2 = 0.8241. Again, (4.78) holds with equality. We obtain the CF bounds

R1 < α1I(X1; Ŷ
′′

r,1, Yd,1) = 1.3476 (4.82)

R2 < α2I(X2; Ŷ
′′

r,2, Yd,2) = 1.3476. (4.83)

The above choice of σ2′′
1 = σ2′′

2 = 0.8241 is also the sum-rate optimal choice for both CF
and NNC.
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4.5. Discussion

Source coding rate allocation for the orthogonal MARC with CF is considered. The optimal
source coding rate assignment at the relay is given by a water-filling solution for Gaussian
channels and modulation, where only those users are included for cooperation that exhibit
a sufficiently strong source–relay link and a weak source–destination link. For general
DMCs with finite input and output alphabets, an optimal solution can be found by first
using a variant of the information bottleneck iterative algorithm to characterize the tradeoff
between rate and relevant information for each user individually, and by then employing a
modified outer linearization method based on that information-rate tradeoff. An example
for BSCs confirms that source coding rate is assigned to those users gaining the most
from cooperation, i.e., users with a strong source–relay link and a weak source–destination
link. Finally, we demonstrate that the optimal source coding rate allocation for CF is also
sum-rate optimal for NNC, a variant of CF without binning at the relay.





5
Low-precision A/D conversion for
maximum information rate in
channels with memory

Considerable effort is spent on optimizing the modulation, coding, and detection of modern
communication systems by using performance metrics such as the BER or the rate at which
reliable transmission is possible. Other critical components, however, are traditionally
designed by incorporating figures of merit inherently more suited for signal reproduction
tasks than for digital communications, e.g., the mean squared error (MSE) [Llo82] or the
total harmonic distortion [Kes05, Section 2-3]. One example of such a component is the
analog-to-digital converter (ADC) at the receiver, which is omnipresent in modern digital
systems. At high data rate and high precision, the analog-to-digital (A/D) conversion step
is power-hungry, costly, and time-critical [Wal99,LRRB05,Mur08], especially at converter
resolutions of 6-12 bits commonly employed today. Examples of high-speed links are
optical transceivers with electronic dispersion compensation for single-mode and multi-
mode fiber [BAP+06,ACH+08], and chip-to-chip serial links [HWS+07].

Since decreasing the resolution of an ADC with flash architecture [Wal99], [Kes05, Sec-
tion 3-2] by a single bit cuts the number of necessary comparators (which is directly pro-
portional to the power consumption) in half, one remedy to reduce the power consumption
of ADCs operating at high speed is to reduce their precision to a few bits, e.g., one to
three bits. To minimize the impact on performance, such a scheme requires optimizing the
ADC levels: this has been studied for the AWGN channel by using mutual information as
a figure of merit [SDM09], and for the intersymbol-interference (ISI) channel with AWGN
by using the BER of the link [LSS10]. The properties of flat fading channels under single-
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bit output quantization are analyzed in [KF10]. Alternatively, several converters can be
operated in parallel on B branches with different relative delays to form a time-interleaved
ADC [VJ06]; in such a design, the timing constraints can be relaxed by providing a B-fold
increase in conversion time for the samples. The relative sampling phases of the component
converters of such a device are chosen to maximize mutual information in [SBC10].

In this chapter, we consider the ISI channel with AWGN under low-precision A/D conver-
sion and target the information rate of the channel as a cost criterion for the optimization
of the quantization step. Specifically, our contributions are as follows:

⊲ We show that at infinite SNR and for memoryless signaling using an alphabet of size
Λ, a uniform quantizer cannot achieve the information rate of log2(Λ) bits per channel
use for all channels with log2(Λ)-bit/sample output quantization. Our proof uses
the concept of information losslessness of finite-state machines [Huf54]. We further
provide a constructive proof that optimal log2(Λ)-bit/sample quantizers exist for all
channels. For BPSK modulation, we provide numerical results demonstrating that
uniform quantizers are frequently suboptimal when the channel coefficients exhibit
a Gaussian distribution.

⊲ We design scalar ADCs at finite SNRs by maximizing a lower bound on the informa-
tion rate under output quantization. This design framework is extended to vector
quantizers to better exploit the correlation in the received sequence. We also derive
an upper bound on the channel information rate, which is numerically optimized
over the quantizer.

⊲ We infer from our simulation results that 2-bit/sample optimized ADCs perform close
to the limit given by unquantized outputs. The numerical results also demonstrate
the advantage of optimized single-bit quantization over conventional methods, they
highlight the gain from vector quantization, and they are in accordance with our
theoretical results derived for high SNR. Finally, we provide an example of a channel
for which a simple slicer combined with a carefully optimized channel input with
memory fails to achieve a rate of one bit per channel use at high SNR, in contrast
to memoryless binary signaling and an optimized single-bit quantizer.

This chapter is organized as follows. In Section 5.1, we describe the system model.
The information losslessness of finite-state machines and quantization at infinite SNR is
studied in Section 5.2, while the design framework at finite SNRs and the upper bound
on the information rate are presented in Sections 5.3-5.5. Numerical results are shown in
Section 5.6, followed by a discussion in Section 5.7.

5.1. System model and achievable rates

Consider transmission over the discrete-time channel with ISI and AWGN, so that the
channel output at time k is
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Yk =
Lh∑

ℓ=1

hℓXk+1−ℓ +Nk, k = 1, 2, . . . , n, (5.1)

where the channel of length Lh has fixed real coefficients hℓ, h1 6= 0, and is normalized to
∑Lh

ℓ=1 h
2
ℓ = 1. For notational convenience, we form the vector h = [h1, h2, . . . , hL]T. Note

that the restriction to h1 6= 0 imposes no loss of generality since the channel model (5.1)
can be shifted in time such that the first channel coefficient is non-zero. The channel input
Xk ∈ X , |X | = Λ, is real, discrete, and of Markov order Mx, i.e.,

PXk|Xk−1(xk|xk−1) = PXk|Xk−1
k−Mx

(xk|xk−1
k−Mx

), k > Mx, (5.2)

and with M = max{Mx, Lh−1}, we define the state Sk of the channel (cf. [ALV+06, Section
II]) as Sk = f(Xk

k−M+1) ∈ S = {0, 1, . . . ,ΛM − 1}, where f : XM → S is a one-to-
one mapping. The additive noise Nk ∼ N (0, σ2) satisfies E[NkNk′ ] = σ2

1k=k′ , and with
σ2 = N0/2 and ‖h‖ = 1, the SNR is Es/N0 = E[X2

k ]/(2σ2).

At the receiver, the channel output Yk is quantized using an ADC that is fixed for the
entire transmission. Scalar quantization with J quantization regions is modeled using a
quantization function Q1 : R→ Z, where Z = {0, 1, . . . , J−1} is the finite set of quantiza-
tion indices, so that Zk = Q1(Yk), k = 1, 2, . . . , n, is the quantizer output. In Section 5.4,
we will also consider two-dimensional A/D conversion, where a two-dimensional quantizer
with J regions has the quantization function Q2 : R2 → Z, yielding Zk = Q2(Y2k, Y2k−1),
k = 1, 2, . . . , n/2, as the quantizer output, supposing without loss of essential generality
that n is even. The rate of a quantizer is defined as log2(J)/d bit/sample, where d, d = 1, 2,
is the quantizer’s dimension. Throughout, we assume that the channel is fixed for the en-
tire transmission, and that the receiver has perfect channel state information. We refer to
Chapter 6 for the problem of estimating an ISI channel under low-precision output quanti-
zation. In the sequel, a uniform quantizer is defined as a regular quantizer [GG92, Chapter
5] characterized by its step size δ. We optimize δ for the particular probability density
function of Yk [Say00, Chapter 8.4] for our comparisons in Section 5.6.

The information rate of the channel (5.1) is defined as

I(X;Y ) = lim
n→∞

1
n
I(Xn;Y n|S0) (5.3)

= lim
n→∞

1
n
I(Xn;Y n|S0 = s0), (5.4)

where the second equality holds since the ISI channel is indecomposable [DG08], so that
I(X;Y ) does not depend on the choice of the initial state s0 [Gal68, Theorem 4.6.4].
Although the closed-form computation of I(X;Y ) remains intractable for most cases of
practical interest, various upper and lower bounds on I(X;Y ) are available in the literature
[SK90,SOW91,SL96]. To numerically compute the information rate, (5.3) can be expanded
yielding

I(X;Y ) = lim
n→∞

1
n

[h(Y n|S0 = s0)− h(Y n|Xn, S0 = s0)] , (5.5)
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where h(Y n|Xn, S0 = s0) = h(Nn) = (n/2) log2(2πeσ
2) since the noise is AWGN; for a

fixed input alphabet and distribution, one can evaluate h(Y n|S0 = s0) efficiently with the
forward recursions of the BCJR-algorithm on the trellis of the channel [ALV+06]. The
definition of the information rate is readily extended to quantized channel outputs, with
Y n replaced by its quantized version, and the differential entropy replaced by entropy.
For a fixed channel, signal alphabet and distribution, and a fixed quantizer, the informa-
tion rate can likewise be computed numerically with the algorithm of [ALV+06]. Since
PZk|Xk

k−Lh+1
(zk|xk

k−Lh+1) needs to be fixed for that algorithm, it seems hard to optimize the

quantizer with the method of [ALV+06]; therefore, we will use a method related to the
information bottleneck iterative algorithm [TPB99] for that optimization in Section 5.3.

5.2. Scalar quantization in the limit of high SNR

In this section we study the behavior of I(X;Q1(Y )) in the limit of high SNR and i.i.d. sig-
naling, i.e., Mx = 0, and PXk|Xk−1(xk|xk−1) = PXk

(xk) = 1/Λ for all xk ∈ X . Fur-
ther, we restrict the transmit alphabet to be of the form X = {ξ0, ξ1, . . . , ξΛ−1} with
ξm − ξm−1 = ∆ > 0, m = 1, 2, . . . ,Λ − 1, and (1/Λ)

∑Λ−1
m=0 ξ

2
m = 1. The information rate

for the channel (5.1) with continuous outputs is at most log2(Λ) bit per channel use under
these assumptions. As we now show, an information rate of log2(Λ) bit per channel use can
be achieved with log2(Λ)-bit/sample quantization, at high SNR. The resulting quantizer,
however, is not necessarily given by a uniform quantizer. For our analysis, we utilize the
theory of information lossless finite-state machines as introduced by Huffman [Huf54], and
studied further in subsequent work by Even [Eve65].

Definition 5.1 (Finite-state machine representation of the ISI channel). The finite-state
machineMX (h) formed by i.i.d. signaling from a transmit alphabet X over the channel h is
a quintuple (S,X , Ỹ , ν, ϕ), where S, X , and Ỹ are the finite nonempty sets of states, inputs,
and outputs, respectively; we have |S| = ΛLh−1, |Ỹ| = Γ, and Ỹ = {γ0, γ1, . . . , γΓ−1}.
The function ν : S × X → S determines the next state from the current state and the
current input, i.e., st = ν(st−1, xt) = ν(f(xt−1

t−Lh+1), xt) = f(xt
t−Lh+2), and the function

ϕ : S × X → Ỹ specifies the output of the machine associated with the current state and
the current input, i.e., ỹt = ϕ(st−1, xt) = ϕ(f(xt−1

t−Lh+1), xt) =
∑Lh

ℓ=1 hℓxt+1−ℓ.

The machine MX (h) can be represented by a trellis section as shown in Figure 5.1 for
h = [2/3,−1/3, 2/3]T. In this example, we have X = {±1}, S = {0, 1, 2, 3}, |S| = 4, and
Ỹ = {−5/3,−1,−1/3, 1/3, 1, 5/3} with Γ = 6. Two states st−1 and st are connected by a
branch if st = ν(st−1, xt) for some xt ∈ X , and we label the branch with (ỹt, xt), i.e., the
output of the machine ỹt ∈ Ỹ when the input is xt. Since Λ branches originate from each
state, the total number of branches is ΛLh . Note that several branches can have the same
noise-free channel output, so that it is possible that Γ < ΛLh , as in our example.

Also note that

ϕ(i, ξm)− ϕ(i, ξm−1) = ∆h1 6= 0, for all i ∈ S, m = 1, 2, . . . ,Λ− 1, (5.6)
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Figure 5.1.: Trellis section for the channel h = [2/3,−1/3, 2/3]T with X = {±1}. The
corresponding xt

t−1 is also shown next to each state st.

since h1 6= 0 and ∆ > 0 by assumption, i.e., the outputs on different branches originating
from the same state are distinct.

Definition 5.2. A finite-state machine MX (h) is called information lossless [Huf54] if
there exists no integer N ≥ 0, no two (not necessarily different) states st−1 = i and
st+N = e and no two different input sequences xt+N

t and x̃t+N
t and output sequence ỹt+N

t ,
such that both xt+N

t and x̃t+N
t can lead from state st−1 = i to st+N = e, and both

yield ỹt+N
t . Likewise, a finite-state machine is called information lossless of finite order

µ [KJ09, Chapter 14.4] if the initial state st−1 = i and the output sequence ỹt+µ−1
t of length

µ uniquely determine the channel input xt, for all i ∈ S.

We remark that the trellis associated with an information lossless machine is called
observable [KS95].

Definition 5.3. The finite-state machineMX
Q1

(h) is obtained by concatenatingMX (h) =
(S,X , Ỹ , ν, ϕ) with a scalar quantizer Q1, so thatMX

Q1
(h) is given by the quintuple (S,X ,

Z, ν, ϕQ1). The function ϕQ1 : S ×X → Z specifies the output ofMX
Q1

(h) associated with
the current state and the current input, i.e., ϕQ1(st−1, xt) = Q1(ϕ(st−1, xt)).

We have the following theorem, which shows that an information rate of I(X;Q1(Y )) =
log2(Λ) at σ2 = 0 is closely related to MX

Q1
(h) being information lossless.

Theorem 5.1. Consider i.i.d. signaling with X over an ISI channel h with Lh coefficients,
σ2 = 0, and the use of a scalar quantizer with quantization function Q1 at the channel
output. We have I(X;Q1(Y )) = log2(Λ) if and only if MX

Q1
(h) is information lossless.

Proof. See Appendix D.1. �
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5.2.1. Optimal quantization with J = Λ regions at infinite SNR

For quantization with J = Λ regions at infinite SNR, we have the following theorem.

Theorem 5.2. Assume i.i.d. signaling using the alphabet X of size Λ, a noiseless channel
with σ2 = 0, and an impulse response h with h1 6= 0 and Lh < ∞. There exists a
scalar quantization function Q̃1 with J = Λ regions such that I(X; Q̃1(Y )) = log2(Λ).
Moreover, there exists at least one channel impulse response and alphabet X such that
I(X;Qu(Y )) < log2(Λ), where Qu(y) denotes the quantization function of the uniform
quantizer with J = Λ regions.

We conclude from Theorem 5.2 that for memoryless BPSK, i.e., X = {±1}, it suffices
to employ a single-bit quantizer to achieve an information rate of one bit per channel use
at infinite SNR.

Proof. The key idea is to show that there is a mapping Q̂ : Ỹ → {0, 1, . . . ,Λ− 1}, for all
channels, such the finite-state machine MX

Q̂
(h) is information lossless of order µ = 1, i.e.,

the input xt can be uniquely recovered from Q̂(yt) and knowledge of the previous state
st−1. To make MX

Q̂
(h) information lossless of order µ = 1, the mapping Q̂ needs to be

constructed such that, for any state i, the quantized noise-free outputs associated with
branches leaving state i are different, i.e.,

Q̂(ϕ(i, ξm)) 6= Q̂(ϕ(i, ξm′)), ∀i ∈ S, m,m′ ∈ {0, 1, . . . ,Λ− 1},m 6= m′. (5.7)

In principle, this should always be possible due to (5.6). However, one needs to proceed
with care in order to adhere to constraints possibly imposed if Γ < ΛLh . In this case,
there are noise-free outputs with multiplicity greater than one, i.e., there are ỹt = γk,
k = 0, 1, . . . ,Γ−1, that can be generated by more than one input sequence xt

t−Lh+1. These
constraints can be taken into account by processing the γk’s in ascending or descending
order, depending on the sign of h1, as done in the following.
Algorithm for constructing Q̂:

1. If h1 < 0, sort the elements of Ỹ in descending order, so that γk < γk−1, k =
1, 2, . . . ,Γ− 1; if h1 > 0, sort the elements of Ỹ in ascending order.

2. Set Q̂(γ0) = 0, and set k = 1.

3. If (γk−∆h1) ∈ Ỹ , then set Q̂(γk) = [Q̂(γk−∆h1) + 1]mod Λ; if (γk−∆h1) /∈ Ỹ , set
Q̂(γk) = Q̂(γk−1).

4. If k < Γ− 1, increment k and go to 3); if k = Γ− 1, return Q̂.

To see that the aforementioned constraints can be resolved by the proposed algorithm,
consider the third line of the algorithm. If (γk −∆h1) ∈ Ỹ , then Q̂(γk −∆h1) is already
defined due to the ordered processing of the γk’s, and by choosing Q̂(γk) = [Q̂(γk−∆h1)+1]
mod Λ, (5.7) is not violated by the current mapping Q̂. Alternatively, if (γk − ∆h1) /∈
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Ỹ , which means that there are no constraints due to the previously processed noise-free
outputs γ0, γ1, . . . , γk−1, the choice of Q̂(γk) is not restricted; choosing Q̂(γk) = Q̂(γk−1) is
advantageous since no decision boundary is needed between γk−1 and γk. Also note that
after execution of the algorithm, we have

Q̂(ϕ(i, ξm)) = [Q̂(ϕ(i, ξm−1)) + 1] mod Λ, ∀i ∈ S, ∀m ∈ {1, 2, . . . ,Λ− 1}, (5.8)

so that (5.7) is satisfied. As a consequence of (5.8), the input symbol xt can be uniquely
determined from Q̂(yt), given the channel state st−1. Since σ2 = 0, we have

I(Xt; Q̂(Yt)|St−1) = log2(Λ), t = 1, 2, . . . , n, (5.9)

andMX
Q̂

(h) is information lossless of order µ = 1; consequently,MX
Q̂

(h) is also information

lossless, and we can conclude that I(X; Q̂(Y )) = log2(Λ) based on Theorem 5.1. It remains
to construct a quantization function Q̃1 from the discrete mapping Q̂. Since the channel is
noiseless, Q̃1 can be constructed from Q̂ by introducing a decision threshold at (γk−1+γk)/2
if Q̂(γk−1) 6= Q̂(γk), k = 1, 2, . . . ,Γ− 1, so that we have I(X; Q̃1(Y )) = log2(Λ).

