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Abstract — In classical circuit theory, the question of how much
power �ows into a circuit through a set of terminals only makes

sense if these terminals form a port, i.e., if the sum of the terminal

currents is zero all of the time. On the other hand, looking from

a �eld theory perspective, it can make sense to associate a power

�ow even to a set of terminals which do not form a port, especially

to single terminals. This can be done by integrating the Poynting

vector over those parts of a closed surface around the circuit, which

points are geometrically more close to one terminal than any other
terminal. We argue that, under certain conditions, the product

of terminal current with the di�erence of the terminal potential

and the average potential of all port terminals can serve as power

assigned to this terminal in the �eld theoretic sense stated above.

1 introduction

Terminals are the points through which a circuit can be
interconnected with its environment. For their circuit
theoretic description one needs two quantities: the elec-
tric current �owing through and the electric potential
observed at the terminal. A number of terminals is said
to make a port, in case that the sum of its terminal
currents is zero all the time [1]. Thus,

N∑
n=1

inφn (1)

is independent of the reference point of the potentials φn ,
as long as the N terminals form a port, for

N∑
n=1

in (φn + φ) = N∑
n=1

inφn + φ N∑
n=1

in = N∑
n=1

inφn , (2)

with any o�set φ in potential, provided that the sum of
theN terminal currents in vanishes identically. The phys-
ical meaning of (1) is the power which �ows through the
port into the circuit. This can easily be seen by choosing
one terminal of the port as the potential reference, and
connecting (N−1) voltage or current sources (whichever
is appropriate for the circuit) between the remaining ter-
minals and the reference terminal. Clearly, (1) is identical
to the sum of the powers delivered by the sources. The
terminals being lossless, this total power must be deliv-
ered into the circuit. The individual terms

inφn (3)

on the other hand, do not seem to have any physical
meaning, for the potential φn is unique only up to an
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Figure 1: Cross section of 3 thin, parallel, and long wires.

additive constant, such that (3) could have any value
at all. Consequently, (3) cannot be interpreted as the
power associated with the n-th terminal of the port.
Only the sum in (1) over all the terminals of the port
represents the power �ow. Thus, it can be said, that
»terminals are for interconnection, [but] ports are for
energy transfer« [2].

2 power-flow and terminals

The previous discussion ignores the interesting possibil-
ity that the potential o�set φ in (2) is a function of the
terminal potentials. In contrast to (3), the term

in (φn − 1

N

N∑
i=1

φ i) , (4)

is independent from the reference point chosen for the
potentials φ i . Does it have a physical meaning?
To this end, consider 3 parallel long wires lined up

with the z-axis of a rectangular coordinate system, as
shown in a cross section in Figure 1. The diameter of the
wires is assumed to be small compared to the distance
between the wires. Let there �ow the electric currents i1,
i2 and i3 through the wires. We assume the frequency is
low enough such that the electric �eld can be described
accurately enough as the gradient of the scalar potential.
The potentials of the wires are denoted by φ1, φ2, and
φ3, respectively. Let us think of the cross section in
Figure 1 as the terminals of a 3-terminal circuit. Because
of the Kirchho� current law, the sum of these currents
must vanish identically (i1 + i2 + i3 ≡ 0), such that the 3
terminals form a port. In the following, we will derive
the result:

in (φn − 1

N

N∑
i=1

φ i) = є0c
2∫
An

(E⃗ × B⃗) ⋅ e⃗z dA, (5)

where An is the part of the x-y plane, which points are
nearest to the n-th wire, as indicated in Figure 1. For (5)
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is the integral of the Poynting vector [3] over the area
which is nearer to the n-th terminal’s wire than to any
other terminal’s wire, (4) can, at least in this case, be in-
terpreted as the power which is associated with the n-th
terminal.

