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Abstract

With broadband access becoming increasingly common, even in mobile environments, the

demand for video services, such as video streaming and video telephony, is growing rapidly.

However, delivering satisfactory video services over today’s communication networks is still a

very challenging task.

The objective of this thesis is to achieve improved Quality of Experience (QoE) for video

services with stringent delay requirements, delivered over time-varying error-prone communi-

cation channels. In the first part of the thesis, a low-delay error-resilient video transmission

framework is developed for point-to-point communication with feedback information. The

proposed framework consists of low-delay error-resilient video coding and delay-aware re-

transmission, where multi-dimensional video adaptation and joint source-channel resource

allocation schemes are formulated to improve the channel adaptability. A heuristic approach

is proposed to address the trade-off between spatial and temporal video quality. Experimental

results show that the user-perceived video quality is significantly improved for a wide range

of video content and channel characteristics. Based on the proposed framework, real-time

software and software/hardware testbeds are implemented, which can be used to find the best

system settings as well as the best hardware configurations for specific system requirements.

In the second part of the thesis, the respective impact of spatial and temporal impairments

on the perceived video quality and their interaction are investigated. Specifically designed

subjective tests are carried out. Based on graphical and statistical analysis of the subjective

ratings, a full-reference video quality metric is proposed for QoE estimation in the presence

of both spatial and temporal quality impairments. The proposed metric STVQM is based

on PSNR, frame rate and selected spatial and temporal video content activity measures.

Performance evaluation shows that STVQM is very accurate in estimating the subjective

ratings, either significantly better than or as good as (with other advantages) related metrics

in the literature.

With STVQM’s ability to accurately estimate the QoE, a QoE-driven multi-dimensional

video adaptation scheme is formulated and integrated into the low-delay error-resilient video

transmission framework, which is presented in the third part of the thesis. Instead of using the
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heuristic approach, the trade-off between spatial and temporal video quality is exploited in a

QoE-optimized manner, where related quality/distortion estimation problems are addressed.

Experimental results with various wireless channel models show that the resulting system

delivers significantly improved QoE for a wide variety of video contents and channel conditions.



Kurzfassung

Mit zunehmendem Breitband-Zugang, auch in mobilen Umgebungen, wächst die Nachfrage

nach Video-Diensten, wie zum Beispiel Video-Streaming und Video-Telefonie, rasant. Aller-

dings ist die Bereitstellung von zufriedenstellenden Video-Diensten über heutige Kommuni-

kationsnetze weiterhin eine besondere Herausforderung.

Das Ziel dieser Arbeit ist es, die Nutzerzufriedenheit (QoE) für Video-Dienste mit strikten

Verzögerungsanforderungen, die über zeitveränderliche und fehleranfällige Kommunikations-

kanäle bereitgestellt werden, zu verbessern. Im ersten Teil der Arbeit wird ein fehlerrobustes

Videoübertragungssystem mit geringer Verzögerung für Punkt-zu-Punkt-Kommunikation mit

Feedbackinformation vorgeschlagen. Das System verwendet fehlerrobuste Videocodierung mit

geringer Verzögerung und verzögerungssensitive Rückübertragungen, wobei mehrdimensionale

Videoanpassung und gemeinsame Quellen- und Kanalressourcenzuteilung für bessere Kanal-

anpassung formuliert werden. Ein heuristischer Ansatz wird vorgeschlagen, den besten Kom-

promiss zwischen räumlicher und zeitlicher Videoqualität zu finden. Experimentelle Ergebnis-

se zeigen, dass die wahrgenommene Videoqualität für eine breite Palette von Video-Inhalten

und Kanaleigenschaften deutlich verbessert wird. Echtzeit-Software- und Software/Hardware-

Testumgebungen basierend auf dem vorgeschlagenen System werden implementiert, die ver-

wendet werden können, um die besten System-Einstellungen sowie die besten Hardware-

Konfigurationen für spezifische Systemanforderungen zu finden.

Im zweiten Teil der Arbeit werden die jeweiligen Auswirkungen der räumlichen und zeit-

lichen Beeinträchtigungen auf die wahrgenommene Videoqualität und ihre Wechselwirkung

untersucht. Speziell entworfene subjektive Tests werden durchgefhrt. Basierend auf grafi-

scher und statistischer Analyse der subjektiven Bewertungen wird eine Full-Reference Vi-

deoqualitätsmetrik für die QoE-Schätzung in Gegenwart von räumlichen und zeitlichen Be-

einträchtigungen entwickelt. Die vorgeschlagene Metrik STVQM basiert auf PSNR, Framerate

und ausgewählten Maßen der räumlichen und zeitlichen Aktivität des Videoinhalts. Es wird

durch formelle Evaluierung gezeigt, dass STVQM sehr genau die subjektiven Bewertungen

vorhersagen kann, entweder deutlich besser als oder so gut wie (mit anderen Vorteilen) die
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aus der Literatur bekannten Metriken.

Im dritten Teil der Arbeit wird eine QoE-orientierte mehrdimensionale Videoanpassung

formuliert und in das Videobertragungssystem integriert, bei der die Nutzerzufriedenheit

durch STVQM geschätzt wird. Der Kompromiss zwischen räumlicher und zeitlicher Videoqua-

lität wird in einer QoE-optimierten Weise gefunden, wobei Qualitäts-/Verzerrungsschätzungs-

probleme addressiert werden. Experimentelle Ergebnisse mit verschiedenen Kanalmodellen

zeigen, dass das QoE-basierte System deutlich verbesserte Nutzerzufriedenheit für eine Viel-

zahl von Video-Inhalten und Kanalbedingungen liefert.
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Chapter 1

Introduction

With the increasing capacity in wireless communication systems and consumers’ growing

appetite for video contents, a soaring number of wireless video services are finding their way

into our everyday lives and the growth will continue to accelerate. However, delivering video

contents over wireless channels faces many technical challenges that have prevented wireless

video services from reaching their full potential.

Video service is the most demanding among all multimedia services. It generates a huge

amount of data that need to be transmitted and processed in a timely manner, which would

be impossible/infeasible without highly efficient compression schemes, especially for wireless

communication where the bandwidth is scarce and expensive. The continued progress in

digital video compression technologies has led to a burgeoning popularity of video services,

but the compressed video data become highly sensitive to transmission errors that are very

common in wireless communication channels. In addition, since most video services require

real-time and continuous playback, the variable bitrate (VBR) nature of the compressed

video stream and the time-varying nature of the wireless channel pose additional challenges

for wireless video system design. Numerous error control tools (e.g., error resilient video

coding, error concealment, channel coding, retransmission) have been proposed to address the

error-sensitivity issue and various schemes (e.g., buffering) have been designed for adapting

to the time-varying video content characteristics and wireless channel conditions. However,

most of the previous designs have focused on video services such as video streaming that

allow a relatively large end-to-end delay (i.e., several seconds) and therefore may not be

suitable for interactive video services that have stringent delay requirements. For example,

for conversational video services, such as video telephony and video walkie-talkie, the end-

to-end delay is required to be below 150ms. Video-based teleoperation applications, where a

teleoperator is to be maneuvered based on the video transmitted from a camera attached to it

(e.g., car backup video system where video captured from a rear view camera is transmitted

1
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to a front monitor to help backup the car), often requires end-to-end delay to be as low as

30-100ms. Therefore, designing video communication systems that are bandwidth-efficient,

resilient to transmission errors, highly adaptive to time-varying video content characteristics

and channel conditions, and at the same time meet the stringent delay requirements, is of

great importance for the success of interactive video services. Motivated by this, one of the

main focuses of this dissertation is to construct such a wireless video communication system

design for scenarios where feedback information is available.

Typically, since video services are consumed by human users, maximizing the Quality of

Experience (QoE) that human users receive should be the ultimate goal of the video com-

munication system design. In order to autonomously provide the best possible QoE to the

consumers, the system needs to be able to accurately estimate or predict the resulting QoE

using an objective metric for any particular circumstances. In a sophisticated wireless video

system design (e.g., with error control and/or adaptation schemes), user perceived QoE can be

impaired by different visual quality degradations caused by various processing steps, includ-

ing quantization, spatial and temporal resolution change, error concealment, and others. For

example, quantization may lead to artifacts such as blocking or blurring, frame rate reduction

may cause motion jerkiness, and error concealment may introduce artifacts that are different

for different concealment methods. All those quality degradations are processed/perceived

differently by the Human Visual System (HVS) and therefore impact the QoE in different

manners. Those unique aspects of different quality degradations need to be considered by the

objective metric used for QoE estimation. However, most of the previous work uses averaged

Peak-Signal-to-Noise-Ratio (PSNR) between original and reconstructed video frames as the

metric to estimate user perceived QoE when designing and/or optimizing video systems. Al-

though PSNR has been used as the de facto image/video quality metric and has its unique

merits, it does not consider the properties of HVS and has been shown not to correlate well

with the subjective quality ratings, which are regarded as the most accurate and reliable QoE

estimates. The performance of PSNR as a QoE metric is particularly poor when various

types of quality degradations are involved, which as discussed above is common in wireless

video systems. In recent years, a growing amount of attention has been devoted to research

and standardization of better metrics for image/video quality assessment, but most of the

work has focused on compression artifacts introduced by video codecs where quantization is

the only major cause of quality degradation. Some of the work studied the impact of other

processing steps on the QoE, but very few tried to design an objective metric that can ac-

curately estimate the QoE in the presence of both spatial and temporal quality degradations

and can be applied for dynamic system optimization. Therefore, another main focus of this

dissertation is to design such a QoE metric so that the proposed wireless video communication

system design, where various types (both spatial and temporal) of quality degradations may



1.1. CONTRIBUTIONS OF THE DISSERTATION 3

be present, can always autonomously provide the best possible QoE.

Based on the designed QoE metric, a QoE-driven multi-dimensional video adaptation

scheme is formulated and integrated into the proposed low-delay error-resilient system design.

The trade-off between spatial and temporal video quality is adjusted in such a way that

the resulting QoE, estimated by the designed QoE metric, is maximized. One of the main

challenges here is that decisions need to be made before the video frames are encoded and

transmitted, and as a result, the QoE metric can not be computed directly but needs to be

estimated from the available data (e.g., statistics of the recently encoded/decoded frames,

recently observed channel conditions, etc.). This estimation problem needs to be addressed

for each type of quality degradation, as different related data are available for different types

of quality degradation. In addition, because of the low-cost and low-power requirements of

wireless devices, the solutions need to be light-weight. This low-complexity requirement is

also closely considered for the aforementioned system design and QoE metric design.

1.1 Contributions of the Dissertation

The focus of this dissertation is to provide improved QoE for wireless video communication

under stringent delay constraint. The main contributions are summarized as follows.

Low-Delay and Error-Resilient Design for Wireless Video Transmission

Error-resilient video transmission under stringent delay constraint is studied for point-to-

point wireless communication with instantaneous feedback. A low-delay error-resilient video

transmission framework is developed, where the available instantaneous feedback is utilized

both for video coding and transmission. Many error control techniques are adopted, adapted or

improved in the new framework, including error resilient coding, rate control, retransmission,

joint source-channel resource allocation and error concealment. A multi-dimensional video

adaptation scheme is formulated and integrated to improve channel adaptability and user

perceived QoE, where a heuristic approach based on the packet error rate (PER) is proposed

to address the spatial and temporal video quality trade-offs. Extensive experimental results

with different video codecs, different error concealment schemes and for a wide range of

video contents, transmission data rates and channel PERs are provided, which verify the

effectiveness of the proposed framework.

Implementation of Real-Time Software and Software/Hardware Testbeds

A real-time software testbed is implemented based on the aforementioned video transmission

framework. With a graphical user interface and abundant adjustable system parameters,

the testbed is used to evaluate and demonstrate the performance of the proposed framework
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under a wide variety of settings, also in comparison to conventional systems. This software

testbed can also be used to find the best settings for specific system designs. A real-time

FPGA-based software/hardware testbed is also implemented, which is used to find the best

hardware configuration for specific system requirements.

Investigation on QoE Impact of Spatial and Temporal Video Quality Impairments

The respective impact of spatial and temporal quality impairments on the QoE and their

interaction are investigated, for which specifically designed subjective tests and formal statis-

tical analysis (i.e., ANOVA) are carried out. The investigation shows how PSNR and video

content affect the spatial quality perception, how frame rate and video content affect the tem-

poral quality perception, and that an interaction exists between spatial and temporal quality

perception.

A Full-Reference Objective Video Quality Metric for QoE Estimation

Based on the results from the aforementioned investigation, a full-reference objective video

quality metric STVQM is developed for QoE estimation in the presence of both spatial and

temporal quality impairments. The metric is based on PSNR, frame rate as well as selected

spatial and temporal video content activity measures that can be easily computed from the

source video. Due to its content-independency, high accuracy and low computational com-

plexity, the proposed metric is highly applicable for dynamic QoE optimization in practical

video transmission systems.

QoE-Driven Multi-Dimensional Adaptation

A QoE-driven solution is formulated to improve the PER-based heuristic solution for the

multi-dimensional adaptation (MDA) scheme integrated into the aforementioned video trans-

mission framework, where the QoE is estimated by the proposed STVQM metric when making

the decisions. Related quality/distortion estimation problems are addressed, including the es-

timation of the source coding distortion as well as the channel-induced distortion. Extensive

experimental results with various wireless channel models are provided, showing that the re-

sulting system can autonomously deliver significantly improved QoE for a wide variety of

video contents and a wide range of channel conditions.

1.2 Outline of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, important background and

related work on wireless video transmission and on video quality assessment are reviewed,
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which intends to highlight the two main research areas that are related to the work presented

in this dissertation and to provide readers with an overview to position the presented work.

In Chapter 3, a low-delay error-resilient video transmission framework is presented, in

which the available instantaneous feedback is utilized in both video coding and transmis-

sion to provide high error resiliency with no or controlled impact on the end-to-end delay.

A multi-dimensional video adaptation scheme is integrated into the framework to improve

channel adaptability and perceptual video quality. Parts of this chapter have been published

in [PZS10].

Chapter 4 is devoted to the investigation of the respective impact of spatial and temporal

quality impairments on the overall perceptual video quality as well as their interaction. Based

on the analysis of extensive subjective video quality evaluation results, a full-reference objec-

tive video quality metric is developed, which has high accuracy in estimating the perceptual

video quality in the presence of both spatial and temporal quality impairments. Parts of this

chapter have been published in [PS11].

In Chapter 5, a QoE-driven MDA scheme is formulated based on the objective video

quality metric developed in Chapter 4. This adaptation scheme is integrated into the video

transmission framework presented in Chapter 3, leading to significantly improved QoE with

high adaptability to a wide range of video content characteristics and channel conditions.

Parts of this chapter have been published in [PS11].

Chapter 6 concludes this dissertation with a summary of the results and recommendations

of future work in the related areas.





Chapter 2

Background and Related Work

In this chapter, background and related work on wireless video transmission and on video

quality assessment are reviewed. The review is intended to highlight the two main research

areas that are related to the subsequent chapters and provide readers with an overview and

basic understanding of the related work to position the work presented throughout this disser-

tation. Section 2.1 discusses the challenges and approaches for wireless video transmission as

well as the resulting impact on the QoE, which are related to Chapter 3 and Chapter 5, while

Section 2.2 gives an overview for video quality assessment, providing related background for

Chapter 4.

2.1 Wireless Video Transmission - Challenges and Approaches

Wireless communication has a number of important advantages over its wired counterpart,

including user mobility as well as high flexibility and low cost in deployment. However,

when wireless communication meets video applications, many challenges arise. On one hand,

video applications have distinct properties than conventional data applications, which impose

additional requirements on the underlying communication systems, such as high data rate and

low delay. On the other hand, the inherent properties of wireless channels, such as limited

transmission data rate, error-prone transmission and time-varying characteristics, make it

particularly difficult for wireless systems to meet these requirements. In this section, the

challenges with wireless video transmission and the corresponding common approaches are

reviewed. The review is kept very concise, as more thorough and detailed reviews can be found

in various references, such as [WZ98, WWWK00, WHZ00]. The impact of those challenges

and approaches on the user-perceived QoE is also discussed.

7
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2.1.1 Challenges and Approaches

From the perspective of video applications, the following three properties of video data, cou-

pled with characteristics of wireless communication systems, make wireless video communi-

cation a very challenging task.

High Data Rate

Video applications generate huge amount of data for transmission. Depending on the resolu-

tion, transmitting an uncompressed video requires a data rate of a few Mbps (e.g., QCIF@15fps)

up to a few Gbps (e.g., 1080p@60fps). Considering that wireless communication systems have

very limited capacity and typical user transmission data rates in today’s 3G/4G mobile net-

works are in the range of a few hundred kbps (e.g., UMTS) to several Mbps (e.g., LTE),

substantial rate reduction of the video data is crucial.

Fortunately, advances in video compression technologies have made it possible for video

data rate to be reduced significantly. All the common video compression standards (i.e.,

MPEG-x and H.26x standards [ITU05, ISO04, JVT03]) follow the same block-based hybrid

video coding structure (see Figure 2.1) to reduce the size of the video data by 1) quantization,

which introduces a certain amount of distortion depending on the quantization level that is

specified by the quantization parameter (QP), and by 2) removing redundancies in the video

data, which is realized by predictive coding in both spatial and temporal (i.e., motion compen-

sated prediction) directions followed by entropy coding. Generally, a video frame is divided

into macroblocks (MB) and each MB can be encoded in one of the following three modes: 1)

I-mode, the MB is encoded based only on the blocks in the same frame; 2) P-mode, the MB

is predicted from previous frames; 3) B-mode, the MB is predicted from both previous and

following frames. An I-frame is encoded entirely in I-mode, resulting in a significantly larger

size than a P-frame or a B-frame, where MBs may be encoded in P-mode or B-mode, respec-

tively. A B-frame has smaller size than a P-frame, but introduces additional delay because of

the frame reordering caused by the bi-directional temporal prediction. This dissertation deals

entirely with video codecs adopting this common encoding structure.

Figure 2.1: Block-diagram of the hybrid video coding structure. Adopted from [WOZ02].
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Figure 2.2: End-to-end delay of transmitting a VBR video over a CBR channel with receiver
buffering. The variation of the frame arrival time is in this example due to the video bitrate
variation. For illustration, delay and delay jitter caused by other factors are not included.

Delay Sensitivity

Video applications are delay sensitive. Since a video needs to be played out continuously, each

frame has to be available (i.e., received and decoded) by a certain time deadline to be useful.

Therefore, if a video packet does not arrive at the receiver on time, it can be considered lost.

This end-to-end delay constraint is typically required to be constant for the entire duration

of a video session, as display devices operate on a constant frame rate. Different applications

have different requirements on the end-to-end delay [ITU01]. For example, video streaming

applications may tolerate delay in the order of several seconds, while conversational and

interactive applications require very low delay, generally less than 150ms.

The delay sensitivity of video applications is particularly challenging for communication

systems with constant bitrate (CBR) due to the variable bitrate nature of the compressed

video bitstream. In such a system, the end-to-end delay can be kept constant by buffering

at the transmitter and/or the receiver [LOR98], but additional delay will be introduced by

the buffering, resulting in a larger end-to-end delay as depicted in Figure 2.2. The more data

are buffered, the larger variation of the video bitrate can be tolerated (i.e., less loss due to

late arrival), but the larger the end-to-end delay will be. However, the buffering delay, which

is usually in the order of several frame times (i.e., multiples of 33ms at 30fps), may not be

tolerable for applications with low-delay requirements. In this case, the video coding rate

may have to be adjusted so that the smallest frame size meets the available transmission

bitrate, which without a very accurate rate control would decrease the video source coding

rate significantly. Otherwise, many video packets would be lost due to late arrival, which may

cause even more severe damage to the video quality.

This dissertation addresses the challenging scenario of low-delay video transmission over

CBR channel. Since I-frames have significantly larger sizes and B-frames require frame re-
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Figure 2.3: Example of error propagation in both temporal and spatial direction.

ordering, they may lead to higher end-to-end delay. Therefore, low-delay applications usually

encode the video frames as IPP...P without the typical group of pictures (GOP) structure.

This encoding structure is adopted throughout this dissertation.

Error Sensitivity

Videos compressed using the common hybrid coding structure are highly sensitive to trans-

mission errors. In the spatial direction, because of the variable length entropy coding and the

spatial predictions, one single bit error during the transmission may result in the loss of an

entire video frame. This problem is often mitigated by adopting the slice structure [JVT03],

which is also referred to as the group of blocks (GOB) [ITU05]. A slice, consisting of a num-

ber of MBs, can be decoded independently from other slices within the same frame, which is

enabled by including resynchronization information in the slice header and by stopping spatial

predictions between slices. Typically, one slice is encapsulated into one packet for transmis-

sion, during which a transmission error results in the loss of the entire packet/slice, affecting

only a smaller region of the frame. The lost slices are usually concealed at the decoder based

on the available spatially and/or temporally neighboring MBs before the frame is displayed.

The downside of the slice structure is that the compression efficiency is reduced due to the

resynchronization overhead and the lack of prediction between slices.

The motion compensated temporal prediction is another major cause for the error sensi-

tivity of a compressed video. Although a transmission error only affects a single slice in the

current frame, the error may propagate to successive frames and remain visible for a long

period of time. An example of error propagation from one single slice loss is illustrated in Fig-

ure 2.3, where it can be seen that the error not only propagates in the temporal direction, but

also spreads in the spatial direction due to motion compensation, which makes the resulting

artifacts particularly annoying. With error concealment, the error may become less visible in

the current frame, but the spatio-temporal propagation of the error still degrades the video

quality significantly. Inserting an I-frame can stop the error propagation, but increases the

resulting bitrate significantly.
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The error sensitivity of compressed videos, coupled with the error-prone and time-varying

characteristics of wireless channels (due to shadowing and multi-path fading effects as well as

user mobility), poses probably the most challenge for wireless video transmission, especially

under delay constraints. A large number of studies have been carried out to improve the

performance of video transmission over error-prone channels. General overviews of error-

resiliency and error concealment for video transmission can be found in [WZ98, WWWK00,

WHZ00, WHZ+01, EY05]. Overviews of error resilient tools in the latest H.264/AVC standard

are available in [SHW03, KXMP06]. An overview of feedback-based error control approaches

is given in [GF99]. Error-resilient video transmission under stringent delay constraint is one

of the main focuses of this dissertation.

2.1.2 QoE Impairments

Due to the challenges in wireless video transmission and the applied approaches to tackle

these challenges, QoE of video applications may be impaired in many different ways.

Limited transmission data rate in a wireless channel may require a strong lossy compression

of the video data, which would result in various visually annoying artifacts [YW98] in the video

presented to the user. Such lossy compression schemes may involve high quantization level as

well as reduction of spatial [BEK03] and temporal [LK05] resolution, each introducing different

types of artifacts. The high quantization level could lead to artifacts such as blocking, blurring,

and many others. Postprocessing techniques have been developed to mitigate compression

artifacts [SK98], which may introduce new artifacts (e.g., de-blocking filtering to remove

blocking may lead to blurring). The process of down- and up-sampling of the spatial resolution

may lead to ringing or blurring artifacts. Temporal resolution reduction (i.e., frame rate

reduction) may cause motion jerkiness for video scenes with high motion.

The end-to-end delay in a video transmission system can have a significant impact on the

QoE, which manifests itself quite differently from that of the compression. Instead of intro-

ducing visible artifacts in the displayed video, delay deteriorates the QoE of video applications

in terms of impaired human interactivity. For non-interactive applications such as one-way

video streaming, the QoE impairment is perceived by the user as an initial delay from the

request to the start of video playout, in which case a delay less than 10 seconds is usually

deemed as tolerable. In the context of interactive applications (e.g., video telephony), the

impact of delay is much more critical. For example, delay in a video telephony session would

cause callers to talk over each other, rendering the conversation unbearable. Even a delay in

the order of a few hundred milliseconds could easily lead to user’s frustration or even failure

of a conversational communication or an interactive task. Delay may also vary from packet to

packet, which in general can cause additional fixed delay due to buffering or result in packet

losses caused by late arrival.
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Transmission errors, including bit/packet errors in the wireless channel as well as packet

losses due to late arrival, results in losses of video slices, which are concealed at the receiver

before display. Depending on the video content, the loss pattern and the concealment method

applied, error concealment may introduce visible artifacts in the displayed video (see Fig-

ure 3.12 for some examples). Since the artifacts caused by error concealment are typically

more structured and localized, they could be perceptually more annoying than compression

artifacts. Even more detrimental to the QoE, the error between the actual slice and its con-

cealment may propagate both temporally and spatially, causing the artifacts stay for a long

time and the affected image area become larger.

