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Abstract

A single two-level atom interacting with just a single mode of the quantized electro-
magnetic field constitutes one of the most fundamental systems in quantum optics. We
realize this situation in an experiment strongly coupling individual rubidium atoms to
the mode of an optical high-finesse Fabry-Pérot cavity. The new experimental apparatus
described in this work stands out due to a high detection efficiency, a length-adjustable
cavity and excellent optical access.

We investigate the mode spectrum of the empty Fabry-Pérot cavity. We observe
systematic deviations from the paraxial approximation. The resulting, fine-structure-
like splitting is in excellent agreement with recent theoretical calculations taking into
account corrections to the paraxial approximation. Moreover, we confirm predictions
for a spin-orbit-like splitting due to the coupling between orbital and intrinsic angular
momentum of the light modes.

Next, we trap individual rubidium atoms in an intracavity dipole trap. The trans-
mission of a near-resonant probe beam carries information about the trajectory of the
atom. Based on this information, we apply a feedback algorithm cooling the atomic
motion and dramatically increasing the average storage time. This demonstration of
feedback cooling of individual neutral particles nicely illustrates the degree of control
over individual particles that is nowadays possible. The versatility of our cooling scheme
makes it a very useful technique for future investigations of the atom-cavity system. It
can easily be adapted to other strong-coupling cavity quantum electrodynamics exper-
iments with atoms or ions.

In contrast to the atomic motion, which, in our case, can be considered classically,
the internal degrees of freedom of the atom-cavity system are a genuine quantum system.
Their dynamics, described by the Schrödinger equation, is inevitably perturbed by any
attempt to observe it. This gives rise to complex quantum trajectories, in which the
coherent evolution, due to the atom-cavity coupling and the driving of the system, is
interrupted by unpredictable quantum jumps when an observation of the system, for
example the detection of a photon leaking from the cavity, is made. We investigate the
resulting dissipative quantum dynamics under strong driving where the excitation of
multi-photon states gives rise to characteristic temporal patterns in the emitted photon
stream. We characterize these by means of second- and third-order time-dependent
intensity correlation functions. We observe the coherent exchange of photons between
the atom and the cavity, between the atom-cavity system and the driving laser, and we
find evidence for the dynamics of higher-order dressed states. Moreover, we observe a
time-asymmetry in the emitted photon stream.

These results provide new insights into the quantum dynamics of a strongly coupled
atom-cavity system with the perspective to control these dynamics by means of feed-
back. Moreover, we establish time-dependent third-order intensity correlation functions
as a new tool to study complex quantum trajectories, which might also find applications
for investigations of other open quantum systems.
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Zusammenfassung

Ein einzelnes Zweiniveauatom, das mit einer einzelnen Mode des quantisierten elektro-
magnetischen Feldes wechselwirkt, stellt eines der fundamentalsten Systeme der Quan-
tenoptik dar. Wir realisieren dies in einem Experiment, in dem wir einzelne Rubidi-
umatome an die Mode eines optischen Fabry-Pérot-Resonators hoher Güte koppeln.
Die neue experimentelle Apparatur, die im Rahmen dieser Arbeit aufgebaut wurde,
zeichnet sich dabei durch eine hohe Detektionseffizienz, einen längenveränderbaren Re-
sonator sowie einen sehr guten optischen Zugang aus.

Zunächst untersuchen wir das Modenspektrum des leeren Resonators. Dabei be-
obachten wir systematische Abweichungen von der paraxialen Näherung. Die resul-
tierende, Feinstruktur ähnliche Aufspaltung stimmt gut mit aktuellen theoretischen
Berechnungen von Korrekturen zur paraxialen Näherung überein.

Als Nächstes fangen wir einzelne Atome in einer Dipolfalle in dem optischen Re-
sonator. Die Transmission eines nahresonanten Lasers liefert uns Informationen über
die Trajektorie des Atoms. Dies erlaubt es uns die Bewegung des Atoms durch eine
Rückkoppelungsschleife zu kühlen, was zu einer erheblichen Verlängerung der mittleren
Speicherzeit um einen Faktor 30 auf über 1 s führt.

Im Gegensatz zur Bewegung der Atome, die in unserem Fall klassisch beschrieben
werden kann, sind die internen Freiheitsgrade des Atom-Resonator-Systems ein eindeu-
tig quantenmechanisches System. Die Dynamik des Quantenzustandes, die durch die
Schrödinger Gleichung beschrieben wird, wird notwendigerweise durch jeden Versuch
sie zu beobachten gestört. Aus dem Zusammenspiel der kohärenten Dynamik durch
die Atom-Resonator-Kopplung und das Treiben des Systems auf der einen Seite und
dem zufälligen Auftreten von Quantensprüngen auf der anderen Seite ergeben sich
komplexe Quantentrajektorien. Wir untersuchen die resultierende dissipative Quanten-
dynamik, wenn das System stark getrieben wird. In diesem Fall führt die Besetzung
von Mehrphotonenzuständen zu charakteristischen Mustern in der zeitlichen Verteilung
der emittierten Photonen. Wir untersuchen diese durch die Analyse von zeitabhängigen
Korrelationsfunktionen zweiter und dritter Ordnung. Wir beobachten den kohärenten
Austausch von Photonen zwischen dem Atom und dem Resonator, zwischen dem Atom-
Resonator-System und dem treibenden Laser und finden erste Hinweise auf die Dynamik
der Zweiphotonzustände des gekoppelten Systems. Darüber hinaus weisen wir erstmalig
eine zeitliche Asymmetrie in dem emittierten Photonenfluss nach.

Diese Ergebnisse vertiefen unser Verständnis der Dynamik eines stark gekoppelten
Atom-Resonator-Systems. Außerdem etablieren sie Korrelationsfunktionen dritter Ord-
nung als neuartiges Hilfsmittel, um die komplexe Dynamik offener Quantensystem zu
untersuchen - eine Methode, die möglicherweise auch Anwendungen zur Untersuchung
anderer physikalischer Systeme finden wird.
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Valentine: Distortion. Interference. Real data is messy. (...) It’s all
very, very noisy out there. Very hard to spot the tune. Like a piano player
in the next room, it’s playing your song, but unfortunately it’s out of whack,
some strings are missing, and the pianist is tone deaf and drunk - I mean,
the noise! Impossible!

Hannah: What do you do?

Valentine: You start guessing what the tune might be. You try to pick
it out of the noise. You try this, you try that, you start to get something
- it’s half baked but you start putting in notes which are missing or not
quite the right notes ... and bit by bit.. Dumdi-dum-dum, dear Val-en-tine,
dumdidum-dum to you - the lost algorithm.

Hannah: Yes, I see. And then what?

Valentine: I publish.

Tom Stoppard
Arcadia, 1993
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Chapter 1
Introduction

1.1 Cavity Quantum Electrodynamics

Our understanding of the interaction between light and matter has profoundly changed
throughout the last centuries. A first quantitative description was achieved by the
Lorentz model in the 19th century. It modeled atoms as oscillating dipoles interacting
according to Newton’s and Maxwell’s laws with electromagnetic light waves. The advent
of quantum mechanics at the beginning of the 20th century refined our understanding of
the atomic structure. This lead to the semi-classical theory of light-matter interaction
by Schrödinger [1], in which the light field is treated classically, whereas quantum
mechanics is employed to describe the atom. The most recent conceptual change was
the quantization of the electro-magnetic field, first introduced heuristically by Planck
and Einstein, but later on formalized as quantum electrodynamics (QED) by Dirac,
Dyson, Feynman, Schwinger, Tomonaga and many others [2, 3].

In practice, quantum electrodynamics is a quite sophisticated theory, and it is used
almost exclusively in a perturbative way to calculate scattering rates (e.g. spontaneous
emission [4]), perturbative shifts (e.g. Lamb shifts [5]) or anomalous magnetic moments
[6]. Exact calculations are difficult because of the infinity of modes of the electro-
magnetic field that have to be taken into account. Moreover, it was found that some
of the effects that are nowadays commonly assumed to be a direct consequence of the
quantization of light, for example the photoelectric effect [7, 8], spontaneous emission
[9] and even the Lamb shift [10], can be reproduced, at least qualitatively, in semi-
classical models. This motivated Jaynes and Cummings to investigate theoretically
the simplest possible system in which light-matter interaction occurs: a single two-
level atom interacting with a single mode of the electro-magnetic field [11]. As in this
case, exact calculations, even in the full quantum model, can be made, it is an ideal
system to study the consequences of the quantization of the electro-magnetic field for
the interaction between light and matter and, in particular, the differences with respect
to different, e.g., semi-classical, models.

First considered merely as a Gedankenexperiment, it was soon realized that Jaynes’
and Cummings’ model could indeed be implemented in an experiment by placing a single
two-level atom in a cavity with a very small mode volume. The latter is necessary to

1



enhance the interaction between the atom and the mode of the resonator, such that
all other modes can be neglected. In practice, this amounts to setting two conditions:
First, the interaction strength between the cavity mode and the atom has to surpass
the spontaneous emission rate of the atom, which can be achieved by reducing the
mode volume of the cavity. Second, the interaction strength has to surpass the decay
rate of the cavity, which requires a cavity with low losses, i.e., a high finesse. If both
conditions are met, the system is said to be in the strong-coupling regime, as it can be
demonstrated either by the observation of the normal-mode splitting, i.e., an avoided
crossing between the cavity and the atomic resonance in the spectrum of the system, or
by the direct observation of the coherent exchange of energy between the atom and the
cavity, the vacuum Rabi oscillations. Either one of these signatures has been reported
on for a variety of physical systems, such as Rydberg atoms in microwave cavities
[12, 13], alkali atoms in Fabry-Pérot cavities [14, 15, 16, 17, 18] and in the evanescent
field of microtoroidal resonators [19], quantum dots in semiconductor microcavities [20,
21, 22, 23] and photonic crystal cavities [24] and superconducting qubits in microwave
resonators [25, 26, 27, 28].

This experimental progress has been accompanied by the development of new the-
oretical methods to describe the atom-cavity system in the presence of dissipation
[29, 30]. In parallel, it was realized that a plethora of effects can be observed in this
seemingly simple physical system going far beyond what Jaynes and Cummings orig-
inally envisioned. Generation of non-classical states of light, quantum non-demolition
measurements, fundamental studies of decoherence and dissipative quantum systems,
quantum communication, new cooling techniques for atoms and ions, quantum compu-
tation or feedback on quantum systems are just a few examples of research topics that
are nowadays addressed in the field of cavity QED filling textbooks [31, 32, 33] and
review articles [34, 35, 36, 37, 38].

In the course of this thesis, a new experimental apparatus was set up that achieves
strong coupling between individual 85Rb atoms and an optical mode of a high-finesse
Fabry-Pérot cavity. The main improvements compared to the predecessor experiment
[39] are an asymmetric cavity with coned mirrors providing a high detection efficiency
and transverse optical access, respectively. Moreover, the cavity length can be adjusted
via an inchworm piezo motor thus improving the versatility of the setup considerably.

1.2 Classical Dynamics in Cavity QED

The main focus of this work lies on investigations of the dynamics of a coupled atom-
cavity system. Speaking of the dynamics, two very different degrees of freedom are
considered. The first is the center of mass motion of the atom in the cavity mode. Our
interest is motivated by the necessity to localize atoms within the cavity mode and
by the potential to realize new, unprecedented cooling and trapping schemes beyond
conventional laser cooling of atoms in free space.

The atomic motion and means to control it has been a reappearing theme in optical
cavity QED experiments with neutral atoms ever since the first achievement of strong
coupling in this system [14]. While the first experiments used thermal beams of atoms
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passing through the cavity, the application of laser cooling and trapping techniques [40]
was prerequisite for many of the forthcoming experiments requiring better control over
the atom number and longer interaction times.

The injection of ultra-cold atoms into the cavity mode by means of an atomic
fountain or a magneto-optical trap was the first step in this direction. For the first
time, individual atoms, passing through the cavity mode, could be observed [41, 42]. At
the same time, it was found that strong coupling enables new techniques to manipulate
and observe the atomic motion. First, the light forces induced by the near-resonant
probe light strongly deviate from those in free space [43]. This enabled the trapping of
individual atoms with the near-resonant probe light field containing on average less than
one photon [44], and it opened up the new perspective of cavity cooling. Second, it was
found that the transmitted intensity of a near-resonant probe field carries information
about the position of the atom in the cavity [45]. This motivated the first attempts
to control and cool the atomic motion by means of a simple feedback algorithm [46].
In these very first experiments with trapped atoms, storage times below 1 ms were
observed.

Both cooling schemes, cavity cooling and feedback cooling, were considerably im-
proved by the successive implementation of additional red-detuned [47, 48] and blue-
detuned [49] dipole traps. The first enabled the direct demonstration of cavity cooling
[50]. The latter led to significant improvement of the feedback scheme [51] achieving
average storage times on the order of several tens of milliseconds limited merely by tech-
nical constraints, namely the low signal-to-noise ratio. Moreover, a quantitative analysis
of feedback cooling, for example a direct measurement of the temperature reduction of
the atom and a demonstration of its improved localization, has not yet been performed.
These two loose ends are picked up in this work. The high detection efficiency of our
new experimental apparatus enables storage times exceeding 1 s compatible with state-
of-the-art laser cooling. Moreover, we develop new experimental techniques to quantify
the performance of feedback cooling in detail by directly measuring the temperature
reduction of the atom and its better localization [52].

1.3 Quantum Dynamics in Cavity QED

The other degree of freedom, in whose dynamics we are interested, is the internal
quantum state of the atom-cavity system. Its observation allows to address several
fundamental questions, such as: What are the consequences of the quantization of the
light field for the dynamics of the coupled system? How can we observe the dynam-
ics of this quantum system knowing that the act of observing it causes inevitably a
perturbation of the system? What is the consequence of a dissipative interaction with
the environment? How does the system respond to an external driving? Under what
circumstances does the system start to behave classically? Can we potentially control
the dynamics by means of feedback?

The observation of the dynamics of the internal degrees of freedom of the coupled
atom-cavity system is far more challenging than the observation of the atomic mo-
tion. The reason is twofold: First, the typical timescales are about three orders of
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magnitude shorter than the timescales of the radial atomic motion. This reduces the
signal dramatically. Second, as we are now dealing with a quantum system, the act
of observing it inevitably affects and perturbs the dynamics. To be more precise, in
optical cavity QED experiments with neutral atoms, one usually observes the system
by monitoring the photons that are emitted from the cavity. Every photon click at
the detector causes a quantum jump of the system. As a consequence, the system’s
state undergoes a quantum trajectory, in which the coherent evolution, described by
the Jaynes-Cummings Hamiltonian, is interrupted by unpredictable quantum jumps.
The observation of the system acts as an inevitable source of noise, which at the same
time perturbs and stimulates the dynamics.

Measurements of time-dependent correlation functions are a powerful tool to recon-
struct the dynamics of the system from the noisy photon stream emitted from the cavity.
In the past, measurements of second-order intensity correlation functions have been used
to analyze the dynamics of an ensemble of atoms [53] or single atoms [19, 54, 55, 56]
coupled to a Fabry-Pérot cavity. In contrast to these previous experiments, we explore
the dynamics of the system under strong driving. We observe a new dynamical process
that has been predicted [57] but not yet observed, namely the coherent exchange of
energy between the driving laser and the atom-cavity system. In addition, third-order
intensity correlation functions are introduced as a new tool to address questions con-
cerning the dynamics of the multi-photon states, the time symmetry of the emitted
photon stream and the influence of multiple photon-detection events on the quantum
trajectory of the system [58].

1.4 This Work

This work starts with a brief introduction to the theoretical concepts of cavity QED
in Chapter 2. In Chapter 3, the new apparatus will be described in detail. Before
continuing our previous lines of research in cavity QED, we describe in Chapter 4
measurements of the higher-order transverse-mode spectrum of the empty Fabry-Pérot
cavity. A systematic deviation from the paraxial approximation is observed, which is
very well explained by recent theoretical calculations. We confirm a predicted coupling
between the orbital and intrinsic (polarization) angular momentum of the circulating
modes.

Our experiments regarding the motional dynamics of a single atom in the cavity are
described in Chapter 5. The atom is trapped in an intracavity dipole trap. We observe
its trajectory by monitoring the transmitted intensity of a near-resonant probe laser.
We implement a simple feedback loop to cool the radial motion of the atom. Due to
the high detection efficiency of our new setup, feedback cooling works very efficiently
increasing the average storage time by a factor 30 to more than 1 s. Moreover, we
present temperature measurements and investigate the dynamics of the cooling process.
Most of the observations can be explained qualitatively by a simple model stressing the
importance of information for the performance of feedback cooling.

The dynamics of the system are also subject of Chapter 6. However, here we shift
our attention to the internal degrees of freedom of the atom-cavity system. We present
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measurements of the time-dependent second- and third-order intensity correlation func-
tion to study the quantum dynamics of the coupled atom-cavity system under strong
driving. The third-order correlation function also provides additional information about
the photon statistics, which is exploited in Chapter 7 to reconstruct the photon-number
distribution of the driven atom-cavity system under different driving conditions. We
conclude with a summary of this work and an outlook on future directions in Chapter 8.
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J. Vučković, Nature Physics 4, 859 (2008).

[57] L. Tian and H. Carmichael, Phys. Rev. A 46, R6801 (1992).
[58] M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr,

T. Wilk, and G. Rempe, Phys. Rev. Lett. 107, 023601 (2011).

7



8



Chapter 2
Cavity Quantum Electrodynamics

Contents
2.1 The Jaynes-Cummings Model . . . . . . . . . . . . . . . . . . 10

2.1.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 The Dressed States . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Driving in the Dressed-State Basis . . . . . . . . . . . . . . . . 13

2.2.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Solving the Master Equation . . . . . . . . . . . . . . . . . . . 15

2.3.3 The Quantum Regression Theorem . . . . . . . . . . . . . . . 15

2.3.4 Quantum Trajectories . . . . . . . . . . . . . . . . . . . . . . . 16

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

In this chapter, we briefly review some of the theoretical concepts and methods which
are needed to understand and analyze the experiments described in thesis. Three differ-
ent models can be used to describe an atom-cavity system in the strong-coupling regime
[1]: First, a purely classical model based on coupled harmonic oscillators. Second, a
semi-classical model taking into account the quantization of the atom only. Third, the
full quantum model. We only discuss the last one, which describes all the properties of
the system under all conditions.

We begin by introducing the Jaynes-Cummings Hamiltonian, which describes the
closed atom-cavity system. The model is then extended to include the driving and
dissipation. We shortly review the master-equation and quantum-trajectory approach
to describe the system theoretically in the presence of dissipation. As these concepts
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Figure 2.1: Schematic of the atom-cavity system and relevant frequencies and decay
rates. A two-level atom (transition frequency ωa) is coupled to the mode of Fabry-Pérot
cavity (resonance frequency ωc) with the coupling strength g. The cavity field decay
and atomic polarization decay rates, corresponding to the half width at half maximum
(HWHM) of the respective resonances, are κ and γ, respectively. The system is driven
by a probe laser with frequency ωl and amplitude η. When the empty cavity is driven
on resonance, the average photon number in the cavity is η2/κ2.

are introduced in depth in several textbooks about cavity QED [2, 3] and quantum
optics [4, 5, 6], we only provide a brief review here and omit complicated derivations.

2.1 The Jaynes-Cummings Model

2.1.1 Hamiltonian

A single two-level atom with resonance frequency ωa is placed in an optical resonator
with the resonance frequency ωc (cf. Fig. 2.1). Treating the light-matter interaction in
the dipole approximation and applying the rotating wave approximation, the interaction
of the two-level atom (with ground state, ∣g⟩, and excited state, ∣e⟩) with the quantized
mode of the cavity (with Fock states, ∣n⟩, n ∈ N≥0) is described by the Jaynes-Cummings
Hamiltonian [7]:

Hjc = h̵ωaσ+σ−
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bare atom

+ h̵ωca
�a

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
bare cavity

+ h̵g(a�σ− + aσ+)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dipole coupling

(2.1)

with the following parameters and operators:

� g is the dipole coupling constant, which depends on the atomic dipole transition
strength, the mode volume of the cavity and the position of the atom with respect
to the cavity mode.

� a and a� are the annihilation and creation operators for photons in the cavity
mode obeying the bosonic commutation relation [a, a�]− = 1.

� σ+ = ∣e⟩⟨g∣ and σ− = ∣g⟩⟨e∣ are the creation and annihilation operators for an atomic
excitation obeying the fermionic commutation relation [σ−, σ+]+ = 1.
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2.1.2 The Dressed States

Except for the ground state, ∣0, g⟩, which is unchanged, the eigenstates of the Jaynes-
Cummings Hamiltonian are arranged in doublets, which we call the nth-order dressed
states, ∣n,±⟩. Each pair shares the same number of excitations, ⟨n,±∣(a�a+σ+σ−)∣n,±⟩ =
n. The dressed states can be expressed in terms of the bare atom and cavity eigenstates
as:

∣n,+⟩ = cos θ∣n − 1, e⟩ + sin θ∣n, g⟩ (2.2)

∣n,−⟩ = − sin θ∣n − 1, e⟩ + cos θ∣n, g⟩ (2.3)

with the mixing angle

tan(θ) =
2g

√
n

(ωa − ωc) +
√

4g2n + (ωa − ωc)2
. (2.4)

With sin(θ) = cos(θ) = 1√
2

when the atom and cavity resonance are degenerate (ωa = ωc).

The corresponding eigenvalues (i.e., the resonances of the system) and the splitting of
the doublets are

En,± = h̵nωc +
1

2
h̵(ωa − ωc) ±

1

2
h̵
√

4g2n + (ωa − ωc)2 (2.5)

En,+ −En,− = h̵
√

4g2n + (ωa − ωc)2 (2.6)

If the atom is on resonance with the cavity, the splitting of the dressed states simply
increases with the square root of the number of excitations forming the anharmonic
Jaynes-Cummings ladder depicted in Fig. 2.2 (a). The eigenenergies of the dressed
states can be resolved spectroscopically by monitoring the transmission of a weak probe
beam as a function of its frequency [8, 17].

2.1.3 Dynamics

In this work, we are particularly interested in the dynamics invoked by the Jaynes-
Cummings Hamiltonian. In this context, the dipole-coupling term has a very intuitive
explanation, namely it describes a coherent exchange of excitations between the two-
level atom and the mode of the cavity. The frequency at which this exchange happens
scales with the square root of the number of excitations in the system. In other words:
The photons in the cavity cause a stimulated emission of photons from the atom. Due
to the quantization of the intracavity field, the stimulated emission rate, which scales
with the square root of the field amplitude, can assume only discrete values. Therefore,
it is common to speak of quantum Rabi oscillations [10]. In the case of an empty cavity,
the emission of a photon is stimulated by the vacuum giving rise to the vacuum Rabi
oscillations at the vacuum Rabi frequency 2g.
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Figure 2.2: (a) Energy levels of the bare atom, the bare cavity and the dressed states
of the coupled atom-cavity system. (b) Driving the cavity induces transition between
the dressed states. The coupling between adjacent plus or minus states is stronger
(red) than coupling between plus and minus states (green). (c) On resonance with one
of the normal modes, the system behaves similar to a two-level system as long as the
transition to the next dressed states is not driven too strongly.