3 working assumptions

The computation of the electric �eld is complicated by
the fact that the distribution of charge on the surfaces
of the wires is unknown apriori and depends on the
distribution of charge on the other wires. However, the
situation simpli�es tremendously when we assume that
the diameter of the wires is very small compared to the
distance of adjacent wires. In the cross section shown
in Figure 1, the points on the circumference of one wire
then all have almost the same distance to a given charge
on the surface of one of the other wires. Hence, the
charge on a wire will be distributed (almost) uniformly
on the circumference. If, in addition, the wires extend
long enough in front and behind the x-y plane, there
will be almost no dependence on the z-coordinate. In
total, this makes the wires resemble line charges which
carry the charges q1, q2, and q3, per unit of length. We
assume perfectly electrically conducting (pec) wires.
Additionally, we will make the calculations for dc

only. This makes the electric �eld the gradient of a scalar
potential φ, the wires’ surfaces having the respective
potentials φ1, φ2 and φ3. These potentials are assumed
to be set up and maintained by batteries which are
connected to the far end of the wires. These batteries
are responsible for the redistribution of charge on the
initially uncharged wires. Consequently, q1 + q2 + q3 = 0,
due to conservation of charge. In summary:

a/D → 0, f = 0, ∑
i

q i = 0, long pec wires, (6)

are our working assumptions. The results are expected
to apply also approximately for ac provided that the fre-
quency f is low enough such that thewavelength λ = c/ f
is much larger than the aperture 2D of the considered 3-
wire system (see Figure 1).

4 the electric field

The electric �eld E⃗ is the sumof the electric �elds E⃗i con-
tributed by the charges on each of the 3 wires:

E⃗ = E⃗1 + E⃗2 + E⃗3 . (7)

With (6) thewires behave like line charges.With Figure 1,
we then have from Coulomb’s law:

E⃗2 = q2
4πє0

∞

∫
−∞

⎡⎢⎢⎢⎢⎢⎣
x
y

z − ζ
⎤⎥⎥⎥⎥⎥⎦

dζ

(x2 + y2 + (z − ζ)2)3/2 , (8)

and similar results for E⃗1 and E⃗3. Performing the integra-
tions, we obtain:

E⃗m =
⎡⎢⎢⎢⎢⎢⎣

x + (2 −m)D
y
0

⎤⎥⎥⎥⎥⎥⎦
qm/(2πє0)

(x + (2 −m)D)2 + y2 , (9)

where m ∈ {1, 2, 3}, and (x , y, z) are the Cartesian coor-
dinates of a point P in space where we want to know the
electric �eld. Note that P must be outside any wire. As
the wires are pec, the electric �eld inside the wires is
zero. Because of rot E⃗ = 0, we have

E⃗ = −grad φ, (10)

where φ is the scalar potential. Referring to Figure 1:

−a

∫
−D+a

Exdx = φ1 − φ2 ,

D−a

∫
a

Exdx = φ2 − φ3 , (11)

where Ex is the x-component of the electric �eld E⃗.With
(9) and (7) Ex depends linearly on q1, q2 and q3. With

q1 + q2 + q3 = 0, (12)

we therefore have three linear equations to uniquely de-
termine the three unknown charges per unit length as a
function of the potentials:

[ q1 q2 q3 ] = [ φ1 φ2 φ3 ]C , (13)

with the capacitance matrix C per unit length given by

C =
2πє0

3α + 2β − β2/α
⎡⎢⎢⎢⎢⎢⎣

2 −1 − β/α −1 + β/α−1 − β/α 2 + 2β/α −1 − β/α−1 + β/α −1 − β/α 2

⎤⎥⎥⎥⎥⎥⎦
,

(14)
where the parameters α and β are de�ned as:

α = ln (−1 + D/a) , β = ln ( (2D − a) / (D + a)) .
(15)

As a/D → 0, it follows that α → ln (D/a), and β → ln2.
Thus, α ≫ β, and:

C → 2πє0
3 ln (D/a)

⎡⎢⎢⎢⎢⎢⎣

2 −1 −1−1 2 −1−1 −1 2

⎤⎥⎥⎥⎥⎥⎦
, as a/D → 0. (16)

By de�ning the average potential:

φ =
1

3

3∑
i=1

φ i , (17)

it therefore follows from (13) and (16) that

qm =
2πє0

ln (D/a) (φm − φ) , m ∈ {1, 2, 3}. (18)

Note that qm is proportional to the di�erence (φm − φ),
which is independent of the arbitrarily chosen reference
point for the potentials. By using (18) in (9), and the lat-
ter in (7), we have arrived at an analytical expression for
the electric �eld outside the wires, parametrized by the
potentials φ1, φ2, and φ3.
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5 the magnetic field

Themagnetic �eld B⃗ is the sum of the magnetic �elds B⃗k

which are generated by the currents ik :

