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ABSTRACT   

We present 1.55 µm short-cavity buried-tunnel-junction VCSELs (Vertical-Cavity Surface-Emitting Lasers) with single 
mode output powers of 6.7 mW at 20°C and 3 mW at 80°C, respectively. Although the device had been predominantly 
optimized for high-power applications and a proper heat management, we are also observing a 3dB-cut-off frequency of 
more than 11 GHz and side mode suppression ratios (SMSRs) beyond 54 dB over the whole temperature range. The 
tuning range of the devices can be increased from 7 nm based on gain tuning to several tens of nanometers when 
replacing the top DBR by a micro-electro-mechanical system (MEMS) distributed Bragg reflector (DBR) composed of 
semiconductor or dielectric material being thermally actuated for changing the cavity length. These devices are perfectly 
suitable for telecommunication and gas sensing applications and represent outstanding devices for the so called tunable 
diode laser absorption spectroscopy (TDLAS) technique.  
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1. INTRODUCTION  

In our nowadays very globalized high-tech world, there are two very important application fields which have been arisen 
over the past few years. On the one hand, the fiber based telecommunication sector offering a new dimension of 
exchanging big amount of data worldwide and on the other hand a more environmentally driven aspect, that is the 
demand for gas sensing and spectroscopy. While the first sector is representing the basis for ultra-high-definition TV and 
video, USB 3.0, video conferences and telephone calls held via internet, the second one is offering direct access to check 
and optimize for instance the efficiency of vehicles’ engines, to investigate the air pollution, and to detect the amount of 
CO, CO2, NH3, C2H2 in exhausted fumes [1]. Each one of these mentioned gases show sufficiently strong absorption 
lines within the 1.52-1.58 µm wavelength range and could be easily detectable by a tunable laser device with a tuning 
range exceeding 60 nm. In many cases these tunable devices can be perceived as sensors which are serving as interlock 
and security systems. Taking into account the discussion about oil platforms in this year one can imagine how 
beneficially the application of these kind of sensors could be.  

At first glance these topics (telecommunication and sensing) don’t have anything in common with each other. However, 
both of them have become more and more interesting within the past decade as in particular semiconductor devices have 
been developed and of course successively optimized. While predominantly LEDs are nowadays used for the general 
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found in chapter 3). The first concepts of MEMS VCSELs based on InP have been investigated and presented in [5]. As 
the tuning ranges of these VCSEL devices are nowadays exceeding even the 40 nm range the lasers and their emission 
wavelengths can be designed with much more tolerances [6]. This tuning principle of adjusting the laser wavelength of a 
MEMS VCSEL for reaching a special desired gas absorption line is demonstrated in fig. 1.  

In general the MEMS VCSEL can be designed at a certain wavelength (see black left line (a) in fig. 1). It can be easily 
seen that the there is a huge distance in between the laser emission line and the really focused position of the gas 
absorption line (see blue comb spectrum). This spectral distance can be overcome by thermally actuating the membrane 
of the VCSEL that is by tuning the cavity length of the laser. As a result the original laser emission line is shifted into the 
red to the second displayed position (see fig. 1 black line (b)). From this point the gain tuning mechanism already 
discussed before is applied by periodically increasing and decreasing the driving current of the laser resulting in a small 
wavelength shift of the emission line scanning over the absorption line of the gas (see fig. 1: The dashed line represents 
the endpoint of gain related tuning range (c)). At this tuning mechanism the membrane is used to correct the spectral 
position of the laser emission whereas the real scan over the absorption line is accomplished by gain tuning. It should be 
noticed that in general the gain tuning is not necessary for the wavelength scan. The scanning procedure can also be 
solely realized by membrane actuations.  

Hereby, the driving current through the VCSEL device will be kept constant whereas the MEMS VCSEL emission 
wavelength is designed in the range of some absorption lines of gases. A periodical heating up and cooling down of the 
membrane results in a periodic wavelength shift and scan over the fully available tuning range of the MEMS VCSEL. 
The tuning range of our nowadays manufactured MEMS VCSELs is already exceeding the 40 nm barrier. However one 
should take into account that this scanning mechanism is much slower than the one related to gain tuning.  

These two ways of gas sensing form the basis of the so called TDLAS technique (Tunable Diode Laser Absorption 
Spectroscopy) being already implemented in many sensing products by well-known companies just like “Siemens AG” 
in Germany for example [7]. On the basis of these application fields VCSELs and in particular MEMS VCSELs have 
gained more attraction over the last years and had been found interesting and promising enough for justifying more 
detailed investigations on this topic in many institutes worldwide. 