The proof of the second part of the theorem is relegated to Appendix D.2. �

Example 5.1. Note that Q̃1 corresponds to a quantizer whose quantization regions are
possibly discontiguous. To see this, consider the application of the preceding algorithm to
the design of a single-bit quantizer for X = {±1} and h = [2/3,−1/3, 2/3]T, yielding

Q̃1(y) =







0 if y ∈
{

(−∞,−2/3]
⋃

[2/3,∞)
}

1 if y ∈ (−2/3, 2/3).
(5.10)

For the same channel and signaling alphabet, the single-bit uniform quantizer Qu(y) is a
slicer, and for σ2 = 0, we numerically compute I(X;Qu(Y )) = 0.762 < log2(Λ) = 1.

5.2.2. Optimal 1-bit/sample quantization is often necessary for
i.i.d. BPSK

Next, we show that the above choice of h = [2/3,−1/3, 2/3]T is not an isolated example
that has rate loss at high SNR and i.i.d. BPSK signaling (X = {±1}) when a single-bit
uniform quantizer – given by a slicer Qs(y) , 1y≥0 for BPSK – is used at the receiver; in
fact, that rate loss turns out be a common effect. For the simulation, we randomly generate
real-valued impulse responses of lengths Lh ∈ {2, 3, 4, 5, 6, 7}, and investigate whether or
not the corresponding finite-state machines are information lossless. More precisely, we
generate the random vector H̃ ∼ N (0,1Lh

), and compute H = H̃/‖H̃‖. Then, given a
realization h of H , we take the state diagram ofMBPSK

Qs
(h) and construct its testing graph1

[Eve65], from which information losslessness can be readily verified [Eve65, Theorem 2]. If

1The definition of the testing graph of a finite-state machine is provided in the proof of Theorem 5.1 in
Appendix D.1, which also includes an example.
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the channel is information lossless, we can conclude that Υs(h) , I(X;Qs(Y )|H = h) = 1
based on Theorem 5.1; otherwise, we resort to the algorithm of [ALV+06] to numerically
compute Υs(h) < 1.

Figure 5.2 shows the simulated cumulative distribution functions (CDFs) FΥs(H)(υ) =
Pr[Υs(H) ≤ υ], so that for a particular Lh, the height of the jump of the CDF at υ = 1 is
equal to the fraction of channels of that length which are information lossless. Channels of
length Lh = 2 turn out to always be information lossless2 in our model, and we observe that
for channel length Lh = 3 only about 65 % of the channels have that property; additionally,
the CDF of the achievable channel rates is a step-function, suggesting that only distinct
information rates of approximately 0.76, 0.86, and 1 are achievable. With increasing length
of the channel, the CDF gradually becomes a smooth function. Note, however, that for
Lh = 5, only about 15 % percent of the channels are information lossless, which shows
the advantage of the proposed single-bit quantizers that render MBPSK

Q̃1
(h) information

lossless. In Section 5.6.4, we provide further numerical results suggesting that if h is such
that MBPSK

Qs
(h) is information lossy, that rate loss is hard to reduce, even if Λ and the

input memory are increased, and the distribution PXk|Xk−1
k−Mx

(xk|xk−1
k−Mx

) is optimized.

5.3. Design of scalar A/D converters

5.3.1. Problem formulation

In this section we are interested in computing

sup
Q1:R→Z

I(X;Q1(Y )) (5.11)

for a fixed signaling alphabet X , distribution, and channel. Suppose the input is i.i.d., i.e.,
Mx = 0 and PXk|Xk−1(xk|xk−1) = PXk

(xk). We first obtain a lower bound on I(X;Q1(Y )).

Lemma 5.3. Assume the channel has length Lh, let the channel input be i.i.d., and let
K ≥ 0 be an integer. Then we have

I(X;Q1(Y )) ≥ lim
n→∞

1
n

n∑

i=1

I(Xi;Z
i+K
i |X i−1

i−Lh+1). (5.12)

Proof. See Appendix D.3. �

Based on Lemma 5.3, we pose the problem of computing a mutual information preserving

2The only impulse response of length Lh = 2 we were able to find that is not information lossless with
a slicer has the form h1 = ±(1/

√
2), h2 = ±(1/

√
2), which, however, has zero probability in our

probabilistic channel model. The channel h = [1,−1]T/
√

2 is the normalized version of the Dicode
channel often encountered in magnetic recording [KP75].
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Figure 5.2.: The simulated CDF FΥs(H)(υ) = Pr[Υs(H) ≤ υ] of information rates for
various channel lengths.

quantizer with J regions as

I∗ = sup
Q1:R→Z

I(Xi;Z
i+K
i |X i−1

i−Lh+1) s.t. |Z| = J. (5.13)

The lower bound of Lemma 5.3 becomes increasingly tight with increasing K; we shall see
in Section 5.6 that choosing K on the order of Lh suffices in many cases.

5.3.2. Design algorithm

Problem (5.13) seems hard to solve since it is a functional optimization over the quantiza-
tion function Q1. We derive an algorithm to solve (5.13) approximately. First, the channel
output Yi ∈ R is discretized with high resolution, yielding a discrete approximation Ȳi ∈ Y ,
where Y is a finite set. With Z̄i = Q̄1(Ȳi), an approximation of (5.13) becomes

Ī∗ = max
Q̄1:Y→Z

I(Xi; Z̄
i+K
i |X i−1

i−Lh+1) s.t. |Z| = J. (5.14)
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Next, the mapping Q̄1 is written as the conditional probability mass function

q(z|y) =







1 if z = Q̄1(y)

0 otherwise,
(5.15)

so that the maximization (5.14) changes to

q∗(z|y) = argmax
q(z|y)

I(Xi; Z̄
i+K
i |X i−1

i−Lh+1) s.t. q(z|y) ∈ {0, 1},∀z ∈ Z,∀y ∈ Y
∑

z∈Z
q(z|y) = 1,∀y ∈ Y (5.16)

z ∈ {0, 1, . . . , J − 1}.

By definition, X i
i−Lh+1 ↔ Ȳ i+K

i ↔ Z̄i+K
i forms a Markov chain; therefore, we have

I(X i
i−Lh+1; Z̄

i+K
i |Ȳ i+K

i ) = I(X i−1
i−Lh+1; Z̄

i+K
i |Ȳ i+K

i ) = 0, (5.17)

so that

I(X i
i−Lh+1; Z̄

i+K
i ) = I(X i

i−Lh+1; Ȳ
i+K

i )− I(X i
i−Lh+1; Ȳ

i+K
i |Z̄i+K

i ) (5.18)

I(X i−1
i−Lh+1; Z̄

i+K
i ) = I(X i−1

i−Lh+1; Ȳ
i+K

i )− I(X i−1
i−Lh+1; Ȳ

i+K
i |Z̄i+K

i ). (5.19)

Consequently, we have

I(Xi; Z̄
i+K
i |X i−1

i−Lh+1) = I(X i
i−Lh+1; Z̄

i+K
i )− I(X i−1

i−Lh+1; Z̄
i+K
i ) (5.20)

= I(X i
i−Lh+1; Ȳ

i+K
i )− I(X i

i−Lh+1; Ȳ
i+K

i |Z̄i+K
i ) (5.21)

−I(X i−1
i−Lh+1; Ȳ

i+K
i ) + I(X i−1

i−Lh+1; Ȳ
i+K

i |Z̄i+K
i ), (5.22)

and since I(X i
i−Lh+1; Ȳ

i+K
i ) and I(X i−1

i−Lh+1; Ȳ
i+K

i ) are not subject to the optimization over
q(z|y), the maximization in (5.16) is equivalent to minimizing

I(X i
i−Lh+1; Ȳ

i+K
i |Z̄i+K

i )− I(X i−1
i−Lh+1; Ȳ

i+K
i |Z̄i+K

i ). (5.23)

Defining

rj
j′(xj

j′|yi+K
i ) = PXj

j′ |Ȳ i+K
i

(xj
j′|yi+K

i ) (5.24)

tjj′(xj
j′|zi+K

i ) = PXj

j′ |Z̄i+K
i

(xj
j′|zi+K

i ) (5.25)

and

d(yi+K
i , zi+K

i )

= DKL

(

ri
i−Lh+1(·|yi+K

i )||tii−Lh+1(·|zi+K
i )

)

−DKL

(

ri−1
i−Lh+1(·|yi+K

i )||ti−1
i−Lh+1(·|zi+K

i )
)

, (5.26)
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where DKL(·||·) denotes relative entropy, we obtain

I(X i
i−Lh+1; Ȳ

i+K
i |Z̄i+K

i )− I(X i−1
i−Lh+1; Ȳ

i+K
i |Z̄i+K

i )

=
∑

yi,zi

q(zi|yi)PȲi
(yi) ·

∑

yi+K ,...,yi+1
zi+K ,...,zi+1

PȲ i+K
i+1 |Ȳi

(yi+K
i+1 |yi)d(y

i+K
i , zi+K

i )
i+K∏

j=i+1

q(zj|yj). (5.27)

Based on (5.27) we use Algorithm 5.1 to compute a mapping q(z|y) that yields a large
mutual information I(Xi; Z̄

i+K
i |X i−1

i−Lh+1). Our algorithm can be viewed as a modification of
the information bottleneck algorithm [TPB99] accounting for the conditioning on X i−1

i−Lh+1

in (5.16) and the parameter K. However, since I(Xi; Z̄
i+K
i |X i−1

i−Lh+1) is non-convex in the
mapping q(z|y), the algorithm is repeatedly carried out with different initializations to
yield a satisfactory solution.

Algorithm 5.1 Design algorithm for scalar quantizers.

1: Notation: X = [Xi, . . . , Xi−Lh+1]T, X̃ = [Xi−1, . . . , Xi−Lh+1]T,
Ȳ = [Ȳi+K , . . . , Ȳi]T, Z̄ = [Z̄i+K , . . . , Z̄i]T

2: Input: PXȲ (x,y), J , K, ǫ > 0
3: Initialization: randomly choose a valid mapping q(old)(zi|yi), T ← 1,

r(x|y)←PXȲ (x,y)/PȲ (y), r̃(x̃|y)←
∑

xi

r(x|y)

4: loop

5: PZ̄|Ȳ (z|y)←
i+K∏

j=i

q(old)(zj|yj)

6: PZ̄(z)←
∑

y

PȲ (y)PZ̄|Ȳ (z|y)

7: t(x|z)←
(∑

y

PXȲ (x,y)PZ̄|Ȳ (z|y)
)

/PZ̄(z), t̃(x̃|z)←
∑

xi

t(x|z)

8: if T = 0 then
9: return q(old)

10: end if
11: D(y,z)← DKL(r(·|y)||t(·|z))−DKL(r̃(·|y)||t̃(·|z))

12: d(yi, zi)←
∑

yi+K ,...,yi+1
zi+K ,...,zi+1

PȲ i+K
i+1 |Ȳi

(yi+K
i+1 |yi)D(y,z)

i+K∏

j=i+1

q(old)(zj|yj)

13: find, for each yi, z∗(yi) = argminzi
d(yi, zi),

and set q(new)(zi|yi)← 1zi=z∗(yi)

14: if
∑

yi,zi

∣
∣
∣q(new)(zi|yi)− q(old)(zi|yi)

∣
∣
∣ /(J · |Y|) < ǫ then

15: T ← 0
16: end if
17: q(old)(zi|yi)← q(new)(zi|yi)
18: end loop



76 Chapter 5. A/D conversion for channels with memory

5.4. Design of two-dimensional A/D converters

Depending on the length Lh of the channel, the source {Yk} to be quantized at the receiver
may exhibit considerable correlation; that correlation, however, cannot be exploited by a
scalar quantizer [GN98, Section IV-E]. Therefore, we consider vector ADCs, and restrict
ourselves to two-dimensional quantization for the sake of simplicity. Again, we assume the
channel input to consist of i.i.d. symbols.

Analogous to the derivations in Section 5.3.1, the goal is to compute a two-dimensional
quantization function such that a lower bound on the achievable information rate is max-
imized. Along the lines of the proof of Lemma 5.3 we obtain

I(X;Q2(Y )) = lim
n→∞

1
n
I(Xn;Z

n
2 |S0) (5.28)

≥ lim
n→∞

1
n

n/2
∑

i=1

I(X2i
2i−1;Zi+K

i |X2i−2
2i−Lh

),

based on which we pose the quantizer design problem as

I∗ = sup
Q2:R2→Z

I(X2i
2i−1;Z

i+K
i |X2i−2

2i−Lh
) s.t. |Z| = J. (5.29)

We proceed as in Section 5.3 and discretize Yi with high resolution yielding Ȳi from the
finite set Y , and write Z̄i = Q̄2(Ȳ2i, Ȳ2i−1). Defining

q(z|y) =







1 if z = Q̄2(y)

0 otherwise,
(5.30)

for y ∈ (Y × Y), we arrive at the approximation of (5.29) as

q∗(z|y) = argmax
q(z|y)

I(X2i
2i−1; Z̄i+K

i |X2i−2
2i−Lh

) s.t. q(z|y) ∈ {0, 1},∀z ∈ Z,∀y ∈ (Y × Y)

∑

z∈Z
q(z|y) = 1,∀y ∈ (Y × Y) (5.31)

z ∈ {0, 1, . . . , J − 1},

which is solved with an appropriately modified version of the design algorithm for scalar
quantizers to incorporate the altered cost function and the two-dimensional nature of the
quantization mapping. We show the algorithm in Algorithm 5.2.

We remark that the best two-dimensional quantizer can perform no worse than the
optimal scalar quantizer while keeping the number of bits per sample constant. To see
this, let Q∗

1 be the optimizer of (5.13), and construct Q2 with J2 regions as the product
quantizer [Gra90, Section V-B] of Q∗

1, so that applying Q2 to (Y2k, Y2k−1) is equivalent to
two successive applications of Q∗

1 to the sequence Y 2k
2k−1.
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Algorithm 5.2 Design algorithm for two-dimensional quantizers.

1: Notation: X = [X2i, . . . , X2i−Lh
]T, X̃ = [X2i−2, . . . , X2i−Lh

]T,
Ȳ = [Ȳ2i+2K , . . . , Ȳ2i−1]T, Z̄ = [Z̄i+K , . . . , Z̄i]T, Ȳi = [Ȳ2i, Ȳ2i−1]T

2: Input: PXȲ (x,y), J , K, ǫ > 0
3: Initialization: randomly choose a valid mapping q(old)(zi|yi), T ← 1,

r(x|y)←PXȲ (x,y)/PȲ (y), r̃(x̃|y)←
∑

x2i,x2i−1

r(x|y)

4: loop

5: PZ̄|Ȳ (z|y)←
i+K∏

j=i

q(old)(zj|yj)

6: PZ̄(z)←
∑

y

PȲ (y)PZ̄|Ȳ (z|y)

7: t(x|z)←
(∑

y

PXȲ (x,y)PZ̄|Ȳ (z|y)
)

/PZ̄(z), t̃(x̃|z)←
∑

x2i,x2i−1

t(x|z)

8: if T = 0 then
9: return q(old)

10: end if
11: D(y,z)← DKL(r(·|y)||t(·|z))−DKL(r̃(·|y)||t̃(·|z))

12: d(yi, zi)←
∑

y2i+2K ,...,y2i+1
zi+K ,...,zi+1

PȲ 2i+2K
2i+1 |Ȳi

(y2i+2K
2i+1 |yi)D(y,z)

i+K∏

j=i+1

q(old)(zj|yj)

13: find, for each yi, z∗(yi) = argminzi
d(yi, zi),

and set q(new)(zi|yi)← 1zi=z∗(yi)

14: if
∑

yi,zi

∣
∣
∣q(new)(zi|yi)− q(old)(zi|yi)

∣
∣
∣ /(J · |Y|2) < ǫ then

15: T ← 0
16: end if
17: q(old)(zi|yi)← q(new)(zi|yi)
18: end loop

5.5. Upper bound on the information rate

To better assess the performance of the scalar quantizers designed in Section 5.3.2, we
derive an upper bound on the information rate for i.i.d. inputs.

Lemma 5.4. For i.i.d. channel inputs and a length-Lh channel, we have

sup
Q1:R→Z

I(X;Q1(Y )) ≤ sup
Q1:R→Z

I(Xi;Z
i+Lh−1
i |X i−1

i−Lh+1, X
i+Lh−1
i+1 ). (5.32)

Proof. See Appendix D.3. �

We compute an approximation to (5.32) by first discretizing Yi at high resolution and
writing Q1 as a conditional mass function q(z|y); then, we use an appropriately adapted
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version of Algorithm 5.1 to seek the mass function q(z|y) that minimizes

I(X i+Lh−1
i−Lh+1 ; Ȳ i+Lh−1

i |Z̄i+Lh−1
i )− I(X i−1

i−Lh+1, X
i+Lh−1
i+1 ; Ȳ i+Lh−1

i |Z̄i+Lh−1
i ), (5.33)

and therefore maximizes I(Xi; Z̄
i+Lh−1
i |X i−1

i−Lh+1, X
i+Lh−1
i+1 ). The only modifications to Al-

gorithm 5.1 are to define X = [Xi+Lh−1, . . . , Xi−Lh+1]T, X̃ = [Xi+Lh−1, . . . , Xi+1, Xi−1, . . . ,
Xi−Lh+1]T, Ȳ = [Ȳi+Lh−1, . . . , Ȳi]T, and Z̄ = [Z̄i+Lh−1, . . . , Z̄i]T. A tighter upper bound
on I(X;Q1(Y )) than the one in Lemma 5.4 can be derived by not conditioning on Xn

i+1

in (D.37) in Appendix D.3, but only a subset thereof; however, the subsequent optimiza-
tion over Q1 then becomes increasingly computationally complex, especially for large Lh

and |Y|.