2.2 Driving

2.2.1 Hamiltonian

To probe the system and to induce dynamics, we drive the system with a near-resonant
probe laser with adjustable frequency and power (cf. Fig. 2.1). Driving of the cavity
mode by a coherent light source with the frequency ωl is described by the following
time-dependent Hamiltonian [3]:

Hd = h̵η(ae
iωlt + a�e−iωlt) (2.7)

The driving strength, η, is proportional to the amplitude of the probe laser. The energy
of the system is no longer conserved, since photons can be exchanged with the probe
laser. This is reflected by the explicit time dependence of the Hamiltonian. For further
calculations, it is often convenient to transform the full Hamiltonian, HJC +Hd, to a
rotating frame eliminating the explicit time dependence. As shown in Appendix A one
obtains the transformed Hamiltonian

H = h̵∆aσ+σ + h̵∆ca
�a + h̵g(a�σ− + aσ+) + h̵η(a + a

�) (2.8)

with the atom detuning, ∆a = ωa − ωl, and the cavity detuning, ∆c = ωc − ωl.
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2.2.2 Driving in the Dressed-State Basis

In Eq. 2.8, the driving was expressed in terms of the bare eigenstates of the system
without atom-light interaction. We can also express it in terms of dressed eigenstates,
∣n±⟩, of the coupled system [6]. In this basis, the driving Hamiltonian is

Hd = h̵η(a + a
�) = h̵η

∞

∑
n=0

(
√
n + 1∣n + 1⟩⟨n∣ + h.c.)⊗ (∣g⟩⟨g∣ + ∣e⟩⟨e∣)

= h̵η(
∞

∑
n=1

√
n +

√
n + 1

2
∣n + 1,+⟩⟨n,+∣ +

√
2

2
∣1,+⟩⟨0, g∣

+
∞

∑
n=1

√
n +

√
n + 1

2
∣n + 1,−⟩⟨n,−∣ +

√
2

2
∣1,−⟩⟨0, g∣

+
∞

∑
n=1

√
n + 1 −

√
n

2
∣n + 1,−⟩⟨n,+∣ +

∞

∑
n=1

√
n + 1 −

√
n

2
∣n + 1,+⟩⟨n,−∣ + h.c.).

(2.9)

The meaning of this complicated expression becomes much clearer when we consider the
diagrammatic representation in Fig. 2.2 (b). First, we note that the coupling between
plus and minus states is much weaker because of the minus sign in the coupling terms
(
√
n + 1−

√
n). It is often reasonable to neglect this coupling. With this approximation,

we find two anharmonic energy ladders. The coupling of adjacent energy levels in each
of the ladders has two consequences: The probe laser causes transitions between the
dressed states and thus alters the dynamics of the system. Moreover, the coupling causes
shifts of the dressed energy levels, which, in some cases, can be treated perturbatively.
We will encounter both effects in Chapter 6 where we study the dynamics of the atom-
cavity system experimentally.

2.2.3 Dynamics

One particularly interesting situation is depicted in Fig. 2.2 (c). When the probe
laser is on resonance or close to resonance with the normal modes, it is detuned from
the higher-order dressed states because of the anharmonicity of the Jaynes-Cummings
ladder. One consequence is that photons can enter the cavity only one-by-one resulting
in what has been called a photon blockade [11]. In terms of the dynamics, the system is
expected to behave like a driven two-level system showing Rabi-like oscillations between
the ground state and the normal mode [12] due to the coherent exchange of energy
between the probe laser and the atom-cavity system. For a time resolved observation,
the corresponding Rabi frequency of Ω01 =

√
2η must be larger than the dissipation rates

of the system. In analogy to the strong-coupling regime, we refer to this as the strong-
driving regime of cavity QED. It has only been accessed in some very recent experiments
[13, 14]. The resulting dynamics has not yet been studied. If the driving strength is
increased even further, one has to take into account transitions to the next dressed
state, ∣2,−⟩. The system then starts to behave like a driven anharmonic oscillator and
deviations from the two-level approximation are expected [15]. We refer to the resulting
coherent exchange of energy between the atom-cavity system and the driving laser as
super Rabi oscillations.
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2.3 Dissipation

The strong-coupling condition implies that the coherent internal dynamics of the atom-
cavity system dominates over the dissipative interaction with the environment, which
gives rise to spontaneous emission of photons from the atom or the cavity (cf. Fig.
2.1). Nevertheless, any attempt to describe the system quantitatively needs to take
these dissipative processes into account. In the following, we will shortly review two
common approaches to treat the dynamics of the atom-cavity system in the presence
of dissipation.

In the first approach, the Schrödinger equation is expanded to include the environ-
ment consisting of the modes of the electro-magnetic field which couple to the excited
atom (causing spontaneous emission) and to the cavity mode (causing cavity decay).
By eliminating these additional degrees of freedom from the combined, complicated
Schrödinger equation, a differential equation (the master equation) for the density ma-
trix of the atom-cavity system can be derived.

In the second approach, the occurrence of quantum jumps, due to spontaneous emis-
sion and cavity decay, is incorporated into the Schrödinger equation in a phenomeno-
logical way. We obtain a stochastic quantum trajectory of the state of the atom-cavity
system. Experimentally accessible observables can be determined by averaging over
many such quantum trajectories.

2.3.1 Master Equation

The description of dissipative quantum systems by means of a master equation is a
standard technique in quantum optics, which is discussed in many text books (e.g., [16]).
In the following, we present a summary of the derivation based on [4]. In addition to
the system Hamiltonian, HS, we introduce a Hamiltonian modeling the environment as
a reservoir of harmonic oscillators (described by a Hamiltonian, HR). In our case, these
harmonic oscillators represent the continuum of modes of the quantized electromagnetic
field to which the cavity and the atom can emit photons. The interaction of this reservoir
with the system, with the coupling Hamiltonian, HRS, is assumed to be linear in the
system and the bath operator [3]. The system plus the reservoir can be described by a
density matrix, ρRS(t), whose time evolution is governed by the Schödinger equation

ρ̇RS =
1

ih̵
[HS +HR +HRS, ρRS]. (2.10)

We are interested in the system’s dynamics only. Its density matrix is obtained by
performing a partial trace over the eigenstates of the reservoir.

ρ(t) = trR (ρRS(t)) . (2.11)

A relatively simple equation of motion for the reduced density matrix can be derived
from 2.10 making two important approximations: First, the Born approximation ne-
glecting second- and higher-order terms of the system-reservoir interaction, HRS. Sec-
ond, the Markoff approximation assuming that the future evolution of ρ(t) depends
only on its current and not its past values.
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With these approximations one finds a Lindblad master equation for the density
matrix. Most generally, it includes thermal excitations of the reservoir. However, as we
are dealing with optical frequencies, these can be neglected at room temperature. The
master equation then reads:

ρ̇ =
1

ih̵
[HS, ρ] + κ(2aρa

� − a�aρ − ρa�a)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

cavity decay

+γ(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

spontanteous emission

(2.12)

It involves three terms: the first term describes the coherent evolution of the driven
atom-cavity system discussed before, the second-term takes into account the cavity
decay, and the third term describes the spontaneous emission of the atom.

2.3.2 Solving the Master Equation

The master equation 2.12 can formally be expressed in terms of a Lindblad operator,
L:

ρ̇ = Lρ (2.13)

It can be solved numerically by truncating the Hilbert space of the cavity mode at some
finite photon number. After diagonalizing the truncated master equation, the time-
dependent density matrix can be expressed as an exponential series of the eigenvalues
of the Lindblad operator (cf. e.g., [17]). We use the quantum optics toolbox for Matlab,
written by Sze Tan [18], to carry out these steps. In the following, we will use the
notation

ρ(t) = eLtρ(0) (2.14)

to denote a formal solution to the master equation. The time dependence of the expec-
tation value of some arbitrary operator, Ô, can now be written down as

⟨Ô(t)⟩ = tr(ÔeLtρ(0)). (2.15)

In analogy to a classical driven damped harmonic oscillator, one finds a relaxation
of the system to a steady state on a timescale determined by the dissipative processes.
The steady-state density matrix is

Lρs = 0. (2.16)

As a consequence, the time-averaged expectation value of any observable, Ô, is given
steady-state expectation value, ⟨Ô⟩ = tr(Ôρs). Experiments that probe time-averaged
properties of the system, such as the average transmission through the cavity [8, 17, 19]
or the probability of the system to emit two photons simultaneously [20, 21], are fully
described by evaluating steady-state expectation values.

2.3.3 The Quantum Regression Theorem

The analysis of multi-time correlation functions is a powerful tool to observe the dy-
namics of the system. In this work, we characterize the photon stream that is emitted
from the cavity by means of photon counting techniques. We measure the probability
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to detect n-photons with time separations, τ1 . . . τn−1. According to the standard quan-
tum theory of photoelectric detection [22], this probability is proportional to time and
normally ordered intensity correlation functions [23] of the form

γk(τ1 . . . τk-1) = ⟨a�a�(τ1) . . . a
�(τ1 + . . . + τk−1)a(τ1 + . . . + τk−1) . . . a(τ1)a⟩. (2.17)

The quantum regression theorem, first put forward by Lax [24], enables us to calculate
arbitrary correlation functions based on the solution of the master equation obtained
in the last paragraph. At the same time, it provides a relatively simple interpretation
of the physical meaning of the correlation function. We will skip the derivation of the
quantum regression theorem, which can be found in [4], but we only state the results.
The second-order intensity correlation function can be written as

⟨a�a�(τ)a(τ)a⟩ = tr{a�aeLτ [aρsa
�]} (2.18)

where the term eLτ [aρsa�] refers to the time evolution (governed by the master equa-
tion) of the initial density matrix, aρsa� (cf. Eq. 2.14). This directly suggests the
following interpretation of the time-dependent second-order correlation function: Be-
fore the detection of the first photon, the system is described by the steady-state density
matrix, ρs. The detection, that is the annihilation of a photon, causes a projection of
ρs onto the new density matrix, aρsa�. Except for some constant normalization factor,
the time-dependent second-order correlation function then reflects the time evolution
of the average photon number, ⟨a�a⟩, back to its steady-state expectation value.

Similar arguments can be applied to the third-order correlation function

⟨a�a�(τ1)a
�(τ1 + τ2)a(τ1 + τ2)a(τ1)a⟩ = tr{a�aeLτ2 [aeLτ1 [aρsa

�]a�]} . (2.19)

The system starts in the steady state, ρs. The detection of a photon causes a pro-
jection onto aρsa�. The system evolves according to the master equation, eLτ [aρsa�].
Then, the detection of a second photon after the time τ1 causes another projection onto
aeLτ1 [aρsa�]a�. This density matrix also evolves according to the master equation. The
probability to detect a third-photon at the time τ2 later then reflects the evolution of
the average photon number back to the steady state.

2.3.4 Quantum Trajectories

From our previous discussion, one could naively conclude that the state of the system
undergoes a deterministic time evolution described by the master equation. This seems
to be at odds with the standard probabilistic interpretation of quantum mechanics,
which predicts the occurrence of probabilistic quantum jumps caused by measurements
(e.g., the detection of a photon) performed on the system. The solution to this apparent
dilemma is that the mixed density matrix appearing in the master equation always
incorporates an ensemble average over different probabilistic trajectories of the system.

In principle, we can also calculate these probabilistic trajectories of the system’s
state. This is the approach followed by quantum trajectory (also called quantum Monte-
Carlo) simulations. They have been introduced independently by Mølmer et al. [25]
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and Carmichael [16]. Their basic idea is to calculate the deterministic time evolution of
the pure state of the driven, closed atom-cavity system by numerically integrating the
Schrödinger equation with the Hamiltonian H = HJC +Hd. Dissipation is then intro-
duced in a phenomenological way by allowing at each integration step for probabilistic
quantum jumps associated with the spontaneous emission of a photon from the atom
or the cavity.

To be more concrete, we consider the atom cavity system without dissipation first.
Assuming that the system is in the state ∣Ψ(t)⟩ at time t. The unnormalized state at
a short time, ∆t, later is given by

∣Ψ(t +∆t)⟩ = (1 − i
H∆t

h̵
)∣Ψ(t)⟩ (2.20)

where H is the full Hamiltonian of the system including atom-cavity coupling and
driving. The Schrödinger equation can be integrated numerically by iterating this step
many times. Dissipation is included by allowing at each time step for the spontaneous
emission of a photon from the atom or the cavity. The probabilities for these two events
are pσ = 2γ∆t⟨Ψ(t)∣σ+σ−∣Ψ(t)⟩ and pa = 2κ∆t⟨Ψ(t)∣a�a∣Ψ(t)⟩, respectively. Whether
such an event occurs is determined by chance. In conclusion, the state is propagated
in time according to the following rules:

∣Ψ(t +∆t)⟩ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

σ−∣Ψ(t)⟩ with probability pσ
a∣Ψ(t)⟩ with probability pa
(1 − iH

′∆t
h̵ )∣Ψ(t)⟩ otherwise

(2.21)

As it turns out, a non-detection event also provides some information about the systems
state. Therefore, a modified non-Hermitian Hamiltonian H ′ has to be used (cf. [25]
and references therein):

H ′ =H −
ih̵γ

2
σ+σ− −

ih̵κ

2
a�a (2.22)

We thus obtain a non-deterministic quantum trajectory of the wave function, which
can be used to evaluate the time evolution of arbitrary expectation values.

For pedagogical reasons, it is often instructive to analyze and discuss individual
trajectories. However, for a quantitative comparison with the experiment one has to
rely on ensemble averages over many trajectories, which, in the limit of a very large
number of trajectories, give equivalent results to the master equation approach. As
the latter is not sensitive to statistical fluctuations, it is usually the method of choice.
However, since it relies on the density matrix, whose size increases with the square
of the dimensions of the Hilbert space, it scales less favorable with an increasing size
of the Hilbert space. Therefore, for calculations with large driving strengths, where a
large number of Fock states has to be taken into account, it can be advantageous to
use quantum trajectory calculations.

As for the numerical solutions of the master equation, we use the routines imple-
mented in the quantum optics toolbox [18] to calculate quantum trajectories of the
atom-cavity system.
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In the course of this thesis, a new experimental apparatus to achieve strong coupling
between individual rubidium atoms and a high-finesse optical Fabry-Pérot cavity has
been planned and set up. The main improvements compared to the predecessor exper-
iment [1] are the length adjustability of the cavity, a higher detection efficiency and
better optical access. It is the aim of this chapter to describe and characterize the main
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Figure 3.1: Overview of the vacuum chamber. Vacuum pumps and viewports are
omitted for clarity. Atoms are first loaded in a fiber-coupled MOT in the lower chamber
(1) and then transferred to the upper science chamber (3) by means of an atomic
fountain. A cut through the chamber reveals the cavity (6), the inchworm motor (5)
for the length adjustment of the cavity and the vibration isolation system (4).

components of the experimental setup. We will start our discussion with an overview
of the vacuum chamber. Then, we will describe the magneto-optical trap (MOT) and
the atomic fountain, which are used to inject ultra-cold atoms into the cavity. Succes-
sively, the cavity is introduced, we characterize the mirrors, and we describe the length
adjustability and the passive and active length stabilization of the cavity. We conclude
with a summary of the detection setup and the experimental control.

3.1 Vacuum System

As shown in Fig. 3.1, the vacuum system consists of two main parts. The upper sci-
ence chamber, in which the cavity is installed, has the shape of a horizontally oriented
octagon with eight CF-40 flanges on the sides. It houses the cavity mount and the
vibration isolation system. Viewports provide optical access along as well as perpen-
dicular to the cavity axis. Moreover, a large sunk-in CF-150 viewport above the cavity
allows for optical access with a high-numerical aperture. A titan-sublimation pump, an
all-metal valve, an ion gauge (UHV-25p, Varian) and a 55 l/s ion-getter pump (Mecca
2000) are also connected to the main vacuum chamber but are not shown in the figure.

The MOT chamber, a cube with CF-40 flanges at the faces and CF-16 flanges at each
of the eight corners, is installed underneath the main chamber. Viewports, connected
to the CF-40 flanges, provide the optical access required for the six collimated MOT
beams that are irradiated via optical fibers (cf. Section 3.2.2). Two rubidium dispensers
(SAES getters) are installed in two opposite corners of the MOT cube. At the bottom
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of the cube, a T-piece connects the cube to an all-metal valve and an 8 l/s ion-getter
pump (Varian).

All vacuum components are made of non-magnetic VA4 steel. The viewports are
broadband anti-reflection coated and have a non-magnetic seal. The ion-getter pumps
are oriented to minimize the magnetic-field gradients at the position of the MOT and
the cavity.

The vacuum system was baked out in three steps. First, the empty upper and
lower chamber were baked out separately for one week at 350 ○C. During this period,
the magnets were removed from the ion-getter pumps and blind flanges were installed
instead of the viewports. After installing the magnets and viewports, another bake-
out at 200 ○C with a duration of one week was performed. The rubidium dispensers
were activated, and the titan-sublimator was flashed for the first time. A pressure of
3 ⋅10−11 mbar was measured after cool down. Finally, the vibration isolation system and
the cavity were installed, and the two chambers were connected. After another bakeout
at 140 ○C for two weeks, we achieve a pressure of 1 ⋅10−9 mbar before and 3 ⋅10−10 mbar
after flashing the titan-sublimation pump.

A 1 m2 breadboard is installed on rigid steel pillars on a level with the science
chamber to carry the optical components needed to couple light into the cavity and
detect the transmitted light (cf. Section 3.4.2 and 3.5). Six large square coils (60
windings, edge length 1 m), forming three Helmholtz pairs, are installed symmetrically
around the vacuum chamber to compensate the earth magnetic field.

3.2 Atomic Fountain

We load atoms in the cavity by means of an atomic fountain as it has been described in
[2]. Compared to almost deterministic loading schemes via a transverse optical dipole
trap [3, 4, 5], this scheme does not require transverse optical access to the cavity and
can therefore also be applied to very short cavity lengths. Moreover, it allows for
experiments with atoms passing through the cavity mode at a well-defined velocity.
The main difference with respect to the forerunner experiment [2] is the use of a fiber-
coupled MOT [6] making our setup very robust and simplifying the alignment. In
addition, the frequency difference of the upper and lower beams is controlled by a
home-made direct digital synthesizer (DDS) [7] improving the reproducibility of the
fountain and eliminating problems due to thermal drifts and the limited accuracy of
the voltage controlled oscillators (VCOs) previously employed.

3.2.1 Laser System

The operation of a rubidium MOT and an atomic fountain requires two lasers running
on two different hyperfine transitions of the D2 line of 85Rb as depicted in Fig. 3.2. The
atoms are laser-cooled on the F=3 to F ′=4 transition by the so-called cooling laser.
As this closed transition is also used for the cavity QED experiments, the very same
laser can be used as a probe laser to drive the atom-cavity system. To compensate for
off-resonant scattering to the dark F=2 hyperfine ground state, a repumping laser on
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Figure 3.2: (a) Relevant hyperfine transitions of the D2 line of 85Rb. For the operation
of the magneto-optical trap, two lasers, a cooler and a repumper, are needed. (b) In
the cavity, the probe laser drives the closed F = 3,mF = +3 to F = 4,mF = +4 transition
justifying the two-level approximation for the atom.

resonance with the F=2 to F ′=3 transition of the D2 line is needed for the operation of
the MOT. A brief overview of the laser system will be given in the following. Further
details can be found in [8].

Cooling and Probe Laser

The optical setup of the cooling and probe laser is shown in Fig. 3.3 (a). The light is
generated by a commercial tapered amplifier seeded by a grating-stabilized diode laser
(TA100, Toptica) that provides several hundred milliwatts of power at a wavelength of
780 nm.

A small part of the power of the seeding laser is extracted to stabilize the frequency
of the laser with respect to a rubidium transition using the Pound-Drever-Hall (PDH)
locking technique [9]. This light passes through a double-pass acousto-optic modulator
(AOM) operating at 85 MHz and an electro-optical-modulator (EOM) modulating the
phase at a frequency of 8 MHz. The Doppler-free spectroscopy signal from a rubidium
vapor cell is then demodulated to obtain a dispersive error signal, which is fed back
via a proportional-integral-derivative (PID) controller to the optical-feedback grating
of the seeding laser as well as to its current.

We lock the laser to the crossover line of the F=3 to F ′=3/4 transition. In total,
including the detuning of the crossover resonance and the double-pass AOM, the main
output of the tapered amplifier is thus red-detuned by 230 MHz with respect to the F=3
to F ′=4 transition. It is split into three parts. The first two parts are used for the three
upper and lower beams of the MOT, whose frequencies have to be tunable separately
for the atomic fountain. To this end, each of the beams passes through an AOM in a
double-pass configuration used to tune the frequency and to stabilize the intensity of
the respective beams. Afterwards, the two beams are coupled into optical fibers. They
are connected to the fiber-port clusters, which will be described in the next section,
distributing the light equally among the six MOT beams. The third beam, generated
from the main output of the laser, also passes through a double-pass AOM. It is then
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Figure 3.3: (a) Optical setup of the cooling and probe laser. The auxillary output (left
part of the figure) of the tapered amplifier laser system (TA100) is used to stabilize the
frequency of the laser to a crossover line of a Doppler-free rubidium spectroscopy (cf.
text for details). The main output of the tapered amplifier (right-hand side) is divided
into three parts. Two parts provide the light for the upper and lower beams of the
MOT, whose frequencies can be tuned independently to allow for an atomic fountain.
The last part is the probe light that drives the atom-cavity system. All three beams are
coupled into optical fibers to deliver the light to the respective parts of the experiment.
(b) The laser is locked to a Rb crossover resonance. Because of the detuning of the
crossover resonance of 60 MHz and an additional shift of 170 MHz due to the passage
through AOM 1 in a double-pass configuration, the output of the laser is red-detuned
by 230 MHz with respect to the F=3 to F ′=4 transition of the D2 line of 85Rb. Three
AOMs in double-pass configuration (AOM 2, 3, 4) shift the MOT and probe light back
on, or close to, resonance.

coupled into a polarization-maintaining single-mode fiber delivering the light to the
main experimental setup, where it is used to probe the atom-cavity system.

Repumping Laser

For the repumping, another grating-stabilized diode laser (DL100, Toptica) is locked to
the crossover resonance of the F=2 to F ′=2/3 transition of a rubidium spectroscopy via
a Pound-Drever-Hall locking scheme. The optical setup is shown in Fig. 3.4 (a). The
detuning of the crossover resonance and an additional shift by an AOM in a double-
pass configuration (AOM 1) causes an effective detuning of the output of the laser of
192 MHz with respect to the desired atomic transition. A second AOM in a double-pass
configuration (AOM 2) shifts the frequency by this amount and allows to adjust the
power. The light is then split into two parts. Most of the power is superimposed with
the MOT beams in one of the fiber-port cluster described below. A small fraction of
the repumping light (typically a few µW) is coupled into a second fiber whose output
is focused onto the cavity from a direction perpendicular to the cavity axis. It serves
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which is used to stabilize the laser to the F=2 to F ′=2/3 crossover resonance. The
other part of the light is shifted to the desired F=2 to F ′=3 transition by means of
another double-pass AOM. Then, it is coupled into two fibers guiding the light to the
magneto-optical trap and the cavity . (b) Relevant transitions in rubidium.

as a repumper for the atoms in the intracavity dipole trap.

3.2.2 Fiber-Coupled Magneto-Optical Trap

The fiber-coupled MOT and fountain that we use is similar to what has been described
in [6]. The light for the upper and lower MOT beams is coupled into two single-mode
polarization-maintaining fibers that are connected to two fiber-port clusters shown in
Fig. 3.5 (Schäfter-Kirchhoff). Each of them distributes the power equally among three
fibers guiding the light to the vacuum chamber. In addition, a small fraction of the light
is directed onto a photo-diode built into the fiber-port cluster to stabilize the intensity.
One of the fiber-port clusters has an additional input port that is used to introduce the
repumping light.

