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Chapter 1

Introduction

1.1 Motivations

In recent years, there have been rapid deployments of high-speed 3G/4G mobile networks
in many countries around the world as well as expansions of existing ones. As of 2010,
there were more than 500 3G networks in operation while 300 more 4G networks were being
planned worldwide, allowing billions of people easy access to broadband mobile internet
[1]. Together with the widespread and increasing popularity of smart phones and tablet
PC’s, the volume of mobile internet traffic where a significant portion of which belongs to
mobile video streaming has gone up dramatically in the last decade. In fact, a recent study
by Cisco Systems, Inc. predicts that from 2010 to 2015, the mobile video streaming traffic
will have on average a 100% rate of growth by volume annually and will contribute more
than 60% to the overall mobile internet traffic by 2015 [2]. This significant growth rate is
driven by the popularity of video sharing and hosting websites such as Youtube, embedded
video contents in the news and articles, subscribed online TV, video conferencing and other
foreseeable similar services in the future.

However, providing video streaming services to mobile users poses additional challenges
compared to those in fixed and stationary last-mile networks. A video streaming user
in a 3G/4G mobile environment is subjected to rapid changes in reception quality and
congestion level in a mobile cell which affect the network’s performance and the mobile
user differently depending on the type of service provided. For a user that receives certain
Quality of Service (QoS) guarantees from the network, e.g., a minimum guaranteed bitrate,
more radio resources must be used to provide additional protection against the channel
in order to maintain a stable throughput when the user is in a bad reception area. This
results in inefficient resource utilization and a lower overall cell throughput. The minimum
guaranteed bitrate itself can still be violated if the cell is heavily congested as this is
usually only a soft guarantee. On the contrary, a mobile user that is served in a best-effort
manner by the network suffers a sporadic and highly fluctuating throughput, depending
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CHAPTER 1. INTRODUCTION 5

largely on its reception quality relative to other users. The latter is a consequence of a
more efficient resource allocation policy from the network’s point of view which gives a
significant weight on the users’ channel quality and less on the different priorities and their
QoS requirements. Regardless of whether the user has the QoS-guaranteed service or the
best-effort service, packet losses, degraded video quality and/or playback interruptions are
more likely in this environment, thus lowering the user’s satisfaction for the streaming
application. Additionally, the network operator also has to balance between providing
good service quality and maximizing the network’s capacity as well.

The ability to adapt the video bitrate and/or operating parameters of the underlying com-
munication layers to better suit the varying channel and congestion situations in the cell is
a promising solution to provide good quality video streaming services in a mobile environ-
ment. Adaptive video streaming over a mobile network therefore has long been of interest
in the research community where a rich body of works and various solutions have been pro-
posed. These works can be classified mainly into two broad categories, namely timestamp-
based adaptive video streaming and progressive download adaptive video streaming.

For the timestamp-based architecture, the transmission rate of the video closely follows the
encoding rate of the media itself. Many of the initial works perform the bitrate adaptation
by using a computationally-intensive transcoding operation, temporal scalability or switch-
ing between multiple representations of the content at various qualities and bitrates. With
the advent of the Scalable Video Coding (SVC) extension to the H.264 encoding standard
[3], the bitrate of a SVC-encoded video can be easily adapted by adding or removing scal-
able layers to and from the bitstream without performing high-complexity operations. A
large number of the later works therefore have exploited this feature of the SVC as well.
Other solutions propose various cross-layer design concepts, such as employing Unequal Er-
ror Protection (UEP) schemes at the Physical and Link layers to offer different protection
levels to different parts of the video based on their importance, or using channel indicators
from the lower layers to influence video encoding parameters at the Application layer. Nev-
ertheless, there have not been significant real-world deployments of these proposals up to
date. Commercial timestamp-based streaming services, such as those developed using the
Darwin Streaming Server or the Helix Universal Media Server based on the RTP/RTSP
protocols [4,5], are mostly non-adaptive or only statically adapt to the terminal’s capability
during session setup. An example of such services is the Apple, Inc.’s QuickTime TV net-
work [6]. Some of the reasons many timestamp-based adaptive streaming proposals have
not been widely implemented, amongst other reasons, are the complications from having
non-standardized cross-layer communications and interfering with the internal operations
of different layers and network nodes.

For the video streaming with the progressive download architecture, the transmission rate
from the server depends on the available best-effort throughput the network can provide
and considered to be fair to other users. With the improvements in the last-mile mobile
network technologies such that the best-effort throughput has become more practical for
the demanding video streaming services, this streaming technique has gained more interest
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from both the industry and the research community lately. Some examples are the video
players based on the Adobe Flash Player [7] or web browsers with HTML5 or later which
supports progressive video streaming with HTTP [8]. Additionally, the on-going Dynamic
Adaptive Streaming over HTTP (DASH) standard [9] is expected to be widely accepted.
It defines means to store and retrieve video contents via HTTP while being open for
research and development of smart adaptive streaming engines to drive the adaptation.
Although there has been an increasing number of research works in this field recently,
none of which, to the best of my knowledge at the current time of writing, has directly
addressed the challenges found in a mobile environment, and proposed an adaptation engine
that both utilizes the SVC and performs a Rate-Distortion optimized adaptation based on
characteristics of the mobile channel. More detailed reviews of these related works as well
as the current cutting-edge adaptation architectures can be found in Section 2.3.

As has been briefly elaborated, there has not been a significant deployment of a truly
dynamic adaptive video streaming architecture for either the timestamp-based or the pro-
gressive download paradigms to date, especially the one for a mobile environment. Addi-
tional research works to contribute to the body of knowledge in this field and alternative
practical design solutions for such adaptive architectures would be of great interest.

1.2 Contributions and Outlines

The goals of this work are to develop architectures for adaptive video streaming over a mo-
bile network for both the timestamp-based and progressive download paradigms, and to
have thorough understanding of their performances and relationships with other influential
system parameters and the environments in which they operate. The proposed solutions
have been designed taking into consideration the underlying principles of how the 3G/4G
radio resources are shared amongst users in the cell and the fairness to other non-streaming
users while in the same time being generic and independent of any specific mobile technol-
ogy. The work also focuses toward exploiting the scalable property of the H.264/AVC and
its SVC extension for bitrate adaptation and avoiding the expensive transcoding or having
multiple representations of the video.

A short summary and contributions of the remaining chapters in this thesis is as follows.

Background and Current State of the Art

In Chapter 2, preliminaries on the related subjects are provided. This includes backgrounds
on the mobile technologies of interest, how radio resources are managed and types of
data service usually available to video streaming users in such networks. Overall design
concepts and characteristics of the H.264/AVC video encoding standard as well as its SVC
extension, video quality evaluation and performance metrics used in the later chapters
are also explained. One of these metrics is an estimation of the upper bound of the
Mean Opinion Score (MOS), properly weighted to take the negative effects from playback
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interruptions into account. The later half of this chapter discusses both the video streaming
paradigms - timestamp-based and progressive download - as well as the related works and
the current state of the art in detail where the advantages and disadvantages in different
usage scenarios are identified.

Timestamp-Based Adaptive Video Streaming Architecture

Chapter 3 proposes a timestamp-based adaptive video streaming architecture for 3G/4G
mobile technologies as well as to exploit the scalable property of the SVC. The video
bitrates of the streaming users in the same mobile cell are dynamically adapted to individual
channel conditions and the characteristics of their videos in a coordinated manner by means
of adding and removing enhancement layers. Coordinated adaptation allows better Rate-
Distortion optimized performance and increased robustness against unfavorable channel
situations. Alternatively, the proposed architecture can also be simplified for uncoordinated
adaptation, but with slight losses in video quality and its tolerance against the channel.
It employs a congestion control mechanism to adjust the available resource budget only
for participating streaming users based on simple Round Trip Time (RTT) measurements.
The adaptation server does not need to know the exact amount of resources consumed by
other traffic classes nor to include them into the optimization problem. The only cross-
layer information required is a periodic report on resource consumption obtainable at the
streaming user, or none at all if the architecture is simplified to its uncoordinated form.
Other required network statistics can be easily measured at the Application layer. This
reduces the dependency on extensive cross-layer information exchange between, e.g., the
base station and the optimization server, and the overall complexity of the architecture
compared to other similar works. In addition, the base station can remain as a transparent
network node and is decoupled from the adaptation process. It is therefore possible for the
optimization server to be owned and operated by other service/content providers beside
the mobile network operator as well.

The coordination gain, defined as the gain in the overall video quality from doing co-
ordinated adaptation compared to individual uncoordinated adaptation, is studied and
presented in detail in this chapter. Although it is intuitive that this gain exists, this work
contributes further by providing in-depth mathematical analyses and simulation results re-
garding its relationships with other influential system parameters, e.g., the characteristics
of the videos, the number of users, the base station’s resource scheduler, the used opti-
mization algorithm, etc. These insights into various factors that affect the coordination
gain are general and can be applied to other similar works as well in designing an adaptive
streaming architecture in the future.

Progressive Download Adaptive Video Streaming Architecture

Chapter 4 contributes further by introducing a progressive download architecture for adap-
tive video streaming specifically designed for a mobile environment and is compatible with
both the DASH and the SVC standards. A statistical model of the TCP throughput over
a mobile channel which can be used to accurately estimate success probability of data
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transfer within a limited period of time has been developed and described in detail. The
model does not require any cross-layer operation, but instead all necessary measurements
to estimate the channel can be done entirely by the streaming application at the user.
With the latest statistical information of the channel from this model, a low-complexity
algorithm to determine the best strategy to request for different parts of a SVC-encoded
video from a HTTP server has been constructed. Finally, simulation results from the non-
adaptive streaming, adaptive streaming with multiple representations of the non-scalable
AVC videos and adaptive streaming using the introduced algorithm are presented and
discussed.

Conclusion and Outlook

In the last chapter, a brief summary of major contributions, the strengths and weaknesses
of our proposed solutions, their performances from simulations as well as further interesting
research areas are discussed.

Parts of this dissertation have been published in [10–12]
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Multiple Access (W-CDMA) such as the Evolved HSPA and earlier technologies, the radio
resources are the available transmission timeslots. The total amount of available timeslots
in a given period of time is inversely proportional to the duration of each timeslot, referred
to as the Transmission Time Interval (TTI) which can be from 10 ms for the UMTS to as
short as 2 ms for the HSPA, depending on the processing power and desired responsiveness
of the system to a varying channel situation. Alternatively, the radio resources are in
the form of thousands of small temporal-frequency units in a given time period, referred
to as “radio chunks” from now on, for those technologies with the Orthogonal Frequency
Division Multiple Access (OFDMA) as the air interface such as the LTE and the WiMAX.
In such case, a radio chunk occupies a narrow frequency band for a single sub-carrier and
lasts for one TTI period which is in the range of 1-2 ms for both the LTE and WiMAX.
An example of how the radio bandwidth is partitioned into radio chunks is given in Figure
2.1.

Regardless of the way resources are partitioned, these radio resources are dynamically
assigned to different users in each TTI by a resource scheduler. The policy for resource
assignment depends on the type of the scheduler used which could take into account,
e.g., the current channel situations and QoS requirements as one of its decision metric.
For the UMTS, this functionality is located at the Radio Network Controller (RNC) node.
However, later standards have moved the resource scheduler closer to or at the base station
to reduce the latency and improve the responsiveness to the highly-fluctuating mobile
channel. Once the resource assignment is done, the Adaptive Modulation and Coding
(AMC) technique is applied further to match the instantaneous channel conditions of
different users with the appropriate levels of protection. This includes variations in the
modulation scheme, e.g., from QPSK to 64QAM and the channel coding rate. This varies
the amount of application data that can be carried and the protection bits in each radio
resource unit.
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2.1.2 Proportional Fair Resource Scheduler

The Proportional Fair (PF) scheduler and its variants are usually the preferred scheduler
of choice to provide QoS-guaranteed services such as video streaming in a mobile network
[21]. This is because the scheduler takes the average previous throughput, channel quality
and other QoS parameters into consideration when assigning resources, thus providing a
good balance between fairness and maximizing the throughput amongst users.

For each radio resource unit, whether it is a transmission timeslot of a W-CDMA system
or a radio chunk of an OFDMA system, the PF scheduler compares the metric values from
all users with respect to that particular unit and assigns it to the user with the highest
metric. Assume that there are N mobile users in a cell where each user is labeled by an
index n = 1, 2, . . . , N and let k = 1, 2, 3, . . . be an index for the current resource unit under
consideration. The estimated channel quality for a user n at the current resource unit k
can be, e.g., the estimated amount of data (in Bytes) that can be carried by this unit for
this user. This estimation, denoted as ρ̃n,k, is usually done at the mobile terminal and
reported back to the scheduler periodically. Finally, let r̃n,k be the average throughput up
to the time of chunk k of user n. The metric for this user on this resource unit, denoted
by m̃n,k, is defined as follows.

m̃n,k =
ρ̃n,k
r̃n,k

· FQoS · Fdelay (2.1)

Thus, a user with a relatively good channel and/or which has been deprived of throughput
for a long time is more likely to be given this resource unit than the others. The FQoS term
represents a correction factor based on the QoS settings, e.g., the guaranteed bitrate (GBR)
and its priority. Similarly, Fdelay is another QoS-related correction factor that takes the
queuing delay of this user into account. Although these correction terms can be different
from one implementation of the PF scheduler to another, their basic properties remain
similar. Specifically, the FQoS tends to grow larger as the average bitrate of the user is less
than the GBR and to be smaller as the average bitrate is greater than the GBR. Similarly,
the Fdelay becomes greater as the queuing delay grows larger than the guaranteed delay.
The same is also true for the Fdelay in the opposite direction.

2.1.3 Best-Effort and QoS-Guaranteed Services in Mobile Net-

works

Mobile network operators can generally provide data services for video streaming users in
either a best-effort manner or with some degrees of QoS guarantee. For the best-effort
services, the resources are allocated to users neither taking into account individual QoS
requirements nor having any preference toward any user in particular. In case the PF
scheduler is employed, this is equivalent to setting FQoS = Fdelay = 1. On the contrary,
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Figure 2.2: Comparison of average throughput per user for different types of services

providing the QoS-guaranteed services requires that the scheduler is biased in assigning
resources to meet the minimum service quality to some users, e.g., the FQoS and Fdelay

terms must change dynamically as discussed previously. This usually results in reduced
network efficiency as resources sometimes must be allocated for users with bad channel
conditions to maintain their targeted GBR’s, thus lowering the overall cell’s throughput.
Additionally, this implies that an admission control policy must be implemented in the
network as well to negotiate and grant QoS guarantees for each data session.

To demonstrate the throughput characteristics, the benefits and drawbacks of both ser-
vice strategies in a mobile network, simple simulations using a LTE simulator (also to be
described in detail in Section 3.5) were conducted. In summary, the LTE simulator [22]
simulates the behaviors of a LTE cell where there are a number of mobile users moving
randomly with realistic radio channel emulation. Three simulation cases were conducted
where all users received best-effort services, QoS services with 1Mbps and 2 Mbps GBR
respectively. The total number of users in each simulation varied between two to five users
to represent different traffic load in the cell. Finally, each of these users was receiving
data traffic from a TCP source, a constant bitrate source at 1Mbps and 2Mbps for the
best-effort, QoS with 1Mbps and 2Mbps GBR simulation cases respectively.
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Figure 2.3: Comparison of instantaneous throughput for a best-effort and a QoS user

The average throughput per user in each simulation case is shown in Figure 2.2. For the
QoS with 1Mbps GBR case, the cell is able to support only three or fewer users with
this current cell configuration, but it becomes too congested and unable to maintain the
GBR when there are four or more users in the cell. In the case of 2Mbps GBR, the cell
appears to be too congested even with two users in the cell where the average bitrate is
only 1.6Mbps. Note that if we compare the average bitrate between the best-effort and
the QoS cases at the same number of users in the cell, it is found that the best-effort user
always receives higher average throughput than the QoS one. This implies more efficient
use of radio resources by the network which results in higher overall cell throughput as
previously discussed.

Although there are many benefits to providing best-effort services from the efficiency point-
of-view, providing QoS still offers some benefits in terms of reduction in bitrate fluctuation
for the individual user. Figure 2.3 shows the instantaneous throughputs for a best-effort
and a QoS user with 2Mbps GBR versus time where there are a total of three users
in the cell. According to Figure 2.2, both the best-effort and the QoS users receive on
average the same 1.2Mbps throughput. However, the instantaneous throughput for the
QoS user is notably smoother and more stable than its best-effort counterpart where his
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instantaneous throughput swings between extreme high and low rapidly, depending on his
reception quality. For example, the best-effort throughput reduced from 3Mbps to almost
nothing at 275 seconds into the simulation and the outage continued for more than 60
seconds afterward. With such characteristics of the throughput, the adaptable bitrate
range of the video content must be wider if the timestamp-based adaptive video streaming
architecture is to be used with the best-effort service than the adaptable range required
with the QoS service in order to avoid frequent playback interruptions. This implies the
need to prepare more representations of the non-scalable video content or more scalable
layers with the scalable video encoding (to be discussed in detail in Section 2.2) for the
best-effort strategy. However, the throughput characteristic of the best-effort user is more
suitable for video streaming with progressive downloading architecture since the user can
exploit the brief moments with exceptional channel quality and large bitrate to request
and cache a lot of video data well in advance. This is, however, not possible for the
timestamp-based architecture where the transmission of packets is made based on their
timestamps.

2.2 Preliminary on Video Coding and Quality Evalu-

ation

Today’s modern video encoding standards such as the H.26X family, MPEG1, MPEG2
and MPEG4 all share the similar concept to achieve data compression and are generally
referred to as a block-based hybrid encoder [23]. The overall simplified encoding process
for such encoder is depicted in Figure 2.4 and can be summarized as follows. First, each of
the Y, Cb and Cr information of a picture is segmented into smaller rectangular areas, e.g.,
of size 16x16 samples. These are typically referred to as macroblocks. A set of prediction
algorithms to find statistical correlation between blocks, either spatially or temporally or
both, are performed. If the prediction is done temporally between pictures, this process
is referred to as inter-picture prediction or motion compensated prediction (MCP) and
the resulting prediction vectors are called motion vectors. Otherwise, it is referred to as
intra-picture prediction. These prediction signals identify from which blocks the current
one being encoded can be estimated. The difference between the prediction and the actual
information in the block being encoded is likely to be close to zero or much smaller in
value than its original signal. These differences in each block are then scaled and undergo
frequency transformation, such as the Discrete Cosine Transform (DCT), to discard the
few high-frequency components and the resulting transform coefficients are quantized. An
entropy coding is performed on the quantized transform coefficients together with the
motion information to further remove redundancy in the coded bitstream. Additionally,
the encoder also reconstructs each encoded picture using the motion vectors and quantized
transform coefficients it has just produced as well. This reconstructed picture, which is
also the same as the decoded picture at the decoder, is used and stored for the intra/inter-
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Figure 2.4: Generic digital video compression process

picture prediction process for the subsequent pictures.

To decode the compressed video bitstream, the decoder simply reverses the process done
during the encoding. However, since the DCT and the quantization steps have already
caused losses of some information, the decoded video can never be exactly the same as the
raw video content.

2.2.1 H.264 Advanced Video Coding

The H.264 standard, also known as MPEG 4 part 10 Advanced Video Coding (AVC) [24],
is the latest video compression standard jointly developed by the ITU-T Video Coding
Experts Group (VCEG) and the ISO Moving Picture Experts Group (MPEG). It has been
designed to be a high-efficiency encoding standard that is applicable to a wide range of
applications; from a low-bitrate, low-latency mobile video conversation to high-bitrate,
production quality usage. The encoding efficiency for the H.264/AVC has been signifi-
cantly improved from its predecessors, e.g., the H.263 or the MPEG4 part 2, with bitrate
savings of approximately 50% at the same level of visual quality. The H.264/AVC stan-
dard covers the two main relevant aspects, namely the Video Coding Layer (VCL) and the
Network Abstraction Layer (NAL) which are briefly summarized as follows. More detailed
information on the standard, the design concepts and its performance compared to others
can be found in [23–25] and the references therein.
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Video Coding Layer

This part of the standard involves details of the various techniques used for encoding and
decoding of the video. The overall encoding process of H.264/AVC is still similar to what is
shown in Figure 2.4. However, many restrictions due to the complexity concern in the older
standards have been removed as well as some more complicated but efficient techniques are
introduced as the hardware’s capability improves. Some of the key aspects in the standard
are as follows.

• Each picture is partitioned into rectangular macroblocks of size 16x16 samples for
the Y component and 8x8 samples for the two chroma components. These are the
basic building blocks on which the encoding is performed. The macroblocks are then
grouped together to form slices, each of which can be independently decoded from
others in the picture.

• Five fundamental slice types are defined. This includes the three types commonly
found in previous standards, namely the I, P and B slices for which the macroblocks
are only intra-picture coded, alternatively predicted from another picture and alter-
natively predicted from at most two other pictures respectively. The two additional
slice types are the Switching P slice (SP) and the Switching I slice (SI) to assist in
switching between different locations in the video or between videos without using
the large I slice and for robustness against error propagation.

• The intra-picture coding for the Y component where the prediction is made from
another area in the same picture can now be done with either a 4x4 prediction block
for areas with fine details or a 16x16 prediction block for smooth areas with few
details. However, the prediction block size for both chroma components is still 16x16
as in the previous standards.

• The inter-picture prediction for P slices is more flexible and accurate. The mac-
roblocks in the P slice can be further partitioned into smaller blocks, e.g., 16x8,
8x16 and 8x8 samples for motion estimation which allows a finer cropping of moving
objects of various sizes. The accuracy of the motion vectors is also increased to a
quarter of a sample and can be arbitrarily weighted. Finally, although each block
or macroblock in the P slice can have at most one motion vector that refers to just
one previously decoded picture, different motion vectors for different blocks in the
current picture do not have to refer to the same previous picture.