B⃗ = B⃗1 + B⃗2 + B⃗3 . (19)

As we are looking at dc, the �elds B⃗k can be easily deter-
mined from Ampère’s law:

rot B⃗k =
1

є0c2
j⃗k ,

where j⃗k is the current density vector for the k-th wire.
Thus, the magnetic �elds B⃗k form circles around their re-
spective wires. Integrating the magnetic �eld along such
a concentric circlewith radius r then yieldsBk2πr. Using
Stoke’s law, this must then equal the integral of the cur-
rent density over the area of the circle divided by (є0c2).
For r > a, that is, for positions outside the wire, this sim-
ply yields ik/(є0c2). Thus, Bk = ik/(2πє0rc2). Referring
to Figure 1, the currents ik are positive when they �ow in
the direction of the positive z-axis. The right-hand rule
then yields the desired magnetic �elds outside the wires:

B⃗k =

⎡⎢⎢⎢⎢⎢⎣

−y
x + (2 − k)D

0

⎤⎥⎥⎥⎥⎥⎦
ik/(2πє0c2)

(x + (2 − k)D)2 + y2
, (20)

where k ∈ {1, 2, 3}. While the magnetic �eld also exists
inside the wires, it is not of much interest for our goal of
determining power �ow, for the electric �eld is zero, thus,
no power �ows inside the wires. Note that the Kirchho�
current law

i1 + i2 + i3 = 0, (21)

from circuit theory is indeed required to maintain (12).
Substituting (20) into (19) then yields the desired mag-
netic �eld outside the wires.

6 the partial power flow

The power �ow is computed from Poynting’s vector [3]:

S⃗ = є0c
2E⃗ × B⃗. (22)

Because neither the electric �eld nor the magnetic �eld
have a z-component, the Poynting vector points into the
direction of the z-axis:

S⃗ = e⃗zSz , Sz = (ExBy − EyBx) є0c2 . (23)

From (7), (9), (18), (19), (20), and (23) then follows:

Sz =
1

2π ln(D/a)
3∑

m=1

3∑
k=1

Am ,k ik(φm − φ) , (24)

where

Am ,k =
(x + (2 −m)D)(x + (2 − k)D)+ y2

((x + (2 −m)D)2+ y2)((x + (2 − k)D)2+ y2) .
(25)

The partial power which �ows through the area An

shown in Figure 1, is then obtained as:

Pn = ∫An

Sz dA. (26)

Because the points belonging toAn are all nearer to the
n-th wire than to any other wire, one can interpret the
partial power Pn , as the power which is associated with
the n-th wire, or, in terms of circuit theory, associated
with the n-th terminal.

It turns out that all parts in (24), except for m = k = n,
do not contribute to the integral in (26) as a/D→ 0. To
see this, consider the case n = 2, that is, the center wire in
Figure 1. Note thatA2 consists of the rectangle ∣x∣ ≤ D/2,∣y∣ <∞, excepting the circle in the origin with radius a.
For the case m = k = 1, we see that

A1,1 =
1

(x + D)2 + y2
is regular and positive in ∣x∣ ≤ D/2, ∣y∣ <∞. Thus,

∣ ∫A2

A1,1dxdy ∣ < ∫ ∣x∣ ≤ D/2
∣y∣ < ∞

A1,1dxdy = π ln 3. (27)

Obviously, a�er division by ln(D/a), (see (24)), the inte-
gral ofA1,1 overA2 doesnot contribute to P2 , as a/D→ 0.
Exactly the same also holds for A3,3 . Now

A1,3 =
x2 + y2 − D2

((x + D)2 + y2)((x − D)2 + y2)
is also regular in ∣x∣ ≤ D/2, ∣y∣ <∞. Integration over the
whole rectangle yields:

∫ ∣x∣ ≤ D/2
∣y∣ < ∞

A1,3dxdy = 0,

while the integral ofA1,3 over the circle x
2+y2 ≤ a yields:

∫
a

r=0 ∫
2π

ϕ=0

r(r2 − D2)dϕdr
D4 + r4 − 2D2r2 cos 2ϕ

= −π ln (1 + a2/D2) .
Thus,

∫A2

A1,3 dxdy = π ln(1 + a2/D2) . (28)