The six outgoing fibers are connected to fiber couplers with built-in quarter-wave
plates that collimate the light to a waist of 12 mm. The three lower fiber couplers are
fixed to the vacuum chambers. The upper couplers are installed in adjustable mounts.
The light coming from these couplers is reflected from silver mirrors (to maintain the
circular polarization) through the viewports of the vacuum chamber (cf. Fig. 3.1). We
align the beams by coupling light from the upper beams into the lower fiber couplers.

Two coils in an anti-Helmholtz configuration are incorporated in two opposing fiber
coupler mounts. Each coil has 100 windings with an average radius of 4 cm. To ensure
good thermal conductivity, these mounts are made of copper and they are equipped with
cooling fins. The coils are separated by 10.5 cm and create a magnetic field gradient of
2.5 G

cmA along the axis of the coils.
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(PD) allow to monitor and stabilizes the light intensity. All input and output ports are
connected to polarization-maintaining fibers (drawings courtesy of Schäfter-Kirchhoff).

3.2.3 Experimental Sequence

Launching a cloud of ultra-cold atoms towards the cavity requires three steps: collec-
tion of cold atoms in a magneto-optical trap, molasses cooling and finally the atomic
fountain.

In the first step, the magneto-optical trap is loaded. During the loading phase a
current of 2.9− 3.0 A runs through one of the dispensers to set free rubidium vapor. A
current of 4 A in the MOT coils causes a magnetic field gradient of 10 G/cm along the
coil axis. The total power of the cooling light is set to 60 mW red-detuned by 14 MHz
with respect to the atomic transition. In addition, we shine in 4 mW of repumping
light.

After loading the MOT for 1-1.5 s depending on the desired number of atoms, we
start the molasses phase by ramping up the detuning of the cooling light to 42 MHz
within 50 ms. In parallel, we decrease the power to 5 mW. At the end of the ramp,
the magnetic coils are switched off. After 5 ms of molasses cooling, a temperature of
about 4 µK is achieved as we determine from a time of flight measurement (cf. Fig. 3.6
(a) and (b)). We adjust the current through the compensation coils to minimize the
temperature after the molasses.

Finally, we launch the fountain by detuning the upper beams with respect to the
lower beams within 5 ms. To accelerate all of the atoms, the power of the beams has to
be reraised to 18 mW. This causes an increase of the temperature to about 14 µK (cf.
Fig. 3.6 (b)). The velocity of the atoms at the cavity can be adjusted by changing the
final detuning. We determine the center of mass velocity as a function of the detuning
via a time-of-flight measurement. The results are plotted in Fig. 3.6 (c) showing nicely
the expected linear dependence of the velocity upon the detuning.

For a detuning of -3 MHz, the turning point of the trajectory of the atomic cloud
is approximately located on the cavity axis. The atomic cloud can be detected in the
cavity by monitoring the transmission of a resonant probe laser through the cavity. By
adjusting the horizontal magnetic field during the acceleration phase, the horizontal
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Figure 3.6: (a) Time-of-flight fluorescence image of the expanding atom cloud after the
optical molasses. (b) The temperature is extracted from the time dependence of the

expansion of the cloud (σ(t) =
√

σ0 +
kBTt2

m ). We obtain temperature of 4 ± 1 µK after
the molasses (○ horizontal width, ● vertical width). To accelerate all the atoms during
the fountain phase, the power has to be increased heating the atoms to a temperature
of 14 ± 1 µK (△ horizontal width, ▲ vertical width). (c) The center of mass velocity
of the atomic cloud is proportional to the detuning between the upper and the lower
beams, ∆.

velocity of the atomic cloud can be fine tuned. We adjust it by maximizing the number
of atoms arriving at the cavity. During the time of flight of the atoms to the cavity,
we change the current in the compensation coils to minimize the magnetic field in the
science chamber.

3.3 Fabry-Pérot Cavity

The optical cavity is located 23 cm above the MOT. It consists of two spherical mirrors
with high-reflectivity dielectric coatings made by Research Electro-Optics forming a
Fabry-Pérot resonator (cf. Fig. 3.7 (a)).

We start with some general definitions. The modes of the cavity are determined
by the mirror spacing, l, and the radii of curvature of the two mirrors, R1 and R2. In
the following, we are only interested in the TEM00 modes with a Gaussian intensity
profile with the waist w0. The coupling of an individual atom with the transition dipole
moment µ to one mode of the resonator is determined by the electric field per photon in
the cavity. Obviously, the field and thus the coupling increases when the mode volume
of the cavity, in which the photon is confined, is reduced. Quantitatively, the coupling
constant at an anti-node of the cavity mode is given by

g0 =

√
µ2ωc

2h̵ε0V
. (3.1)

Here, V =
πlw2

0

4 designates the volume of the cavity mode, and ε0 is the vacuum per-
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Figure 3.7: Geometry of the cavity mirrors (drawing not to scale). The asymmetry
of the transmittance (T1, T2) leads to a high outcoupling efficiency. The asymmetry
of the radii of curvatures (R1, R2) has two effects: First, the position of the waist of
the cavity mode hardly changes with the cavity length. It is always located close to
the fixed, weakly curved mirror. This is important because of the lengths adjustability
of our cavity. Second, the small radius of curvature of one of the mirrors reduces the
size of the waist, increasing the coupling constant. The sag height, h, of 28 µm of the
strongly curved mirror sets a lower limit for the cavity length. Both mirrors are coned
down to improve the transverse optical access to the cavity mode and reduce the sag
height.

mittivity. Due to the non-zero transmittances of the cavity mirrors (T1 and T2) and
optical losses in the substrate (L1 and L2), the electric field amplitude in the cavity
decays with the field decay rate

κ =
cπ

2lF
. (3.2)

F is the finesse of the optical cavity, which is related to the transmittances, T1 and T2,
and losses, L1 and L2, of the two mirrors via

F =
2π

T1 + T2 +L1 +L2

. (3.3)

When designing a new cavity, the transmittances and curvatures of the two mirrors
have to be chosen. In the following, we will discuss our respective choice of parameters
for the two mirrors and characterize the resonator.

3.3.1 Curvature

The smaller the radius of curvature the smaller the waist and the higher the atom-
cavity coupling. However, the sag height, h (cf. Fig. 3.7), sets a technical lower limit
on the cavity length that can be achieved. It turns out that choosing two different
radii of curvature, one strongly curved with R1 = 1 cm and one only weakly curved
with R2 = 20 cm, is a good compromise. First, the waist is reduced compared to our
previous setup [1] leading to an increased coupling strength at the same cavity length.
Second, only one mirror has a significant sag height of approximately 28 µm that limits
the minimum length of our cavity. Third, the longitudinal position of the waist, which
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determines the position of maximum coupling, is always located close to the weakly
curved mirror. When altering the length by moving the strongly curved mirror, the
longitudinal position of the waist, where we want to inject the atoms, does only change
marginally (cf. [10] for a detailed discussion).

3.3.2 Finesse, Transmittance and Losses

To meet the strong-coupling condition, g ≫ κ, a high finesse of the resonator (cf. Eq.
3.2) is required. In the past, most strong-coupling cavity-QED experiments have tried
to maximize the finesse of their system by using mirrors with the lowest transmittance
available [1, 11, 12, 13], which is on the order of a few ppm. However, one pays for
this with a low detection efficiency. To understand this, we recall that, for a given
average photon number, ⟨a�a⟩, in the cavity, the photon flux at the output mirror with
transmittance T2 is given by

I

h̵ω
= 2κ

T2

T1 + T2 +L1 +L2

⟨a�a⟩. (3.4)

The outcoupling efficiency ηout =
T2

T1+T2+L1+L2
takes into account that a certain fraction of

photons is either lost in the mirror substrates or is transmitted through the wrong mirror
and therefore cannot be detected. For a symmetric cavity with equal transmittances for
both mirrors, the outcoupling efficiency is always smaller than 0.5. It is reduced further
when the losses are on the order of the transmittances as it is case in the experiments
mentioned before. To increase the outcoupling efficiency, we have chosen an asymmetric
cavity with different transmittances of the two mirrors. The weakly curved incoupling
mirror has a specified transmittance of 4 ppm and the strongly curved outcoupling
mirror has a specified transmittance of 25 ppm.

As, in practice, the transmittance and the losses vary for each individual mirror, we
have first characterized these parameters for our cavity mirrors. The finesse is deter-
mined by a ring-down measurement (cf. Fig. 3.8 (a)). By measuring the impinging light
power, the reflected power and the transmitted power on resonance with the cavity the
transmittance and losses of the mirrors can be determined [14]. This characterization
was carried out before installing the cavity in the vacuum chamber. At a wavelength of
772 nm, obtained a finesse of F = 170000 ± 5000, a transmittance of T1 = 4.0 ± 0.5 ppm
and T2 = 21.0 ± 0.5 ppm, respectively, and losses of L = (L1 + L2)/2 = 5.5 ± 0.5 ppm.
After installing the cavity in the vacuum chamber, we have found that the finesse is
more sensitive to the wavelength than expected. In fact, at the probe wavelength of
780 nm the finesse was measured to be F = 195000± 5000. Assuming that this increase
of the finesse is only due to a lower transmission at this wavelength, we estimate the
transmittances to be T1 = 2.5 ± 0.5 ppm and T2 = 17.8 ± 0.5 ppm, respectively. This
amounts to an outcoupling efficiency of ηout = 0.57. For comparison, the forerunner
experiment [1] used a symmetric cavity with T = 2.8 ppm and L = 4.5 ppm resulting in
an outcoupling efficiency of only ηout = 0.19.
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Figure 3.8: (a) Ring-down measurement of the cavity finesse. The decay of the trans-
mission (black) is monitored after a resonant probe laser is rapidly switched off. For a
length of 258 µm, an exponential fit (red line) yields a decay rate of κ/π = 3.0±0.1 MHz
corresponding to a finesse of F = 2πcτ/l = 195000. (b) Empty-cavity transmission
spectrum for circularly polarized input light (●). A fit of two Lorentzians (red line)
with linewidth κ each (black lines) yields an upper limit of the birefringent splitting of
800 kHz.

3.3.3 Birefringence

The stress induced by the mirror mounts can cause birefringence in the mirror coatings.
As the light undergoes many reflections (on the order of the finesse) when it propagates
in the cavity, this small effect can add up to a significant optical path difference for the
two main polarization axis. In the worst case, a splitting of the cavity resonances for
the two polarization modes by as much as several cavity linewidths can be observed
[12, 13, 15, 16]. This would cause serious trouble for our experiments where a well-
defined mode with circular polarization is required to treat the atom as a simple two-
level system.

Fig. 3.8 (b) shows a measured empty-cavity spectrum for circularly polarized input
light. As no splitting of the resonance is visible by bare eye, the residual splitting has
to be smaller than the cavity linewidth. Fitting a single Lorentzian to the measured
spectrum yields a full width at half-maximum (FWHM) of 3.3 MHz, which is 10 %
larger than the value of 2κ/2π = 3.0 MHz expected from the ring-down measurement.
This broadening can have two origins: First, a birefringent splitting smaller than the
cavity linewidth. Second, frequency fluctuations of the probe laser (a diode laser locked
to a rubidium spectroscopy) and of the cavity resonance due to mechanical vibrations.
These fluctuations cause a convolution of the Lorentzian spectrum of the cavity with the
distributions of the respective fluctuations. To give an upper bound for the birefringent
splitting, we assume that the broadening is solely due to the birefringent splitting and
fit two Lorentzians with a fixed width of 3.0 MHz to the data (red line). We obtain
a splitting of 800 kHz corresponding to an upper limit of the birefringent splitting of
27 % of the cavity linewdith. This is compatible with the splittings observed in other
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Figure 3.9: (a) Sketch of the working principle of the inchworm motor used to macro-
scopically change the cavity length. It conistst of three separate piezo elements (1,2 and
3). By repeating the four depicted steps, the inchworm motor crawls along a rod. (b)
In doing so, it pushes or pulls a carriage on which one of the cavity mirrors is mounted.
Length changes of up to several millimeters are possible. For the fine adjustement and
stabilization of the cavity length, a piezo tube is used, which houses the second cavity
mirror.

cavities in our group [17, 18, 19, 20].

3.3.4 Length Adjustment

In the past, the length of the cavity was chosen before putting it into the vacuum and
it could not be modified later on. Only a fine tuning of the length on the order of a few
wavelengths was possible by means of a piezo element. In this thesis, a new cavity design
is introduced that allows to change the cavity length macroscopically while remaining
in vacuum. This increases the versatility of the setup significantly as it allows to chose
the length most appropriate for the experiment one wants to perform. In particular, the
coupling constant, g0, the decay rate, κ, and the cavity resonances can be tuned. These
advantages come at the expense of an increased sensitivity to mechanical vibrations,
which has to be counteracted by a good passive vibration isolation system and an active
stabilization of the cavity length.

An inchworm motor (Burleigh) is used for the macroscopic length adjustment. The
working principle of this piezo based motor is illustrated in Fig. 3.9 (a). It crawls
along a rod with individual steps of less than 1 nm. When moving along the rod, the
inchworm motor pushes a carriage, which is placed on three, parallel, polished rods
made of ultra low expansion (ULE) glass acting as a rail for the motion of the carriage
(cf. 3.9 (b)). The outcoupling mirror of the cavity is mounted at one end of the carriage.
The other mirror is installed in a piezo tube (Ferroperm) that is directly connected to
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Figure 3.10: (a) Cavity finesse, F , measured via cavity ring-down as a function of the
cavity length. The finesse is constant with an average of 195000±5000. (b) Coupling
constant, g0 (solid black line), cavity field decay rate, κ (dotted line), polarization decay

rate, γ (dashed line) and cooperativity, C =
g2
0

2γκ (solid red line), as a function of the
cavity length. The variation of the cooperativity is a consequence of the change in the
mode waist. Strong coupling is achieved for lengths up to about 1 mm.

the base of the assembly such that it stays fixed when the inchworm moves. This piezo
tube is used for the active stabilization of the cavity length described in Section 3.4.
Eight holes are drilled through the side walls of the tube to provide horizontal, vertical
and diagonal transverse optical access to the atom in the cavity. The carriage as well
as the mount are made of titan, which was chosen for its non-magnetic properties [10].
To stabilize the cavity length, the inchworm motor has to be disconnected from the
power supply. Otherwise, it produces significant mechanical vibrations. Fig. 3.10 (a)
shows the measured finesse of our cavity versus its length. Within the measurement
uncertainties, the finesse does not vary for the evaluated lengths between 250 µm and
1250 µm. All experiments described in this thesis were performed with a cavity length
of 258 µm.

To summarize the parameter space available with the length variable cavity, we have
plotted the expected maximum coupling constant, g0 (solid black line), the field decay
rate, κ (dotted black line), the atomic polarization decay rate, γ (dashed black line),

and the cooperativity, C =
g2

2κγ , in Fig. 3.10 (b) as a function of the cavity length. The
strong-coupling condition, g0 > κ, γ, is fulfilled for lengths up to 1 mm. Note that we
can operate in the bad cavity limit, κ≫ γ, the good cavity limit, κ≪ γ, as well as an
intermediate regime, κ ≈ γ. Further details on the performance of the inchworm can be
found in [10, 20].

3.3.5 Vibration Isolation and Cavity Mount

The high finesse of our cavity makes it very sensitive to length fluctuations, which
change its optical resonance frequency. To be more precise, the relative change of
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the cavity resonance frequency, ν, is equal to the relative change of the cavity length,
∆ν/ν = ∆l/l. Assuming that we want the frequency fluctuations to be much smaller
than one cavity linewidth, ∆ν ≪ 2κ/2π, which is a very pessimistic goal, we obtain
∆l ≪ c

2νF ≈ 2 pm. Achieving such a stability for a cavity with a rigid cavity is already
challenging and requires a very good passive mechanical stability as well as an active
stabilization of the cavity length. In our case, where one of the mirrors is movable, this
becomes even more difficult. In fact, the first prototype of the length adjustable cavity
described in [10] suffered from low mechanical stability. To overcome these limitations,
a new vibration isolation system has been developed [20].

Its design, which is shown in Fig. 3.11, is inspired by the previous apparatus [1] and
a system designed in Zürich [21] based on ideas developed for atomic force microscopes
[22]. Several layers of heavy masses connected by springs and damping elements isolate
the uppermost layer from vibrations. High masses and soft springs are desirable to keep
the resonance frequency as low as possible.

Our system consists of three layers, stacked on top of each other. Each layer is made
of a cylindrical copper block with masses between 1 and 2 kg. The lowest stack is placed
on three, radially aligned rubber tubes made of Kalrez. We have chosen this material
because it has slightly better outgasing properties than Viton, the most commonly used
ultra-high-vacuum-compatible elastomer [23, 24]. The other two stacks are connected
by a combination of metal springs and Kalrez tubes. The metal springs alone have
a much lower resonance frequency than the Kalrez tubes. However, their damping
constant is also very small. This makes the system very sensitive to oscillations at the
resonance frequency as it has been observed in [25] where a vibration isolation system
suspended only from metal springs was used. We find a good compromise by placing
the stacks on Kalrez tubes but releasing the weight on the tubes by three vertical metal
springs. In this way, the total spring constant and damping constant can be adjusted.
In practice, this allow to reduce the resonance frequencies of the system from 50-100 Hz,
for the rubber tubes only, down to about 10 Hz [20].

3.4 Cavity Stabilization and Dipole Trap

In addition to the passive vibration isolation, an active stabilization of the cavity length
via a piezo tube is indispensable. It compensates for slow vibrations below the resonance
frequency of the vibration isolation system as well as for residual higher frequency
vibrations that pass through the isolation.

The conventional active stabilization scheme used in many experiments with optical
cavities is depicted in Fig. 3.12 (a). The science cavity is locked to a stabilization
laser using the Pound-Drever-Hall techinque [9]. The stabilization laser itself is usually
stabilized with respect to a narrow linewidth transfer cavity. However, as this cavity
also has to be stabilized, the resulting locking chain is quite complicated and involves a
lot of technical overhead. To simplify the locking scheme, one can replace the transfer
cavity by a frequency comb as a stable frequency reference (cf. Fig. 3.12 (b)). The
stabilization laser is phase locked to the frequency comb. Most of the experiments
described in this thesis were performed using this locking scheme that was introduced

34



copper discs

Kalrez tubes

metal spring

Figure 3.11: 3D drawing of the vibration isolation system. It consists of three layers
of copper discs. The lowest layer sits on three, radially aligned rubber tubes made of
Kalrez. The other two layers are suspended from metal springs with additional rubber
tubes acting as an additional damping element. The cavity mount, which is not shown
here, is installed in the pit on the uppermost layer.

in our group in [26, 27] and whose adaption to our setup is described in [8].
Even though this new scheme simplifies the setup considerably, it does not really

improve the quality of the cavity lock, whose main bottleneck is the finite bandwidth
of several kHz of the piezo tube which is used to stabilize the cavity length. As a
result, high-frequency fluctuations of the stabilization-laser frequency which are too
fast to be followed by the cavity lock result in intensity fluctuations of the intracavity
power. When the stabilization laser is also used as a dipole trap, this causes significant
parametric heating of the trapped atoms [28]. To solve this problem, a new locking
scheme, described in the following section, was implemented towards the end of this
thesis. The basic idea is to lock the stabilization laser directly to the high-finesse science
cavity. This can be achieved with a high bandwidth thus minimizing the intensity
fluctuations of the stabilization laser. The cavity is locked with respect to the frequency
comb with the moderate bandwidth limited by the piezo tube. Even though this scheme
does not reduce the absolute stability of the cavity length, it reduces significantly the
intensity fluctuations of the stabilization light and therefore reduces parametric heating
in the dipole trap.

3.4.1 Trapping and Stabilization Laser

One and the same laser is used to stabilize the cavity length and to serve as an intra-
cavity dipole trap. The light is provided by a commercial tapered amplifier (TA100,
Toptica) running at 785 nm. This wavelength was chosen because it has proven in
the past to offer a good compromise between sufficiently far detuning from the atomic
resonance and thus low scattering rates on the one hand, and good axial overlap be-
tween the modes of the probe and stabilization laser on the other hand. Moreover, it is
sufficiently far detuned from the probe light to efficiently separate the two wavelengths
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Figure 3.12: (a) Conventional locking chain with transfer cavity used in many previous
cavity QED experiments [1, 13, 25, 29] making extensive use of the Pound-Drever-Hall
(PDH) technique. (b) In the simplified locking chain introduced in [26], the transfer
cavity is replaced by a frequency comb as a frequency reference. (c) Modified locking
scheme used in this work. The dipole-trap laser can be locked onto the science cavity
with a high servo bandwidth reducing intensity fluctuations of the dipole trap. An
error signal for the science cavity lock is generated from the beat signal between the
dipole-trap laser and the frequency comb (cf. text for details).

spectrally by means of interference filters. The high power generated by the tapered
amplifier is sufficient to be used as a transverse dipole trap in the future. Details on
the laser setup can be found in [8].

For the experiments described in this thesis, we only used the low power output
of the grating stabilized seeding laser of the tapered amplifier. The optical setup is
depicted in Fig. 3.13. The light is split into two parts. Each one passes through an
AOM in double-pass configuration. The first part with a power of a few hundred µW
is coupled into a fiber beam-splitter where it is overlapped with the light from the
frequency comb. One output of the beam splitter is used to monitor the power, the
second beam is focused through a 785 nm interference filter onto a fast, AC-coupled
photodiode (FPD510, Menlo Systems). This beat signal is used for the cavity lock,
which is described in the next section. The output of the second double-pass AOM is
coupled into a fiber delivering the light to the breadboard mounted around the vacuum
chamber. A 785 nm interference in front of the fiber eliminates residual light at 780 nm
always present in the output of the laser diode.

3.4.2 Cavity Incoupling Setup

The stabilization light is superimposed with the probe light and coupled into the cav-
ity. The corresponding optical setup is shown in Fig. 3.14. The stabilization light
passes through an electro-optical phase modulator (EOPM) that generates sidebands
at 15 MHz needed for the Pound-Drever-Hall lock to the cavity. After the EOPM a part
of the light is reflected onto a photo-diode to stabilize its power. The rest of the beam
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Figure 3.13: Optical setup of the stabilization and trapping laser. The auxilary output
of a tapered amplifier (TA100) is split into two parts. The first part passes through
an AOM in double-pass configuration (AOM 1) and is superimposed with a frequency
comb in a fiber beamsplitter (BS). The beat signal is recorded with a photodiode (PD)
whose signal is used to stabilize the cavity length (cf. text). The second part of the
light also passes through an AOM in double-pass configuration (AOM 2). Then, it is
coupled into a fiber that guides the light to the experiment.

passes through a polarizing beam splitter (PBS). The stabilization light is then super-
imposed with the probe light on a 99:1 beamsplitter. For the experiments described
here, both beams are polarized linearly in the same direction. The combined beam
is expanded by an adjustable beam expander and then focused through a f = 50 cm
lens to achieve good mode matching with the cavity mode. Before entering the cavity,
a quarter-wave plate turns the linear polarization into circular polarization, which is
needed to drive the closed cycling transition in 85Rb (cf. Fig. 3.2).

The back-reflected light from the cavity, which, after passing again through the
quarter-wave plate, is polarized perpendicular to the incoming light, is separated from
the incoming light at the PBS. It passes through an electro-optical amplitude modulator
(EOAM) and is focused onto a fast photo-diode. The signal from the photo-diode is
demodulated to generate a Pound-Drever-Hall error signal, which is fed-back onto the
grating and the current of the stabilization laser to stabilize its frequency with respect
to the science cavity. The EOAM is used to keep the amplitude of the error signal
constant when we change the intensity of the stabilization laser [30], e.g., to trap atoms
in the cavity.