• The inter-picture prediction for B slices is similar to that of the P slices except
that each block or macroblock in the current picture can have up to two motion
vectors that refer to two different previously-decoded pictures and are combined
using arbitrarily specified weights.

• The differences between the prediction signals and the actual values, also referred to
as residuals, undergo discrete frequency transformation to represent them in terms of



CHAPTER 2. BACKGROUND AND STATE OF THE ART 17

a fewer frequency components instead. Then the transform coefficients are quantized
with the desired Quantization Parameter (QP). However, H.264/AVC uses the integer
transformation over a block of size 4x4 instead of the DCT over a block of size 8x8
typically used in the previous standards. Since the integer transform has an exact
inverse function, inverse transformation mismatch and loss of information is avoided.

• The entropy coding, which reduces the statistical correlation between the quantized
transform coefficients even further in the H.264/AVC standard, can be done with
one of the two available algorithms; the Context Adaptive Variable-Length Coding
(CAVLC) and the Context Adaptive Binary Arithmetic Coding (CABAC). Both of
which are variable-length coding schemes that switch their coding tables based on
the previous statistics, as opposed to schemes with one fixed coding table in the older
standards. This results in a bitrate saving of approximately 10% to 15% at the same
visual quality.

• The blocking artifact around the boundaries of the macroblocks is considered as one of
the obvious artifacts, especially at a low bitrate, for a block-based video compression
standard. The H.264/AVC standard has defined and included an in-loop deblocking
filter in its decoder design to reduce the blockiness around these boundaries while
still preserving the sharpness of real edges in the picture.

Network Abstraction Layer

This part of the standard involves preparing the coded video data for transmission through
the underlying protocol layers. It defines the smallest unit of the packetized video data,
referred to as the NAL unit, how they are arranged, segmented and the relationships
between different NAL types in the video bitstream.

A NAL unit contains a one-Byte NAL header followed by an integer number of payload
Bytes. NAL units can be classified into two broad types - the VCL NAL unit which contains
the coded video data itself and the non-VCL NAL unit which contains side information
relevant for decoding such as the Sequence Parameter Set NAL or the Picture Parameter
Set NAL. Additionally, a group of NAL units with all relevant information to decode a
single video picture is referred to as an access unit from now on.

Profiles and Levels

A profile is a set of supported compression techniques defined in the H.264/AVC standards
that a decoder must be able to handle given a conforming video bitstream. A conforming
encoder for a particular profile however is not required to utilize all the available techniques
of that profile, but can choose to employ just a subset of them. Different profiles have been
defined to address a wide range of different applications’ requirements. Four of such profiles
are briefly explained in the following to serve as examples.
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• Baseline profile. This profile is intended for low-complexity, low-cost and low-delay
applications, such as mobile video conversation, with additional robustness against
loss and error propagation. The features that are supported in this profile, apart
from other basic techniques, includes encoding macroblocks in I, P, SI and SP slices
and the CAVLC entropy coding.

• Main profile. This profile targets applications that require standard-definition,
medium to high encoding efficiency and good video quality while the decoder’s com-
plexity is not really an issue, such as a digital TV broadcasting service. Encoding
of I, P and B slices, weighted combining of motion vectors and the more efficient
CABAC entropy coding are supported.

• Extended profile. Intended as a profile for video streaming applications, it has the
robustness features against the loss and allows rapid stream switching similar to the
Baseline profile while having relatively higher encoding efficiency. All five slice types
are supported as well as other techniques in the Baseline and theMain profiles except
the CABAC entropy coding.

• High profile. This profile is designed for high-quality video streaming, broadcasting
and storage applications that do not require too much protection and robustness from
errors. The tools that are available to this profile are mainly to achieve maximum
encoding efficiency. These are, e.g., usage of the I, P, B slices and the CABAC
entropy coding.

Finally, a level defines operating ranges of some characteristics of the decoder and the
encoded video bitstream. There are 15 different levels defined in the standard to imply
different decoder’s capabilities, e.g., the upper limit on the amount of macroblocks per
picture, decoder’s processing rate, the video bitrate, etc.

2.2.2 The Scalable Video Coding Extension of H.264

In 2007, the Joint Video Team of the ITU-T VCEQ and the ISO MPEG has released
a new version of the standard with the Scalable Video Coding (SVC) extension in its
Annex G. The SVC provides the ability to remove parts of the encoded video to reduce
the bitrate while the remaining part still forms a valid video bitstream with a lower visual
quality until the AVC-conforming base layer is reached. This graceful degradation property
of the SVC is useful for various types of applications. This includes, e.g., a digital video
broadcasting over a lossy satellite channel (DVB-SH) where different scalable layers receive
unequal error protections to match the targeted coverage areas, video qualities and different
receivers’ capabilities [26,27]. Another application that can benefit from SVC is the video
streaming over a lossy and fluctuating mobile channel. In such a scenario, the ability
to easily match the video bitrate to the available throughput in the mobile network and
the terminal’s capability without complex transcoding operations or switching between
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Figure 2.5: An example prediction structure for temporal scalability

multiple representations of the same content can potentially improve the users’ perceived
quality of service and the network’s efficiency significantly.

There are three types of scalabilities supported by the SVC extension - the temporal
scalability, the spatial scalability and the quality scalability. These are briefly explained
in the following. A more detailed overview of the standard and how scalable layers can be
optimally removed can be found in [3, 28] and the references therein.

Temporal Scalability

The temporal scalability refers to the ability to remove parts of the video bitstream and the
remaining substream is still a valid video with a lower frame rate. Each temporal layer in
the SVC context is identified by a temporal layer index T , starting from T = 0 for the base
temporal layer with the lowest frame rate. The temporal scalability can be achieved by
using the hierarchical prediction structure, which is to restrict the inter-picture prediction
for P and B slices to make references to only other pictures with lower T indices than
the current one. Thus, the decoding of each picture is independent of the other temporal
enhancement pictures with higher T indices. Figure 2.5 shows an example of this concept
where a video is hierarchically encoded with four temporal layers. The motion vectors in
this example, represented by the solid arrow lines, all originate from frames with lower T
indices than the one they predict. Note that a picture with a lower T index is usually
encoded with a smaller QP to have a higher fidelity than a picture with a higher T index.
This is due to the fact that the first one is used as a prediction reference for more pictures
than the latter one.

Spatial Scalability

The spatial scalability refers to the ability to remove parts of the video bitstream such that
the adapted substream still forms a valid video with a lower bitrate and spatial resolution.
In the SVC context, each spatial resolution is identified by a dependency layer index D
where D = 0 represents the base spatial layer with the lowest resolution of the video.
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Figure 2.6: An example prediction structure for spatial scalability

Within the same spatial layer, the two types of prediction technique, namely the intra-
picture prediction and the inter-picture motion estimation, from the AVC standard are still
used. However, to exploit as much information from the lower spatial layer as possible,
a new inter-layer prediction is introduced which is basically an upsampled signal from
the preceding lower spatial layer. A deblocking filter is then applied over the upsampled
signal to minimize the blocking artifacts commonly found in such a process. The inter-
layer prediction is constrained to be used only between spatial layers within the same
access unit to reduce the design complexity. Since the upsampled information from the
lower layer is not necessarily the best prediction signal for the current spatial layer, the
encoder is allowed to choose whether to use the inter-layer prediction or the intra-layer
motion estimation or to combine both, depending on the characteristics of the picture.
Figure 2.6 demonstrates an example of a video with two spatial layers and the prediction
vectors between pictures and layers. Note that this is also an example on combining spatial
scalability with temporal scalability as well as the frame rate of the lower spatial layer is
lower than that of the higher spatial layer.

Quality Scalability

The quality scalability, also referred to as the SNR scalability, allows for the extraction
of substreams from the video with lower bitrates and picture qualities while maintaining
the same spatial resolution. The SVC standard provides several means to encode videos
with the quality scalability. One of which is to use the same techniques as in the spatial
scalability case which is to use the inter-layer prediction between layers but with the same
spatial resolution instead. In such case, the inter-layer prediction signals for the higher
layers contain refinement information from using smaller QP values. This is referred to
as the Coarse-Grain Scalability (CGS) and each quality layer is identified with the layer
index D as before. However, switching between the CGS quality layers can be done at

Spatial layer is denoted by "D", but in the figure it is still "S"
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(b) The video structure where NALs with Q = 1 and T = 3 are removed

Figure 2.7: An example prediction structure for two MGS scalability layers

only some specific access units, referred to as the Instantaneous Decoding Refresh (IDR)
pictures where decoding does not require information from the preceding pictures.

To allow a greater flexibility for switching between the quality layers, the high-level sig-
nalling within the bitstream can be modified such that switching between quality layers
can be done at any access unit as well. This is referred to as the Medium-Grain Scalability
(MGS). Each MGS quality layer is identified by a new quality layer index Q where Q = 0
refers to the base quality layer. Thus, within the same dependency layer D, there can be
more than one MGS quality layers Q. Note that this is a purely high-level signalling issue
as the same techniques used for intra and inter-layer predictions for both the CGS and
MGS scalabilities are the same. The difference is simply that the decoder does not switch
between quality layers if they are assigned with different D indices, but can do so if they
are assigned with the same D index but different Q indices.

Figure 2.7(a) depicts an example SVC video with two MGS layer. The removal of the NAL
units for the quality layer can be done at any access unit, as demonstrated in the Figure
2.7(b) where the NAL of the Q = 1 layer for the pictures with the temporal layer T = 3
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is removed. This removal strategy - to remove the MGS NALs from the highest T layer
to the lowest T layer consecutively - can result in a slight fluctuation in the visual quality
from one picture to the next. However, it provides several additional operating points for
the video on top of the existing number of MGS layers, e.g., there are five operating points
in this example even though there is only one MGS layer. This additionally reduces the
amount of signaling overhead as well.

Figure 2.8(a) also depicts an example of an SVC video with three MGS layers. However,
Figure 2.8(b) shows another alternative strategy to remove the NALs from the video which
is to remove the entire Q layer completely each time. In this example, the quality layer
Q = 2 is removed. The resulting video quality does not to fluctuate from one picture to
another, unlike the previous removal strategy. However, it requires a large number of MGS
layers to achieve the same amount of operating points in the video, thus creating more
overhead and reducing the encoding efficiency as a result.

Network Abstraction Layer

The SVC extension still retains all the definitions and relationships between various NAL
unit types of the H.264/AVC standard. However, the header of the NAL that contains
coded information of the enhancement layer, referred to as the SVC NAL, is extended by
three Bytes to provide information necessary for bitstream adaptation including the T , D
and Q indices. In addition, the so-called prefix NAL unit which is a small NAL unit used
to convey the T , D and Q information for a non-SVC NAL unit is introduced. This NAL
type is to be placed before each of the non-SVC NAL units in the video.

Profiles

The SVC extension defines three more additional profiles as follows.

• Scalable Baseline profile. This profile targets low-complexity and low-delay appli-
cations such as real-time video conversation and surveillance cameras. The AVC-
compliance base layer of the video is required to conform with the original Baseline
profile. The spatial layer, if exists, is restricted to have a resolution ratio between the
higher layer to the lower layer of either 1.5 or 2. However, there is no restriction on
the temporal and quality layers. Additionally, the use of B slices, weighted prediction
and CABAC entropy coding are allowed in the enhancement layers although these
tools are restricted in the original Baseline profile.

• Scalable High profile. This profile is designed for the same application types as the
original High profile of H.264/AVC in which the base layer of the video needs to
conform with such profile as well. There is no restriction on any of the scalability
types supported by the SVC extension.
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Figure 2.8: An example prediction structure for three MGS scalability layers
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• Scalable High Intra profile. This profile is aimed only for professional uses which
require high production quality of the video. This profile is similar to the Scalable
High profile with the additional constraint that only the IDR pictures are allowed to
be use both in the AVC base layer and all the scalable layers, effectively limiting the
use of the inter-picture motion prediction in all scalable layers.

2.2.3 Key Performance Indicators

Video quality metrics to evaluate the quality of the reconstructed videos can be broadly
categorized into two groups - subjective and objective quality metrics. The subjective
video quality metrics involve collecting and processing individual quality ratings toward
a video by a panel of viewers in a controlled environment. This is usually referred to as
the Mean Opinion Score (MOS) which reflects the true users’ perception and the level
of satisfaction. Maximizing the MOS can therefore be considered as the ultimate objec-
tive of any adaptive video streaming architecture design. However, this type of quality
metric is difficult to use, especially if there are a lot of videos from various simulations
to evaluate, as it involves a lengthy process of subjective scoring by a panel of viewers.
On the contrary, objective video quality metrics can usually be computed faster from the
reconstructed videos directly. Some of these metrics simply compute the differences Byte
by Byte to the original video material without taking the content into account. On the
other hand, some more complicated objective quality metrics also consider the features
of the video, the types of distortion and their effects to the human’s perception as well.
An overview of various available quality metrics along with related standardization bodies
can be found in [29]. In this work, common Key Performance Indicators (KPIs) used in
the later chapters are all objective video quality measurements. Although these KPIs do
not directly reflect the actual human’s perception on the video quality, considering them
in combination and understanding their strengths and weaknesses still allow meaningful
video quality comparisons to be made. These KPIs are as follows.

Peak Signal-to-Noise Ratio

The Peak Signal-to-Noise Ratio (PSNR) is a commonly used objective video quality metric
due to its simplicity. By definition, it is a measure of the peak signal’s strength to the error
in the reconstructed video and can be considered as a logarithmic representation of the
Mean Squared Error (MSE). For each frame of the video, the PSNR per frame, PSNRf ,
can be computed as

PSNRf = 10 · log
[

w · h · PeakSig2
∑w

i=1

∑h
j=1 (xi,j − yi,j)

2

]
(2.2)
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PSNRf = 10 · log
[
PeakSig2

MSEf

]
(2.3)

where PeakSig is the largest value of each pixel which is 255 for a 8-bit representation,
w and h is the width and height in pixel for each frame, xi,j and yi,j are the values of the
original and reconstructed pixels respectively and MSEf is the MSE per frame.

The time-averaged PSNR over the entire length of a video is computed from a logarithmic
representation of the time-averaged MSE per frame. Let there be F frames in total, then
the average PSNR can be written as follows.

PSNR = 10 · log
[
F · PeakSig2
∑F

f=1 MSEf

]
(2.4)

PSNR is a good evaluation metric for reconstructed videos that might have been distorted
during the transmission process, e.g., videos that have been re-encoded, have some scal-
able layers removed and/or corrupted by losses. However, the PSNR metric should only
be considered as an approximation of the user’s perceived video quality as it does not
necessarily correlate with the viewers’ opinions in all the cases. This is because the PSNR
only compares the reconstructed video with the original one Byte-wise without taking into
account different human’s sensitivities toward different types of spatial and temporal dis-
tortions in the video [29]. This metric also does not represent the negative effects playback
interruptions have on the user’s satisfaction. Therefore, it alone is insufficient to provide a
complete picture of a streaming architecture’s overall performance, especially the one that
is susceptible to an unbounded delay, e.g., progressive download video streaming with TCP.
In addition, the PSNR metric needs to have the reconstructed and the original videos per-
fectly in synchrony frame-by-frame. If the reconstructed video has been temporally scaled
down or affected by losses such that some frames could not be decoded, one must take care
that the missing frames are inserted, e.g., by frame repetition, during the post-processing
step before calculating the PSNR. This is to keep the number of frames in both videos
equal and synchronous.

Pause Intensity

To quantify the severity of the interrupted playback events during the streaming, a simple
metric that represents the relative amount of the total interruption duration to the original
uninterrupted playback length, referred to as the pause intensity Ip, is defined as follows
[30].

Ip =
total interruption duration

original playback duration
(2.5)
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The Ip ranges from zero in the ideal case to infinite. It is used together with other qual-
ity metrics to provide a better overall performance evaluation of an adaptive streaming
architecture and as a basis for developing a more comprehensive quality metric to follow.

Video Quality Metric

The National Telecommunications and Information Administration (NTIA) has developed
its General Model for video quality estimation, also referred to as the Video Quality Metric
(VQM), as a perception-based objective video quality measurement. The metric has been
designed and built from an extensive database of subjective tests to be able to accurately
predict the perceived video quality for a wide range of video bitrates. It has also been
independently evaluated by the Video Quality Experts Group (VQEG) and rated as one
of the top-performing metrics in the tests. As a result, several standardization bodies
have adopted the VQM as one of their normative quality metrics, e.g., the VQEG, the
American National Standards Institute (ANSI) and the International Telecommunication
Union (ITU) [31].

The VQM does not rely on the direct Byte-by-Byte comparison as used by the PSNR
metric, instead it estimates the viewer’s perceived quality by linearly combining several
types of video quality distortions perceptible by the human visual system. These are
referred to as the “quality parameters”. Each quality parameter represents perceptible
differences in a “quality feature” between the original and the reconstructed videos. A
quality feature is a mathematical representation of a certain feature of interest in the
video, e.g., edge information, chromatic distribution and the degree of movement of a
selected Spatial-Temporal (S-T) region. The S-T regions are selected to represent only
the portions of the screen that draw the attention of the viewer, e.g., the center portion
excluding the area around the edges of the screen. A simplified summary of steps to obtain
one of the quality parameters from both videos is as follows.

• In each S-T region, apply digital filters to enhance the feature of interest and calculate
its representative value using simple mathematical operations, e.g., the mean and the
standard deviation.

• A stream of feature values for all S-T regions in the video is obtained. These values
can be further limited to be within a certain perceptible range of the human’s visual
system.

• Compare streams of feature values from the original and reconstructed videos with a
suitable function, e.g., calculating their differences, a ratio or a logarithmic relation-
ship between them. A stream of quality parameters for S-T regions is obtained as a
result.

• The quality parameter values in the parameter stream are “collapsed”, both spa-
tially and temporally using a suitable method, e.g., calculating the mean, standard
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deviation, taking the worst 5% values, etc. This is to reduce them to be a single
real-number quality metric to represent such parameter instead.

The VQM uses a total of seven different quality parameters derived from seven quality
features. These quality parameters are computed independently from the Y, Cb and Cr

information and represent various types of visual impairments as follows.

• si loss is the parameter that represents the spatial information losses, such as losses
in the edge information introduced by blurring.

• hv loss is the parameter that represents the relative losses of spatial information in
the horizontal and vertical directions compared to those in the diagonal directions.

• hv gain is the parameter that represents the unintentional increase of spatial infor-
mation in the horizontal and vertical directions as a result of, e.g., blocking artifacts.

• chroma spread detects the changes in the distribution of colors.

• si gain represents the gain in the spatial information of the reconstructed video which
could be the result from edge-sharpening measures employed by the video decoder.

• ct ati gain is the parameter that accounts for the masking effect of temporal im-
pairments if there are a lot of spatial activities in the scene, causing them to be less
perceivable. A similar masking effect of spatial impairments when there exist a lot
of movements in the scene also applies and are taken into account.

• chroma extreme detects severe localized distortion in color space, e.g., resulting
artifacts from an error concealment where some blocks are replaced by a solid color.

Once these individual seven quality parameters have been computed, the VQM score is cal-
culated by linearly combining them. The coefficients for the linear combination have been
determined such that the correlation between the predicted VQM and the used database
of subjective tests is maximized.

V QM = −0.2097 · si loss+ 0.5969 · hv loss

+ 0.2483 · hv gain+ 0.0192 · chroma spread

− 2.3416 · si gain+ 0.0431 · ct ati gain
+ 0.0076 · chroma extreme

(2.6)

The resulting VQM score ranges from zero for the best quality with no distortion to
approximately one in the worst case. This score can be scaled into any desired range,
such as from one to five to represent a typical scale of the MOS score as well, where five
is the best perceived quality. Note that it is possible for the VQM to be slightly higher
than one if the reconstructed video is severely corrupted beyond the original database of
subjective test results used to build the model. More details on the calculations of these
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quality parameters, the calibration process of the VQM metric and the verification results
are described in [31–33]. In addition, the software to compute the VQM score given the
original and reconstructed videos is also available from the ITS [34].

Given that the VQM has been adopted by various standardization bodies, its good per-
formance in estimating the perceived video quality and the availability of the calculation
software, it is therefore used as one of the KPIs in this thesis work as well. However, the
resulting VQM score is further scaled up and inversed to take the value from one to five
instead, representing the worst and the best subjective video quality ratings respectively
which is a typical range for a MOS score. The equation to perform the scaling to obtain
the estimated MOS, referred to as MOSV QM , is as follows.

MOSV QM = max (5− 4 · V QM, 1) (2.7)

In spite of its many benefits, the MOSV QM still does not reflect the degradation of the
perceived quality as a function of interruptions. It therefore must be used together with
other KPIs in order to make a meaningful comparison between different adaptive streaming
architectures.

Weighted Mean Opinion Score

Many studies such as [30,35–37] have revealed through various subjective tests that frequent
and long interruptions can severely lower the user’s perceived quality of service, e.g., the
MOSV QM discussed earlier. [35, 36] also suggest that the degradation to the MOSV QM

from the uninterrupted video can be modeled by a multiplication factor as a function of
the pause intensity Ip. This new scaled MOSV QM , referred to as the MOSweighted from
now on, can then be obtained as follows.

MOSweighted = max (FMOS (Ip) ·MOSV QM , 1) (2.8)

The FMOS (Ip) is a non-linear decreasing function of Ip and takes the value between zero
and one to scale down the MOSV QM . The MOSweighted is further limited to always be
greater than or equal to one to stay within a typical range of a MOS. Figure 2.9 shows the
resulting estimated MOSweighted by the FMOS (Ip) model in [36] which was derived based
on subjective test results with low-bitrate, low-quality QCIF videos (from 32 to 256 kbps).
The resulting FMOS (Ip) is described approximately by the following equation.