5.6. Simulation results

5.6.1. Examples of quantizers

Consider BPSK modulation (X = {±1}) with i.i.d. symbols for the channel h = [2/3,
−1/3, 2/3]T. Table 5.1 shows the characteristics of scalar 1-bit/sample (J = 2) and 2-
bit/sample (J = 4) quantizers for various SNRs and different values of K. In addition
to the quantizer threshold(s), the table also shows the quantization indices correspond-
ing to each region and the achievable rate I(X;Q1(Y )). First consider the 1-bit/sample
quantizers, for which the algorithm produces a quantizer with a single threshold at zero at
Es/N0 = 0 dB, for K ∈ {0, 1, 2, 3}. This quantizer is the 1-bit LM and the UF quantizer.
In contrast, for Es/N0 = 10 dB and K ∈ {0, 1, 2, 3}, a splitting of the quantization regions
occurs, so that the resulting quantizer is not characterized by a single threshold. To com-
plete the discussion, consider the resulting quantizers at Es/N0 = 4 dB, where the result
of the optimization depends on K. Since the tightness of the lower bound for which the
quantizer is optimized increases with K, it is the quantizer computed with K ∈ {2, 3} that
outperforms the one designed for K ∈ {0, 1} at Es/N0 = 4 dB in terms of channel rate
I(X;Q1(Y )), cf. Section 5.6.2. We remark that the choice of h = [2/3,−1/3, 2/3]T is not
a construed example to show the splitting of the regions at high SNR; in fact, channels of
the form h′ = [1,−0.5, α]T/

√
1.25 + α2, 0.5 < α < 1.5, require discontiguous quantization

regions for J = 2 to achieve one bit per channel use at high SNR (choosing α = 1 gives
h′ = [2/3,−1/3, 2/3]T).

We observe a similar effect for the 2-bit/sample quantizers with characteristics in Ta-
ble 5.1: while the optimal quantization regions are contiguous at Es/N0 = 0 dB and discon-
tiguous at Es/N0 = 10 dB for K ∈ {0, 1, 2, 3}, the result depends on K at Es/N0 = 6 dB.

As a second set of examples, consider the 1-bit/sample (J = 4, K = 1) two-dimensional
quantizers shown in Figure 5.3, in which the quantization regions are color-coded. Similar
to the scalar case, we observe that the quantization regions are contiguous at low SNR,
whereas they are not for high SNR. Also observe that the decision boundaries of the
proposed quantizer are not hyperplanes in general, in contrast to the MSE-minimizing
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Table 5.1.: Scalar ADCs for h = [2/3,−1/3, 2/3]T.
J Es/N0 K Threshold(s) Region indices I(X;Q1(Y ))

2 0 dB ∈ {0, 1, 2, 3} 0 [0, 1] 0.375
2 4 dB ∈ {0, 1} [−0.923, 0.923] [0, 1, 0] 0.440
2 4 dB ∈ {2, 3} 0 [0, 1] 0.497
2 10 dB ∈ {0, 1, 2, 3} [−0.8, 0.8] [0, 1, 0] 0.758
4 0 dB ∈ {0, 1, 2, 3} [−1.03, 0, 1.03] [0, 1, 2, 3] 0.563
4 6 dB ∈ {0, 1} [−1.12,−0.364, 0.364, 1.12] [0, 1, 2, 3, 4, 0] 0.898
4 6 dB ∈ {2, 3} [−0.941, 0, 0.941] [0, 1, 2, 3] 0.913
4 10 dB ∈ {0, 1, 2, 3} [−1.03,−0.338, 0.338, 1.03] [0, 1, 2, 3, 0] 0.997
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Figure 5.3.: Two-dimensional 1-bit/sample (J = 4, K = 1) quantizers for h = [2/3,−1/3,
2/3]T. Left: Es/N0 = 1 dB, right: Es/N0 = 9 dB.

LM vector quantizer, whose decision boundaries are given by hyperplanes [GG92, Chapter
10.4].

5.6.2. Achievable rates

Figure 5.4 shows achievable information rates for the channel h = [2/3,−1/3, 2/3]T un-
der scalar and two-dimensional 1-bit/sample output quantization. Additionally, we plot
the rates for the continuous-output channel, and the upper bound from Section 5.5. Ob-
serve that the information rates achievable with the LM and UF quantizers saturate at
a maximum rate of approximately 0.76, while the quantizers designed with the proposed
framework eventually achieve a rate of one bit per channel use at high SNR. Furthermore,
the curves for scalar quantizers demonstrate the effect of increasing the parameter K;
choosing K = 4 resulted in no further gain in terms of rate.

For completeness, we also show information rates for h = [2/3,−1/3, 2/3]T and 2-
bit/sample quantization in Figure 5.5. Here, the performance difference between the pro-
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Figure 5.4.: Information rates for h = [2/3,−1/3, 2/3]T and i.i.d. BPSK signaling. All
quantizers have 1 bit/sample.

posed quantizers and the LM and UF quantizer is fairly small. More importantly, the
performance loss compared to the channel with unquantized outputs is at most about 0.1
bits per channel use in this example, suggesting that optimized 2-bit/sample quantization
can perform close to the limit given by the continuous-output channel.

5.6.3. Error rates

Frame error rates (FERs) obtained for h = [2/3,−1/3, 2/3]T, n = 10000, and i.i.d. BPSK
are shown in Figure 5.6. In agreement with the proof of Theorem 5.2 and Figure 5.4,
the FER of the single-bit LM and UF quantizer remains exactly one, even at very high
SNR. In contrast, the 1-bit/sample scalar (K = 3) and two-dimensional (K = 1) quan-
tizers designed for maximum information rate (MIR) have a loss of approximately 2 dB
compared to the 2-bit/sample LM and UF quantizer at an FER of 10−5, and the proposed
2-bit/sample scalar (K = 3) quantizer shows a loss of roughly 3.5 dB compared to the
continuous-output channel.

5.6.4. Optimization of input alphabet and distribution

In this section, we shift our attention to the choice of the channel input for a fixed quantizer
at the output. In particular, a natural question is whether there exists an alphabet X and
an input distribution (5.2) that gives an information rate of one bit per channel use at high
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quantizers have 2 bit/sample.
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Figure 5.6.: FERs for h = [2/3,−1/3, 2/3]T and i.i.d. BPSK signaling.
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Figure 5.7.: Information rates for h = [2/3,−1/3, 2/3]T. All quantizers have 1 bit/sample.

SNR for a simple slicer with a single threshold at zero, instead of the more complicated
design using Algorithm 5.1. The results of our numerical study for h = [2/3,−1/3, 2/3]T

are shown in Figure 5.7. Increasing the size of the input alphabet from BPSK to X =
{−1, 0, 1} and subsequent optimization of PXk

(xk) (i.i.d. signaling) subject to a power
constraint using the generalized BAA [VKAL08] gives a marginal gain at high SNR; further,
increasing the input memory for BPSK (i.e., the power constraint is met) to Mx = 4 and
optimizing PXk|Xk−1

k−Mx

(xk|xk−1
k−Mx

) (again using the generalized BAA) shows gains over the

entire SNR range. However, both schemes exhibit a saturation of the information rate
at high SNR, while i.i.d. BPSK signaling using the optimized quantizer clearly performs
better at considerably lower encoding and decoding complexity due to the memoryless
modulation and a small number of channel states. These numerical findings demonstrate
that in contrast to the AWGN channel without ISI under single-bit symmetric output
quantization, for which BPSK is optimal [SDM09, Theorem 2], high order modulation
schemes can provide a rate gain when the channel has memory.

5.7. Discussion

The information rate of ISI channels under output quantization was studied. For i.i.d. sig-
naling using a transmit alphabet of size Λ and log2(Λ)-bit/sample quantization, we lever-
aged the theory of information lossless finite-state machines to demonstrate that uniform
quantization is suboptimal, and gave a constructive proof that there exists an information-
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rate optimal log2(Λ)-bit/sample quantizer for all channels. We then provided a framework
for the design of scalar and two-dimensional quantizers (with low precision) at finite SNRs
to maximize the information rate over ISI channels, and derived an upper bound on the
rate for quantized channel outputs. The quantizer performance is evaluated in terms of
information rate as well as in terms of error rate for uncoded transmission. Further, a
specific example suggests that a simple slicer cannot achieve an information rate of one
bit per channel use at high SNR, even if one increases the memory or alphabet size of the
input.





6
Bayesian parameter estimation using
single-bit dithered quantization

In Chapter 5, ADCs are designed to maximize the information rate over channels with
ISI. However, that chapter and other work on the design of ADCs for receivers of commu-
nication systems (e.g., [SDM09, LSS10, SBC10]) assumes perfect CSI at the receiver, and
an important question is how to reliably estimate the channel under low-precision output
quantization. For such estimation problems, dithered quantizers turn out to be particu-
larly useful [PWO01]. For example, for a Gaussian prior on the channel coefficients, using
the linear minimum mean squared error (MMSE) estimate of the channel as a dither signal
is shown to work well in practice [DM10]. In this chapter, we also assume the channel to
be estimated to be random, i.e., in contrast to [PWO01] we consider a Bayesian parameter
estimation problem as in [DM10]. Specifically, our contributions are as follows.

⊲ For a single-bit adaptively dithered quantizer and a Gaussian prior1, we first derive
lower bounds on the MSE of the channel estimate for a finite number n of quantized
received symbols. While the first bound we derive appears to be almost tight for
large n, we also derive lower bounds on the MSE that are tighter for small n.

⊲ We show that the MSE that results from any dither strategy is asymptotically (in
the quantizer-output sequence length) at least 10 log10(π/2) ≈ 1.96 dB worse than
the MSE of the MMSE estimator based on unquantized observations.

1We remark that the algorithms we present can also be used for unknown parameters by assigning some
prior over the parameter space. However, several of our bounds are based on Gaussian priors and may
not apply more generally.



86 Chapter 6. Parameter estimation using single-bit quantization

⊲ Dither and estimation strategies are designed that closely approach the derived lower
bounds over a broad SNR range and that perform well for any number of observations.
Among these schemes, the best results are achieved by one that uses an approximated
MMSE estimate for estimation combined with an optimized dither signal minimizing
the expected error at the next time step, given the observations processed so far.

⊲ Through simulation, we compare our approach both with the derived lower bounds
on the MSE, and with other dither and estimation schemes proposed in the literature.

This chapter is organized as follows. In Section 6.1, we describe the system model.
Lower bounds on the MSE are derived in Sections 6.2 and 6.3. Dither strategies and
simulation results are presented in Section 6.4 and Section 6.5, respectively. Concluding
remarks appear in Section 6.6.

6.1. System model

Consider transmission over the discrete-time channel with ISI and AWGN, so that the
channel output at time t is given by

Yt =
Lh∑

ℓ=1

HℓXt+1−ℓ +Nt, t = 1, 2, . . . , (6.1)

where in contrast to Section 5.1, the channel of length Lh has independent random coef-
ficients Hℓ ∼ N (0, σ2

h). The channel input Xt ∈ X is real and discrete, and the additive
noise Nt ∼ N (0, σ2) satisfies E[NtNt′ ] = σ2

1t=t′ . If the length Lh of the channel is known
at the receiver, one may use a simple periodic training sequence with period Lh to de-
compose the channel estimation problem for the channel (6.1) into Lh parallel estimation
problems [DM10] for each Hℓ, ℓ = 1, 2, . . . , Lh. More precisely, let

Xt =







1 if (t− 1) mod Lh = 0

0 otherwise.
(6.2)

Then we have

Yt = H1+((t−1) mod Lh) +Nt, (6.3)

so that Yt only depends on H1+((t−1) mod Lh), and is independent of all other Hℓ, ℓ 6=
1+((t−1) mod Lh). Consequently, the problem of estimating Hℓ, ℓ = 1, 2, . . . , Lh, consists
of Lh independent parallel estimation problems, as illustrated in Figure 6.1. Therefore, we
only consider one of those Lh estimation problems in the sequel.

Suppose that the real-valued random parameter H is corrupted by AWGN, and the
receiver observes

Yi = H +Ni, (6.4)
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Figure 6.1.: The effect of using a bursty periodic training sequence on a channel of length
Lh = 3.
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Figure 6.2.: System model.

where H ∼ N (0, σ2
h), Ni ∼ N (0, σ2

n), and the sequence {Ni} is i.i.d. and independent of
H. The quantizer output Zi at time i is

Zi = Q(Yi −Di), (6.5)

where Di is a real-valued dither signal to be designed, and the quantization function
Q : R→ {0, 1} satisfies

Q(y) =







0 if y < 0

1 if y ≥ 0.
(6.6)

The SNR is defined as σ2
h/σ

2
n.

It remains to design the dither signal Di. We permit the receiver to use a strictly causal
and adaptive dither signal Di = τi(Zi−1), for some function τi : {0, 1}i−1 → R. The system
is depicted in Figure 6.2.

Let ĥ(Zn) denote an estimate of H based on the output sequence Zn of the quantizer.
Throughout this chapter, the estimation performance is quantified by the MSE between the
estimate and the random parameter H; for an estimate ĥ(Zn), the MSE is E[(H−ĥ(Zn))2].

We remark that the model in (6.4) and (6.5), and therefore all the results that follow,
apply to a much larger class of estimation problems than the channel estimation problem
for channels with temporal ISI. For instance, consider the 2× 2 Multiple-Input/Multiple-
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Figure 6.3.: The 2× 2 MIMO channel.

Output (MIMO) channel with spatial interference shown in Figure 6.3, where the indepen-
dent channel coefficients H1,1, H1,2, H2,1, and H2,2 shall be estimated using an adaptively
dithered single-bit quantizer. By choosing X1,t = 1 if t is odd and zero otherwise, and by
choosing X2,t = 1 if t is even and zero otherwise, the problem of estimating H1,1, H1,2,
H2,1, and H2,2 can be decomposed into four parallel estimation problems, each of the form
of (6.4) and (6.5).

6.2. Bayesian Cramér-Rao lower bounds

The celebrated Cramér-Rao lower bound (CRLB) [Cra46, Rao45], [VT68, p. 66] provides
a lower bound on the variance of any unbiased estimate of a nonrandom parameter, which
is not applicable in our setting due to the random nature of H. However, for the ran-
dom (Bayesian) parameter estimation problem, a similar bound on the MSE known as
the Bayesian Cramér-Rao lower bound (BCRLB) [VT68, p. 72] holds under some mild
regularity conditions. We state the BCRLB in the following theorem.

Theorem 6.1 (The BCRLB [VT68]). Let Θ be a random variable and Y ∈ R
k an obser-

vation vector, let pΘY be the joint density of Θ and Y , and let θ̂(Y ) be an estimator of
Θ. Suppose the following conditions hold:

1.
∂pΘY (θ,y)

∂θ
exists and is absolutely integrable with respect to θ and y.

2.
∂2pΘY (θ,y)

∂θ2
exists and is absolutely integrable with respect to θ and y.

3. The conditional expectation of the error, given Θ = θ, is

B(θ) =
∫

Rk

[

θ̂(y)− θ
]

pY |Θ(y|θ)dy. (6.7)

We have

lim
θ→∞

B(θ)pΘ(θ) = 0 (6.8)
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lim
θ→−∞

B(θ)pΘ(θ) = 0. (6.9)

Then the MSE of θ̂(Y ) satisfies the inequality

E
[

(Θ− θ̂(Y ))2
]

≥
{

−E

[

∂2 ln pΘY (Θ,Y )
∂Θ2

]}−1

. (6.10)

Theorem 6.1 holds for continuous observation vectors. We next state a version of the
BCRLB that holds for discrete observations, and therefore applies to the estimation prob-
lem considered in this chapter.

Theorem 6.2 (The BCRLB for discrete observations). Let Θ be a random variable and
Zn ∈ Zn an observation sequence, where Z is a finite set. Let pΘ(θ) be the density of Θ,
let PZn|Θ(zn|θ) denote the probability of zn given θ, and let θ̂(Zn) be an estimator of Θ.
Suppose the following conditions hold:

1. The conditional expectation of the error, given Θ = θ, is

B̄(θ) =
∑

zn

[

θ̂(zn)− θ
]

PZn|Θ(zn|θ). (6.11)

We have

lim
θ→∞

B̄(θ)pΘ(θ) = 0 (6.12)

lim
θ→−∞

B̄(θ)pΘ(θ) = 0. (6.13)

2. The first derivative of pΘ(θ) exists and satisfies

lim
θ→∞

∂pΘ(θ)
∂θ

= 0 (6.14)

lim
θ→−∞

∂pΘ(θ)
∂θ

= 0. (6.15)

Then the MSE of θ̂(zn) satisfies the inequality

E
[

(Θ− θ̂(Zn))2
]

≥





−E




∂2 ln

(

PZn|Θ(Zn|Θ)pΘ(Θ)
)

∂Θ2











−1

, (6.16)

assuming that the right-hand side of (6.16) exists.

The proof of Theorem 6.2 is a straightforward modification of the proof of Theorem 6.1
given in [VT68]. For the sake of completeness, we give the proof in Appendix E.1.
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6.3. Lower bounds on the MSE using single-bit
dithered quantization

In this section, performance bounds on the MSE for single-bit dithered quantizers are
derived.

6.3.1. The BCRLB for parameter estimation with quantized
observations

We apply Theorem 6.2 to the problem of estimating H in AWGN with a single-bit adap-
tively dithered quantizer, and obtain the following result.

Theorem 6.3. Suppose that |ĥ(zn)| <∞ for any zn. For any dither signal Di = τi(Zi−1),
i = 1, 2, . . . , n, the MSE of ĥ(Zn) is lower bounded by

E
[

(H − ĥ(Zn))2
]

≥ σ2
h

1 + n
2
π

σ2
h

σ2
n

. (6.17)

The proof of Theorem 6.3 is given in Appendix E.2. The corollary below relates the MSE
using adaptively dithered single-bit quantization to the MSE achievable with unquantized
observations. Let ĥMMSE(Y n) = E[H|Y n], i.e., ĥMMSE(Y n) is the MMSE estimate of H
based on Y n; the MSE of ĥMMSE(Y n) is given by [Poo94, Example IV.B.2]

E
[

(H − ĥMMSE(Y n))2
]

=
σ2

h

1 + n
σ2

h

σ2
n

. (6.18)

Corollary 6.4. Suppose that |ĥ(zn)| <∞ for any zn. The estimate ĥ(Zn) and any dither
signal Di = τi(Zi−1), i = 1, 2, . . . , n, satisfy

lim
n→∞

E
[

(H − ĥ(Zn))2
]

E
[

(H − ĥMMSE(Y n))2
] ≥ lim

n→∞

1 + n
σ2

h

σ2
n

1 + n 2
π

σ2
h

σ2
n

=
π

2
. (6.19)

Based on Corollary 6.4, any estimator using quantized observations asymptotically loses
at least 10 log10(π/2) ≈ 1.96 dB in MSE compared to the MMSE estimator employing
unquantized observations.