3.4.3 Cavity Lock

Having the stabilization laser locked to the cavity is not sufficient, since its length
can still drift. To counteract these drifts, we also have to stabilize the cavity to some
fixed frequency reference. We use the beat signal between a frequency comb and the
stabilization laser for this purpose. As the stabilization laser is locked to the cavity, a
drift of the cavity length causes a drift of this beat frequency.

An error signal for this lock is generated using a technique that was originally
introduced for a frequency-offset lock of two lasers [31]. The basic idea is to pass the

37



PBS BS
T=0.99

BS λ/4 IF BS BSEOPM
f=15 MHz

IF SPCM

EOAM

ND

BS

PD

PD

PD

PM

FC

FC PH

SPCM

SPCM
SPCM

Cavity

Stabilization light (λ=785 nm)
Probe light (λ=780 nm)

Figure 3.14: Optical setup at the experiment. The probe (red) and stabilization (blue)
light arrive through polarization-maintaining optical fibers at two fiber couplers (FC). A
part of each beam is separated by a beam-splitter (BS) and directed onto photodiodes
(PD) to stabilize the intensities. The stabilization light is phase modulated by an
electro-optical phase modulator (EOPM) at 15 MHz. The probe light is attenuated by
a neutral density filter (ND). The two beams are overlapped at a 99:1 beam-splitter
and enter the optical cavity in the vacuum chamber after beeing polarized circularly by
a quarter-wave plate. The trap light which is back-reflected from the cavity is directed
to a fast photodiode to generate a Pound-Drever-Hall error signal. Its amplitude can
be adjusted by an electro-optical amplitude modulator (EOAM). The light which is
transmitted through the cavity is spectrally separated by an interference filters (IF).
The power of the stabilization light is monitored by a photomultiplier (PM), whereas
the transmitted probe light is filtered spatially through a pinhole (PH) and passes
through another interference filter. Finally, it is divided into four equal parts by three
consecutive, non-polarizing beam-splitter (BS), and it is detected by four single-photon
counting modules (SPCM).

beat signal between the frequency comb and the dipole-trap laser through an electronic
low-pass filter (cut-off frequency 36 MHz). The power of the transmitted signal follows
the transfer function of the low-pass filter with a steep slope at the cutoff frequency.
This slope is used as an error signal for a feedback loop. To avoid mechanical resonances
of the piezo tube, the output of the PID controller passes through a notch filter at 6 kHz
and a low pass filter at 10 kHz before it is fed back to the piezo tube. In addition, it was
found useful to introduce a variable resistor in series with the capacity of the piezo tube
acting as an additional tunable low-pass filter to get rid of high-frequency electronic
noise. Details on these and further measures to reduce mechanical and electronic noise
can be found in [8]. The spectral width of the beat signal between the stabilization laser
and the frequency comb acts as a measure of the absolute stability of the cavity length.
Averaged over several seconds the FWHM is typically 300-400 kHz corresponding to
about one tenth of the cavity linewidth or length fluctuations on the order of 200 fm.

3.5 Detection

The light which leaves the cavity through the mirror with the higher transmittance
passes through a lens that collimates the beam. A slightly tilted 780 nm interference
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filter (MaxLine, Semrock), reflects the 785 nm stabilization light, which is then reflected
onto a photomultiplier to monitor the transmitted power. The probe light at 780 nm
that passes through the interference filter is focused through a 150 µm pinhole to
eliminate stray light. After re-collimation of the beam, a second 780 nm interference
filter eliminates residual light from the dipole trap. Finally, consecutive beam splitters
divide the light into four beams, each of which is focused onto a single-photon counting
module (SPCM, Perkin Elmer). Their transistor-transistor-logic (TTL) signals whose
rising edges signal the detection of a photon are processed by a field-programmable
gate array (FPGA), which saves a timestamp for each photon click with a temporal
resolution of 1 ns [32].

The total detection efficiency, i.e., the probability for a photon that is lost from the
cavity mode to be detected by one of the detectors, is given by ηtot = ηoutT 2ηdet, where
ηout is the outcoupling efficiency of the cavity, T the transmitivity of the interference
filters at 780 nm and ηdet the quantum efficiency of the single-photon counting modules.
Putting in the numbers, ηout = 0.57 (cf. Section 3.3.2), ηdet ≈ 0.55 and T ≈ 0.95, we
obtain a total detection efficiency of 0.28. Compared to a value of 0.06 in the previous
experiment [30], this means an improvement by almost a factor of 5.

3.6 Experimental Control and Data Evaluation

To perform the experiments described in this thesis, a number of analog and digi-
tal channels, controlling laser frequencies, intensities, magnetic fields, etc., have to be
switched in a well-defined, programmable order. The experimental sequence is pro-
grammed in a home-made Labview program. It is transferred via local area network
to an Adwin real-time system (Adwin Pro, T9) that executes the sequence. For fu-
ture reference, the settings are saved to a database (PostgreSQL) running on a sepa-
rate server. The timestamped photon clicks recorded by the detectors are saved onto
an AFS-network volume. These experimental traces are analyzed by various Python
scripts.

Curvatures R1 = 20 cm, R2 = 1 cm
Transmittances T1 = 2.5 ± 0.5 ppm, T2 = 17.8 ± 0.5 ppm
Losses L1 +L2 = 11.0 ± 0.5 ppm
Mirror spacing l=258 µm (variable)
Finesse F = 195000 ± 2000 (variable)
Cavity decay rate 2κ = 2π ⋅ 3.0 MHz (variable)
Mode waist w0 = 19 µm (variable)
Coupling constant g0 = 2π ⋅ 16 MHz (variable)

Table 3.1: Summary of the most important cavity parameters.
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3.7 Summary Cavity Parameters

We conclude with a summary of the most important cavity parameters. For those
parameters that vary with the length of the cavity, we list the value used for the
experiments described in this thesis. In Fig. 3.10 (b), the cavity decay rate, the
coupling constant and the cooperativity are plotted as function of the cavity length.
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Chapter 4
Fine Structure of a Fabry-Pérot Resonator

The content of this chapter has partially been submitted for publication in:
M. Zeppenfeld, M. Koch, B. Hagemann, M. Motsch, P. W. H. Pinkse, and G. Rempe,
”Spin-Orbit Coupling in a Fabry-Perot Resonator via Berry’s Geometric Phase”.
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In free space, Maxwell’s equations can be written as a set of vectorial wave equations.
The spherical mirror surfaces of the Fabry-Pérot cavity impose additional boundary con-
ditions. Solutions to Maxwell’s equations with a well-defined frequency which satisfy
these boundary conditions are called the eigenmodes of the cavity. The correspond-
ing discrete resonance frequencies form the spectrum of the resonator. Its calculation
is relatively straightforward in the paraxial approximation when the light propagates
almost parallel to the optical axis of the resonator.

In this chapter, we present spectroscopic measurements of the mode structure of our
cavity. Due to its narrow linewidth, even small deviations from the paraxial approxi-
mation can be observed. We find a frequency splitting of higher-order transverse modes
that is not predicted by the paraxial approximation. It can be explained quantitatively
by recent theoretical calculations of higher-order corrections to the paraxial approxi-
mation [2, 3]. The splitting bears a formal resemblance to the fine structure observed
in atomic spectra, which is a consequence of corrections to the bare, non-relativistic
Schrödinger equation. In particular, a polarization-dependent splitting occurs as a con-
sequence of the coupling between the intrinsic, i.e., polarization, and orbital angular
momentum of the circulating light field. This effect is in close analogy to the spin-orbit
coupling in atomic systems.
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4.1 Empty-Cavity Spectrum in the Paraxial Ap-

proximation

The eigenmodes of an empty Fabry-Pérot cavity in the paraxial approximation are given
by the Laguerre-Gaussian modes [1]. Two global parameters, the Rayleigh length, zR,
and the position of the mode waist are fixed by the curvature of the cavity mirrors and
the length of the cavity, L. Each individual mode is characterized by a longitudinal
index, n, and two integer mode indices, ν and Lz. The index, ν, determines the number
of radial nodes of the mode profile. Lz reflects the orbital angular momentum of the
mode [4]. The resonance frequencies can be calculated by requiring that the round trip
phase shift in the resonator must be a multiple of 2π such that the circulating waves
interfere to a standing wave. In the case of a symmetric cavity with equal radii of
curvature for both mirrors, this condition can be written in terms of the dimensionless
parameter c̄ = kzR (with the wave vector k = 2π/λ) as:

2c̄L

zR
±
O(c̄)

−4(2ν +Lz + 1)arctan(
L

2zR
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(1)

= 2πn. (4.1)

The longitudinal mode index n determines the number of anti-nodes of the standing
wave in the cavity. The parameter c̄ can be considered as a measure for the validity
of the paraxial approximation. The larger it is, i.e., the larger the Rayleigh length is
compared to the wavelength, the better the paraxial approximation is justified.

Most important for the following discussion is that all transverse modes with con-
stant 2ν+Lz are degenerate. Moreover, in the paraxial approximation, the polarization
is treated independently of the transverse mode structure. In other words, each trans-
verse mode with fixed n, ν and Lz has the same resonance frequency for the two circular
polarization modes, which we denote by σ = ±1.

4.2 Beyond the Paraxial Approximation - the Res-

onator Fine Structure

The left hand side of Eq. 4.1 can be considered as the first two terms of a power series
expansion in terms of the small parameter 1

c̄ . The calculation of next-order (O(1
c̄))

correction terms has been achieved recently [2, 3] by expressing the vectorial wave
equation in terms of a different coordinate system, namely spheroidal coordinates [5].
After a lengthy calculation, one obtains the following resonance condition:

2c̄L

zR
±
O(c̄)

−4(2ν +Lz + 1)arctan(
L

2zR
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(1)

−
1

c̄
(

3L2
z

8
+ σLz −M)(

L

2zR
+

2zR
L

)

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O( 1

c̄
)

= 2πn. (4.2)

The correction term contains three summands: The last one, proportional to M =
1
8((2ν + Lz)

2) + 2(2ν + Lz) − 4), only depends on 2ν + Lz and, therefore, only causes a
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Figure 4.1: Zoom into the empty-cavity spectrum. Two series of Laguerre-Gaussian
modes (EJ,σ,ν with J = Lz+σ) are observed for the two different input polarizations σ. In
contradiction with the paraxial approximation, Laguerre-Gaussian modes with constant
2ν +Lz are not degenerate. The intermode spacing between adjacent transverse modes
and the spin-orbit splitting between modes with equal orbital angular momentum but
opposite polarization are extracted for further analysis.

small spectral shift of all degenerate modes with constant 2ν+Lz. However, the first two
summands have striking consequences: First, a frequency shift that scales quadratically
with Lz is predicted. As a consequence, the degeneracy of different Laguerre-Gaussian
modes with constant 2ν + Lz is expected to be lifted, and a splitting that increases
linearly with Lz is expected. Second, the additional coupling term, ∝ σLz, predicts
a polarization and orbital-angular-momentum-dependent splitting like the spin-orbit
coupling term in atomic physics. In direct analogy to the situation in atomic physics,
we therefore introduce the total angular momentum, J = Lz + σ, as a new mode index
to describe the coupled modes.

4.3 Experimental Procedure

For our cavity parameters, the correction terms are on the order of 1
c̄ ≈ 5 ⋅ 10−5 com-

pared to the free spectral range. Therefore, a high-finesse resonator with a small cavity
linewidth is necessary to observe them. One experimental difficulty lies in the discrim-
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Figure 4.2: The experimentally observed (△) intermode spacings for σ+ (a) and σ−
(b) polarized input light are in excellent agreement with the theoretically predicted
corrections (▲) to the paraxial approximation without any additional fit parameters.

ination of these systematic splittings from unsystematic splittings of transverse modes
due to mirror imperfections that are present in most high-finesse cavities, e.g., [6]. To
avoid this problem, we study modes with a very large mode index Lz. As the predicted
shift scales quadratically with Lz, the resulting splitting increases linearly with Lz and,
therefore, can become much larger than the cavity linewidth and residual shifts due to
mirror imperfections. To excite these higher-order modes, the probe beam is misaligned
from the cavity axis and tilted. A quarter-wave plate in front of the cavity allows to
switch between σ+ and σ− polarized input light. The light which is transmitted through
the cavity is split by a non-polarizing beam splitter. One arm is directed onto a photo-
multiplier. In the other arm, a camera records the beam profile. The spectrum of the
cavity is measured by scanning the cavity length via the piezo tube and simultaneously
recording the transmission spectrum and mode profile with the photo-multiplier and
camera, respectively.

4.4 Experimental Results

Fig. 4.1 shows a zoom into a single spectral line of a higher-order transverse mode of the
empty cavity. We plot the transmission of the cavity as a function of the frequency in
units of the free spectral range (FSR). Two spectra have been recorded for σ+- and σ−-
polarized input light. Instead of a single line, as expected by the paraxial approximation,
two series of spectral lines can be observed that do not overlap for the two different
input polarizations. For some of the spectral lines, the corresponding mode profiles are
also displayed showing the annular structure typical for the Laguerre-Gaussian modes.

We determine the total angular momentum, J , and the mode index ν, by counting
the number of azimuthal and radial nodes in the mode profiles, respectively. The mode
profiles in Fig. 4.1 are designated with their corresponding indices. We find that, as
expected, 2ν +Lz = 48 is a constant for all the modes in these series.
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Figure 4.3: The spin-orbit splitting (△) is a consquence of a coupling between the
intrinsic (polarization, σ) and the orbital angular momentum Lz of the light beam. As
predicted by theory (▲), it scales linearly with Lz. However, a systematic discrepancy
of about 20 % between theory and experiment is found.

For a quantitative analysis of the fine structure, we extract the intermode spacing
between adjacent spectral lines with the same polarization, i.e., EJ,σ+,ν −EJ+2,σ+,ν−1 (cf.
Fig. 4.1 for the definition). The results are plotted in Fig. 4.2. The splitting is in
excellent agreement with the theoretical predictions without any free fit parameter.

We also observe the expected splitting between the different polarization modes. We
extract the spin-orbit splitting between modes with equal orbital angular momentum,
i.e., ELz+1,σ+,6 − ELz−1,σ−,6 (cf. Fig. 4.1 for the definition). Plotting the spin-orbit
splitting as a function of the orbital angular momentum Lz, we find a linear dependence
(cf. Fig. 4.3). This confirms the predicted spin-orbit-coupling term proportional to Lzσ.
Unfortunately, the quantitative agreement of the spin-orbit splitting with theory is not
very good. A systematic deviation of about 20 % is found. Some potential explanations
for this discrepancy are discussed in [7].

A detailed discussion of this topic, in particular, a detailed explanation of the theo-
retical calculations, an alternative explanation of the spin-orbit coupling in terms of a
geometric phase and an extended discussion of these and further experimental results,
will be a subject of the thesis of my colleague Martin Zeppenfeld.
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Over the last decades, the invention of a variety of cooling schemes for atoms, ions
and elementary particles has been essential for the experimental progress in particle
physics, precision spectroscopy, quantum information processing and quantum optics.
One scheme that is particularly suited for individual particles is feedback cooling. The
underlying principle is extremely simple: If the motion of the particle can be observed,
one can, using a fast feedback loop, engineer a suitable dissipative force that slows down
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the particle. The performance is mainly limited by the accuracy with which the particle
trajectory can be measured. Feedback cooling has been implemented very successfully
for anti-protons under the name of stochastic cooling [1], for electrons and protons in
Penning traps [2, 3] and for ions in Paul traps [4]. It is not a coincidence that all these
implementations involved charged particles, for which the detection of the motion by
induced currents and the actuation of the motion by static electric and magnetic fields
is relatively straightforward.

An implementation of feedback cooling for neutral particles (i.e. atoms) has been
challenging because of the lack of an efficient method to observe the particle motion
in real time. Such a method is provided by cavity QED. Already the first strong-
coupling cavity QED experiments with cold atoms showed that, due to the position
dependence of the coupling constant, the transmitted light field carries information
about the position of the atom [5, 6]. This was used shortly afterwards in the first
experiments with trapped atoms to observe the atomic trajectories in real time [7, 8].
The latter of these experiments already made use of a very simple feedback scheme to
trap the atom, switching on an intracavity dipole trap conditioned upon the detection
of the arrival of an atom. The obvious next step was to use the information about the
position of the atom to reduce its kinetic energy. The first experiment going in this
direction showed an increase of the average storage time of up to 30% by applying a
simple feedback strategy [9]. However, in this experiment one and the same laser was
used to probe, trap and actuate the atomic motion. This has several disadvantages.
First, as the laser is almost on resonance with the atom, strong heating effects limit the
average storage times to only a few hundred microseconds. Second, there is a strong
backaction between observation and actuation disturbing the position measurement.
Third, the heating rates depend crucially on the power of the probe laser, which made
it impossible to demonstrate cooling of the atom.

Even though simulations showed that these problems can be overcome by using
separate lasers to probe and trap the atom [10], it took several years until this was
realized in an experiment [11]. Three different lasers were used to probe, trap and
actuate the atomic motion. An increase of the storage time from 6 ms without feedback
up to 24 ms with feedback was reported. The performance was mainly limited by two
technical constraints: First, the low detection efficiency required the measurements to
be performed at high probe powers where strong radial momentum diffusion occurs.
Second, the limited transverse optical access to the cavity caused a significant increase
of stray light when a transverse repumping beam was added to compensate for off-
resonant scattering to the dark F=2 hyperfine ground state. This stray light reduced
the performance of the feedback as confirmed by Monte-Carlo simulations [12].

The higher detection efficiency and the better optical access of our new setup allow to
overcome these limitations. After explaining in detail the principle of feedback cooling
and how it was implemented in the current setup, we will show in the following that
we are now able to achieve average storage times exceeding one second corresponding
to a 30-fold increase compared to the storage time without feedback. In addition, we
measure the temperature of the atom and observe its improved localization. Most of
the experimental results are in qualitative agreement with a simple theoretical model.
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5.1 The Principle of Feedback Cooling

As illustrated in Fig. 5.1 (a), feedback cooling involves three steps: a measurement of
the atomic motion, processing of this measurement based on some feedback algorithm
and, finally, the feedback on the atomic motion. In the following, we will quickly review
the concrete implementations of these steps in our system.

5.1.1 Atomic Motion in the Intracavity Dipole Trap

The atom oscillates in a red-detuned intracavity dipole trap. The strong confinement
to half a wavelength in the axial direction leads to high trapping frequencies on the
order of several hundred kHz in this direction. The radial confinement is much weaker
resulting in radial trapping frequencies on the order of only several kHz. Currently, we
are only able to track the much slower radial motion in real time. The Gaussian shape
of the potential leads to an anharmonic oscillation of the atom.

To observe the atomic motion, a weak probe beam close to the atomic and cavity
resonance is used, which, in addition, introduces dissipative cooling and heating forces
to the atomic motion. For the detuning used in these experiments, the probe light
cools the atomic motion along the cavity axis. However, axial cavity cooling is always
accompanied by momentum diffusion, i.e., heating in the radial direction limiting the
storage time without feedback cooling [13].

5.1.2 Observation of the Atomic Motion

Strong coupling of the atom to the cavity mode leads to a dramatic change of the
spectrum of the system as it has been observed in [14, 15]. The Lorentzian transmis-
sion spectrum of the empty cavity is replaced by two normal modes separated by the
position-dependent coupling constant, g(r, z). As shown in the theoretical transmis-
sion spectra in Fig. 5.1 (b), the normal-mode splitting varies with the radial position
of the atom. This implies that, for a fixed detuning of the probe light with respect to
the cavity, the transmitted light intensity carries information about the position of the
atom.

To achieve a maximum modulation of the transmitted intensity and to avoid axial
losses by cavity cooling, we tune the probe laser on resonance with the empty cavity
(∆c = 0). Plotting the transmission as a function of the radial position 5.1 (c), we see
that the transmission decreases when an atom approaches the cavity center because
the probe laser is now off resonance with the normal modes. A detailed discussion
on this and other potential choices of the probe-laser detuning can be found in [12,
16]. In principle, the average transmission depends also on the axial position of the
atom. However, as discussed in the next section, we integrate the transmission signal
typically over several microseconds. This corresponds to an averaging over the faster
axial motion.
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Figure 5.1: (a) Feedback cooling involves three steps: The atomic motion is observed,
the outcome of this measurement is processed by some feedback algorithm, and the
feedback loop is closed by an actuation of the atomic motion. (b) To observe the atom
motion, we make use of the position dependence of the coupling constant, g. As a
consequence the spectrum of the system changes with the position of the atom. This is
illustrated by plotting the cavity transmission as a function of the probe-laser detuning
from the cavity resonance, ∆c, for different radial positions of the atom, r=0 (black),
r=w0 (red), r=2w0 (blue). For simplicity, the atom-cavity detuning was set to zero,
and the position-dependent Stark shift due to the dipole trap was neglected. (c) On
resonance with the cavity, ∆c = 0, the transmission increases with the radial distance
of the atom from the cavity center.

5.1.3 Feedback Algorithm

We use the same red-detuned laser to trap and actuate the atomic motion. If we had
perfect knowledge about the atomic trajectory, the optimal feedback strategy would
be to switch the potential to a low value, Umin, when the atom arrives at an outer
turning point of its trajectory, i.e., when the reduction of the potential energy is maxi-
mized. It has to be switched back to a high value, Umax, when the atom passes through
the center of the cavity mode. To avoid axial losses, we cannot switch off the dipole
trap completely, but we always need some finite depth Umin. Moreover, the maximum
potential depth is also limited to some finite value Umax, which is determined by the
bare atom-cavity detuning. If the AC-Stark shift due to the dipole trap becomes larger
than the atom-cavity detuning, the probe laser becomes red-detuned with respect to
the atomic transition, which leads to heating in the axial direction [15].

In the experiment, we identify the turning points of the atomic trajectory by com-
paring the number of detected photons, N1 and N2, in two successive intervals with a
duration ∆t, the integration time. If the count rate is increasing, N2 ≥ N1, the atom
is supposedly moving outwards. If it is decreasing, N2 < N1, we estimate the atom to
be moving inwards. This feedback strategy is illustrated in Fig. 5.2 (a). In practice,
it has been found that an even better performance can be achieved by introducing a
small threshold, Nth. We switch to the high potential for N2 ≥ N1 +Nth and to the low
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Figure 5.2: (a) The feedback algorithm is very simple: The number of detected photons,
N1 and N2, in two successive intervals with a certain duration (the integration time ∆t)
are compared. If the transmission is decreasing, the atom is most likely moving radially
inwards. The dipole potential is therefore switched to a low value. Otherwise, it is
switched to a high value. (b) To quantify the quality of our velocity estimation, a
simple theoretical model is introduced. The transmission for an atom at the position
x(0) and x(∆t) is evaluated and compared with the radial direction of the velocity at
the end of the integration time, sign(v(1.5∆t)x(1.5∆t)). This enables us to calculate
the probability to estimate the direction of the velocity correctly. (c) The net amount
of energy lost per feedback cycle (corresponding to half an oscillation period) is given
by the difference between the energy loss at the outer turning point and the energy
gain at the inner turning point of the atom trajectory. For the simple one-dimensional
model considered here, the energy reduction per half oscillation period is 1−α times the
original energy, U1−U0, where α is the ratio between the low and high dipole potential.

potential otherwise. The optimal choice of this threshold will be discussed later on.