These ongoing investigations continuously improved the original VCSEL design and opened up many new ways of 
modifying the invention of the first fixed wavelength VCSEL designed in 1977 by Prof. Iga [4]. Devices had been 
developed showing on the one hand the inherent VCSEL specific longitudinal singlemode behavior combined with their 
compact design and their ability for on-wafer testing while on the other hand offering direct access to market oriented 
features like wide tunability, high-power or fast modulation properties. As the VCSEL properties and its wide field of 
applications became more and more perspective, big efforts had been done to extend the wavelength range to the 0.8 – 
2.6 µm field. Therefore, a change of the substrates from GaAs to InP and finally to GaSb had been necessary. This 
transfer offered on the one hand very promising results as the far mid-infrared region had become instantaneously 
accessible, on the other hand showed some severe consequences resulting in a complete new reinvention of the whole 
VCSEL process technology as the already successfully established one on GaAs could not have simply been transferred 
to the InP or GaSb system. Besides the control of the process technology the epitaxy of the devices, which means the 
growth of the crystals, had been the other big challenge. Predominately the proper choice of lattice-matched Distributed 
Bragg Reflector (DBR) materials as mirror materials for the laser located on the top and the bottom side of the structure 
(see fig. 2) decided in many cases whether a specific VCSEL device could have been successfully realized or not. These 
DBRs must support the device with reflectivity values beyond 99% for assuring the desired round-trip of photons within 
every laser device in general. 

As this reflectivity is again correlated with the different refractive indices of these DBR layers (Basic rule: The higher 
the refractive index contrast of the applied layers the less pairs of DBR materials are needed for exceeding the 99% 
reflectivity), one can imagine that these mirrors show a very big thickness due to the small index contrast of 
semiconductor based DBRs being located in the range of n = n2 - n1 = 0.1 to 0.3. 
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approximately n = 1.0. Consequently one would need more than 30 pairs of AlGaInAs/AlInAs-pairs in order to reach 
the desired reflectivity of beyond 99% but only 5 pairs of AlF3/ZnS. As every DBR layer independent of dielectric or 
semiconductor based must have an optical length of a quarter of the cavity wavelength (in our case 1.55 µm) the 
thickness of the whole semiconductor DBR reaches values of approximately 7 µm  (30 x 112 nm for AlGaInAs plus 
30 x 121 nm for AlInAs, respectively). One can imagine that this DBR thickness is undoubtedly raising both the 
electrical and the thermal resistance of the device as the current has to flow through the whole top DBR before reaching 
the active region (this old concept has been presented in [5]). By contrast the 5 paired AlF3/ZnS DBR shows a thickness 
in the range of 2.2 to 2.6 µm.   

We have got rid of this disadvantage by simply implementing the AlF3/ZnS dielectric DBR and making a short-cavity 
device out of the former VCSEL design with intracavity current injection. Intracavity current injection means that the 
current does not have to pass all DBR layers before reaching the active region. The contact ring (see “n-side contact” in 
fig. 2) is surrounding the top DBR. Consequently as the current has to flow from this n-contact ring right via the InP “n-
cladding” to the middle of the device, that is to the buried tunnel junction situated in the center, the electrical resistance 
is now predominantly determined by the radius of the n-side contact ring. This resistance is called the “spreading 
resistance” and can be easily calculated by the formula ܴ ൌ ߩ ∙ ݈ ⁄ܣ  where ߩ is the specific resistance of the bulk InP n-
doped material, ݈ is the radial distance of the contact ring from the central axis of the device and ܣ is describing the 
cylindrical sidewall through which the current passes when being injected at the ring contacts. A simple integration over 
cylindrical side walls leads to the resistance ܴ. Beyond these basic dependencies for the laterally determined electrical 
resistances the thickness of the InP heat and current spreader (see fig. 2) is another very important parameter. Some 
qualitatively held discussions on this topic will be given in the next chapter 2.2.  

 

2.2 The InP current and heat spreader 

Our present VCSEL device mainly consists of thick InP layers on both sides (see “InP n-cladding” and “InP regrowth” in 
fig. 2). As the current has to pass through these layers (see red curve in fig. 2) their thicknesses directly control both the 
electrical and thermal resistance of the device. We have done simulations on the basis of “COMSOL Multiphysics ®” 
and have experienced that this thickness is even the most influencing part of the device considering the thermal 
properties. Some basic rule of thumb would be: The thicker these two spreading layers the more efficient is the heat 
transfer. So for high-speed and high-power devices a very thick InP heat and current spreader on the bottom and on the 
top of the whole structure would be very promising. However the longer the cavity length in z-direction (see fig. 2) the 
smaller the so called free spectral range (FSR) and the smaller is the tuning range of the device. Considering our 
intention to build a device suitable for gas sensing, spectroscopy and perhaps being suitable for integration in fibre bragg 
gratings this restriction in tuning range would be a tremendous disadvantage although the heat management might be 
properly set. As a result we have chosen a thickness of around 1.1 µm for both sides (bottom and top InP layer) in order 
to take this trade-off into account.    