FMOS (Ip) =





−1.71 · Ip + 1.00, Ip ≤ 0.17

−0.27 · Ip + 0.75, 0.17 ≤ Ip ≤ 2.79

0 Ip > 2.79

(2.9)
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Figure 2.9: Degradation effect on the MOS from pause intensity (repreduced from [30,36])

However, the exact shape of the FMOS (Ip) also depends on the quality of the original
videos used in the test as well. The subjective tests in [35, 36] suggest that videos with
higher quality, e.g., larger bitrates and resolutions, tend to suffer more severe quality
degradation from the interruptions than those with lower quality. This results in a steeper
decline of FMOS (Ip) with increasing Ip for the high-quality videos. An example of the real
MOS obtained from subjective tests with better quality videos in [30] which are rated at
approximately 900 kbps is also shown in Figure 2.9 for comparison. This clearly reveals a
more severe quality degradation effect with Ip compared to the MOSweighted obtained from
(2.8) and (2.9).

In spite of the obvious dependency of the FMOS (Ip) to the quality of the original video, none
of these works has provided a well-defined mathematical model to adjust the FMOS (Ip)
accordingly. In addition, relationships between the perceived video quality and other
buffering-related impairments, such as the initial pre-buffering length and the interrup-
tion locations, have been shown to exist but no concrete mathematical model has been
developed for such relationships yet. Therefore, these are considered only preliminary
works and require further studies in the future, especially given the growing popularity
of video streaming with TCP where losses are converted into unbounded delay and more
frequent interruptions.
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In the later parts of this thesis work, videos with much higher quality and bitrates are
used for simulations. Although there exists no precise mathematical relationship on how
to modify the FMOS (Ip) in (2.9) to better suit with high-quality videos, it is sufficient to
use the FMOS (Ip) as it is and consider the resulting MOSweighted to be an optimistic upper
bound for the user’s perceived quality. The MOSweighted, combined with other previously
discussed KPIs, can still be used together to provide a thorough performance evaluation in
terms of the resulting video quality and a fair comparison between different video streaming
architectures later on in this dissertation.

In addition to these introduced KPIs for video quality, there are also other alternatives to
obtain the estimated MOS which can be used instead of the selected VQM in this work
if desired. An example for such alternatives is the structural similarity metric (SSIM)
as described in [38, 39] which gives an estimated MOS between zero (worst quality) to
one (best quality) based on the structural distortions and information losses perceptible
to the human’s visual system in the reconstructed video compared to the original one.
However, the VQM has been selected as the preferred quality metric of choice due to its
wide acceptance, proven high correlation with the databases of real subjective tests and the
availability of free calculation software. Finally, there are also other performance indicators
used specifically for each of the proposed adaptive streaming architecture. Since they are
used to demonstrate and compare only some certain aspects specific to the architectures,
they will be discussed in detail later on in their respective chapters.

2.3 State-of-the-Art Video Streaming Architectures

Video streaming services can be broadly classified into two different paradigms which
are referred to as the timestamp-based streaming (TBS) and progressive download (PD)
throughout the rest of this thesis. This categorization is done based generally on whether
the transmission of video packets from the server must adhere to certain deadlines or not,
which ultimately influences the designs of the architectures and the supporting protocols.
Different classifications of the video streaming architectures are possible. For example, [40]
categorizes them into push-based and pull-based architectures, depending on whether the
server actively “pushes” the video content through to the users or simply waits for requests
first. Nevertheless, most of the push-based architectures also fall into the TBS category
and similarly for the pull-based architectures with the PD category as well.

This section provides some preliminaries on both the TBS and PD streaming paradigms
including their characteristics, advantages, disadvantages, supporting protocols, etc. Re-
lated works and proposed solutions to provide adaptive streaming for both paradigms as
well as the current state of the art are also discussed.
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2.3.1 Timestamp-Based Streaming

A timestamp-based video streaming architecture is a video delivery system over the Internet
where the transmission rate from the server is similar to the encoding rate of the video, e.g.,
video packets are transmitted according to their encoding/decoding timestamps. Thus, the
transmission rate of a TBS session rarely occupies the entire available network capacity
in low load or good channel situations, but is limited to the bitrate of the video content
itself. After a brief initial buffering period, the user starts to consume the buffered video
data while his buffer is also being constantly replenished with new data from the server at
approximately the same rate in an ideal situation.

Due to the fact that the TBS architecture does not pre-buffer a lot of video data too
far in advance at the user, but relies on timely delivery of packets by the network, the
suitable underlying transport protocols should emphasis more on minimizing the delay
than providing error-free reliable delivery of packets. RTP/UDP [41] are therefore often the
protocols of choice for such an architecture due to the absence of built-in retransmission and
congestion control mechanisms that incur excessive delay. Retransmission of lost packets is
usually left for the application to decide instead whether it wants to recover these packets or
not. Additionally, TBS is usually a stateful architecture, that is the user needs to establish
a session with the server first so that both of them are in the connected state before the
the server can start transmitting video packets. This requires the assistance from other
control protocols such as SDP, SIP and RTSP [42–44] to initiate the connection as well as
RTCP [41] for regular exchange of network statistics and control information during the
session.

Video contents to be used in the TBS architecture are usually prepared as single files to be
transmitted atomically once connections have been established. The encoding structure of
the video might also contain special frames that can be independently decoded from other
frames regularly, e.g., the IDR frames, to support scrolling, fast-forwarding and rewinding
features as well as increased robustness against losses. Nevertheless, each file still represents
a very long duration or the entire video, since segmenting it into multiple fragments would
require setting up a session for each of them during streaming, thus introducing unnecessary
complexity and delay. This is a disadvantage considering that the video files cannot be
easily distributed to various caching servers in the current Internet infrastructure. The need
to have a unicast session directly between the origin server and each user in the case of on-
demand streaming instead of reusing the existing caching servers means the origin server
has to handle all the loads. This is likely to increase the congestion in the core network
between the origin server and the access networks as well. Alternatively, there can be
multiple representations at different bitrate and quality levels, or a single SVC-encoded
file with multiple enhancement layers for each video content to provide some degrees of
scalability. For a static adaptation to the user’s capability, the server can provide a list of
all available versions or scalable layers to the user to choose during session initialization.
For a dynamic adaptation to the mobile channel, using SVC-encoded videos allows the
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server to trim the transmission rate by simply adding or removing enhancement layers on-
the-fly without having to terminate the current session. Note that this is rather difficult
with the non-scalable AVC encoding which usually requires setting up a new session every
time the server decides to switch to another representation.

For the last-mile networks that are rather limited in terms of their throughput capacity,
e.g., modem-based dial-up networks, 2.5G and early 3G, providing adequate throughput to
support the stringent delay requirements of the TBS architecture proves to be a challenging
task for most operators. This is also true even with the high-speed 3.5G or 4G networks in a
congestion situation or when the user is in a bad reception area. Under these circumstances,
the best-effort service in these mobile networks is often sporadic, unreliable and incurs too
large delay variations for a continuous playback as shown earlier in Section 2.1.3. Thus, it
is more desirable to use the QoS-guaranteed service for the TBS architecture in a mobile
environment instead due to the ability of the user to negotiate for QoS supports from the
network during session setup, e.g., the GBR and/or guaranteed delay. With the admission
control mechanism in place, the network can reject new connection requests if they would
jeopardize the QoS of existing TBS sessions to an unacceptable level. Additionally, Section
2.1.3 also shows that there is the benefit of having more stable instantaneous throughput
to a mobile user by using the QoS service. This implies that the adaptable bitrate range
of the video can be narrower, e.g., requiring fewer AVC representations or fewer scalable
layers of SVC.

Traffic-Curve Analysis

In this section, the relationships between the delay, losses and interruptions during stream-
ing for a typical TBS session are studied using traffic curve analysis and network calculus
[45]. Consider a typical TBS session with no retransmission for lost packets and the fol-
lowing assumptions. If losses occur due to buffer overflow at some of the network nodes
along the transmission path, the decoder will try to conceal the errors and continue on
with the decoding as long as there are more packets in the user’s receiving buffer to decode.
Playback interruptions can occur only when the user’s buffer is empty, but not because it
is waiting for retransmissions of missing packets.

Define BTx (t) as the accumulated amount of Bytes transmitted by the server and BRx (t)
as the amount of Bytes the user has received versus time. BD (t) is the total amount
of Bytes that have been decoded and BL (t) is the total lost Bytes due to congestion up
to time t. An example of these curves is depicted in Figure 2.10 where the server starts
sending packets at t = 0 and the user starts receiving them after TN seconds, representing
the core network delay. Assuming the core network is always over-provisioned, TN can be
considered as a small positive constant. The shape of BRx (t) is not necessarily identical to
that of BTx (t) due to additional variable queuing delay at the base station, depending on
the instantaneous channel and the congestion level in the cell. However, BRx (t) is bounded
to be within a certain range. In an ideal case where the base station’s queuing delay is
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Figure 2.10: Example traffic curves for a timestamp-based streaming service

zero, an upper bound for BRx (t), denoted by BRx,up (t) can be derived by shifting BTx (t)
by TN seconds and properly offsetting it with the losses as follows.

BRx,up (t) = BTx (t− TN)− BL (t) (2.10)

Similarly, a lower bound BRx,down (t) can also be derived in the same way but with the
queuing delay equal to Tlimit which represents a delay threshold of the base station before
it starts dropping packets due to congestion.

BRx,down (t) = BTx (t− TN − Tlimit)− BL (t) (2.11)

As an example, the queuing delay at the point B in Figure 2.10, represented by the
horizontal distance ĀB between the BRx (t) and the BRx,up (t), reaches the Tlimit. The
base station at this point starts to drop packets, causing the loss curve BL (t) to grow.

After an initial buffering period from receiving the first packet, denoted by Tbuff , the user
starts to decode the buffered data. The shape of the decoding curve BD (t) is similar to
a shifted version of the BTx (t) and properly offset by the losses, depending on where the
losses hit the original video. If newly arrived packets are dropped first every time the buffer
overflows, BD (t) is similar to a shifted version of the BRx,up (t), assuming Tbuff ≥ Tlimit

(since the BRx,up (t) itself is already a shifted version of the BTx (t) and offset by BL (t)).

BD (t) = BRx,up (t− Tbuff ) . (2.12)
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Alternatively, if the Head-of-Line packets with the oldest queuing delay are dropped first
as is the case in Fig. 2.10, we have

BD (t) = BRx,down (t− (Tbuff − Tlimit)) . (2.13)

In such case, it can be shown that in theory BD (t) will not touch BRx,down (t) during
the entire streaming session as they are a shifted version of each other. In other words,
the playback is unlikely to stall given that the initial buffering time is large enough, e.g.,
Tbuff ≥ Tlimit. This finding applies regardless of whether the adaptation is done to the
video or not, and therefore the reduction in interruption time is not expected to be a major
benefit of any timestamp-based adaptive streaming architecture. Instead, the benefits of
the adaptation are in terms of having fewer congestion-related losses and improved video
quality compared to the non-adaptive one.

Related Works and the State of the Art

Providing QoS support and adaptation to video streaming services, especially the TBS ar-
chitecture, has been of interest to the research community for many years. A comprehensive
survey of various approaches provided in [46] categorizes them into two general groups -
the network-centric approach and the end-system centric approach. The network-centric
one, as the name suggests, concerns mostly on how the network can provide QoS support
and adapt to the application’s requirements, while the end-system centric one concerns the
approaches for which the server and/or the user can adapt themselves to varying network
conditions. The following literatures as well as the proposed adaptive TBS architecture to
be discussed in Chapter 3 fall into the latter category as well.

Chou and Miao in [47] propose a generic way to design a Rate-Distortion (RD) optimized
adaptive streaming architecture by formulating it into an optimization problem, taking
into account relationships between parts of the video, the costs of transmitting them and
the expected reduction in distortion each part contributes. An accurate statistical model of
the channel is needed to model a probability of successful transmission over a mobile chan-
nel depending on reception quality, congestion level and other influential factors. Further
adjustments to the statistical model are necessary to incorporate the congestion control
and to coordinately adapt the videos for multiple users simultaneously which add more
complexity to it. The adaptation results depend largely on how accurate the model repre-
sents the channel. Other works such as [48–52] opt for a simpler approach by assuming a
constant limited amount of radio resources in which bitrates of all different users must be
optimized together within this static resource budget instead. Thus, the accurate statisti-
cal model of the channel is not required. These works propose a joint optimization of the
video bitrates by a dedicated adaptation entity based on various metrics. In [48–50], utility
functions that model the estimated Quality of Experience (QoE) for different application
types at various bitrates are used to assist the adaptation. The considered adaptation
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methods in some of the works are for non-scalable videos such as re-encoding and frame
dropping. Thus the computational resource constraint, especially for those that perform
re-encoding, needs to be taken into account as well. [48] additionally attempts to reduce
fluctuations in the video quality as a result from adaptation by defining a threshold of hu-
man perception, then applying this additional constraint to the optimization process. [51]
proposes a similar dedicated adaptation proxy close to or at the base station using cross-
layer information, specifically the Link layer throughput and the current queue length, and
the structure of the video for both coordinated and uncoordinated adaptation. A notable
observation from these works is that a congestion control mechanism to regulate amount
of available resources is not considered for the video streaming or any particular class of
traffic. Instead, the amount of the available resource budget as an optimization constraint
is the fixed total system resources. In [48–50], these are shared among all the users and
application types within the cell while [51] assumes all users in the cell are video streaming
users. Thus, detailed knowledges on, e.g., the number of users of each application type in
the cell, their traffic characteristics, QoS requirements and a specific utility function for
each of them are required to jointly adapt their bitrates. This increases the complexity
of the optimization process and requires a lot of cross-layer information exchange between
the base station and the optimization entity such that both are likely to be co-located and
must be owned and operated by the network operator itself.

An alternative approach to having a centralized adaptation entity is to decompose the Net-
work Utility Maximization (NUM) problem such that smaller subproblems can be formed
and distributed to various network entities instead [53, 54]. This concept is applied to the
problem of enhancing video streaming quality over a mobile network in, e.g., [52, 55, 56]
where the decomposition of the NUM problem results in a distributed adaptive algorithm
between the base station and the video servers or the mobile users. In [52,56], each stream-
ing user determines its optimum amount of required resources given the “price” set by the
base station and informs the latter of its decision while the base station has to constantly
adjust the price based on the “demand”. This process is done iteratively until the to-
tal required resources is within the resource budget, after which the base station further
determines appropriate transmission schedules for video units to meet their decoding dead-
lines. The algorithm in [55] is similar but the iteration is done between the base station
and the video servers themselves. Layering as decomposition optimization of the NUM is
generally a good theoretical approach of getting mathematical insights into various cross-
layer designs of a communication network, especially if one has the freedom to modify and
re-allocate functionalities to different layers / network elements to optimally suit specific
purposes. There are, however, some practical issues that can discourage the deployment of
these works although the proposed solution eliminates the need for a centralized adaptation
entity. Firstly, it still requires the base station to perform a centralized role of adjusting
the resource price iteratively with either the servers or the users. This implies that the base
stations are not just transparent nodes along the transmission path, but their IP addresses
and other sensitive information, e.g., the user’s channel quality indicator and the resource
price (reflecting the relative user’s location and traffic load in the cell respectively) must
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be made known to the video servers and/or the users. Also, the need to perform itera-
tive computation between these entities could introduce additional delay, especially in a
congested mobile cell. This could be remedied by having a dedicated high-priority control
channel for exchanging messages between the base station and the involving parties at each
iteration at the expense of increased complexity. For these reasons, the most practical de-
ployment scenario to minimize the delay and the risks of exposing sensitive information to
the outside is for the mobile network operator to own and operate the video servers itself.
This however would result in limited variety of contents from other external video hosting
and service providers.

The Datagram Congestion Control Protocol (DCCP) [57] is a recently-standardized trans-
port protocol to be an alternative from the UDP for providing unreliable packet delivery
with several built-in congestion control algorithms that the application can select from.
One of which is the TCP-Friendly Rate Control (TFRC) [58, 59] which provides a rela-
tively more stable throughput for video streaming applications than TCP while being fair
to other competing TCP flows at the same time. The rate adaptation is done by the server
for each individual streaming user using a rate control equation that estimates the TCP
throughput under the same loss and delay situation. However, this state-of-the-art protocol
can introduce excessive delay when the underlying TFRC algorithm refuses to allow send-
ing packets at higher rate than what it deems appropriate. The transmission rate from
the server is therefore not strictly timestamp-based and the traffic curve analysis made
earlier does not apply. Since the fairness between traffic flows in a mobile cell is partially
or wholly controlled by the base station’s resource scheduler already and the application
should try to utilize all the available radio resources given to it instead. DCCP protocol
with TFRC can therefore be slightly too conservative which, in addition to its inability
to perform coordinated adaptation, results in more frequent playback interruptions and
lower overall video quality when used in a mobile environment as will be shown later on
in Chapter 3.

Another end-system centric approach is to control when and how fast the buffered video
data is consumed at the end user. A thorough summary of various playback strategies
and related works can be found in [60]. Some examples of these are, e.g., [61, 62]. The
first work models the resulting video quality in terms of various network characteristics
and uses it to adjust the initial buffering time. While having a closed-form mathematical
model of the video quality as a function of the network QoS is interesting, only modifying
the initial buffering delay cannot guarantee good playback quality in the dynamic mobile
environment. In addition, the algorithm needs to learn the channel characteristics at the
beginning before the streaming can start, unavoidably adding additional delay. In [62], the
authors propose content-aware playback and packet scheduling algorithms to minimize the
effect of varying network throughput. An algorithm to adjust the playback speed at the
user based on the buffer occupancy and motion intensity in the scene has been developed.
The frame rate can be either slowed down or speeded up as necessary to avoid a complete
stall from buffer underrun. A content-aware scheduling algorithm has also been introduced
at the base station to discard video units that are too late to meet their decoding targets.
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Some of the works, e.g., [63, 64] propose coordination between different protocol layers
to better support mobile video streaming services. This could involve overriding internal
operations of different layers, e.g., having the application influencing the lower layers in
order to apply different Forward Error Correction (FEC) protection levels based on the
importance of different video frames or other high-level network statistics. Yoshimura et
al. propose a similar concept in [65] where an RTP monitoring agent is proposed to be
located close to a wireless link. This agent sends RTCP reports on the congestion and loss
statistics back to the server simultaneously with the mobile user itself. Thus, the server
can distinguish between congestion-related losses in the core network and channel-related
losses in the wireless link and take appropriate adaptation actions, e.g., whether to reduce
the transmission rate or to increase the FEC strength for the packets. However, modern
3G/4G technologies all have built-in retransmission mechanisms at the Medium Access
Control (MAC) layer to convert channel losses into congestion-related losses already. Thus
the concept of having the server distinguishing different causes of losses is not applicable
to the modern mobile networks anymore, let alone the fact that the selection of the FEC
protection level for the radio channel is usually not the responsibility of the media server. In
addition, the difficulties in having non-standardized cross-layer interfaces between different
layers and network nodes and the additional complexity it involves often prevent this type
of approach from real deployment.

Note that many of the proposed solutions require exchanging of side information between
network entities to some certain extent, e.g., the RD information of the video, network
statistics, resource budget, decoding deadlines, etc. While this is assumed to be imple-
mented proprietarily in most works, it is worth noting that there exists the MPEG-21
Digital Item Adaptation (DIA) standard [66] as well which defines tools and metadata
containers that can be used for such purpose. The Bitstream Syntax Description (BSD)
[67] and the Usage Environment Description (UED), for example, define formats for XML-
based tools that can be used to convey RD information of a video and dynamic network
statistics between network entities respectively which can be extended to carry additional
proprietary information as well. [68] also provides a conceptual adaptation architecture
using these tools as an example how they can be utilized.

2.3.2 Progressive Download

For an access network that is capable of providing large and sustained best-effort through-
put to mobile users, the TBS architecture is not an ideal method to provide video streaming
service since the transmission rate from the server is limited to be only as high as the en-
coding bitrate. In such case, the additional capacity that the network is able to support is
therefore underutilized. To some extent, this also applies for on-demand video streaming
too as there is little need for the server to restrict its transmission rate to only the encoding
bitrate or the negotiated GBR. Thus, the progressive download (PD) architecture which
allows the server and users to ramp up the transmission rate to the network’s capacity
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would be more appropriate for such scenario.

A user-driven video streaming architecture based on the PD concept, alternatively referred
to as the pull-based architecture in [40], is a stateless streaming architecture. The streaming
user makes the decision to request for parts or the entire video from the server while
the server itself only waits and replies to the requests without needing to maintain a
dedicate communication session between itself and the user. Since there is no limit on
the maximum transmission rate, the supporting protocol needs to provide some means of
congestion control to ensure fairness and stability of the network. Additionally, the user
is likely to have enough time for retransmission of lost packets as well as it is allowed to
buffer a lot of video data in advance. Given these requirements, HTTP/TCP [69] which
provide stateless request-response mechanisms between the user and the server, reliable
transmission and congestion control are almost always the protocols of choice. Note that
the less-popular DCCP which provides congestion control mechanisms but not reliable
transmission can potentially be used as the transport protocol for the PD as well. However,
it is not compatible for the HTTP to be used on top since the latter protocol requires the
lossless transmission service to function properly. The streaming application in this case
therefore has to take responsibility for these missing functionalities by itself, unnecessarily
complicating the design and implementation.