5.2 Theoretical Models

5.2.1 Fidelity of the Velocity Measurement

It is obvious that the performance of the feedback algorithm depends critically on the
quality of our information about the atomic trajectory. To quantify this information, we
introduce the fidelity, F = 2p − 1, of our measurement. Here, p designates the averaged
probability to correctly estimate the direction of the radial motion, i.e., whether the
atom is moving inwards or outwards. To be more precise, it is the probability to observe
an increasing number of photon counts (N2 ≥ N1) and have the atom moving outward
plus the probability to observe a decreasing number of photon counts (N2 < N1) and
have the atom moving inward. This probability has to be averaged over all possible
initial positions and velocities of the atom. The fidelity takes values between -1 and
1. The larger it is, the better our velocity estimation, whereas a value of 0 means that
the measurement and the atomic trajectory are uncorrelated, and the feedback is not
expected to work. Negative values imply an anti-correlation between the trajectory and
the measurement. The feedback strategy is then inverted and thus expectedly heats
the atom.
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1-D Model

In the following, we will introduce a very simple model, for which we can calculate the
fidelity numerically. First, we only consider the motion of the atom in one dimension.
For an atom at a certain radial position, x0, we can calculate the average number of
photon clicks, N̄(x0) = 2κηtot∆t⟨a�a⟩x0 , during the integration time, ∆t, for a total
detection efficiency ηtot, cavity field decay rate κ and the position-dependent average
intracavity photon number ⟨a�a⟩x0 . The conditional probability to detect N1 photons
for an atom at the position x0 is then given by a Poisson distribution with the mean
value N̄(x0):

P (N1∣x0) =
N̄(x0)

N1 exp (−N̄(x0))

N1!
. (5.1)

For an initial velocity v0 and a harmonic potential with oscillation frequency ω, the
position after the time t is

x(t) = x0cos(ωt) + v0sin(ωt)/ω. (5.2)

During the first integration interval, the atom moves to the position x(∆t). The proba-
bility to detect N2 photons during the second interval also follows a Poisson distribution
with the mean value N̄(x(∆t)). Multiplying the two Poisson distributions, we obtain
the conditional probability P (N1,N2∣x0, v0) to detect N1 photons during the first inter-
val and N2 photons during the second interval, given an atom with an initial position
x0 and velocity v0. We use Bayes’ theorem to calculate the mutual probability to detect
N1 and N2 photons during the successive intervals and to have the initial position and
velocity x0 and v0, respectively:

P (N1,N2, x0, v0) = P (N1,N2∣x0, v0)P (x0, v0) (5.3)

Using the Gaussian position and velocity distribution, P (x0, v0), of an atom in thermal
equilibrium in an harmonic potential, we can now calculate the probability, p, to esti-
mate the radial direction of the velocity correctly. For this purpose, we integrate the
mutual probability, P (N1,N2, x0, v0), over those values of x0, v0, N1 and N2 for which
the count rate is increasing (N2 ≥ N1) and the atom is moving outwards at the end of
the second time bin (x(1.5∆t) ⋅ v(1.5∆t) > 0), or the count rate is decreasing and the
atom is moving inwards (x(1.5∆t) ⋅ v(1.5∆t) < 0). Note that we are only interested in
the direction of the velocity after the end of the second interval (when the potential is
switched) corresponding to the time 1.5∆t after the center of the first interval (cf. Fig.
5.2 (b)). In total, we thus find

p =
∞

∑
N1=0

∞

∑
N2=N1

∫
x0
∫
v0∈x(1.5∆t)⋅v(1.5∆t)≥0

P (N1,N2, x0, v0)dx0dv0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
atom is moving outwards, count rate is increasing

+
∞

∑
N2=0

∞

∑
N1=N2+1

∫
x0
∫
v0∈x(1.5∆t)⋅v(1.5∆t)<0

P (N1,N2, x0, v0)dx0dv0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
atom is moving inwards, count rate is decreasing

,

(5.4)

from which we directly get the fidelity, F = 2p − 1.
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2-D Model

In reality, the atom moves of course in three dimensions. The axial oscillations happen
on a much shorter timescale than the radial oscillations. We can take this motion into
account simply by using a reduced maximal coupling constant geff. We are still left with
the motion in the two radial dimensions. The generalization of our previous arguments
to two dimensions is straightforward: The position and the velocities x0 and v0 are
now two dimensional vectors x⃗0 and v⃗0. In the harmonic approximation, the oscillation
in each spatial direction can be treated independently. Eq. 5.2 is thus applicable to
calculate the respective positions and velocities. To calculate the fidelity (cf. Eq. 5.4),
we have to integrate over both spatial and both momentum dimensions. The integration
limits, which are set by the condition that the atom is moving outwards at the end of
the second interval, are given by x⃗(1.5∆t) ⋅ v⃗(1.5∆t) ≥ 0.

We will show calculated fidelities in the next sections and compare them to experi-
mental results. Two parameters have to be adjusted: The first is the effective coupling
constant geff, which we set to 2π ⋅ 13 MHz. The second parameter is the temperature
of the atom, i.e., the width of the Gaussian distribution. In principle, the temperature
depends on the performance of the feedback and thus on the fidelity. For simplicity, we
assume a fixed temperature of 200 µK - a little higher than the temperature that we
determine later on for the optimal parameters. It should be mentioned that the qualita-
tive dependence of the fidelity upon different parameters, such as the integration time,
the probe power or the threshold, in which we are interested, is not very sensitive to
the exact choice of the effective coupling strength and the temperature.

5.2.2 Time-Dependent Temperature

In this section, we would like to extend our simple model to describe how the feedback
reduces the energy of the oscillating atom. This time, we consider only the motion in
the radial direction. The potential energy of the atom at the center and at the turning
point of the dipole potential is U0 and U1, respectively (cf. Fig. 5.2 (c)). If the feedback
would work perfectly, the potential is reduced by a factor α < 1 at the turning point of
the trajectory reducing the energy by U1(1 − α). The potential is increased from αU0

to U0 at the bottom of the dipole potential raising the energy of the atom by U0(1−α).
In total, the atom looses an energy of ∆E = (1 − α)E per half oscillation period where
E is the initial energy. In practice, we only estimate the velocity correctly with the
probability p. If we estimate the velocity incorrectly, the switching of the dipole trap
increases the energy of the atom. Thus, the average energy loss per half an oscillation
period is expected to be

∆E = −p(1 − α)E + (1 − p)(1 − α)E

= −F (1 − α)E
(5.5)

with the fidelity F = 2p−1. We assume here for simplicity that we estimate the velocity
only once per oscillation period, which is of course not really correct. In practice, the
direction of the velocity is continuously evaluated.

55



Next, we consider an average over atoms with a thermal energy distribution. We
assume that Eq. 5.5 is also valid for the change of the average energy and thus the
temperature of the thermal distribution. This enables us to write down a differential
equation for the time evolution of the temperature:

∂T (t)

∂t
=

2∆Tω

2π
+D = −

2F (1 − α)ωT (t)

2π
+D = −γT (t) +D (5.6)

where ω/2π is the oscillation frequency of the atom in the trap. Furthermore we have
introduced here some additional constant heating rate, D, independent of the energy
(i.e., temperature) of the atom. This could be heating due to spontaneous emission,
dipole force fluctuations, parametric heating or any other typical heating source. Note
that in principle the fidelity, F , and thus the cooling rate, γ, is expected to depend on
the temperature. However, if the temperature changes are not too big, we can assume
that F is constant. In this case, we can directly give a solution for the time evolution
starting from an initial temperature T0:

T (t) = exp(−γt) (T0 −
D

γ
) +

D

γ
(5.7)

The temperature decreases exponentially with a decay rate γ = 2F (1 − α)ω/2π. It
approaches a temperature limit of D/γ.

5.3 Experimental Results

5.3.1 Experimental Implementation

A cloud of atoms is launched via the atomic fountain. Single atoms are trapped in the
intracavity dipole trap by increasing the dipole trap depths from 100 µK to almost
1 mK when a drop in the probe-light transmission heralds the arrival of an atom
from the atomic fountain. To avoid trapping multiple atoms, only a dilute atomic
cloud is launched such that only in about every third launch an atom is detected.
The transmitted light is registered by four single-photon counting modules. Upon the
detection of a photon, they generate digital pulses that are processed by a FPGA
(FlexRio, Natinal Instruments) [17]. It evaluates the number of photons during two
successive intervals, N1 and N2, with a fixed duration δt with an update rate of a
few tens of ns. Then, it compares the difference between the two count rates with the
threshold, Nth, and outputs the result of the comparison to a digital channel. According
to the value of this digital channel the power of the dipole trap is switched to the high
or low value. As the dipole trap laser is also used to stabilize the cavity length, the
attenuation of the back reflected light from the cavity by the electro-optical amplitude
modulator in its path has to be adjusted synchronously to keep the amplitude of the
Pound-Drever-Hall error signal that is used for the cavity lock constant (cf. Fig. 3.14).
After the digital channel is switched, it takes approximately 10 µs until the power of
the dipole trap has settled to its final value. This includes a 4 µs delay of the analog
switching and 6 µs needed by the PID-controller to adjust the intensity to the desired
value.
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Figure 5.3: Sample transmission trace of a trapped atom. The atom is detected at t=0
by the drop in the transmission. The dipole trap is switched on, and the feedback is
activated. The escape time of the atom is determined from the jump in the transmission
back to the empty-cavity value.

To compensate for off-resonant scattering to the F=2 hyperfine ground state, which
occurs at a small rate of about 12 Hz due to non-perfect circular polarizations and
residual magnetic fields, we employ a weak re-pumping laser perpendicular to the cavity
axis. This laser is not mandatory for feedback cooling, but it allows us to observe storage
times exceeding 80 ms.

5.3.2 Storage Time

The simplest way to characterize the performance of the feedback is to analyze the
storage time of the atoms in the dipole trap. The storage time of an individual atom is
determined by evaluating when the transmission jumps back to the empty cavity value
(cf. Fig. 5.3 for a sample trace).

For a given parameter set, the storage time of 200 individual atoms is evaluated
and the fraction of atoms that has remained trapped until a time t is calculated (cf.
Fig. 5.4). We fit an exponential p(t) = Ae−t/τ to these curves with the amplitude, A,
and the 1/e storage time, τ , as fit parameters. Some atoms (about 10-30%) leave the
trap within the first time bin thereby reducing the amplitude to 0.7-0.9, likely because
they are not trapped at all or they are trapped at a position where the trap and probe
modes do not overlap and the feedback does not work properly.

In the following, we present measurements of the storage time as a function of differ-
ent parameters, namely the detection efficiency, the probe power, the integration time
and the threshold Nth. These measurements serve to optimize the feedback parameters
and to understand its limitations. Moreover, comparison with our theoretical model
confirms the importance of information for the performance of the feedback loop.

Storage Time versus Detection Efficiency

As illustrated in Fig. 5.4, feedback leads to a dramatic increase of the average storage
time. At a probe power of P=0.1 (corresponding to 0.1 photons in the empty cavity),
we determine a 1/e storage time of 35 ms without feedback. With feedback (integration
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Figure 5.4: Evolution of the probability of an atom to remain trapped without feedback
(∎, black) and with feedback for 25 % (▼, green), 50 % (▲, blue) and 100 % (●, red)
signal. The 1/e storage times are 35 ms, 160 ms, 400 ms and 1100 ms, respectively.
For clarity, error bars are only shown for one curve.

time 13 µs), the 1/e storage time increases by a factor 30 to 1100 ms with individual
atoms staying more than 17 s (cf. Fig. 5.3).

The significant improvement compared to our earlier work [11] is mainly a conse-
quence of the higher detection efficiency of the new setup. It has been enhanced by
almost a factor 5 due to the use of an asymmetric cavity and an improved detection
setup. The better signal-to-noise ratio enables a more reliable position measurement at
lower probe powers where less heating occurs.

The significance of a high detection efficiency is highlighted by two other measure-
ments also shown in Fig. 5.4. When we artificially reduce the detection efficiency by
attenuating the transmitted probe light by 50 % and 75 %, we observe a decrease of
the storage time in proportion to the attenuation.

Storage Time versus Probe Power

Our previous observation seems to indicate that an even better performance can be
achieved for a larger probe power. However, as this also leads to more heating of the
atom, one has to find a compromise between a high signal and a low heating rate. This
is shown in Fig. 5.5 where we have plotted the 1/e storage time versus the impinging
probe power with and without feedback. The probe power is given in units of photons
in the empty cavity. The integration time is fixed to 13 µs.

We first discuss the storage time dependence without feedback. In this case, we
observe a decrease of the storage time with increasing probe power, P , which can
be attributed to radial momentum diffusion. As the corresponding heating rate is
determined by the atomic excitation, which is proportional to P , we can fit a a

P function
with the fit parameter a to the storage time for probe powers P > 0.05 photons (solid
red line, cf. [13, 18]). The deviation of the storage times from this fit for very low probe
powers is in agreement with previous studies. These have shown that, eventually, cavity
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cooling along the cavity axis can no longer compensate for axial parametric heating
caused by intensity fluctuations of the dipole trap and other axial heating mechanisms.

By applying feedback, we observe an increase of the storage time by more than
one order of magnitude over a broad range of powers with a peak at a probe power of
P=0.1 photons where the improvement is 30-fold. At low powers, we observe a sharp
increase in the storage time, which can be explained by the improved velocity estimation
due to the stronger signal. For higher powers, the quality of the velocity estimation
saturates and can no longer fully compensate for the increase in radial heating that
causes a reduction of the average storage time.

This interplay between the improvement of the feedback performance due to the
increase of the fidelity in the velocity estimation and the increasing heating rate is re-
flected by the temperature limit D/γ that was derived in Section 5.2.1. We recall that
D is the heating rate of the trapped atom. For our parameters, it is expected to be
dominated by radial momentum diffusion increasing linearly with the probe power. γ is
the feedback cooling rate. In our simple model, it was found to be proportional to the
fidelity, F (P ), of our velocity estimation, which also depends on the input power. In
total, we thus expect that the temperature limit scales with P /F (P ). The exact rela-
tionship between the atomic temperature and the storage time is not trivial. However,
it is reasonable to assume that an increasing storage time signals a lower temperature.
This implies that the power dependence of the storage time can be qualitatively repro-
duced by the inverse temperature limit, i.e., F (P )/P . This quantity is plotted as a
dotted blue line in Fig. 5.5 (note the different scaling of the axes) and does indeed re-
produce qualitatively the most important features observed in the experiment, namely,
the increase at low powers due to the better signal, the maximum at a position of about
P = 0.1 and the decrease at higher powers due to the increase in the heating rate.

Storage Time versus Integration Time

In Fig. 5.6, we have plotted the storage time with feedback (●) as a function of the
integration time, ∆t, for a probe power of 0.08 photons. The storage times without
feedback is plotted as a horizontal line. As one directly sees, the performance of the
feedback depends critically on the integration time. We observe an increase of the
storage time to a maximum at an integration time of about 15 µs and a decrease below
the storage time without feedback (horizontal line) for integration times above 35 µs.

This behavior can be understood by considering the integration time dependence
of the fidelity. The integration time influences the fidelity of the velocity estimation in
two ways. On the one hand, a longer integration time increases the signal reducing the
shot noise and thus increasing the fidelity. One the other, the time delay introduced
by the integration time can cause an incorrect velocity estimation reducing the fidelity.
We can expect that, for short integration times, the fidelity is dominated by shot noise
and therefore increases with the integration time, whereas the delay becomes more and
more important for longer integration times and, eventually, reduces the fidelity.

This assumption is confirmed by the dashed line in Fig. 5.6 (a) showing the calcu-
lated fidelity, F , versus the integration time, ∆t. We find qualitative agreement with
the experimental storage times. At first the fidelity increases due to the improved sig-
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Figure 5.5: Storage time with (●, left axis) and without (▲, left axis) feedback versus
probe power in units of photons in the empty cavity. The error bars are smaller than
the symbols. Without feedback, the storage time is mostly limited by radial momentum
diffusion as confirmed by the Trad =

a
P fit (red line, left axis). With feedback, an increase

of the storage time by more than one order of magnitude is observed for a broad range of
probe powers. The maximum occurs as a compromise between a low radial heating rate
and a good information rate. This is reflected by ratio of fidelity and heating rate, F /P
(dashed blue line, right axis), which qualitatively reproduces the power dependence of
the storage time.

nal, it reaches a maximum and then decreases because of the large delay introduced by
the integration time. Eventually, it even becomes negative meaning that our feedback
algorithm is expected to be inverted, that is to reduce the average storage times as it
is confirmed in the experiment.

A detailed discussion of the dependence of the storage time upon the integration
time can also be found in [11, 16].

Storage Time versus Feedback Threshold

It was already mentioned that the dipole potential is switched to a high value when the
difference between the number of photons that is detected during the later time interval,
N2, and the number of photons that is detected during the earlier time interval, N1, is
greater or equal to some integer threshold Nth, i.e., when N2 ≥ N1 +Nth. Monte-Carlo
simulations have shown that, in particular, the choice between Nth = 0 and Nth = −1, is
quite critical for the performance of the feedback [12].

This prediction is confirmed by Fig. 5.6 (b) showing the average storage time as
a function of Nth (●, left axis). The most important conclusion is that the threshold
should be zero or negative. In other words: if the transmission does not change, it is
advisable to switch the potential to the high value. In fact, for positive thresholds, a
reduction of the average storage time compared to the situation without feedback is
observed. The longest storage time is found at a threshold of -1, which is the value
used for all other experiments described in this chapter.
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Figure 5.6: (a) Experimental storage time versus integration time, ∆t (●, red, left
axis). The horizontal line indicates the average storage time without feedback for the
given parameters. The fidelity, F , calculated with the simple model introduced in
Section 5.2.1 (dashed blue line, right axis), qualitatively reproduces the integration-
time dependence of the storage time. (b) Storage time (●, left axis) and fidelity (▲,
right axis) as a function of the feedback threshold which determines when the dipole
potential is switched (high potential for N2−N1 ≥ Nth). Feedback cooling only works for
negative thresholds, whereas a reduction of the storage time and a negative fidelity is
observed for positive thresholds. While the fidelity has a maximum at zero, in practice,
an even better performance, in terms of the storage time, is achieved for a threshold of
-1. A possible explanation is that one avoids heating due to frequent switching of the
dipole potential.

For a better understanding, we incorporate the effect of this threshold into our
calculations of the fidelity. To be more precise, we now calculate the probability that
the atom is moving outwards and N2 ≥ N1 + Nth and the probability that the atom
is moving inwards and N2 < N1 + Nth. Results are also shown in Fig. 5.6 (b) (○,
right axis). The reduced storage time at Nth = 0 can be explained by the negative
fidelity corresponding to an inverted feedback. However, in contrast to the storage time,
the fidelity has a clear maximum at Nth = 0 and drops quite significantly for smaller
thresholds. A possible explanation for this discrepancy is that the frequent switching
of the dipole potential that occurs for Nth = 0 has additional harmful consequences
independent of the fidelity. First, it causes additional parametric heating in the axial
direction. Second, in the low trapping potential a loss of the atom is more likely. As
a consequence, it is advantageous to keep the atom by default in the deep potential
and only switch to the shallow potential when we are absolutely sure that the atom is
moving inwards.

5.3.3 Temperature

We use a similar technique as in Ref. [19] to obtain a temperature estimate of the atom.
The basic ideas is to lower the potential depth linearly and observe when the atom
escapes (cf. Fig. 5.7 (a)). From the escape time one can reconstruct the initial energy
of the atom. Repeating this measurement many times yields the energy distribution,
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which is expected to correspond to a Boltzmann distribution.
One has to take into account that the lowering process changes the energy of the

trapped atom. It has been shown in [19] that, for an adiabatic lowering, the action

of the atom, S(E,U) = 4 ∫
xmax

0 2m
√
E − V (x,U)dx, is conserved. Here, E designates

the energy, xmax the oscillation amplitude and V (x,U) = −Ue−x
2

a Gaussian potential
with depth U . Solving numerically the equation S(E0, U0) = S(Uesc, Uesc) yields the
initial energy, E0, of an atom escaping at a potential depth of Uesc. Repeating this
measurement for many atoms, we partly reconstruct the atomic energy distribution.
In the experiment, the potential depth is lowered linearly from 950 µK to 100 µK
within 4 ms. Fig. 5.7 (b) shows the reconstructed energy distribution for atoms that
were trapped for 10 ms with the feedback enabled and disabled immediately before the
potential was ramped down (probe power 0.1 photons, integration time 13 µs). It is
clear from the figure that with feedback fewer atoms have a high energy, indicating a
lower temperature. The low-energy part of the distribution was not observed because
a further reduction of the final potential made our cavity lock unstable. For a more
quantitative analysis, we fit the Boltzmann distribution of a 3D harmonic oscillator,

p(E)dE = N E2

2(kBT )3
e
− E

kBT dE, to the data. As only atoms with an energy smaller than
the trap depth, U0, are trapped, the energy distribution that we measure is normalized
such that ∫

U0

0 p(E)dE = 1. The only fit parameter is the temperature, T , which is
found to be 160±5 µK with the feedback enabled and 400±50 µK without feedback
where the errors are only due to the fit uncertainty. The observed temperature with
feedback cooling is comparable to the radial temperature of T ≤ 200µK that has been
observed using optical molasses cooling in a state-insensitive trap inside a high-finesse
cavity [14, 20].

Note that our temperature measurements suffer from a few systematic uncertainties.
First, the assumed distribution is strictly valid only in a harmonic potential. However,
without feedback, the high temperature brings the atom into the anharmonic part of the
potential. Second, heating effects during the ramp are neglected. Third, thermalization
in three dimensions is assumed. This is not obvious as the cooling forces in the radial
and axial direction are quite different.

5.3.4 Time-Dependent Temperature

In Section 5.2.2, we have made a prediction about the time evolution of the temperature
and the temperature limit in the presence of feedback cooling that we would like to test.
For this purpose, we trap an atom, and we disable and enable the feedback iteratively for
8 ms and 16 ms, respectively, switching to the deeper trapping potential of 950 µK when
the feedback is disabled. The time-dependent transmission of the probe light in each of
the two intervals is averaged over many intervals from hundreds of individually trapped
atoms. To exclude intervals where the atom is leaving, we require the transmission
during the two intervals and the following interval to be less than 90 % of the empty-
cavity transmission. We convert the transmitted power to a temperature by assuming
a thermal distribution of the atoms in the dipole trap and calculating the expected
transmision as a function of the temperature (cf. Appendix B for details). We repeat
the same measurement for three different attenuations of the transmitted light (probe
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Figure 5.7: (a) Principle of the temperature measurement: Atoms are trapped for
10 ms while the feedback is either enabled or disabled. The dipole potential (red line)
is ramped down within 4 ms. From the sudden jump of the probe light transmission
(black line) the escape time and thus the initial energy of the atom can be reconstructed.
(b) Repeating this for many atoms enables us to reconstruct a part of the atomic energy
distribution. A fit of a three-dimensional Boltzmann distribution yields temperatures
of 160±5 µK with the feedback enabled (●, red) and 400±50 µK without feedback (▲,
blue).

power of 0.1 photons, integration time 13 µs).
Experimental results are shown in Fig. 5.8. The time dependence agrees qualita-

tively with our expectations. We see a linear increase in the temperature when the
feedback is disabled. This observation supports our assumption that, in the absence of
feedback, there is a constant heating mechanism. Moreover, the temperature decreases
exponentially when the feedback is enabled as predicted by our simple model in Section
5.2.2. We determine the heating rate, D, and the cooling rate, γ, by applying a linear
(T (t) = T0 +Dt) and exponential fit (T (t) = T0 + A exp(−γt)) to the first and second
interval, respectively (solid lines).