The red line in fig. 2 indicates now the current path by the time some bias is put on the device contacts. Right in between 
of the both already discussed InP heat and current spreading layers the buried tunnel junction is situated. The buried 
tunnel junction serves as can be seen as a sort of current confinement and optical aperture defining the beam waist within 
the cavity.  

 

2.3 The Burried Tunnel Junction (BTJ) 

As the current is injected in a circular geometry with a remarkable distance from the middle axis of the device one needs 
some aperture or confinement layer which confines the current at the center in order to guarantee a sufficiently high 
current density in the active region. This is accomplished by the so called buried tunnel junction (BTJ), see fig. 3 [12,13, 
14]. The BTJ is consisting of two very highly doped layers, namely AlGaInAs (highly p-doped, p = 1.5x1020cm-3) and 
GaInAs (highly n-doped n = 1.5x1020cm-3). Due to the high doping the bandedges are getting deformed by the time the 
device is biased. The band edge deformation can be seen in fig. 3.  
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general two different ways of finalization exist whereas each of them forces different and completely not combinable 
device properties.  
 

a) Evaporation of a top DBR on the half-VCSEL structure  
This device for instance with evaporated AlF3/ZnS DBR layers is shown in fig. 2 and is called “short cavity SC-
VCSEL device”. The reason for this expression is that on the basis of this technique the cavity length can be 
dramatically reduced which is heavily increasing the f3dB frequency of the device ending up in very good high-
speed properties predominantly suitable for telecommunication applications.  
 

b) Mounting of a semiconductor or dielectric based membrane on top of the VCSEL structure 
When gluing a membrane structure on top of the processed VCSEL the device is called MEMS VCSEL. Due to 
the thermally based actuation of the membrane the cavity length of the whole device can be easily modified 
resulting in a large wavelength shift beyond 40 nm. When thinking of gas sensing applications this technique is 
the most outstanding and promising one as it offers devices with flexibly adjusting emission wavelengths 
matching perfectly to the investigated gas absorption line in the spectrum (see description in the introduction 
and [20,21]).  

 
The technique mentioned in a) is a very useful and relatively quick methode to check whether the processed VCSEL 
basis structure works or not determined via electro-optical and thermal characterization methods. This information will 
be kept in mind when afterwards finalizing another half-VCSEL structure with a top membrane in order to gain direct 
access to the field of gas sensing.  
 
4.2 Device results 

When finalizing the VCSEL basis structure by the technique a), the above mentioned high-speed short-cavity devices are 
generated. As no airgap is occurring with respect to this process step the device is representing a fixed wavelength device 
where only the internal heating of the active region by increased electrical pumping can cause a wavelength shift due to 
the above mentioned red shift of the gain curve. This so called “gain tuning” is in the range of 4 to 7 nm. In fig. 7 the 
first results of these devices are shown. This figure is divided into three parts whereas the left part (fig. 7a) shows the 
high-speed measurements, the middle part (fig. 7b) shows the L-I-V properties (light-current-voltage) and fig . 7c on the 
right takes into account the suitability of the device for gas sensing applications that is tunability.  

Considering the electrical properties of the devices (see fig. 7b) the voltage drop over the fully applied current range 
from 0 to 27 mA shows reasonable values with a kink voltage of approximately 0.9 V and a maximum value of 2.1 V. 
This current-voltage curve does not vary over the full considered temperature range from 20 to 80°C. The optical output 
power of the devices shows maximum values of 6.7 mW at room temperature and even 3 mW at 80 °C. There has never 
been published values like this for an InP based VCSEL with a BTJ of 5.5 µm. These very high output powers are indeed 
a confirmation of the above mentioned heat reducing components which had been implemented in the present VCSEL 
structure. The lower part of fig. 7b additionally shows that also the single mode property of the device is not suffering 
from increasing the peltier element temperature from 20 to 80°C. The SMSR shows values of at least 50 dB over the 
whole temperature range proving the highly single mode property of the device. In general a device can be claimed as 
“single mode” by the time the neighboring peak within the emission spectra shows an intensity which is 30dB smaller 
with respect to the main peak.  

As this device has been mainly designed and optimized for high-power and good thermal heat management one would 
already expect that the high-speed properties of these devices are not beating the present world record values. 
Nevertheless their values are undoubtedly in a very useful und applicable range. In fig. 7a the high-speed measurements 
of the devices are shown both at room temperature and 80°C. It can be stated that the f3dB value representing the high-
speed property of a device is always beyond 11 GHz even at 80°C. This means that these devices can be applied for data 
transmission in the 12.5 Gbit/s range for each desired and specified temperature within 20 and 80°C. The best state of the 
art high-speed short cavity VCSELs realized within our group are reaching the present world record values of f3dB of 
17 GHz (see fig. 7a bottom). More detailed information about high-speed short-cavity VCSELs can be found elsewhere 
[9-11] and will not be discussed here as gas sensing applications are not requiring high-speed properties.  
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