An asymptotic loss of π/2 for single-bit adaptively dithered quantization compared to
unquantized observations was also derived in [PWO01, Section III-C] for the case of es-
timating a bounded non-random parameter using an unbiased estimator. Note, however,
that the bound of [PWO01] does not apply in our setting due to the random nature of H
and since H is unbounded. Moreover, for Theorem 6.3 to hold, the estimate ĥ(Zn) need
not be unbiased.
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We remark that a factor of π/2 also arises as a multiplicative factor relating the low-SNR
capacity of the binary-input AWGN channel with single-bit symmetric output quantization
and with continuous output. The corresponding capacities are given by [VO79, (3.4.19)]

CAWGN ≈
Es

N0

, Es/N0 ≪ 1, (6.20)

for unquantized channel outputs, and by [VO79, (3.4.20)]

CQ ≈
2
π

Es

N0

, Es/N0 ≪ 1, (6.21)

for single-bit symmetric output quantization, where Es/N0 denotes the SNR. Hence, the
use of hard decisions obtained from a symmetric quantizer causes a power loss of roughly
2 dB at low SNR. Recently, it was shown that this power loss can be removed if asymmetric
signaling and asymmetric quantization is employed [KL11].

6.3.2. Tightening the BCRLB for short observations

The simulation results in Section 6.5 suggest that the BCRLB of Theorem 6.3 is almost
tight for large values of n, whereas it is loose for small n. We state an alternative version
of the BCRLB in the next theorem.

Theorem 6.5. Suppose that |ĥ(zn)| < ∞ for any zn. Then for any dither signal Di =
τi(Zi−1), i = 1, 2, . . . , n, the MSE of ĥ(Zn) is lower bounded by

E
[

(H − ĥ(Zn))2
]

≥







σ2
h −

2
πσ2

h

γ2(σ2
n, σ

2
h) if n = 1

σ2
h

1 +
σh

2πσ2
n

√
2π

(

γ̄(σ2
n, σ

2
h) + (2n − 2)¯̄γ(σ2

n)
) if n ≥ 2,

(6.22)

where

γ(σ2
n, σ

2
h) ,

∞∫

−∞
hQ

(

h

σn

)

e−h2/(2σ2
h

)dh (6.23)

γ̄(σ2
n, σ

2
h) ,

∞∫

−∞

e−h2/σ2
ne−h2/(2σ2

h
)

Q
(

h
σn

) [

1−Q
(

h
σn

)]dh, (6.24)

and

¯̄γ(σ2
n) ,

∞∫

−∞

e−h2/σ2
n

Q
(

h
σn

) [

1−Q
(

h
σn

)]dh. (6.25)
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The proof of Theorem 6.5 is given in Appendix E.3.
In order to evaluate the bound of Theorem 6.5, the integrals in (6.23), (6.24), and (6.25)

must be evaluated. Unfortunately, there appears to be no closed-form solution for these
integrals; we therefore resort to numerical integration techniques. The simulation results
in Section 6.5 show that especially at medium and high SNRs, Theorem 6.5 provides a
better lower bound on the MSE than Theorem 6.3 for small n, whereas it is loose for large
n because the bound decreases exponentially in n.

To avoid numerical integration, we can bound γ2(σ2
n, σ

2
h) and apply Lemma E.1 from

Appendix E.2 to the integrands of γ̄(σ2
n, σ

2
h) and ¯̄γ(σ2

n), respectively, leading to the following
Theorem.

Theorem 6.6. Suppose that |ĥ(zn)| < ∞ for any zn. Then for any dither signal Di =
τi(Zi−1), i = 1, 2, . . . , n, the MSE of ĥ(Zn) is lower bounded by

E
[

(H − ĥ(Zn))2
]

≥







(

1− 2
π

)

σ2
h +

2σ2
hσ

2
n

πσ2
n + 4σ2

h

if n = 1

σ2
h

1 +
2

√

2π(π − 2)σ2
n

σ2
h

+ π2 σ4
n

σ4
h

+ (2n − 2)

√
√
√
√

2

π(π − 2)σ2
n

σ2
h

if n ≥ 2.

(6.26)

A proof of Theorem 6.6 is given in Appendix E.4.
Plots in Section 6.5 show that the bound of Theorem 6.6 is only slightly worse than the

bound of Theorem 6.5.

6.4. Design of estimators and dither strategies

In this section, we design estimators and dither sequences di = τi(zi−1). We first summarize
the approach of [DM10], where both di and the estimator for H are chosen as the linear
MMSE estimate of H based on zi−1. Next, we derive two other dither and estimation
schemes that considerably outperform those of [DM10] at high SNR.

6.4.1. The linear MMSE estimate as estimator and dither signal

The linear MMSE estimator of H given zi−1 = [zi−1, zi−2, . . . , z1]T is

ĥlin(zi−1) = wT
i zi−1, (6.27)

where wi = R−1
i ri, with

Ri = E[Zi−1Z
T
i−1] (6.28)

ri = E[HZi−1]. (6.29)
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The strategy of [DM10] is to use ĥlin(zi−1) as the dither at time i, i.e., di = ĥlin(zi−1).
Since a closed-form solution is not available for Ri and ri due to the non-linearity of the
quantizer and the feedback of the dither signal, both Ri and ri are calculated by Monte-
Carlo simulations over the statistics of H and the noise [DM10], yielding an approximation
of ĥlin(zi−1).

Having received zn, the approximation of ĥlin(zn) is used as an estimator of H. The
linear MMSE scheme therefore consists of both estimation and dithering using ĥlin.

6.4.2. The MMSE estimate as estimator and dither signal

Given Ri and ri, the linear MMSE estimator ĥlin(zi−1) can be computed efficiently. How-
ever, for a fixed (non-adaptive) dither sequence, the (non-linear) MMSE estimator

ĥMMSE(zi−1) = E[H|Zi−1 = zi−1] =
∞∫

−∞
hpH|Zi−1(h|zi−1)dh (6.30)

is the optimal estimator of H, since we are using square-error cost in this chapter. Since
the overall system is non-linear and non-Gaussian due to the single-bit quantizer, it
is intuitive that ĥMMSE(zi−1) may considerably outperform the linear MMSE estimate
ĥlin(zi−1). The strategy of employing ĥMMSE(zi−1) as an estimator of H is combined with
also using ĥMMSE(zi−1) as the dither signal at the next time instance, i.e., by choosing
di = ĥMMSE(zi−1). We next discuss how to compute ĥMMSE(zi−1) efficiently.

The integration over

h · pH|Zi−1(h|zi−1) = h · PZi−1|H(zi−1|h)pH(h)
PZi−1(zi−1)

(6.31)

in (6.30) cannot be solved in closed form, since PZi−1|H(zi−1|h) is a product of (i−1) terms
involving the Q-function. But an approximation h̄MMSE(zi−1) of ĥMMSE(zi−1) can be com-
puted based on a recursively updated discrete approximation of pH|Zi−1(h|zi−1) combined
with interpolation. To that end, we form a discrete random variable H̄ by sampling from
the distribution of H. The variable H̄ takes on values in H(0) = {−∆,−∆(1− 2

B
),−∆(1−

2 2
B

),−∆(1 − 3 2
B

), . . . ,∆}, where |H(0)| = B, so that H̄ has probability mass function
PH̄(h), i.e.,

∑

h∈H(0) PH̄(h) = 1. The parameter ∆, ∆ > 0, is chosen such that Pr[−∆ ≤
H ≤ ∆] = 0.99995; since H ∼ N (0, σ2

h), we get ∆ =
√

2σherf−1(0.99995) ≈ 4.056σh.
Defining P (0)(h|z0) , PH̄(h), h ∈ H(0), we can recursively compute an approximation of
pH|Zi(h|zi) and of ĥMMSE(zi) by the following algorithm.

1. Update step: For h ∈ H(i−1), compute

P (i)(h, zi|zi−1) = P (i−1)(h|zi−1) ·






Q
(

h−di

σn

)

if zi = 0

1−Q
(

h−di

σn

)

if zi = 1.
(6.32)
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2. Interval expansion and interpolation step: Let p(i)
max = maxh∈H(i−1) P (i)(h, zi|zi−1),

suppose ǫ satisfies 0 < ǫ < 1, and let

h
(i)
min = argmin

h∈H(i−1)

P (i)(h, zi|zi−1) s.t. P (i)(h, zi|zi−1) > ǫp(i)
max (6.33)

h(i)
max = argmax

h∈H(i−1)

P (i)(h, zi|zi−1) s.t. P (i)(h, zi|zi−1) > ǫp(i)
max. (6.34)

Defining η(i) = (h(i)
max − h(i)

min)/B, the set H(i) of size B is given by

H(i) = {h(i)
min, h

(i)
min + η(i), h

(i)
min + 2η(i), . . . , h(i)

max}. (6.35)

Next, compute P̄ (i)(h, zi|zi−1), h ∈ H(i), from P (i)(h, zi|zi−1), h ∈ H(i−1) by inter-
polating P (i)(h, zi|zi−1) at the B points h ∈ H(i); then we obtain an approximation
P (i)(zi|zi−1) of the conditional probability PZi|Zi−1(zi|zi−1) through

P (i)(zi|zi−1) =
∑

h∈H(i)

P̄ (i)(h, zi|zi−1) (6.36)

and finally,

P (i)(h|zi) =
P̄ (i)(h, zi|zi−1)
P (i)(zi|zi−1)

, (6.37)

where the normalization with P (i)(zi|zi−1) ensures that
∑

h∈H(i) P (i)(h|zi) = 1.

3. The estimate of ĥMMSE(zi) is given by

h̄MMSE(zi) =
∑

h∈H(i)

hP (i)(h|zi). (6.38)

In a practical implementation (cf. Section 6.5), choosing B on the order of 100 and ǫ
around 10−5 yields excellent performance at reasonable computational complexity since
only a small number of samples describing pH|Zi(h|zi) needs to be updated at each time
step.

Note that for the (non-linear) MMSE scheme, both estimation and dithering are per-
formed using ĥMMSE.

6.4.3. The dither signal that minimizes the MSE

While the MMSE estimator ĥMMSE(zn) minimizes the MSE of estimating H for a fixed
dither sequence dn, it is not clear if employing di = ĥMMSE(zi−1) is an optimal dither
strategy. Instead of dithering using ĥMMSE(zi−1), the dither signal should be selected for
optimal MSE performance at time n, i.e., given zi−1, i ≤ n, the MSE-optimal dither
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sequence dn
opt,i is formally given by

dn
opt,i = argmin

dn
i

E
[

(H − ĥMMSE(Zn, dn
i ))2|Zi−1 = zi−1

]

, (6.39)

where we make the dependency of ĥMMSE(zn, dn
i ) on dn

i explicit. For complexity reasons,
we will not attempt to solve Problem (6.39) for n > i; instead, we solve (6.39) for n = i
only, i.e., the dither signal di is chosen based on zi−1 such that the MSE at the next
time instance, i.e., at time step i, is minimized. We refer to this dither as the “one-step
look-ahead” (OSLA) dither signal.

Suppose that Zi−1 = zi−1, so that the conditional distribution pH|Zi−1(h|zi−1) is fixed.
Then, the dither signal d∗

i is given by

d∗
i = argmin

di

E
[

(H − ĥMMSE(Zi, di))
2|Zi−1 = zi−1

]

. (6.40)

Given zi−1 and some di, we can view E
[

(H − ĥMMSE(Zi, di))2|Zi−1 = zi−1
]

as the MSE
of estimating the random parameter H with prior pH|Zi−1(h|zi−1) using the estimator
ĥMMSE(zi, di). Due to the properties of MMSE estimation [Poo94, Section IV.B], we have

E
[

(H − ĥMMSE(Zi, di))
2|Zi−1 = zi−1

]

= E
[

H2|Zi−1 = zi−1
]

− E
[

ĥ2
MMSE(Zi, di)|Zi−1 = zi−1

]

, (6.41)

Equation (6.41) can be readily verified using the orthogonality principle [Poo94, Proposi-
tion V.C.2]: since ĥMMSE(zi, di) is the conditional mean of H, we have

E
[

(H − ĥMMSE(Zi, di))ĥMMSE(Zi, di)|Zi−1 = zi−1
]

= 0. (6.42)

Rearranging the identity

E
[

H2|Zi−1 = zi−1
]

= E
[(

(H − ĥMMSE(Zi, di)) + ĥMMSE(Zi, di)
)2 ∣∣
∣Zi−1 = zi−1

]

(6.43)

= E
[

(H − ĥMMSE(Zi, di))
2|Zi−1 = zi−1

]

+ E
[

ĥ2
MMSE(Zi, di)|Zi−1 = zi−1

]

(6.44)

+ 2E
[

(H − ĥMMSE(Zi, di))ĥMMSE(Zi, di)|Zi−1 = zi−1
]

and using (6.42) yields (6.41). Consequently, since E [H2|Zi−1 = zi−1] is fixed for a given
zi−1, the minimization in (6.40) is equivalent to

d∗
i = argmax

di

E
[

ĥ2
MMSE(Zi, di)|Zi−1 = zi−1

]

. (6.45)

Problem (6.45) seems hard to solve since ĥMMSE(zi, di) cannot be found in closed form
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as a function of zi and di; we therefore work with a discrete approximation h̃MMSE(zi, di)
of ĥMMSE(zi, di), similar to Section 6.4.2. As before, let P (i−1)(h|zi−1), h ∈ H(i−1) be
the approximation of the conditional density pH|Zi−1(h|zi−1) obtained from the received
sequence zi−1. Based on P (i−1)(h|zi−1) and

P̃ (i)(zi|zi−1) =
∑

h∈H(i−1)

PZi|HZi−1(zi|h, zi−1)P (i−1)(h|zi−1), (6.46)

we can compute the estimate h̃MMSE(zi, di) (omitting the interval expansion and interpo-
lation step) of ĥMMSE(zi, di), given by

h̃MMSE(zi, di) =

∑

h∈H(i−1)

hPZi|HZi−1(zi|h, zi−1)P (i−1)(h|zi−1)

P̃ (i)(zi|zi−1)
, (6.47)

where the right-hand side depends on di through

PZi|HZi−1(zi|h, zi−1) = δ(zi)Q

(

h− di

σn

)

+ δ(zi − 1)

(

1−Q

(

h− di

σn

))

. (6.48)

Consequently, the cost function approximating the one in (6.45) is

V (di, z
i−1) ,

∑

zi

P̃ (i)(zi|zi−1)h̃2
MMSE(zi, di), (6.49)

and the approximate solution to Problem (6.45) is

d̃∗
i = argmax

di

V (di, z
i−1). (6.50)

In all the simulations that we performed, we observed that V (di, z
i−1) is a strictly quasi-

concave function [BSS06, Definition 3.5.5] of di, for any zi−1. However, we were unable to
formally verify this observation. Nevertheless, we solve Problem (6.50) with a gradient de-
scent algorithm [BV04, Chapter 9.3] combined with backtracking line search [BV04, Chap-
ter 9.2], observing excellent convergence behavior. For such a gradient descent method,
we need the first derivative of V (di, z

i−1) with respect to di, which is

∂V (di, z
i−1)

∂di

(6.51)

=
∑

zi

h̃MMSE(zi, di)

[

2P̃ (i)(zi|zi−1)
∂h̃MMSE(zi, di)

∂di

+ h̃MMSE(zi, di)
∂P̃ (i)(zi|zi−1)

∂di

]

.

Given

∂PZi|HZi−1(zi|h, zi−1)
∂di

=
1√

2πσn

e−(h−di)
2/(2σ2

n)(δ(zi)− δ(zi − 1)), (6.52)
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it is straightforward to compute

∂P̃ (i)(zi|zi−1)
∂di

=
∑

h∈H(i−1)

P (i−1)(h|zi−1)
∂PZi|HZi−1(zi|h, zi−1)

∂di

(6.53)

and

∂h̃MMSE(zi, di)
∂di

=
1

P̃ (i)(zi|zi−1)

∑

h∈H(i−1)

h
∂PZi|HZi−1(zi|h, zi−1)

∂di

P (i−1)(h|zi−1) (6.54)

− ∂P̃ (i)(zi|zi−1)
∂di

∑

h∈H(i−1)

hPZi|HZi−1(zi|h, zi−1)P (i−1)(h|zi−1)

[P̃ (i)(zi|zi−1)]2

=
1

P̃ (i)(zi|zi−1)

∑

h∈H(i−1)

h
∂PZi|HZi−1(zi|h, zi−1)

∂di

P (i−1)(h|zi−1) (6.55)

− ∂P̃ (i)(zi|zi−1)
∂di

h̃MMSE(zi, di)

P̃ (i)(zi|zi−1)
.

Inserting (6.53) and (6.55) into (6.51), we have

∂V (di, z
i−1)

∂di

=
∑

zi

h̃MMSE(zi, di)



2
∑

h∈H(i−1)

h
∂PZi|HZi−1(zi|h, zi−1)

∂di

P (i−1)(h|zi−1) (6.56)

− h̃MMSE(zi, di)
∂P̃ (i)(zi|zi−1)

∂di



.

The approximation h̄MMSE(zi−1) of ĥMMSE(zi−1) (cf. Section 6.4.2) is chosen as a starting
point for the gradient descent method solving Problem (6.50).

We remark that the OSLA scheme consists of dithering using the OSLA-optimal dither
given by (6.50), and of estimation using ĥMMSE.

6.4.4. The maximum likelihood estimate as estimator and dither
signal

Next, we consider the maximum likelihood (ML) estimate ĥML(zi−1) as an estimator and
dither signal, which is given by

ĥML(zi−1) = argmax
h∈R

PZi−1|H(zi−1|h) = argmax
h∈R

ln
(

PZi−1|H(zi−1|h)
)

, (6.57)

where the last equality holds since ln(x) is strictly increasing in x for x > 0. Note that
the prior on H is not required for computing the ML estimate. Since PZi−1|H(zi−1|h) is a
product of i− 1 terms involving the Q-function, ĥML(zi−1) cannot be computed in closed
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Figure 6.4.: A graph of ln(PZi−1|H(zi−1|h)) for z3 = {1, 0, 0} at an SNR of 40 dB. Numeri-
cal optimization yields ĥML(zi−1) = 1.01, however, for 0.5 ≤ h ≤ 1.5, we have2

|∂ ln(PZi−1|H(zi−1|h))/(∂h)| < 10−541.

form. However, the optimization problem defining ĥML(zi−1) can be efficiently solved
numerically, since PZi−1|H(zi−1|h) is log-concave in h (cf. [RG06a, Proposition 2]), for any
zi−1, i.e., ln(PZi−1|H(zi−1|h)) is concave.

Proposition 6.7. For any zi−1 ∈ {0, 1}i−1 and di−1 ∈ R
i−1, the function PZi−1|H(zi−1|h)

is log-concave in h.