2.2 Video Quality Assessment - An Overview

As discussed in Section 2.1.2, various quality impairments may be present in a video trans-

mitted over a wireless communication channel. In order to deliver the best possible QoE to

end-users, it is essential to understand how these impairments affect the overall video quality

perceived by human beings, which goes to the fundamental question of how to assess the

perceptual quality of a video with quality impairments. Generally, there are two primary

ways to assess video quality: subjective quality assessment and objective quality assessment.

Subjective quality assessment uses human subjects to evaluate the perceived quality of the

videos under test. The advantage of subjective assessment is that the quality ratings given by

the test subjects (samples) can yield a reliable estimate of the actual quality assessment on a

large-scale population level. However, subjective assessment is complex and time-consuming,

has to be carefully designed and performed to achieve meaningful results, and can not be

adopted in real-time applications.

On the other hand, objective quality assessment evaluates video quality based on physical

parameters of the video and/or mathematical models of the HVS. It requires no human

involvement, can be easily applied to any video, and therefore is applicable in applications

where autonomous video quality measurement or prediction is desired, such as in-service video

quality monitoring and dynamic optimization of video systems. The downside of objective

quality assessment is that objective quality metrics do not always provide accurate and reliable

estimates of the perceptual quality. With so many factors that may affect the perceptual video

quality, including fidelity of the video, characteristics of the video content, properties of the

HVS, as well as application-specific factors such as display properties, user expectations, etc.,

objective quality metrics often have good performances in some situations but fail in others.

Therefore, it is very important to be aware of the limitations of an objective quality metric

before applying it to estimate perceptual video quality.

Both subjective and objective quality assessment are essential components in video quality

assessment. Subjective quality assessment, being the most reliable way of evaluating percep-



2.2. VIDEO QUALITY ASSESSMENT - AN OVERVIEW 13

tual video quality, provides “ground-truth” quality ratings for understanding how humans

perceive quality impairments, as well as for the design, evaluation and validation of objective

quality metrics. Once the reliability of an objective quality metric is verified by subjective

evaluations, it can be applied to applications where subjective assessment is either too costly

or infeasible. This section provides reviews of important aspects and related studies for both

subjective and objective quality assessment, respectively.

2.2.1 Subjective Video Quality Assessment

Subjective video quality assessment is to evaluate video quality using human subjects. For

applications where videos are to be viewed by human beings, it is obviously the most reliable

way to determine the actual video quality perceived by real end-users. Subjective assessment

usually requires a specifically designed subjective test, in which subjective quality ratings of

the test videos are collected from a number of test subjects. The average subjective rating

for a particular video under test, often referred to as the Mean Opinion Score (MOS), is used

to measure the perceptual quality of this video.

There are many aspects that must be considered in order to design and conduct a subject

test that can provide reliable and reproducible subjective data. Several international standards

by ITU, including ITU-R Rec. BT.500 [ITU02] for television systems as well as ITU-T Rec.

P.910 [ITU99] and ITU-R Rec. BT.1788 [ITU07] for multimedia applications, provide detailed

guidelines for designing and conducting subjective tests. Some of the important aspects are

summarized and discussed in the following.

2.2.1.1 Test Material

Content is one of the most important factors to be considered when it comes to video quality

assessment. The same level of impairment can have a very different impact on the perceptual

quality for different video contents. For example, reducing the temporal resolution is more

visually annoying for a video with high motion than for one with little or no motion. Therefore,

various types of source video material should be used in a subjective test so that the results

can be generalized. It is recommended by ITU to select the source material based on the

spatial and temporal perceptual information, which are parameters that measure the spatial

and temporal complexity of a video scene, respectively. The two parameters are defined as

SI = maxtime{stdspace[Sobel(Fn)]} (2.1)

TI = maxtime{stdspace[Fn − Fn−1]} (2.2)

where Fn denotes the video frame at time n and Sobel(Fn) represents the frame filtered by the

Sobel filter. More details on how to calculate SI and TI can be found in [ITU99]. Test video
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sequences with different scene characteristics can be obtained from a number of organizations

such as ITU, VQEG, 3GPP and others.

2.2.1.2 Test Subject

In general, there are two types of test subjects: expert and non-expert. Experts are people

who are directly involved with image/video quality evaluation as part of their work or have

extensive experience assessing image/video quality. Experts know what they are looking

for and can finish a test fast, but they usually have a pre-determined way of looking at a

test video, which an average end-user may not have. Therefore, only non-experts should

be selected for tests whose results are to be generalized to the average end-user. In order

to produce statistically valid results, a large number of test subjects should be used. It is

recommended in [ITU07] to have at least 15 test subjects. As an example, VQEG requires

subjective ratings from 24 valid test subjects for its multimedia project [VQE08a]. All test

subjects should have normal or corrected-to-normal visual acuity and normal color vision.

2.2.1.3 Test Method

A test method describes how the test videos are presented to the test subjects and what scale

to use for the subjective ratings. Particular test methods should be used to address particular

assessment problems. For video quality assessment, where the subjects are asked to assess

the overall perceived quality of any given presentation, there are three most commonly used

test methods that are standardized by ITU:

� Double Stimulus Continuous Quality Scale (DSCQS) [ITU02]: In DSCQS, two videos

are presented to the viewer in one test case. One is the unprocessed source video,

and the other is a processed version of that source. The order of the two videos is

randomized so that the viewer would never know which one is the source video (hidden

reference). As illustrated in Figure 2.4(a), the videos are presented twice, and during

the second repetition, the viewer rates both videos on a continuous quality scale shown

in Figure 2.4(b). The difference between the two ratings is used to indicate the quality

of the processed video.

� Absolute Category Rating (ACR) [ITU99]: ACR is a single stimulus method, where the

test videos are presented one at a time (see Figure 2.5(a)) and rated independently on a

five-point quality scale (see Figure 2.5(b)). The presentation order should be randomized

for each subject to reduce the contextual effect∗. Oftentimes, an unprocessed version

∗The contextual effect refers to the tendency for the test subjects to rate the quality of a presentation
depending on the quality level of the most recent presentations. A detailed discussion on the contextual effect
can be found in [CGHS99]. Single stimulus test methods are generally more susceptible to the contextual effect
because of the lack of an immediate reference.
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(a) (b)

Figure 2.4: Double-Stimulus Continuous Quality Scale (DSCQS) [ITU02]: (a) presentation
structure; (b) continuous quality scale.

(a) (b)

Figure 2.5: Absolute Category Rating (ACR) [ITU99]: (a) presentation structure; (b) five-
point quality scale.

(a) (b)

Figure 2.6: Subjective Assessment of Multimedia Video Quality (SAMVIQ) [ITU07]: (a)
presentation structure; (b) continuous quality scale.
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of each source video is included in the test as a hidden reference, and the difference

between the rating of a processed video and its hidden reference is used to indicate the

quality of this processed video. This variation of ACR is referred to as ACR with hidden

reference removal (ACR-HR).

� Subjective Assessment of Multimedia VIdeo Quality (SAMVIQ) [ITU07]: SAMVIQ is

specifically designed for multimedia contents and differs significantly from conventional

test methods that are originally designed for television systems (e.g., DSCQS, ACR).

Unlike DSCQS and ACR, in which the test videos are presented sequentially, SAMVIQ

allows the viewer to randomly select the test videos through a computer graphic inter-

face. As illustrated in Figure 2.6(a), the test is carried out scene by scene. For each

scene, the test videos (including an explicit reference and a hidden reference) are rated

one at a time on a continuous quality scale shown in Figure 2.6(b). The viewer may

access each test video (through an access button) several times, compare between the

test videos as well against the explicit reference, and adjust the ratings accordingly. The

test videos and the buttons are randomly associated to reduce the contextual effect. The

difference between the rating of a processed video and its hidden reference is used to

indicate the quality of this processed video.

Each of the above three test methods has its merits and disadvantages. DSCQS is widely

accepted as an accurate and reliable test method for television systems and VQEG has used

DSCQS in its FR-TV tests [VQE00, VQE03]. Since each test video is paired with an immedi-

ate reference in a randomized order, contextual effects are minimized with DSCQS, as verified

by the study in [CGHS99]. However, since the procedure of DSCQS is very time-consuming,

only a small number of test conditions can be tested in a test session with DSCQS. In compar-

ison, ACR can test 4 times as many conditions as DSCQS in the same time period. Therefore,

ACR is more favorable for multimedia applications, where a large number of test conditions

may exist. The disadvantage of ACR is that as a single stimulus method, it is susceptible to

the contextual effect and may provide unreliable subjective data. But with hidden reference

and randomized presentation order, it has been shown in some studies [PW03, HTG05] that

a single stimulus method can produce reliable subjective data comparable to DSCQS. As a

result, VQEG decided to use ACR-HR in its MM test [VQE08a]. SAMVIQ, with its interac-

tive interface, allows the viewer to control the pace of the test. Compared to the continuous

sequential presentation structure used in DSCQS and ACR, this interactive method minimizes

the error of judgment caused by the lack of concentration. Furthermore, SAMVIQ provides

the viewer with the ability to review and compare the test videos against each other as well

as against the explicit reference in a randomized order, adjusting the ratings at the same time

as appropriate, which not only significantly reduces the contextual effect, but also helps the

viewer to provide more appropriate quality ratings for contents that they find difficult to rate
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on a single viewing, especially when various types of quality impairments are involved. The

major drawback of SAMVIQ is that with the capability to review the test videos multiple

times, the reviewer may take more time for each test video compared to ACR. Various studies

have compared SAMVIQ with traditional methods for multimedia applications. [Bli06] com-

pares SAMVIQ with DSCQS and shows that SAMVIQ provides more reliable results than

DSCQS. SAMVIQ is compared to ACR in [HTBH+07], [PP08] and [RPCH10]. [HTBH+07]

suggests that SAMVIQ provides results comparable to ACR except for some types of error con-

ditions, but concludes that further investigations are necessary. Both [PP08] and [RPCH10]

find that for a given number of test subjects, SAMVIQ provides more accurate subjective data

than ACR, but ACR with more subjects can achieve comparable accuracy. It is also shown

that the difference between SAMVIQ and ACR is more significant for videos with higher

resolutions [PP08], and for videos that are difficult to differentiate in terms of perceived qual-

ity [RPCH10].

Considering the merits and drawbacks of each subjective test method, SAMVIQ is selected

as the test method in the work presented in Chapter 4 for collecting subjective ratings.

2.2.1.4 Test Procedure

A subjective test should be carried out in a controlled environment with viewing conditions

conforming to the general guidelines provided by ITU (e.g., in [ITU07]), such as the illumi-

nation of the test cabinet, the specifications of the display, the viewing distance, etc. Prior to

the test, the test subjects should usually be screened for normal visual acuity or corrected-

to-normal acuity and for normal color vision. Before starting the test, written instructions

(so that all the subjects receive exactly the same information) should be provided to the test

subjects about the type of the assessment, the types of impairment that may occur, the test

method (including the presentation structure and the rating scale), etc. A training session

with a number of representative conditions should be provided to the test subjects for them to

get familiar with the test method as well as the impairment types and the quality range that

are likely to occur in the test. The sequences used in the training session should be different

from those used in the actual test. Questions regarding the test should only be allowed before

the actual test and need to be answered with care to avoid bias.

After the test, the subjective ratings should be reported along with the details of the test

setup. The test subjects are usually screened based on the reliability of their subjective ratings

to exclude ratings from the subjects that may have voted randomly or inconsistently. The

calculation of the subject reliability is typically based on the correlation between individual

ratings and the corresponding mean values over all the subjects. Details on the screening

process and the reliability measures can be found in [ITU02] for DSCQS, in [VQE08b] for

ACR and in [ITU07] for SAMVIQ.
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2.2.2 Objective Video Quality Assessment

Objective video quality assessment is to use objective metrics to estimate the perceptual video

quality without involving human subjects. Since human perception of video quality is a very

complex process, which depends on many different factors such as impairment types and lev-

els, video content characteristics, display properties, viewing conditions, user expectations

and others, finding an objective metric that provides accurate and reliable quality estimate

is extremely challenging. A large amount of effort has been devoted to develop and evaluate

objective quality metrics. For example, VQEG has been organizing projects† that collect pro-

posals on objective quality metrics and perform validation tests for various video applications.

These projects have resulted in ITU standardization of objective quality metrics for standard

definition television ([ITU04a][ITU04b]) and for multimedia applications [ITU08].

Objective video quality metrics are generally classified into full-reference, no-reference and

reduced-reference categories [ITU00] based on the availability of the original video that may

be used as a reference for comparison to the processed video. Figure 2.7 illustrates how

different types of metrics can be deployed in a typical video transmission system.

� Full-reference (FR) metrics require the entire reference video, pixel by pixel, to be

available and evaluate the quality of the processed video by comparing it to the reference.

It is generally accepted that FR metrics provide the best accuracy in estimating the

perceptual video quality and have been proven to have high correlation with subjective

test results (e.g., [ITU04b]). However, the requirement of the entire reference places

significant limitations on the practical usability of FR metrics, as the reference is often

not accessible for many practical video applications, such as in-network in-service video

quality monitoring. FR metrics are most suitable for off-line applications such as codec

evaluation or lab testing, and are potentially applicable to real-time in-service quality

monitoring or optimization at the source. For example, in Chapter 5 of this dissertation,

an FR metric is applied in a real-time wireless video transmission system for in-service

video quality optimization.

� No-reference (NR) metrics analyze the processed video directly without comparing to

a reference. This makes them much more flexible than FR metrics in terms of applica-

bility. However, although humans are usually able to reliably evaluate the quality of a

processed video without using any reference, it turns out that designing such objective

metrics is a very difficult task, where the main challenge lies in distinguishing impair-

ment from content. As a result, assumptions need to be made about the type(s) of

impairment and/or the video content, which makes NR metrics subject to errors caused

by video content resembling a certain type of impairment (e.g., edges at the block

†See http://www.vqeg.org for more information.
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Figure 2.7: Deployment of FR, RR and NR metrics in a typical video transmission system.

boundaries in the original content could be interpreted as blocking artifacts caused by

video compression). There are two types NR metrics: pixel domain (NR-P) metrics

and bitstream domain (NR-B) metrics [KCRV06]. NR-P metrics analyze the decoded

video, while NR-B metrics only have access to the encoded bitstream. Obviously, NR-B

metrics are the best option for in-network in-service quality measurement.

� Reduced-reference (RR) metrics extract certain features (e.g., spatial and temporal in-

formation) from the reference video, and evaluate the quality of the processed video

based only on those features. The extracted features need to be transmitted over a reli-

able channel to the location where the video quality is to be measured, which introduces

overhead to the system. The concept of RR metrics gives the possibility to provide

better quality estimate (with overhead) than NR metrics at places where the reference

video is not available. Usually, the more reference information is available, the more

accurately the metric can estimate the perceptual video quality [WP01], but the more

overhead there will be for transmitting the reference data. The compromise between

accuracy and overhead can be tailored for different applications.

The most popular objective metric for video quality assessment is PSNR, which is an FR

metric defined as

PSNR = 10 · log10(
I2max
MSE

), (2.3)

where Imax represents the largest possible sample value ( Imax = 255 for 8-bit representation)

and MSE is the mean squared error (MSE) given by

MSE =
1

NR ·NC

NR∑
i=1

NC∑
j=1

(f(i, j)− f̂(i, j))2. (2.4)

Here NR and NC are the number of rows and columns in a video frame, and f(i, j) and f̂(i, j)

represent the sample values of the (i, j)th pixel in the reference and processed video frame,
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Figure 2.8: Block-diagram of HVS model-based quality assessment. “Contrast Sensitivity
Function” may also be implemented as a filter before the “Multi-Channel Decomposition”.
Adopted from [WSB03].

respectively. Usually when applying PSNR for evaluating video quality, only the luminance

component is considered (Y PSNR), and the average PSNR, calculated over all video frames,

is used as the quality measure, which can be written as

PSNR =
1

Nf

Nf∑
i=1

Y PSNRi, (2.5)

where Nf is the number of frames. This definition of the average PSNR is assumed throughout

this dissertation, unless stated otherwise.

The popularity of PSNR is mostly due to its simplicity and mathematical tractability

in optimization problems. However, it neglects the properties of the HVS and therefore can

have poor correlation with the quality perceived by humans [WB09, VQE03]. The same PSNR

value may indicate significantly different perceptual qualities for different contents and dis-

tortion types (see [WSB03] and [WB09] for some illustrative examples). In order to improve

the performance of objective quality metrics, models that account for a number of relevant

psychophysical HVS features (such as multi-channel decomposition, contrast sensitivity func-

tion, masking, and others [MF06]) are developed and adopted for quality assessment. Most

HVS model-based quality metrics aim to quantify the HVS sensitivity of the error between the

reference and the processed signal, typically by modeling the HVS features in a sequential pro-

cess as shown in Figure 2.8. Details on HVS modeling as well as reviews of HVS model-based

metrics for image and video quality assessment can be found in [Win06, WSB03, Win99]. In

general, HVS model-based metrics are FR metrics that may provide accurate estimates of the

perceptual quality. However, the explicit modeling of HVS is usually associated with signif-

icant computational complexity. In addition, most HVS model-based metrics are developed

based on psychophysical experiments focusing on the threshold of visibility (near-threshold),

which may not correlate well with the perceived quality of clearly visible distortions (supra-

threshold, often the case in multimedia applications).

Another group of metrics, sometimes referred to as engineering metrics [Win06], takes

a more practical approach to incorporate HVS properties into objective quality assessment.



2.2. VIDEO QUALITY ASSESSMENT - AN OVERVIEW 21

Instead of relying on sophisticated general models of HVS, these metrics estimate the overall

quality based on the extraction and analysis of certain features or artifacts in the image/video,

taking into account the HVS properties in a simplified or implicit manner. While such metrics

are not as versatile, they generally can be computed efficiently and can perform well for

specific applications. Engineering metrics cover the whole spectrum of FR/RR/NR metric

categories. Many of the FR engineering metrics share the concept of extending PSNR by

including certain spatial and/or temporal features of the video. For example, [TGP98] adopts

a weighting function based on local gradient measures to simulate the spatial masking effect

of HVS. Chapter 4 presents a PSNR-based video quality metric that estimates the overall

perceptual quality in the presence of both spatial and temporal impairments. A review of

PSNR-based metrics can be found in Section 4.2. [WBSS04] and [WLB04] follow a new

philosophy that focuses on structural similarity (SSIM) instead of pixel-wise difference, where

the SSIM metrics compare the mean, variance and covariance of small patches inside the

reference and processed image/video frame, and combine the measurements into a single-

value quality metric. A RR metric is presented in [PW04], which uses a number of features

extracted from spatio-temporal blocks of the video. These features were selected empirically

from a number of candidates so as to yield the best correlation with the subjective data.

The size of the spatio-temporal blocks can be adjusted to control the trade-off between the

quality estimate accuracy and the amount of overhead [WP01]. A review of NR-P metrics

can be found in [Win06], most of which focus on measuring the strength of a certain type

of artifact (such as blockiness, blurriness, and others) or the combination thereof. [TCC02]

and [IKH+06] present NR-B metrics that estimate the PSNR (quantization error) for MPEG-2

encoded video frames based on the statistical properties of the quantized DCT coefficients.

NR-B metrics for estimating the impact of packet losses on the overall quality are proposed

in [RVS04] and [KCRV06].





Chapter 3

Low-Delay Error-Resilient Wireless

Video Transmission

In this chapter, error-resilient video transmission under stringent delay constraint is studied

for point-to-point wireless communication where per-packet feedback information can be gen-

erated and transmitted instantaneously from the receiver to the transmitter. A low-delay

error-resilient video transmission framework is developed, which utilizes the instantaneous

feedback both in the video encoder and in the transmitter to improve video quality with no

or controlled impact on the end-to-end delay.

3.1 Introduction

Due to the inherent unreliability of the wireless channel and the vulnerability of the com-

pressed video data against errors, transmitting compressed video over wireless channels has

created many technical challenges. The stringent delay requirement of interactive video ap-

plications makes these challenges even more difficult to overcome. Many those applications fit

into a general point-to-point wireless transmission scenario where a live video is transmitted

from one sender to one receiver over a wireless channel, and the distance between the sender

and the receiver is short enough for the sender to receive near instantaneous (i.e., within a few

milliseconds) feedback information from the receiver regarding the status of every transmitted

video packet. Examples of such applications include, among others, conversational applica-

tions (e.g., video walkie-talkie) and teleoperated applications (e.g, navigating or controlling

a teleoperator based on the video transmitted from a camera attached to it). This particu-

larly challenging scenario with very high practical relevance, i.e., point-to-point wireless video

transmission for interactive video applications with stringent delay requirement, is studied in

this chapter.

23
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Figure 3.1: Point-to-point wireless video transmission with instantaneous feedback. The end-
to-end delay in the system needs to meet the stringent delay constraint required by interactive
video applications.

The general system structure abstracted from the considered scenario is illustrated in

Figure 3.1. Video frames are captured live from a video camera, compressed on the fly by

a video encoder, and then packetized and transmitted over a wireless channel to a receiver.

During the transmission, the video packets may get corrupted in the wireless channel. The

receiver receives the packets, checks their integrity (e.g., through CRC) and forwards only the

useful packets to the video decoder; the packets that are corrupted during the transmission

or arrive too late are discarded. The forwarded packets are then decoded and the lost image

areas are concealed before the reconstructed video frames are finally displayed to a human

user. In this system, the receiver is able to send per-packet feedback information back to the

transmitter instantaneously, informing the transmitter about the status of every transmitted

packet. The end-to-end delay in the system, i.e., the time needed for an event occurring in

the camera’s view to be displayed to the user, needs to meet the stringent delay constraint

required by interactive video applications.

For the considered system, two major challenges exist. First, the error-prone nature of the

wireless channel can cause significant quality degradations in the reconstructed video displayed

to the user. Error resiliency mechanisms must be considered to improve the video quality.

Second, the stringent delay constraint, generally required to be below 150ms [ITU01] and

often in the range of 30-100ms [DSB+99, BO00], poses additional challenges for the system

design, including the error resilience design. To address those challenges, a low-delay error-

resilient video transmission framework is developed and presented in this chapter. To meet

the particularly low delay constraint, the system is designed in such a way that each video

frame has to be transmitted within a fixed-sized time slot, which allows the system to work

without large sender and receiver buffers that would normally introduce significant delay. The

available instantaneous feedback is exploited for both video coding and wireless transmission

to increase the error resiliency of the system. The video encoder, before it starts to encode a
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new frame, would have the necessary information from the feedbacks about which packets in

the reference frame being available at the decoder. Based on this information, the encoder may

exclude the corresponding lost areas from the motion compensated prediction (MCP) loop or

conceal the reference frame in an encoder/decoder synchronized manner, both of which can

avoid error propagation entirely without sacrificing the compression efficiency too much. At

the transmitter, retransmission of the lost packets is integrated into the low-delay framework

without introducing any additional delay. This is realized by dynamically allocating the

fixed resource between video source coding and retransmission. In addition, different resource

allocation strategies are considered so that the system can be even more adaptive to varying

channel conditions. As a result of the above designs, the proposed framework achieves very low

end-to-end delay and provides excellent error resilience for a wide range of channel conditions.

The rest of this chapter is organized as follows. A review of the related work is given in

Section 3.2. Section 3.3 presents the low-delay design of the proposed framework. The error

resilience designs, i.e., the error-resilient video coding and the delay-aware channel-adaptive

retransmission, are described in Section 3.4 and Section 3.5, respectively. Experimental results

are presented and discussed in Section 3.6 for performance evaluation. Several practical issues

encountered during the hardware implementation are discussed in Section 3.7. Section 3.8

gives a summary of this chapter.

3.2 Related Work

One of the major challenges in wireless video transmission is that even a small number of

lost packets may lead to significant degradation in the reconstructed video quality, ultimately

rendering the video service unacceptable to the users. This happens because when video

packets get lost, mismatch between the reference frames in the encoder and the decoder

develops and leads to the infamous error propagation problem (see Section 2.1.1). Generally,

this challenge can be addressed in two ways: a) by reducing the number of video packets lost

during the transmission; b) by mitigating the impact of packet losses on the reconstructed

video quality.