Since the PD is a stateless request-response architecture with no control protocol such as
the RTSP to support features like scrolling and skipping, the video itself is usually prepared
as multiple independent fragments, referred to as video chunks from now on, to support
rapid playback on any part of the video without transmitting everything from the beginning
again. Each video chunk is self-decodable and represents only a short period of the video,
e.g., a collection of Group-of-Pictures (GoP) structures lasting for a few seconds with no
dependency on other chunks. Note that segmenting the video into multiple smaller chunks
is likely to reduce the encoding efficiency compared to having a single file as prediction
vectors across chunk boundaries are not allowed. Furthermore, given the larger overhead of
HTTP/TCP than RTP/UDP protocols, the PD architecture tends to be slightly inferior
to the TBS one in this regard. However, having multiple video chunks allows them to
be stored at various HTTP caching servers distributed all over the Internet which can
then be used as additional video streaming servers without any modifications. The load
to the origin server, congestion in the core network and transmission delay are therefore
significantly reduced with content caching. Additionally, the PD architecture also has
fewer problems with firewalls and Network Address Translation (NAT) as the transmission
is done over HTTP/TCP just as typical web browsing traffic. These advantages make this
architecture easier to be deployed than the TBS.

Traffic-Curve Analysis

This section investigates the relationships between different traffic curves of the PD archi-
tecture, similar to those for the TBS one introduced earlier. Consider a situation where
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Figure 2.11: Example traffic curves for a non-adaptive progressive-downloading streaming
service

a PD video streaming user is consuming a video content from a server. The transmission
curve from the server, BTx (t), can be any non-decreasing function whose slope reflects the
available best-effort throughput. It is, however, not necessarily similar to the decoding
curve, BD (t), whose slope is the encoding rate of the video itself. Also, since the trans-
mission is done over HTTP/TCP, reliable packet delivery is guaranteed and the loss curve,
BL (t), does not exist. Assuming the core network is again over-provisioned, the network
delay, TN , is a small positive constant. The upper bound of the receiving curve, BRx,up (t),
which represents the earliest arrival curve of the video data given no queuing delay at the
base station at all is simply a shifted version of the BTx (t) and can be written as follows.

BRx,up (t) = BTx (t− TN) (2.14)

However, the retransmission mechanism of the TCP where lost packets can be retrans-
mitted indefinitely until they are all correctly received implies unlimited maximum packet
delay, making it impossible to set a certain arrival deadline. In addition, the transmission
rate from the server which is controlled by the TCP’s congestion control algorithm can also
be significantly lower than the encoding/decoding rate of the video as well if the congestion
situation forces the TCP to lower the throughput. Strict transmission deadlines for pack-
ets therefore cannot be made. As a consequence, BRx (t) cannot be lower-bounded. The
implication that follows is that no matter how large the initial buffering period, Tbuff , is for
the PD paradigm, it is still impossible to guarantee smooth interruption-free playback. An
example of such situation is shown in Figure 2.11 where the decoding curve, BD (t), which
started Tbuff seconds after the first packet had arrived, suffered buffer underrun later on
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Figure 2.12: Example traffic curves for an adaptive progressive-downloading streaming
service

and the playback was interrupted to wait for more data.

Although uninterrupted playback cannot be guaranteed for the PD architecture, the
streaming user can still minimize or avoid it to some extent if dynamic adaptation to
the channel is done. Consider the same situation but with the streaming user being able to
adapt the video bitrate by, e.g., switching to a lower representation of the video as shown
in Figure 2.12. Once increasing congestion was detected at point A, the user decided to
request for a lower-bitrate version as seen here with BD (t) having more gradual slope be-
tween point A and B, and thus avoiding the potential interruption. Note that although the
frequency and duration of interruptions can be reduced this way, the quality of the video
is also worsen as a trade off.

Related Works and the State of the Art

Presently, the most prominent standardization effort for the PD architecture is the Dynamic
Adaptive Streaming over HTTP (DASH) [9] which defines how the video contents are
divided into smaller chunks (referred to as segments and subsegments by the standard) so
that they can be stored at any typical HTTP servers, how the users can obtain metadata
information and retrieve the individual parts of the videos. Further integration of the
standard into the HTML5 [70] is also envisaged which will enable browsers with HTML5
support in the future to be able to consume DASH contents easily.

Providing adaptation capability for the PD architecture has mostly been done by having
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multiple AVC representations of the same content available at the server. The streaming
user can perform both static and dynamic adaptations to match the video quality to its
own capability at the beginning and to the current network conditions during streaming
respectively. Unlike the TBS architecture, this is relatively easier with the PD paradigm
as there is no need to terminate and set up a new session every time the user desires to
switch to other representations when the transmission is done over HTTP (compared to
a more complicated procedure of tearing down and setting up new RTP sessions). Since
the DASH standard does not define the adaptation algorithm but leaves it open for dif-
ferent implementations, there have been several proposals for standard-compliance generic
adaptation engines both from the research community and the industry, e.g, Microsoft’s
Smooth Streaming, Netflix and Apple’s HTTP Live Streaming [71–76]. Akhshabi et al.
[71] provide preliminary performance evaluation and comparison results between some of
these commercially available algorithms in which they are all found to be able to cope
with congestion scenarios in wired networks reasonably well. In [75], Liu et al. addition-
ally propose having parallel HTTP connections to request for multiple chunks while also
performing basic rate adaptation simultaneously. Having parallel HTTP connections has
some additional benefits, e.g., increased utilization rate of the core network where different
HTTP connections might be made to different caching servers. Additionally, it mitigates
the effects a single HTTP connection might have on the overall throughput from occasional
stalls in TCP throughput when it encounters losses or spikes in RTT delay. However, the
basic concept of these adaptive algorithms are simply to select the representation for the
next few chunks such that their required bitrates is no larger than the past average bi-
trate. A study by Ramshankar [77] on the performance of one of these algorithms [74] in a
mobile environment reveals less-than-satisfactory results and that there is still much room
for further improvements.

The usage of H.264/SVC with the PD architecture has also been of interest recently. A
usual way to prepare a SVC-encoded video for this purpose and to be compliance with the
DASH standard is to extract each scalable layer within each chunk into a separated file
of its own, referred to as a block from now on. Thus, a chunk consists of several smaller
blocks of scalable layers within it. Although a chunk can be independently requested and
decoded from other adjacent chunks, the extracted layers from the same chunk are not
(more details are covered later on in Chapter 4). Some obvious benefits to using SVC for
static adaptation to heterogeneous devices, as demonstrated in [73, 78], include improved
caching efficiency at the edge servers, reduced core network congestion and ease of content
preparation by encoding the video only once with SVC. For dynamic adaptation to the
varying channel, earlier works such as [79,80] propose a server-based adaptation mechanism
to adapt the number of enhancement layers in each successive frame by means of observing
TCP throughput and periodic reports of the playback buffer level from the user. A more
recent work by Kuschnig et al. [81] proposes three different adaptive algorithms, two of
which simply select the number of layers so that the next GoP has bitrate no larger than
the past average bitrate. The third proposed algorithm can actually be classified as a
TBS architecture, although it uses the TCP as the transport protocol. This is because
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the server in this proposal transmits GoP’s based on their decoding timestamps. If the
estimated time to send the next GoP through the TCP is longer than a GoP period, the
server then reduces the number of layers in that GoP accordingly so that it can be sent
within its deadline. These proposed adaptation algorithms are all server-driven which is not
compatible with the newer DASH standard. The need to have the server making adaptation
decision also compromises the scalability of the architecture to future network expansion
as well. Additionally, most of the available dynamic adaptive algorithms to date, both
for multiple AVC representations and SVC, simply select the next layer/representation
to request by comparing the delay and/or the past average throughput with the bitrates
of the available layers/versions. The next few chunks are then requested sequentially at
the comparable bitrate. In case of SVC, they also do not permit requesting for separated
enhancement layers, when opportunities allow, to upgrade already-received chunks which
have not been decoded yet. This further limits the adaptation options and the ability to
exploit the full potential of SVC. Finally, none of them, to the best of my knowledge at the
time of writing, has directly address the rapid fluctuation of the best-effort throughput in
a mobile environment and proposed a solution that also utilizes the SVC before.

The generic adaptation algorithm proposed by Chou and Miao [47] to perform RD-
optimized adaptation can potentially be used in this scenario, but with modifications to
the original concept. This is because the algorithm has originally been designed for video
streaming over a lossy network, e.g., the TBS architecture with RTP/UDP, where the
cost of transmitting a data unit is derived from, e.g., the level of FEC protection and the
possible number of retransmission attempts. However, these are the responsibilities of the
underlying MAC and Physical layers at the base station and the TCP layer at the server.
The user’s streaming application usually have no access to these layers/entities nor the
knowledge of these informations. Instead, the cost of transmission should be represented
in terms of a success probability in delivering the data units before their useful deadlines
which is the approach taken in this work (to be discussed in detail in Chapter 4).



Chapter 3

Timestamp-Based Adaptive Video

Streaming

3.1 Motivation

As pointed out earlier in Chapter 2, there has not been a large-scale commercial deploy-
ment of an adaptive TBS to date yet, let alone the ones specially designed for a mobile
environment. Some of the obstacles, amongst other reasons, are the complexity of the
proposed architectures and the requirement to have cross-layer communications and op-
timization across different layers and network nodes. Addressing these limitations, an
alternative adaptive streaming architecture based on the TBS paradigm for scalable videos
and designed to overcome the unique challenges found in a mobile environment is intro-
duced in this chapter. Although the focus of the work will be toward OFDM-based radio
technologies such as the LTE or the WiMAX where radio resources are divided into small
time-frequency chunks, theoretically it can also be used with other radio technologies with
shared radio resources such as the CDMA-based HSPA as well. A dedicated coordinated
adaptation server is proposed to jointly adapt the video bitrates to the streaming users in
the same cell periodically, taking into account their individual channel conditions, charac-
teristics of the videos and the overall congestion situation. The adaptation is done such
that the overall video quality is maximized given limited radio resources while at the same
time being fair to other competing traffic and keeping the congestion at an acceptable
level. This architecture will be referred to as the Coordinated Adaptive Streaming (CAS)
from now on. Additionally, the proposed framework can also be simplified such that the
adaptation is done independently for each user based on its own congestion situation alone.
This slightly modified architecture is referred to as the Uncoordinated Adaptive Streaming
(UAS). While the latter has the advantage of being a simpler architecture, e.g., requiring
neither a dedicated adaptation server nor cross-layer information on the channel, its over-
all performance is slightly inferior than CAS as a trade off. Finally, complete analyses of
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Figure 3.1: The architecture of the proposed CAS

the proposed framework in terms of, e.g., its complexity, the gain in video quality from
performing coordinated adaptation and its relationships to other influential parameters are
provided along with simulation results.

3.2 Overview of the Architecture

3.2.1 Coordinated Adaptive Streaming

The proposed CAS is an adaptive TBS architecture over RTP/UDP. To accommodate
bitrate adaptation to the dynamic mobile environment, a coordinated adaptation server
is proposed to be placed somewhere along the transmission path, e.g., at the edge of the
mobile network, to periodically adapt the video streams. The adaptation interval, denoted
by t = 1, 2, . . ., is set to be the duration of a GoP but theoretically it can be any integer
multiple of the shortest adaptable period of the videos. The bitrates of the videos destined
to users in the same mobile cell are adapted such that the overall video quality is maximized
given the amount of available radio resources. To achieve such objective, the coordinated
adaptation server needs up-to-date information on the mobile channels as well as the RD
information of each interval of all the videos. Therefore, each streaming user needs to
send periodic reports to the coordinated adaptation server. These reports, whose contents
are to be discussed shortly, can be sent via UDP and treated like typical Application-
layer packets. The reporting interval should be no longer than the adaptation interval to
guarantee that the coordinated adaptation server always has the latest information before
the next optimization round is due. Additionally, it is assumed that the RD information
in terms of the video quality and bitrate at each operating point is made available to the
coordinated adaptation server as well. Note that the metric for the video quality could
be, e.g., the Quality of Experience (QoE), the used QP, etc. as a function of bitrate. In
this work, the PSNR is used for simplicity. The overall architecture of the proposed CAS
is shown in Figure 3.1.

As explained in Section 2.1, radio resources in an OFDM-based mobile network are divided
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into thousands of chunks in each second. The assignment of these chunks is controlled by
a resource scheduler at the base station. The Adaptive Modulation and Coding (AMC)
technique is then applied further to adjust the amount of Application-layer data and pro-
tection bits within each chunk, based on the estimated channel quality which is known
to the scheduler. To avoid having cross-layer interfaces to the base station and being de-
pendent on any specific technology, the external coordinated adaptation server does not
have access to this channel quality information which is usually defined differently between
various standards. However, for any streaming user n = 1, 2, . . . , N , it is possible to obtain
the amount of used radio chunks C̃n,t in each optimization round t at the mobile terminal
itself via, e.g., a simple interface between the streaming client software and its Physical
layer. Given that this interface is only between layers within the same mobile terminal, it
should be theoretically easy for the hardware manufacturers to provide such feature to the
operators and/or mobile application developers if there is enough incentive and demand
for it. Nevertheless, a ratio between the latest average Application-layer throughput R̃n,t

over C̃n,t in the same duration implies the quality of the channel and can be used as a
generic channel quality indicator as follows.

ρn,t = R̃n,t/C̃n,t (3.1)

For this purpose, both R̃n,t and C̃n,t are included in the reporting message from the user.
For the HSPA technology, the concept remains valid but one has to compare R̃n,t with the
number of timeslots assigned to the user instead of radio resource chunks. Note that the
tilde sign over both R̃n,t and C̃n,t are meant to represent that these are actually “received”
throughput and radio resources that the user has been given from the network respectively,
and are not to be confused with other quantities to be introduced later on.

The coordinated adaptation server also measures the RTT delay in the identical manner
to RTP [41]. Specifically, it keeps track of its local time Tsn,k when a RTP packet destined
for user n with a sequence number k is forwarded to the mobile network. Upon generating
a reporting message, the user includes in the message the sequence number K of the last
received RTP packet along with the delay Dn measured from the reception time of that
packet to the generation time of the report. Once the reporting message is received by the
coordinated adaptation server at time Trn, the RTT delay for the user n at round t can
be measured from

RTTn,t = Trn − Tsn,K −Dn (3.2)

Additionally, define the normalized RTT deviation as a measure of an overall deviation
from the target RTT limit, denoted as RTTD,t and RTTtarget respectively.

RTTD,t =

∑N
n=1 (RTTtarget −RTTn,t)

(N ·RTTtarget)
(3.3)
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Figure 3.2: The resource scaling function for congestion control

The RTTD,t is a positive number no greater than one if the RTT delays for streaming users
on average are less than the RTTtarget. It becomes negative in the opposite case.

To perform congestion control, the total amount of allowed radio resources in the next
period for all streaming users, denoted as Ĉt+1, must be regulated. If the overall congestion
for these users is light, then Ĉt+1 should be increased to probe the network’s capacity. On
the contrary, Ĉt+1 should be reduced if the cell becomes more congested. Let Ĉt+1 be
computed as follows.

Ĉt+1 = f (RTTD,t) ·
N∑

n=1

C̃n,t (3.4)

Here, f (RTTD,t) is a scaling factor to adjust the Ĉt+1 from the total amount of resources
that have been used only by streaming users in the latest round t based on the previous
RTTD,t. The scaling function f (RTTD,t) should be designed such that streaming users have
enough resources to continuously make a “jump” to their next operating points in the next
round until they finally reach their highest layers when there is very low or no congestion.
One of the possibilities, as shown in Figure 3.2, is to use the following exponential function.

f (RTTD,t) = ω(RTTD,t−RTTS) ; ω > 1, 0 ≤ RTTS < 1 (3.5)

The RTTS is a configurable constant which represents the value the RTTD,t converges
to once the congestion in the cell is stable. The congestion control mechanism does not
try to increase or decrease the Ĉt+1 from the previously used amount of resources if the
RTTD,t is equal to RTTS, or in other words, f (RTTS) = 1. If the overall congestion
level increases such that RTTD,t < RTTS, the f (RTTD,t) becomes less than one and

thus lowers the Ĉt+1. On the contrary, the f (RTTD,t) becomes larger than one at an
exponential rate if the congestion situation eases up. In case the congestion level is so
low that RTTU ≤ RTTD,t ≤ 1, the f (RTTD,t) must be large enough to allow all users
to upgrade to their next operating points. This is to prevent the system from being
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too conservative and to exploit the full network capacity. For this reason, the base of
the exponent must be adjusted to the RD characteristics of the videos, specifically the
different bitrate gaps between layers, at every adaptation interval. Let the average bitrate
gap between operating points per streaming user at time t be ∆R̄t and the average channel
quality be ρ̄t, from (3.1) it can be deduced that the average amount of resources needed
per user to upgrade to the next layer is ∆C̄t = ∆R̄t/ρ̄t. The base of the exponent as a
function of ∆C̄t and the amount of used resources can be derived at the beginning of each
round as follows.

(f (RTTU)− 1) ·
N∑

n=1

C̃n,t = N ·∆C̄t (3.6)

(
ω(RTTU−RTTS) − 1

)
·

N∑

n=1

C̃n,t = N ·∆C̄t (3.7)

ω =

[
N ·∆C̄t∑N
n=1 C̃n,t

+ 1

]1/(RTTU−RTTS)

(3.8)

From experimental results, setting RTTS = 0.6 and RTTU = 0.85 provides a good bal-
ance between stability and responsiveness to the channels. Thus these constants are used
throughout the rest of this thesis.

Once the Ĉt+1 has been calculated for the next round, the coordinated adaptation server
determines the best combination of bitrates ~Rt+1 = (R1,t+1, R2,t+1, . . . , RN,t+1), or equiva-
lently the number of layers for streaming users at round t+ 1 by

~Rt+1 = argmax

(
N∑

n=1

Qltn,t+1 (Rn,t+1)

)
(3.9)

subject to

N∑

n=1

(Rn,t+1/ρn,t) ≤ Ĉt+1 (3.10)

and

Rmin,n,t+1 ≤ Rn,t+1 ≤ Rmax,n,t+1 (3.11)

where the Rn,t+1 is the selected bitrate at the next interval for the user n whose minimum
and maximum bitrates are represented by the Rmin,n,t+1 and Rmax,n,t+1 respectively. The
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Qltn,t (Rn,t) is the quality of the video, e.g., the PSNR, for the user n at interval t and
bitrate Rn,t. The coordinated adaptation server then removes some layers from the video
chunks until they have the desired bitrates before forwarding them to the mobile network.

3.2.2 Uncoordinated Adaptive Streaming

The UAS is different from the CAS in that the adaptation can be done at the originating
server individually for each user, thus eliminating the need to have a centralized adaptation
server. This is achieved by simply following the same adaptation procedure as for CAS, but
with N = 1 for each streaming user instead. By considering only a single user n in (3.4)
at a time, the congestion control equation becomes a simple relationship between the next
allowed rate and its previous average throughput for each individual user by multiplying
ρn,t to it.

Rn,t+1 = f (RTTD,n,t) · R̃n,t (3.12)

Note that the normalized RTT deviation and the scaling function, which are still the same
as defined in (3.3) and (3.5) respectively but with N = 1, need an additional subscript
n to distinguish between those of different users. In addition, since UAS does not need
to know the amount of radio resources each streaming user used in the previous interval
for the rate control in (3.12) anymore, the reporting message therefore only contains the
average received throughput and information for measuring the RTT delay which are all
measurable at the Application layer. The number of layers in the video for each user thus
is selected to be as many as possible such that the corresponding bitrate is still within
Rn,t+1.

3.3 Analysis on CAS

In this section, the CAS is formulated into an optimization problem of allocating limited
system resources amongst streaming users to maximize the total video quality. The focus
is especially on the case where the utility function is monotonically increasing and non-
convex since most of the RD curves can be approximated as such [82]. The location of the
optimum solution and its relationship with characteristics of the videos are studied. Other
related works in optimization such as [83–85] however focus on developing algorithms for
a broader range of monotonic utility function even without the concaveness requirement.
One of such algorithms is the Polyblock algorithm [84,85] which converges to the optimum
solution without the concaveness assumption. However, its rate of convergence has been
shown to be slower and it is more complicated than other simpler algorithms that already
work well for a concave utility function, e.g., the Iterative Efficient Set Approach (IEA) and
the Steepest Ascend (SA). Thus, the attention is toward the latter two where a detailed
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analysis on their performances when applied to CAS is provided later on in this section.
Note that since the analysis concerns a single adaptation period, the subscript t will be
dropped from all variables unless stated otherwise.

In the following, the allocation of radio resources is of interest which is equivalent to
bitrate allocation taking the individual channel quality into account according to (3.1).
For convenience, the RD relationship of a video is transformed into a relationship between
the video quality and the required amount of radio resource chunks instead, referred to as
a Rsc-D curve. Thus, define Qn (Cn) as the resulting video quality for the user n given Cn

radio resource chunks. The Rsc-D curve can be obtained from the RD curve by “scaling”
the rate axis properly as follows.

Qn (Cn) = Qltn (ρn · Cn) (3.13)

Let Qn (Cn) be a continuous and monotonically increasing function defined over
[Cmin,n, Cmax,n] and differentiable over (Cmin,n, Cmax,n) where Cmin,n = Rmin,n/ρn

and Cmax,n = Rmax,n/ρn. Additionally, let Qtot

(
~C
)

=
∑N

n=1 Qn (Cn) and

~C = (C1, C2, . . . , CN). The resource constraints in (3.10) and (3.11) can be used to

define a set Û ⊂ ℜN
+ of all feasible solutions as

Û =

{
~C :

N∑

n=1

Cn ≤ Ĉ, Cmin,n ≤ Cn ≤ Cmax,n, n = 1, 2, .., N

}
. (3.14)

Taking a similar approach as in [83], it can be deduced that if there exist ~C1, ~C2 ∈ Û and
~C1 ≤ ~C2, then Qtot

(
~C1

)
≤ Qtot

(
~C2

)
due to the monotonicity of each individual Qn and

therefore Qtot as well. Define the Pareto efficient set Ê ⊂ Û as

Ê =
{
~C : ~C ∈ Û , ~C ′ > ~C → ~C ′ /∈ Û

}
. (3.15)

The efficient set Ê basically contains all solutions that use the allowed resources Ĉ com-
pletely and thus can also be defined by the equality

∑N
n=1 Cn = Ĉ as well as the respective

limits of each user’s resource range. Ê can be represented graphically as an upper-bounding
“flat plane” of Û in an N -dimensional space as shown in Figure 3.3. In this example, Ê is
a line segment and a flat 2-dimensional plane when N = 2 and N = 3 respectively.