Proof. See Appendix E.5. �

In order to compute ĥML(zi−1) numerically, we use the Newton method given in [BV04,
Chapter 9.5.2] combined with backtracking line search [BV04, Chapter 9.2]. For the New-
ton method, we need the first and second derivative of ln(PZi−1|H(zi−1|h)) as contained
in (E.37) and (E.38). At high SNR and short observations zi−1, however, the Newton
method performs poorly since the first derivative of ln(PZi−1|H(zi−1|h)) is extremely flat
in a rather wide interval around ĥML(zi−1). This is illustrated in Figure 6.4. There-
fore, at high SNR and for short observations, we first perform a bisection algorithm on
∂ ln(PZi−1|H(zi−1|h))/(∂h) to determine an interval [h1, h2] of width (h2−h1) ≤ 2·10−3 con-
taining ĥML(zi−1). Then (h2 − h1)/2 serves as a starting point for the subsequent Newton
method.

2Such small numbers can be computed using the GNU Multiple Precision Arithmetic Library, available
online: http://gmplib.org/
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We remark that the computation of ĥML(zi−1) can be simplified if zi−1 = {0, 0, . . . , 0}
or zi−1 = {1, 1, . . . , 1}. To see this, suppose that zi−1 = {0, 0, . . . , 0}, so that

ln
(

PZi−1|H(zi−1|h)
)

=
i−1∑

k=1

ln

(

Q

(

h− dk

σn

))

. (6.58)

Since we have

∂

∂x
ln (Q (x)) = − 1√

2π

e−x2/2

Q (x)
< 0, (6.59)

the function ln(PZi−1|H(zi−1|h)) is decreasing in h. Strictly speaking, we therefore have
ĥML(zi−1) = −∞ if zi−1 = {0, 0, . . . , 0}; however, we set ĥML(zi−1) = −∆ ≈ −4.056σh

(cf. Section 6.4.2) in that case. Likewise, if zi−1 = {1, 1, . . . , 1}, ln(PZi−1|H(zi−1|h)) is
increasing in h, and we set ĥML(zi−1) = ∆.

Note that ĥML is used for both estimation and dithering in the ML scheme.

6.4.5. The maximum a posteriori estimate as estimator and
dither signal

Finally, we also consider the maximum a posteriori (MAP) scheme, in which the MAP
estimate ĥMAP(zi−1) is employed as an estimator and dither signal. The MAP estimate is
given by

ĥMAP(zi−1) = argmax
h∈R

PZi−1|H(zi−1|h)pH(h) = argmax
h∈R

ln
(

PZi−1|H(zi−1|h)pH(h)
)

, (6.60)

which cannot be solved in closed-form due to the Q-function appearing in PZi−1|H(zi−1|h).
However, just like the optimization problem defining ĥML(zi−1), Problem (6.60) can be
solved numerically since PZi−1|H(zi−1|h)pH(h) has the following property.

Proposition 6.8. For any zi−1 ∈ {0, 1}i−1 and any di−1 ∈ R
i−1, PZi−1|H(zi−1|h)pH(h) is

log-concave in h.

Proof. By Proposition 6.7, the function PZi−1|H(zi−1|h) is log-concave. Moreover,

ln(pH(h)) = −1
2

ln(2πσh)− h2

2σ2
h

(6.61)

is concave, so that pH(h) is log-concave. Since the product of log-concave functions is
log-concave [BV04, Chapter 3.5.2], we have that PZi−1|H(zi−1|h)pH(h) is log-concave. �

In order to compute ĥMAP(zi−1) numerically, we again use a Newton method with back-
tracking line search.
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6.5. Simulation results

Simulation results for various SNRs are shown in Figures 6.5 to 6.9, where σ2
h = 1 without

loss of generality. In addition to the BCRLBs of Theorems 6.3, 6.5, and 6.6, we also show
the MSE of the MMSE estimator ĥMMSE(Y n) (cf. (6.18)) using unquantized observations
Y n. The performance of the dither and estimation schemes presented in Section 6.4 is
determined by means of simulation for the linear/non-linear MMSE, the OSLA, the ML,
and the MAP scheme.

At an SNR of 0 dB, the performance of all dither strategies except the ML scheme is
almost indistinguishable, and very close to the lower bound provided by the BCRLB. The
non-linear MMSE and OSLA schemes continue to perform close to the BCRLB for higher
SNRs, while the linear feedback strategy exhibits a considerable performance gap if the
SNR is 20 dB or higher. While the performance difference between the non-linear MMSE
and OSLA scheme is not large, it is most pronounced at very high SNR. Throughout the
SNR range, the ML scheme performs poorly for small n because ĥML(z1) = ±∆. For
longer observations, however, the ML scheme approaches the performance of the MMSE
scheme. The MAP scheme performs well for small SNR, whereas a considerable per-
formance degradation can be observed for SNRs larger than 10 dB. This performance
degradation is due to those realizations of H = h with magnitude large enough such
that |di| = |ĥMAP(zi−1)| < |h| for all i − 1 ≤ n. Suppose for example that the SNR
equals 40 dB and that H = 1.5; then, due to the small variance of the noise, we observe
z50 = {1, 1, . . . , 1}, and the sequence of ĥMAP(zi−1) is an increasing positive sequence with
ĥMAP(z1) ≈ 0.04 and ĥMAP(z50) ≈ 1.44 < 1.5, i.e., the dither sequence {di} is not such that
Zi = 0 with large enough probability. The effect is even stronger for realizations of H with
larger magnitude than 1.5. Since Pr[H ≥ 1.5] is sufficiently high if H ∼ N (0, 1), those
realizations of H contribute to the bad performance of the MAP scheme at sufficiently
high SNR.

6.6. Discussion

We studied the parameter estimation problem using a single-bit dithered quantizer. By
bounding the BCRLB for this problem, we derived lower bounds on the MSE that hold
for all dither strategies. We showed that the performance of single-bit dithered parameter
estimation cannot approach the performance of estimation using unquantized observations;
in particular, the estimator based on continuous observations outperforms the estimator
based on the quantized observations asymptotically by at least 1.96 dB. We also designed
dither sequences that are computed by strictly causal processing of the quantizer output
sequence. Through simulations, we showed that the derived bounds on the MSE can be
closely approached.
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Figure 6.5.: MSE for an SNR of 0 dB.
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Figure 6.7.: MSE for an SNR of 20 dB.
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7
Conclusions

We have studied the design of quantizers for two problems in communications: the orthog-
onal MARC with compression of the received sequences at the relay, and the point-to-point
link with ISI, additive noise, and A/D conversion at the receiver. Both systems share the
need for low-precision quantization, the MARC because in wireless systems, the relay–
destination link is not only of finite capacity, but possibly of very limited capacity, and
the quantized ISI channel after A/D conversion becomes both power-hungry and costly at
high precision with increasing communication speed.

For the MARC, we have restricted our study to orthogonal channels. In addition to
optimizing the compression rate at the relay for maximal sum-rate, we addressed the
problem of designing scalar and two-dimensional quantizers for a practical scheme with
low complexity. In this context, there are a number of interesting questions and open
problems:

⊲ For the sum-rate optimal rate allocation problem presented in Chapter 4, one can
also optimize the time-sharing variables αi and powers Pi and Pr, given fixed realiza-
tions of the channel coefficients. This brings into question whether or not the new
optimization problem is still convex in all of its variables.

⊲ As a further generalization of the CF or NNC strategies considered in Chapter 4, one
can address the problem of optimizing the quantization for a scheme in which CF
is combined with partial decode-and-forward [CEG79, Theorem 7]. How well does
amplify-and-forward perform?

For ISI channels with additive noise and i.i.d. inputs, we designed low-precision scalar
and two-dimensional ADCs that maximize the information rate. We also showed that
quantization with Λ regions suffices if the channel is noiseless and if the transmitter employs
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a signaling alphabet of size Λ. Since the design of such ADCs relies on sufficient CSI
at the receiver, we also addressed the problem of obtaining an estimate of the channel
coefficients using a single-bit adaptively dithered quantizer. In this line of work, the
following interesting questions are open:

⊲ The algorithm for the design of scalar ADCs assumes the channel to be fixed for
the entire transmission. An algorithm that updates the ADC thresholds adaptively
could be applied to account for such time-varying channels.

⊲ Since the boundaries of information-rate optimal two-dimensional ADCs are not
hyperplanes in general, it is not clear whether or not such an ADC can be efficiently
implemented in hardware.

⊲ Instead of using a fixed quantizer for the entire transmission, one can consider
dithered (single-bit) quantizers for ISI channels. What is the right algorithm to
adaptively design the dither signal?

⊲ By selecting the training sequence as a bursty periodic sequence, the channel estima-
tion problem for an ISI channel was shown to be decomposable into several parallel
independent sub-problems. But are there training sequences that do not yield such
a decomposition and yet still outperform the approach employed in this work of
estimating each channel coefficient independently? This question can be extended
to finding lower bounds on the MSE and to designing dither/estimation schemes
approaching the bounds for such a scheme.

⊲ In Chapter 6, the MSE decreases slowly (∼ 1/n) with the number n of quantized
observations. Can an algorithm with feedback to the transmitter speed up the esti-
mation process (cf. [WKN+11])?

⊲ One could also study whether or not a vector approach to estimating an ISI channel
offers any gains. For instance, again for a bursty periodic training sequence, the
task of estimating the real-valued coefficients H1 and H2 could be transformed into
estimation of the amplitude |H| and the phase arg(H) of the complex number H =
H1 + j H2.

⊲ Recently, the use of very large antenna arrays (massive MIMO) at base stations
of a cellular communication system has been studied as a means of carrying the
exponentially growing wireless data traffic [Mar10,HtBD11]. For a large number of
antennas, it might not be feasible to quantize the received signal at each antenna
element with more than a few bits per sample, so that both the ADC design problem
and the channel estimation problem under low-precision output quantization arise.



A
Proofs for Chapter 2

For 0 ≤ y ≤ I(X;Y ), define the function

G(y) , min
PZ|Y

I(Y ;Z) s.t. I(X;Z) = y. (A.1)

Let I∗ = I(R∗), for some 0 ≤ R∗ ≤ Rmax, and let P ∗
Z|Y be the corresponding optimizer,

i.e., the mutual information under the mapping PZ|Y = P ∗
Z|Y satisfies

IP ∗
Z|Y

(X;Z) = I∗ (A.2)

IP ∗
Z|Y

(Y ;Z) = R∗. (A.3)

Since there exists PZ|Y = P ∗
Z|Y such that (A.2) and (A.3) hold, we consequently have

G(I∗) = min
PZ|Y :I(X;Z)=I∗

I(Y ;Z) (A.4)

≤ R∗. (A.5)

Now consider G(I∗), and let P ′
Z|Y be the corresponding optimizer, i.e., the mutual infor-

mation under the mapping PZ|Y = P ′
Z|Y satisfies

IP ′
Z|Y

(X;Z) = I∗ (A.6)

IP ′
Z|Y

(Y ;Z) = G(I∗). (A.7)

Therefore, we have
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I(G(I∗)) = max
PZ|Y :I(Y ;Z)≤G(I∗)

I(X;Z) (A.8)

= max
PZ|Y :I(Y ;Z)=G(I∗)

I(X;Z) (A.9)

≥ I∗ (A.10)

= I(R∗). (A.11)

The fact that I(R) is a non-decreasing function implies

G(I∗) ≥ R∗. (A.12)

Combining (A.5) and (A.12) gives G(I∗) = R∗, so that G(y) is the inverse function of I(R)
for 0 ≤ R ≤ Rmax. Consequently, G(y) is convex and non-decreasing, so that we can relax
the equality constraint in (A.1) to I(X;Z) ≥ y. Therefore, writing

R(I) = min
PZ|Y

I(Y ;Z) s.t. I(X;Z) ≥ I, (A.13)

the function R(I) is the inverse function of I(R), for 0 ≤ R ≤ Rmax. �



B
Proofs for Chapter 3

B.1. Message passing rules

To derive the message passing rules given in (3.19) and (3.20), consider Figure 3.5. The
message passing rules for function nodes are applied in the following to compute

ℓ
(A)
1,m = ln

(

µA(x1,m = 0)
µA(x1,m = 1)

)

. (B.1)

Since

µA(x1,m) =
∑

x2

PZ|X1X2(zm|x1,m, x2)µE(x2), (B.2)

one obtains

ℓ
(A)
1,m (B.3)

= ln

(

PZ|X1X2(zm|x1,m =0,x′
2,m =0)µE(x′

2,m =0)+PZ|X1X2(zm|x1,m =0,x′
2,m =1)µE(x′

2,m =1)

PZ|X1X2(zm|x1,m =1,x′
2,m =0)µE(x′

2,m =0)+PZ|X1X2(zm|x1,m =1,x′
2,m =1)µE(x′

2,m =1)

)

= ln






1 +
PZ|X1X2

(zm|x1,m=0,x′
2,m=0)

PZ|X1X2
(zm|x1,m=0,x′

2,m=1)

µE(x′
2,m=0)

µE(x′
2,m=1)

PZ|X1X2
(zm|x1,m=1,x′

2,m=0)

PZ|X1X2
(zm|x1,m=0,x′

2,m=1)

µE(x′
2,m=0)

µE(x′
2,m=1)

+
PZ|X1X2

(zm|x1,m=1,x′
2,m=1)

PZ|X1X2
(zm|x1,m=0,x′

2,m=1)




 , (B.4)

which with the definitions in (3.16)-(3.18) yields (3.19). Along the same lines, one can also
verify (3.20).
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B.2. Proof of Proposition 3.2

The proof of Proposition 3.2 consists of two parts. First, observe that

I(X1, X2; q1(L)) = H(q1(L))−H(q1(L)|X1, X2) (B.5)

= H(q1(L))−H(q1(L)|X1, X2, X) (B.6)

≥ H(q1(L))−H(q1(L)|X) (B.7)

= I(X; q1(L)). (B.8)

where (B.6) holds since X = X1 ⊕X2 is a deterministic function of X1 and X2, and (B.7)
holds since conditioning does not increase entropy. Next, we show that (X1, X2)↔ X ↔ L
forms a Markov chain, i.e., that L is independent of (X1, X2) given X. To that end, define

g(λ1, λ2) , ln

(

1 + eλ1+λ2

eλ1 + eλ2

)

, λ1 ∈ R, λ2 ∈ R, (B.9)

and observe that g(−λ1,−λ2) = g(λ1, λ2). Using the independence of X1 and X2 and
the symmetry assumption on pLi|Xi

(ℓi|xi), and substituting λ′
i = −λi, we obtain for the

conditional CDF of L that

FL|X1X2(ℓ|0, 0) = Pr [L ≤ ℓ|X1 = 0, X2 = 0] (B.10)

=
∫∫

(λ1,λ2):g(λ1,λ2)≤ℓ

pL1L2|X1X2(λ1, λ2|0, 0)dλ1dλ2 (B.11)

=
∫∫

(λ1,λ2):g(λ1,λ2)≤ℓ

pL1L2|X1X2(−λ1,−λ2|1, 1)dλ1dλ2 (B.12)

=
∫∫

(λ′
1,λ′

2):g(λ′
1,λ′

2)≤ℓ

pL1L2|X1X2(λ′
1, λ

′
2|1, 1)dλ′

1dλ′
2 (B.13)

= FL|X1X2(ℓ|1, 1). (B.14)

Along the same lines, one can show that FL|X1,X2(ℓ|0, 1) = FL|X1,X2(ℓ|1, 0), so that L
is independent of (X1, X2) given X = X1 ⊕ X2. Since (X1, X2) ↔ X ↔ L forms a
Markov chain, also (X1, X2) ↔ X ↔ L ↔ q1(L) forms a Markov chain; consequently,
I(X; q1(L)) ≥ I(X1, X2; q1(L)) by the data processing inequality, which together with (B.8)
gives I(X; q1(L)) = I(X1, X2; q1(L)). For the second part of the proof, we write

I(Xi; q1(L)) = H(Xi)−H(Xi|q1(L)) (B.15)

≤ H(Xi)−H(Xi|X, q1(L)) (B.16)

= H(Xi)−H(Xi|X) (B.17)

= 0, (B.18)

which, together with the non-negativity of mutual information, gives I(Xi; q1(L)) = 0. �



C
Proofs for Chapter 4

C.1. Proof of Theorem 4.3

To avoid numerous indices i, we prove Theorem 4.3 for a very general setup. To that end,
let (X,Y,W ) be a triple of discrete random variables with fixed joint probability mass
function PXY W , and let X, Y , and W take on values in the finite sets X , Y , and W ,
respectively. Furthermore, we require that W ↔ X ↔ Y forms a Markov chain. Let
Z be a discrete random variable1 taking on values from the finite set Z, and define, for
0 ≤ s ≤ H(Y |W ), the function

J(s) , inf H(X|W,Z) (C.1)

subject to the constraints

H(Y |W,Z) = s,

Z and X are conditionally independent given Y.
(C.2)

The last constraint in the definition of J(s) is equivalent to requiring that X ↔ Y ↔ Z
forms a Markov chain. Note that the definition of J(s) is very similar to the one of F (s)
in [WW75], except for the conditioning2 on W in (C.1) and (C.2). Therefore, the proof of
Theorem 4.3 closely follows [WW75].

1We will later set W = Yd,i, X = Xi, Y = Yr,i, and Z = Ŷr,i, respectively, to recover the system model
of Section 4.3.

2Note that the labels for the random variables involved are chosen to be consistent with Chapter 2;
therefore, our notation differs from the one in [WW75].
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Figure C.1.: Random variables and their distributions.

In order to simplify the exposition, we use the following compact notation. Suppose that
|Y| = n, |X | = m, and |W| = ℓ. Denote the distribution PY by a vector q = [q1, q2, . . . , qn]T

in the probability simplex ∆n with qi = PY (i), let T be an m× n stochastic matrix with
[T ]i,j = PX|Y (i|j), and let S be an ℓ ×m stochastic matrix with [S]i,j = PW |X(i|j). Let
Z be a k-ary random variable, k > 0, with distribution v = [v1, v2, . . . , vk]T, v ∈ ∆k,
where vi = PZ(i), and let B be the n× k stochastic matrix having ba for its a-th column,
a = 1, 2, . . . , k, where ba ∈ ∆n. The situation is summarized in Figure C.1.