A video packet may get lost when it is corrupted in the wireless channel. There are two

basic techniques that can be used to recover the packet. One is to correct the corrupted

packet through channel coding (i.e., packet-level forward error correction (FEC) [Hui96]),

which adds a certain amount of redundancy (parity packets) to the compressed video for

error correction. The other is to retransmit the corrupted packet based on the feedback

information from the receiver. For the considered scenario of point-to-point wireless trans-

mission with feedback, retransmission-based error control is more flexible and efficient in

adapting to the time-varying wireless channel conditions. However, retransmission is usu-

ally considered unsuitable for real-time video applications because of the additional delay it
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introduces [ZEP+06]. Delay-constrained retransmission [WHZ00] may be useful for stream-

ing applications where relatively large delay can be tolerated, but cannot meet the stringent

delay requirement in interactive applications. In the proposed framework, however, retrans-

mission can be integrated without introducing any additional delay, which is achieved by

proactively and dynamically adjusting the video source coding rate to accommodate the po-

tential retransmissions, keeping the total rate fixed. This can also be regarded as a joint

source-channel resource allocation scheme where a fixed transmission rate is shared between

video coding and retransmission. Similar ideas of considering retransmission data rate in

video source coding rate control are adopted in [HOK99] and [APS01], so that the source

coding rate would be reduced during poor channel conditions. But both of them consider a

relatively large buffer for rate control and the rate adjustment is reacting to the retransmis-

sion data rate in a previous time slot, in which case retransmission still leads to increased

end-to-end delay. The RESCU scheme proposed in [RJ00] allows retransmission for real-time

interactive video transmission by changing the frame dependencies, but would not be able to

fully utilize the available instantaneous feedback information. With RESCU, the compres-

sion efficiency is always reduced due to the constantly increased prediction distance, and the

frame-based structure (no slice structure) is very vulnerable to the error-prone nature of the

wireless channel. In this chapter, considering the low complexity requirement of most wireless

applications, the joint source-channel resource allocation problem is formulated in a rather

simple but effective manner based on the current channel condition. At significantly higher

complexity, it can also be solved within a rate-distortion (RD) optimization framework, for

example, using a formulation similar to [HCC02]. Furthermore, different resource allocation

strategies are applied for different channel conditions within the low-delay framework, leading

to high adaptability to a wide range of channel conditions.

Video packets may also be lost when transmitted over a CBR channel and the available

transmission data rate cannot accommodate the instantaneous video source data rate gen-

erated by the video encoder (see Section 2.1.1 and Figure 2.2). This can be alleviated by

buffering a certain amount of video data at the cost of increased end-to-end delay, which how-

ever may not be acceptable for interactive applications with low-delay requirement. In this

case, the accuracy of the rate control scheme would have significant impact on the resulting

reconstructed video quality. Rate control has been widely studied for the DCT-based hybrid

coding structure adopted in all common video compression standards. Most of the proposed

rate control methods determine the quantization level q from the target bit rate R based on

an explicit rate-quantization (RQ) model. Some RQ models [RCL99] are deducted analyti-

cally from the information entropy theory, while others are determined empirically based on

mathematical functions (of 1/q), such as linear function [MGL05, LLS07a], quadratic func-

tion [DL96, LCZ00, WK08], and others [LOK96]. In [HKM01, HM01, HM02a, HM02b], a rate
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model is constructed in the ρ-domain instead of the q-domain, where ρ represents the percent-

age of zeros among the quantized transform coefficients. It has been shown that compared to

q-domain model-based approaches, ρ-domain rate control can achieve higher accuracy with

low computational complexity. Rate control can be carried out at the frame level, the slice

level or the MB level. More accurate rate control can be achieved at a smaller unit level, at the

cost of slightly increased overhead due to the signaling of more quantization information. In

this work, since very accurate rate control is required, an MB-level rate control scheme based

on the ρ-domain rate control in [HM02a] is adopted, with some modifications that improve

the accuracy at low bitrate.

Video packets may still get lost during the transmission, in spite of all the efforts to avoid

it. When it happens, the reference frame in the decoder becomes erroneous compared to

that in the encoder, and the error propagates in both spatial and temporal direction, caus-

ing particularly annoying artifacts in the reconstructed video. Various approaches have been

proposed to mitigate the impact of error propagation. At the decoder, the lost image areas

are concealed using spatially and/or temporally adjacent contents. More sophisticated er-

ror concealment methods may reduce the initial error level, resulting in less severe artifacts

from the error propagation. However, those methods are usually associated with high com-

plexity and without inserting an I-frame to stop the error propagation, the artifacts would

eventually become unbearable. At the encoder, by sacrificing the compression efficiency, the

video can be encoded in a more error-resilient manner. Error-resilient encoding approaches

can be categorized into two classes according to the availability of feedback. Without feed-

back, error resilience can be improved by deliberately encoding a certain amount of MBs in

INTRA mode. In order to determine how many and which MBs should be encoded in IN-

TRA mode, error statistics of the channel, such as the average PER, need to be estimated.

Those deliberately INTRA-coded MBs can be selected randomly [Sto02], heuristically based

on the characteristics of the video content [LV00], or they can be added implicitly by includ-

ing the expected channel distortion (i.e., distortion caused by packet losses, modeled based

on the average PER) into a rate-distortion (RD) optimized INTRA/INTER mode decision

process [ZRR00, WFS00, SFG00, YR07] that usually only considers source distortion (i.e., dis-

tortion caused by compression). However, due to the lack of feedback, those INTRA-update

schemes have to add significant amount of redundancy to be able to effectively reduce the

artifacts caused by error propagation.

When feedback is available, the performance can be significantly improved. For instance,

error tracking [SFG97, GF99] utilizes feedback to track the error from the original occurrence

to the current frame and stops error propagation by encoding all MBs in the affected area in

INTRA mode. Simply INTRA updating the affected area may lead to significantly reduced

compression efficiency. Reference picture selection schemes [FNI96, ITU96, LG06] stop the
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error propagation by restricting MCP to use only the most recent error-free frame as the ref-

erence, at the cost of reduced compression efficiency due to increased prediction distance. The

feedback information can also be used to improve the performance of RD-optimized mode de-

cision through more accurate estimate of the channel distortion [ZRR00, WFS00, LC04, LG06]

or even through re-decoding of the frames affected by error propagation [Wad89]. In those

schemes, if the round trip time is larger than a frame interval, error propagation can not

be stopped entirely as done by error tracking or by reference frame selection, and the com-

putational complexity can be significantly higher than the non-feedback counterpart, as the

expected channel distortion needs to be constantly re-computed or frames to be re-decoded.

However, in this work, with instantaneous feedback available in the proposed framework, error

propagation can be avoided entirely and therefore no channel distortion estimation or frame

re-decoding is necessary in the mode decision. The lost areas in the reference frame can be

concealed in an encocer/decoder synchronized manner to completely eliminate the mismatch

between the encoder and the decoder. In this way, the system is highly resilient against trans-

mission errors with the least possible impact on the compression efficiency. In cases where

an encocer/decoder synchronized error concealment cannot be guaranteed, e.g., because the

encoder cannot replicate the error concealment scheme used in the decoder, error propagation

can still be entirely avoided by excluding the lost areas from the temporal prediction, at the

cost of reduced compression efficiency.

3.3 Low-Delay System Design

In order to meet the stringent delay requirements of interactive applications, the video trans-

mission system is designed in such a way that the end-to-end delay is as low as possible.

Therefore, the video is encoded in the IPP...P structure and only the encoded bitstream of

the current frame is buffered; no additional buffering is performed to smooth out the varia-

tions in the bitrate generated by the video encoder. It is assumed that the wireless channel is

a CBR channel with constant packet size and a feedback communication channel is available.

3.3.1 End-to-End Delay Analysis

The general timeline of the proposed low-delay system is illustrated in Figure 3.2, showing

how the system operates. Assuming at a certain point of time, an event occurs in the camera’s

view. This event could be someone talking or gesturing in a video conferencing session, or

some occurrence as the result of a remote control action. Since a video camera captures

at a fixed frame rate, it would take some time TCAP for the event to be captured and for

the captured frame (i.e., Frame i) to be accessible to the video encoder. Then, the video

encoder starts encoding Frame i into a number of independently decodable slices with the
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Figure 3.2: Timeline of the low-delay system design. To achieve the smallest possible end-to-
end delay, the transmitter starts transmit a video frame as soon as the first packet from that
frame is available; no additional buffering for rate smoothing is performed.

same size, each of which is encapsulated into a video packet for transmission. Since no

additional buffering is considered, the transmitter starts transmitting as soon as the first

slice is encoded and packetized (taking time TENC), assuming that the transmitter has access

to the available slices during the encoding of a frame. For each received video packet, the

receiver sends back the corresponding feedback information, informing the transmitter about

the status of the packet. The feedback information can be negative acknowledgment (NACK)

for every corrupted packet, or positive acknowledgment (ACK) for every correctly received

packet, or it can be both NACK and ACK, depending on specific system conditions, especially

the reliability of the feedback channel. The packets that belong to Frame i are transmitted

and received only during a fixed-size time slot, referred to as the transmission delay TTR;

later packets would be considered lost. The reconstructed version of Frame i would be ready

for display after the decoding time TDEC . Finally, after a certain display delay TDIS , the

reconstructed Frame i, i.e., the event occurs at the camera side, is displayed to the user at the

receiver side. Therefore, the end-to-end delay of the application, namely the time it takes for

the event to be displayed to the user, is given by

TTOTAL = TCAP + TENC + TTR + TDEC + TDIS . (3.1)

Since the display device operates at a fixed frame rate, the time from a frame being

captured to it being ready for display needs to be constant for a continuous playout. This

constant delay, referred to as the communication delay TCOM here (TCOM = TENC + TTR +
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TDEC), is typically given as a system parameter when designing a video communication system

and is referred to as the end-to-end delay in most of the literature†. Typically, the reason for

not discussing the capture and display delay is because the communication delay is usually the

part that one may have control over (e.g., by controlling the amount of video data buffered) and

is often much larger than the capture and display delay. However, for interactive applications

that may require the end-to-end delay to be as low as 30-100ms, capture and display delay

could be significant factors and therefore are briefly discussed in the following.

� The capture delay TCAP consists of two elements: 1) the time from the occurrence of

the event to the next capture opportunity and 2) the time from the camera starting to

capture to the captured frame being accessible to the video encoder. The first element

is a random variable which is related to the capture frame rate. For 30fps, it varies

between 0ms and 33ms, with an average value of 17ms. This delay could be reduced

by increasing the capture frame rate, but it would also generate more raw video data

and require the display to match the higher frame rate. The second element is usually

a constant delay in the order of several milliseconds for the entire frame to be captured.

It can be reduced by enabling the encoder to start encoding as soon as a smaller part

(e.g., a row of MBs) of the frame is available.

� The display delay TDIS , which is the time from a reconstructed frame being moved

into the display buffer to it actually being displayed to the user, also consists of two

elements similarly as the capture delay. The first element, the time from a frame being

ready to the next display opportunity, depends on the display frame rate and the syn-

chronization among the receiver, the decoder and the display controller. With careful

synchronization, which may be difficult to realize in practice, this delay can be kept

very small. Otherwise, it can be as high as 33ms for a display frame rate of 30fps.

The second element is the time the display device takes to present the frame onto the

screen. It is related to the response time of the display and usually in the order of

several milliseconds.

Considering that the capture delay TCAP and the display delay TDIS may add up to

20-80ms or even larger, there is actually very little room for the communication delay in the

total delay budget. Even in cases where it is possible to buffer a few frames, the impact on

the resulting video quality would be very small in the proposed system. Therefore, without

loss of generality, the system is designed to operate without buffers for rate smoothing, so

that the communication delay can be kept as low as possible without the usual buffering

delays [BO00]. This is achieved by assigning a fixed-size time slot (i.e., bit budget) for each

†The constant communication delay is also referred to as the end-to-end delay in Section 2.1.1 for general
discussion of the challenges in wireless video communication.
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frame as shown in Figure 3.2. The encoder and the transmitter, as well as the receiver and

the decoder are assumed to be able to operate in parallel, so that the transmitter can start

transmitting a packet as soon as a slice is encoded, and the decoder can start decoding a slice

as soon as a packet is received. In this way, the encoding delay TENC and the decoding delay

TDEC in Equation (3.1) are only the time needed to encode/packetize and decode one slice,

respectively. Since the slice size in a wireless video transmission system is often quite small

for error resiliency purpose, TENC and TDEC are usually in the order of a few milliseconds.

Note that TDEC also includes the time for concealing the lost slices, which could be significant

depending on the complexity of the error concealment method and the number of lost slices.

The same is true for TENC in the case where the encoder conceals the reference frame in

a encoder/decoder synchronized manner. The transmission delay TTR corresponds to the

fixed-size time slot assigned to a frame†, which is related to the target frame rate of the video

application. For 30fps, TTR is 33ms. Here, for clarity, TENC , TTR and TDEC are assumed to be

constant to guarantee a constant TCOM , which for example can be realized by a conservative

delay budgeting that considers worst-case scenarios. With the proposed low-delay design, for

a frame rate of 30fps, TCOM could be as low as about 40ms, and the end-to-end delay could

be in the range of 60-120ms, which would be able to meet the requirements of most interactive

applications.

3.3.2 Rate Control Algorithm

In the above low-delay system design, each video frame is to be transmitted within a fixed-size

time slot, which corresponds to a fixed bit budget for every frame. However, a video encoder

usually does not output a constant number of bits from frame to frame. This variation in

the source bitrate, usually smoothed out by using large sender/receiver buffers, may have

significant impact on the reconstructed video quality in a low-delay system that cannot afford

buffering delays. Specifically, when the number of bits of an encoded frame exceeds the given

bit budget, the remaining video packets in this frame would all be considered lost. In this case,

in order to reduce the number of lost packets, the encoder can be configured conservatively

to generate less than the available bit budget, so that the gap between the encoder’s target

and the real budget can absorb the variation. However, by doing this, part of the available

transmission rate is wasted and the effective source coding rate is reduced, leading to stronger

quantization and lower visual quality. How much the target coding rate needs to be reduced

depends on the degree of the variation, which is determined by the accuracy of the rate control

algorithm adopted in the video encoder. Therefore, a more accurate rate control algorithm

would result in a better reconstructed video quality in the proposed low-delay design.

†The propagation delay is negligible in the considered point-point wireless communication scenario.
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The rate control algorithm adopted in this work follows the ρ-domain rate control (ρ-RC)

presented in [HM02a], which is based on a linear rate model between the bitrate and the

percentage of zeros (ρ) among the quantized DCT coefficients:

R(ρ) = θ · (1− ρ), (3.2)

where θ is a content-dependent model parameter and can be adaptively estimated during

the encoding. Let RT be the target number of bits for a video frame, the ρ-RC algorithm

determines the quantization parameter QP for each MB in the following steps :

Step 1. Initialization. Assuming that motion estimation, mode decision and DCT have

been performed for the entire current frame, generate the distributions D0(x) and D1(x)

for the DCT coefficients in the intra-coded and inter-coded MBs, respectively. Set Nm

(the number of MBs encoded) = Rm (the number of bits generated) = ρm (the number

of zeros produced) = 0. Set θm = 7, which is its typical value.

Step 2. Determine the QP for the current MB. Let N denote the total number of MBs

in a frame, the number of zeros to be produced in the remaining MBs can be calculated

by

ρr = 384 · (N −Nm)− Rr
θm

, (3.3)

where 384 · (N − Nm) is the total number of remaining DCT coefficients and Rr
θ is

the number of non-zeros that corresponds to the remaining available Rr = RT − Rm
bits according to (3.2). Determine the QP based on the one-to-one mapping between ρ

and QP, which is dependent on the specific quantization scheme (refer to [HM02a] for

details). Encode the current MB with this QP.

Step 3. Update. Let R0 and ρ0 be the number of bits and number of zeros produced

by encoding the current MB, respectively. Set Nm = Nm + 1, Rm = Rm + R0 and

ρm = ρm + ρ0. Subtract the frequencies of the DCT coefficients of the current MB from

D0(x) or D1(x) according to its coding type. If Nm ≥ 10, update θm based on the

number of bits and the number of non-zero coefficients generated so far by

θm =
Rm

384 ·Nm − ρm
. (3.4)

Step 4. Loop. Repeat Step 2 and Step 3 for the next MB until all MBs in the current

frame are encoded.

In video coding, not only DCT coefficients consume the bit budget (i.e., RT ), but so

as other information such as motion vectors and header information, all of which can be

considered as overhead in this context. Since the number of bits needed for encoding the

overhead typically depends on the results of the quantization and therefore cannot be precisely
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calculated before the rate control process starts, it needs to be estimated prior to quantization

and/or updated during the rate control. The ρ-RC algorithm in [HM02a] does not explicitly

separate the bits for DCT coefficients and for overhead, but the overhead bits can be considered

part of Rm when computing the remaining available bit budget Rr in (3.3). However, although

ρ-RC performs accurately at medium to high bitrate when the amount of overhead bits is

small compared to that of the coefficient bits, its performance is significantly worsened at

low bitrate when the overhead bits becomes significant. When the rate control begins, ρ-RC

would overestimate the budget for coefficient bits and choose a QP that is smaller than it

should be. The QP would become larger as the rate control proceeds and the number of

overhead bits is updated and removed from the remaining bit budget. As a result, not only

the resulting number of bits would not match well with the target, but also the QPs within a

frame would vary significantly, resulting in a degraded visual quality. Therefore, in this work,

the number of overhead bits is handled differently to improve the performance of the ρ-RC

algorithm, especially that at low bitrate. First, before quantizing the first MB, the number of

overhead bits is estimated from that in the previous frame and removed from the bit budget.

Then during the rate control process, the difference between the number of overhead bits in

the current frame so far and that in the previous frame at the same position is computed and

the remaining budget is updated accordingly. In this way, the encoder would start with a QP

quite close to the best suitable QP and adaptively refine it during the encoding process. So

the remaining bit budget Rr in (3.3) is written as:

Rr(i) = RT (i)−RH(i− 1)−RmC (i)− (RmH(i)−RmH(i− 1)), (3.5)

where RT (i) is the target number of bits for the current frame, RH(i− 1) is the total number

of overhead bits in the previous frame, RmC (i) is the number of coefficient bits produced in the

current frame so far, and RmH(i) and RmH(i− 1) are the number of overhead bits produced in

the current and previous frame up to the current MB, respectively. Note that Equation (3.5)

is identical to the original ρ-RC algorithm for the first I-frame, and in general would not work

as well for an I-frame or a P-frame directly following an I-frame. For those frames, the number

of overhead bits could be estimated by a rate model for the overhead bits, such as the one

presented in [KSK07].

3.4 Error-Resilient Video Coding

As mentioned in Section 3.3, a video frame in this work is encoded into several slices. Each slice

can be decoded independently from the other slices in the same frame, so that losing one packet

during the transmission would not result in the loss of an entire frame. The lost packets are

concealed at the decoder based on the spatially and/or temporally adjacent pixels. However,

because of the error propagation, even a few packet losses can still cause significant degradation
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in the video quality, which is one of the major challenges of transmitting compressed video

data over error-prone channels, especially over wireless channels. In the proposed framework,

the available instantaneous feedback from the receiver is utilized in the encoder in such a way

that the error propagation is entirely avoided. With the proposed error resilience design, the

image error caused by concealment is constrained within the current frame and the system

is highly resilient against transmission errors with minimal sacrifice in compression efficiency.

Two error resilient coding schemes are discussed in this section, each suitable for a different

set of specific system situations. In this work, it is assumed that the encoder uses only one

previous frame as the reference.

3.4.1 Error-Resilient Motion Estimation

Error propagation happens when the decoder uses an erroneous version (compared to the

one used in the encoder) of the previous frame as the reference in the MCP to reconstruct

the current frame. Typically, the encoder references the normally decoded version, which

would also be available at the decoder if there is no packet loss during the transmission. But

with packet losses, the decoder has to conceal the lost areas in the previous frame, resulting

in errors that propagate in both spatial and temporal directions. However, in the proposed

framework, when the encoder starts to encode a new video frame, all† the acknowledgments

for the packets in the previous frame (i.e., the reference frame) are already available at the

encoder (see Figure 3.2), which allows the encoder to avoid error propagation entirely by

excluding the lost packets from the motion estimation process. In other words, the encoder

uses only the areas that are correctly received at the decoder as the reference so that no error

would occur when decoding the current frame at the decoder. Although the decoder may still

have an erroneous version of the previous frame, the concealment errors would not propagate

because the erroneous parts are not used as predictions. In this work, this scheme is referred

to as error resilient motion estimation (ERME), which is illustrated in Figure 3.3. Excluding

the lost MBs in the reference frame from the motion estimation would result in a reduced

compression efficiency, as some MBs in the current frame may not be able to find a good

prediction and therefore need to be encoded in the INTRA-mode.

3.4.2 Synchronized Error Concealment

Although ERME can avoid error propagation, the decrease in the compression efficiency may

be quite significant. If the encoder also knows how the lost image areas are concealed at the

decoder, it can perform exactly the same error concealment on the same areas in the reference

†The acknowledgments for the last few packets may not be available yet when the encoding starts if there is
some feedback delay. However, since the motion estimation has a limited search range, as long as the feedback
delay is not too large (assumed in this work), those acknowledgments can still be incorporated later without
any influence on the performance of the error resilient coding schemes here.
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Figure 3.3: Error resilient motion estimation at the encoder. The lost MBs in the reference
frame are excluded from the motion compensated prediction at the encoder.

Figure 3.4: Synchronized error concealment at the encoder. The lost MBs in the reference
frame are concealed at the encoder in a encoder/decoder synchronized manner.

frame as if they were not available either at the encoder. By doing this, the encoder and

the decoder are resynchronized in the sense that they have identical reference frames again.

Therefore, this scheme is referred to as the synchronized error concealment (SYNEC). As

illustrated in Figure 3.4, with SYNEC, the lost MBs in the reference frame are concealed at

the encoder before the encoding starts and then the usual motion estimation is performed

based on the concealed reference frame, as would be done at the decoder.

Since the lost areas may still be used as predictions after concealment, SYNEC has higher

compression efficiency than ERME, especially when the lost areas can be well concealed.

This is illustrated in Figure 3.4 as most of the MBs in the potentially affected area of the

current frames being coded in the INTER/SKIP-mode by using the concealed MBs in the

reference frame as predictions. When comparing ERME and SYNEC in terms of compression

efficiency, ERME can be understood as an extreme case of SYNEC, where the encoder applies

an extremely bad concealment scheme which guarantees that the lost areas would never be
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used as predictions. The other extreme case, generally speaking, would be applying a perfect

concealment scheme that can recover the lost MBs with 100% accuracy. So the compression

efficiency of SYNEC is between ERME and the error-free case, depending on how well the

lost areas can be concealed, which is in turn determined by the video content, the slice size

as well as the concealment method applied.

On the other hand, SYNEC has certain requirements on the system for it to work. First,

the encoder needs to have exact knowledge of the error concealment scheme applied at the

decoder, which sometimes may not be possible. Second, the acknowledgments have to be

error-free to make sure the reference frames used in the encoder and the decoder are identical.

With SYNEC, lost acknowledgments would lead to error propagation, which is not always

the case with ERME. If only the correctly received packets are acknowledged, losing some of

those positive acknowledgments would just cause ERME to exclude some unnecessary areas

from the motion estimation, which would leads to reduced compression efficiency but no error

propagation. If both positive and negative acknowledgments are used in the system, SYNEC

and ERME can be applied for different packets. The packets with negative acknowledgment

can be concealed using SYNEC and the packets without any acknowledgment (i.e., status

undetermined) can be excluded from the motion estimation.

3.4.2.1 Error Concealment Methods

The error concealment method applied in the proposed system may have significant impact

on the system performance. In general, concealment methods can be classified into three

categories: spatial, temporal and spatio-temporal concealment. Four representative methods

with low computational complexity are considered in this work, which are briefly introduced

in the following.

Spatial concealment conceals a lost MB based on the available spatially adjacent pixel

values (e.g., [AF95, KS93]) and is typically adopted for I-frames. One of the most commonly

adopted spatial concealment methods is considered in this work, which interpolates the pixel

values in a lost MB from its four one-pixel-wide boundaries using weighted average based on

distance [KS93]. This considered spatial concealment method is referred to as SEC.

Temporal concealment conceals a lost MB based on the MBs in the temporally adjacent

frames, usually in the previous frame (e.g., [AF95, LRL93, ZAF00]), and is typically adopted

for P- and B-frames. Two temporal methods are considered in this work. The first method

(referred to as CPB) copies the MB at the same spatial position in the previous frame as the

concealment, which is the most commonly adopted temporal concealment method. However,

with CPB, there will be clearly visible artifacts in the areas with motion. Various methods

are proposed to improve the performance of temporal concealment by estimating the motion

vector of the lost MB. The missing motion vector can be estimated from the available motion
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Figure 3.5: Illustration of the DMVE method. Minimizing the SAD between the surrounding
pixels is used as the criteria to search for the best matching MB in Frame i-1 for concealing the
lost MB in Frame i. The surrounding pixels could be correctly received or concealed pixels.
The width of the surrounding pixels is typically two to eight pixels.

vectors of the spatially adjacent MBs [AF95], or by searching the best matching MB in the

previous frame based on the surrounding pixel values of the lost MB [LRL93, ZAF00]. The

DMVE method in [ZAF00] is considered in this work as a representative of the improved

temporal concealment methods. As illustrated in Figure 3.5, DMVE searches in the previous

frame for the MB whose surrounding pixel values best match that of the lost MB and uses

that MB as the concealment. The best matching MB would have the least Sum of Absolute

Differences (SAD) between the surrounding pixels, which typically have a width of two to

eight pixels (eight adopted in this work). A full search over some area could be performed to

find the best match, but it is associated with high computational complexity. In this work, the

optional candidate search is performed, which considers only a few candidate motion vectors

and therefore adds much less computational overhead.