Subsequently, (3.9) can be written as an optimization problem over Ê where ~Copt denotes
the optimizer as follows.

~Copt = argmax
~C∈Ê

(
Qtot

(
~C
))

(3.16)
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The Lagrangian of (3.16) is therefore

J
(
~C, λ

)
= Qtot

(
~C
)
+ λ ·

(
N∑

n=1

Cn − Ĉ

)
. (3.17)

Taking a partial derivative of (3.17) with respect to each Cn, the following set of equations

can be obtained where ~Ccr = (Ccr
1 , Ccr

2 , . . . , Ccr
N ) denotes a critical solution, e.g., a potential

candidate for the ~Copt.

dQn

dCn

∣∣∣∣
~Ccr

= −λ ; ∀n (3.18)

The equations in (3.18) together with the resource constraint yield a set of N +1 indepen-

dent equations to solve for ~Ccr and λ. They also imply that ~Ccr is a solution where the
gradient of Qtot is perpendicular to the plane described by Ê, e.g., it is the point where all
users gain equal increase in their video quality per resource chunk.

To test whether ~Ccr is a local maximum, minimum or just a saddle point, the second-
order derivative test using the Hessian matrix is used [86]. The Hessian matrix of Qtot,
denoted as H (Qtot), is a N×N matrix whose ij-entry is the second-order partial derivative
∂2Qtot/∂Ci∂Cj. Since Qtot is the sum of individual Qn which is a function of only Cn, the
Hessian matrix of Qtot will always be a diagonal and symmetric matrix where entries
outside the main diagonal line are all zero. Additionally, define a non-zero vector ~z =
(z1, z2, . . . , zN) and the following matrix product.

~z ·H (Qtot) · ~zT =
N∑

n=1

z2n
∂2Qtot

∂C2
n

(3.19)

The Hessian matrix of Qtot evaluated at ~Ccr is said to be positive definite if the product in
(3.19) is greater than zero. In such case, ~Ccr is a local minimum. If the matrix is negative
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definite, e.g., the product is less than zero, ~Ccr is a local maximum. Finally ~Ccr is a saddle
point if the matrix is indefinite and the product is zero.

In case ~Ccr cannot be found or ~Ccr /∈ Ê, e.g., there is no solution in Ê which the gradient
of Qtot is perpendicular to Ê, one can always increase the Qtot by moving from the current
solution ~C ∈ Ê in the direction of the projection of the gradient on the plane until one
of the “boundaries” of Ê is reached. Reaching the boundary means one or more users
have reached one of their Cmin or Cmax limits and can be considered fixed. Let K be the
number of the users that have reached their limits, the remaining optimization problem is
reduced to of N −K dimension. This process which is essentially the concept of the IEA
algorithm to be discussed later continues until the ~Ccr (with reduced dimension) is found
or N −K = 1. For more rigorous proofs and details of the IEA algorithm see [84].

Although the existence of the optimum solution with concave and convex utility functions is
generally known and not discussed in details in other related works, the following Sections
3.3.1 and 3.3.2 further elaborate in details the characteristics of the ~Copt in the context of
having different combinations of Rsc-D curves. This is to provide a complete picture of
the problem and to serve as a basis for the later analyses.

3.3.1 Optimum Solution with Concave Rsc-D curves

Consider a special case where all Rsc-D curves are increasing and strictly concave functions,
e.g., functions with dQn/dCn > 0 and d2Qn/dC

2
n < 0. To move from ~Ccr ∈ Ê to any

solution ~C ′ ∈ Ê, some users must use fewer resources so that others can be allowed to
consume more. Let a user i be the one whose amount of allowed resources is downgraded
and a user j be the one whose amount of allowed resources is upgraded, e.g., Ccr

i > C ′
i and

Ccr
j < C ′

j. Since the slopes of Qi and Qj evaluated at ~Ccr must both be equal to −λ, the

new slopes evaluated at ~C ′ for both users can be written as the following.

dQi

dCi

∣∣∣∣
~C′

= −λ+

∫ C′

i

Ccr
i

d2Qi

dC2
i

dCi (3.20)

dQj

dCj

∣∣∣∣
~C′

= −λ+

∫ C′

j

Ccr
j

d2Qj

dC2
j

dCj (3.21)

The latter integration term in (3.20) integrates from Ccr
i to a smaller C ′

i over a second-
order derivative of Qi which is less than zero. As a result, the new slope is larger than
−λ. On the contrary, the latter integration term in (3.21) results in a real negative value,

decreasing the slope of Qj from −λ. Thus, it can be concluded that to move from ~Ccr to

any other point ~C ′, the slopes of the Rsc-D curves evaluated at the new solution ~C ′ are
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not equal for all user pairs. Equation (3.18) is not fulfilled and thus ~C ′ cannot be another

critical solution. Therefore, ~Ccr is a unique solution.

By testing ~Ccr with (3.19), it is found that the Hessian matrix is always negative definite

and ~Ccr must be the global maximum as a consequence. If ~Ccr ∈ Ê, then ~Copt = ~Ccr.

However, if ~Ccr /∈ Ê, the ~Copt will be at the edge of Ê closest to the ~Ccr as previously

discussed. In either ways, there is no other local maximum in Ê.

Figure 3.4 shows an example for N = 3 of how the value of Qtot, represented by the Z
axis, varies over a 2D plane of Ê which is now laid on the X-Y plane. All Rsc-D curves
are modeled with strictly concave functions. This can be thought of as taking the plane
shown in the right of Figure 3.3 where N = 3, laying it on the X-Y plane and plotting the
corresponding values of Qtot on top along the Z axis. In this example, ~Ccr ∈ Ê, thus it is
also the ~Copt for CAS.

3.3.2 Optimum Solution with Non-Concave Rsc-D Curves

Assume all Rsc-D curves to be increasing linear functions, e.g., each curve is of the form
Qn (Cn) = mn · Cn + Cn0 where mn > 0 and Cn0 ∈ ℜ+. Under this assumption, equation
(3.18) implies that the optimization problem can only be solved if mi = mj = −λ for any

pair of users i and j. In such an unlikely event, all solutions in Ê are all critical solutions.
However, evaluating the Hessian matrix of Qtot at any of these points reveals that the
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matrix is always indefinite as the second-order derivative of any Qn is zero, meaning they
are all saddle points with equal Qtot. The coordinated optimization server can pick any of
these solutions to be the selected solution for CAS. This scenario is shown on the left of
Figure 3.5.

On the contrary, (3.16) is not solvable and ~Ccr does not exist in a more likely scenario
where the slopes for some or all of the Rsc-D curves are not equal. Thus, by moving in the
direction of maximum gain in Ê, one can always increase the Qtot until a boundary of Ê is
reached, in which the ~Copt lies. Note that this scenario produces no other local maximum
as depicted on the right of Figure 3.5.

In case of a mixture between concave and linear Rsc-D curves, the location of the ~Copt for
CAS depends on whether the slopes of the linear Rsc-D curves are the same or not. If the
linear Rsc-D curves have the same slope, it is possible to determine the ~Ccr and the rest of
the analysis is the similar to the case of all strictly concave curves, e.g., ~Ccr is the global
maximum point and is therefore the CAS’s ~Copt if it lies within Ê. Otherwise ~Copt is at

the edge closest to the ~Ccr. However, if the linear Rsc-D curves have different slopes, ~Ccr

cannot be found and the CAS’s ~Copt is again at the edge. Note that for both cases, the
~Copt is still the global maximum.

If there are both strictly convex and linear Rsc-D curves, the same analysis technique still
applies but with some important differences. Firstly, the ~Ccr, if can be found, will be a
global minimum point instead and cannot be the ~Copt. Secondly, there could be more than

one locally maximum solution at the edges of Ê, similar to the scenario with all convex
Rsc-D curves, and the CAS’s ~Copt is therefore at one of these edges.

If some of the Rsc-D curves are convex, it is inconclusive whether ~Ccr is a maximum,
minimum or simply a saddle point from (3.19). Additionally, using the same analysis
method as in (3.20) and (3.21), one finds that if the user i to be allowed fewer resources
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has a convex curve and the user j to be given more resources has a concave curve, there
can be several ~Ccr solutions where the slopes at those points are the same. Therefore, it is
possible that there could be many locally optimum solutions in Ê including some points
along the edges but only one of them is the ~Copt.

3.3.3 Search Algorithms

In this section, two simple search algorithms commonly used in the literature are discussed
in terms of their complexity, effectiveness and some design aspects that could effect their
performances in a real deployment. Firstly, the theoretical concept is briefly summarized
under the continuous Rsc-D curve assumption. Then the effects when the discrete nature
of the Rsc-D curve is considered including potential failure cases where the algorithms fail
to converge to the true global optimum are investigated.

Iterative Efficient Set Approach

The IEA has been studied in [83, 84] as a low-complexity search algorithm and found
applications in, e.g., [48–50]. Its convergence to the global optimum is guaranteed with
a monotonically increasing, continuous and concave utility function. The algorithm can
be briefly summarized as follows. Let ~C i be the selected solution at an iteration round i,
α > 0 and ~C0 ∈ Ê is a random starting point. The algorithm moves the current selected
solution to the next one by

~C i+1 = ~C i + αP ~Ci∇Qtot

(
~C i
)
. (3.22)

The P ~Ci denotes the orthonormal projector onto the tangent space of Ê at ~C i. Verbally,
~C i+1 is shifted from ~C i in the direction of the projection of the∇Qtot onto the tangent space
with α controlling the rate of change. Since Ê is a flat plane in the N -dimensional space,
a projection onto a tangent space at any ~C i ∈ Ê is also equivalent to a projection onto
Ê itself. This updating process continues until ~C i+1 − ~C i is less than a desired threshold
before the iteration terminates.

If the continuous assumption is replaced by the discrete nature of the Rsc-D curves, the
plane Ê is also replaced by a set containing all largest discrete solutions that lie “just
under” or on the plane Ê. Denote this discrete efficient set as Êd. The same concept of
climbing up the steepest path on Êd from a random starting point ~C0 ∈ Êd still applies. In
each iteration, the algorithm downgrades the user with the smallest loss in the video quality
and gives the released resources to the one with the largest quality gain and continues until
additional quality increase is not possible.
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Figure 3.6: An example difficult case for search algorithms

The worst-case complexity estimation of the IEA, denoted as O (IEA), is obtained from

when it has to search through all solutions in Êd. Obviously, the cardinality of Êd, denoted

as
∣∣∣Êd

∣∣∣, depends on the number of users N , the number of layers per user L and the amount

of allowed resources Ĉ. Although an analytical relationship between
∣∣∣Êd

∣∣∣ , N, L and Ĉ

is difficult to obtain, the worst-case complexity can still be loosely bounded as follows.
Assume each layer requires the same amount of resources for any user for simplicity. When

Ĉ is only enough to support just base layers for all users,
∣∣∣Êd

∣∣∣ = 1. As Ĉ grows to a

certain value that is enough to support one user at its highest layer and the rest at their

base layers, it is possible to show that
∣∣∣Êd

∣∣∣ = CL+N−2
N−1 . Beyond this point, this formula

does not hold as the users are limited to have at most L layers.
∣∣∣Êd

∣∣∣ still continues to

grow but at a slower rate, then becomes saturated and shrinks back to one when Ĉ is
large enough for everyone to have their highest layers. Thus a rather loose bound on the

worst-case complexity is O (IEA) ≈ O
(∣∣∣Êd

∣∣∣
)
≤ O

(
CL+N−2

N−1

)

The discrete IEA works well and guarantees the convergence to the global optimum with
a concave utility function as long as the gaps between layers and different users are com-
parable. Convergence to one of the local optimums is also guaranteed if the concaveness
assumption is dropped. However, if the channels are at the extremes and/or the bitrate
gaps between layers are vastly different amongst users, the performance of the algorithm
can be severely affected. Consider a representative failure scenario in Figure 3.6 where
N = 2 with three and eight operating points for user A and B respectively. Let (a, b)
represent a solution where a and b layers are selected for the user A and B. If the random
starting point in Êd is the point (1, 8) and ~Copt = (2, 5), the algorithm will not be able to
downgrade the user B by one layer and use the released resources to upgrade the user A to
reach ~Copt. Thus, it is forced to exit and incorrectly conclude the starting point (1, 8) is the
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best solution. A quick fix to this shortcoming would be to downgrade a user as much as
necessary so that at least the M th least demanding user amongst the other N − 1 users in
terms of needed resource to upgrade itself by a layer can be upgraded. Note that M < N .
Although this prevents the algorithm from terminating prematurely, its complexity surely
increases as a result.

By starting the algorithm at (3, 2), the discrete IEA can potentially reach the ~Copt since
downgrading the user A releases enough resources to upgrade the user B by up to three
layers. However, here lies another potential problem as well as one needs to decide which
other users the freed resources should be allocated to in case N > 2 and the additional
resources are enough to upgrade multiple users by several layers. A possible solution would
be to use the Steepest Ascend algorithm (to be discussed next) to distribute the released
resources from the downgraded user with the expense of increased complexity.

Steepest Ascend

The algorithm discussed in this section is a slight variation from the original IEA in [83,84].

Typically, the IEA starts from a random point on Ê and works its way toward ~Copt while

being on Ê all the time. Alternately, one can make a slight variation from the IEA by
starting at the lowest solution ~C0 = (Cmin,1, Cmin,2, . . . Cmin,N) and “ascending” toward Ê
by following the path with steepest gradient. To distinguish between this slight variation
from the IEA, this algorithm is referred to as the Steepest Ascend (SA) algorithm from
now. The SA also guarantees a convergence to the global optimum with a monotonically
increasing, continuous and concave utility function. The convergence is also guaranteed
for one of the local optimums if the Qtot is not concave. Let C

i
used =

∑N
n=1 C

i
n be the total

consumed resources by the current selected solution ~C i. If Ĉ−C i
used > 0, the SA improves

the selected solution to be closer to the plane Ê by

~C i+1 = ~C i + α∇Qtot

(
~C i
)
. (3.23)

This process continues until the allowed resources Ĉ are used up or no further upgrade is
possible, e.g., all users are at their highest layers. The upgrading process basically follows
the gradient of the Qtot from the current selected solution toward the plane Ê where the
rate of the ascend is controlled by α.

In the discrete scenario, the SA assigns more resources to upgrade the user with the steepest
Rsc-D curve at the current selected solution in each round. If the one with the steepest
curve cannot be upgraded, either because the remaining resources are not enough or the
highest layer has been reached, the next steepest user is considered for upgrading instead
and so on. The iteration continues until no more improvement is possible and the plane
Êd has been reached.



CHAPTER 3. TIMESTAMP-BASED ADAPTIVE VIDEO STREAMING 57

N L Exhaustive
(
LN
)

IEA
(∣∣∣Êd

∣∣∣
)

SA (N · L)
3 5 125 15 15
6 5 15625 126 30
10 5 9765625 715 50

Table 3.1: Complexity comparison between algorithms

The worst-case complexity for the discrete SA algorithm is when it has to ascend from
~C0 all the way to ~Copt = (Cmax,1, Cmax,2, . . . Cmax,N). This requires the largest number of
iterations as the algorithm has to iteratively increase the number of layers for each user
by one at a time to the top layer. Therefore we have O (SA) ≈ N · L. Note that this
worst-case bound on O (SA) which grows linearly with N and L is still significantly lower
than O (IEA) which grows with factorials of N and L as discussed in the previous section.

The discrete SA algorithm also has limitations similar to the IEA algorithm. Consider the
same situation in Figure 3.6 where the bitrate gaps are significantly different between users.
To make the ascend from the starting solution (1, 1) to the ~Copt = (2, 5), the algorithm has

to upgrade ~C i such that ~C i ≤ (2, 5) for all iteration rounds. More generally, ~C i has to stay

within the polyblock of (2, 5), represented here with the shaded area. If, for example, ~C i

is selected to be (1, 6) at one of the iteration rounds due to the greater efficiency toward
this solution from (1, 5) than the efficiency toward the true optimum at (2, 5), then the
ascend will be unrecoverable and the global optimum is missed. Nevertheless, this failure
case rarely happens. The performance of the discrete SA is in fact far superior to the
IEA and comparable to the exhaustive search as will be shown by simulations later on.
Additionally, its complexity is much less than the IEA’s as demonstrated in Table 3.1 for
N users and L layers per user.

3.3.4 CAS and the Base Station’s Resource Scheduler

This section discusses the CAS’s performance and its dependency on the type of the base
station’s resource scheduler. Specifically, it is of interest as to what influences the sched-
uler’s sensitivity to the queuing delay at the base station has to the CAS’s ability to adapt
the streaming users’ bitrates.

To understand how the scheduler’s ability to adjust its resource assignments to the delay
is important to CAS, one must understand how an external adaptation entity influences
the scheduler’s bitrate allocations first. For an architecture with no congestion control
mechanism to regulate the amount of video streaming resources as in [48–51], the adapta-
tion entity must know exactly how many resources are available in the system to all the
users, including non-streaming ones. It can therefore control the bitrates to all users such
that the available resources are completely used up within one adaptation period, having
no accumulation of delay and all buffers are empty at the end of each round. From the
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scheduler’s point of view, the queues for users that are less-preferred by the adaptation
entity are shorter and tend to be empty faster. Once these queues are empty, the scheduler
is forced to allocate remaining resources to other non-empty queues which belong to other
more-preferred users, destined to have higher bitrates by the adaptation entity. Therefore,
the bitrate allocations can be externally manipulated via controlling how much data there
are in different queues, regardless of the actual scheduler’s decision metric. This architec-
ture can also theoretically work with non-QoS schedulers such as the Round Robin (RR)
or the Maximum Throughput (MT) variants. The drawback with this method, amongst
other things, is that the adaptation entity needs to oversee the bitrates for every user
in the cell to get a complete and accurate picture of the resource consumption in each
round. This requires extensive cross-layer information exchange between the two entities
and complicates the optimization problem as discussed earlier.

On the contrary, an architecture with a congestion control mechanism such as CAS does not
have a detailed picture of how much bitrate each user is requesting in the cell, especially the
non-streaming ones. The coordinated adaptation server instead makes a guess how many
resources are available to the streaming traffic class based on the measured RTT delays
in order to probe the channels. It is therefore likely that not all queues can be emptied
at the end of each round and there are accumulations of delay for some or all streaming
users. As a result, manipulation of the scheduler’s resource allocations externally cannot
be done via controlling the sequence of queues to go empty, but instead via controlling
the queue length since users that the coordinated adaptation server wants to have higher
bitrates tend to have more packets waiting in their queues than the less-preferred ones, thus
suffering larger queuing delay as a result. If the scheduler does not take the packet delay
into its metric calculation, e.g., the RR and the MT schedulers or the PF scheduler with
Fdelay = 1 as discussed in Section 2.1.2, the CAS’s performance as well as the coordination
gain are expected to be reduced.

3.4 Analysis on UAS

As shown in (3.12), the rate selection for a UAS user is independent of the characteristics of
its video, but is influenced only by the averaged received throughput and delay. The general
solution for the UAS users, denoted as ~CUAS, is therefore derived from the understanding
on how the network, or specifically the base station’s resource scheduler, allocates resources
amongst them based on their channel conditions and QoS requirements.

To derive ~CUAS, assume that the used resource scheduler is the PF scheduler discussed
earlier in Section 2.1.2. The FQoS and Fdelay correction factors in (2.1) are implementation
specific, but are usually a function of the relative GBR to the current throughput and a
function of the delay respectively. However, both correction factors are at the moment
set to be the same as those used in the simulation testbed (to be discussed shortly in
the next section) for the purpose of demonstration. Specifically, the Fdelay is set to be an
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exponential function that grows larger than one once the delay exceeds a preset guaranteed
delay whereas the FQoS is a function of the GBR for the user n and the average throughput
up to the allocation time of radio resource chunk k, denoted as γn and r̃n,k respectively, as
follows.

FQoS =

(
γn
r̃n,k

)5

(3.24)

Generally, the users with relatively higher metrics than the average are likely to be given
more resources, causing their metrics to decrease and vice versa. Although the instanta-
neous metrics of different users are unlikely to be the same at any particular radio resource
chunk, their average values over a relatively longer period, e.g., over the adaptation interval
of the UAS, tend to be kept equal amongst all users. Thus, for any pair of users i and j,
the following relationship can be established.

mean (m̃i,k) = mean (m̃j,k) (3.25)

ρiγ
5
i

R̃6
i

· Fdelay (RTTi) =
ρjγ

5
j

R̃6
j

· Fdelay (RTTj) (3.26)

At this point, the instantaneous quantities specific for the radio resource chunk k have
been averaged and transformed into long term quantities instead. Thus the chunk index
k has been dropped as a result. In addition, if it is assumed that most of the RTT delay
is the downlink queuing delay at the base station and the uplink delay is negligible, then
Fdelay can be estimated as a function of the RTT delay as well.

In the case where Rsc-D curves are continuous and defined over ℜ, each UAS user always
has enough data to send up to any allowed bitrate. If the changes in the channel situation
are relatively gradual compared to the adaptation interval of UAS, it can be assumed that
the allowed bitrate from the UAS congestion control converges to the allocated bitrate from
the PF scheduler, e.g., Rn ≈ R̃n. This is because both the UAS congestion control and
the PF scheduler are self-adjusting toward each other, e.g., the UAS server tries to reduce
the Rn if the delay situation is getting worse while the PF scheduler also tries to increase
the R̃n to compensate and vice versa in the opposite situation. Thus, the following linear
relationship between the amount of resources for any user pair i and j can be derived from
(3.1) and (3.26).