Now apply the following concatenation of three channels to Z, for any choice of v and
B. The first channel has transition matrix B, producing the random variable Y ′ with
marginal distribution

p = Bv =
k∑

a=1

vaba. (C.3)

The second channel has transition matrix T , producing the random variable X ′ with
marginal distribution Tp, and the third channel has transition matrix S, producing the
random variable W ′ with marginal distribution STp. Note that the Markov condition
from (C.2) is satisfied, and if p = q, then (Y ′, X ′,W ′) have the same joint distribution as
(Y,X,W ).

For any choice of v and the ba, we compute the distribution (C.3) and the quantities

χ
(T ,S)
1 (ba) ,

∑

w

PW ′|Z(w|a)H(Y ′|W ′ = w,Z = a) (C.4)

and

χ
(T ,S)
2 (ba) ,

∑

w

PW ′|Z(w|a)H(X ′|W ′ = w,Z = a), (C.5)

where χ
(T ,S)
1 : ∆n → R and χ

(T ,S)
2 : ∆n → R. We observe that for fixed T and S,

χ
(T ,S)
1 and χ

(T ,S)
2 are bounded from above, and we denote these upper bounds by χ

(T ,S)
1,max

and χ
(T ,S)
2,max. Using (C.4) and (C.5), the quantities needed in the definition of J(s) are
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compactly written as

ξ = H(Y ′|W ′, Z)

=
∑

w,z

PW ′Z(w, z)H(Y ′|W ′ = w,Z = z)

=
∑

z

PZ(z)
∑

w

PW ′|Z(w|z)H(Y ′|W ′ = w,Z = z)

=
k∑

a=1

vaχ
(T ,S)
1 (ba), (C.6)

and

η = H(X ′|W ′, Z)

=
∑

w,z

PW ′Z(w, z)H(X ′|W ′ = w,Z = z)

=
∑

z

PZ(z)
∑

w

PW ′|Z(w|z)H(X ′|W ′ = w,Z = z)

=
k∑

a=1

vaχ
(T ,S)
2 (ba). (C.7)

Those choices of Z satisfying (C.2) correspond to those choices of k, v, and the ba for
which (C.3), (C.6), and (C.7) yield p = q and ξ = s.

Next, for b ∈ ∆n, we are interested in the mapping

b→
(

b, χ
(T ,S)
1 (b), χ(T ,S)

2 (b)
)

. (C.8)

Since ∆n is the (n − 1) dimensional probability simplex, the product ∆n × [0, χ(T ,S)
1,max] ×

[0, χ(T ,S)
2,max] is an (n + 1)-dimensional convex polytope. The mapping (C.8) assigns a point

of this (n + 1)-dimensional polytope to every point b ∈ ∆n. Denote by S the set of all
such points (b, χ(T ,S)

1 (b), χ(T ,S)
2 (b)); hence, S is the image of ∆n under the mapping (C.8).

The set S is compact and connected, since it is the continuous image3 of the compact
connected set ∆n. Let C denote the convex hull of S; owing to the compactness of S, the
convex hull C is also compact. We have the following two lemmas.

Lemma C.1 ([WW75]). The set of all triples (p, ξ, η) determined by (C.3), (C.6), and
(C.7), for all integers k > 0, v ∈ ∆k, ba ∈ ∆n, a = 1, 2, . . . , k, is precisely C.
Lemma C.2 ([WW75]). Every point of C can be obtained by (C.3), (C.6), and (C.7) with
k ≤ n+ 1, that is, it suffices to consider random variables Z taking at most n+ 1 values.

The proof of both lemmas follows along the lines of the proof Lemmas 2.1 and 2.2
in [WW75]; the proof of Lemma C.2 is based on the strengthening of Carathéodory’s
Theorem [Wit80, Section III] for connected sets.

3Continuity of χ
(T ,S)
1 and χ

(T ,S)
2 follows from [Yeu02, Chapter 2.3].
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Figure C.2.: Illustration of the sets C̃ and C′.

Lemma C.3. Provided that 0 ≤ s ≤ H(Y |W ), the infimum in the definition of J(s) is a
minimum, and can be attained with Z taking at most n+ 1 values.

Proof. Let C̃ = {η|(q, s, η) ∈ C}, i.e., C̃ is obtained by intersecting C with the straight line
determined by the conditions p = q and ξ = s, and projecting the result of the intersection
onto the η-axis, as illustrated in Figure C.2. Since C is compact, so is the interval C̃;
therefore, one can replace the infimum in the definition of J(s) with a minimum, unless
the intersection is empty. For 0 ≤ s ≤ H(Y |W ), however, the intersection is never empty,
because

a) for k = 1, b1 = q gives p = q and ξ = H(Y |W ),

b) for k = n, v = q, B = In gives p = q and ξ = 0,

c) and due to the convexity of C, the set C contains points with p = q and ξ = s for all
0 ≤ s ≤ H(Y |W ).

Let η∗ = minη C̃. Thus, (q, s, η∗) ∈ C, and due to Lemma C.2, the minimum can be
attained with Z taking no more than n+ 1 values. �

Lemma C.4. The function J(s) is a convex function for 0 ≤ s ≤ H(Y |W ).

Proof. Consider the set C′ = {(ξ, η)|(q, ξ, η) ∈ C}, which is the projection on the (ξ, η)-
plane of the intersection of C with the two-dimensional plane determined by p = q. The
two-dimensional plane determined by p = q in (n+ 1) dimensions can represented by the
intersection of (n − 1) hyperplanes; thus, that two-dimensional plane is convex. Since C
is convex, its intersection with the convex two-dimensional plane determined by p = q

is also convex [BV04, Chapter 2.3.1], and as the projection of a convex set onto some of
its coordinates is convexity-preserving [BV04, Chapter 2.3.2], the set C′ is convex. The
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function J(s) is precisely the lower boundary of the plane convex set C′; due to the convexity
of C′, the convexity of J(s) follows. �

Lemma C.5. The function J(s) is monotonically non-decreasing in s. Therefore, the
constraints (C.2) can be replaced by

H(Y |W,Z) ≥ s,

Z and X are conditionally independent given Y.
(C.9)

Proof. By the chain rule for mutual information, we have

I(X;Y, Z|W ) = I(X;Z|W ) + I(X;Y |Z,W ) (C.10)

= I(X;Y |W ) + I(X;Z|Y,W ). (C.11)

Due to the Markov condition, I(X;Z|Y,W ) = 0, so that

I(X;Y |W ) = I(X;Z|W ) + I(X;Y |Z,W ) (C.12)

≥ I(X;Z|W ) (C.13)

because of the non-negativity of mutual information. Therefore, (C.13) implies

H(X|W,Z) ≥ H(X|W,Y ). (C.14)

Let W,X, Y, Z satisfy (C.2). Then, J(s) ≥ H(X|W,Y ) by (C.14). Also, if Z is chosen as
Z ≡ Y , then J(0) = H(X|W,Y ). Therefore, J(s) ≥ J(0) for all 0 ≤ s ≤ H(Y |W ), and
with the convexity of J(s), the monotonicity of J(s) and the lemma follows. �

Summarizing the above, we have for 0 ≤ s ≤ H(Y |W )

J(s) = min H(X|W,Z) s.t. H(Y |W,Z) ≥ s,

Z and X are conditionally independent given Y,
(C.15)

where J(s) is convex and monotonically non-decreasing in s, and the minimum in the
definition of J(s) can be achieved with Z taking at most n+ 1 values.

Next, define the function

J̄(r) = max
PZ|Y

I(X;Z|W ) s.t. I(Y ;Z|W ) ≤ r, (C.16)

for 0 ≤ r ≤ H(Y |W ), where the Markov condition is captured by maximizing over the
distribution PZ|Y only. Since J̄(r) can be recovered from J(s) by

J̄(r) = H(X|W )− J(H(Y |W )− r), (C.17)

the function J̄(r) is concave and monotonically non-decreasing in r, and the maximum in
the definition of J̄(r) can be achieved with Z taking no more than n+ 1 values.
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Finally, the connection with Theorem 4.3 is established by setting W = Yd,i, X = Xi,
Y = Yr,i, and Z = Ŷr,i, respectively; the properties of Ii(ri) follow from the properties of
J̄(r) defined in (C.16). �

C.2. Proof of Theorem 4.4

a) Let PŶr,i|Yr,i
be such that ri = I(Yr,i; Ŷr,i|Yd,i) = 0. By the data processing inequality,

we have

I(Xi; Ŷr,i|Yd,i) ≤ I(Yr,i; Ŷr,i|Yd,i) = 0. (C.18)

Combining (C.18) with the non-negativity of mutual information yields I(Xi; Ŷr,i|Yd,i) =
0, and therefore Ii(ri = 0) = 0. Next, suppose that PŶr,i|Yr,i

is such that Ŷr,i ≡ Yr,i;
consequently, we have

I(Xi; Ŷr,i|Yd,i) = I(Xi;Yr,i|Yd,i) (C.19)

I(Yr,i; Ŷr,i|Yd,i) = H(Yr,i|Yd,i), (C.20)

and we conclude that Ii(ri = H(Yr,i|Yd,i)) = I(Xi;Yr,i|Yd,i).

b) This follows from the concavity of Ii(ri) and Theorem 4.4a).

c) This follows since Ii(ri) is concave and non-decreasing for 0 ≤ ri ≤ ri,max. �

C.3. Proof of Proposition 4.6

To begin the proof, note that we have

M∑

i=1

αiI(Yr,i; Ŷr,i|Xi, Yd,i) (C.21)

=
M∑

i=1

αi

[

H(Ŷr,i|Xi, Yd,i)−H(Ŷr,i|Xi, Yd,i, Yr,i)
]

(C.22)

=
M∑

i=1

αi

[

H(Ŷr,i|Xi, Yd,i)−H(Ŷr,i|Yd,i, Yr,i)
]

(C.23)

=
M∑

i=1

αi

[

H(Ŷr,i|Xi, Yd,i)−H(Ŷr,i|Yd,i, Yr,i) +H(Ŷr,i|Yd,i)−H(Ŷr,i|Yd,i)
]

(C.24)

=
M∑

i=1

αi

[

I(Yr,i; Ŷr,i|Yd,i)− I(Xi; Ŷr,i|Yd,i)
]

. (C.25)
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With (C.25), the conditions in (4.62) and (4.63) become
∑

i∈I
Ri <

∑

i∈I
αiI(Xi; Ŷr,i, Yd,i) (C.26)

∑

i∈I
Ri <

∑

i∈I
αiI(Xi; Ŷr,i, Yd,i) +

∑

i∈Ic

αiI(Xi; Ŷr,i|Yd,i) (C.27)

+ ᾱI(Xr;Yd,r)−
M∑

i=1

αiI(Yr,i; Ŷr,i|Yd,i),

for all subsets I ⊆ {1, 2, . . . ,M}.
Let R be a rate vector satisfying (4.4) and (4.5) for some fixed distribution

∏M
i=1 PŶr,i|Yr,i

.
Since (4.5) holds, the right-hand side of (C.27) is not smaller than the right-hand side
of (C.26), for any I. Hence, the NNC rate bounds reduce to

∑

i∈I
Ri <

∑

i∈I
αiI(Xi; Ŷr,i, Yd,i), (C.28)

for all subsets I ⊆ {1, 2, . . . ,M}. But (C.28) holds since (4.4) is satisfied. We thus have
RCF ⊆ RNNC. �

C.4. Proof of Theorem 4.7

To prove the theorem, we show that at the optimal distribution
∏M

i=1 P
∗
Ŷr,i|Yr,i

maximizing

the total sum-rate
∑M

i=1 Ri we must have

M∑

i=1

αiI(Xi; Ŷr,i, Yd,i) =
M∑

i=1

αiI(Xi;Yd,i) + ᾱI(Xr;Yd,r)−
M∑

i=1

αiI(Yr,i; Ŷr,i|Xi, Yd,i). (C.29)

In order to show (C.29) at the optimal distribution, suppose that
∏M

i=1 PŶr,i|Yr,i
is the

optimum, and that we have

M∑

i=1

αiI(Xi; Ŷr,i, Yd,i) >
M∑

i=1

αiI(Xi;Yd,i) + ᾱI(Xr;Yd,r)−
M∑

i=1

αiI(Yr,i; Ŷr,i|Xi, Yd,i) (C.30)

at that optimum. Now, let Ŷ ′
r,i = Ŷr,i with probability 1 − ǫi, ǫi ∈ [0, 1], and let Ŷ ′

r,i = ∅
with probability ǫi. Consequently, Yr,i ↔ Ŷr,i ↔ Ŷ ′

r,i forms a Markov chain, so that we have

I(Xi; Ŷ
′

r,i, Yd,i) ≤ I(Xi; Ŷr,i, Yd,i) (C.31)

I(Yr,i; Ŷ
′

r,i|Xi, Yd,i) ≤ I(Yr,i; Ŷr,i|Xi, Yd,i) (C.32)

by the data processing inequality. Moreover, I(Xi; Ŷ ′
r,i, Yd,i) and I(Yr,i; Ŷ ′

r,i|Xi, Yd,i) are
decreasing in ǫi, so that the left-hand side of (C.30) is decreasing, and the right-hand side
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of (C.30) is increasing as the ǫi’s increase. Thus there are ǫ∗
i , i = 1, 2, . . . ,M , such that

M∑

i=1

αiI(Xi; Ŷ
′

r,i, Yd,i) =
M∑

i=1

αiI(Xi;Yd,i) + ᾱI(Xr;Yd,r)−
M∑

i=1

αiI(Yr,i; Ŷ
′

r,i|Xi, Yd,i), (C.33)

and the bound on the total sum-rate using
∏M

i=1 PŶ ′
r,i

|Yr,i
is larger than the bound on the

total sum-rate using
∏M

i=1 PŶr,i|Yr,i
, which implies (C.29). Moreover, (C.29) and (C.25)

imply that we have

ᾱI(Xr;Yd,r) =
M∑

i=1

αiI(Yr,i; Ŷr,i|Yd,i) (C.34)

at the optimal distribution maximizing the total sum-rate. Since (C.34) holds, the NNC
rate region of (C.26) and (C.27) is equivalent to

Ri < αiI(Xi; Ŷr,i, Yd,i), i = 1, 2, . . . ,M, (C.35)

at the sum-rate optimal distribution. �



D
Proofs for Chapter 5

D.1. Proof of Theorem 5.1

First assume that MX
Q1

(h) is an information lossless finite-state machine, and recall that
Sn = f(Xn

n−Lh+2). We have

I(X;Q1(Y ))= lim
n→∞

1
n
I(Xn;Zn|S0 = s0) (D.1)

= lim
n→∞

1
n

[I(Xn
n−Lh+2;Z

n|S0 = s0)
︸ ︷︷ ︸

≥0

+I(Xn−Lh+1;Zn|S0 = s0, Sn)] (D.2)

≥ lim
n→∞

1
n
I(Xn−Lh+1;Zn|S0 = s0, Sn) (D.3)

= lim
n→∞

1
n

∑

sn

PSn
(sn)

[

H(Xn−Lh+1|S0 =s0, Sn =sn) (D.4)

−H(Xn−Lh+1|Zn, S0 =s0, Sn =sn)
]

,

where PSn
(sn) = Λ1−Lh since i.i.d. signaling is assumed. Since MX

Q1
(h) is information

lossless, we have
H(Xn−Lh+1|Zn, S0 = s0, Sn = sn) = 0, ∀sn, (D.5)

so that

I(X;Q1(Y )) ≥ lim
n→∞

1
n

∑

sn

PSn
(sn)H(Xn−Lh+1|S0 =s0, Sn =sn) (D.6)
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= lim
n→∞

n− Lh + 1
n

log2(Λ) (D.7)

= log2(Λ). (D.8)

Combining (D.8) with

I(X;Q1(Y )) ≤ lim
n→∞

1
n
H(Xn) = log2(Λ) (D.9)

implies I(X;Q1(Y )) = log2(Λ) if MX
Q1

(h) is information lossless.
In order to prove the “only if” part of Theorem 5.1, we use properties of the testing

graph [Eve65] T (MX (h)) of the finite-state machine MX (h). The construction of the
testing graph relies on the notion of compatible states1 of MX (h).

Definition D.1 (Compatible states [Eve65]). Let MX (h) be a finite-state machine. An
unordered pair of states (i, j), i, j ∈ S, is said to be compatible if there exists a state k
such that there exists a branch leading from st−1 = k to st = i producing the output ỹt

and a branch leading from st−1 = k to st = j producing the same output ỹt. A pair of
states (i, j) is also called compatible if there exists a compatible pair of states (k, ℓ) such
that there exist branches leading from st−1 = k to st = i and from st−1 = ℓ to st = j, both
producing the same output ỹt.

Definition D.2 (Testing graph [Eve65]). The testing graph T (MX (h)) of a finite-state
machine MX (h) is a directed graph defined in the following way:

1. The nodes of T (MX (h)) correspond to compatible pairs of states of MX (h).

2. If there exists a branch leading from st−1 = k to st = i and a branch leading from
st−1 = ℓ to st = j producing the same output ỹt, and if (k, ℓ) is a compatible pair of
states, then T (MX (h)) has a directed arc leading from the node corresponding to
(k, ℓ) into the node corresponding to (i, j). That arc is labeled with ỹt.

Example D.1. Consider X = {±1}, h = [1,−1]T/
√

2, and Q1(y) = 1y≥0. The trellis
section for MX

Q1
(h) and the testing graph T (MX

Q1
(h)) are shown in Figure D.1.

Now suppose that MX
Q1

(h) is not information lossless. By [Eve65, Theorem 2], the
testing graph T (MX

Q1
(h)) must contain at least one pair (j, j), j ∈ S, that has the same

vertex repeated, since MX
Q1

(h) is assumed to be information lossy. Now suppose that
the first pair generated during the construction of T (MX

Q1
(h)) that has the same vertex

repeated is (e, e). Then, by definition, there is a finite positive integer N ′, (at least)
two different input sequences x̄t+N ′−1

t and ¯̄xt+N ′−1
t of length N ′, and states st−1 = i and

st+N ′−1 = e, yielding the same output of the machine z̃t+N ′−1
t . Further, since the state

st+N ′−1 = f(xt+N ′−1
t+N ′−Lh+1) is determined by the Lh − 1 previous inputs to the machine, we

must have N ′ ≥ Lh so that x̄t+N ′−1
t and ¯̄xt+N ′−1

t differ.

1Compatibility and the testing graph are defined in terms of the vertices of a general coding graph
in [Eve65]. We explicitly define both for finite-state machines here.
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0 0

1 1

{−1}

{+1}
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{+1}
st−1 st

(1, −1)

(1, +1)

(0, −1)

(1, +1)

(0,0)

(0,1)

(1,1)

0
1 1

1

1 1

1

T (MX
Q1

(h))

Figure D.1.: Trellis section for MX
Q1

(h), where h = [1,−1]T/
√

2, X = {±1}, and Q1(y) =
1y≥0. The testing graph T (MX

Q1
(h)) is also shown.