We find an constant heating rate, almost independent of the detection efficiency,
with an average of D = (4.4 ± 0.4) µK/ms. When the feedback is enabled, a sudden
jump in the transmission is observed. It is caused by the changing AC-Stark shifts
when the feedback is enabled. This results in a jump of the average atom cavity-
detuning increasing the average transmission. Because of this effect, we systematically
overestimate the temperature when the feedback is enabled. The magnitude of this
systematic error can be estimated from the offset that occurs when the feedback is
enabled.

From our model, we would expect that the cooling rate, γ, increases with higher
detection efficiency. However, in practice, all three decay rates agree within the mea-
surement uncertainties and we find an average cooling rate of (γ = 0.55 ± 0.05) kHz.
A possible explanation is that the increase of the fidelity due to the higher detection
efficiency is counteracted by the better localization and thus lower transmission signal.
As a check for consistency, we can use the equation γ = 2F (1 − α)ω/2π to estimate
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the experimental fidelity from the cooling rate that we find. Plugging in the numbers
α ≈ 0.5 and ω/2π = 5 kHz, we find F =

2πγ
ω ≈ 0.1, which is consistent with the calculated

fidelities from Section 5.3.2.
Next, we would like to discuss the temperatures. To avoid systematic errors from

the fluctuating light shifts discussed before, it is advisable to evaluate the temperature
at the beginning of the interval without feedback. Without attenuation, we find a
temperature of 170 µK, which is in good agreement with the temperature of 160 µK
that we have determined before using a completely different technique. As expected,
the temperature increases when the detection efficiency decreases due to the poorer
performance of the feedback. The temperatures for a detection efficiency of 50 % and
25 % are 200 µK and 230 µK, respectively.

So far, our simple model has been surprisingly successful in describing at least
qualitatively most of the observations. A significant discrepancy occurs though when
we calculate the expected temperature limit T = D/γ that was derived in 5.2.2 and
compare it to the observed temperature. Plugging in the heating rate, D, and the
cooling rate, γ, we obtain a temperature limit of only 7 µK, which is much smaller
than the value that we actually observe. This suggests that there is another limitation
to the temperature that has so far not been considered. In fact, our theoretical model
for the time dependence of the cooling process is restricted to one-dimensional motion
only. In reality, the atom moves in three dimensions. We can decompose the motion
into an axial, a radial and an azimuthal component. Cavity cooling of the probe laser
acts in the axial direction. The radial motion is cooled by feedback cooling. The
azimuthal motion is affected by neither of the two cooling forces, but it is also subject
to momentum diffusion and therefore heating. This puts into question if the atom can
really be assumed to be in thermal equilibrium. In any case, the azimuthal motion is
expected to be another limiting factor for the temperature that can be achieved. In fact,
this is supported by Monte-Carlo simulations that have shown that the average storage
time with feedback can be increased even further by breaking the radial symmetry of
the potential and thus mixing the radial and azimuthal motion [12].

5.3.5 Correlation Function

A complementary way to characterize how feedback cooling changes the atomic motion
is to look at the intensity correlation function ⟨I(t)I(t + τ)⟩t of the probe light as
shown in Fig. 5.9 (probe power 0.2 photons, integration time 13 µs). To obtain these
graphs we divide the experimental traces in intervals with a duration of T = 2 ms.
For intervals with transmission below 80% of the empty-cavity transmission, we then
evaluate R(τ) = 1

T−τ ∫
T−τ

0 I(t)I(t + τ)dt where I(t) is the photon count rate averaged
over 1 µs. We average over many intervals. The upper two curves show the average
R(τ) for an atom trapped in the deep and the low trapping potential, respectively, when
the feedback is disabled. Both curves have a characteristic maximum at T1 = 190 µs
for the deeper (b) and at T2 = 270 µs for the shallower (a) potential. It is a consquence
of the modulation of the transmission signal at the radial oscillation frequency [18].
The correlation function, R(τ), of atoms with enabled feedback is plotted in the lower
part of the figure for integration times of the feedback algorithm of 16 µs (d) and 32
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Figure 5.8: Time-dependent temperature in two successive intervals in which the feed-
back is disabled and enabled, respectively, for three different detection efficiencies. The
temperature was calculated from a measurement of the average time-dependent trans-
mission. Without feedback the temperature increases linearly due to radial heating.
When the feedback is enabled, an exponential drop in the temperature with a 1/e time
constant on the order of 2 ms is observed proving cooling of the atomic motion. The
higher the detection efficiency the lower the steady-state temperature. The sudden
jump in the temperature at the beginning of the feedback interval is an artifact due to
the fluctuating Stark shift during the feedback intervals.

µs (c). Three points are noteworthy. First, the average transmission is reduced, which
directly shows the better localization. Second, the radial oscillation bump is almost
completely suppressed providing further evidence for a reduction of the radial oscillation
amplitude due to feedback cooling. Third, an almost square-shaped feature is observed
for short correlation times. Its rising edge and width are given by the integration time
of the feedback algorithm. This feature is an artifact of our feedback algorithm that
preferentially switches the dipole trap with a period given by the integration time. As
mentioned before, the change in the light shift has an effect on the transmitted signal,
which is therefore modulated at the same frequency.

5.4 Conclusion and Outlook

We have shown that feedback cooling can increase the average storage time by more
than a factor of 30 and leads to an improved atomic localization of the atom in the
cavity mode. These two results are of significant importance for future experiments
because they imply a dramatic increase of the duty cycle of the experiment. Monte-
Carlo simulations have shown that the use of a radially asymmetric potential [21] can
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Figure 5.9: Time-dependent intensity-correlation function without feedback in the shal-
low (a) and deep (b) trap, and with feedback using an integration time of the feedback
algorithm of 32 µs (c) and 16 µs (d). Without feedback the radial oscillations cause a
characteristic bump at one-half of the oscillation period. This bump disappears when
the feedback is enabled.

increase the storage time further [12] because it allows to change the angular momentum
of the atom.

The temperature and storage time are comparable to what has been reported pre-
viously using conventional three-dimensional laser cooling in an intracavity dipole trap
[14, 20]. Compared to experiments with atoms trapped in a transverse dipole trap
[22], which have achieved longer storage times, our technique has the advantage that
it does not require transverse optical access. Therefore, it can be implemented also for
very short cavity lengths [7] or other resonator geometries with limited optical access,
such as fiber-based cavities on atom-chips [23], bottle resonators [24] or micro-toroidal
resonators [25]. Another advantage stems from the fact that, since no optical pumping
transverse to the quantization (i.e., the cavity axis) is needed, the atom never leaves
the closed F = 3,mF = +3 to F = 4,mF = +4 transition preserving its perfect two-level
character. As feedback cooling does in principle not rely on photon scattering from
the atom, it is particularly attractive for applications that require preservation of the
atomic state.

Finally, we would like to point out that there is also a more fundamental motivation
for further investigations. The behavior of thermodynamic systems in the presence of
feedback has been an important question in theoretical thermodynamics for a long time.
Maxwell’s demon and the Szilard engine [26] are just two famous Gedankenexperiments
that have been proposed in this context. Both examples are still the subject of intense
theoretical [27, 28, 29, 30] but also experimental [31] investigations. In the future, our
experiment might also enable us to address questions going in this direction.
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Chapter 6
Quantum Dynamics - Correlation Functions

The content of this chapter has partially been published in:
M. Koch, C. Sames, B. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, and
G. Rempe, ”Three-Photon Correlations in a Strongly Driven Atom-Cavity System”,
Physical Review Letters 107, 023601 (2011).
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In the previous chapter, we have seen that the transmitted probe light carries in-
formation about the classical trajectory of the atom. We have used this information
to control the motion of the atom by means of feedback. This naturally raises the
question whether similar techniques can be employed to observe and eventually con-
trol the quantum trajectory of the internal degrees of freedom of the strongly coupled
atom-cavity system.
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Before going into details, we would like to remind the reader of the fundamental
difference between the observation of the dynamics of a classical system and a quantum
system. In the first case, the dynamics and its observation can be treated in principle
completely independent. The trajectory can be determined with an accuracy which is
only limited by technical constraints, such as noise in the detectors or thermal fluctua-
tions. For a quantum system, the situation is quite different: The act of observing the
system causes a collapse of the wavefunction and thus alters the dynamics of the system.
Noise and fluctuations are not brought to the system by some external perturbation,
but they are intrinsic to the observation process.

This is nicely illustrated in Fig. 6.1 (cf. [1] for similar calculations), which shows
a sample quantum trajectory of the average photon number ⟨a�a⟩ in a strongly driven
atom-cavity system. One observes the coherent, and therefore reversible, evolution of
the system induced by the driving and the exchange of energy between the atom and
the cavity. This evolution is interrupted by sudden quantum jumps when a photon
is spontaneously emitted from the atom (▽) or escapes from the cavity (▲). The
main purpose of this chapter is to investigate how the fundamental dynamical processes
visible in such a caclulated quantum trajectory can be reconstructed from the seemingly
random stream of photons (▲) emitted from the cavity.

At first sight, this seems difficult, since, by the very definition of strong coupling, the
rate at which photons are emitted is smaller than the typical timescales of the dynamics
that we are interested in. The solution is the evaluation of time-dependent correlation
functions of the emitted light field, such as the second-order correlation function g(2)(τ)
measuring the average time evolution of ⟨a�a⟩ conditioned upon a quantum jump due to
cavity decay. In view of the prominent role the second-order correlation function plays
in quantum optics, it is not surprising to find out that it has been studied before also
in the field of cavity QED. However, compared to previous experiments [2, 3, 4, 5], we
perform the experiments in the strong-driving regime. This gives rise to new dynamical
effects due to the coherent coupling of the system with the probe laser. As another
consequence of the strong driving, the quantum trajectory of the system also includes
higher-order dressed states of the Jaynes-Cummings ladder, leading to the emission of
characteristic patterns of multiple-photon emissions [6]. We characterize these via the
third-order intensity correlation function. While the second-order correlation function
is naturally symmetric in time, the third-order correlation function enables us also to
address the simple but experimentally unexplored question whether the emitted photon
stream is symmetric in time. In contrast to second-order correlation functions, time-
dependent third-order correlation functions have hardly been studied at all. Notable
exceptions are early investigations of laser light near threshold [7, 8] and non-Gaussian
scattering processes in diffusive media [9].

6.1 Measurement Procedure

The strong driving leads to strong heating and therefore very short storage times and a
low duty cycle of the experiment. Therefore, we perform the measurements with atoms
passing through the cavity mode, launched via the atomic fountain from underneath
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Figure 6.1: (a) Quantum trajectory of the average photon number ⟨a�a⟩ (red) and
the two photon emission probability ⟨a�2a2⟩ (blue) for typical experimental parameters
(g/2π = 14.5 MHz, ∆a/2π = ∆c/2π = −12 MHz, η = 3.5κ). We observe coherent os-
cillations at different frequencies interrupted by unpredictable quantum jumps due to
cavity decay (▲) or spontaneous emission (▽). (b) A zoom into a part of the trajectory
shows fast oscillations at different timescales for the two observables. Note that the
annihilation of a photon can increase or decrease the average photon number in the
cavity depending on whether the photon distribution of the state at the given instant
is super- or sub-Poissonian.

the cavity. The transit time of an individual atom is adjusted to be about 20µs.
The attractive potential induced by the weak stabilization laser at 785 nm guides the
passing atoms towards regions of strong coupling. With a detuning of the probe laser
with respect to the cavity of ∆c/2π = -12 MHz, near resonant with the lower-frequency
normal mode, a transient atom causes an increase of the probe light transmission, cf.
Fig. 6.2 (a) and (b). We evaluate the recorded photon clicks only in those intervals
where the transmission is increased by at least a factor of 1.6 compared to the empty-
cavity value. In each launch about 25 atoms cause such an increase. In the presence of
an atom, the probability of having a second atom in the cavity is less than 3 %.

6.2 Second-order Correlation Function

First, we consider the time evolution of the average photon number shown as a red line
in the quantum trajectory in Fig. 6.1 (a) and (b). Two characteristic frequencies are
visible, a slow oscillation with a period of about 150 ns and a fast oscillation with a
period of about 30 ns. To observe these in the experiment, we evaluate the second-order
correlation function,

g(2)(τ) =
⟨a�a�(τ)a(τ)a⟩

⟨a�, a⟩2
(6.1)
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Figure 6.2: (a) Theoretical transmission spectrum for a fixed atom (g/2π = 14.5 MHz,
4 MHz AC-Stark shift) for weak driving (η=0.7κ, solid black line) and the strong driving
used in these experiments (η=3.9κ, solid red line). For comparison, the empty-cavity
spectra (dashed lines) are also plotted. For most of the experiments described in this
chapter, a detuning of ∆c/2π = −12 MHz (vertical dashed line), close to resonance with
the ∣1−⟩ state, was used. (b) Typical experimental trace of the cavity transmission when
a dilute cloud of atoms is passing through the cavity (η=4.06κ, ∆c/2π = −12 MHz). The
passage of a single atom causes an increase of the transmission. For the evaluation of
the correlation functions, only those intervals where the average transmission exceeds
a certain threshold (horizontal red line) are taken into account.

of the transmitted probe light, measuring the conditional evolution of the average pho-
ton number after the detection of a photon. Details on the evaluation and normalization
of the correlation function can be found in Appendix C. Experimental results are plot-
ted in Fig. 6.3 (a) for different driving strengths (black). Deviations of the asymptotic
values from 1 result from the variation of the transmitted intensity during the passage
of an atom through the cavity mode. This effect has been widely studied and is well
understood [2, 3, 4, 10].

We observe a relaxation of the correlation function to the constant asymptotic value
on a timescale determined by the dissipation rates of the system. Within this duration,
oscillations at two very different timescales are visible. For a more quantitative analysis,
we fit a phenomenological exponentially damped, oscillating function 1 to the data. It
provides us with the two characteristic frequencies ω and Ω and the relaxation rate λ
to be discussed in the next sections.

Theoretical calculations are shown in red in Fig. 6.3 (a). They are in excellent
agreement with our experimental results. Since the atomic transit happens on a much
longer timescale than the internal dynamics, we can account for it in the theory by
averaging the correlation function over a proper atomic position distribution. Its shape
(cf. Appendix B for details) and the maximum Stark shift induced by the stabilization
laser (4 MHz) were adjusted for one set of parameters and then kept constant for all the

1f(τ)= e−λτ(Aω cos(ωτ) −AΩ cos(Ωτ − φΩ)) + f0
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measurements presented in this chapter. For each individual measurement, we use two
fit parameters: First and most importantly, we adjust the size of the integration volume
(cf. Appendix B) such that the asymptotic value of the correlation function matches
with the experiment. Second, we have to adjust the atom-cavity detuning (∆ac/2π) by
up to 2.2 MHz (between 0 and -2.2 MHz) probably due to electronic offset drifts of the
probe-laser frequency lock during the days or weeks that lay between these individual
measurements.

In contrast to our first theoretical analysis in [11] and previous measurements of
correlation functions with passing atoms [5, 10], no vertical scaling is required to match
experimental data and theory. The reason for this improved agreement between theory
and experiment is a careful recalibration of the probe power based on the measured
empty-cavity transmission. With these corrected values of driving strength, η, which
deviate by at most 5 % compared to the values cited in [11], and a reduction of the
Stark-Shift from 5 MHz to 4 MHz, we are now able to reproduce also the absolute
values of the measured correlation functions.

6.2.1 Vacuum Rabi Oscillations

The obtained frequencies ω and Ω are plotted in Fig. 6.3 (b) as a function of the driving
strength η. The faster modulation of the correlation function at ω is a consequence of the
vacuum Rabi oscillations, i.e., the coherent exchange of a single excitation between atom
and cavity. For a qualitative understanding, we recall that we drive the system close
to resonance with the lower-frequency normal mode ∣1−⟩. Due to the anharmonicity
of the Jaynes-Cummings ladder, we are thus detuned from the ∣2−⟩ = (∣2g⟩ − ∣1e⟩)/

√
2

state. However, there is alway some off-resonant excitation to this state as well. On
short timescales where the effects of the driving can be neglected, only this state (and
of course the even less occupied higher dressed-states) can give rise to the emission of
two photons. It is therefore reasonable to assume that the time evolution of the average
photon number on short timescales is dominated by the steady-state population of the
∣2−⟩ state. The annihilation of the first photon that triggers the measurement projects
this state onto (

√
2∣1g⟩ − ∣0e⟩)/

√
3, which is not an eigenstate of the system. As a

consequence, the system oscillates between the two states with a single excitation at
the vacuum Rabi frequency of 2g. This is consistent with our observation of an almost
constant frequency, ω, with an average of ω̄/2π= 29 MHz (dashed blue line) close to the
expected maximum value of 2g0/2π = 32 MHz. The reduction of 10% can be attributed
to the averaging over different coupling strengths due to the atomic motion.

Even though vacuum Rabi oscillations have been observed directly in several mi-
crowave experiments before [12, 13, 14, 15], there is far less experimental evidence in the
optical domain. In particular, past experiments have either worked with ensembles of a
few atoms in the cavity [2] or operated in a dispersive regime [16] where the oscillation
frequency is dominated by the large atom-cavity detuning and not by the atom-cavity
coupling. An observation of vacuum Rabi oscillations of a single, strongly coupled atom
in the optical domain has only been achieved recently [17].
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Figure 6.3: (a) Second-order intensity correlation function g(2)(τ) for different driving
strengths (from top to bottom η = 1.86κ, 2.86κ, 3.62κ, 4.06κ, 4.53κ) in the experi-
ment (black) and theory (red). (b) The two oscillation frequencies ω (▲) and Ω (●) as a
function of the driving strength, η. ω is constant with an average ω̄/2π= 29 MHz (hor-
izontal dashed line) close to the maximum vacuum Rabi frequency of 2g0/2π= 32 MHz.
The super Rabi frequency Ω (cf. text for details) increases with η. Up to a driving
strength of about 3κ (vertical dashed line), it can be described by a two-level model
with Ω =

√
2η (black line). (c) The appearance of two frequencies can be understood

by two different processes: Neglecting the driving on short timescales, the emission of
a photon pair requires an initial occupation of the second-order dressed state. The
detection of the first photon projects it onto a superposition of the first-order dressed
states giving rise to vacuum Rabi oscillations in the subsequent time evolution. On
longer timescales, the initial occupation of the first-order dressed state, which is pro-
jected onto the ground state, can be coherently re-excited leading to the observation of
the super Rabi oscillations.

6.2.2 Super Rabi Oscillations

The strong driving gives rise to another coherent process, namely the exchange of
energy between the atom-cavity system and the probe laser. This results in the second
characteristic oscillation frequency Ω (● in Fig. 6.3 (b)), which depends on the driving
strength. We refer to these oscillations as super Rabi oscillations. As we have discussed
in detail in Section 2.2.3, due to its anharmonic energy-level structure (cf. Fig. 2.2 (c)),
the system behaves at low excitation like a driven two-level system [1] when excited
close to resonance with one of the normal modes. Neglecting the small atom-cavity
detuning, we expect a Rabi frequency of Ω =

√
2η (cf. Section 2.2.3), which is plotted

as a solid black line in Fig. 6.3 (b). Deviations from the two-level approximation occur
when the transition to the second dressed state becomes important. This is expected
for a driving strength of about 3κ, marked as a vertical dashed line. The reduction of
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Figure 6.4: Measured relaxation rate of the second-order correlation function in com-
parison with the decay rate expected for a driven two-level system λ = 3(κ + γ)/4 (red
line).

the oscillation frequency compared to the two-level approximation at higher powers is
in agreement with previous studies of a driven anharmonic oscillator [18].

Investigations of the second-order correlation function close to resonance with the
normal modes of a strongly coupled atom-cavity system have been performed before
[3, 4, 5, 19]. However, the only purpose of these experiments was the observation of
a photon blockade (i.e., anti-bunching) as a consequence of the anharmonic energy
level structure of the coupled atom-cavity system. The driving strengths and temporal
resolution were too low to observe super Rabi oscillations or vacuum Rabi oscillations
in these experiments.

The name super Rabi oscillations that we have introduced here is motivated by the
so-called super splitting of the normal modes observed in [20]. The magnitude of this
super splitting equals twice the super Rabi frequency discussed here. The super Rabi
oscillations can thus be considered as the dynamic manifestation of the super splitting.
In parallel to this work, super Rabi oscillations have also been observed in another
circuit QED experiment [21].

6.2.3 Dissipation

The damping of the correlation function to a constant asymptotic value reflects the
relaxation of the system back to its steady-state. From the exponentially damped fit
to the data, we obtain the relaxation rate λ which is plotted in Fig. 6.4 as a function
of the driving strength. Of course the relaxation rate is expected to be related to
the dissipation rates of the system κ and γ. However, as we cannot give an analytic
expression for the correlation function, it is not straightforward to make a quantitative
prediction. We have seen though that the super Rabi oscillation frequency is well
explained by a two-level model at low powers. This suggests to make a comparison
of the decay rate of the correlation function with the one expected for a driven two-
level system. The latter can be calculated analytically [22]. For a two-level system
with linewidth Λ (HWHM) driven strongly with a Rabi frequency Ω, the correlation
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Figure 6.5: (a) Fourier spectrum of the second-order correlation function for five differ-
ent driving strength (spectra are vertically offset with respect to each other for clarity)
in the experiment and theory (solid lines). The super Rabi oscillations are visible as
a pronounced peak at 5-10 MHz, whose maximum increases with the driving strength.
Due to the position averaging, the contribution of the vacuum Rabi oscillations at about
30 MHz is significantly broadened. Nevertheless, one can identify a shift towards higher
frequencies.

function is

g(2)(τ) = 1 − e−3Λτ/2 cos Ωτ . (6.2)

The relaxation rate is thus 3Λ/2. In our case, the linewidth of the ∣1−⟩ state is approxi-
mately Λ = (κ+γ)/2. The resulting decay rate of 3Λ/2 = 2π ⋅3.4 MHz (red line) is found
to be in reasonable agreement with the measured values of λ as plotted in Fig. 6.4.

6.2.4 Fourier Spectrum

A complementary way to characterize the characteristic frequencies appearing in the
second-order correlation function is to evaluate its Fourier spectrum. The result is
plotted in Fig. 6.5 showing the Fourier amplitudes of the second-order correlation
function (experiment and theory) at different probe powers. One can clearly identify
the super Rabi oscillation frequency, Ω, at about 5-10 MHz. As discussed before, its
frequency increases as the driving strength is increased.

The fast oscillation frequency, ω, is also visible as a broad spectral feature at about
30 MHz. The effect of the atomic motion, causing an averaging over different coupling
constants and thus a broadening of the spectrum, is clearly visible. This makes an
accurate determination of the characteristic frequency from the Fourier spectrum diffi-
cult. However, one can identify, at least qualitatively, an effect that we have overlooked
in our previous discussion. In fact, the fast oscillation frequency due to the vacuum
Rabi oscillations is not completely independent of the driving but also seems to shift to
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Figure 6.6: (a) Theoretical second-order correlation function for a fixed atom (g/2π =

12 MHz, ∆c/2π = −12 MHz) as a function of the driving strength. (b) The super Rabi
oscillation frequency Ω (●) agrees nicely with the experimental results shown in Fig.
6.3 (b). The vacuum Rabi frequency (▲) experiences a quadratic shift well explained
by standard perturbation theory (dashed line). It is not observed in the experiment
because of the atomic motion. (c) The shift is caused by the off-resonant coupling of
the normal modes to the higher-order dressed states induced by the probe laser.

higher frequencies with increasing driving strengths. This effect will be analyzed and
discussed further in the next section.