Spatio-temporal concealment combines spatial and temporal concealment in an content-

adaptive manner (e.g., [PPIES04, FK07]). In this work, a spatio-temporal method (referred

to as STEC) is considered, which combines the results from SEC and DMVE in the following

steps. First, perform DMVE on the lost MB. If the matching error (i.e., SAD between the

surrounding pixels) is smaller than a threshold Te (determined empirically), use the results

from DMVE as the concealment. Otherwise, perform SEC and then conceal the lost MB by

M̃(i, j) = (1− w(i, j)) · M̃t(i, j) + w(i, j) · M̃s(i, j), (3.6)

where a concealed pixel in the lost MB M̃(i, j) is the weighted average of the result from SEC

M̃s(i, j) and DMVE M̃t(i, j). The pixel-wise weighting function w(i, j) follows that in [FK07],

which depends on the matching error around the lost MB in DMVE.
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3.5 Delay-Aware Channel-Adaptive Retransmission

Retransmission is applied in the proposed framework to reduce the number of lost packets

during the transmission, which is integrated into the low-delay system design with no or

acceptable impact on the end-to-end delay.

3.5.1 Delay-Aware Retransmission

As shown in Section 3.3.1, in order to keep the end-to-end delay as low as possible, each

video frame is to be transmitted within a fixed-size time slot, i.e., a fixed bit budget is

assigned for transmitting each frame. If some of the packets of a frame are lost and need to

be retransmitted, the retransmissions also have to be performed within the given time slot,

so that no additional delay would be introduced. This requires part of the bit budget to

be reserved in advance (i.e., before the encoding) for retransmissions that may be necessary

later, which leads to a joint source-channel resource allocation problem where the bit budget

for a video frame is shared between video source coding and retransmission. Four resource

allocation strategies, referred to as retransmission schemes, are considered in this work, which

are illustrated in Figure 3.6 and introduced in the following.

� Retransmission Scheme 0 (RS0) does not consider retransmission and assigns the

entire bit budget for video source coding. Let RTS be the bit budget corresponding to

one time slot and RS be the bit budget for source coding (i.e., the target bitrate for the

rate control algorithm). Then RS is given by

RS = RTS . (3.7)

RS0 is suitable for situations where the channel condition is very good and the error

concealment alone may already provide satisfactory image quality.

� Retransmission Scheme 1 (RS1) reserves some bit budget for retransmission by

encoding the video frame with a coarser quantization compared to RS0. The total

budget RTS is allocated in such a way that all the packets in the current frame would

be successfully received by the end of the current time slot. In this case, RS can be

written as

RS = RTS · (1− EPER), (3.8)

where EPER denotes the estimated packet error rate for the current time slot. In this

work, the actual packet error rate in the previous time slot is used as EPER. RS1 is

suitable for situations where the packet losses may lead to visible concealment artifacts.

� Retransmission Scheme 2 (RS2) considers not only quantization but also frame

skipping regarding the source coding. In RS2, the following frame is skipped and the
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Figure 3.6: Illustration of the retransmission schemes considered in this work. Note that RS3
can be combined with any one of RS0–RS2. The combination of RS3 and RS1 is given here
as an example.

total bit budget for the current frame corresponds to two time slots. This doubled bit

budget is then allocated in the same way as in RS1, which yields

RS = 2 ·RTS · (1− EPER). (3.9)

RS2 is suitable for situations where one may prefer reducing the frame rate over a coarser

quantization that would reduce the image quality too much. Note that skipping a frame

would also increase the end-to-end delay for the current frame by one frame interval,

which may not be acceptable for certain applications.

� Retransmission Scheme 3 (RS3) is quite different from the previous three retrans-

mission schemes, which are proactive measures adopted before the encoding to reserve

bit budget for retransmission (i.e., determine bit budget for source coding). Those

proactive schemes are based on certain estimations (e.g., the estimation of the packet

error rate) that may deviate significantly from the actual situation, especially given the

rapidly time-varying nature of the wireless channel. For example, the actual packet

error rate may be significantly larger than the estimated one, which may lead to un-

acceptable degradation of the resulting image quality. Therefore, RS3 is designed as a

reactive measure that is based on actual measurements to mitigate the impact of these
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mis-estimation situations. It is adopted after the transmission of the current frame,

where one can decide to skip the next frame and use the extra time slot for retrans-

mission if the remaining packet losses would degrade the image quality too much. RS3

can be combined with any one of RS0–RS2. In the example illustrated in Figure 3.6,

RS3 is combined with RS1, where at the end of the time slot i, RS3 observes that a

significant number of video packets are still lost and decides to skip the following frame

and keep retransmitting the lost packets in Frame i. If necessary, the frame skipping

may continue as long as the increased delay is acceptable to the application.

3.5.2 Channel Adaptation

The above four retransmission schemes are combined in a channel-adaptive manner to form

a delay-aware channel-adaptive retransmission (DACAR) scheme. Different retransmission

schemes are applied for different channel conditions that are characterized by the packet error

rate. The proposed scheme operates as follows.

Before encoding a new video frame, the PER during the last time slot is measured and

used as an estimate of the channel condition during the transmission of the current frame.

Based on this estimated PER (EPER), one of RS0, RS1 and RS2 is applied. If the EPER is

below a certain threshold s1, it is considered that the channel condition would be very good

and the error concealment alone could already provide satisfactory quality. Therefore, RS0 is

applied, i.e., no retransmission is considered. If s1 ≤ EPER ≤ s2, the channel is considered to

be in fair condition and retransmission becomes necessary. In this case, RS1 is applied, which

assigns only part of the total bit budget for encoding the frame according to Equation (3.8). If

the channel condition is bad, i.e., EPER > s2, applying RS1 may decrease the source coding

budget RS too much to keep a satisfactory image quality. So RS2 is applied, which skips the

next frame and uses two time slots for transmitting the current frame. The doubled total bit

budget would keep the image quality at a decent level despite the bad channel condition, but

at the cost of reduced frame rate. Since skipping a frame introduces additional delay, RS2 is

only considered when the resulting end-to-end delay TTOTAL does not exceed the application

requirement TMAX .

Once it is decided which of the retransmission schemes is to be applied, the rate control

algorithm in the video encoder is configured to meet the corresponding RS given in Equa-

tion (3.7)–(3.9). The current frame is then encoded, packetized and transmitted. After all

the video packets are transmitted once, the transmitter starts retransmitting the lost packets,

until the available transmission rate for the current frame is used up or all the video packets

are received correctly.

After the transmission of the current frame finishes, the residual PER (RPER) in the

transmitted frame is measured. If the RPER is high, i.e., larger than a threshold s3, which
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Figure 3.7: State diagram of the channel adaptation.

for example could be caused by a sudden change of the channel condition, the reconstructed

frame may have unsatisfactory image quality. In this case, RS3 is applied, which skips the

next frame and uses the extra time slot to retransmit the lost packets in the current frame.

This would keep the image quality at a decent level even at drastic channel condition changes

where the actual PER is much higher than the EPER. The measured RPER is used here as

an estimate of the quality of the reconstructed current frame, which could also be estimated

by some image quality metric, such as PSNR. Similar to RS2, the resulting end-to-end delay

should meet the application requirement for RS3 to be applied.

The state diagram of the proposed DACAR scheme is shown in Figure 3.7, which illustrates

how the four retransmission schemes are combined. Note that the delay constraint is not shown

for clarity. In the proposed scheme, the choice of the thresholds (i.e., s1, s2 and s3) depends on

various factors, including video content, concealment method, slice size, human perception of

different types of quality degradation (e.g., quantization, frame rate reduction, concealment),

specific application requirements, etc. For example, s1 is determined by the trade-off between

quantization distortion and concealment distortion, and could be larger when the lost packets

can be well concealed. To determine s2, a trade-off between spatial quality (i.e., image

quality) and temporal quality (i.e., frame rate) needs to be considered, which relates to how a

human user perceives the degradation of these qualities. This trade-off is also relevant when

determining s3. For certain applications, s3 could also be tailored to control the minimum

image quality. In this chapter, all three thresholds are selected empirically to generate the

experimental results.
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3.6 Experimental Results

3.6.1 Rate Control Performance

The improved ρ-domain rate control algorithm (referred to as ρ-RC-2) presented in Sec-

tion 3.3.2 is implemented and evaluated in an MPEG-4 video encoder (Xvid [Xvi]) with the

H.263-type quantization. The experimental results for four widely-used test video sequences

in CIF (352x288) resolution at 30fps are presented: Mother&Daughter (MD), Foreman (FM),

Coastguard (CG) and Cheerleaders (CL). For each video, the first 300 frames are considered

and all frames are encoded as P-frames except for the first I-frame. The target number of

bits of the first I-frame is twice as much as that of a P-frame so that the I-frame would have

similar quality as the P-frames. Each frame is encoded as one slice for evaluating the rate

control performance.

The ρ-RC-2 algorithm is compared with two other algorithms based on the ρ-domain rate

control. One is the original ρ-RC algorithm (ρ-RC-0), which does not estimate the overhead

before encoding but update it during the encoding process. The other one, referred to as

ρ-RC-1, only estimates the overhead from the previous frame without the adaptive update

during the encoding. For all three algorithms, ρ-RC-0 is applied for the first I-frame and

the following P-frame; these two frames are excluded from the performance comparison. The

relative control error is used to measure the accuracy of a rate control algorithm, which is

defined for each frame as:

ERC =
R−RT
RT

× 100%, (3.10)

where R and RT are the actual and target number of bits of the frame, respectively.

The average accuracy of the three rate control algorithms are evaluated and compared in

Figure 3.8 for all four test videos. For each video, the average of the absolute value of the

ERC is plotted against the target bitrate. It can be seen that ρ-RC-0 always has difficulties

producing an accurate output at low bitrate, but it performs better as the target bitrate

increases, finally reaching a high level of accuracy. ρ-RC-1 performs differently for different

videos. For Mother&Daughter and Foreman, ρ-RC-1 has better performance than ρ-RC-0 at

very low bitrate, but as the bitrate increases, ρ-RC-1 does not improve as quickly as ρ-RC-0

and its accuracy is still rather limited at relatively high bitrate. For the other two test videos,

namely Coastguard and Cheerleaders, simply estimating the overhead from the previous frame

(i.e., ρ-RC-1) already leads to a very low control error, which suggests that the number of

overhead bits does not change much from frame to frame for these two videos. With both

overhead estimation and adaptive update, ρ-RC-2 has significantly higher average accuracy

than the comparing algorithms.

For the proposed low-delay system design, not only the average of the control error, but

also the variation may have significant impact on the reconstructed video quality, as for each
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Figure 3.8: Average of the absolute relative control error versus target bitrate for all test
videos. Three algorithms based on the ρ-domain rate control are compared.
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Figure 3.9: Relative rate control error for each frame in (a) Mother&Daughter at 260Kbps
and (b) Coastguard at 500Kbps. Three algorithms based on the ρ-domain rate control are
compared.
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Table 3.1: Performance of the rate control algorithms

Video
RT Average |ERC | (%) EMax

RC |EMin
RC (%)

(Kbps) ρ-RC-0 ρ-RC-1 ρ-RC-2 ρ-RC-0 ρ-RC-1 ρ-RC-2

MD
200 6.2 3.8 0.2 33.5 | -0.03 15.1 | -15.5 1.3 | -0.4

290 1.3 2.6 0.1 9.3 | -0.4 9.5 | -7.8 0.6 | -0.6

FM
350 4.1 2.2 0.3 20.1 | -0.7 12.1 | -11.0 0.3 | -1.2

500 0.3 1.4 0.3 6.3 | -0.7 6.4 | -5.7 0.6 | -1.4

CG
400 11.4 1.0 0.07 19.3 | -2.5 6.6 | -6.4 0.9 | -0.2

550 3.6 0.6 0.05 11.0 | -0.3 3.8 | -4.2 0.2 | -0.2

CL
700 6.4 1.0 0.2 10.9 | -2.5 3.6 | -4.0 1.4 | -0.1

1300 1.3 0.5 0.05 2.8 | -0.3 1.6 | -1.5 0.5 | -0.1

frame, the level of overshoot would indicate the amount of packet losses due to inaccurate

rate control. In order to avoid those packet losses, the system would need to consider the

maximum error level and reduce the target encoding bitrate accordingly. In such a system, the

maximum control error or the level of variation would determine how much of the available

transmission bitrate would be wasted for accommodating the rate control error. In general,

the variation level has similar behavior as the average value for the three algorithms shown in

Figure 3.8. As examples, the ERC of each frame is plotted for Mother&Daughter at 260Kbps

and for Coastguard at 500Kbps in Figure 3.9, which shows that the maximum control error

can be higher than 10% for both ρ-RC-0 and ρ-RC-1 even at relatively low average error level.

In comparison, ρ-RC-2 has a much smaller variation level. Representative results of both the

average error and the error variation are also summarized in Table 3.1 for all four test videos.

It can be seen that with ρ-RC-2, the resulting bitrate is very close to the target bitrate for a

wide range of bitrate and video content. The relative control error is always within a range

of 1.5%, and in average below 0.3%. This high level of accuracy of the rate control algorithm

allows the proposed low-delay design to fully utilize the available transmission data rate.

3.6.2 System Performance

In order to evaluate the performance of the proposed framework, a real-time video transmission

system is implemented. The Xvid [Xvi] codec, an open-source MPEG-4† video codec that is

capable of real-time encoding, is modified to encode and decode the video. The four error

concealment methods introduced in Section 3.4.2.1 are implemented in both the encoder and

the decoder for synchronized error concealment. The wireless channel is modeled as a packet

erasure channel with constant transmission data rate and random packet losses. A software

channel emulator is implemented to emulate the wireless channel characteristics, such as the

†In this dissertation, an MPEG-4 video codec refers to an MPEG-4 Part 2 video codec.
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available transmission data rate and the packet error rate. A feedback channel with no delay

and no loss is also implemented in the channel emulator.

Three widely-used test video sequences with different content characteristics are adopted

as the input video source: Mother&Daughter, Foreman and Football. The test videos are in

CIF (352x288) resolution and have a frame rate of 30fps. The first 300 frames of each test

video are encoded in the IPPP...P structure with only the first frame being an I-frame, which

is designed to be transmitted using two time slots so that the image quality can be kept at a

similar level to the P-frames. The following P-frame is skipped to make the extra time slot

available without introducing additional delay to the rest of the frames. In the experiments,

this first I-frame is considered as free of losses and not included in the results. Each video

frame is encoded into slices with the same number of bytes and each slice is encapsulated

into one video packet. The slice/packet size affects the overall system performance in several

aspects. For example, smaller slice/packet size would decrease the compression efficiency due

to the limitation on the spatial prediction and cause increased overhead, but it would also

reduce the negative impact of a lost source packet on the image quality (better concealment),

decrease the packet loss probabilities for a given wireless channel and increase the granularity

of the retransmission/resource allocation. The optimal size would depend on various factors,

including the channel conditions, the video content, the concealment method, and others. The

slice/packet size used in the experiments is 125 bytes, which is determined empirically and

would provide a good compromise among the related factors.

In the first experiment, the system performance is evaluated in an averaged manner for a

wide range of packet error rates and various transmission data rates. Four different systems

are compared: 1) NOER, where none of the proposed error resilience features are applied

and DMVE is performed at the decoder for error concealment; 2) ERME, where the error

resilient motion estimation is applied at the encoder and DMVE is performed at the decoder;

3) SYNEC, where DMVE is applied at both the encoder and the decoder for synchronized

error concealment; 4) RS1 SYNEC, where both retransmission and SYNEC are applied and

RS1 is always used as the retransmission scheme. Note that all of these four systems have the

lowest possible end-to-end delay as none of the considered error resilience features introduces

any additional delay. The reconstructed video quality with different systems, measured as

the average PSNR against the original video, is compared in Figure 3.10. The PSNR val-

ues are computed over the entire video (the first I-frame excluded) and 10 different channel

realizations. It can be seen that the systems utilizing instantaneous feedback to avoid error

propagation (i.e., ERME, SYNEC and RS1 SYNEC) perform significantly better than the

NOER system where error propagation sharply decreases the video quality. With improved

compression efficiency, SYNEC outperforms ERME by a significant margin and the difference

varies from video to video. For Mother&Daughter, a video with little motion, the improvement
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Figure 3.10: Average PSNR comparison between various systems (with an MPEG-4 video
codec). The results are generated for various videos at different transmission data rates and
packet error rates. The PSNR values are averaged over 10 random channel realizations.
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of SYNEC over ERME can be as high as up to 7dB, with larger difference at higher packet loss

rates and at lower transmission data rates. This is due to the fact that the applied temporal

concealment method is able to conceal the lost MBs very well for low motion videos. When

the amount of motion in the video increases, the performance difference between SYNEC and

ERME decreases, as the concealment does not perform as well for videos with higher motion.

For the Foreman video with medium motion, the difference is about 2-4dB, and for the high

motion video Football, it reduces to about 1dB. Note that the performance of ERME can

be seen as the upper bound for the approaches based on INTRA-update, as with ERME,

an MB is encoded in INTRA-mode only when the INTRA-mode gives better rate-distortion

performance. The integration of retransmission (i.e., RS1) leads to another significant gain on

top of SYNEC, which is larger at higher packet loss rates and for videos with higher motion.

This shows that for high motion videos, the system should try to avoid packet losses (e.g., by

being conservative when reserving resources for retransmission), as the negative impact would

be significant even without error propagation.

The impact of the applied error concealment method is studied by comparing four rep-

resentative concealment methods (see Section 3.4.2.1) in the SYNEC system. The results

averaged over 10 channel realizations for different videos are shown in Figure 3.11. For the

low motion video Mother&Daughter, concealment methods that utilize temporal redundancies

(i.e., CPB, DMVE and STEC) clearly outperform the spatial concealment method SEC and

the difference is already more than 7dB at 10% packet loss rate. DMVE and STEC perform

only slightly better than CPB in this case. For the medium motion video Foreman, there is

a clear difference between DMVE and CPB, and between CPB and SEC, while DMVE and

STEC have similar performances. When it comes to the high motion video Football, CPB is

only better than SEC at high packet error rate levels and STEC becomes slightly better than

DMVE, which indicates that for a significant number of MBs, DMVE does not perform very

well and STEC chooses to combine SEC and DMVE. Figure 3.12 shows representative images

from the Foreman sequence that illustrate the typical artifacts and the overall visual quality

of the different concealment methods. It is clear in this example that both spatial (SEC)

and temporal (CPB and DMVE) concealment methods have their respective strengths and

weaknesses. SEC introduces strong artifacts in areas with details (e.g, the building facade)

but performs well in smooth areas (e.g., the hand). On the contrary, the temporal methods,

especially DMVE, conceal the detailed areas with low motion very well, but have problem

with the waving hand (i.e., high motion). The STEC method utilizes the respective strengths

of both SEC and DMVE in combination and provides significantly more visually pleasing

results. Therefore, although the difference between DMVE and STEC is very small in terms

of average PSNR, the visual difference may be more significant, especially in the presence of

strong and/or irregular motion.
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Figure 3.11: Performance comparison between different error concealment methods with
SYNEC and an MPEG-4 video codec.

(a) SEC (b) CPB

(c) DMVE (d) STEC

Figure 3.12: Example images for different concealment methods.
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To evaluate the performance of the DACAR scheme, a second experiment is carried out

for a particular channel realization with time-varying packet error rate. The channel packet

error rate changes every two frames, varying between 4, 20 and 50% with a probability of

0.2, 0.6 and 0.2, respectively. Three different systems, each applying a different retrans-

mission scheme, are compared: 1) SYNEC, where no retransmission is considered and the

entire available transmission data rate is used for video source coding; 2) RS1 SYNEC, where

the retransmission scheme RS1 is always adopted; 3) DACAR SYNEC, where different re-

transmission schemes are considered for different channel conditions. The synchronized error

concealment with DMVE is adopted in all three systems. In DACAR SYNEC, the thresholds

in the DACAR scheme, i.e., s1, s2 and s3, are set to be 5, 30 and 15%, respectively. The

maximum end-to-end delay is assumed to allow skipping two frames, which would make the

application of both RS2 and RS3 possible. For the three test video sequences, the PSNR

values of Frame 11 to Frame 110 are plotted in Figure 3.13, where the performance of an

error-free system (No Error) is also included as a reference. Note that since frame skipping

is involved in DACAR SYNEC, only the PSNR values of the displayed frames are shown in

the corresponding results. It can be seen from the results that even for such rapidly and

drastically changing channel conditions, DACAR SYNEC keeps the image qualities at a high

and relatively constant level that is close (within 1-2dB) to the error-free case. In comparison,

some of the frames in RS1 SYNEC have significantly lower PSNR values than the error-free

reference. The difference can be up to 5dB for low/medium motion videos and up to 8dB

for the high motion video. The performance is even worse in the SYNEC system where up

to 10dB differences can be observed for all three videos. Those drastically varying image

qualities in RS1 SYNEC and SYNEC cause clear visual artifacts that would significantly de-

grade the perceived quality of the reconstructed video. The average PSNR values over the

entire sequence are summarized in Table 3.2 for all three videos. For the displayed images,

DACAR SYNEC provides an additional average quality improvement of 1-3dB compared to

RS1 SYNEC. Although the frame rate decreases sometimes with DACAR SYNEC, the overall

perceived video quality is still improved significantly compared to the other systems.

Table 3.2: Average PSNR comparison between various systems (with an MPEG-4 video codec)
for a particular channel realization with time-varying packet error rate.

System
Average PSNR (dB)

Mother&Daughter Foreman Football

No Error 41.2 35.8 32.7

DACAR SYNEC 40.2∗ 34.9∗ 31.5∗

RS1 SYNEC 39.5 34.1 30.3

SYNEC 39.4 32.8 28.2
∗Only displayed frames are considered here.
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Figure 3.13: Frame PSNR comparison between various systems (with an MPEG-4 video
codec) for a particular channel realization with time-varying packet error rate. The packet
error rate changes every two frames, varying between 4, 20 and 50% with a probability of 0.2,
0.6 and 0.2, respectively.
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The performance of the proposed framework is also evaluated in an H.264/AVC-based real-

time video transmission system, where the x264 [x26] encoder and the H.264/AVC decoder

in the FFmpeg [FFm] project are integrated. Similarly to the MPEG-4 based case, the

reconstructed video quality is evaluated both in an average manner (see Figure 3.14) and in

a particular channel with time-varying packet error rate (see Figure 3.15 and Table 3.3). As

expected, the experimental results show similar system behaviors with the H.264/AVC video

codec as with the MPEG-4 codec.
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Figure 3.14: Average PSNR comparison between various systems (with an H.264/AVC video
codec). The results are generated for various videos at different packet error rates. The PSNR
values are averaged over 10 random channel realizations.
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Figure 3.15: Frame PSNR comparison between various systems (with an H.264/AVC video
codec) for a particular channel realization with time-varying packet error rate. The packet
error rate changes every two frames, varying between 4, 20 and 50% with a probability of 0.2,
0.6 and 0.2, respectively.
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Table 3.3: Average PSNR comparison between various systems (with an H.264/AVC video
codec) for a particular channel realization with time-varying packet error rate.

System
Average PSNR (dB)

Mother&Daughter Foreman

No Error 42.7 35.3

DACAR SYNEC 41.9∗ 34.4∗

RS1 SYNEC 41.0 33.3

SYNEC 39.7 31.8
∗Only displayed frames are considered here.

3.7 Practical Issues in Hardware Implementation

Based on the proposed framework, a real-time FPGA-based software/hardware testbed with

a hardware video codec (see Figure 3.16) is implemented, which is used to find the best

hardware configuration for specific system requirements. During the testbed implementation,

several practical issues appeared that may have significant impact on the system design and

the overall performance. Some of those practical issues are briefly discussed in the following.

It has been assumed in this chapter that the video encoder and the transmitter are able

to operate simultaneously at the slice/packet level. This enables the transmitter to start

transmitting a frame as soon as the first slice is encoded and packetized, reducing the overall

end-to-end delay. And more importantly, this makes it possible for the encoder to perform

ERME/SYNEC as presented in Section 3.4, as the necessary acknowledgments for the packets

in the previous frame would be available before the encoder starts encoding a new frame.