Example D.1 (continued). In T (MX
Q1

(h)), there exists a path of length 2 of the form
(0, 0) →1 (0, 1) →1 (1, 1). Therefore, there are two distinct input sequences x̄t+1

t =
{−1,+1} and ¯̄xt+1

t = {+1,+1} of length N ′ = 2 that lead from state st−1 = 0 via st = 0
or st = 1 to state st+1 = 1, and produce the same output z̃t+1

t = {1, 1}.

Next, assume that S0 is uniformly distributed, and that n = aN ′ is an integer multiple
of N ′, so that

I(Xn;Zn|S0) = H(Xn|S0)−
a∑

i=1

H(XN ′i
N ′(i−1)+1|Zn, XN ′(i−1), S0) (D.10)

= H(Xn|S0)−
a∑

i=1

H(XN ′i
N ′(i−1)+1|Zn

N ′(i−1)+1, SN ′(i−1)) (D.11)

≤ H(Xn|S0)−
a∑

i=1

H(XN ′i
N ′(i−1)+1|Zn

N ′(i−1)+1, SN ′(i−1), X
n
N ′i−Lh+2) (D.12)

= H(Xn|S0)−
a∑

i=1

H(XN ′i
N ′(i−1)+1|ZN ′i

N ′(i−1)+1, SN ′(i−1), X
N ′i
N ′i−Lh+2) (D.13)

= H(Xn|S0)−
a∑

i=1

H(XN ′i−Lh+1
N ′(i−1)+1 |ZN ′i

N ′(i−1)+1, SN ′(i−1), SN ′i) (D.14)

= n log2(Λ)− aH(XN ′−Lh+1|ZN ′

, S0, SN ′), (D.15)

where (D.12) follows because conditioning does not increase entropy, (D.13) follows since
Zn

N ′i+1 and Xn
N ′i+1 are independent of XN ′i

N ′(i−1)+1 given XN ′i
N ′i−Lh+2, and (D.15) follows from

stationarity. Expanding the conditional entropy yields

H(XN ′−Lh+1|ZN ′

, S0, SN ′)

=
∑

zN′
,s0,sN′

PZN′
S0SN′

(zN ′

, s0, sN ′)H(XN ′−Lh+1|ZN ′

= zN ′

, S0 = s0, SN ′ = sN ′). (D.16)
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Since there are at least two different input sequences x̄N ′
and ¯̄xN ′

, and states s0 = i
and sN ′ = e, yielding the same output of the machine z̃N ′

, we have H(XN ′−Lh+1|ZN ′
=

z̃N ′
, S0 = i, SN ′ = e) > 0 and PZN′

S0SN′
(z̃N ′

, i, e) > 0. Consequently, we have

H(XN ′−Lh+1|ZN ′

, S0, SN ′) > 0, (D.17)

which implies

I(X;Q1(Y )) ≤ lim
n→∞

1
n

[n log2(Λ)− aH(XN ′−Lh+1|ZN ′

, S0, SN ′)] (D.18)

= log2(Λ)− 1
N ′H(XN ′−Lh+1|ZN ′

, S0, SN ′) (D.19)

< log2(Λ). (D.20)

�

Example D.1 (continued). For s0 = 0, s2 = 1, and z̃2 = {1, 1}, we have H(X1|Z2 =
z̃2, S0 = 0, S2 = 1) = 1, and

Pr[Z2 = z̃2, S0 = 0, S2 = 1]

= Pr[S0 = 0] Pr[Z1 = 1|S0 = 0] Pr[S2 = 1, Z2 = 1|S0 = 0, Z1 = 1]

= Pr[S0 = 0]
︸ ︷︷ ︸

=1/2

Pr[Z1 = 1|S0 = 0]
︸ ︷︷ ︸

=1

Pr[X2 = 1, Z2 = 1|S0 = 0, Z1 = 1]
︸ ︷︷ ︸

=1/2

= 1/4. (D.21)

Therefore, H(X1|Z2, S0, S2) ≥ 1/4, and by (D.19), the information rate is upper bounded
by

I(X;Q1(Y )) ≤ log2(Λ)− 1
N ′H(X1|Z2, S0, S2) (D.22)

≤ 1− 1
2
· 1

4
(D.23)

=
7
8
. (D.24)

D.2. Proof of Theorem 5.2

To prove the second part of Theorem 5.2, it suffices to provide an example of X and
h, and show that I(X;Qu(Y )) < log2(Λ) for that particular example. Consider Λ = 2,
X = {±1}, and h = [2/3,−1/3, 2/3]T, and recall that the set of noise-free channel outputs
is Ỹ = {−5/3,−1, −1/3, 1/3, 1, 5/3} for that channel. Therefore, the single-bit uniform
quantizer for that channel is a slicer with quantization function Qu(y) = 1y≥0. Writing
Zu,t = Qu(Yt), it is tedious but straightforward to compute the conditional entropy for
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σ2 = 0, namely

H
(

Xk

∣
∣
∣Zk+2

u,k , Sk−1, X
k+2
k+1

)

= 1/8, k = 1, 2, . . . , n− 2, (D.25)

which implies

H
(

Xn−1

∣
∣
∣Zn

u,n−1, Sn−2, Xn

)

≥ 1/8 (D.26)

H
(

Xn

∣
∣
∣Zu,n, Sn−1

)

≥ 1/8, (D.27)

since conditioning does not increase entropy. We then have the following upper bound on
the rate:

I(X;Qu(Y )) = lim
n→∞

1
n

[H(Xn|S0)−H(Xn|Zn
u , S0)] (D.28)

= lim
n→∞

1
n

[
n∑

i=1

H(Xi)−H (Xi |Zn
u , Si−1 )

]

(D.29)

= 1− lim
n→∞

1
n

n∑

i=1

H
(

Xi

∣
∣
∣Zn

u,i, Si−1

)

(D.30)

≤ 1− lim
n→∞

1
n

n∑

i=1

H
(

Xi

∣
∣
∣Zn

u,i, Si−1, X
n
i+1

)

(D.31)

≤ 7/8 (D.32)

< log2(Λ), (D.33)

where

⊲ (D.30) follows since Xi is independent of Zi−1
u , given Si−1,

⊲ (D.31) follows since conditioning does not increase entropy,

⊲ and (D.32) follows from (D.25)-(D.27). �

D.3. Proof of Lemmas 5.3 and 5.4

Since the channel input is assumed i.i.d., we have

I(X;Q1(Y )) = lim
n→∞

1
n

n∑

i=1

H(Xi)−H(Xi|Zn
i , X

i−1
i−Lh+1). (D.34)

Hence, for Lemma 5.3, we obtain

lim
n→∞

1
n

n∑

i=1

H(Xi)−H(Xi|Zn
i , X

i−1
i−Lh+1) ≥ lim

n→∞
1
n

n∑

i=1

H(Xi)−H(Xi|Zi+K
i , X i−1

i−Lh+1) (D.35)

= lim
n→∞

1
n

n∑

i=1

I(Xi;Z
i+K
i |X i−1

i−Lh+1), (D.36)
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where the inequality holds for all K ≥ 0 since conditioning does not increase entropy. To
prove Lemma 5.4, note that

lim
n→∞

1
n

n∑

i=1

H(Xi)−H(Xi|Zn
i , X

i−1
i−Lh+1)

≤ lim
n→∞

1
n

n∑

i=1

H(Xi)−H(Xi|Zn
i , X

i−1
i−Lh+1, X

n
i+1) (D.37)

= lim
n→∞

1
n

n∑

i=1

H(Xi)−H(Xi|Zi+Lh−1
i , X i−1

i−Lh+1, X
i+Lh−1
i+1 ) (D.38)

= I(Xi;Z
i+Lh−1
i |X i−1

i−Lh+1, X
i+Lh−1
i+1 ), (D.39)

where the inequality follows since conditioning does not increase entropy, and the last
equality follows from stationarity. The latter bound is reminiscent of the bound employed
in the proof of the matched filter bound [SOW91, Theorem 2], which holds for the ISI
channel with i.i.d. signaling and continuous output. �



E
Proofs for Chapter 6

E.1. Proof of Theorem 6.2

Multiplying both sides of (6.11) with pΘ(θ) and differentiating gives

∂ pΘ(θ)B̄(θ)
∂θ

= −
∑

zn

PZn|Θ(zn|θ)pΘ(θ) +
∑

zn

[

θ̂(zn)− θ
] ∂ PZn|Θ(zn|θ)pΘ(θ)

∂θ
. (E.1)

Integrating both sides with respect to θ yields

pΘ(θ)B̄(θ)
∣
∣
∣
∣

∞

−∞
= −

∞∫

−∞

∑

zn

PZn|Θ(zn|θ)pΘ(θ)dθ +
∞∫

−∞

∑

zn

[

θ̂(zn)− θ
] ∂ PZn|Θ(zn|θ)pΘ(θ)

∂θ
dθ

= −1 +
∞∫

−∞

∑

zn

[

θ̂(zn)− θ
] ∂ PZn|Θ(zn|θ)pΘ(θ)

∂θ
dθ, (E.2)

and the assumptions in (6.12) and (6.13) ensure that

pΘ(θ)B̄(θ)
∣
∣
∣
∣

∞

−∞
= 0, (E.3)

so that we have

∑

zn

∞∫

−∞

[

θ̂(zn)− θ
] ∂ PZn|Θ(zn|θ)pΘ(θ)

∂θ
dθ = 1. (E.4)
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Next, observe that

∂ PZn|Θ(zn|θ)pΘ(θ)
∂θ

=
∂ ln

(

PZn|Θ(zn|θ)pΘ(θ)
)

∂θ
PZn|Θ(zn|θ)pΘ(θ). (E.5)

Substituting (E.5) into (E.4) and rewriting, we have

∑

zn

∞∫

−∞

[

∂ ln(PZn|Θ(zn|θ)pΘ(θ))
∂θ

√

PZn|Θ(zn|θ)pΘ(θ)

][ [

θ̂(zn)− θ
]√

PZn|Θ(zn|θ)pΘ(θ)
]

dθ = 1,

and, by applying the Schwarz inequality to the integral in the summation, we have

1 ≤
∑

zn











∞∫

−∞

[

∂ ln(PZn|Θ(zn|θ)pΘ(θ))
∂θ

]2

PZn|Θ(zn|θ)pΘ(θ)dθ





1
2

×




∞∫

−∞

[

θ̂(zn)− θ
]2
PZn|Θ(zn|θ)pΘ(θ)dθ





1
2





. (E.6)

Next, apply the Cauchy inequality to the summation in (E.6) to obtain

1 ≤



∑

zn

∞∫

−∞

[

∂ ln(PZn|Θ(zn|θ)pΘ(θ))
∂θ

]2

PZn|Θ(zn|θ)pΘ(θ)dθ





1
2

×



∑

zn

∞∫

−∞

[

θ̂(zn)− θ
]2
PZn|Θ(zn|θ)pΘ(θ)dθ





1
2

, (E.7)

or, equivalently,

1 ≤
∑

zn

∞∫

−∞

[

∂ ln(PZn|Θ(zn|θ)pΘ(θ))
∂θ

]2

PZn|Θ(zn|θ)pΘ(θ)dθ

×
∑

zn

∞∫

−∞

[

θ̂(zn)− θ
]2
PZn|Θ(zn|θ)pΘ(θ)dθ (E.8)

= E









∂ ln

(

PZn|Θ(Zn|Θ)pΘ(Θ)
)

∂Θ





2



 · E

[(

Θ− θ̂(Zn)
)2
]

. (E.9)

Rearranging of the above inequality yields the BCRLB in terms of the square of the first
derivative of ln

(

PZn|Θ(zn|θ)pΘ(θ)
)

. To derive the BCRLB in terms of the second derivative
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of ln
(

PZn|Θ(zn|θ)pΘ(θ)
)

, note that

∑

zn

PZn|Θ(zn|θ)pΘ(θ) = pΘ(θ). (E.10)

Next, differentiation of (E.10) twice on both sides with respect to θ yields

∑

zn

∂

∂θ

[

∂ PZn|Θ(zn|θ)pΘ(θ)
∂θ

]

=
∂2pΘ(θ)
∂θ2

. (E.11)

Now, substitution of (E.5) into the left-hand side of (E.11) yields

∑

zn

∂

∂θ

[

∂ PZn|Θ(zn|θ)pΘ(θ)
∂θ

]

=
∑

zn

∂

∂θ




∂ ln

(

PZn|Θ(zn|θ)pΘ(θ)
)

∂θ
PZn|Θ(zn|θ)pΘ(θ)



 (E.12)

=
∑

zn






∂2 ln
(

PZn|Θ(zn|θ)pΘ(θ)
)

∂θ2
+




∂ ln

(

PZn|Θ(zn|θ)pΘ(θ)
)

∂θ





2



PZn|Θ(zn|θ)pΘ(θ)

=
∂2pΘ(θ)
∂θ2

, (E.13)

and by integrating with respect to θ, we have

∑

zn

∞∫

−∞




∂2 ln(PZn|Θ(zn|θ)pΘ(θ))

∂θ2
+

(

∂ ln(PZn|Θ(zn|θ)pΘ(θ))
∂θ

)2


PZn|Θ(zn|θ)pΘ(θ)dθ

=
∞∫

−∞

∂2pΘ(θ)
∂θ2

dθ =
∂pΘ(θ)
∂θ

∣
∣
∣
∣
∣

∞

−∞
= 0, (E.14)

where the last equality holds due to Condition 2) of Theorem 6.2. Therefore, we have

E









∂ ln

(

PZn|Θ(Zn|Θ)pΘ(Θ)
)

∂Θ





2



 = E



−
∂2 ln

(

PZn|Θ(Zn|Θ)pΘ(Θ)
)

∂Θ2



 . (E.15)

Inserting (E.15) into (E.9), we have

1 ≤ E



−
∂2 ln

(

PZn|Θ(Zn|Θ)pΘ(Θ)
)

∂Θ2



 · E
[(

Θ− θ̂(Zn)
)2
]

, (E.16)

which is Theorem 6.2.

Finally, we comment on the tightness of Theorem 6.2. Equality in the application of the
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Schwarz inequality in (E.6) holds if and only if

∂ ln
(

PZn|Θ(zn|θ)pΘ(θ)
)

∂θ
=
[

θ̂(zn)− θ
]

c(zn), (E.17)

for all zn and θ, where c(zn) is a function of zn.
Furthermore, equality in (E.8) holds if and only if there is a constant c̃ ∈ R such that





∞∫

−∞

[∂ ln
(

PZn|Θ(zn|θ)pΘ(θ)
)

∂θ

]2

PZn|Θ(zn|θ)pΘ(θ)dθ





1
2

= c̃





∞∫

−∞

[

θ̂(zn)− θ
]2
PZn|Θ(zn|θ)pΘ(θ)dθ





1
2

, (E.18)

for all zn. Combining (E.17) and (E.18), we see that equality holds in Theorem 6.2 if and
only if

c(zn) = c̃ ∀zn, (E.19)

i.e., if and only if there is a real-valued constant c̃ such that

∂ ln
(

PZn|Θ(zn|θ)pΘ(θ)
)

∂θ
=
[

θ̂(zn)− θ
]

c̃. (E.20)

Differentiating (E.20) with respect to θ gives the condition

∂2 ln
(

PZn|Θ(zn|θ)pΘ(θ)
)

∂θ2
= −c̃. (E.21)

�

E.2. Proof of Theorem 6.3

E.2.1. Conditions for the applicability of Theorem 6.2

We first show that the conditions for the applicability of Theorem 6.2 are satisfied. To show
that Condition 1 is satisfied, let ĥ(zn) be any estimator with |ĥ(zn)| <∞ for all zn, and let

B̄(h) =
∑

zn

[

ĥ(zn)− h
]

PZn|H(zn|h), (E.22)

so that

lim
h→±∞

B̄(h)pH(h) =
∑

zn

ĥ(zn) lim
h→±∞

PZn|H(zn|h)pH(h)−
∑

zn

lim
h→±∞

hPZn|H(zn|h)pH(h).

(E.23)
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Since 0 ≤ PZn|H(zn|h) ≤ 1 for any zn and h, and since H ∼ N (0, σ2
h), we have

lim
h→±∞

PZn|H(zn|h)pH(h) = 0, ∀zn (E.24)

lim
h→±∞

hPZn|H(zn|h)pH(h) = 0, ∀zn, (E.25)

and therefore

lim
h→±∞

B̄(h)pH(h) = 0. (E.26)

To check Condition 2, we compute

∂pH(h)
∂h

= − h

σ2
h

1√
2πσh

e−h2/(2σ2
h

), (E.27)

so that clearly

lim
h→±∞

∂pH(h)
∂h

= 0. (E.28)

E.2.2. Computation of the second derivative of
ln
(

PZn|H(zn|h)pH(h)
)

Let pN(a) denote the distribution of a zero-mean Gaussian random variable with variance
σ2

n, i.e.,

pN(a) ,
1√

2πσn

e−a2/(2σ2
n), (E.29)

and let Q (x) be the Q-function, i.e.,

Q (x) =
1√
2π

∞∫

x

e−u2/2du, (E.30)

whose derivative is

∂Q (x)
∂x

= − 1√
2π
e−x2/2. (E.31)

We also use the Kronecker delta function

δ(x) ,







1 if x = 0

0 otherwise.
(E.32)
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With

PZn|H(zn|h) =
n∏

i=1

PZi|HZi−1(zi|h, zi−1) (E.33)

=
n∏

i=1

[

δ(zi)Q

(

h− τi(zi−1)
σn

)

+ δ(zi − 1)

(

1−Q

(

h− τi(zi−1)
σn

))]

, (E.34)

we have

ln
(

PZn|H(zn|h)pH(h)
)

= ln pH(h) +
n∑

i=1

lnPZi|HZi−1(zi|h, zi−1) (E.35)

=− ln(
√

2πσh)− h2

2σ2
h

(E.36)

+
n∑

i=1

ln

(

δ(zi)Q

(

h− di

σn

)

+ δ(zi − 1)

(

1−Q

(

h− di

σn

)))

,

where we write di = τi(zi−1) for brevity, and keep in mind that di is a function of zi−1. We
have

∂ ln
(

PZn|H(zn|h)pH(h)
)

∂h
= − h

σ2
h

+
n∑

i=1

pN(h− di)




δ(zi − 1)

1−Q
(

h−di

σn

) − δ(zi)

Q
(

h−di

σn

)



 , (E.37)

and

∂2 ln
(

PZn|H(zn|h)pH(h)
)

∂h2
= − 1

σ2
h

+
n∑

i=1






pN(h− di)



δ(zi)






h−di

σ2
n

Q
(

h−di

σn

) − pN(h− di)

Q
(

h−di

σn

)2






− δ(zi − 1)






h−di

σ2
n

1−Q
(

h−di

σn

) +
pN(h− di)

(

1−Q
(

h−di

σn

))2















.