6.2.5 Light Shift of the Normal Modes

For further analysis, we have calculated the second-order correlation functions for a fixed
atom (g/2π = 12 MHz, ∆ac/2π = 0 MHz) driven on resonance with the normal modes
(∆c/2π = −12 MHz) for various driving strengths (cf. Fig. 6.6 (a)). We extract the two
frequencies using the same fitting procedure as described in Section 6.2. The resulting
frequencies, ω (▲) and Ω (●), are plotted in Fig. 6.6 (b). The power dependence of the
super Rabi oscillation frequency matches nicely with the experimental results shown in
Fig. 6.3 (b). However, in contrast to the results with position averaging, we clearly
see that the fast oscillation frequency ω is not constant but increases with increasing
driving strength.

This shift is caused by the off-resonant coupling between the normal modes and the
higher-order dressed states induced by the probe light. As shown in Fig. 6.6 (c), the
probe light, which is on resonance with ∣1−⟩, also couples the states ∣1−⟩ and ∣2−⟩ with
a Rabi frequency of Ω12 = (

√
2 + 1)η and a detuning of ∆12− = (2 −

√
2)g (cf. Section

2.2.3). Calculating the resulting shift of the ∣1−⟩ state using first-order perturbation

theory yields a red shift of δ1− =
Ω2

12

4∆12−
in direct analogy to the AC-Stark shift of a

two-level atom induced by an off-resonant laser [23]. The state ∣1+⟩ is shifted in very
much the same way due to the coupling between the ∣1+⟩ and ∣2+⟩ states with a Rabi
frequency of Ω12 = (

√
2 + 1)η and a detuning of ∆12+ =

√
2g. The coupling between the

∣1+⟩ and the ∣2−⟩ state (Ω′
12 = (

√
2− 1)η) is much weaker and can be neglected (cf. also
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Section 2.2.3). Since the probe laser is red detuned from the two respective transitions,
both eigenstates, ∣1−⟩ and ∣1+⟩, are shifted towards lower frequencies. The effective
shift of the frequency difference that appears in the correlation functions is then given
by the difference of the individual shifts:

δ1+ − δ1− =
Ω2

12

4
(

1

∆12+

−
1

∆12−

). (6.3)

As one can see from Fig. 6.6 (b), this simple model (dashed black line) does indeed
reproduce the frequency shift of the vacuum Rabi frequency observed in the theoretical
correlation functions. When all the detunings are set to zero, an equivalent shift,
called dynamical Stark effect, has been predicted from exact analytical calculations
[24]. In the experiment, this effect is unfortunately counteracted by the averaging
over different coupling strengths due to the atomic motion and could therefore not be
observed conclusively.

6.3 Third-Order Correlation Function

The dynamics of the average photon number, ⟨a�a⟩, that we have considered so far is
dominated by the coherent internal dynamics (vacuum Rabi oscillations) and driving
(super Rabi oscillations) of the first-order dressed states only. The deviation from the
two-level approximation of the super Rabi oscillation frequency and also the simple
model that we have introduced to explain qualitatively the appearance of the vacuum
Rabi oscillations require a non-negligible initial population of the second-order dressed
states. However, their dynamics, in particular the quantum Rabi oscillation [12] at a
frequency of 2

√
2g, are not directly visible.

6.3.1 Dynamics of the Second-Order Dressed States

This motivates us to consider the dynamics of another observable, namely the proba-
bility for the detection of a photon pair, ⟨a�2a2⟩ (blue line in the quantum trajectory in
Fig. 6.1 (a) and (b)). In contrast to the normal modes, the second-order dressed states
emit photons in pairs [6]. Therefore, the probability to detect a photon pair is more
sensitive to their occupation than the average photon number. This is supported by
the corresponding quantum trajectory. The fast oscillations of ⟨a�2a2⟩, nicely visible in
Fig. 6.1 (b), clearly deviate in frequency and visibility from the vacuum Rabi oscilla-
tions that appear for ⟨a�a⟩. In addition, the expectation value ⟨a�2a2⟩ also undergoes
slow super Rabi oscillations at the same frequency as ⟨a�a⟩ but with a higher visibility.

To confirm this behavior experimentally, we evaluate the probability to detect a
photon pair at a time τ before or after a single photon has been observed, corresponding
to the third-order correlation function [25],

g(3)(τ,0) = {
⟨a�a�(τ)2a(τ)2a⟩/⟨a�a⟩3 τ>0
⟨a�2a�(−τ)a(−τ)a2⟩/⟨a�a⟩3 τ<0.

(6.4)

For τ > 0, it measures the time dependence of ⟨a�2a2⟩ conditioned upon the detection
of a single photon. For τ < 0, it measures the time dependence of ⟨a�a⟩ conditioned
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upon the detection of a photon pair. A similar time dependence as for the second-order
correlation function is expected in the latter case.

It is instructive to compare the correlation functions directly to a sample quantum
trajectory as shown in Fig. 6.7 (a) where τ = 0 is defined by the detection of a photon
emitted from the cavity. Experimental and theoretical third-order correlation functions
are plotted in Fig. 6.7 (b) (∆c/2π = −12 MHz, η = 4.53κ). Experiment and theory are
in excellent agreement without any additional fit parameters (the integration volume
and atom-cavity detuning are adjusted for the second-order correlation function and
then kept constant). In analogy to the different time dependence of ⟨a�a⟩ and ⟨a�2a2⟩

in the quantum trajectory, the correlation function behaves differently for positive and
negative times τ . On short timescales, a weak modulation at different frequencies is
visible.

For τ < 0, a local maximum at about 30 ns (red arrow) is observed. For a qualitative
understanding, we introduce again a very simple model (cf. Fig. 6.7 (e)). On short
timescales where the driving of the system can be neglected, the detection of three
photons requires an initial population of the third-order dressed state ∣3−⟩. The simul-
taneous detection of two photons at τ = 0 (corresponding to two applications of the an-
nihilation operator to the initial state ∣3−⟩) causes a projection onto the non-stationary
state 1

2(
√

3∣1, g⟩ − ∣0, e⟩). For τ < 0, the third-order correlation function measures the
successive vacuum Rabi oscillations of the average photon number ⟨a�a⟩ causing a local
maximum after one oscillation period. Its position matches with the oscillation period
of the average photon number in the quantum trajectory, which is also marked by a
red arrow.

For τ > 0, we find a shoulder at about 20 ns (blue arrow), which is in good agree-
ment with the oscillation frequency of ⟨a�2a2⟩ in the quantum trajectory. In this case,
a single photon is detected at τ = 0 causing a projection onto the non-stationary state

1√
5
(
√

3∣2, g⟩−
√

2∣1, e⟩). The subsequent measurement of the two-photon emission prob-

ability ⟨a�2a2⟩ then displays the quantum Rabi oscillations of the second-order dressed
states with an expected period of about 2π/2

√
2g0 = 22 ns [12, 26]. Our simple model

also explains the lower visibility of these quantum Rabi oscillations. It is a consequence
of the fact that, after a single photon detection, the overlap of the projected state with
the ∣2−⟩ state is larger than the overlap between the ∣1−⟩ state and the projected state
after two photon detections.

As the mentioned shoulder is not very pronounced, we have plotted in Fig. 6.7 (c)
and (d) the results of two other measurements (∆c/2π = −12 MHz, η = 4.06κ and
∆c/2π = −10 MHz, η = 3.47κ). They do not offer additional physical insights but
demonstrate the reproducibility of this weak effect.

On longer timescales, the onset of super Rabi oscillations is also visible in g(3)(τ,0).
While its frequency seems to be similar for positive and negative times, the amplitude
is more pronounced in the first case. Both observations are in agreement with our
previous statement, based on the sample quantum trajectory, that ⟨a�2a2⟩ and ⟨a�a⟩
oscillate slowly at a similar frequency but with different visibility.
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Figure 6.7: (a) A sample quantum trajectory (g/2π = 14.5 MHz, ∆a/2π = ∆c/2π =

−12 MHz, η = 4.5κ) shows different oscillation frequencies for the observables ⟨a�a⟩
(red) and ⟨a�2a2⟩ (blue). (b) These frequencies are reproduced in the third-order in-
tensity correlation function g(3)(±τ,0) (∆c/2π = −12 MHz, η=4.53κ). The vacuum
Rabi oscillations at a frequency of 2g0 are visible (red arrow) as a weak modulation
for negative times (red, ●), whereas the quantum Rabi oscillations at a frequency of
2
√

2g0 are visible (blue arrow) as a weak modulation for positive times (blue, ○). (c-d)
This weak modulation is also reproduced in measurements with different parameters
(∆c/2π = −12 MHz, η = 4.06κ and ∆c/2π = −10 MHz, η = 3.47κ). In general, they show
the same characteristic features. The solid lines are theoretical calculations without any
additional fit parameters. (d) A qualitative explanation is provided by a very simple
model: Neglecting the driving, the detection of three photons requires an occupation of
the third-order dressed state. For τ < 0, a photon pair is emitted first. This projection
onto a superposition of the normal modes gives rise to the vacuum Rabi oscillations
causing a local maximum in the correlation function after one vacuum Rabi oscillation
period. For τ > 0, a single photon is detected first. The quantum Rabi oscillations of
the second-order dressed states modulate the probability to detect a photon pair at a
frequency of 2

√
2g0.
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6.3.2 Three-Time Correlations

Next, we investigate how patterns of two successive photon detections determine the
future trajectory of the system. As an example, consider the quantum trajectory shown
in Fig. 6.1 (b), and here the two photons which are emitted at about 650 ns and 680 ns.
How does the subsequent time evolution of the photon number depend on the separation
between these two photon detections? To answer this question, we evaluate the general
third-order correlation function,

g(3)(τ1, τ2) =
⟨a�a�(τ1)a�(τ1 + τ2)a(τ1 + τ2)a(τ1)a⟩

⟨a�a⟩3
. (6.5)

It is proportional to the probability to detect three photons, with time separations
τ1 between first and second, and τ2 between second and third photon. An example
(∆c/2π = −12 MHz, η= 3.9κ) is shown in Fig. 6.8 in the experiment (a) and theory (b).
As before, no additional fit parameter is required to achieve good agreement between
theory and experiment. The special case g(3)(τ,0) discussed previously can be found
on the vertical (for τ>0) and horizontal (for τ<0) axis of this figure. Our question can
now be answered by comparing different horizontal cuts through the figure. Each cut
measures the time evolution of the average photon number after the detection of a
photon pair separated by τ1. We see immediately that there is a strong dependence on
τ1, that is on the previous measurement record, if this separation is shorter than the
coherence time of the system.

The most interesting feature is the occurrence of a peak marked by two dashed lines
at τ1 ≈ 2π/2g0 and τ2 ≈ 2π/2Ω, that is when the separation between the first two clicks is
one period of a vacuum Rabi oscillation, whereas the separation between the second and
the third click is half a period of the super Rabi oscillations. These timescales suggest
that we observe an interplay between the vacuum Rabi oscillation and the super Rabi
oscillation. We give an intuitive explanation in terms of the quantum measurement
process: The detection of two photons separated by τ1 ≈ 2π/2g0 is a signature of the
normal modes, which oscillate at this frequency. Between the two detection events,
the state of the system therefore had a large contribution from the first-order dressed
states. The detection of the second photon projects these states onto the ground state.
Subsequently, the super Rabi oscillations cause a maximum of the excitation after
half a super Rabi oscillation period (i.e., τ2 ≈ 2π/2Ω) leading to a high probability to
detect a third photon after this time. The reverse process at τ1 ≈ 2π/2Ω and τ2 ≈ 2π/2g0

is not particularly enhanced: the super Rabi frequency is not characteristic to any
particular set of dressed states. Therefore, the detection of two photons separated by
half a period of the super Rabi frequency does not change the subsequent time evolution
much compared to the detection of just an individual photon. This explains the missing
of a similar peak at τ1 ≈ 2π/2Ω and τ2 ≈ 2π/2g0.

6.3.3 Intrinsic Third-Order Correlations

The third-order correlation function is proportional to the time evolution of the aver-
age photon number conditioned upon two previous detection events. We have argued
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Figure 6.8: Third-order intensity correlation function g(3)(τ1, τ2) in the experiment (a)
and theory (b) (η=4.06κ). To reduce noise, it was convoluted with a two-dimensional
Gaussian filter with a width (FWHM) of 7 ns. An explanation for the pronounced,
time-asymmetric peak marked by the dashed lines is given in the text.

that the detection of two photons separated by some time τ1 provides us with additional
knowledge about the state of the system compared to just a single detection. Therefore,
it alters the subsequent time evolution. However, the textbook example of a resonantly
driven two-level atom in free space shows that this point requires further consideration.
As this system can only scatter photons one-by-one the detection of a photon causes a
projection onto the ground state of the atom and thus completely determines the state
of the system. It is clear that, for this example, the detection of a photon pair does not
convey additional information. Thus, we expect that the third-order correlation func-
tion is completely determined by the second-order correlation function. The intrinsic
third-order correlations of a system are defined as the difference between the observed
third-order correlations and the third-order correlations expected from lower-order cor-
relations. Unfortunately, this definition is quite ambiguous since what one expects from
lower order correlations can be (and has been) defined differently in literature, depend-
ing on whether one wants to make a comparison with a coherent [27] or a thermal [8]
state. In the following, we will introduce yet another definition which we think is more
suitable for our situation.

Intrinsic and Acquired Correlations

We define that a system does not possess intrinsic third-order correlations when the
detection of a photon pair does not change our knowledge about the state of the system
compared to just a single photon detection. Formally speaking, this is equivalent to
assuming that the density matrix of the system after two detection events is equal to
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the density matrix after just a single photon detection, i.e.,

ρ after the detection of a photon pair
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
aeLτ [aρsa�]a�

tr (aeLτ [aρsa�]a�)
=

ρ after the detection of a single photon
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
aρsa�

tr (aρsa�)

⇔ aeLτ [aρsa
�]a� =

⟨a�a�(τ)a(τ)a⟩

⟨a�a⟩
aρsa

� =
γ2(τ1)

γ1

aρsa
�.

(6.6)

We have adopted the short-hand notation

γk(τ1 . . . τk-1) = ⟨a� . . . a�(τ1 + . . . + τk-1)a(τ1 + . . . + τk-1) . . . a⟩ (6.7)

for the unnormalized correlation function. We now use Eq. 6.6 to rewrite the quantum
regression theorem (cf. Section 2.3.3). The time-dependent third-order correlation
function can be expressed in terms of the second-order correlation function only:

γ3(τ1, τ2) = tr{a�aeLτ2[aeLτ1 [aρsa
�]a�]}

=
γ2(τ1)

γ1

tr{a�aeLτ2[aρsa
�]}

= γ2(τ1)γ2(τ2)/γ1

(6.8)

After proper normalization, we find g(3)(τ1, τ2) = g(2)(τ1)g(2)(τ2) for a system with
no intrinsic third-order correlations. In the following, we will refer to this as the ac-
quired third-order correlations as they are completely determined by lower-order cor-
relations. The intrinsic third-order correlations, k(3)(τ1, τ2), of an arbitrary system
are then defined as the difference between the total third-order correlations and the
acquired third-order correlations:

k(3)(τ1, τ2) ∶= g
(3)(τ1, τ2) − g

(2)(τ1)g
(2)(τ2). (6.9)

We would like to emphasize that, for a system without intrinsic third-order correlations,
the third-order correlation function is alway symmetric in time. This is also true for
the alternative definitions of the intrinsic correlations put forward in [8, 27]. The
observation of a time asymmetry as discussed in the last sections is thus already a
proof for the presence of intrinsic third-order correlations.

Intrinsic Correlations with Atomic Motion

In practice, the evaluation of the intrinsic correlation with position averaging is not as
straightforward as Eq. 6.9 suggests. To understand this, we recall that the correlation
function that we evaluate includes an averaging over different positions, i.e., coupling
strengths and Stark shifts (cf. Appendix B for details). We write γk(τ1 . . . τk-1, x) to
denote the explicit dependence upon the position x. The position averaged expecta-
tions values are written as γk(τ1 . . . τk-1, x)x where the position averaging comprises an
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Figure 6.9: Intrinsic third-order correlations, k(3)(τ1, τ2), in the experiment (a) and
theory (b) (∆c/2π=-12 MHz, η=4.06κ). To reduce noise, it was convoluted with a
two-dimensional Gaussian filter with a width (FWHM) of 7 ns. Three horizontal cuts
marked by dashed lines are shown in Fig. 6.10 and discussed in the text.

integration over some atomic distribution function (cf. Appendix B). We would like to
determine the position averaged intrinsic correlation function,

k(3)(τ1, τ2) = (γ3(τ1, τ2, x)x − γ2(τ1, x)γ2(τ2, x)/γ1(x)x) /γ1(x)
3

x. (6.10)

The difficulties arise from the fact that the position averaging does not factorize, that
is the average over the acquired correlations (the second term on the right hand side)
cannot be written as a product of lower order correlation functions, since

γ2(τ1, x)γ2(τ2, x)/γ1(x)x ≠ γ2(τ1, x)xγ2(τ2, x)x/γ1(x)x. (6.11)

Therefore, it is not possible to determine this term directly from a measurement. In-
stead, we have to rely on a theoretical calculation of the acquired correlation function
with position averaging. In view of the good agreement that we have found between
theoretical and experimental correlation functions, we can expect that our theoretical
calculations yield reliable results for the acquired correlations as well. We then deter-
mine the intrinsic correlations by taking the difference between the measured third-order
correlations and the (calculated) acquired correlations.

Results

Experimental and theoretical results of intrinsic third-order correlation function for the
parameters discussed in Section 6.3.2 are shown in Fig. 6.9. In general, the intrinsic
correlation function looks quite differently from the raw third-order correlation function.
In particular, the time asymmetry is much more pronounced. The interplay between
vacuum Rabi oscillations and super Rabi oscillations discussed before is reflected by the
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Figure 6.10: Intrinsic third-order correlations k(3)(τ1, τ2) for three fixed values of τ1 in
the experiment (○) and theory (red line). A detailed discussion can be found in the
text.

bright peak at τ1 ≈ 2π/2g0 and τ2 ≈ 2π/2Ω. For a better understanding, we fix the time
separation between the first two photons τ1 to zero, half a period of the vacuum Rabi
oscillations and a full period of the vacuum Rabi oscillations. This corresponds to a
discussion of the horizontal cuts in Fig. 6.9 (b) marked by dashed lines. The respective
intrinsic correlations are plotted in Fig. 6.10 as a function of τ2. In all three situations,
the intrinsic correlations at τ2 = 0 are negative implying a reduced probability to detect
a third photon directly after the detection of a photon pair. The time dependence of
the intrinsic correlation is dominated by the super Rabi oscillations. We clearly see
that the amplitude of these oscillations varies with the separation, τ1, between the first
two photon clicks.

The case τ1 = 0 serves as a reference. In contrast to just a single photon detection,
the simultaneous detection of two photons projects also the steady-state population of
the second-order dressed states onto the ground state, which, subsequently, undergoes
super Rabi oscillations visible in the intrinsic correlation function.

The amplitude of the super Rabi oscillations decreases when the time separation
between the first two-photons is half a period of the vacuum Rabi oscillations (τ1 ≈

17.5 ns). For an intuitive explanation, we recall that, if the system is initially prepared
in the second-dressed state ∣2−⟩, the detection of a first photon projects it onto a
superposition of the normal modes. Subsequently, the system undergoes vacuum Rabi
oscillations and the probability for the emission a second photon is suppressed after half
a period of the vacuum Rabi oscillations. The detection of two photons separated by
this time thus indicates an initial population of the third- or even higher-order dressed
states. After the arrival of the photon pair, the system is not well prepared in the
ground state. The visibility of the super Rabi oscillations is reduced.

The opposite is true when the first two photons are separated by a full period of
the vacuum Rabi oscillations. Such a photon pattern is most likely to occur from an
initial population of the second-order dressed states. The detection projects it onto the
ground state and the subsequent super Rabi oscillations are nicely visible.
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Figure 6.11: (a) Theoretical second-order correlation function for a fixed atom (g/2π =

12 MHz, ∆c/2π = −12 MHz, η = 3.5κ). (b) Entropy of the steady-state density matrix
(S(ρs), dashed blue line), time dependence of the entropy after the detection of a
photon (S(ρa(τ)), dotted red line) and entropy after two photon detections separated
by the time τ (S(ρaa(τ)), solid black line). The smaller the entropy, the larger our
knowledge about the state of the system. The detection of two photons separated by one
period of the vacuum Rabi oscillations (vertical dotted line) provides us with additional
knowledge about the state of the system causing a local minimum of S(ρaa(τ)) at this
time. This explains the interplay of vacuum Rabi oscillations and super Rabi oscillations
discussed in the last section.

6.4 Correlation Functions and Entropy

In our previous discussion, we have argued that the detection of two photons with a
certain time separation provides us with additional knowledge about the state of the
system leading to a characteristic time evolution in the future. Before concluding this
chapter, we would like to revisit this point from a slightly different perspective, namely
in terms of the entropy of the system. It can be considered as a measure for how well
the state of the system is known. We recall that the van Neumann entropy of a density
matrix ρ is defined as [28]:

S(ρ) = −kB⟨log ρ⟩ = −kBtr(ρ log ρ) (6.12)

with the Boltzmann constant kB. Perfect knowledge about the state of the system
corresponds to a pure-state density matrix with an entropy of zero. For mixed states,
the entropy takes positive values with a maximum value of kB logN when the sys-
tem is equally distributed among all N accessible states. We are interested in the
entropy under three different conditions: First, the entropy of the steady-state den-
sity matrix S(ρs), which serves as a reference. Second, the time evolution of the en-
tropy after a photon has been detected S(ρa(τ)), with the collapsed density matrix
ρa = aρsa�/tr(aρsa�). Third, the entropy of the system after two photons separated by
the time τ have been detected, S(ρaa(τ)) - an event which is described by the density
matrix ρaa(τ) = aρa(τ)a�/tr(aρa(τ)a�).
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Theoretical results for a fixed atom (g/2π = 12 MHz, ∆c/2π = −12 MHz, η = 3.5κ) are
plotted in Fig. 6.11. For comparison, we have also plotted the second-order correlation
function (Fig. 6.11 (a)) showing the timescales of the characteristic vacuum Rabi and
super Rabi oscillations. The entropy of the steady state, S(ρs), is plotted as a blue
dashed line. As expected, the detection of a photon provides information about the state
of the system causing a reduction of the entropy, S(ρa(τ)) (dotted red line). Due to
the presence of dissipation and driving the entropy then increases almost monotonously
back to its steady state. Next, we consider the entropy when a second photon is
detected at time τ after the first photon detection, S(ρaa(τ)) (solid black line). It
is clearly modulated at the vacuum Rabi frequency with local minima at multiples
of the vacuum Rabi oscillation period and local maxima in-between. This underlines
the validity of arguments given in the last sections to explain the time dependence of
the intrinsic third-order correlations: The detection of a photon pair separated by one
period of the vacuum Rabi oscillations yields more information about the state of the
system than a photon pair that is separated by half a period. For larger separations
between the two photon detections, the entropy increases to an asymptotic value, which
is equal to the entropy after just a single detection event, S(ρa(0)). This simply reflects
the fact that when the time separation between the first and second photon detection
exceeds the coherence time of the system, the intrinsic correlations vanish, that is the
detection of the photon pair projects the state of the system onto the same density
matrix as just a single photon detection.