(
γ5
i Fdelay (RTTi)

ρ5i

)1/6

Cj =

(
γ5
jFdelay (RTTj)

ρ5j

)1/6

Ci (3.27)

Additionally, define Ctot as the total amount of radio resource chunks available for all
UAS users in the cell. This could be the actual total number of chunks there are in the
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system’s bandwidth or a fraction of it as determined to be appropriate and fair to other
non-streaming traffic classes by the scheduler. The following additional resource constraint
can then be established.

N∑

n=1

Cn ≤ Ctot (3.28)

Equations (3.27) and (3.28) give a total of N linearly independent equations to solve for

all N users. Let Λi =
(

γ5

i Fdelay(RTTi)

ρ5i

)1/6
, these equations can be arranged in a form of a

matrix equation which can be solved numerically as follows.




Λ2 −Λ1 0 · · · 0

0 Λ3 −Λ2
...

...
. . . 0

0 · · · 0 ΛN −ΛN−1

1 1 1 · · · 1







C1

C2
...

CN−1

CN



=




0
0
...
0

Ctot




(3.29)

Note that these equations and the resulting ~CUAS are independent from the characteristics
of the videos, but are dependent solely on the channel qualities, the QoS settings and the
RTT delays. It is therefore unlikely that the CAS’s ~Copt would be the same as the ~CUAS,
implying that the coordination gain exists and is greater than zero.

If the continuous assumption is dropped and the Rsc-D curve is defined over the range
[Cmin,n, Cmax,n], the ~CUAS can still be solved using (3.27) and (3.28) as before but with
some modifications. First, it is possible that some users might have already reached their
highest layers using just a fraction of all resources originally given to them by the scheduler.
The left-over resources must then be redistributed to others that still have more data to
send. This requires an iterative calculation amongst the remaining “active” users to further
refine the final ~CUAS. The iteration is repeated until all users are at their highest layers
or the remaining resources are not enough to upgrade anyone. Note that since there are
discrete operating points on the Rsc-D curves, it is likely that

∑N
n=1 Cn < Ctot and there

are left-over resources in each round.

3.5 Simulation Testbed and Evaluation Metrics

3.5.1 Simulation Testbed

The simulation testbed is composed of three main components - the Video Servers, the LTE
simulator and the Users modules as depicted in Figure 3.7. The Video Servers module is a
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Video Servers LTE simulator Users

Figure 3.7: A diagram of the adaptive TBS testbed’s components
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Figure 3.8: The base station’s traffic curves for the accumulated amount of Bytes received
from the server (Rx) and transmitted to the user (Tx)

video traffic generator representing external video servers and the coordinated adaptation
server that feeds the adapted video streams to the mobile network. The LTE simulator
simulates the behaviors of an LTE mobile cell. The mobile streaming users within the same
cell are represented by the Users module. These users generate reports to the coordinated
adaptation server in case of the adaptive streaming simulation as previously discussed in
Section 3.2.

Two types of the LTE simulator were used to conduct simulations in this work. The first
one is a real-time LTE simulator for application testing [22]. This real-time simulator allows
realistic simulations of the behaviors of the LTE protocols, the radio channels, resource
contention with other internally-generated cross-traffic users and the resulting congestion
and losses in the cell. This simulator receives video data packets transmitted from the
Video Servers module and either drops or forwards them to the video streaming users with
appropriate delay. These streaming users, residing in the Users module, reconstruct the
received and possibly corrupted video files for later decoding and quality evaluation.

Another type of the LTE simulator used was a simplified mathematical model of an LTE
cell which only simulates its bitrate assignments to users in each adaptation period. It
works iteratively to refine the resource allocation by the PF scheduler and updates the
corresponding RTT delays and queue sizes for all users. A general concept on how such
a simple simulator can be constructed is discussed only briefly as follows as it is not the
main focus of this work. However, it is detailed enough to serve as a guideline for anyone
who might be interested.
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The mathematical model of the LTE can be thought of as a set of equations that reacts
to inputs, in this case the incoming video bitrates from the servers and channel quality
indicators of the users’ channels, and computes the output network responses which are the
resulting bitrate allocations from the PF scheduler and the accumulation of the delay in
each adaptation round. First, the Rx and Tx traffic curves, representing the accumulated
amount of data the base station has received from the coordinated adaptation server and
the accumulated amount of data forwarded to a mobile user respectively in Bytes, are
constructed for each user in the cell and updated at the beginning of each round. An
example of these traffic curves from the base station’s perspective are given in Figure 3.8
where the base station receives the first Byte at time t = 0. The downlink queuing delay
for each user can be obtained simply from the horizontal distance between the two curves.
Similarly, the queue size for each user is obtained from the vertical distance between the
two curves. With other information such as the QoS settings and the channel qualities
available, the allocated bitrates for all users by the PF scheduler can be computed using
(3.26). This process is done iteratively so that any remaining resources from some users
that experience buffer underrun are redistributed again to other users with more data to
send, similar to the processes used to compute ~CUAS. Once the bitrate allocations have
been determined, the traffic curves and the corresponding delays are updated. Note that
for a streaming application where most of the traffic load is in the downlink direction while
only control messages and voice traffic usually occupy the uplink, the RTT delay can be a
approximated from the downlink queuing delay as the uplink delay is relatively negligible.
The streaming users are subsequently notified of their received throughputs and the RTT
delays in this adaptation round so that they can generate proper reports to the coordinated
adaptation server before continuing with the next round.

The LTE model only needs to know the incoming video bitrates from the coordinated
adaptation server to create imaginary traffic curves for its internal calculation without
requiring the actual packets to traverse the LTE simulator module to the Users module.
The servers do not necessarily send actual video packets to the LTE model nor do the
streaming users actually receive video packets for decoding. This allows more flexibility
in that any virtual video with any desired RD characteristics in terms of, e.g., its shape,
the number of operating points and the bitrate range, can be simulated with ease. This
is very difficult with actual video streaming using the real-time LTE simulator due to the
difficulties of finding and encoding real video materials to have the desired RD character-
istics. Additionally, the LTE model is able to run simulations faster than real time. Long
simulations equivalent to several hours of video streaming can be done in a shorter period
of time. This testbed configuration therefore allows the results to be more statistically
diverse and avoids decoding and handling of large video files afterward as well. However,
the degradation effects to the video quality due to packet losses could not be evaluated
since the current LTE model does not simulate such loss event.
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3.5.2 Normalized Total Quality

In order to compare the performance between the CAS and the UAS in terms of the overall
video quality, an evaluation metric that reflects the result from adaptation and scalability of
the videos, but is not influenced by the fact that different videos can have different absolute
qualities and adaptation ranges is needed. In other words, if there are two simulations with
identical settings except that one has videos with the adaptable PSNR range from 30 to 35
dB whereas another one is from 25 to 40 dB, the values of this metric from both simulations
should be similar. It should reflect only the relative overall quality improvement over the
base layer and should not be affected by the different baseline qualities. Thus, define a
normalized total video quality as

Qnorm =

∑N
n=1

(
Q̄ltn − Q̄ltmin,n

)
∑N

n=1

(
Q̄ltmax,n − Q̄ltmin,n

) . (3.30)

The Q̄ltmin,n = mean (Qltn,t (Rmin,n,t)) is the time-averaged video quality at the base layer
of the user n over the entire length of the video. The Q̄ltmax,n = mean (Qltn,t (Rmax,n,t)) is
the time-averaged video quality at the highest layer and finally Q̄ltn = mean (Qltn,t (Rn,t))
is the time-averaged received video quality. This metric depends only on the ratio between
the overall quality improvement from the baseline quality over the total adaptation range,
and is therefore suitable for comparing the quality between different simulation runs.

3.5.3 Normalized Total Channel

Similar to the normalized total quality, a metric that represents the overall channel situa-
tion of all users is needed. It should represent the instantaneous relative capacity of the cell
to support the requested videos taking into account the video bitrates and the bandwidth
of the system. Define a normalized total channel for any adaptation round t as follows

Pnorm,t =

∑N
n=1 ρn,t

N · ρbest
. (3.31)

The ρbest which represents the required channel quality to support the bitrate of the highest
enhancement layers using all the radio resources available to the streaming traffic is defined
as

ρbest =

∑N
n=1 (mean (Rmax,n,t))

Ctot

. (3.32)
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Consequently, the Pnorm,t equal to or greater than one means the cell is on average capable
of supporting all streaming users with their highest video layers. On the contrary, video
bitrates for some users must be adapted and reduced when the Pnorm,t is less than one.

3.6 Simulation Results and Analyses

This section discusses simulation results and analyses on various factors that affect the
performance of CAS and UAS. Most of the simulations were done with the following
common settings, unless stated otherwise. The mathematical model of the LTE as discussed
in Section 3.5.1 is used in the testbed for most of the simulations to allow flexibility
in simulating imaginary videos with desired RD characteristics. There are two to four
streaming users in the cell where the Ctot is the total resources in the system. The channel
ρn,t for a user n is randomized from 40% to 130% of the ρbest in each adaptation period. The
simulation length is 10, 000 periods while a period is set to be 32/30 seconds, representing
the duration of two GoP’s, each having 16 frames and being played at 30 fps. This results
in approximately three hours worth of video streaming time. Finally, all the results in the
subsequent analyses have been averaged over the entire simulation length, hence the time
index t is dropped for simplicity.

3.6.1 Operating Regions

The operating regions refer to different ranges of the normalized total channel Pnorm as
defined in (3.31) where the adaptation actions, or the lack thereof, take place differently.
Consider Figure 3.9 from simulations with three users each having five operating points
and Ctot = 8, 000 chunks. The top figure shows three resource-related plots versus the nor-
malized total channel. These plots are the amount of allowed resources Ĉ from the CAS’s
congestion control mechanism, the amount of needed resources to support the chosen ~Copt,
and the actual amount of resources given to CAS users by the PF scheduler. These lines
are labeled in the figure as “CAS allowed”, “CAS needed” and “CAS used” respectively.
The middle figure shows the same plots but from the UAS simulations with otherwise
the same settings. The bottom figure shows the value of the f (RTTD,t) from the CAS’s
congestion control and the average value of the f (RTTD,n,t) over all N UAS users versus
the normalized total channel.

The easiest way to interpret the meaning of Figure 3.9 is to start from the best channel
situation, e.g., when Pnorm > 1. In this region, referred to as the “Max quality” region,
the channels are in a very good situation. All users are able to receive their highest layers
without having to use all the available Ctot for streaming, according to the definition of
the Pnorm. The amount of needed resources as well as the amount of resources given by
the scheduler are therefore equal to each other and less than the Ctot, e.g., the better the
channel, the fewer radio chunks are needed to carry the same amount of data. The RTT
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Figure 3.9: Operating regions for the CAS and the UAS

delay for each user is also close to zero, prompting both the CAS’s and UAS’s congestion
control mechanisms to try increasing the amount of allowed resources in an attempt to
probe for the network’s capacity. This can be seen from the values of the scaling functions
in the bottom figure which are greater than one. However, since all users are already
at their highest layers, the amount of required resources cannot be increased to match
with the allowed resources and thus is why there are discrepancies between these lines.
Additionally, since both the CAS’s and UAS’s solutions are the same, no coordination
gain is expected in this region.

If the Pnorm deteriorates below one, some or all users cannot support their highest layers
anymore and the adaptation takes place. This region is referred to as the “Adaptive”
region. For CAS, the RTT delay begins to build up to the point where the congestion
control does not try to increase nor decrease the amount of allowed resources anymore, but
maintains it to be more or less equal to the Ctot. Thus, the f (RTTD,t) is approximately
close to one. A similar explanation also applies to the UAS case, albeit the total amount
of allowed resources from each individual user’s congestion control mechanism is slightly
larger than the amount of needed and given resources. This is due to the discrete nature
of the RD curves used in the simulation and the way the UAS does the congestion control
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separately for users. Specifically, it is impossible for a user to find the operating point that
completely uses all the resources allowed by its congestion control mechanism. There are
always unused resources left from each user which result in a slightly lighter traffic load
than allowed in the cell. As a consequence, the RTT delay for each user is also slightly lower
and each of them tries to increase the amount of their allowed resources to compensate,
although most likely they will end up not being able to use them all again and the system
becomes stable at this state. This effect from having discrete RD curves also applies to
CAS as well, although to a lesser extend since CAS users are adapted coordinately by the
centralized adaptation server and share the same Ĉ resource pool. The unused resources
from all users are accumulated together and are likely to be large enough to upgrade some
users by a few additional layers, instead of wasting away unused as in the UAS case. In
other words, one can say the resources are used more efficiently in this region by CAS than
UAS.

Once Pnorm continues to degrade further to the point where the amount of allowed resources
is not enough to support even the base layers for some or all users, the amount of needed
resources will be larger than the allowed resources. This is because the servers are forced to
ignore the congestion control mechanism and send at least the base layers to the users. If the
amount of needed resources to support their base layers is greater than what the scheduler
can give them, represented here by the “CAS used” and “UAS used” lines in the plots, then
the system will become unsustainable. The region below this point downward is referred
to as the “Overloaded” region where the RTT delay continues to grow uncontrollably
and will finally cause buffer overflow and losses at the base station if the situation persists.
Simulation results show that the transition into the overloaded situation happens at a lower
Pnorm for the CAS case, implying that the system is more tolerable to channel degradation
than UAS. This is because the allowed resources are shared among all the CAS users. Those
with exceptionally bad channels can be temporarily allocated more resources by reducing
the number of layers of other good users. Obviously this is not possible for UAS users that
adapt their bitrates individually. Note that since the testbed with the mathematical model
of the LTE does not simulate losses and the effects they have on the video quality, Qnorm

in this region from this testbed configuration does not accurately represent the system and
is omitted in the later simulations.

3.6.2 Different RD Characteristics

This section discusses the coordination gain from simulations with various types of the RD
curves for three streaming users. Figure 3.10 on the left shows three types of simulated non-
convex RD curves used in simulations, specifically a linear RD curve, a quadratic RD curve
and a RD curve constructed using the mathematical model described in [82]. For each type
of the mentioned RD curve, a set of two simulation runs was conducted - one simulation for
CAS and another for UAS. The RD curves for all three users in each simulation set were of
the same type, had the same bitrate range and five operating points. They were, however,
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Figure 3.10: All RD curves used in simulations

slightly different from one another in terms of their adaptable PSNR ranges which resulted
in different steepness of the curves. For example, in the linear simulation set, all users
had linear RD curves but with different slopes. In addition, another simulation set was
done with real RD curves from SVC-encoded Ice, Harbour and Soccer video clips at 4CIF
(576 × 704) resolution. These videos whose RD curves are shown in the right of Figure
3.10 also had five operating points for the MGS scalability, but different adaptable bitrate
and PSNR ranges compared to those of the simulated RD curves.

The coordination gain, as shown in Figure 3.11, is simply the difference between the Qnorm

from the CAS and the UAS simulations measured at the same Pnorm. A positive gain
means the overall video quality for CAS users is better than that of the UAS users at the
same overall channel situation whereas a negative gain implies the opposite. The plots
for the gain are omitted once the Pnorm goes too low beyond any of the CAS’s or UAS’s
“Overloaded” points since the testbed with the mathematical model of the LTE cannot
accurately represent the actual Qnorm in the “Overloaded” region as previously discussed.
From Figure 3.9, the “Overloaded” region of the UAS covers up to Pnorm ≈ 0.65 given the
current bitrate range between one and two Mbps of the simulated RD curves, and thus is
why the gain plots for simulated RD curves are not shown below this point. The gain plot
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Figure 3.11: Coordination gain with various RD characteristics

for real RD curves, however, is omitted below a relatively higher Pnorm since they have
narrower adaptable bitrate ranges. Note that had the unadaptable AVC videos with zero
adaptable bitrate range been included here for comparison, their Overloaded point would
be close to one and the gain would always be zero beyond such point.

Figure 3.11 shows that once Pnorm degrades below one into the Adaptive region, the coordi-
nation gain becomes positive, reaches its peak and declines before entering the Overloaded
region where the users would be receiving only their base layers and possibly suffering
losses. Interestingly, the gain tends to be higher when there are more linear RD curves in
the system, e.g., the simulations with all linear RD curves and the real RD curves where
some of them closely resemble a linear function. This is because the CAS’s ~Copt in this

case is likely to be at the edge of Êd as discussed in Section 3.3 whereas the ~CUAS can be
anywhere on Êd depending on the channels. Thus, the Euclidean distance between the ~Copt

and the ~CUAS when linear RD curves exist tends to be larger, and so does the difference in
Qnorm, than having no linear RD curves and the ~Copt is somewhere within the inner area

of the Êd plane.

Nevertheless, the coordination gains from these selected scenarios are rather subtle, e.g.,
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Figure 3.12: Coordination gain with different numbers of users and operating points

approximately 12% for the all-linear case at its peak. This translates into roughly a 1 dB
increase in average PSNR for each user if the adaptable PSNR range is 10 dB.

3.6.3 The Number of Users and Operating Points

Apart from the characteristics of the RD curves, the number of users and operating points
also influences the coordination gain. This section discusses results from simulations de-
signed to demonstrate such effects. Simulations using the same quadratic RD curves in
Section 3.6.2 with different slopes were performed for both CAS and UAS in two sets. In
the first set, there were four streaming users in the cell with varying number of operating
points between five to 15 each time. The plots of coordination gain versus the normalized
total channel are shown in the upper part of the Figure 3.12. Similarly, each streaming user
had five operating points on the RD curve but the number of users was varied from two to
eight in the second simulation set. The lower part of Figure 3.12 shows the corresponding
coordination gain of this simulation set.

It is clear from these results that increasing the number of users and operating points both
improve the coordination gain significantly. Having more streaming users means the N -
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Figure 3.13: The RD curves and the coordination gains for different algorithms with more
layers for steeper RD curves

dimensional solution space is larger. The Euclidean distance between the ~Copt and ~CUAS

also tends to get larger as well as the difference in Qnorm, and therefore, the coordination
gain. Similarly, having more operating points on the RD curves means the curves are
being less discrete and more continuous which is the ideal optimum case already discussed
in Section 3.3.

3.6.4 The Search Algorithms

To investigate the performance of search algorithms discussed in Section 3.3.3, two simu-
lation sets with four streaming users using quadratic RD curves with different slopes were
conducted. The number of operating points for four users varied from four to ten to mimic
the situation in Figure 3.6 where the bitrate gaps between layers and users are signifi-
cantly different. In one simulation set, the steeper RD curves shown in the upper part of
Figure 3.13 were given more operating points, thus having smaller gaps. This increases
the tendency that the SA algorithm is “distracted” by other ascending paths with steeper
instantaneous slopes and smaller steps than to select the path with a more subtle slope
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Figure 3.14: The RD curves and the coordination gains for different algorithms with fewer
layers for steeper RD curves

but with a bigger step toward the true global optimum, as investigated earlier. The second
simulation set on the contrary had RD curves with the number of layers in a reversed order
as shown in the upper part of Figure 3.14.

The original discrete IEA algorithm, however, was expected to have difficulties in both
scenarios. Thus, a modification has been made to it such that in each iteration, the least-
affected user is downgraded enough such that another user which demands the smallest
amount of resource can be upgraded by a layer. This improvement is referred to as “min
1”. Similarly, a modified IEA labeled as “min 2” makes sure another user which demands
the second smallest amount of resource can be upgraded by a layer at each iteration. The
upgrading procedure is carried out using the SA algorithm at each iteration if the released
resources are enough to upgrade multiple users and/or layers. These algorithms therefore

have more adjacent solutions to compare with the current ~C i in each round.

Simulation results reveal that the original IEA performs much worse than the others in
both simulation sets including even the UAS, indicated by a negative coordination gain.
This is because it is unable to move too far away from its initial random starting point in
both scenarios. The modified IEA algorithms show better performance with the trade-off
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Figure 3.15: Coordination gain with and without the delay correction factor for the PF
scheduler

in increased complexity. The performance of the discrete SA algorithm, on the other hand,
closely matches that of the exhaustive search algorithm, implying its convergence to the
~Copt most of the time. Interestingly the magnitude of the coordination gain (or loss) is also
dependent on which RD curves get a larger number of layers as well.

3.6.5 The Scheduler’s Sensitivity to Delay

To demonstrate the effects from the scheduler’s sensitivity to the queuing delay on the
CAS’s performance as discussed in Section 3.3.4, the following simulations were conducted.
In each simulation for CAS and UAS, there were four streaming users using four different
quadratic RD curves with ten operating points. Both simulations are collectively referred
to as one simulation set. In total, two simulation sets were done with the PF scheduler
used at the base station. One simulation set was done with the Fdelay in (2.1) set to one,
representing a scheduler that is not sensitive to the delay. Another simulation set was done
with the Fdelay that grows exponentially with the queuing delay, thus increasing the metric
value and the chance of a user with a long delay to be given more resources. The resulting
coordination gain is shown in Figure 3.15 with an obvious quality improvement in favor of
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Simulation length 20 minutes
Initial buffering period 7 seconds
System’s bandwidth 5 MHz

User’s speed 3 km/h
Cell’s radius 100 m.

Resource scheduler Proportional Fair
Channel simulation interference, slow and fast fading

Table 3.2: Fixed simulation parameters for adaptive TBS

the system with the delay-sensitive scheduler as in earlier analysis.