However, in a practical system based on a hardware video codec, it may happen that the

transmitter would not have access to the encoded bitstream until an entire frame is encoded.

In this case, the end-to-end delay would be larger and ERME/SYNEC needs to be modified to

adapt to this situation, which can be done by extending the prediction distance of the MCP.

More specifically, a video frame now does not use the previous frame, but the frame earlier as

the reference, for which all necessary feedback information would be available. This can also

be seen as a case where the feedback delay is one frame interval.

A hardware video codec typically would not have an accurate MB-level rate control avail-

able and therefore the resulting bitrate variation would be quite significant. As discussed in

Section 3.6.1, such variation could degrade the reconstructed video quality significantly in

the presented low-delay system design. One way to alleviate this problem is to configure the

target source coding rate lower than the available bitrate, at the cost of not fully utilizing

the transmission capacity. Another alternative would be to configure the hardware encoder

at a higher bitrate than the target, and then reduce the bitrate to the target level by software

“re-quantization” with an accurate rate control operating at the MB-level. This could be a
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Figure 3.16: A real-time FPGA-based software/hardware testbed with a hardware video codec
based on the proposed framework.

feasible way to increase the accuracy of the rate control if the entropy coding is done in the

software or partial decoding/re-encoding is acceptable in terms of computational overhead.

3.8 Summary

In this chapter, a low-delay error-resilient video transmission framework for point-to-point

wireless communication with instantaneous feedback is presented. The end-to-end delay is

designed to be as small as possible, which is realized by transmitting each video frame within

a given fixed-sized time slot. The available per-packet instantaneous feedback is integrated

into the encoder for error-resilient video coding as well as into the transmitter for retrans-

mission, both are designed under the low-delay constraint. The retransmission is integrated

without introducing any additional delay, which is realized by dynamically allocating the fixed

channel resource between video source coding and retransmission. The channel adaptability

is further improved by adopting different retransmission schemes for different channel condi-

tions, with a controlled impact on the end-to-end delay that is acceptable to the target video

application. Experimental results have shown that the presented framework provides signifi-

cantly improved video quality for a wide range of channel conditions and is highly adaptive

to channel dynamics. In addition, the presented framework has been designed with very low

complexity and high flexibility, and therefore has high practical significance.





Chapter 4

Perceptual Video Quality Modeling

In this chapter, the respective impact of spatial and temporal impairments† on the overall per-

ceptual video quality and their interaction are investigated. Based on the quality evaluations

from subjective tests, a full-reference objective video quality metric is developed, which cap-

tures the trade-off between the picture quality and the temporal resolution of a compressed

video sequence. The proposed metric is based entirely on parameters that can be easily

computed from the video, making it useful for dynamic adaptation in video communication

systems, such as the system design presented in Chapter 3.

4.1 Introduction

Video transmission over wireless channels faces many challenges, such as limited transmis-

sion capacity, time-varying error-prone channel conditions, stringent delay requirements of

video applications, and others. In order to improve the QoE of wireless video applications,

video coding and scheduling parameters are often adapted to wireless channel characteristics

(e.g., transmission data rate, packet error rate, delay jitter, etc.), where multiple video coding

parameters, including the quantization parameter as well as the spatial and temporal reso-

lution of the video, may be adjusted at the same time so as to achieve the best perceptual

video quality. For example, for live video streaming applications (e.g., video surveillance),

multi-dimensional rate control [SK01, RL02, LK05] involving multiple coding parameters

as aforementioned may be performed by the video encoder to achieve improved video qual-

ity for a given encoding bitrate. Chapter 3 presents a video transmission system where the

trade-off between picture quality and temporal resolution is exploited. For pre-encoded video

†In this chapter, unless otherwise stated, the term spatial impairment refers to the quantization, and spatial
quality refers to the video quality subject to quantization only. The term temporal impairment refers to the
frame rate reduction, and temporal quality refers to the perceived motion smoothness at a certain frame rate.
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streaming applications (e.g., Video-on-Demand), transcoding [VCS03] may be necessary for

bitrate reduction, where again the adjustment of multiple coding parameters may lead to a

better video quality [JR04]. The emergence of the Scalable Video Coding (SVC) extension

[SMW07, SSW07] of the H.264/AVC standard, which allows efficient scalability of quality,

spatial and temporal resolution of a compressed video bitstream, further expands the scope

of the applications of such multi-dimensionanl video adaptation.

While the involvement of multiple video coding parameters opens up additional possibil-

ities for improving the video quality, it also introduces new challenges in making the right

choices among these parameters that affect the video quality in different manners. In order

to apply multi-dimensional video adaptation effectively, it is essential to understand the re-

spective impact of each adjustable parameter on the overall perceived quality as well as their

interactions, if any, with each other, and to be able to accurately estimate the resulting quality

when the parameters are adjusted. Although many MDA schemes (e.g., [JR04, LK05]) adopt

PSNR as the video quality metric and adjust the parameters so as to improve or optimize

the PSNR, it has been shown that PSNR has poor correlation with subjective quality ratings

in such context [FWSV07]. As a result, these adaptation schemes generally do not provide

the best possible performance in terms of perceptual video quality. Therefore, developing

an objective metric that can accurately estimate the perceptual quality when multiple video

coding parameters are adjusted is crucial to the success of a MDA scheme, such as the one

presented in Chapter 3. Based on this motivation, a full-reference objective video quality met-

ric is developed in this chapter that considers both quantization (spatial quality) and frame

rate (temporal quality), the two most often adjusted encoding parameters in video adaptation

schemes. In addition, the metric is designed in such a way that the impact of other typical

spatial quality impairments (e.g., error concealment, spatial resolution change) can be easily

incorporated in a weighted average manner. The proposed metric has very high correlation

with the subjective ratings, and contains only parameters that can be calculated from the

video directly, including PSNR, frame rate as well as spatial and temporal activity measures.

The high accuracy, the content-independency, as well as the low computational complexity of

the metric make it highly applicable and preferable for dynamic adaptation and optimization

in practical video transmission systems.

The rest of this chapter is organized as follows. Section 4.2 reviews the related work on

video quality assessment involving quantization and frame rate reduction, respectively and

jointly. Section 4.3 presents the subjective test and the test results. Section 4.4 analyzes the

respective impact of quantization and frame rate reduction on the perceptual video quality

as well as their interaction, and presents the proposed video quality metric. The performance

of the proposed metric is evaluated and compared to other related metrics in Section 4.5.

Section 4.6 summarizes the chapter.
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4.2 Related Work

4.2.1 Spatial Quality Assessment

Most of the prior work on objective video quality assessment† has been concerned with the

impact of quantization alone on the perceptual quality. It has been shown that even in this

case, PSNR has poor correlation with the perceptual video quality. A great deal of effort

has been made to develop better objective image and video quality metrics, among which

some metrics share the same philosophy - to extend MSE/PSNR by taking into account the

HVS properties (spatial and/or temporal), which MSE/PSNR alone is completely ignorant of.

The motivation of developing new metrics based on MSE/PSNR is two-fold. On one hand,

MSE/PSNR is easy to calculate, has clear physical meaning, is well understood for optimiza-

tion purposes, and the video research community is very familiar with MSE/PSNR. On the

other hand, MSE/PSNR does have higher correlation with the perceptual quality for one video

content quantized at different levels (i.e., encoded at different bitrate). The general approach

of these MSE/PSNR-based metrics is to incorporate certain perceptual weighting factors to

the MSE/PSNR calculation that account for the HVS properties, so that the new metric would

have better accuracy for quality estimation across video contents. Several weighted-MSE met-

rics are presented in [Mar86] for image quality assessment in general, considering luminance

masking (weighted by local mean of the luminance level), texture masking (weighted by local

standard deviation), as well as other HVS properties. In [TGP98], a spatial masking function

based on local luminance gradients is proposed for video quality assessment to simulate the

spatial masking effect. [OYL+05] presents a video quality metric based on the absolute pixel

difference, where luminance masking, textural masking and temporal masking are estimated

by using local mean luminance, local gradients and inter-frame difference, respectively, which

are combined to yield a distortion visibility threshold. In comparison to the above metrics

that mimic certain low-level HVS properties (visibility/sensibility), several metrics focus on

high-level HVS properties (perception/attention). [TMJ00] discusses several energy measures

and proposes an information measure of local interest for image quality assessment, where

the MSE is weighted more strongly in areas of interest. The Edge-PSNR metric standardized

in [ITU04b], motivated by the observation that the HVS is more attracted to edges, performs

edge detection and computes the MSE only in the detected edge areas.

The weighting has also been applied on the sequence level instead of for each pixel. This

sequence level weighting is easy to compute and circumvents the tricky problem of combining

both low-level and high-level HVS properties by estimating the overall HVS behavior instead

of treating each individually. [WP02] presents a PSNR-based metric which uses a logistic

function to model the relationship between the average PSNR and the perceptual video quality,

†A review of objective video quality assessment and metric classifications can be found in Section 2.2.2.
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but ignores the content-dependency of PSNR. [ODZ07] adopts a liner model and computes

the model parameters for each video content by assuming that the perceptual qualities of a low

quality and a high quality version of the same video content are available. The assumption is

too strong for the metric to have any practical relevance. [BRK09] estimates the linear model

parameters on the sequence level based on a spatial activity measure (average edge strength),

but performs the weighting on the macroblock level. The temporal aspect of HVS properties

is ignored in [BRK09]. The work presented in this chapter also follows the sequence level

approach for modeling the spatial quality. The proposed model uses a logistic function to

account for the non-linear relationship between perceptual quality and PSNR, and considers

both spatial and temporal aspects of the HVS properties.

A new philosophy is followed in [WBSS04] for designing a full-reference engineering metric,

which focuses on structural similarity instead of pixel-wise difference. [WBSS04] compares

the mean, variance and covariance of small patches and combines them into a single quality

metric SSIM. Similar to PSNR, weighted versions of SSIM have also been proposed to take into

account the HVS properties. In [WLB04], a local luminance based weighting (assuming that

dark regions do not attract attention) as well as a motion vector magnitude based weighting

(for temporal masking) are performed. [Sha06], in the same spirit of [TMJ00], proposes to

use energy/information measures of local interest as the weighting factors to account for high-

level HVS properties. [WL07] uses an information measure of motion to estimate local interest

level, considering that moving objects attract attention.

4.2.2 Temporal Quality Assessment

All of the above metrics assume a fixed frame rate of the processed video. When frame

rate reduction is involved, those metrics are often calculated by comparing the temporally

upsampled (e.g., by repetition) version of the processed video with the original video, in

which case the quality estimation performance is much lower than in the full frame rate case.

Therefore, the impact of frame rate reduction on the perceptual quality needs to be measured

differently.

Several studies have investigated how video quality is affected by frame rate reduction.

It has been shown that the temporal perceptual quality decreases non-linearly with frame

rate reduction [HTG08], and the impact is content-dependent [WSV+03, HTG08]: in general,

high motion video content is more negatively affected by the frame rate reduction than low

motion content. As a result, the temporal quality is often modeled as a non-linear function

of the frame rate (reduction) and parameters that measure the degree of motion in the video

content [LLS+07b, YGEMD07, HTG08, OLZ+08, ZCL+08]. [LLS+07b] proposes to model

the non-linearity based on a logarithmic function, and uses the average of the maximal mo-

tion vector magnitude of each frame (obtained via a optical flow algorithm) as the motion
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measure. A power function and a exponential based function is adopted in [YGEMD07]

and [HTG08], respectively, but no motion measure is proposed in either work. [OLZ+08]

adopts an exponential decay function and suggests to use a combination of normalized frame

difference and the average of the top 10% motion vector magnitude (obtained via full-search

block matching) as the motion measure. [ZCL+08] proposes a jerkiness measure which is the

product of the inverse of frame rate and the average frame difference.

4.2.3 Spatio-Temporal Quality Assessment

Only a few prior work considers the presence of both spatial and temporal impairment, and

all of them model the overall quality as a linear combination of spatial and temporal quality,

implying that the impact of each type of impairment is independent from each other. [VW93]

linearly combines a spatial and a temporal quality impairment measure to estimate the overall

quality. [FWSV07] focuses on the fact that the average PSNR of all frames (including the

repeated frames in case of frame rate reduction) underestimates the perceptual quality at

reduced frame rate, and proposes to add a compensation term based on the frame rate. A

motion measure, defined as the average of the top 25% motion vector magnitude, is used

as the weighting factor between PSNR and frame rate. The proposed metric is simple to

calculate, but inherits the content-dependency of the PSNR and therefore can not provide

accurate quality estimate across different video contents. In addition, the two terms do

not have clear physical meanings. The PSNR term measures the effect of both spatial and

temporal impairment (therefore referred to as STPSNR hereafter), while the frame rate term

is designed empirically to compensate for STPSNR’s underestimation of the overall quality.

Although the frame rate term is a linear function of frame rate reduction, the true non-linear

relationship is actually hidden in the STPSNR term. Another drawback of this metric is that

a measure based on the motion vector amplitude may not be an accurate or reliable estimate

of the motion level of the video, and is highly dependent on the motion estimation scheme

adopted in the video codec (see Section 4.4.2.2 for illustrative examples and more details).

[JKSR07] extends the model in [FWSV07] by using the standard deviation of the motion

vector magnitude instead of the mean value as the motion measure.

However, the underlying assumption that the respective impact of spatial and temporal im-

pairment are independent may not be valid. The results reported in [MSM04] and [SHH+08]

indicate that when the spatial quality is low, changing the frame rate does not affect the

overall quality much even with high motion video content, which seems to contradict with

aforementioned findings with videos subject to frame rate reduction only. This discrepancy

suggests that an interaction may exist between the impacts of the two impairment types, i.e.,

the impact of temporal impairment may depend on the level of the spatial impairment and

vice versa. In this chapter, the existence of the interaction is confirmed by graphical analy-
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sis as well as formal statistical analysis (see Section 4.4.2) of the subjective quality ratings

from a carefully designed subjective test (see Section 4.3). As a result, the overall quality

is modeled as the product (instead of a linear combination) of two terms. The first term is

a logistic function of the average PSNR over non-repeated frames (SPSNR) that estimates

the spatial quality only. The logistic function is used to model the non-linear relationship

between SPSNR and perceptual quality, with two content activity measures (one spatial and

one temporal) accounting for the HVS properties, both spatially and temporally, on the se-

quence level. The second term estimates the temporal quality and uses a non-linear function

to model the relationship between frame rate reduction and perceptual quality, with a tem-

poral activity measure (the same as the one used for spatial quality modeling) representing

the content dependency here. Therefore, the proposed metric resolves the non-linearity and

content-dependency of the respective impact of spatial and temporal impairments and takes

into account the interaction between the two types of impairments, leading to a very high cor-

relation with the subjective ratings for a wide range of video contents and quality levels. The

computational complexity of the metric is still kept low, making the metric highly relevant

for practical applications.

In parallel to the work presented in this chapter, two other PSNR-based metrics were

developed for perceptual video quality estimation in the presence of both quantization and

frame rate reduction. [SYN+10] extends the metric in [FWSV07] by taking into account

the content-dependency of the STPSNR, but still shares the other drawbacks, i.e., ignor-

ing the interaction, having no clear physical meanings and using a motion vector magnitude

measure. [OMW09] presents a metric consisting of SPSNR and frame rate reduction. The

impacts of the two impairment types are assumed to be independent from each other, but

the metric is designed as the product of the two terms, implying a dependency. There are

two content-dependent parameters in this metric that still need to be determined for each

video individually. [OMW11] resolves the content-dependency of the metric in [OMW09]

by estimating the content-dependent parameters from several spatial and temporal activity

measures, which results in a metric that is similar to the metric proposed in this chapter.

However, the metric in [OMW11] contains four content activity measures (including a motion

vector based measure) with high computational complexity, limiting its usability in practical

applications. The included motion vector based measure (retrieved from the video encoder

directly) also renders the metric dependent on encoder’s configurations (e.g., motion estima-

tion scheme, encoding bitrate, mode decision, etc.). In comparison, the proposed metric has

only two standard content activity measures, which can be easily computed from the source

video and independent of encoder’s configuration. In addition, the interaction of the two

impairment types is confirmed in this work by graphical and formal statistical analysis of the

subjective data; modeling the overall quality as the product of the two terms is well founded.
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(a) Mother&Daughter (b) Foreman (c) Football

Figure 4.1: Sample images of the source video sequences used to generate the test videos in
the subjective test.

4.3 Subjective Quality Assessment

In order to understand how quantization and frame rate reduction affect the perceptual video

quality, a subjective test is carried out to collect subjective quality ratings. The subjective

test is designed in such a way that the obtained subjective ratings allow formal statistical

analysis of the impact of video content, spatial quality (SPSNR) and temporal quality (frame

rate) as well as their interactions. The subjective ratings are also used for designing and

evaluating the proposed objective quality metric.

4.3.1 Test Settings

Several important settings of the subjective test are reported in this section, including the

test material, the test subject, the test method as well as the test procedure.

Test Material

Three well-known source video sequences (SRC) with a wide range of spatial and temporal

content characteristics are used to generate the test videos: Mother&Daughter (MD), Fore-

man (FM) and Football (FB). Representive sample images of the three SRCs are shown in

Figure 4.1. The SRCs are 10 seconds long in CIF (352x288) resolution and have an original

frame rate (FR) of 30fps. Each SRC is temporally downsampled to 15, 10 and 7.5fps to gener-

ate four different temporal quality levels. Then for each temporal quality level, the videos are

encoded and decoded using an MPEG-4 video codec (Xvid [Xvi]) to generate three different

spatial quality levels, i.e., SPSNR at about 38dB, 34dB and 31dB. The videos are encoded

in the IPPP...P structure with a constant quantization parameter that results in one of the

aforementioned spatial quality levels. The combination of four temporal and three spatial

quality levels results in 12 processed video sequences (PVS) for each SRC, 36 in total for the

three SRCs, covering a wide range of perceptual quality levels. After the encoding/decoding,
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frame repetition is performed on the videos with reduced frame rate so that each PVS has

the same duration. The first two seconds of each PVS are removed to avoid the potential

quality instability in the video frames close to the first I-frame. This is also done to the SRCs

to match the video duration. The resulting 8-second videos are stored for the subjective test

and the quality modeling. The total number of test videos are selected so that the duration

of the entire test (including a introduction and a trial test) would be about 30 minutes.

Test Subject

A total of 27 non-expert subjects participated in the subjective test. The subjects are uni-

versity students between the age of 20 and 26, including both males and females, with a male

majority. All subjects reported to have normal or correct-to-normal visual acuity and normal

color vision. Most of the subjects had never participated in a subjective test before; none of

them had participated in a subjective test in the previous 12 months. The number of subjects

is in line with the requirement of ITU-R recommendation BT.1788 [ITU07] and is similar to

the number of subjects participated in the VQEG multimedia test [VQE08a].

Test Method

The SAMVIQ method [ITU07], which is specifically designed for subjective quality assessment

of multimedia contents, is adopted in this work to collect subjective ratings for the test videos.

It has been shown that SAMVIQ, with its interactive interface and review/compare ability,

can provide more accurate and reliable subjective data than conventional test methods such

as DSCQS (adopted in [SYN+10]) and ACR (adopted in [OMW11]), especially when it is

difficult to rate or differentiate the test videos in terms of perceived quality (see Section 2.2.2

for details), which is indeed the case when both spatial and temporal impairments are involved.

As to this work, preliminary tests (as well as the real tests) indicate that the test subjects find

it difficult to give appropriate ratings to videos with different dominant types of impairments

or differentiate them without comparing them to each other. Therefore, SAMVIQ should

provide the most accurate subjective ratings in the context of this work.

Generally, SAMVIQ is a single stimulus method with random access where an explicit ref-

erence is always accessible. A graphical user interface (the central part shown in Figure 4.2) is

developed for the subjective test implementing the SAMVIQ method. The video is displayed

at the original resolution at the center of the screen on a background with mid-level grey

color. The test is carried out scene by scene†; each scene corresponds to a video content. For

each scene, the test subject can use the 14 access buttons placed under the video window to

access the test videos. The unprocessed source video is included as an explicit reference and

is always accessible through the “Ref” button. An implicit reference and the 12 processed

†A general example of the test organization for the SAMVIQ method can be found in Figure 2.6(a).
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Figure 4.2: The graphical user interface implementing the SAMVIQ method.

videos are associated with the “A” to “M” buttons in a randomized order from scene to scene

and for each test subject. This randomized order is to prevent the test subject to vote ac-

cording to an established order and to reduce the “contextual effect”, and the inclusion of the

reference videos is to obtain more reliable test results. In this implementation (in compar-

ison to the reference implementation in [ITU07]), when a button is selected, the associated

video is played automatically, which makes the interface more user-friendly (especially when

comparing videos) and reduces the overall test time. Therefore, the “PLAY” button is only

for indicating the playing status. The “STOP” button may be used to stop the playing if

desired. The “NEXT” button allows the subject to proceed to the next scene, but only when

all the test videos of the current scene are rated. The “End” button ends the subjective test,

but only when all the test videos are rated. The slider on the right of the video window is

used to rate the video quality on a continuous quality scale graded from 0 to 100. The quality

scale is also divided into five equal intervals and annotated by five adjectival quality terms

(Excellent, Good, Fair, Poor, Bad) for general guidance.

The test subject may play and rate any video in any order and for multiple times. When

a video is accessed for the first time, it has to be viewed entirely; all the control items are

disabled during the viewing. After that, the video can be rated using the slider and the rating

is shown under the corresponding access button. The subject may also review the video,

compare it against the reference video and other test videos that have already been rated,

and adjust the ratings as appropriate, during which the videos may be started or stopped
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immediately. Once all the videos of the current scene are rated, the test can proceed to the

next scene. The test ends when all the scenes are tested.

Test Procedure

The subjective test was carried out in a carefully controlled room with viewing conditions

conforming to the general guidelines given in [ITU07]. A group of 5 or 6 test subjects was

tested in one test session, each sitting in front of an identically configured LCD display. The

configuration of the LCD displays is summarized in Table 4.1. Before the test, the subjects

were requested to report whether they had normal or correct-to-normal visual acuity and

normal color vision, as well as whether and when they had participated in a subjective test

before. Non-suitable subjects were excluded from the test.

A test session consists of three phases: the introduction, the training session and finally

the real test. During the introduction phase, written instructions were provided to the test

subjects, carefully introducing the types of impairment likely to occur in the test, the test

organization and the user interface. The subjects were informed that both spatial and tem-

poral impairments may occur, and they should judge the overall quality and rate accordingly.

Questions from the subjects were allowed during the introduction phase.

After the introduction, a training session is provided to the test subjects for them to learn

how to use the user interface, as well as to get familiar with the types of artifacts and quality

ranges that would likely to occur in the real test. The Carphone source video sequence, with

a number of representative test conditions, is used in the training session. First, the test

procedure is demonstrated to the test subjects, during which the subjects were shown how to

access videos, how to use the rating scale, how to review and compare, etc. The subjects were

encouraged to use the full range of the rating scale, but as they find appropriate. After the

demonstration, the subjects were required to finish a mock test, during which the subjects

were instructed to adjust the chair and the viewing distance according to their preference.

Questions were allowed during the mock test and the test administrator also observed whether

there was any unexpected behavior. The real test took place directly after all the subjects

finished the mock test. The average duration of the real test was 16 (range 10-24) minutes,

with a standard deviation of 4 minutes. No question was allowed during the real test.

Table 4.1: Configuration of the displays used in the subjective test

Parameter Specification

Type of display LCD

Display size 17 inch

Manufacturer FUJITSU SIEMENS

Model SCENICVIEW B17-2 CI
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Figure 4.3: Histogram of the valid raw subjective ratings collected from the subjective test.

4.3.2 Subjective Data

After the subjective ratings are collected from the test, a screening process is carried out to

ensure that only ratings from subjects who have rated in a stable and coherent manner are

used for further analysis; subjects who may have rated randomly are rejected. Typically, the

rejection is done by verifying the level of consistency of the ratings of one subject according

to the mean ratings of all subjects. In this work, the screening procedure recommended by

ITU-R BT.1788 [ITU07] for the SAMVIQ method is adopted to screen the collected data.

The adopted screening procedure first calculates the Pearson correlation coefficient rp and

the Spearman’s rank correlation coefficient rs for the ratings of each subject against the mean

ratings of all subjects. Then for each subject, the following rejection criteria is applied:

IF r(subject) ≤ RejectionThreshold, THEN the subject is rejected,

where r = min(rp, rs) and the RejectionThreshold is 0.85 for the collected data.