(E.38)

Since (E.38) is not a constant, we conclude based on (E.21) that there exists no estimator
of H that achieves the BCRLB






−E




∂2 ln

(

PZn|H(Zn|H)pH(H)
)

∂H2











−1

(E.39)

with equality.
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E.2.3. Evaluation of the BCLRB

Defining

G(zn, h) ,
∂2 ln

(

PZn|H(zn|h)pH(h)
)

∂h2
(E.40)

g(zi, h) , pN(h− di)



δ(zi)






h−di

σ2
n

Q
(

h−di

σn

) − pN(h− di)

Q
(

h−di

σn

)2




 (E.41)

− δ(zi − 1)






h−di

σ2
n

1−Q
(

h−di

σn

) +
pN(h− di)

(

1−Q
(

h−di

σn

))2








,

we have

G(zn, h) = − 1
σ2

h

+
n∑

i=1

g(zi, h), (E.42)

so that

−E[G(Zn, H)] (E.43)

=
∞∫

−∞

∑

zn

(

1
σ2

h

−
n∑

i=1

g(zi, h)

)

PZn|H(zn|h)pH(h)dh (E.44)

=
1
σ2

h

−
n∑

i=1

∞∫

−∞

∑

zn

g(zi, h)PZn|H(zn|h)pH(h)dh (E.45)

=
1
σ2

h

−
n∑

i=1

∞∫

−∞

∑

zi

g(zi, h)PZi|H(zi|h)pH(h)




∑

zn
i+1

PZn
i+1|HZi(zn

i+1|h, zi)





︸ ︷︷ ︸

=1 ∀zi,h

dh (E.46)

=
1
σ2

h

−
n∑

i=1

∞∫

−∞

∑

zi−1

PZi−1|H(zi−1|h)

[
∑

zi

g(zi, h)PZi|HZi−1(zi|h, zi−1)

]

pH(h)dh. (E.47)

The expression in the inner square braces of (E.47) is equal to
∑

zi

g(zi, h)PZi|HZi−1(zi|h, zi−1)

=
∑

zi

g(zi, h)

(

δ(zi)Q

(

h− di

σn

)

+ δ(zi − 1)

(

1−Q

(

h− di

σn

)))

(E.48)

= − 1
2πσ2

n

e−(h−di)
2/σ2

n
1

Q
(

h−di

σn

) [

1−Q
(

h−di

σn

)] . (E.49)
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Inserting (E.49) into (E.47), we obtain

−E[G(Zn, H)] =
1
σ2

h

+
n∑

i=1

∞∫

−∞

∑

zi−1

PZi−1|H(zi−1|h)
e−(h−di)

2/σ2
n

2πσ2
nQ

(
h−di

σn

) [

1−Q
(

h−di

σn

)]pH(h)dh,

(E.50)

which seems hard to solve in closed form since di = τi(zi−1) is a function of zi−1. In order to
find an upper bound on −E[G(Zn, H)] and therefore a lower bound on {−E[G(Zn, H)]}−1,
we need the following lemma.

Lemma E.1. Let

λ(x) =
e−x2

Q (x) [1−Q (x)]
, (E.51)

with x ∈ R. We have λ(x) ≤ 4e−(1−2/π)x2 ≈ 4e−0.3634x2
.

Proof. First, we express λ(x) in terms of the error function

erf (x) =
2√
π

x∫

0

e−u2

du, (E.52)

yielding

λ(x) =
4e−x2

1− erf
(

x√
2

)2 . (E.53)

To bound the square of the error function in (E.53), we employ an upper bound due
to Williams [Wil46] and Pólya [Pól49], which was complemented with a lower bound by
Chu [Chu55]; the bound is

erf (x) ≤
√

1− e−4x2/π, x ≥ 0. (E.54)

Consequently, since 1−erf
(

x/
√

2
)2

is symmetric around the origin, i.e., 1−erf
(

−x/
√

2
)2

=

1− erf
(

x/
√

2
)2

, we have

1− erf

(

x√
2

)2

≥ e−2x2/π, x ∈ R, (E.55)

and therefore

λ(x) ≤ 4e−x2

e−2x2/π
= 4e−(1− 2

π )x2

, x ∈ R. (E.56)
�
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To find an upper bound on −E[G(Zn, H)], we apply Lemma E.1 to obtain, for any di,

e−(h−di)
2/σ2

n

Q
(

h−di

σn

) [

1−Q
(

h−di

σn

)] ≤ 4e
−(1− 2

π ) (h−di)2

σ2
n ≤ 4, ∀h. (E.57)

Inserting (E.57) into (E.50) yields

−E[G(Zn, H)] ≤ 1
σ2

h

+
n∑

i=1

∞∫

−∞

∑

zi−1

PZi−1|H(zi−1|h)

︸ ︷︷ ︸

=1 ∀h

4
2πσ2

n

pH(h)dh (E.58)

=
1
σ2

h

+
n∑

i=1

2
πσ2

n

∞∫

−∞
pH(h)dh

︸ ︷︷ ︸

=1

(E.59)

=
1
σ2

h

+ n
2
πσ2

n

. (E.60)

Therefore, we have

E
[

(H − ĥ(Zn))2
]

≥ 1
1

σ2
h

+ n 2
πσ2

n

(E.61)

=
σ2

h

1 + n 2
π

σ2
h

σ2
n

, (E.62)

which completes the proof of Theorem 6.3. �

E.3. Proof of Theorem 6.5

To prove Theorem 6.5 for n = 1, we compute E[(H − ĥMMSE(Z1))2] exactly without using
the BCRLB. Due to the properties of MMSE estimation [Poo94, Section IV.B], we have

E
[

(H − ĥMMSE(Z1))
2
]

= E
[

H2
]

− E
[

ĥ2
MMSE(Z1)

]

= σ2
h − E

[

ĥ2
MMSE(Z1)

]

. (E.63)

Since H is a zero-mean random variable, the initial quantizer threshold is d1 = τ1(z0) = 0,
so that PZ1(1) = PZ1(0) = 1/2, and the MMSE estimator has the symmetry property

ĥMMSE(z1 = 1) =
∞∫

−∞
h

(

1−Q

(

h

σn

))

pH(h)
PZ1(1)

dh (E.64)
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=
1

PZ1(1)

∞∫

−∞
hpH(h)dh

︸ ︷︷ ︸

=E[H]=0

− 1
PZ1(0)

∞∫

−∞
hQ

(

h

σn

)

pH(h)dh (E.65)

= −ĥMMSE(z1 = 0). (E.66)

Consequently, the expectation of ĥ2
MMSE(Z1) is given by

E
[

ĥ2
MMSE(Z1)

]

=
∑

z1

PZ1(z1)ĥ
2
MMSE(z1) (E.67)

= ĥ2
MMSE(z1 = 0) (E.68)

=
2
πσ2

h





∞∫

−∞
hQ

(

h

σn

)

e−h2/(2σ2
h

)dh





2

. (E.69)

Defining

γ(σ2
n, σ

2
h) ,

∞∫

−∞
hQ

(

h

σn

)

e−h2/(2σ2
h

)dh, (E.70)

we have

E
[

(H − ĥMMSE(Z1))
2
]

= σ2
h −

2
πσ2

h

γ2(σ2
n, σ

2
h). (E.71)

For n ≥ 2, we begin the proof with (E.50), which is

−E[G(Zn, H)] =
1
σ2

h

+
n∑

i=1

∞∫

−∞

∑

zi−1

PZi−1|H(zi−1|h)
e−(h−di)

2/σ2
n

2πσ2
nQ

(
h−di

σn

) [

1−Q
(

h−di

σn

)]pH(h)dh.

(E.72)

First consider the term for i = 1 in the summation in (E.72); since zi−1 is the empty
sequence for i = 1, that term is

∞∫

−∞

e−(h−d1)2/σ2
n

2πσ2
nQ

(
h−d1

σn

) [

1−Q
(

h−d1

σn

)]pH(h)dh =
∞∫

−∞

e−h2/σ2
n

2πσ2
nQ

(
h

σn

) [

1−Q
(

h
σn

)]pH(h)dh,

(E.73)

where the equality follows since d1 = τ1(z0) = 0. Since there seems to be no closed-form
solution available for the integral in (E.73), we compute

γ̄(σ2
n, σ

2
h) ,

∞∫

−∞

e−h2/σ2
ne−h2/(2σ2

h
)

Q
(

h
σn

) [

1−Q
(

h
σn

)]dh (E.74)
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by numerical integration so that (E.73) becomes

γ̄(σ2
n, σ

2
h)

2πσ2
n

√
2πσh

. (E.75)

Next, consider the summation in (E.72) for i ≥ 2 and note that PZi−1|H(zi−1|h) ≤ 1 for
all zi−1 and h. Therefore, we have

n∑

i=2

∞∫

−∞

∑

zi−1

PZi−1|H(zi−1|h)
e−(h−di)

2/σ2
n

2πσ2
nQ

(
h−di

σn

) [

1−Q
(

h−di

σn

)]pH(h)dh

≤
n∑

i=2

∑

zi−1

∞∫

−∞

e−(h−di)
2/σ2

n

2πσ2
nQ

(
h−di

σn

) [

1−Q
(

h−di

σn

)]pH(h)dh. (E.76)

Since pH(h) ≤ 1/(
√

2πσh) for all h, we can upper bound the integral in (E.76) by

∞∫

−∞

e−(h−di)
2/σ2

npH(h)

2πσ2
nQ

(
h−di

σn

) [

1−Q
(

h−di

σn

)]dh ≤
∞∫

−∞

e−(h−di)
2/σ2

n

2πσ2
nQ

(
h−di

σn

) [

1−Q
(

h−di

σn

)]
1√

2πσh

dh (E.77)

=
1

2πσ2
n

√
2πσh

∞∫

−∞

e−h2/σ2
n

Q
(

h
σn

) [

1−Q
(

h
σn

)]dh, (E.78)

for any di = τi(zi−1). Unfortunately, a closed-form solution for the integral in (E.78) does
not seem to be available. Therefore, we compute

¯̄γ(σ2
n) ,

∞∫

−∞

e−h2/σ2
n

Q
(

h
σn

) [

1−Q
(

h
σn

)]dh (E.79)

by numerical integration. Consequently, we have

n∑

i=2

∞∫

−∞

∑

zi−1

PZi−1|H(zi−1|h)
e−(h−di)

2/σ2
n

2πσ2
nQ

(
h−di

σn

) [

1−Q
(

h−di

σn

)]pH(h)dh

≤
n∑

i=2

∑

zi−1

¯̄γ(σ2
n)

2πσ2
n

√
2πσh

(E.80)

=
n∑

i=2

2i−1
¯̄γ(σ2

n)

2πσ2
n

√
2πσh

(E.81)

= (2n − 2)
¯̄γ(σ2

n)

2πσ2
n

√
2πσh

. (E.82)

Finally, by inserting (E.82) and (E.75) into (E.72), we have
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−E[G(Zn, H)] ≤ 1
σ2

h

+
1

2πσ2
n

√
2πσh

(

γ̄(σ2
n, σ

2
h) + (2n − 2)¯̄γ(σ2

n)
)

, (E.83)

and for n ≥ 2 the lower bound on the MSE becomes

E
[

(H − ĥ(Zn))2
]

≥
(

1
σ2

h

+
1

2πσ2
n

√
2πσh

(

γ̄(σ2
n, σ

2
h) + (2n − 2)¯̄γ(σ2

n)
)
)−1

(E.84)

=
σ2

h

1 +
σh

2πσ2
n

√
2π

(

γ̄(σ2
n, σ

2
h) + (2n − 2)¯̄γ(σ2

n)
) . (E.85)

�

E.4. Proof of Theorem 6.6

We begin the proof for n = 1, and an upper bound for γ2(σ2
n, σ

2
h), which is

γ2(σ2
n, σ

2
h) =





∞∫

−∞
hQ

(

h

σn

)

e−h2/(2σ2
h

)dh





2

(E.86)

=




1
2

∞∫

−∞
h

(

1− erf

(

h√
2σn

))

e−h2/(2σ2
h

)dh





2

(E.87)

=





∞∫

0

h erf

(

h√
2σn

)

e−h2/(2σ2
h

)dh





2

(E.88)

=





∞∫

0

[√
h erf

(

h√
2σn

)

e−h2/(4σ2
h

)

]
[√
he−h2/(4σ2

h
)
]

dh





2

, (E.89)

where we exploit in (E.87) that

∞∫

−∞
h e−h2/(2σ2

h
)dh = 0. (E.90)

Applying the Schwarz inequality to (E.89) yields

γ2(σ2
n, σ

2
h) ≤





∞∫

0

h erf2
(

h√
2σn

)

e−h2/(2σ2
h

)dh









∞∫

0

h e−h2/(2σ2
h

)dh



 (E.91)

= σ2
h

∞∫

0

h erf2
(

h√
2σn

)

e−h2/(2σ2
h

)dh, (E.92)
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where the last equality follows by

∞∫

0

x e−ax2

dx =
1
2a
, a > 0. (E.93)

Applying the bound in (E.54) to (E.92) yields

γ2(σ2
n, σ

2
h) ≤ σ2

h

∞∫

0

h
(

1− e−2h2/(πσ2
n)
)

e−h2/(2σ2
h

)dh (E.94)

= σ2
h



σ2
h −

∞∫

0

h e−(πσ2
n+4σ2

h
)h2/(2πσ2

h
σ2

n)dh



 (E.95)

= σ2
h

(

σ2
h −

πσ2
hσ

2
n

πσ2
n + 4σ2

h

)

. (E.96)

Inserting (E.96) into (E.71), we have the bound

E
[

(H − hMMSE(Z1))
2
]

≥ σ2
h −

2
π

(

σ2
h −

πσ2
hσ

2
n

πσ2
n + 4σ2

h

)

(E.97)

=
(

1− 2
π

)

σ2
h +

2σ2
hσ

2
n

πσ2
n + 4σ2

h

. (E.98)

Next, consider the case n ≥ 2 and apply Lemma E.1 to γ̄(σ2
n, σ

2
h) to obtain the bound
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where we used
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Likewise, we obtain the bound
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Inserting (E.101) and (E.105) into the bound of Theorem 6.5 yields the bound of Theo-
rem 6.6. The bounds in (E.96), (E.101), and (E.105) appear to be fairly tight bounds on
γ2(σ2

n, σ
2
h), γ̄(σ2

n, σ
2
h) and ¯̄γ(σ2

n), respectively, as Figure E.1 illustrates. �

E.5. Proof of Proposition 6.7

The conditional probability PZi−1|H(zi−1|h) is given as a product of (i− 1) terms involving
the Q-function, cf. (E.34). The function 1 − Q (x) = Φ(x), where Φ(x) is the CDF of a
random variable with distribution N (0, 1). The CDF Φ(x) is log-concave [BV04, Chapter
3.5]. The log-concavity of Φ(x) also follows from [BB05, Theorem 1], since the probability
distribution function (PDF) of a Gaussian random variable is continuously differentiable
and log-concave. Moreover, we have Q (x) = 1 − Q (−x) = Φ(−x), so that Q (x) is also
log-concave. Consequently, PZi−1|H(zi−1|h) is a product of i − 1 log-concave functions;
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since log-concavity is preserved by multiplication [BV04, Chapter 3.5], PZn−1|H(zn−1|h) is
log-concave, for any zi−1 and di−1. �





F
Mathematical Notation and
Abbreviations

Mathematical Notation

⊞ boxplus operator
FX(·) cumulative distribution function of the random variable X
δ(x) Kronecker delta function
H(X) entropy of the random variable X
H(X|Y ) entropy of X conditioned on Y
h(X) differential entropy of the random variable X
h(X|Y ) differential entropy of X conditioned on Y
Hb(x) binary entropy function
erf(x) error function
E[X] expectation of the random variable X
E[X|A] expectation of X conditioned on event A
1{·} indicator function
ln(x) natural logarithm of x
log2(x) logarithm to base 2
I(X;Y ) mutual information between X and Y
I(X;Y |Z) mutual information between X and Y conditioned on Z
∇ Nabla operator
pX(·) probability density function of the random variable X
pX|Y (·) probability density function of X conditioned on Y
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PX(·) probability mass function of the random variable X
PX|Y (·) probability mass function of X conditioned on Y
Pr[A] probability of event A
Pr[A|B] probability of event A conditioned on event B
Q(x) Gaussian Q-function
DKL(·||·) relative entropy or Kullback–Leibler distance
xj

i the sequence {xi, xi+1, . . . , xj}
xn short for xn

1

sign(x) sign of x
Var[X] variance of the random variable X
x+ positive part of x

List of Abbreviations

A/D analog-to-digital
ADC analog-to-digital converter
AWGN additive white Gaussian noise
BAA Blahut-Arimoto algorithm
BCJR algorithm by Bahl, Cocke, Jelinek, Raviv
BCRLB Bayesian Cramér-Rao lower bound
BER bit error rate
BPSK binary phase shift keying
BSC binary symmetric channel
CDF cumulative distribution function
CF compress-and-forward
CFER common frame error rate
CRC cyclic redundancy check
CRLB Cramér-Rao lower bound
CSI channel state information
DMC discrete memoryless channel
FER frame error rate
i.i.d. independent and identically distributed
ISI intersymbol-interference
KKT Karush-Kuhn-Tucker
LLR log-likelihood ratio
LM Lloyd-Max
MAP maximum a posteriori
MARC multiple-access relay channel
MIC mutual information criterion
MIMO Multiple-Input/Multiple-Output
MIR maximum information rate
ML maximum likelihood
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MMSE minimum mean squared error
MSE mean squared error
NNC noisy network coding
OLM outer linearization method
OSLA “one-step look-ahead”
PDF probability distribution function
PSK phase shift keying
QAM quadrature amplitude modulation
QPSK quaternary phase shift keying
SISO soft-in/soft-out
SNR signal-to-noise ratio
UF uniform
UMTS Universal Mobile Telecommunication System
XOR exclusive or
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