3.6.6 Comparison with Non-Adaptive and TFRC-Based Adap-

tive Streaming

The simulations in this section were designed to compare the performances between CAS,
UAS, TFRC-based adaptive video streaming and non-adaptive video streaming (referred
to as the AVC simulation). For adaptive streaming cases, the SVC-encoded videos at 4CIF
resolution introduced in Section 3.6.2 were used, whereas non-adaptive AVC-encoded videos
of the same materials with similar bitrates were used for the AVC case. To simulate packet
losses and the respective degradation to the video quality, the real-time LTE simulator
described in Section 3.5.1 was used. There were three video streaming users and between
zero to two other cross-traffic users, each generated a constant bitrate traffic at 500 Kbps to
simulate various congestion levels in the cell. The GBR setting for a user was set according
to the average bitrate of the requested video, or to 500 Kbps in the case of a cross-traffic
user. Other fixed simulation parameters are as given in Table 3.2.

Figure 3.16 shows average PSNR and percentage of frozen frames as a result from the
error-concealing mechanism due to losses versus a varying amount of traffic in the cell.
These results agree with the expected relative performances between CAS, UAS and AVC
cases. Specifically, the CAS which has a wider “Adaptive” region as discussed in Section
3.6.1 is more robust against increasing congestion, thus suffering fewer losses than in UAS
and AVC cases. Therefore, the amount of repeated frames and the average PSNR of CAS
users are better than the UAS and the AVC ones respectively. It is also slightly better
than or comparable to those of the TFRC-based adaptation.

The Pause Intensity, Ip, in percentage for CAS, UAS and AVC cases as shown in the
upper part of the Figure 3.17 are all zero across the simulation range. This is an expected
behavior of a strictly timestamp-based streaming architecture as discussed in Section 2.3.1.
However, the transmission rate from the TFRC-based adaptation server must adhere to
the maximum allowed rate by the underlying DCCP protocol layer in which the TFRC
rate control mechanism is built into. The DCCP layer can refuse to send data packets
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Figure 3.17: The Pause Intensity and radio resource usage for a streaming user at different
traffic levels in the cell

through the network if the transmission rate would violate the rate deemed appropriate
by the TFRC. This is equivalent to having an unbounded network delay TN , thus making
the BRx unable to be lower-bounded. It is therefore possible to have a non-zero Ip for the
TFRC case, especially as the congestion in the cell increases as shown.

Finally, the lower part of the Figure 3.17 shows the average amount of radio resources used
for streaming users in each case. This confirms that the fairness in resource allocation to
other non-streaming users is preserved as the resource usage ratios for all adaptive cases
are within 5-10 % of the AVC’s. Additionally, note that the amount of used resources for
CAS is mostly lower than the other cases although it has better performances as previously
shown.



Chapter 4

Progressive-Download Adaptive

Video Streaming

4.1 Motivation

With the increasing popularity of mobile video streaming and the expected high adop-
tion rate by the industry of the DASH standard, a compatible client-based adaptive video
streaming engine designed for the mobile environment will be a significant contribution
for a successful deployment of such services in the near future. However, related works in
this area and current state-of-the-art solutions discussed in Chapter 2 either only perform
rudimentary adaptation or are incompatible with the standard. Additionally, knowledge
regarding the statistical properties of TCP throughput over a mobile channel is still largely
unexplored. Attempting to contribute to this missing crucial part, this chapter introduces
the means to statistically estimate the TCP throughput in an OFDM-based mobile net-
work, although theoretically it should still be applicable for W-CDMA based networks
such as the HSPA as well. This knowledge is then used to construct a novel adaptation
algorithm designed for the usage of SVC videos in the mobile environment by weighting
the benefits and risks between different request strategies. Lastly, simulation results com-
paring the performance of the proposed algorithm with that of the state of the art in low
and high-mobility scenarios are provided and analyzed.

4.2 Estimating Wireless TCP Throughput

This section introduces a statistical model to estimate the probability of getting a certain
number of Bytes from a TCP connection over a wireless channel within given limited time
duration. For a wireless channel based on the Carrier Sense Multiple Access (CSMA)
technique, TCP is known to misinterpret channel losses as congestion-related losses and

76
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inappropriately reduces its transmission rate [87]. The conventional wisdom was therefore
to enable the server to distinguish between congestion-related losses and channel losses
so appropriate actions can be taken, e.g., to keep the transmission rate high but increase
the FEC protection level for packets when the channel losses are detected. However, the
LTE and other similar 3G/4G technologies have already included several retransmission
mechanisms at their MAC and Physical layers to address such problem. Channel losses
in these networks are converted into larger delay and congestion-related losses when the
base station’s buffer is full instead. Thus, the TCP’s behavior of reducing its transmission
rate on losses in modern mobile technologies is justified. The resulting TCP throughput
therefore correctly represents the channel capacity without being interfered from other
causes besides the network congestion. To gauge the potential TCP throughput over the
mobile channel, the streaming application can then simply observe and deduce the channel
situation from the long term throughput TCP provides.

In LTE, the allocation of radio resource chunks to mobile users is done by a base sta-
tion’s resource scheduler at every 1-2 ms Transmission Time Interval (TTI), as discussed
in Section 2.1.2. Users with good instantaneous channels are likely to be given more radio
chunks in successive TTI’s to take advantage of their favorable channel conditions than
others with worse channels, e.g, suffering deep fading. By measuring a series of instanta-
neous throughput values which reflect the channel and the scheduler’s decision, the mobile
user should be able to infer its future throughput as well. Let the estimated amount of
Bytes the user gets in a period of T seconds be a random variable, denoted as βT where
T is in a range of 5-20 seconds. This can also be thought of as a sum of smaller random
variables βτ as well where τ << T to have a sufficient number of summands.

βT = βτ,1 + βτ,2 + . . .+ βτ,N ;N = ⌈T/τ⌉ (4.1)

The underlying idea is that once some basic statistical properties of βτ are known, the user
should be able to use them to estimate the distribution of βT . However, it is important not
to set τ to be too small, especially to be comparable to the TTI period. This is because the
TTI period is chosen to be smaller than the coherence time of the radio channel. Several
successive TTI’s tend to have similar channel conditions, either being under deep fade or
having excellent reception quality altogether. The PF scheduler which assigns resource
chunks based on the channel quality therefore either gives many resource chunks in several
successive TTI’s as a burst of data when the user is having a good reception quality or
nothing at all in the opposite case. This results in most of the measured βτ ’s having values
close to zero and only a small fraction of them having large values representing a burst
of data. Such βτ show signs of having a heavy-tailed distribution with high degrees of
correlation and a large or infinite variance, therefore making the Central Limit Theorem
inapplicable to estimate βT .

From experimental results, τ of 100 ms provides a good balance between having a sufficient
number of βτ samples and minimizing fluctuation and correlation among them since a βτ



CHAPTER 4. PROGRESSIVE-DOWNLOAD ADAPTIVE VIDEO STREAMING 78

0 1 2 3

x 10
5

0

1

2

3

4
x 10

4

β
0.1sec

F
re

q
u

e
n

c
y

0 2 4 6

x 10
5

0

0.5

1

1.5

2
x 10

4

β
1sec

F
re

q
u

e
n

c
y

0 5 10 15

x 10
5

0

2000

4000

6000

β
5sec

F
re

q
u
e

n
c
y

0 1 2 3

x 10
6

0

2000

4000

6000

β
10sec

F
re

q
u
e

n
c
y

Figure 4.1: Distribution of βT for different time periods

is a sum of all throughput contributions from as many as 50 or 100 individual TTI’s. Thus
short-term effects at the TTI level, e.g., having high correlation, are partially averaged,
although signs that βτ is heavy-tailed are still present as shown in the upper left histogram
of Figure 4.1.

If βτ is approximated by the heavy-tailed Log Normal distribution, βT which is a sum of βτ

can also be approximated as Log Normal as well [88]. This is confirmed by the distribution
plots of βT with a long T period, e.g., β5sec and β10sec which are equivalent to a sum of 50
and 100 β0.1sec’s respectively in the lower part of Figure 4.1. In such case, the tendency
toward the Log Normal distribution of the distributions of the βT where τ << T is still
obvious. With these assumptions, βT ≈ LogN (µ, σ2) where µ and σ2 are the “location”
and “scale” parameters that define the shape of the distribution. Using a similar approach
as in [88], we first approximate them by pairing the mean of βT with the mean of the sum
as follows.

E (βT ) = E (βτ,1 + βτ,2 + . . .+ βτ,N) (4.2)
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eµ+σ2/2 = N · E (βτ ) (4.3)

Similarly, pairing the variance of βT and that of the sum yields the following.

var (βT ) = var (βτ,1 + βτ,2 + . . .+ βτ,N) (4.4)

e2(µ+σ2) − e2µ+σ2

= Nvar (βτ ) + 2
∑

i<j

Cov (βτ,i, βτ,j) (4.5)

Solving (4.3) and (4.5), the µ and σ2 can be written purely in terms of statistical properties
of only βτ as follows.

µ = ln


 N2E2 (βτ )√

Nvar (βτ ) + 2
∑

i<j Cov (βτ,i, βτ,j) +N2E2 (βτ )


 (4.6)

σ2 = 2 (ln (N · E (βτ ))− µ) (4.7)

Note that the covariance terms in (4.6) which involve all possible combinations of βτ,i and
βτ,j where 1 ≤ i < j ≤ N are the result of breaking up the variance of the sum of correlated
random variables βτ in (4.4). These terms can be written in the expanded form as in the
following.

∑

i<j

Cov (βτ,i, βτ,j) = Cov (βτ,1, βτ,2)+

= Cov (βτ,1, βτ,3) + Cov (βτ,2, βτ,3)+

= Cov (βτ,1, βτ,4) + Cov (βτ,2, βτ,4) + Cov (βτ,3, βτ,4)+

...

= Cov (βτ,1, βτ,N) + · · ·+ Cov (βτ,N−2, βτ,N) + Cov (βτ,N−1, βτ,N)

(4.8)

In order to avoid calculating all these covariance terms, it is assumed that the correlation
among βτ,i and βτ,j becomes negligible once |i− j| > 2, e.g, they are more than 200
ms apart when τ is chosen to be 100 ms. Let Φ1 = Cov (βτ,i, βτ,j) where |i− j| = 1
and Φ2 = Cov (βτ,i, βτ,j) where |i− j| = 2, we have the following approximation of these
covariances.

∑

i<j

Cov (βτ,i, βτ,j) ≈ (N − 1)Φ1 + (N − 2)Φ2 (4.9)
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T υ = 0.1 υ = 0.2 . . . υ = 0.9
T1 b11 b21 . . . b91
T2 b12 b22 . . . b92
...

...
...

...
...

Tt b1t b2t . . . b9t

Table 4.1: An example look-up table of bυ with respect to υ and T

Equation (4.9) greatly reduces the complexity of this step. With this approximation, the
user is only required to compute two multiplication operations in each τ period i for Φ1

and Φ2, specifically the products between the newly observed βτ,i and βτ,i−1 and between
βτ,i and βτ,i−2 respectively which are then kept in their own separated memory arrays.
Whenever the values of Φ1 and Φ2 are needed, they can simply be obtained from the
average values of the entries in these arrays as follows.

Φ1 = E (βτ,i · βτ,i−1)− E2 (βτ ) (4.10)

Φ2 = E (βτ,i · βτ,i−2)− E2 (βτ ) (4.11)

Note that it is possible to improve the estimation in (4.9) by adding Φ3,Φ4, . . . to it
especially if τ is chosen to be smaller than 100 ms. However, this comes at the expense of
increasing complexity.

From the array of recorded samples of βτ and the earlier discussed arrays of products, the
user can estimate the µ and σ2 from (4.6) and (4.7) with the simplifications made in (4.9),
(4.10) and (4.11). The success probability υ of getting bυ Bytes within T seconds, denoted
as P (βT ≥ bυ, T ) or P (bυ, T ) can then be derived from the Log Normal’s Complementary
CDF as

P (bυ, T ) = υ =
1

2
− 1

2
erf

(
ln (bυ)− µ√

2σ2

)
(4.12)

bυ = exp
(√

2σ2 · χυ + µ
)

(4.13)

Here, χυ = erf−1 (1− 2υ) depends only on the success probability υ and can be pre-
computed beforehand. A look-up table of bυ with respect to various υ and T similar to
Table 4.1 can be quickly constructed every time the streaming application needs to estimate
the success probability. For example, the success probability υ to obtain bυ Bytes through
the channel within T2 seconds is 0.1 < υ < 0.2 if b22 < bυ < b12. Note that the relationship
between T and N from (4.1) is N = ⌈T/τ⌉.
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Figure 4.2: Estimated and actual success probabilities

Figure 4.2 shows the accuracy of the estimation from simulations where the estimated
success probability υ is plotted against the observed probability that the amount of Bytes
received within T seconds is no less than the corresponding bυ. The result shows satisfactory
accuracy where estimations for various values of T are most of the time very close to the
“ideal” line. The settings for these simulations will be covered in more details later in
Section 4.5.

4.3 Content Preparation

As discussed earlier in Section 2.3.2, both the AVC and SVC videos are usually prepared
into smaller self-decodable units called “chunks” for usage with the PD paradigm. A chunk
can be, e.g, a collection of one or more Group of Pictures (GoP) which is independent of
other chunks. In this work, it is proposed that for SVC-encoded videos, smaller NAL units
in each chunk are grouped further into “blocks” such that each block represents only a
single scalable layer of that chunk. This is shown in Figure 4.3 where a chunk of one GoP
with four temporal and one MGS layers is segmented into eight more blocks. Each block is
given a layer ID from 0, representing the base layer, to L− 1 where L is the total number
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Figure 4.3: An example on preparing video content into blocks

of all scalable layers in the video. This means at least block 0 must be present in order
to decode any given chunk. More enhancement blocks can be requested given that their
“ancestry” blocks have all been requested before.

The hierarchical relationships between blocks of the same chunk are defined by the decoding
dependency of each of them on the other blocks, e.g., the inter-layer prediction vectors,
etc. It is also recommended that the encoding structure of the video should allow for
RD-optimized adding/removing of scalable layers as well. As an example, temporal layer
blocks should have lower indexes (more important) than MGS quality layer blocks due
to the quality improvement in having a higher frame rate is generally better than having
more MGS layers. In addition, the RD information in terms of quality improvement, e.g,
∆PSNR that each layer contributes from its lower layer of each chunk must be generated
during encoding and assumed to be made available to the user as well.

4.4 Decision Algorithm

4.4.1 Definitions

Let each block from a video with L layers be identified by a coordinate pair (c, l) where
c ∈ {0, 1, . . .} and l ∈ {0, 1, . . . , L− 1} denote the chunk and layer ID respectively. In
addition, let Π (c, l) be the size of the block and ∆Q (c, l) be the quality improvement, e.g.,
∆PSNR, from its lower-layer block (c, l − 1) if l > 0 or the total quality if l = 0. Let Tp

be the chunk duration, these new definitions are related to the definitions of the bitrate
and quality of a chunk c at layer l given earlier in Section 3.2 which are denoted as Rc,l

and Qltc (Rc,l) respectively as follows.

Rc,l =

∑l
i=0 Π(c, i)

Tp

(4.14)
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Figure 4.4: An adaptation window of size M × L

Qltc (Rc,l) =
l∑

i=0

∆Q (c, i) (4.15)

The user manages its receiving buffer by constructing an imaginary “adaptation window”
of size M × L blocks as shown in Figure 4.4, implying enough memory space to store M
chunks in advance. The “decoding line” marks the chunk currently being retrieved and
decoded from the buffer. This window is shifted forward continuously such that it always
covers the next M chunks from the decoding line. In addition, let the simulation time t
start from 0 and the initial buffering time be Tinit. Thus the time remaining for a block
(c, l) in the window from the current simulation time until it is due to be decoded is

TR ((c, l) , t) = Tinit + cTp − t (4.16)

Let K be the number of unrequested blocks remaining in the adaptation window. A request
sequence Ŝ is defined as follows.

Ŝ =
{
(c, l)i | (c, l)i is missing,

(
(c, l)j ≺ (c, l)i , (c, l)j is missing

)
→ (1 ≤ j < i ≤ K)

}

(4.17)

Verbally, this is a set of all K missing blocks in the adaptation window and represents the
schedule the user will request for these blocks from the server sequentially based on the
order of their appearances in the set, denoted by a subscript i. The ordering of blocks in Ŝ
must also comply with the dependencies between them. For example, any missing ancestry
blocks (c, l)j of the block (c, l)i, denoted by (c, l)j ≺ (c, l)i, must be requested earlier in

the sequence Ŝ, e.g., 1 ≤ j < i ≤ K. Some examples of very conservative and aggressive
request sequences, assuming the adaptation window is completely empty, are given below.
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Ŝcons = {(C, 0) , (C + 1, 0) , . . . (C +M − 1, 0) ,

(C, 1) , (C + 1, 1) , . . . (C +M − 1, 1) ,

...

(C,L− 1) , (C + 1, L− 1) , . . . (C +M − 1, L− 1)}

(4.18)

Ŝaggr = {(C, 0) , (C, 1) , . . . (C,L− 1) ,

(C + 1, 0) , (C + 1, 1) , . . . (C + 1, L− 1) ,

...

(C +M − 1, 0) , (C +M − 1, 1) , . . . (C +M − 1, L− 1)}

(4.19)

In each decision instance, there can be many possible request sequences the user can choose
from. A total quality metric for any sequence Ŝ at time t is therefore defined in order to
make a comparison amongst them as follows.

∆Qtot

(
Ŝ, t
)
=

K∑

i=1

[∆Q ((c, l)i)P (Πi, TR ((c, l)i , t))] (4.20)

Each individual summand in (4.20) is the quality contribution ∆Q ((c, l)i) of each block

(c, l)i in Ŝ weighted by its success probability in getting all the preceding i− 1 blocks and
itself within its decoding time as defined in (4.12) and (4.16) given the current estimated

channel conditions. Here, Πi represents the total size of the first i blocks in Ŝ, e.g, Πi =∑i
j=1 Π

(
(c, l)j

)
. Finally, the success probability to weight each term is obtained from a

look-up table similar to Table 4.1 with M rows representing different decoding times of all
M chunks in the adaptation window. This allows the streaming application to determine
the best request sequence with the largest ∆Qtot and request for blocks in the same order
as appear in the sequence.

4.4.2 Determining the Best Request Sequence

In this section, a sub-optimum algorithm to determine the best request sequence, referred to
as Ŝopt, is introduced. This is necessary since obviously the user cannot make a brute-force
search through all possible request sequences whenever it needs to make an adaptation
decision in real time. Define and initialize R̂ as a set blocks that have already been
received and stored in the adaptation window. Also, let ÎR̂ be a set of all blocks that can

be immediately requested given that all of their ancestry blocks have been included in R̂.
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For example, the shaded blocks in Figure 4.4 which represent the already-received blocks in
the window are included in R̂ at initialization. The ÎR̂ in this case is initialized to include
blocks (C, 2), (C + 1, 1) and (C + 2, 0) since all of their ancestry blocks are already present

in R̂.

The concept of the proposed algorithm is to solve the multivariate optimization problem of
finding Ŝopt iteratively by simplifying it into an optimization problem with a single variable
in each iteration round. This can be achieved by initializing any “starting sequence” of
the search first. Then design an algorithm to determine the best block to request amongst
all applicable candidate blocks at each position while considering other positions as fixed.
This process is repeated iteratively, starting from the beginning to the end of the sequence.
Once the algorithm terminates, the starting sequence will have been modified into a better
optimized solution.

The choice of the starting sequence can be anything that adheres to the restrictions given
in (4.17). However, experimental results have shown that by using a sequence similar to

either Ŝcons in (4.18) or Ŝaggr in (4.19) as the starting sequence appropriately, depending
on the channel situation, the adaptation performance is noticeably improved. Specifically,
Ŝcons − R̂ should be used as the starting sequence in the bad channel situation as it tries
to get only the missing base-layer blocks first to prevent frequent playback interruptions.
It is therefore intuitive that Ŝopt in such situation should already be similar to Ŝcons − R̂
and require fewer “modifications” by the algorithm. By initializing the starting point of
the search to be closer to Ŝopt, the algorithm is less likely to be distracted to other local
sub-optimum solutions and thus the adaptation result is improved. The same reasoning
also applies for the opposite scenario of using Ŝaggr − R̂ as the starting sequence when the
user is in a good reception area as well. Let R̃ be the past average throughput observed by
the user, the starting sequence Ŝ0 can therefore be chosen in relation to the time-averaged
video bitrate at the base layer as follows.

Ŝ0 =

{
Ŝcons − R̂ if R̃ ≤ ǫ ·mean (Rc,0)

Ŝaggr − R̂ if R̃ > ǫ ·mean (Rc,0)
(4.21)

The multiplier ǫ > 0 is used to control how conservative the algorithm should be. From
experimental results, setting ǫ ≈ 1.5 proves to be a good balance between minimizing the
chances of interruption and having fast responsiveness to improving channel situations.

Once Ŝ0 has been selected, the proposed Algorithm 1 is executed. At each step n =
1, . . . , K, the best block to request at the nth position of Ŝn−1 from the previous step is
selected out of all the blocks that can be immediately requested at this position, which by

definition are the members of ÎR̂. Denote these blocks as (c, l)p ∈ ÎR̂ where p = 1, 2, . . . ,
∣∣∣ÎR̂
∣∣∣

and
∣∣∣ÎR̂
∣∣∣ is the total number of blocks in ÎR̂. For each p, the algorithm tries moving a block

(c, l)p from its original position to the nth position of Ŝn−1 instead, denoted the modified
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for n = 1 : K do

foreach (c, l)p ∈ ÎR̂ where p = 1, 2, . . . ,
∣∣∣ÎR̂
∣∣∣ do

Ŝp
n = Ŝn−1;

Move (c, l)p from its original location to the nth location in Ŝp
n;

Calculate ∆Qp
n

(
Ŝp
n, t
)
;

end

Ŝn = argmax
∀Ŝp

n

(
∆Qp

n

(
Ŝp
n, t
))

;

Update R̂ = R̂ ∪ {(c, l)n} where (c, l)n ∈ Ŝn;

Update ÎR̂;

end

Algorithm 1: The algorithm to determine Ŝopt

Server ClientReq1

Req2

2
 b

lo
c
k
s RTT

Tb

Figure 4.5: The RTT measurement by the user

sequence as Ŝp
n. The best block to be placed at this location, or equivalently the best

modified sequence out of all
∣∣∣ÎR̂
∣∣∣ possible modified sequences at this iteration round is the

one that yields the highest metric in (4.20) and is selected to be Ŝn. The selected block

at this iteration round is also added to R̂, and ÎR̂ has to be updated for the next round
accordingly. These steps continue until n = K and the blocks to request at all K locations
are selected, thus Ŝopt = ŜK is found.