Subjective ratings of 25 subjects are verified to be valid in the screening process; 2 subjects

are rejected. The histogram of the valid ratings (explicit reference excluded) is shown in

Figure 4.3, which demonstrates that the subjective ratings span the entire quality range and

the distribution over different quality ranges (i.e., “Bad”, “Poor”, etc.) is quite uniform. This

verifies that the subjects were indeed using the full range of the scale for rating the quality

and the quality levels of the test videos were well selected. Notice also how subjects tend

to quantize the ratings to the ticks on the scale and the mid-points between the ticks (i.e.,

ratings like 5, 10, 15, etc.). 54% of the total ratings are at those positions.

The valid raw ratings are further processed to form a differential mean opinion score
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Figure 4.4: DMOS values of all test videos. The vertical bar indicates the corresponding 95%
confidence interval.

(DMOS), which is the average of the difference between the ratings of a processed video and

those of the corresponding hidden reference. Specifically, let sji denote the rating given by

subject j to the processed video i, and sjref denote the rating given by the same subject to

the corresponding hidden reference. Then the DMOS value of video i is calculated as

DMOSi =
1

Ns

Ns∑
j=1

(sji − s
j
ref + 100), (4.1)

where Ns is the number of subjects. By subtracting the rating of the reference video, DMOS

removes the bias in the quality ratings caused by individual’s preference of the video content.

This process is also referred to as hidden reference removal.

DMOS is used as the subjective quality measure for each processed video. Since each

raw rating is in the range [0, 100], DMOS is in the range [0, 200], with higher DMOS values

indicating better quality. DMOS values greater than 100 (indicating better quality than the

reference) are considered valid and included in the data analysis. The DMOS values of all test

videos, along with the corresponding 95% confidence interval (calculated using the Student’s

t-distribution), are presented in Figrure 4.4. Notice that the 95% confidence intervals are

generally larger for video contents with higher motion, especially for videos with reduced

frame rate, which indicates that the subjects are less consistent when rating high motion

video contents with reduced frame rate. The average of the 95% confidence intervals for

Mother&Daughter (low motion), Foreman (medium motion), and Football (high motion) are

±4.7, ±5.2 and ±6.5, respectively.
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Figure 4.5: Performance of PSNR for predicting DMOS. The vertical bar indicates the corre-
sponding 95% confidence interval of each DMOS.

4.4 Spatio-Temporal Perceptual Quality Modeling

The modeling of the perceptual video quality in the presence of both spatial and temporal

impairment is carried out in two steps. First, the impact of the spatial impairment (i.e.,

quantization) alone is analyzed and a spatial quality model is developed, which is presented

in Section 4.4.1. Then, in Section 4.4.2, the impact of the temporal impairment (i.e., frame

rate reduction) at different spatial quality levels is studied and a temporal quality model as

well as an overall quality model are developed.

4.4.1 Spatial Quality Analysis and Modeling

4.4.1.1 Spatial Quality Analysis

The most popular objective quality metric for measuring the spatial quality is the average

PSNR defined in Equation (2.5). But as discussed in Section 2.2.2, PSNR ignores the HVS

properties and has poor correlation with the perceptual quality, which is confirmed by the

subjective data collected from this work as shown in Figure 4.5. Figure 4.5(a) plots the

DMOS against the predicted DMOS from PSNR (by a least-squares linear fitting to the

DMOS values) for all videos with full frame rate, where a low correlation between DMOS

and PSNR is evident. The accuracy (or the lack of it) of PSNR’s prediction is depicted in

Figure 4.5(b).

Considering the merits of PSNR and the potential to improve its performance, this work

extends PSNR to form a spatial quality model, which models the overall HVS behavior on

the sequence level (refer to Section 4.2.1). There are two major problems with PSNR as a
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spatial quality metric. First, PSNR is content-dependent, which means that similar PSNR

values may indicate significantly different subjective quality levels for different video contents,

as can be seen in Figure 4.5(a). In addition, the relation between PSNR and the subjective

quality is not linear, as shown in [WP02]. Therefore, in oder to improve the performance,

content features should be included to reduce the content-dependency of the new model and

a non-linear function should be considered.

A two-way ANOVA with repeated measures is performed on the subjective data to show

how the subjective quality relates to different factors (i.e., PSNR and Content here). The

results of the ANOVA test† are reported in Table 4.2, which show that both PSNR and

Content have significant impact (p < 0.0001) on the subjective quality. This confirms that

including content features in the model is necessary. The interaction between the two factors

is also found to be significant (p < 0.0001), indicating that how PSNR impacts the subjective

quality is content-dependent. The significant interaction term suggests that the model should

not simply be a linear combination of PSNR and content features.

Table 4.2: Two-way ANOVA results for the full frame rate videos

Source of Variation df Mean Square F-value p-value

PSNR 2 34971 364.1 <0.0001

Content 2 21160 220.3 <0.0001

PSNR : Content 4 1973 20.5 <0.0001

4.4.1.2 Spatial Quality Modeling

To model the spatial quality based on PSNR, two issues need to be addressed. First, the form

of the non-linear relation between DMOS and PSNR needs to be determined. Following the

recommendation in [WP02], the relation is modeled as a form of the logistic function. Also

taking into consideration of the impact of content on the subjective quality as well as the

interaction between PSNR and content, the spatial video quality is modeled as

SV QM =
100

1 + e−(PSNR+w·V Cs−µ)/s
, (4.2)

where V Cs is a model parameter related to the video content and w is a weighting factor

between PSNR and V C. µ and s are model coefficients that can be determined by fitting to

the subjective data.

The second issue is to find suitable content features to include into the model, i.e., to

determine V C in Equation (4.2). As discussed in Section 4.2.1, both spatial and temporal

aspects of the HVS properties have impacts on the perceptual quality, suggesting that both

†The ANOVA results in this dissertation are generated using R version 2.12.1 [Com].
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Table 4.3: SA and TA values of the source videos

Source Video SA TA

Mother&Daughter 54.6 3.8

Foreman 85.9 15.2

Football 65.6 27.6

spatial and temporal features of the video content should be considered. Therefore, V C is

designed as a weighted sum of two parameters:

V CS = SA+ k · TA, (4.3)

where SA and TA represent the spatial and temporal activity level of the video content,

respectively. The spatial and temporal perceptual information measures recommended by

ITU [ITU99] for selecting source videos for a subjective test (see Section 2.2.1) are adopted

here, slightly modified, as the TA and SA, which are defined as

SA = meantime{stdspace[Sobel(Fn)]}, (4.4)

TA = meantime{stdspace[Fn − Fn−1]}. (4.5)

The calculation of SA and TA is based on the luminance component of each video frame.

For calculating SA, each frame (Fn) is first processed by the Sobel operator (Sobel()), which

computes the gradient at each pixel. The standard deviation of the gradient magnitudes

over the pixels (stdspace()) is then computed. It is averaged over all frames (meantime()) to

generate a single-valued SA. Larger SA value indicates higher spatial activity level in the

video content. Similarly, TA is computed based on the standard deviation of the difference

between consecutive frames, with higher TA value indicating higher temporal activity level.

The SA and TA values of the source videos used in this work are given in Table 4.3, which

correspond well to the perceived spatial and temporal activity level in these videos.

Finally, substituting Equation (4.3) into Equation (4.2), the spatial video quality model

(SVQM) is given by

SV QM =
100

1 + e−(PSNR+ws·SA+wt·TA−µ)/s
, (4.6)

where ws and wt are weighting factors for SA and TA, respectively. The values of the constants

ws, wt, µ and s are determined by a non-linear least-squares fitting using the subjective data,

which leads to ws = 0.0356, wt = 0.236, µ = 36.9 and s = 2.59. SVQM has the range of

0 to 100, higher value indicating better quality. The positive values of ws and wt indicate

that at the same PSNR level, contents with higher spatial and temporal activity levels have

better perceived quality. DMOS and SVQM are plotted against PSNR for the full frame rate

videos in Figure 4.6, which shows that SVQM fits the subjective data (DMOS) very well. The

non-linearity and the content-dependency are well resolved by the logistic function and the

inclusion of content features (i.e., SA and TA), respectively.
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Figure 4.6: DMOS (points) and SVQM (curves) versus PSNR for the full frame rate videos.
The vertical bar indicates the corresponding 95% confidence interval of each DMOS. Notice
that the non-linearity and the content-dependency are well resolved in the SVQM model.

4.4.2 Temporal Quality Analysis and Overall Quality Modeling

4.4.2.1 Temporal Quality Analysis

To understand how temporal impairment (i.e., frame rate reduction) affects the overall per-

ceptual quality, three questions need to be addressed. First, what is the relationship between

perceptual quality and frame rate? Is it linear or non-linear? Second, is the relationship

content-dependent, i.e., different for different video contents? Third, is the relationship de-

pendent on the spatial quality level (i.e., is there an interaction between spatial quality and

temporal quality perception)? All three questions are addressed in this section.

In Figure 4.7, the DMOS values are plotted against the corresponding frame rate at differ-

ent spatial quality (SPSNR) levels for each source video separately. Recall that while SPSNR

is determined solely by the spatial impairment (i.e., quantization) level, similar SPSNR val-

ues may represent different spatial quality levels for different video contents. As expected,

DMOS becomes lower as frame rate decreases. Generally, the relationship appears to be

non-linear, which is in accordance to the results obtained by studies on uncompressed videos

(see Section 4.2.2). Figure 4.8(a) compares the curves at a similar spatial quality level for

different source videos (i.e., SPSNR = 38dB for Mother&Daughter, SPSNR = 34dB for Fore-

man and Football), where the DMOS reduction (∆DMOS) compared to the corresponding

full frame rate video is plotted. The comparison shows that DMOS decreases slower for low-

motion video content like Mother&Daughter and faster for high-motion content like Football,

indicating that the impact of frame rate is content-dependent and reducing frame rate has
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(c) Football

Figure 4.7: DMOS versus frame rate at different SPSNR levels for each source video.
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(a) For different source videos.
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(b) At different spatial quality levels (Foreman).

Figure 4.8: ∆DMOS versus frame rate a) for different source videos at a similar spatial quality
level and b) for a specific source video (Foreman) at different spatial quality levels.

stronger negative impact for videos with higher temporal activity. This suggests that a tem-

poral activity measure of the video content should be considered when modeling the temporal

perceptual quality. Also, as depicted in Figure 4.8(b), the curves for a specific source video

have different slops for different spatial quality levels; DMOS decreases faster at higher spatial

quality level. This observation indicates that the negative impact of frame rate reduction is

more perceivable or annoying at high spatial quality levels than at low spatial quality levels.

Therefore, the impact of frame rate is also dependent on the spatial quality level (i.e., there

is an interaction between spatial and temporal quality perception).

The above observations are confirmed by a three-way ANOVA test with repeated measures,

which considers three factors that may have impact on the overall perceptual quality: SPSNR,

Frame Rate (FR) and Content. The results of the ANOVA test are reported in Table 4.4.

As expected, the main effects of the three factors are significant (p < 0.0001). The two-way

interaction between SPSNR and Content is significant (p < 0.0001), in accordance to the
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findings in Section 4.4.1.1 for spatial quality modeling. Both the interaction between FR and

Content (p < 0.0001) and that between SPSNR and FR (p = 0.0016) are significant, which

confirms that the impact of frame rate on the overall perceptual quality depends on the video

content as well as on the spatial quality level.

Table 4.4: Three-way ANOVA results for all videos

Source of Variation df Mean Square F-value p-value

SPSNR 2 110094 783.0 <0.0001

Frame Rate (FR) 3 30945 220.1 <0.0001

Content 2 22282 158.5 <0.0001

SPSNR : Content 4 6444 45.8 <0.0001

FR : Content 6 2892 20.6 <0.0001

SPSNR : FR 6 505 3.6 0.0016

SPSNR : Content : FR 12 114 0.8 0.6367

4.4.2.2 Overall Quality Modeling

Based on the observation that an interaction exists between spatial quality and temporal

quality perception, the overall quality is modeled as the product of the two quality terms:

STV QM = SV QM · TV QM. (4.7)

SV QM models the spatial quality as given in Equation (4.6), where the PSNR is averaged

over non-repeated video frames for videos with reduced frame rate, i.e., SPSNR. TV QM

models the temporal quality and is given in the following.

Similar to the spatial quality modeling, modeling the temporal quality requires to resolve

the non-linear relationship between subjective quality and frame rate as well as the content-

dependency. Since there is no evidence that spatial characteristics of the video content have

impact on the temporal quality perception (i.e., motion smoothness), only a temporal activity

measure (i.e., the TA defined in Equation (4.5)) is considered in modeling the temporal quality.

The proposed temporal video quality model (TVQM) is given as

TV QM =
1 + a · TAb

1 + a · TAb · 30
FR

, (4.8)

where FR denotes the frame rate and FR ≤ 30fps. The two constants a and b are determined

by fitting to the subjective data, which leads to a = 0.028, b = 0.764. TVQM has the range

of 0 to 1, higher value indicating better temporal quality. When FR = 30 or TA = 0, TVQM

reaches 1, which is in accordance to the fact that at full frame or for static scene (still image),

the overall quality equals the spatial quality. At the same reduced frame rate level, TVQM

is lower for larger TA, i.e., temporal quality is lower for video contents with higher temporal
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Figure 4.9: Subjective temporal quality (points) and TVQM (curves) versus frame rate for
all test videos. For each source video and each frame rate, three subjective temporal quality
points are available, which correspond to the three different spatial quality levels. Notice that
the non-linearity and the content-dependency are well resolved in the TVQM model.

activity levels. The subjective temporal quality, which is calculated by dividing the DMOS

value of the test video by that of the full frame rate video with the same spatial quality level,

and TVQM are plotted against frame rate in Figure 4.9. TVQM fits the subjective data very

well; both the non-linearity and the content-dependency are well resolved.

Many previous studies use temporal activity measures based on motion vectors, which

are often obtained using block-matching methods that are adopted by video encoders for

motion estimation. However, since a typical block-matching method does not intent to find

the real motion level, the resulting motion vectors may not accurately or reliably reflect the

temporal activity level of the video. As an example, a full-search full-pel block-matching is

performed on the source videos used in this work. Sample images along with the resulting

motion vectors of 8x8 blocks are shown in Figure 4.10. One issue that can be clearly seen

here is that the block-matching algorithm generates large motion vectors for non-textured

areas (such as the background wall in Mother&Daughter and the helmet in Foreman), which

significantly undermine the ability of motion vectors for measuring the temporal activity

level. The mean and standard deviation of the motion vector magnitudes (averaged over all

frames) are summarized in Table 4.5, indicating that those measures do not accurately or

reliably reflect the perceived temporal activity level. In general, motion vectors are highly

dependent on the block-matching method, the search range, and if they are generated by

a video encoder, on the quantization level. This indicates that if some of these parameters
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(a) Mother&Daughter (b) Foreman (c) Football

Figure 4.10: Sample images and the corresponding motion vectors of 8x8 blocks (arrows).
The motion vectors are obtained using a full-search full-pel block-matching algorithm with a
search range of ±16. Note that the arrows are scaled for each video to fit within the display
grid, so no comparison should be made between videos.

Table 4.5: Mean and standard deviation of motion vector magnitudes using the full-search
full-pel block-matching method with different search ranges

Video
Mean STD

±8 ±16 ±32 ±8 ±16 ±32

Mother&Daughter 1.9 2.9 4.5 2.7 4.8 8.1

Foreman 2.9 3.9 5.4 2.2 3.9 7.0

Football 6.0 9.3 13.0 2.5 4.4 8.1

change, a quality model based on motion vector would have different performance and different

model coefficients. Therefore, the TA defined in Equation (4.5), which is independent from

motion vectors, is used in this work as the temporal activity measure, for both spatial and

temporal quality modeling.

Combining Equation (4.6), (4.7) and (4.8) yields the spatio-temporal video quality model

(STVQM), which is written as:

STV QM =
100

1 + e−(SPSNR+ws·SA+wt·TA−µ)/s
· 1 + a · TAb

1 + a · TAb · 30
FR

. (4.9)

The STVQM model coefficients are summarized in Table 4.6. Figure 4.11, on the left side,

depicts DMOS and STVQM versus frame rate at different SPSNR levels for each source video

separately, showing that the curves generated from STVQM fit the DMOS values very well.

On the right side, STVQM is depicted as a function of SPSNR and frame rate in a three-

dimensional view.

Table 4.6: Summary of the STVQM model coefficients

ws wt µ s a b

0.0356 0.236 36.9 2.59 0.0280 0.764
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(b) Foreman
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(c) Football

Figure 4.11: The STVQM model. Left: DMOS (points) and STVQM (curves) versus frame
rate at different SPSNR levels. The vertical bar indicates the corresponding 95% confidence
interval of each DMOS. Right: STVQM model as a function of SPSNR and frame rate in a
three-dimensional view.
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4.5 Performance Evaluation

In this section, the spatial quality model SVQM and the spatial-temporal quality model

STVQM are evaluated against several state-of-the-art video quality models for their perfor-

mance in predicting the subjective quality ratings. The evaluation is carried out using three

statistical metrics that characterize various aspects of a model’s performance, including ac-

curacy, monotonicity and consistency. Significance tests are performed for each evaluation

metric to determine whether the differences between models are statistically significant.

4.5.1 Evaluation Metrics

The performance of an objective video quality model is evaluated by comparing its predic-

tions with the corresponding subjective quality ratings (i.e., DMOS values). Following the

performance evaluation process adopted by VQEG in its multimedia test [VQE08a], three

statistical metrics: Pearson correlation coefficient (PCC), root mean square error (RMSE)

and outlier ratio (OR), along with their 95% confidence intervals, are used to quantify the

model performance in this work. The definition of the evaluation metrics is briefly reviewed

in the following. The calculation of the 95% confidence interval and the details about the

significance test for each metric can be found in [VQE08a].

The PCC measures the linearity between the model predictions and the subjective quality

ratings. It is an intuitive indicator of a model’s overall performance in various aspects and is

given by

PCC =

Nv∑
i=1

(xi − x) · (yi − y)√√√√ Nv∑
i=1

(xi − x)2 ·

√√√√ Nv∑
i=1

(yi − y)2

, (4.10)

where xi and yi denote the video quality model output for video i (V QMi) and the corre-

sponding subjective rating (DMOSi), respectively. Nv is the number of videos considered in

the analysis. The PCC value of a video quality model is normally between 0 and 1, and the

closer the PCC is to 1, the better the model is. The exact goodness-of-fit is measured by the

square of the PCC, typically denoted as R2, which can be interpreted as the proportion of

variance in the subjective ratings that is explained by the objective model.

The root mean square error measures the accuracy of a model (i.e., how close or far the

model predictions are from the corresponding subjective ratings) and is defined as

RMSE =

√√√√ 1

Nv − d
·
Nv∑
i=1

(V QMi −DMOSi)
2, (4.11)

where Nv is the number of videos considered in the analysis, and d is the number of model

coefficients that need to be determined by fitting to the subjective ratings, which is included
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to penalize for model complexity (i.e., overparameterization). Smaller RMSE values indicate

better model accuracy.

The consistency of a model is measured by the outlier ratio. A model prediction is defined

as an outlier if it significantly deviates from the corresponding subjective rating. Let Ioutl

denote the set of outliers, then

V QMi ∈ Ioutl, IF |V QMi −DMOSi| > k · si(DMOS)√
Ns

, (4.12)

where si(DMOS) represents the standard deviation of the individual subjective ratings for

video i, and Ns is the number of subjects (Ns = 25). k is the critical value for the 95%

confidence interval and k = 2.064 in this work. The outlier ratio is then defined as the ratio

of outliers to all videos considered in the analysis:

OR =
|Ioutl|
Nv

. (4.13)

4.5.2 Spatial Quality Model Evaluation

The performance of SVQM is evaluated and compared with three other objective models:

PSNR, SSIM [WBSS04] and a weighted MSE model presented in [BRK09] (referred to as

WMSE hereafter) using the subjective ratings of the full frame rate test videos.

PSNR and SSIM are two very popular models for video quality assessment. While PSNR

measures the pixel-wise difference, SSIM measures the structural similarity between small

windows inside video frames. For each pair of windows, an SSIM index compares the local

mean, variance and covariance, which can be written as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2x + µ2y + C1)(σ2x + σ2y + C2)
, (4.14)

where x and y represents a local window in a test video and in its corresponding reference,

respectively. C1 and C2 are constants. In this work, the local SSIM indices are computed by

the MATLAB implementation available online at [Wan] using the default settings. A single

SSIM measure is calculated for each test video by averaging the local SSIM indices over all

windows within a frame and then over all frames. A VSSIM model is proposed in [WLB04]

that includes local weighting factors in the averaging process to account for HVS properties,

but the performance is similar to the non-weighted average. Therefore, for simplicity, the non-

weighted average is used for comparison. For both PSNR and SSIM, the predicted DMOS

values are obtained by fitting the model to the measured DMOS values of all considered

videos using a linear function with two coefficients (i.e., the slope and the intercept), which

are determined by least-squares fitting.

The WMSE model in [BRK09] is an extension to MSE/PSNR, which adopts sequence-level

perceptual weighting to take HVS properties into account. WMSE is given by

WMSE = 100 · (1− α1 · eα2·ES ·MSE), (4.15)
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Figure 4.12: Performance evaluation and comparison for the SVQM model. The vertical bar
indicates the corresponding 95% confidence interval of each DMOS. Only the test videos with
full frame rate are included in the analysis.

where MSE is the mean square error averaged over all frames, and ES measures the average

edge strength based on Sobel filtered frames. The two model coefficients α1 and α2 are deter-

mined by a non-linear least-squares fitting to the measured DMOS values. In [BRK09], the

model coefficients are determined on the sequence level, but the actual weighting is performed

for each macroblock in order to incorporate the model into mode decision algorithms, which

would compromise the performance of the model for predicting the overall quality. Therefore,

in this work, both the determination of the model coefficients and the weighting process are

carried out on the sequence level based on the subjective data, which should lead to the best

possible performance of the WMSE model.

The predicted DMOS values from all four models, i.e., PSNR, SSIM, WMSE and SVQM,

are compared with the measured DMOS values in Figure 4.12(a), which illustrates how close or

far the model predictions are from the subjective ratings. It is clear that the predicted DMOS

values from both PSNR and SSIM are very inaccurate due to the strong content-dependency

of these models. WMSE considers the spatial masking effect of HVS by including a spatial

content activity measure into the model, leading to a significant improvement compared to

PSNR and SSIM. The proposed SVQM considers both spatial and temporal aspects of the

HVS properties and as a result, the predicted DMOS values from SVQM are very close to the

measured DMOS values. Figure 4.12(b) illustrates the linear correlation between the model

predictions and the DMOS values for all four models, where it can be seen that the SVQM

model predictions are more linearly correlated with the subjective ratings than the comparing

models. The statistical evaluation metrics that quantify the performance of the models, along
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Table 4.7: Pearson correlation coefficients of the spatial quality models

Model PCC LB PCC UB PCC Sig. Level R2

PSNR 0.719 -0.017 0.959 1.00 0.518

SSIM 0.648 -0.151 0.935 1.00 0.420

WMSE 0.959 0.767 0.993 0.99 0.920

SVQM 0.999 0.993 1.000 - 0.998

Table 4.8: RMSE values of the spatial quality models

Model RMSE LB RMSE UB RMSE Sig. Level

PSNR 18.20 12.03 37.04 1.00

SSIM 19.96 13.20 40.63 1.00

WMSE 7.47 4.94 15.21 1.00

SVQM 1.50 0.94 3.67 -

Table 4.9: Outlier ratios of the spatial quality models

Model OR CI Sig. Level

PSNR 0.78 ±0.32 0.98

SSIM 1.00 ±0.00 1.00

WMSE 0.67 ±0.37 0.96

SVQM 0.11 ±0.24 -

with the corresponding 95% confidence intervals and significance test results, are summarized

in Table 4.7, 4.8 and 4.9, where lower bound (LB) and upper bound (UB) represents the

limits of the 95% confidence intervals (CI). The results show that in every aspect of the model

performance, the proposed SVQM model provides better results than the comparing models

with smaller confidence intervals. The statistical significance of the difference between SVQM

and the comparing models is well above the typical 95% significance level for all three metrics.

4.5.3 Overall Quality Model Evaluation

The performance of the spatio-temporal quality model STVQM is evaluated and compared

with four other objective models that consider both quantization and frame rate reduction:

STPSNR, the QM model presented in [FWSV07], an STPSNR-based extension of the SVQM

model (referred to as SVQM+ hereafter) and the VQMTQ model presented in [OMW11]. The

subjective ratings of all test videos are used for the performance evaluation.