This is a �nite value which approaches zero as a/D→ 0.
Consequently, a�er division by ln(D/a), the integral of
A1,3 does not contribute to P2 as a/D→ 0. Exactly the
same is true for A3,1 , for Am ,k = Ak ,m . Now consider

A1,2 =
(x + D)x + y2

((x + D)2 + y2) (x2 + y2) .
Notice that limx→0(limy→0 A1,2) ≠ limy→0(limx→0 A1,2).
Hence, A1,2 is indeterminate in the origin, making its
integration more subtle. We do it in two parts:

∫
A2

A1,2 dxdy = ∫
a ≤ ∣x∣ ≤ D/2
∣y∣ < ∞

A1,2 dxdy + ∫
∣x∣ ≤ a

∣y∣ >
√
a2 − x2

A1,2 dxdy. (29)
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The �rst integral on the right hand side of (29) makes no
problems, for the integrand is regular inside this region
and can be integrated elementary. One obtains:

∫
a ≤ ∣x∣ ≤ D/2, ∣y∣ <∞

A1,2 dxdy = 0. (30)

The second integral on the right of (29) is the subtle one:

∫
∣x∣ ≤ a , ∣y∣ >

√
a2 − x2

A1,2 dxdy = ∫
a

−a
F(x)dx , (31)

where

F(x) = ∫
−
√

a2−x2

−∞
A1,2 dy + ∫

∞
√

a2−x2
A1,2 dy

=

−arctan(√a2−x2
x ) − arctan(√a2−x2

(x+D) ) + π 1+sign(x)
2

x + D/2 .

Since the largest value returned by arctan(⋅) is π/2, it fol-
lows:

∣F(x)∣ ≤ 2π

∣x + D/2∣ . (32)

Using this upper bound in (31), we obtain:

RRRRRRRRRRRRRRR
∫

∣x∣ ≤ a , ∣y∣ >
√
a2 − x2

A1,2 dxdy

RRRRRRRRRRRRRRR
≤ 2π ln(D + 2a

D − 2a
) → 0, (33)

as a/D→ 0. From (33), (30) and (29) we therefore have:

∫A2

A1,2 dxdy → 0, as a/D→ 0. (34)

In this way, A1,2 does not contribute to P2 as a/D → 0.
Obviously, the same is true for A2,1 . Moreover, also
A3,2 and A2,3 do not contribute, for the di�erence to
the case of A1,2 merely is that D is replaced by −D in
the integrand, which does not change the argument.
Consequently, the remaining term, A2,2 , is the only term
in (24) which can contribute to P2 as a/D→ 0:

P2 =
i2 (φ2 − φ)
2π ln(D/a) ∫A2

dxdy

x2 + y2
. (35)

Again we split the integral into two parts. For the �rst
one we have

−a

∫
x=−D/2

dx

∞

∫
y=−∞

dy

x2 + y2
+

D/2

∫
x=a

dx

∞

∫
y=−∞

dy

x2 + y2
= 2π ln

D

2a
,

by elementary calculation. The second part yields:

∫
∣x∣ ≤ a

∣y∣ >
√
a2 − x2

dxdy

x2 + y2
= 4

a

∫
x=0

dx

∞

∫
y=
√

a2−x2

dy

x2 + y2
= 2π ln2.

Thus, we obtain

∫A2

dxdy

x2 + y2
= 2π ln(D/a). (36)

Using this result in (35) then shows that:

P2 = i2 (φ2 − φ) . (37)

With (26) and (22) the result (37) then shows that

i2 (φ2 − φ) = є0c2 ∫A2

(E⃗ × B⃗) ⋅ e⃗z dA. (38)

Now this establishes the physical meaning of the term
i2 (φ2 − φ). With a similar development, one can show
that an equivalent result also holds for the other two
wires.

7 conclusion

In classical circuit theory, terminals can be used to
interconnect circuits, but computation of power �ow
requires the notion of a port. We suggest, however, that
it nevertheless might make sense to associate power
�ow with single terminals by computing the product of
the terminal current with the di�erence of the terminal
potential and the average potential over all terminals.
This comes about because, under certain conditions,
this product can be interpreted, from a �eld theory point
of view, as the power which �ows through those parts of
a perpendicular reference plain, which are nearer to the
given terminal than to any other terminal of the circuit.
In this way, the proposed product can be interpreted as
the power associated with a single terminal.
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