However, the streaming user should not request all missing K blocks in Ŝopt at once since
the transmission time required for all these blocks could last several seconds, during which
time, the channel might have changed and a better adaptation decision could and should
be made instead. On the other hand, requesting too few blocks from Ŝopt would result in
low downlink channel utilization, especially if the RTT is relatively large compared to the
transmission time of a block. Thus, the amount of blocks, or Bytes to request is determined
such that the approximated channel utilization exceeds a certain desired threshold, e.g,
more than 80% utilization rate. This requires the user to take regular measurements of the
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RTT delay between sending the request until the first Byte of the reply arrives as shown in
Figure 4.5. The utilization rate U where Tb is the transmission time for all the requested
blocks is

U = Tb/ (Tb +RTT ) (4.22)

Therefore, the minimum number of Bytes the user must request such that the target
minimum utilization rate Umin is achieved can be derived as follows.

Bmin = (minimum Tx period to achieve Umin)(avg. throughput) (4.23)

Bmin =

(
Umin ·RTT

1− Umin

)
·
(
E (Bτ )

τ

)
(4.24)

4.4.3 Summary of the Algorithm

In summary, the procedures the streaming application must do can be classified into those
that are performed when the user is receiving video blocks from the server and those that
are performed when the user needs to make the next adaptation decision (once all the
previously requested blocks have been received).

Procedures during Receiving Data

• Measure the RTT delay between sending of the HTTP request message and receiving
of the reply from the server as demonstrated in Figure 4.5.

• In each period i which lasts for τ seconds, record the amount of Bytes received within
that period as βτ,i and store it in an array. Refer to this as the array I0. Similarly,
store the products βτ,i · βτ,i−1 and βτ,i · βτ,i−2 in arrays I1 and I2 respectively.

Procedures to Make Adaptation Decision

• Calculate the respective average values of the entries in arrays I0, I1 and I2. Then,
clear all arrays.

• Use the average values from the three arrays to calculate Φ1 and Φ2 according to
(4.10) and (4.11) respectively.

• Construct a look-up table similar to Table 4.1 with M rows, each corresponding to
M different decoding deadlines of the chunks in the adaptation window as given in
(4.16). The entries in each row can be computed from (4.6), (4.7) and (4.13).
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Simulation length 128 minutes
Initial buffering period 7 seconds
System’s bandwidth 5 MHz

User’s speed 3 or 30 km/h
Cell’s radius 100 m.

Resource scheduler Proportional Fair
Channel simulation interference, slow and fast fading

Table 4.2: Fixed simulation parameters for PD adaptive streaming

• Select the starting sequence Ŝ0 in (4.21).

• Compute the amount of Bytes to request using (4.24).

• Execute Algorithm 1 to determine the Ŝopt. Note that the algorithm can be further
simplified even more since only Bmin Bytes will be requested from the server anyways.
This implies that not all blocks in Ŝopt will actually be requested at this time once
the algorithm finishes. Therefore, the algorithm can be terminated prematurely
without having to iterate through all K positions in the sequence. Instead, it can be
terminated at any iteration round n as soon as the accumulated size in Bytes of the
first n blocks in Ŝn exceeds Bmin.

• Send HTTP requests for the first n blocks in Ŝn. Start the timer again to measure
the RTT.

4.5 Simulation Results and Analyses

4.5.1 Simulation Testbed

Simulations to compare the performances between the proposed adaptive algorithm with
a SVC-encoded content, a typical state-of-the-art adaptive streaming algorithm with mul-
tiple representations of the non-scalable AVC-encoded content, and a simple non-adaptive
streaming with an AVC-encoded content were conducted. These are referred to as the
adaptive SVC, adaptive AVC and non-adaptive AVC from now on respectively. The sim-
ulation testbed as shown in Figure 4.7 was used to conduct these simulations where the
LTE simulator module represents the real-time simulator for a LTE cell [22]. The HTTP
server module represents a typical HTTP server storing the video blocks somewhere on
the Internet. Finally the User module represents a single video streaming user in the LTE
cell which can be operated in all three modes. However, there were also between three
to nine other cross-traffic users in the cell internally generated by the simulator as well to
represent various congestion levels. All users are served in a best-effort manner with no
QoS guarantee. Other general testbed configurations are as given in Table 4.2.
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Figure 4.6: RD curves for videos used in the simulations

The video used in the simulation is a concatenation of shorter Crew, Mobile and Soccer
video clips. It is further encoded into an SVC version with five scalable layers and five
AVC representations with similar bitrate ranges. The base layer of the SVC video has the
CIF resolution and the remaining four layers are spatial and MGS scalable layers, all at
4CIF resolution. Similarly, the first AVC representation is at the CIF resolution while the
remaining four are at 4CIF resolution with different QP values. There are two GoP’s with
32 frames in total in each video chunk. The playback rate is at 30 fps, thus resulting in a
chunk duration of 32/30 seconds. The RD curves for both AVC and SVC videos with all
their operating points are shown in Figure 4.6.

The behavior of the video playback is assumed to be as for any other typical HTTP
streaming application. The playback starts after an initial buffering period once the first
data packet has arrived. If the user’s buffer becomes empty anytime during the playback,
the player is forced to stop. It resumes the playback again as soon as there is enough
data in the buffer to do so. Additionally, specific configurations for the proposed adaptive

HTTP server LTE simulator User

Figure 4.7: A diagram for the PD adaptive streaming testbed’s components
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Figure 4.8: Pause intensity at different congestion levels for low-mobility scenario

algorithm are as follows. The adaptation window is of size 60× 5, τ = 100 ms and finally
the user keeps the βτ entries from the last 10 seconds in the three arrays earlier discussed.

Regarding the adaptation algorithm of the adaptive-AVC simulations, it is designed to
mimic general behaviors of the current state-of-the-art algorithms available commercially.
Specifically, the user requests for video chunks sequentially where the chosen representation
for each chunk is the one with the required bitrate no larger than the past average bitrate.
If the receiving buffer is full, e.g., all chunks in its adaptation window of size M × 1 have
been requested, the algorithm additionally tries to improve the quality of the undecoded
chunks in the window by requesting better representations for them as well.

There are two main scenarios investigated in this work, the low-mobility scenario where all
users are moving randomly in the cell at three km/h, and the high-mobility scenario where
the users are moving at vehicular speed of 30 km/h. The latter scenario is especially of
interest since the statistical model of the best-effort TCP throughput used to predict the
success probability was originally construct by analyzing channel traces at low speed which
might be less accurate when used in the high-speed environment. Thus, it is interesting
whether the model and the algorithm can still perform as well in this case or not.

4.5.2 Low-Mobility Scenario

In this section, the results and analyses for the low-mobility simulations are presented. The
plots for the Pause Intensity as defined in Section 2.2.3 in percentage versus traffic load in
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Figure 4.9: MOSweighted at different congestion levels for low-mobility scenario

the cell of all three cases are as shown in Figure 4.8. The non-adaptive AVC user suffers
the most severe interruptions as expected, followed by that of the adaptive AVC and SVC
respectively. The reason why the adaptive SVC user performs significantly better than the
adaptive AVC case is because the SVC algorithm can afford to be very conservative when
the channel becomes unfavorable by requesting only the small base-layer blocks well far
in advance first. Once the channel/congestion conditions improve or that it has enough
base-layer chunks stored in the window, it can then request for additional enhancement
blocks to upgrade the existing chunks in the window to a higher layer later on. On the
contrary, the adaptive AVC is not as flexible enough to use the same strategy since a higher
representation of a chunk cannot reuse the existing lower representation. Specifically, the
adaptive AVC user has to discard the entire existing lower representation once a better one
is requested and received. Thus, it requires larger throughput to do so and runs a higher
risk of playback interruptions compared to its SVC counterpart.

The estimated MOS plots, also referred to as MOSweighted in Section 2.2.3, for all three
cases are shown in Figure 4.9. In the light load situation where the adaptive streaming user
suffers almost no interruption, the MOSweighted for the adaptive AVC in such situation is
slightly higher than that of the SVC due to better encoding efficiency of the AVC compared
to the SVC. However, as the cell becomes more congested, e.g., there are more users in
the cell and the streaming user starts to suffer more frequent and longer interruptions, the
adaptive SVC algorithm is still able to maintain significantly higher MOSweighted than the
adaptive AVC. From the operator’s point of view, this translates into larger cell’s capacity
for video streaming services at the same targeted quality, or higher video quality at the
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Figure 4.10: Downlink resource usage efficiency at different congestion levels for low-
mobility scenario

same targeted amount of supported traffic load.

Finally, we investigate the downlink resource usage efficiency which is defined as

DL resource efficiency (%) = 100 · number of decoded Bytes

number of requested Bytes
. (4.25)

Figure 4.10 depicts the efficiency plots for all three cases. The non-adaptive AVC is the
most efficient streaming strategy since all the requested chunks are decoded. The adaptive
AVC has a lower efficiency as the traffic load in the cell becomes less congested. This
is because the better the channel/congestion situation is, the more likely the streaming
user is able to fill all chunks in its adaptation window and come back to request for better
representations to the existing chunks. The lower representations would then be discarded,
thus lowering its resource usage efficiency. The adaptive SVC algorithm, however, appears
to have the worst efficiency compared to the other two cases. This is due to the risk-taking
behavior of the algorithm itself, e.g., the user might request for a block even though its
success probability is less than 100% if the quality contribution from that particular block
outweighs the risk of not getting it within the deadline. Nevertheless, the inefficiency in
using the radio resources for both the adaptive AVC and SVC algorithms is minuscule, e.g.,
better than 90% over the entire simulation range with no significant discrepancy between
both of them.
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Figure 4.11: Pause intensity at different congestion levels for high-mobility scenario

4.5.3 High-Mobility Scenario

As a comparison with the previous section, the results from simulations with high-mobility
users are discussed here. Figures 4.11, 4.12 and 4.13 show the Pause Intensity, the
MOSweighted and the downlink resource usage efficiency of the streaming user at differ-
ent cell congestion levels respectively. Similar to the results of the low-mobility scenario,
the relative performances between all three streaming modes are the same. Specifically,
the adaptive SVC yields the best performances in terms of minimizing interruptions and
maintaining high MOSweighted, followed by the adaptive AVC and non-adaptive AVC. For
the resource usage efficiency plot, the ordering is in reverse as in the low-mobility scenario
as well. The only obvious difference is, however, that the number of supported users in
the cell has dropped significantly to attain the same performance compared to the low-
mobility scenario. This is due to the lower cell throughput when users move at higher
speed as expected.
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Figure 4.12: MOSweighted at different congestion levels for high-mobility scenario
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Figure 4.13: Downlink resource usage efficiency at different congestion levels for high-
mobility scenario



Chapter 5

Conclusion and Outlook

Currently, billions of people around the world have access to high-speed mobile Internet
via 3G technologies and beyond. With this number as well as the popularity of smart
mobile devices expected to increase even further, mobile video streaming services will
eventually contribute a large share of the overall traffic through a mobile network. However,
providing good video streaming experience to users while keeping the congestion level
in the network at a manageable level proves to be a challenging task due to the large
bitrate and low delay requirements of such service. A large body of works have proposed
several timestamp-based adaptive streaming architectures involving complex cross-layer
communication/optimization across various network entities in the past. These solutions
have seen so far, however, only limited success in real-world deployment. On the contrary,
progressive download adaptive video streaming with HTTP/TCP which has re-emerged as
an alternative concept recently is still relatively under explored, although it is expected to
be a widely-accepted means to provide video services in the near future.

In this work, two adaptive streaming architectures, both for the timestamp-based and for
the progressive downloading paradigms, designed for the dynamic and highly-fluctuating
mobile environment have been proposed. They are also designed to work with and exploit
the advantages of the Scalable Video Coding (SVC) extension to the H.264 video compres-
sion standard such that the video bitrate and quality can be scaled up or down with ease.
In the following, major results for the proposed architectures for both streaming paradigms
are summarized.

Timestamp-Based Adaptive Video Streaming

To provide timestamp-based adaptive video streaming with RTP/UDP, the Coordinated
Adaptive Streaming (CAS) architecture has been proposed in Chapter 3. An additional
network entity, referred to as the coordinated adaptation server, is required to be placed
somewhere between the mobile network and the Internet. It is not a video streaming server
by itself, but acts as a coordinated adaptation engine for all SVC-encoded video streams
from the Internet toward the mobile streaming users within the same cell. The adaptation

95
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is done such that the videos can be jointly adapted periodically in a RD-optimized manner
taking into account channel situations while being fair to other non-streaming users in the
same time. For CAS to function properly, it is assumed that the RD information of the
videos and generic information on the amount of radio resources used for each streaming
user are made available to the coordinated adaptation server periodically. While the latter
can also be considered as cross-layer information which the initial design concept tried to
avoid, it is relatively much simpler to obtain than other proposals in the related works.
Specifically, this information is obtainable at the mobile device itself where the streaming
application, in theory, should be able to get such information from the underlying Physical
layer with ease, provided that there is such an interface for this purpose between the two
layers. Additionally, the amount of resources used can be in the form of radio resource
chunks or timeslots allocated to the user in a certain period, thus is applicable to both
OFDM-based and W-CDMA based technologies. Additionally, CAS does not assume to
have complete knowledge of the resource usages for every users in the cell. It instead
controls the congestion level of only the streaming traffic class to be within an acceptable
level by adjusting the resource budget available to streaming users periodically.

Alternatively, a simplified adaptive architecture from CAS where a video for a streaming
user is adapted independently from other users has also been proposed, referred to as the
Uncoordinated Adaptive Streaming (UAS). The coordinated adaptation server is therefore
no longer required for UAS, but the adaptation itself can be done by the originating
server directly. UAS also requires neither the cross-layer information on the resource usage
statistic nor the RD information of the video. The adaptation is performed based simply on
the individual congestion indicator alone which is measurable entirely at the Application
layer.

The performances of CAS and UAS in terms of the coordination gain, robustness to de-
grading channel conditions and their dependencies on other system parameters have been
throughly discussed. The Iterative Efficient Set Approach (IEA) and the Steepest Ascend
(SA) suboptimal search algorithms used to simplify the optimization problem in the CAS
framework have been investigated in which it is found that the SA performs noticeably
better than the IEA, albeit being much less complex. CAS also has been shown to be
more tolerant toward adverse channel situations than UAS due to its ability to share radio
resources within the group of streaming users. Additionally, the coordination gain has been
demonstrated to increase with the number of streaming users and operating points in each
video. It is also dependent on whether the resource scheduler at the base station is sensitive
to the queuing delay at its transmission queues or not. The widely-used Proportional Fair
scheduler which takes the packet delay as one of its criteria in allocating resources is there-
fore compatible and recommended to be used with CAS. Finally, simulation results have
revealed that CAS and UAS are superior in terms of the resulting video quality than the
current state of the art while the fairness to other non-streaming traffic is still preserved.
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Progressive Download Adaptive Video Streaming

In Chapter 4, a progressive download adaptive streaming architecture for the mobile en-
vironment has been introduced. It has been designed to not only be compatible with the
on-going Dynamic Adaptive Streaming over HTTP (DASH) standard, but also to exploit
the various benefits of Scalable Video Coding and to address the challenges found in the mo-
bile environment as well. To achieve such purpose, first a statistical model of the best-effort
TCP throughput over a mobile channel has been constructed. It allows the client-based
streaming application to estimate the success probability in getting a certain number of
Bytes through the current mobile channel within a limited time by observing statistical
properties of the channel in the recent past. With the ability to make these estimations for
different parts of the video, referred to as blocks in this work, the streaming application
can make a smart decision which missing blocks to request from the server and in which
order by weighting the benefits different blocks contribute to the overall video quality and
the risks in obtaining them. To further reduce the complexity, an iterative sub-optimum
algorithm to determine the best request sequence has also been introduced. The initial
request sequence to start the search can also be chosen based on a rough estimate of the
current congestion level as well to help improving the performance of the search algorithm.

Simulation results between the proposed architecture and the current state-of-the-art pro-
gressive download adaptive streaming based on having multiple non-scalable AVC represen-
tations have shown significant improvements both in terms of the reduction in interruptions
and the perceived video streaming quality by the users. This is also true in a high-mobility
scenario where the streaming user moves at a vehicular speed of 30 km/h.

Outlook

During the course of this work, several interesting related research areas have been identified
that could be of great contributions to the overall body of knowledge and developments
of future adaptive video streaming architectures. In the following, these potential topics
suitable for further research as well as the limitations of the proposed adaptive architectures
are discussed.

In Section 2.2.3, several Key Performance Indicators (KPI) used in this work have been
introduced. One of them is the estimated Mean Opinion Score (MOS), referred to as
MOSweighted, which is the original MOS of the video weighted by the effects of the inter-
ruptions during the playback in the form of a multiplicative scaling factor. However, the
used degradation model has been derived from a limited set of subjective test results which
were conducted using low-quality low-bitrate videos. This tends to hide the true extend of
how severe playback interruptions can degrade the perceived video quality as the original
low-bitrate contents already have bad perceived quality by the users to begin with. Al-
though it has been suggested by several other works that this degradation effects would be
more severe with high-quality contents, similar to those used in this work, there has been
no comprehensive study on this subject to date yet. The MOSweighted in this work there-
fore serves only as an upper bound on the true MOS, e.g., as an optimistic approximation
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of the user’s satisfaction toward the streaming service. Having better understanding of
the negative effects that the interruptions, as well as the frequency, location and duration
of such events have on the MOS for a broad range of video content is therefore of great
interest.

In the CAS framework, the search algorithms to determine the ~Copt by the coordinated
adaptation server investigated in Section 3.3.3 are guaranteed to converge to the true
global optimum only with the continuous and non-convex assumptions of the RD curves.
Although the RD curves of most videos exhibit the non-convex characteristic and that the
Steepest Ascend (SA) variation of the Greedy algorithm has been shown to perform well
with discrete RD curves, having a low-complexity search algorithm with good performance
with any type of the RD curve would be beneficial. This is especially true if the SVC-
encoded videos contain more than one spatial layer as the RD characteristics of such
contents often show signs of convexity. The Polyblock algorithm which is guaranteed to
find the true global optimum even with discrete and convex RD curves still converges too
slowly and is much too complex. However, it is still interesting to investigate if this can be
used as a starting point for further modifications or not. The CAS also relies on having an
interface for the mobile terminal’s Application layer to its Physical layer to obtain radio
resource usage information. Although this interface is theoretically easy to be implemented
and should be useful for other purposes and/or other adaptive streaming architectures as
well, it still relies on the hardware manufacturers to provide such a feature. In addition, the
dependency of using a delay-sensitive resource scheduler such as the Proportional Fair at
the base station for the CAS to be effective in influencing resource allocations to different
users is another restriction of this architecture.

Some interesting improvements that are worth further investigation for the proposed pro-
gressive download adaptive streaming architecture in this work are as follows. First, having
parallel HTTP requests to download multiple blocks simultaneously is an interesting pos-
sibility as the combined throughput from multiple HTTP/TCP connections is likely to be
less fluctuated. Sudden throughput reduction from a single connection due to, e.g., the
TCP’s loss recovery mechanism, will not affect other parallel connections. To accommodate
this technique, the algorithm to determine the best request sequence Ŝopt as well as the
concept of the request sequence itself where video blocks are requested sequentially must
be modified. Second, the statistical model of the TCP throughput over the mobile chan-
nel has been developed from analyzing various TCP throughput traces of a low-mobility
user moving at 3 km/h. It is interesting whether modifications are necessary or if the more
fundamental changes must be made to the statistical model so that it is applicable with dif-
ferent user’s speed or not. Finally, the proposed architecture only performs the adaptation
individually based on the user’s own channel situation and RD information. Coordinated
adaptation amongst different streaming users in the cell is currently not possible with the
current algorithm, although it should be theoretically feasible, e.g., by means of having
a “price” for each radio resource unit, adjusted by a centralized entity in relation to the
overall congestion situation.



List of Figures

2.1 An example of radio resource chunks for a typical OFDMA technology . . 10
2.2 Comparison of average throughput per user for different types of services . 12
2.3 Comparison of instantaneous throughput for a best-effort and a QoS user . 13
2.4 Generic digital video compression process . . . . . . . . . . . . . . . . . . . 15
2.5 An example prediction structure for temporal scalability . . . . . . . . . . 19
2.6 An example prediction structure for spatial scalability . . . . . . . . . . . . 20
2.7 An example prediction structure for two MGS scalability layers . . . . . . 21
2.8 An example prediction structure for three MGS scalability layers . . . . . . 23
2.9 Degradation effect on the MOS from pause intensity (repreduced from [30,36]) 29
2.10 Example traffic curves for a timestamp-based streaming service . . . . . . . 33
2.11 Example traffic curves for a non-adaptive progressive-downloading stream-

ing service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.12 Example traffic curves for an adaptive progressive-downloading streaming

service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 The architecture of the proposed CAS . . . . . . . . . . . . . . . . . . . . 44
3.2 The resource scaling function for congestion control . . . . . . . . . . . . . 46
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