Recall that STPSNR is calculated by averaging over all frames in the test videos, including

the repeated frames for videos with reduced frame rate. With STPSNR, the impact of frame

rate reduction is taken into consideration in the way that the PSNR values of the repeated

frames are smaller than those of the non-repeated frames. This is the typical way of using

PSNR for video quality assessment when frame rate reduction is involved. The predicted
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DMOS values from STPSNR are obtained by a linear least-squares fitting to the measured

DMOS values. Note that STSSIM, the spatio-temporal version of SSIM, is found to have

similar performance as STPSNR here as in the spatial quality case. Therefore, for clarity

results for STSSIM are not reported.

The QM model in [FWSV07] extends STPSNR by adding a temporal compensation term

based on the frame rate reduction. A motion vector magnitude measure is included in the

temporal compensation term, considering that the frame rate reduction has different impact

on videos with different temporal activity levels. The QM model is given by

QM = STPSNR+ β1 ·MAβ2 · (30− FR), (4.16)

where MA is the average magnitude of the top 25% largest motion vectors normalized by

the frame width. β1 and β2 are model coefficients. In this work, the motion vectors are

obtained using the full-search full-pel block matching method with ±32 search range on the

uncompressed source videos. Many pairs of β1 and β2 are tested and the one that leads to the

best mean correlation coefficient averaged over all source videos is selected, similar as done

in [FWSV07]. To obtain the predicted DMOS values, the QM model is further fitted to the

measure DMOS values by linear least-squares fitting.

Since STPSNR and QM are identical to PSNR at full frame rate, both of them have strong

content-dependency as PSNR does in the spatial quality case. It can be expected that their

performance across different video contents would be very poor. Therefore, with the intention

to reduce the content-dependency of STPSNR, the SVQM model is extended to predict the

spatio-temporal quality by replacing PSNR by STPSNR, which is written as

SV QM+ =
100

1 + e−(STPSNR+w′s·SA+w′t·TA−µ′)/s′
. (4.17)

The model coefficients here are determined by a non-linear least-squares fitting to the DMOS

values of all test videos, which leads to w′s = 0.0925, w′t = 0.384, µ′ = 40.3 and s′ = 3.55.

Note that since the content-dependency as well as the non-linearity of the impact of both

spatial and temporal impairment are considered by SVQM+, its performance would be much

better than STPSNR and QM. The comparison between STVQM and SVQM+ is to show

how much improvement is achieved due to the distinct physical meaning and clear structure

of the STVQM model.

Figure 4.13 compares the predicted DMOS values from four models: STPSNR, QM,

SVQM+ and STVQM, with the measured DMOS values, and Figure 4.14 illustrates the linear

correlation between the model predictions and the DMOS values. The results for the VQMTQ

model are close to that of the STVQM model and therefore are not included in the figures for

clarity. As expected, STPSNR and QM have poor performance predicting the DMOS, both

in terms of accuracy and linear correlation. SVQM+ indeed performs much better than STP-

SNR and QM because of its reduced content-dependency. The performance of the STVQM
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model is clearly better than all three comparing models. Its predictions are very close to and

quite linearly correlated to the measured DMOS values. These observations are confirmed and

quantified by the statistical metrics summarized in Table 4.10, 4.11 and 4.12, where the results

for the VQMTQ model are also included. The significance tests show that the difference be-

tween the STVQM model and the first three comparing models are statistically significant at

the 100% level. Comparing the performance of STVQM and SVQM+ shows that the distinct

physical meaning and clear structure of STVQM lead to a significant improvement. This is

also illustrated by comparing the Pearson correlation coefficients of the models for individual

source video (summarized in Table 4.13), where the content-dependency issue is entirely ex-

cluded. In this case, SVQM+ performs similarly as STPSNR and QM, whereas STVQM still

outperforms all three comparing models by a significant margin. The statistical analysis also

show that STVQM and VQMTQ have similar performance and the differences between the

two models are not statistically significant. On the other hand, the proposed STVQM model

has several advantages over VQMTQ, as discussed in Section 4.2.3, which make STVQM more

independent and more suitable for real-time applications.

4.6 Summary

In this chapter, a full-reference objective video quality metric is presented, which considers

the impact of both spatial (i.e., quantization) and temporal (i.e., frame rate reduction) quality

impairment on the overall perceptual video quality. The metric is based on PSNR, frame rate

as well as spatial and temporal video content activity measures that can be easily computed

from the original source video. Unlike most existing metrics, the presented metric is content-

independent, which is suitable for autonomous adaptation in a system where the trade-off

between spatial and temporal quality may be exploited to improve the overall perceptual

video quality. Statistical analysis with the data collected from subjective tests shows that the

presented metric is very accurate in predicting the perceptual quality. The performance is

either significantly better than or as good as (but with other advantages) that of the related

metrics.
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Figure 4.13: Performance evaluation and comparison for the STVQM model – accuracy. The
vertical bar indicates the corresponding 95% confidence interval of each DMOS.
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Figure 4.14: Performance evaluation and comparison for the STVQM model – linear correla-
tion with DMOS.
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Table 4.10: Pearson correlation coefficients of the spatio-temporal quality models

Model PCC LB PCC UB PCC Sig. Level R2

STPSNR 0.484 0.185 0.701 1.00 0.234

QM 0.471 0.169 0.692 1.00 0.222

SVQM+ 0.925 0.858 0.962 1.00 0.856

VQMTQ 0.995 0.988 0.997 0.23 0.988

STVQM 0.994 0.989 0.997 - 0.989

Table 4.11: RMSE values of the spatio-temporal quality models

Model RMSE LB RMSE UB RMSE Sig. Level

STPSNR 19.10 15.45 25.03 1.00

QM 19.55 15.77 25.73 1.00

SVQM+ 8.55 6.87 11.31 1.00

VQMTQ 2.82 2.25 3.77 0.62

STVQM 2.66 2.13 3.56 -

Table 4.12: Outlier ratios of the spatio-temporal quality models

Model OR CI Sig. Level

STPSNR 0.83 ±0.12 1.00

QM 0.78 ±0.14 1.00

SVQM+ 0.47 ±0.16 1.00

VQMTQ 0.00 ±0.00 0.69

STVQM 0.03 ±0.05 -

Table 4.13: Pearson correlation coefficients for individual source video

Model
MD FM FB Average

PCC R2 PCC R2 PCC R2 PCC R2

STPSNR 0.978 0.956 0.863 0.745 0.929 0.862 0.923 0.855

QM 0.974 0.949 0.906 0.821 0.943 0.889 0.941 0.887

SVQM+ 0.985 0.970 0.856 0.733 0.943 0.890 0.928 0.864

VQMTQ 0.999 0.998 0.997 0.995 0.985 0.971 0.994 0.988

STVQM 0.997 0.995 0.998 0.996 0.990 0.981 0.995 0.990





Chapter 5

QoE-Driven Multi-Dimensional

Adaptation

In this chapter, a QoE-driven MDA scheme is developed and integrated into the low-delay

error-resilient video transmission framework presented in Chapter 3. Instead of using the

PER-based heuristic approach, the decision of which retransmission scheme to apply is based

on the resulting QoE, which is estimated based on the objective video quality metric STVQM

presented in Chapter 4. With the QoE-driven MDA, the system can deliver significantly

improved QoE with high adaptability to both channel conditions and video content charac-

teristics.

5.1 Introduction

In a wireless video transmission system with limited transmission capacity and time-varying

channel characteristics, an MDA scheme that may adjust multiple spatial and temporal video

coding parameters at the same time would be able to deliver better QoE and provide the sys-

tem with higher adaptability. An example of such an MDA scheme is the delay-aware channel-

adaptive retransmission scheme presented in Section 3.5. Other related examples include

multi-dimensional rate control schemes (e.g., [LK05]), multi-dimensional transcoding schemes

(e.g., [JR04]), adaptive scheduling schemes based on scalable video coding (e.g., [SSW07]) or

frame dropping (e.g., [TCS08]), and others. Most of the MDA schemes either adopt heuristic

approaches [BW07], or formulate the problem in such a way to optimize certain Quality of

Service (QoS) parameters (e.g., throughput [SSW07]) or the MSE/PSNR of the reconstructed

video [LK05]. A heuristic approach based on packet error rate is also applied in Chapter 3

for the channel adaptive retransmission. However, although heuristic approaches generally

can improve the system performance compared to schemes without MDA, they perform well

85
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in some situations, less well in others, and may even perform worse than without in certain

situations. Also, the parameters in these heuristic approaches (if any) have significant im-

pact on the overall performance and selecting suitable parameters is rather challenging, which

typically involves empirically testing many parameter sets in many different situations.

The problem formulation of optimizing QoS parameters or MSE/PSNR would lead to a

solution that achieves the best possible QoS or MSE/PSNR, but typically not the best QoE,

especially not in the MDA scenario. QoS parameters, such as transmission bitrate or packet

error rate, are good quality measures for general data transmission, but have only grossly

approximate relationship with the perceptual video quality. MSE/PSNR has long been used

for image and video quality assessment, but in general does not correlate well with perceptual

quality either (see Section 2.2.2). One significant problem with MSE/PSNR in an MDA

scenario is that the resulting temporal aspect of the perceptual quality is poorly modeled by

MSE/PSNR when the temporal resolution (i.e., frame rate) is adjusted, which has been shown

by various previous works (e.g., [FWSV07]) as well as by the work presented in Chapter 4

based on subjective test results. The multi-dimensional rate control scheme in [RL02] uses the

sum of absolute error (SAE) instead of the MSE as the optimization objective, intending to

place less emphasis (no squaring) on the large differences associated with the skipped frames.

But as shown in [WSV+03], SAE still has problems in predicting the perceptual quality in

the context of multi-dimensional rate control. Since MSE/PSNR and SAE place too much

weight on the frame rate, an MDA scheme using them as the optimization objective would

favor spatial adjustment (e.g., quantization) too strongly over temporal adjustment (i.e, frame

rate reduction) and select the temporal option much more rarely than it should be selected.

Therefore, both heuristic approaches and QoS or MSE/PSNR optimization based schemes are

rather far from being able to fully exploit the potential gain of MDA.

To address the drawbacks of the existing MDA schemes discussed above, a QoE-driven

approach is proposed and integrated into the adaptive retransmission scheme presented in

Chapter 3. The presented QoE-driven MDA decides between spatial and temporal adjust-

ment based on their respective resulting QoE. The QoE is estimated based on the objective

quality metric STVQM presented in Chapter 4, which has been shown to have high accuracy

in predicting the perceptual quality in the presence of both spatial and temporal quality im-

pairments. The resulting adaptation scheme automatically takes into account various factors

that may affect the QoE, including available bitrate, packet error rate and error pattern, video

content, slice size, concealment method, etc., and therefore can provide significantly improved

QoE for arbitrary videos over a wide range of channel conditions. Thus, the meaning of

“multi-dimensional” here is double-edged. One one hand, it refers to that multiple spatial

and temporal video encoding parameters may be adjusted. One the other hand, it also implies

that the scheme is adapted to multiple factors, including channel conditions, video content
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characteristics, and others.

The rest of this chapter is organized as follows. Section 5.2 presents the problem formu-

lation of the proposed QoE-driven MDA scheme. The related quality estimation issues, for

both source coding and channel introduced quality degradations, are addressed in Section 5.3.

Experimental results with various channel models are presented and discussed in Section 5.4,

showing consistent QoE improvement for a wide range of system conditions. Section 5.5

summarizes the chapter.

5.2 Problem Formulation

In the DACAR scheme presented in Section 3.5, four retransmission schemes are combined

in a heuristic manner based on PER thresholds that are selected empirically. As discussed

in Section 3.5.2, the choice of the thresholds depends on various factors, which makes it

impossible to find a set of thresholds that perform the best in all situations. For example, the

best thresholds for a low-motion video would be different from those for a high-motion video,

as the frame rate reduction would affect the perceptual quality of those videos differently.

In this section, the combination of the retransmission schemes is revisited and a QoE-driven

MDA (QMDA) scheme is proposed, which always chooses the retransmission scheme that

results in the best estimated QoE.

5.2.1 QoE-Driven Decisions

As in the DACAR scheme, the trade-off between spatial and temporal quality is exploited in

the QMDA scheme at two places where decisions are to be made. By making these decisions,

the system is automatically adapted to multiple related factors.

Decision-I

The first decision to make is that, before encoding a new video frame, which one of the

retransmission schemes† RS0, RS1 and RS2 should be applied. Two trade-offs exist behind

this decision. First, to decide between RS0 and RS1, the trade-off between the impact of

concealment (RS0) and that of quantization (RS1) on the perceptual video quality needs

to be considered. Applying RS0 would result in a larger number of lost MBs that need

to be concealed, while applying RS1 would result in a reduced source coding bit budget,

thus a coarser quantization. This choice mainly depends on how well the lost MBs can be

concealed, which is determined by the video content, the concealment scheme, the slice size

as well as the packet error rate and error pattern in the wireless channel. The second trade-

off is between the spatial quality (RS1) and the temporal quality (RS2), which needs to be

†Refer to Section 3.5.1 for the definition of the retransmission schemes.
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(a) Example of displayed frames structure. Notice how RS2 reduces the frame rate and increases the delay.

(b) Example of image quality. The video Mother&Daughter is encoded at 150kbps/30fps with RS1 (left)
and at 150kbps/15fps with RS2 (right).

Figure 5.1: Differences between RS1 and RS2.

considered when deciding between RS1 and RS2. The difference between RS1 and RS2 is

illustrated in Figure 5.1 using examples of displayed frames structure and image quality. It

can be seen that compared to RS1, RS2 reduces the frame rate (see the frame repetition in

Figure 5.1(a)), but the resulting doubled bit budget could significantly improve the image

quality (see Figure 5.1(b)). In addition, the end-to-end delay is increased when applying RS2

(see the frame position shift in Figure 5.1(a)), which also needs to be taken into consideration

when making the decision.

Given the video content (V C), the channel statistics (CS) and the codec configuration

(CC), the problem of Decision-I is formulated as to find the retransmission scheme γ∗ that

maximizes the resulting QoE, i.e.,

γ∗ = arg max
γ∈Γ

Q(γ, V C,CS,CC), (5.1)

where Γ denotes the set of candidate retransmission schemes {RS0, RS1, RS2} and Q(·)
denotes the resulting QoE. The resulting QoE of a particular retransmission scheme depends
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on the perceptual quality of the reconstructed video (V Q) and the end-to-end delay (T ),

which can be written as

Q(γ, V C,CS,CC) = f(V Q(γ), T (γ)). (5.2)

The impact of the end-to-end delay on the QoE is application-specific and may vary signifi-

cantly for different video applications. In this work, this impact is modeled as a simple on-off

function. In other words, it is assumed that as long as the delay does not exceed the appli-

cation requirement TMAX , its impact can be ignored, and a delay larger than TMAX is not

acceptable. Thus, Equation (5.2) becomes

Q(γ, V C,CS,CC) =

{
V Q(γ), T ≤ TMAX

0, T > TMAX

. (5.3)

In addition, it is assumed that error concealment and quantization have the same impact on

the perceptual video quality if they introduce the same MSE, as done in various previous works

(e.g., [HCC02]). Then the video quality can be measured by the PSNR-based STVQM model

presented in Chapter 4 (see Equation (4.9)), which has shown to be very accurate in estimating

perceptual quality. Extensive experimental results with natural test video sequences show that

most of the time, RS1 leads to better quality than RS0. Even when RS0 outperforms RS1,

typically when PER is below 3%, the quality difference is very small. Therefore, RS0 is no

longer considered in the rest of this chapter and the focus of Decision-I is on exploiting the

trade-off between spatial and temporal quality, which is shown to be able to provide significant

gain. As a result, Equation (5.1) is reformulated as

γ∗ = arg max
γ∈{RS1,RS2}

STV QM(γ)

subject to T (γ∗) ≤ TMAX .

(5.4)

Since Decision-I needs to be made before encoding/transmission, the SPSNR term in the

STVQM metric needs to be estimated, which is addressed in Section 5.3.1.

Decision-II

The second place where the trade-off between spatial and temporal quality is exploited is

after transmitting a frame in its allocated time slot(s). It needs to be decided whether the

residual lost packets should just be concealed (sacrificing the spatial quality) or the next

frame should be skipped (sacrificing the temporal quality) so that the lost packets can be

further retransmitted (RS3). The main idea is to adapt to situations where the actual PER

during the transmission is significantly larger than estimated before encoding. Applying

RS3 would reduce the frame rate and introduce additional delay (see Figure 5.2(a)), but the

retransmissions could improve the image quality significantly, as illustrated in Figure 5.2(b).
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(a) Example of displayed frames structure. Notice how RS3 reduces the frame rate and increases the delay.

(b) Example of image quality. The video Mother&Daughter is encoded/transmitted at 500kbps/30fps
without RS3 (left) and with RS3 (right). The PER is 30% and DMVE is applied for error concealment.

Figure 5.2: Differences between without and with RS3.

Similar as in Decision-I, the impact of the end-to-end delay on the QoE is modeled as

an on-off function and the resulting QoE is as given by Equation (5.3). Also, when both

quantization and error concealment are involved, it is assumed that their impacts on the

video quality would be the same if they introduce the same MSE and the overall quality can

be measured by the PSNR-based STVQM model. Thus, the solution of Decision-II can be

formulated as

Apply RS3, as long as STV QM(RS3) > STV QM(w/o RS3)

and T (RS3) ≤ TMAX .
(5.5)

With this formulation, RS3 would only be applied when it leads to improved QoE under the

constraint on the end-to-end delay. Since Decision-II is made after the encoding, the SPSNR

term in STV QM(w/o RS3) can be computed. But the SPSNR term in STV QM(RS3)

need to be estimated if all the lost packets cannot be successfully retransmitted within the

extra time slot (i.e., the current PER is very high). This quality estimation is addressed in

Section 5.3.2.
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Figure 5.3: Examples of the gradual spatial quality (measured by SPSNR) improvement when
frame rate changes from 30fps to 15fps at the same bitrate. The frame rate change occurs
after Frame 80. Notice that the transition process may take up to 10 frames and is longer for
the low-motion video Mother&Daughter.

5.2.2 Channel Adaptation

Decision-I and Decision-II constitute the final QMDA scheme. Unlike in the DACAR scheme

where both Decision-I and Decision-II are made for each frame, the channel adaptation time-

scale for Decision-I in the QMDA scheme is considered to be a (fixed) number of frames,

which is referred to as an adaption group of pictures (AGOP), while Decision-II is considered

to be per-frame adaptation. Various aspects are taken into consideration when determining

the adaptation time-scales, which are discussed in the following.

The choice of the adaptation time-scale depends on the time-scale of the channel variation.

Generally, with a small time-scale, the adaptation scheme can quickly follow even rapidly

varying channel conditions. However, in the considered system, a small adaptation time-scale,

such as the length of one video frame, may not be the best choice in terms of maximizing

the QoE, especially when associated with Decision-I. There are two issues if Decision-I is

to be carried out with a small time-scale for following rapid short-term channel variations.

First, the potential of the frame rate reduction may not be fully utilized. More specifically,

when Decision-I decides for reducing the frame rate, it is sacrificing the temporal quality to

achieve an improved spatial quality so that the overall quality would be maximized. This

improvement of the spatial quality is a gradual transition process that would take several

frames to reach the plateau. Examples of this process are given in Figure 5.3, which shows

that the transition may take up to 10 frames and the transition is longer for a video with

lower motion level (i.e., Mother&Daughter). In this case, if Decision-I is made for every

frame, and assuming the SPSNR is accurately estimated for the current frame, the system

would underestimate the potential spatial quality improvement (that could be achieved by
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Figure 5.4: Illustration of typical wireless channel variations consisting of large-scale (long-
term) variation (caused by path loss and shadowing) and small-scale (short-term) variation
(caused by multipath propagation).

a longer term of frame rate reduction) and therefore may often decide against frame rate

reduction. The second issue here is that a small adaptation time-scale may cause undesired

short-term video quality variations (both spatially and temporally), especially as Decision-I is

a proactive approach that depends on estimations of the channel condition from most recent

observations. In case of rapid short-term channel variations, these channel estimations could

be quite different from the actual conditions and therefore lead to adjustments that may

not be desirable. In comparison, although Decision-II with small-scale adaptation would also

cause quality variations (temporal only), since the decisions are based on the actual channel

conditions and the resulting picture quality, the adjustments, if carefully controlled, would

generally improve the overall QoE. Therefore, from the video application perspective, adopting

Decision-I on a relatively large time-scale (i.e., a relatively large AGOP size) is desired.

From the channel perspective, typical wireless channels may experience two different types

of variations: large-scale (long-term) variation and small-scale (short-term) variation [Skl97].

Large-scale variation is caused by path loss and shadowing effects with a time-scale of sec-

onds, while small-scale variation is caused by multipath fading with a time-scale of millisec-

onds [ZCK01]. As illustrated in Figure 5.4, these two types of variations are considered

superimposed to form the overall channel variation. Thus, considering the discussions above

from the video application perspective, the QMDA scheme applies Decision-I to follow the

large-scale variation and Decision-II to adapt to the small-scale variation. In this way, the

resulting system can be highly adaptive to the wireless channel, while at the same time being

relatively insensitive to the issues from the video application perspective. The final QMDA

scheme operates as follows.

Before encoding a new AGOP, the average PER during the transmission of the last AGOP

is measured and used to estimate the current average channel condition. Based on this average
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channel quality estimate, Decision-I is made according to Equation (5.4), where the calculation

of the STVQM metric for the current AGOP (to be encoded) is based on parameters estimated

from the previous AGOP, such as the spatial and temporal content activity measures. From

this perspective, the size of an AGOP should be kept relatively small so that video content

changes can be quickly tracked. In this work, the AGOP size is chosen to be 30 frames (i.e.,

one second), which should provide a good balance among several factors that the AGOP

size may have impact on. The decided retransmission scheme will then be applied to all the

video frames in the new AGOP and the video encoder will be configured to generate the

corresponding source rate RS according to Equation (3.8)–(3.9). After the transmission of

each frame, Decision-II is made according to Equation (5.5) to decide whether RS3 should be

applied.

5.3 Video Quality Estimation

In the proposed QMDA scheme, since the decisions may need to be made before the actual

encoding or transmission of the video frames, the resulting video quality would need to be

estimated. First, at the beginning of each AGOP where Decision-I is to be made before

encoding, the STV QM(γ) term in Equation (5.4) needs to be estimated. This is mainly a

problem of estimating the source coding quality, which is discussed in Section 5.3.1. Second,

after the transmission of each frame where Decision-II is to be made, the STV QM(RS3)

term in Equation (5.5) needs to be estimated if the RPER is expected not to be zero after the

retransmissions in the extra time slot. This is mainly a problem of estimating the distortion

caused by packet errors in the channel, which is discussed in Section 5.3.2.

5.3.1 Quality Estimation for Decision-I

To make Decision-I according to Equation (5.4), three parameters in the STVQM model need

to be estimated: SPSNR, SA and TA, for both STV QM(RS1) and STV QM(RS2). The

content activity measures SA and TA are estimated from the measured content statistics of

the previous AGOP, which is formulated as

S̃Ai = SAi−1, (5.6)

T̃Ai = TAi−1, (5.7)

where S̃Ai and T̃Ai represent the estimated content activity measures of the current AGOP,

while SAi−1 and TAi−1 represent the average values measured from the previous AGOP. Note

that SAi−1 and TAi−1 are averaged over all video frames in the previous AGOP, including

the skipped frames when RS2 is applied.
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The estimation of SPSNR can be formulated as a rate-distortion modeling problem for

video source coding that has been studied extensively for the commonly used hybrid video

coding structure. In this work, a widely used RD model (e.g., in [SW98, HM02b]) is adopted,

which is given by

D(R) = σ2 · e−α·R, (5.8)

where D denotes the MSE, R denotes the source coding rate, σ2 is the variance of the source

data and α is a content-dependent parameter to be determined. Based on this RD model, the

PSNR can be written as a function of the rate R as

PSNR(R) = 10 · log10(
2552

D(R)
) = PSNR0 + γ ·R, (5.9)

where PSNR0 is the logarithmic form of σ2 and γ is a content-dependent parameter to be

determined.

Since both RS1 and RS2 are involved, two cases are considered when estimating the SPSNR

values for the current AGOP. If the target retransmission scheme (for which the SPSNR is to

be estimated) for the current AGOP is the same as the one applied for the previous AGOP,

both PSNR0 and γ are estimated from the encoding results of the previous AGOP. It is

formulated as

˜SPSNRi = PSNR0i−1 + γi−1 ·Ri. (5.10)

Here, the term ˜SPSNRi represents the estimated SPSNR of the current AGOP, PSNR0i−1

represents the average PSNR0 of the previous AGOP and Ri is the target source coding rate

for the current AGOP. γi−1 is determined by

γi−1 =
1

Ri−1
· (SPSNRi−1 − PSNR0i−1), (5.11)

where Ri−1 represents the actual source coding rate of the previous AGOP, and the two PSNR

terms, SPSNRi−1 and PSNR0i−1 represent the average SPSNR and PSNR0 of the previous

AGOP, respectively.

For the other retransmission scheme, it would not be proper to estimate PSNR0 and γ

from the previous AGOP, as the prediction distance is different. In this case, the problem

is formulated so as to estimate the difference between SPSNR(RS1) and SPSNR(RS2) at

the same per-second bitrate, so that once one SPSNR is known, the other SPSNR can be

calculated. This can be written as

SPSNR(RS2) = SPSNR(RS1) + ∆PSNR. (5.12)

Two factors have impacts on the ∆SPSNR here. On one hand, RS2 leads to a doubled

per-pixel bitrate that would increase the SPSNR. On the other hand, the increased prediction

distance in RS2 would decrease the SPSNR. The overall difference results from the combina-

tion of the two impacting factors, which is found to be similar for different video sequences.
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Figure 5.5: Modeling the SPSNR difference between RS1 and RS2 at the same per-second
bitrate. The measurement points are averaged over several (at least 8, mostly ≥ 15) test
sequences. The vertical bar indicates the corresponding 95% confidence interval.

Therefore, the overall difference ∆PSNR is modeled empirically based on the average en-

coding results from 20 test video sequences with different content characteristics (all with

CIF (352x288) resolution and an original frame rate of 30fps), which are illustrated in Fig-

ure 5.5 with the average values and the corresponding 95% confidence intervals. Since each

video is only encoded within a proper rate range and the test video sequences cover a wide

range of content complexities, not all statistics in Figure 5.5 are computed from 20 samples,

but each rate point involves at least 8 samples, with more samples (≥ 15) for the low to

medium rate range. The average ∆SPSNR is modeled by an exponential function as

∆SPSNR = a+ b · ec·R, (5.13)

where R is the source coding bitrate in Mbps and the constants a, b, and c are determined by

a non-linear least-squares fitting to the average measurement data, which leads to a = 1.64,

b = 0.15 and c = 0.74. Figure 5.5 shows that this model approximates the measurements very

accurately.

In summary, the estimation of STV QM(RS1) and STV QM(RS2) works as follows. If

RS1 is applied for the previous AGOP, SPSNR(RS1) is estimated from the coding statistics

of the previous AGOP using Equation (5.10) and (5.11). Then SPSNR(RS2) is estimated

from the estimated SPSNR(RS1) using Equation (5.12) and (5.13). If RS2 is applied for the

previous AGOP, SPSNR(RS2) is estimated first from the previous AGOP before estimating

SPSNR(RS1) from the estimated SPSNR(RS2). With the content activity measures esti-

mated from the previous AGOP using Equation (5.6) and (5.7), the two STV QMs can be

computed using Equation (4.7).
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5.3.2 Quality Estimation for Decision-II

To make Decision-II according to Equation 5.5, since the current video frame has been encoded

and transmitted, the term STV QM(w/o RS3) can be readily computed from the available

data (i.e., SA and TA from the original frame and SPSNR from the decoded and concealed

frame). As for the term STV QM(RS3), depending on the current channel status, there are

two possible situations regarding the parameter SPSNR. If the current PER is not very high

so that all the lost video packets are expected to be successfully retransmitted during the

extra time slot with RS3, the resulting SPSNR can be computed from the decoded frame.

Otherwise (i.e., RPER > 0), the SPSNR needs to be estimated, as which video packets

would still be lost is unknown. The estimation of the SPSNR in this situation is addressed

in the following.

Since both source coding distortion and transmission errors are involved, the estima-

tion problem here is often referred to as end-to-end distortion estimation [WHL+00, HCC02,

ZGL+07]. Let f in represent the original value of pixel i in frame n, f̂ in represent the correspond-

ing decoded value in the encoder (no concealment), and f̃ in represent the final reconstructed

value (same in the encoder and decoder, with possible concealment). In this work, since there

is no error propagation, f̃ in can be written as

f̃ in =

{
f
i(ec)
n , pixel i is lost w.p. p

f̂ in, otherwise w.p. 1− p
, (5.14)

where p represents the packet error rate and f
i(ec)
n represents the concealed value when pixel

i is lost. Then, the expected end-to-end distortion of frame n measured by MSE is given by

D = E

{(
f in − f̃ in

)2}
= (1− p) · E

{(
f in − f̂ in

)2}
+ p · E

{(
f in − f i(ec)n

)2}
= (1− p) ·Ds + p ·Dec, (5.15)

where Ds denotes the source coding distortion and Dec denotes the error concealment distor-

tion. For Decision-II, Ds can be readily computed from the decoded frame in the encoder.

Assuming CPB is applied as the error concealment method, Dec can be written as

Dec = E

{(
f in − f i(ec)n

)2}
= E

{(
f in − f iref

)2}
, (5.16)

where f iref is the value of pixel i in the reference frame. In this case, Dec is the average

distortion between frame n and its reference and is constant when p changes. Thus, the
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Figure 5.6: Simulation results for end-to-end distortion estimation.

end-to-end distortion can be computed by

D(p1) = (1− p1) ·Ds + p1 ·Dec

= (1− p1) ·Ds + p1 ·
1

p0
· (D(p0)− (1− p0) ·Ds)

= Ds + (D(p0)−Ds) ·
p1
p0
, (5.17)

where p1 is the expected RPER after the retransmissions in the extra time slot and p0 is the

current RPER. The to-be-estimated SPSNR is simply a logarithmic form of the D(p1) here.

If the applied error concealment method is not CPB, Dec may be dependent on p. For

example, for DMVE (or any other improved temporal concealment method) , Dec is given by

Dec = E

{(
f in − f i(ec)n

)2}
= E

{(
f in − f

j
ref

)2}
, (5.18)

where f jref is the pixel value in the reference frame used to conceal pixel i. Ideally, Dec

would be the average distortion between frame n and the motion-compensated reference frame

(independent from p). However, since the motion vectors need to be estimated, the larger the

packet error rate p is, the further away the actual Dec would be from the ideal case (i.e., larger

Dec). Thus, the end-to-end distortion would become a non-linear function of p, instead of the

linear function with CPB. This is illustrated by simulation results shown in Figure 5.6 for both

CPB and DMVE, where D −Ds is plotted against p for three different videos; each point is

generated by averaging over 20 sample frames and 10 channel realizations. A detailed analysis

and the determination of the actual non-linear model are left for future work. Note that the

quality estimation here is only to be carried out in rare situations and therefore the model

accuracy would not have significant impact on the overall performance of the proposed system.

Thus, a linear model should provide sufficient accuracy for other concealment schemes.
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All the experimental results in Section 5.4 are generated using CPB as the error conceal-

ment method and Equation (5.17) for quality estimation.

5.4 Experimental Results

The performance of the proposed QMDA scheme is evaluated in a real-time video transmis-

sion system with an MPEG-4 video codec (i.e., the Xvid codec [Xvi]). Synchronized error

concealment (see Section 3.4.2) is integrated, where CPB is adopted as the error concealment

method. As in Section 3.6.2, the results for three source video sequences with different content

characteristics are analyzed: Mother&Daughter, Foreman and Football, all in CIF (352x288)

resolution and with an original frame rate of 30fps. The encoder settings adopted in Sec-

tion 3.6.2 are also applied here, including coding structure, slice structure and size, etc. Four

different systems are compared: 1) SP, where Decision-I is RS1 (i.e., quantization adjustment)

and Decision-II is no RS3 (i.e., concealment only); 2) TP, where Decision is RS2 (i.e., frame

rate reduction) and Decision-II is no RS3; 3) ADP: Decision-I is made adaptively based on

the QoE metric STVQM following Equation (5.4) and Decision-II is no RS3; 4) ADP+: both

Decision-I and Decision-II are made adaptively based on STVQM following Equation (5.4)

and (5.5), respectively. The TMAX in Equation (5.4) and (5.5) is set so that two consecutive

frames may be skipped. Note that adaptive decisions based on PSNR would almost always

avoid frame skipping due to the excess weight PSNR places on the skipped frames, resulting

in a performance very close to that of the system SP.

The wireless channel is modeled as a packet erasure channel with constant transmission

data rate. Different packet error patterns are tested when evaluating the system performance

with QMDA. In Section 5.4.1, results for a wide range of channel conditions (represented

by static channel models) are presented, where both independent packet errors and bursty

packet errors are considered. In Section 5.4.2, results for highly dynamic channel conditions

characterized by a user mobility model are presented.

5.4.1 Static Channel Model

Two widely adopted channel models are considered in this section for modeling the packet

error behavior in a wireless channel. One is the independent model, which assumes that

the packet errors are independently and identically distributed (i.i.d.). The other one is the

Gilbert-Elliot model [Gil60, Ell63], which has been shown to model the bursty nature of the

Rayleigh fading channel with adequate accuracy [WC96, ZR97]. To generate the experimental

results, the parameters of the channel model are kept constant during the entire duration of

the video; it is hence referred to as “static channel model”. Note that the resulting packet

error rate may be quite different from frame to frame, especially with the Gilbert-Elliot model.
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Figure 5.7: The state diagram of the Gilbert-Elliot channel model.

The Gilbert-Elliot channel model is a two-state Markov model as illustrated in Figure 5.7,

where the two states of the model are denoted as G (good) and B (bad). In the state G,

packets are considered to be lost with (low) probability PG, while in the state B, packets are

considered to be lost with (high) probability PB. Let p denote the transition probability from

the state G to the state B, and q denote the transition probability from the state B to the

state G, then the Gilbert-Elliot model can be described by the transition matrix

P =

(
1− p p

q 1− q

)
. (5.19)

In this work, it is assumed that PG = 0 and PB = 1 (i.e., packets are received successfully in

the state G and are lost in the state B). This specific version of the Gilbert-Elliot model is

also referred to as the simplified Gilbert model [YW95]. In this case, the mean packet error

rate Pe and the mean burst length Le can be written as [YW95]

Pe =
p

p+ q
, (5.20)

Le =
1

q
. (5.21)

The experimental results with static channel models are shown in Figure 5.9 – 5.10, where

the resulting video quality (measured by the STVQM metric, averaged over 10 random channel

realizations) of different systems for a wide range of packet error rates is compared. The results

for the Gilbert-Elliot channel model are generated with the average burst length Le = 16. It

can be seen from the results that in general, the system ADP is highly adaptive, both to the

channel conditions as well as to the video content characteristics, as the curves of ADP always

follow the option with better perceptual video quality (estimated by STVQM), no matter at

what rate, for which content or at what packet error rate/pattern. The system ADP+ adds

another level of adaptability to channel variations by reacting to the actual channel conditions.

This leads to further performance gains that are higher for channels with higher packet error

rate and for videos with larger motion. Recall that the performance of the system SP also

represents the performance of an adaptive system which applies PSNR as the video quality

metric. So the gap between ADP+ and SP also shows how much can be improved by adopting
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the more accurate quality metric STVQM in such an MDA scenario in comparison to PSNR-

based adaptation/optimization. Both ADP and ADP+ run automatically in real-time; there

is no parameter that needs to be determined manually to achieve the best performance for a

particular condition.

The results also show that for the low motion video Mother&Daughter (see Figure 5.9),

the system TP (frame skipping) always delivers better perceptual video quality than the sys-

tem SP (quantization adjustment). The gain of choosing frame skipping over quantization

adjustment becomes smaller as the rate/spatial quality level increases, until it saturates at

high spatial quality level. For videos with higher motion (i.e., Foreman and Football, see Fig-

ure 5.11 and Figure 5.10, respectively), TP delivers better perceptual quality than SP at low

rate/spatial quality level, indicating that for high motion contents, frame skipping is preferred

over quantization adjustment when the rate/spatial quality is low. As the rate/spatial quality

level increases, the two curves move towards each other, meet at medium rate, and then sep-

arate at high rate, where SP delivers better perceptual quality than TP. This indicates that

at high rate/spatial quality level, quantization adjustment is preferred over frame skipping.

Note that the case with zero packet error rate is equivalent to a multi-dimensional rate

control scheme that jointly adjust quantization and frame rate. Thus, it can also be seen

from the results here how effective it would be to integrate the STVQM metric in applications

involving such a rate control scheme.

5.4.2 User Mobility Model

In this section, the performance of the QMDA scheme is evaluated with highly dynamic chan-

nel conditions. A particular user mobility model is considered, which represents the wireless

channel characteristics between a fixed transmitter and a moving receiver in an environment

where both large-scale and small-scale variations exist. The receiver is assumed to be moving

away from the transmitter at a constant speed v.

Large-scale variation is caused by path loss and shadowing effects. It has been shown that

the mean path loss increases exponentially with the transmitter-receiver separation distance

and the power law relationship can be expressed as [SR92]

PL(d) = PL(d0) + 10 · n · log10

(
d

d0

)
, (5.22)

where PL(d) denotes the mean path loss (in decibels) at the distance d, PL(d0) denotes the

mean path loss at a reference distance d0, and n is the path loss exponent that indicates how

fast the mean path loss increases with respect to distance. The value of the path loss exponent

depends on the specific propagation environment and may range from 1 to 7 [Mol05] (e.g.,

n = 2 for free space).
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Shadowing effects lead to slow fluctuations around the mean path loss (often referred to as

shadow fading), which can be expressed as a log-normally distributed random variable [SR92].

Let X denote the random variable in decibels that represents the shadow fading, the path

loss at distance d is then given by

PL(d) = PL(d) +X = PL(d0) + 10 · n · log10

(
d

d0

)
+X. (5.23)

Here X is normally distributed (in decibels) with zero-mean and standard deviation σ. The

value of σ depends on the specific propagation environment.

With the path loss model in Equation (5.23), the received signal-to-noise ratio (SNR, in

decibels) can be expressed as a function of the distance d

SNR(d) = SNR(d0)− 10 · n · log10

(
d

d0

)
−X (5.24)

where SNR(d) and SNR(d0) represents the received SNR at the distance d and the reference

distance d0, respectively.

The received SNR given in Equation (5.24) is an average quantity. The actual instan-

taneous SNR varies much more rapidly due to multi-path propagation. In this work, this

small-scale variation is modeled by a Rayleigh random process (often referred to as Rayleigh

fading). The packet error behavior in such a Rayleigh fading channel is then represented by

the packet-level simplified Gilbert model, whose transition probabilities are given by [BL00]

p = fD · T ·
√

2π ·
√
− log(1− ε), (5.25)

q = fD · T ·
√

2π · 1− ε
ε
·
√
− log(1− ε), (5.26)

where fD represents the maximum Doppler shift, T represents the packet duration and ε

represents the mean packet error rate. The maximum Doppler shift is given by

fD =
v

c
· f, (5.27)

where v is the receiver speed, c is the speed of light and f is the carrier frequency. As

shown in [EL77] and [BL95], for very slow Rayleigh fading, where the signal strength can

be considered constant during the transmission of a packet (which is true with the selected

parameters for the experiments in this work), the mean packet error rate ε (assuming non-

coherent FSK and no FEC) can be expressed as a function of the average received SNR

ε = 1− 2−n

1 +

n∑
i=1

i∏
j=1

n+ 1− j
j + 2/γ

 , (5.28)

where n is the packet size in bits and γ represents the average received SNR that can be

computed using Equation (5.24).



102 CHAPTER 5. QOE-DRIVEN MULTI-DIMENSIONAL ADAPTATION

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

Time (s)

M
ea

n 
P

E
R

 (%
)

 

 

without shadowing
with shadowing (example)

Figure 5.8: The mean packet error rate for every second with the user mobility model.

For the user mobility model, an indoor propagation environment is assumed. The receiver

starts at a distance of 6 meters and moves away from the transmitter at a constant speed

of v = 1m/s (walking speed). The reference distance d0 is set to be 1 meter. The path loss

exponent n and the standard deviation σ of X are 3.0 and 3.0, respectively, matching typical

values for indoor non-line-of-sight (NLOS) propagation environments [KWX+04]. SNR(d0)

is set to be 50dB, so that the resulting mean packet error rate without shadow fading varies

between 0% and 40% for a 10-second video, which is shown in Figure 5.8. The average

received SNR is assumed to change every second according to Equation (5.24) and for each

packet within the second, the packet status is generated by the simplified Gilbert model with

the parameters calculated by Equation (5.25) and (5.26), where the carrier frequency f is set

to be 3.8GHz.

The experimental results with the user mobility model are shown in Figure 5.12, where for

each test video, the resulting video quality (measured by the STVQM metric, averaged over

10 random channel realizations) is plotted against the transmission data rate for different

systems. As can be seen from the results, even for such dynamic channel conditions, the

curves of the system ADP are still able to follow the option with better perceptual video

quality at any rate and for any content. With ADP+, further significant performance gains

are achieved with the improved channel adaptability. Other typical values of the user mobility

model parameters (e.g., carrier frequency and the standard deviation of the shadow fading)

are also tested and the results show similar behavior.

5.5 Summary

In this chapter, based on the objective video quality metric STVQM presented in Chapter 4, a

QoE-driven MDA scheme is formulated and integrated into the low-delay error-resilient system
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design presented in Chapter 3. Related quality estimation problems are addressed, so that the

QMDA scheme is able to make decisions before the actual encoding, transmitting or processing

starts. Extensive experimental results have shown that with the ability to accurately predict

the perceptual video quality for different video contents with different types and amounts

of quality impairment, the system with QMDA can deliver significantly improved QoE for a

wide range of situations (e.g., channel conditions, video contents) comparing to non-adaptive

systems or non-QoE-driven adaptive systems (i.e., systems adopting PSNR as the optimization

objective).
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(a) High rate (400Kbps), i.i.d. error
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(b) High rate (400Kbps), burst error
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(c) Medium rate (200Kbps), i.i.d. error
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(d) Medium rate (200Kbps), burst error
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(e) Low rate (120Kbps), i.i.d. error
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Figure 5.9: Performance comparison between various systems for Mother&Daughter. The
results are generated for both i.i.d error (left) and burst error (right) at different transmission
data rates and packet error rates. The STVQM values are averaged over 10 random channel
realizations.



5.5. SUMMARY 105

0 10 20 30 40 50
0

20

40

60

80

100

Packet Error Rate (%)

S
TV

Q
M

 

 

SP
TP
ADP
ADP+

(a) High rate (1100Kbps), i.i.d. error
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(b) High rate (1100Kbps), burst error
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(c) Medium rate (500Kbps), i.i.d. error
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(d) Medium rate (500Kbps), burst error
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(e) Low rate (300Kbps), i.i.d. error

0 10 20 30 40 50
0

20

40

60

80

100

Packet Error Rate (%)

S
TV

Q
M

 

 

SP
TP
ADP
ADP+

(f) Low rate (300Kbps), burst error

Figure 5.10: Performance comparison between various systems for Foreman. The results are
generated for both i.i.d error (left) and burst error (right) at different transmission data rates
and packet error rates. The STVQM values are averaged over 10 random channel realizations.
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(a) High rate (1200Kbps), i.i.d. error
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(b) High rate (1200Kbps), burst error
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(c) Medium rate (600Kbps), i.i.d. error
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(d) Medium rate (600Kbps), burst error
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(e) Low rate (400Kbps), i.i.d. error
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Figure 5.11: Performance comparison between various systems for Football. The results are
generated for both i.i.d error (left) and burst error (right) at different transmission data rates
and packet error rates. The STVQM values are averaged over 10 random channel realizations.
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Figure 5.12: Performance comparison between various systems with the user mobility model.
The results are generated for various videos at different transmission data rates. The STVQM
values are averaged over 10 random channel realizations.





Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, QoE improvement for wireless video transmission with highly dynamic

error-prone channels and stringent delay constraints is investigated.

First, a complete low-delay error-resilient video transmission framework for point-to-point

wireless communication with instantaneous feedback is developed. The framework is archi-

tectured in such a way that user-perceived video quality is significantly improved for a wide

range of channel conditions, while the end-to-end delay of the video application is kept as low

as possible. The available instantaneous feedback is integrated into both video coding and

transmission, leading to highly error-resilient coding schemes and a delay-aware retransmission

scheme that improve the perceptual video quality with no or controlled impact on the end-to-

end delay. With the integration of multi-dimensional video adaptation into the framework,

further improvement on channel adaptability and perceptual video quality is achieved. The

trade-off between spatial and temporal video quality is exploited using a PER-based heuristic

approach, which is although not optimal, but simple and effective. Extensive experimental

results show that the proposed framework provides significantly improved video quality for

a wide variety of system settings and a wide range of channel conditions. Furthermore, the

framework has low computational complexity and therefore high applicability in practical

real-time applications.

Second, a full-reference objective video quality metric STVQM is developed for QoE esti-

mation with MDA, where both spatial and temporal quality impairments may exist. Based

on the results from specifically designed subjective tests, the spatial quality perception is first

investigated and modeled. Then the temporal quality perception and its interaction with the

spatial quality perception is analyzed, based on which the overall spatio-temporal quality is

modeled. The proposed metric consists of PSNR, frame rate as well as spatial and temporal
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video content activity measures. The content activity measures are included to resolve the

content-dependencies that most of the existing video quality metrics have. Several statisti-

cal metrics are used to evaluate various aspects of STVQM’s performance, showing that the

proposed metric is very accurate in estimating the perceptual video quality and performs

significantly better than or as well as (but with other advantages) related metrics in the

literature.

Finally, with STVQM’s ability to accurately estimate the perceptual video quality in

the presence of both spatial and temporal quality impairments, a QoE-driven solution is

formulated for the multi-dimensional video adaptation integrated into the proposed video

transmission framework. This QoE-driven MDA scheme adjusts the trade-off between spatial

and temporal qualities in such a way that the best possible QoE (estimated by STVQM) is

achieved. Since decisions for the QoE-driven MDA need to be made before actual encod-

ing/transmission, estimation of the source coding distortion as well as the channel introduced

distortion is addressed. Extensive experimental results have shown that the integration of the

QoE-driven MDA leads to significantly improved QoE with high adaptability to both video

content characteristics and channel conditions.

6.2 Future Work

The potential extensions and applications of the work presented in this dissertation can be

summarized into two areas.

QoE-Driven Video Transmission

The design of the low-delay error-resilient video transmission framework has focused on the

most effective techniques on the application layer. Other error-resilient coding techniques,

such as data partitioning and flexible macroblock ordering, can be easily integrated into the

framework to further improve the overall performance. Furthermore, error control and channel

adaption tools on the lower layers (e.g., adaptive modulation, FEC) may also be considered,

which would require an appropriate cross-layer design.

Although point-to-point wireless communication has been the considered scenario, the

general design can be extended to a point-to-multipoint scenario where one sender is multi-

casting one video to several receivers. For example, packet-level FEC [Hui96] can be applied

to generate the retransmission packets so that the same packet can be used by every receiver

despite every receiver may have lost different original video packets.

A few more degrees of freedom or dimensions may also be considered in the QoE-driven

MDA scheme, such as the spatial resolution and the end-to-end delay, so that the overall QoE
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can be further improved. This would require the corresponding extension of the video quality

metric and integration of the extended metric.

Video Quality Metric

A full-reference video quality metric that considers both spatial and temporal quality impair-

ments is developed in this work. Suggestions on the extensions of the metric are as follows.

� The spatial resolution has been fixed when investigating the QoE impact of quantiza-

tion and frame rate reduction. If the spatial resolution is to be considered as another

dimension in the MDA, proper extension of the video quality metric to include this

new dimension needs to be investigated. A possible solution would be to include the

distortion caused by spatial resolution change into the PSNR calculation (i.e., weighted

average of quantization and spatial resolution change). Related studies in this direction

can be found in [ZCL+08, SHH+08, SYN+10].

� The impact of the end-to-end delay on the QoE has been modeled as a simple on-off

function. Further studies and more sophisticated modeling would be interesting as future

work, especially for applications where adding delay as another adjustable parameter

may lead to significant overall performance improvement.

� Both the spatial and the temporal video quality have been modeled in an averaged

manner. Further studies on the impact of local quality variations on the QoE, both

spatially and temporally, and the integration of the corresponding results into the video

quality metric would be of great interest and importance.

� Although the proposed FR metric is not applicable in situations where the unprocessed

reference video is not available, this work provides results and analysis that would guide

the design of related NR and RR metrics. In fact, in the proposed QoE-driven MDA

scheme, the FR metric STVQM is used in the RR manner, where the spatial and tempo-

ral activity measures can be considered as reduced reference information. Estimating the

spatial and temporal activity measures from the processed video would be an interesting

direction towards an NR metric.

In addition, there are many potential application areas of the proposed video quality met-

ric, such as multi-dimensional rate control, transcoding and resource allocation among multiple

users with different required videos and channel conditions, where conventional MSE/PSNR-

based approaches would not be able to provide the best possible QoE.
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