6.5 Time Asymmetry

Both discussed effects, the different dynamics of the first- and second-order dressed
states as well as the interplay between vacuum and super Rabi oscillations, give rise to
pronounced time-asymmetries of the third-order correlation function, i.e., g(3)(τ1, τ2) ≠

g(3)(τ2, τ1) demonstrating that the transmitted photon stream is asymmetric in time.

Our explanation for the asymmetry was based on the fact that the quantum jumps
of the system on the Jaynes-Cummings ladder are accompanied by photon cascades
with a specific directionality in time. For example, by comparing the time evolution of
g(3)(τ,0) for positive and negative times, we have studied the time evolution of different
observable, namely ⟨a�a⟩ and ⟨a�a�aa⟩, which differ due to the different dynamics of
the first- and second-order dressed states.

In a way, this effect is directly related to the time asymmetries that have been
observed in different physical systems as a consequence of the cascaded emission of
photons at different colors. Two nice examples are the consecutive emission of two
photons in the spectral sidebands of a strongly driven two-level system in free space [29]
or the cascaded biexciton-exciton emission from a quantum dot [30]. Time asymmetries
due to the consecutive emission of single photons and photon pairs, as we observe it,
have, to our knowledge, not been investigated before.

In cavity QED, evidence for a time asymmetry has also been found in previous
studies of intensity-field correlation functions [31]. However, the effect was hardly
above the noise level and no quantitative comparison with theory could be made.
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Figure 6.12: Experimental fourth-order intensity correlation function g(4)(0, τ1, τ2− τ1).
A discussion of the rich temporal structure will be the subject of future investigations.

In a more general context, it has been proposed that the occurrence of such time-
asymmetric fluctuations in the output fields is a consequence of the breakdown of de-
tailed balance in a driven system far away from thermal equilibrium [32]. We will review
these arguments and point out some subtleties not discussed in [32] in Appendix D.

6.6 Conclusion and Outlook

In conclusion, using second- and third-order intensity correlations, we are able to probe
the dynamics of the normal modes and the second rung of dressed states. All relevant
dynamical processes - dissipation, driving and internal dynamics - have been observed.
We have found good agreement with a theoretical model and could also provide intu-
itive explanations of the observed effects. Moreover, we introduced a new definition of
the intrinsic third-order correlations that highlights how the detection of photon pairs
influences the knowledge about the state of the system.

An appealing perspective is to use the information gained by the detection events
to control the system by means of feedback. For example, an experiment by the Orozco
group [33] has demonstrated that the fluctuations of the output field can be reduced
by applying feedback conditioned upon single detection events. As we have seen mul-
tiple detection events can provide additional knowledge and thus might enable more
sophisticated feedback schemes.

The strong-driving regime of cavity QED that we have just started to investigate
here has so far attracted little experimental and theoretical attention. This is surprising
in face of the fact that it offers very interesting perspectives such as single atom bista-
bility due to the dynamical polarization of the dressed states [34, 35] or multi-photon
blockade effects [36]. Moreover, we expect that these investigations will shed new light
on the connection between quantum and semi-classical descriptions of the atom-cavity
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system. For example, there exists a close analogy between the super Rabi oscillations
that we observe and the Rabi-like oscillations occurring in a driven anharmonic oscil-
lator [18]. At high driving strenghts, the latter can be explained by a classical model.
This raises the interesting question whether semi-classical non-linear oscillator models,
like the ones put forward in [37, 38] in a quite different context of cavity QED, might
also be applicable to our measurements at strong driving strengths.

Another obvious perspective is of course to investigate even higher-order correla-
tion functions. The four detectors that we have available allow us to evaluate the
fourth-order intensity correlation function. An example is shown in Fig. 6.12 showing
g(4)(0, τ1, τ2− τ1) (∆c/2π = −12 MHz, η = 3.9κ), which is proportional to the probability
to detect a photon pair followed or precedented by two other photons at times τ1 and
τ2. To achieve a sufficient signal to noise ratio, the binning time was increased to 15 ns
compared to our previous results. The most interesting part is the central region when
all four photons arrive within the coherence time of the system. A detailed discussion
of the temporal structure and measurements achieving a better temporal resolution will
be an interesting subject for future investigations.

Our analysis of correlation functions has revealed patterns in a seemingly randomly
fluctuating stream of photons. Correlation functions are also commonly used to study
fluctuations of other observables in a variety of physical systems. While most exper-
iments focus on second-order correlation functions, there are several examples where
additional insight has been gained by investigating higher-order correlations. Some ex-
amples are lasers near threshold [7, 8], non-Gaussian scattering processes [9], ultra-cold
atoms [39, 40] or the charge transfer through nano-electronic devices, such as quan-
tum dots [41] or point contacts [42]. Our results, for example our new definition of
the intrinsic correlation function, might also find applications for the study of these
systems.
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Chapter 7
Correlation Functions and Photon Statistics
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We have introduced measurements of time-dependent correlation functions to study
the quantum dynamics of the atom-cavity system. It is well known that the second-
order correlation function g(2)(0) carries information about the variance, i.e., the width
of the photon-number distribution [1]. In this chapter, we show that measurements of
the third-order correlation function g(3)(0,0) provide additional information about the
photons statistics. This enables us to reconstruct the photon-number distribution of
the driven atom-cavity system.

Our interest in the photon-number distribution is particularly motivated by the fact
that cavity QED has proven to be a powerful tool to generate light states with unusual,
i.e., non-Poissonian and non-Gaussian photon statistics. For example, Fock states [2, 3],
superposition of Fock states [4] and Schrödinger cat states [5] have been generated in
microwave cavity quantum electrodynamics. In the optical domain, very efficient single-
photon sources based on single atoms in cavities have been demonstrated [6, 7, 8]. While
in these examples the generated states were all but stationary, even the steady state
of the continuously driven atom-cavity system shows unusual photon-number distribu-
tions. This is a consequence of the anharmonicity of the Jaynes-Cummings ladder that
allows to drive selectively certain dressed states via multi-photon transitions [9]. On
the one hand, on resonance with the normal modes, a photon blockade [10, 11] has been
inferred from the observation of anti-bunching in the second-order correlation function.
Resonant excitation of the second dressed states, on the other hand, leads to an en-
hanced emission of photon pairs as it was concluded from the observation of bunching
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[12, 13]. This effect has been called a two-photon gateway. Both effects have been
characterized exclusively by measurements of the second-order correlation function. A
full reconstruction of the photon-number distribution has not been attempted.

Different techniques to measure photon-number distributions have been used in the
past, such as photon-number resolving detectors [14], optical homodyne tomography
[15] or techniques based on time multiplexing of light pulses [16, 17]. The reconstruc-
tion based on correlation functions that we employ here has the advantage that it uses
standard, commercially available single-photon detectors and that it is not only ap-
plicable to pulses but also to steady-state photon-number distributions. It is closely
related to a much more general theoretical proposal for quantum state reconstruction
based on photon chopping and coincidence counting [18].

After introducing the principle of our reconstruction algorithm and characterizing
its accuracy, we will reconstruct the photon-number distribution for the two scenarios
discussed before, the photon blockade and the two-photon gateway, which is strictly
speaking a multi-photon gateway in our case. Even though the blockade and gateway
effects that we observe are rather weak, these results serve as a proof of principle
experiment, highlighting the versatility of measurements of the third- and higher-order
intensity correlation functions.

7.1 Reconstruction Algorithm

To understand how correlation functions can be used to reconstruct the photon-number
distribution p(n) inside the cavity, we note that the unnormalized k-th order intensity
correlation function, γk = ⟨a�kak⟩, can be expressed in terms of the photon-number
distribution as:

γk = ⟨n̂(n̂ − 1)...(n̂ − k + 1)⟩ =
∞

∑
n=k+1

p(n)
n!

(n − k)!
(7.1)

A measurement of correlation functions up to the third-order accompanied by the nor-
malization of the probability distribution (∑p(n) = 1) provides us thus with four linear
equations for an infinity of unknowns p(n). It seems reasonable to neglect the occu-
pation of the Fock states much higher than the average photon number. As we will
see later on, setting the occupation above the four-photon Fock state equal to zero
(p(n ≥ 5) = 0) yields good results for our experimental parameters. However, for n = 4,
this approximation is not valid.

A better approximation can be made by noting that the fourth-order correlation
function can be rewritten as [19]

γ4 = ⟨∶ ∆n̂4 ∶⟩ + 4γ3γ1 − 6γ2γ
2
1 + 3γ4

1 (7.2)

with the fluctuation operator ∆n̂ = n̂ − ⟨n̂⟩. We emphasize that the term on the right
hand side is a sum of two terms: the fourth-order cumulant ⟨∶ ∆n̂4 ∶⟩ and a term
that depends only on lower order correlations. Similar expressions can be found for
arbitrary k-th order correlation functions. This has motivated the original definition of
the intrinsic correlations [20] as the first term in Eq. 7.2. Note that this definition is
different from the one we have introduced in Chapter 6. To estimate the fourth-order
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correlation function from lower order correlations, we neglect this term, making the
approximation γ4 ≈ 4γ3γ1−6γ2γ2

1 +3γ4
1 . Further justification for this approximation will

be given in the next section. We obtain for the probability distribution of up to four
photons:

p(0) =
1

24
(24 − 24γ1 + 12γ2 − 4γ3 + γ4)

p(1) =
1

6
(6γ1 − 6γ2 + 3γ3 − γ4)

p(2) =
1

4
(2γ2 − 2γ3 + γ4)

p(3) =
1

6
(γ3 − γ4)

p(4) =
1

24
(γ4)

γ4 = 4γ3γ1 − 6γ2γ
2
1 + 3γ4

1

(7.3)

7.2 Experimental Procedure and Data Analysis

We use the same experimental procedure described in the last chapter to measure
the first-, second- and third-order correlation function of the light that is transmitted
through the cavity when individual atoms pass through the cavity mode. An example
(∆c/2π = −16 MHz, η = 3.91κ) is shown in Fig. 7.1.

The theoretical curves were obtained using the theoretical model used before (cf.
Appendix B for details). We also calculate the theoretical photon-number distribution
from the steady-state solution of the master equation using:

ptheo(n) = ∫ ⟨n∣ρs(x)∣n⟩P (x)dx (7.4)

where ρs(x) is the steady-state density matrix at the position x and P (x) is the atomic
distribution discussed in Appendix B.

To apply the reconstruction algorithm described in the previous section, we need
to determine the unnormalized correlation functions γk. For this purpose, we first
determine the average photon number γ1 = ⟨a�a⟩ from the average photon flux behind
the cavity. This enables us to calculate the unnormalized higher-order correlations
via γk = g(k)(0)⟨a�a⟩k. Finally, we can use Eq. 7.3 to reconstruct the photon-number
distribution. To determine error bars, an uncertainty of the detection efficiency on the
order of 5 % is taken into account.

To verify if the reconstruction algorithm does indeed yield reliable results, we com-
pare the theoretical photon-number distribution with the distribution that we obtain
by applying the reconstruction algorithm to the theoretical correlation functions. The
results for the previous example (cf. Fig. 7.1) are plotted in Fig. 7.2. Figure (a) shows
the theoretical (ptheo, black) as well as three different reconstructed photon-number
distributions. First, we only take into account the second-order correlation function
and truncate the distribution after the two-photon Fock state (p2, gray). Second, we
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Figure 7.1: (a) Experimental and theoretical second-order correlation function, g(2)(τ),
at a detuning of ∆c = −16 MHz on resonance with the normal modes (η = 3.91κ).
Third-order correlation function, g(3)(τ1, τ2), in the experiment (b) and theory (c). The
photon-number distribution, p(n), can be reconstructed by evaluating the correlation
functions g(2)(0) and g(3)(0,0). Using the asymptotic values of the correlation func-
tions, we can also determine the photon-number distribution of a coherent state with
equivalent intensity modulation pcoh(n), which serves as a reference.

also take into account the third-order correlation function, but we assume p(n ≥ 4) = 0
(p3, blue). Last, we apply the full reconstruction algorithm described in the last sec-
tion (p4, red). The deviation of the reconstructed from the theoretical distribution
(Fig. 7.2 (b)) clearly shows how the quality of the reconstruction improves for the
three algorithms. A similar behavior was also observed for measurements with different
parameters discussed below.

The photon number distribution alone is not very instructive, since it depends
strongly on the average photon number, which obviously varies with the detuning of
the probe light. In other words, even for an empty cavity, we would expect a trivial
change of the photon-number distribution when the probe frequency is varied. Instead,
we compare the reconstructed distribution with some reference distribution with the
same average photon number. The most obvious choice for this reference distribution
is of course the Poisson distribution of a coherent field with the same average photon
number. However, we know that the motion of the atom causes a variation of the
average photon number leading to a broadening of the photon-number distribution.
Since we are not interested in the variation of the photon-number distribution due to
the atomic motion but in its variation due to the anharmonic spectrum of the coupled
atom-cavity system, the reference distribution that we need to determine is an average
over different coherent states whose average photon numbers are varied in the same
way as the atomic motion varies the average photon number in the experiment. In the
following, we will refer to this distribution as pcoh(n). In theory, we can determine it
by using the same position averaging as it is used for the calculation of the correla-
tion function. For each position in the cavity, we calculate the average photon number
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Figure 7.2: (a) Photon-number distribution with position averaging (ptheo(n)) and re-
constructed distribution for different reconstruction algorithms using correlations up to
second-order (p2(n)), third-order (p3(n)) and fourth-order (p4(n)), cf. text for details).
(b) The decrease of the deviation of the reconstructed distributions from the theoreti-
cal distribution shows that the accuracy of the reconstruction algorithm increases when
higher-order correlations are taken into account.

and the corresponding Poisson distribution. Then we average the distribution over the
different positions using the weighting function described in Appendix B.

To determine pcoh(n) from the experimental results requires further considerations.
We could directly reconstruct the distribution using the same reconstruction algorithm
described before if we knew the corresponding second- and third-order correlation func-
tions γcoh

k . It is straightforward to show that these correlation functions are given by the
asymptotic values of the experimentally observed correlation function. To show this,
we use the same notation as in the last chapter writing γk(τ1 . . . τk−1, x) to denote the
correlation function of the emitted light field for an atom at the position x. If the time
arguments of the correlation function are larger than the coherence time of the system,
the correlation function factorizes, i.e., γk(τ1 . . . τk−1, x) = γ1(x)k, which is equivalent to
the k-th order correlation function of a coherent state with the same average photon
number. We thus find for the correlation functions of the modulated coherent state:

γcoh
k = ∫ γ1(x)

kP (x)dx = ∫ γk(τ1 . . . τk−1, x)P (x)dx = g(k)(τ1 . . . τk−1)γ
k
1 (7.5)

where the time arguments have to be larger than the coherence time of the system,
i.e., g(k)(τ1 . . . τk−1) are the asymptotic value of the measured correlation functions. In
conclusion, we obtain the photon-number distribution of a coherent state with position
averaging, pcoh(n), by applying the reconstruction algorithm to the asymptotic values
of the measured correlation function.
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Figure 7.3: (a) The system is driven on resonance with one of the normal modes. Due
to the anharmonicity of the Jaynes-Cummings ladder, this implies a detuning from
the higher-order dressed states. Therefore, photons enter the cavity preferentially one-
by-one. (b) Theoretical photon-number distribution (ptheo(n)) and the reconstructed
distributions based on theoretical (prec(n)) and experimental (pexp(n)) correlation func-
tions at a detuning of ∆c/2π = −16 MHz on resonance with one of the normal modes.
(c) The difference between the photon-number distribution and the distribution of a
modulated coherent state with the same average photon number (pcoh(n), cf. text
for details) shows the effect of the photon blockade, namely an enhancement of the
single-photon probability, p(1).

7.3 Experimental Results

7.3.1 Photon Blockade

For the measurements depicted in 7.1, the probe laser was detuned by ∆c/2π = −16 MHz
with respect to the cavity. This means it is on resonance with the normal modes even
for perfectly localized atoms (gmax/2π = 16 MHz). It is detuned from the higher-order
dressed states for all positions of the atoms. Since the normal modes contain only a
single excitation, photons are expected to enter the cavity one-by-one. This effect is
referred to as a photon blockade [10] in analogy to the Coulomb blockade, which causes
electrons to pass through a quantum dot one-by-one [21]. A signature of this behavior
is the observation of anti-bunching of the transmitted light [10, 11, 13, 22, 23].

The relevant experimental and theoretical values of the correlation function are
summarized in Table 7.1. The asymptotic values are obtained by averaging over times
200 ns < τ < 250 ns. Due to this averaging, the statistical error bars of the asymptotic
values are much smaller than the values at τ = 0, and they can, in fact, be neglected. We
see that the second-order correlation function at τ = 0 is smaller than the asymptotic
values, which is the first indicator for a photon blockade effect. Because of the atomic
motion, the distribution is super-Poissonian though (g(2)(0) > 1).
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Observable Experiment Theory
⟨a�a⟩ 0.39±0.02 0.37
g(2)(0) 1.010±0.004 1.002
g(2)(τ > 200 ns) 1.070 1.097
g(3)(0,0) 1.10±0.07 0.98
g(3)(τ1 > 200 ns, τ2 > 200 ns) 1.34±0.01 1.31

Table 7.1: Relevant experimental and theoretical values of the correlation functions
measured for a detuning of ∆c/2π = −16 MHz on resonance with one of the normal
modes. Since the asymptotic values have been obtained by averaging over many data
points, the statistical error bars are much smaller and can be neglected.

The reconstructed photon-number distribution is depicted in Fig. 7.3 (b). Even
though we find very good agreement between theory (∎, black), reconstructed theory
(●, red), which was obtained by applying the reconstruction algorithm to the theoretical
correlation functions, and experiment (▲, blue), the effect of the photon blockade is
not very striking. To observe it, we plot in Fig. 7.3 (c) the difference between the
reconstructed photon-number distribution, p(n), and the coherent distribution with
modulation, pcoh(n) (cf. last section). The photon blockade is now directly visible as
a small but well resolved enhancement of the single-photon probability. Note that the
absolute values of the effect is very small. The full reconstruction algorithm, including
the approximation for the fourth-order correlation function, is necessary to observe it.
Theoretical and experimental results are in reasonable agreement.

One comment about the error bars has to be made. In face of the 5 % uncertainty
of the detection efficiency, it seems suprising that a change on the order of 0.005 in
the photon-number distribution can be observed. However, since p(n) and pcoh(n)
both depend on the detection efficiency, the uncertainties of both distributions are not
independent. Therefore, the absolute error bars of the difference of the two distributions
are smaller than the error bars of each individual distribution.

7.3.2 Multi-Photon Gateway

When the detuning of the probe laser with respect to the cavity is reduced, it eventually
excites the higher-order dressed states via multi-photon transitions [9, 24]. The succes-
sive emission of the multiple photons contained in these states gives rise to bunching
in the second-order correlation function [12, 13, 25]. In terms of the photon-number
distribution, we expect an enhancement of the two-photon probability. A system that
operates under these conditions has been called a two-photon gateway [12].

Experimental and theoretical results at a detuning of ∆c/2π = −10 MHz (η=2.83κ)
are plotted in Fig. 7.4. The relevant values of the correlation functions are summarized
in Table 7.3.2. In contrast to our last measurement, the correlation functions have a
maximum at τ = 0. Applying the reconstruction algorithm yields the photon-number
distribution plotted in Fig. 7.5 (b).

As before, we find good agreement between the theoretical and the reconstructed
distributions depicted in Fig. 7.5 (b). The difference between the photon-number dis-
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Figure 7.4: (a) Experimental and theoretical second-order correlation function, g(2)(τ),
at a detuning of ∆c = −10 MHz and a driving strength of η = 2.83κ. Third-order
correlation function, g(3)(τ1, τ2), in the experiment (b) and theory (c).

Observable Experiment Theory
⟨a�a⟩ 0.63±0.03 0.58
g(2)(0) 1.284±0.003 1.258
g(2)(τ > 200 ns) 1.099 1.100
g(3)(0,0) 1.75±0.05 1.75
g(3)(τ1 > 200 ns, τ2 > 200 ns) 1.29±0.01 1.31

Table 7.2: Releavnt values of the correlation functions measured at a detuning of
∆c/2π = −10 MHz.

tribution p(n) and the coherent distribution pcoh(n), shown in Fig. 7.5 (c), has changed
profoundly compared to the last section. The most pronounced effect is a reduction
of the single-photon probability. As a consequence of the strong driving, not only the
second-order dressed state but also the third- and even higher-order dressed states,
which are difficult to resolve spectroscopically, are excited. Thus, we find the expected
enhancement of the two-photon probability but also an enhancement of the three- and
four-photon probability. Note that this enhancement is necessarily accompanied by an
increase of the zero photon probability to ensure ∑n(p(n) − pcoh(n)) = 0.

7.4 Conclusion and Outlook

We have shown that measurements of the second- and third-order intensity correlation
function can be used to reconstruct steady-state photon-number distributions of the
atom-cavity system under strong driving. Under these conditions, a reconstruction
based on the second-order correlation function only is not sufficient. We have used this
technique to reconstruct the photon-number distribution in two different regimes. When
the probe light is on resonance with one of the normal modes and sufficiently far detuned
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Figure 7.5: (a) The system is driven on resonance with the higher-order dressed states.
Multi-photon excitations of these states results in an enhancement of the two- and three-
photon probability. (b) Theoretical photon-number distribution (ptheo(n)) and the re-
constructed distributions based on theoretical (prec(n)) and experimental (pexp(n)) cor-
relation functions at a detuning of ∆c/2π = −10 MHz on resonance with higher-order
dressed states. (c) The difference between the photon-number distribution and the dis-
tribution of a modulated coherent state with the same average photon number (pcoh(n))
has changed profoundly showing an enhancement of the two and three-photon proba-
bilities.

from the higher-order dressed states, a photon blockade leads to an enhancement of
the single-photon probability, whereas the single-photon probabilities is reduced on
resonance with the higher-order dressed states. The results are in good agreement with
theoretical calculations. They show that correlation functions are a sensible tool to
detect even small modifications of the photon statistics. Because of the atomic motion
and the strong driving, the absolute effects are rather small. An enhancement can be
achieved by performing experiments with trapped atoms and at lower driving strengths.

Further analysis indicates that the accuracy of the reconstruction algorithm is cur-
rently mainly limited by the finite binning time used for the evaluation of the correlation
functions. A smaller binning could improve the accuracy further. By mixing the emit-
ted light with a weak coherent light source, one can, in principle, even gain information
about the coherences of the photonic density matrix [18].

As we have seen in the previous chapter, measurements of the time-dependent
second-order correlation function can be interpreted as a time-dependent measurement
of the average photon number. Measurements of the time-dependent third-order corre-
lation function yield the time dependence of ⟨a�2a2⟩, i.e., the second-order correlation
function. Combining this with the techniques introduced in this chapter should, in prin-
ciple, enable us to reconstruct the time dependence of the photon-number distribution.
From this, we expect unprecedented insights into the dynamics of the system.

Another interesting aspect is to analyze the correlation functions with respect to
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their non-classical properties. For classical states of light, an infinite number of inequal-
ities for the correlation functions can be derived [26]. The most prominent is probably
g(2)(0) ≥ 1. Violations of classical inequalities for the second-order correlation function
[10, 22, 27] or intensity-field correlation function [28] have been reported in cavity QED.
Classical inequalities for the third-order correlation function have so far only been con-
sidered theoretically [26]. A particularly interesting case would be to generate states
that do not violate any classical inequalities of the second-order correlation function
but only show their non-classical character via third-order correlation functions. A
simple example is an equal superposition of a zero- and a two-photon state, which has
g(2)(0) = 1 but g(3)(0,0) = 0.
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Chapter 8
Conclusions and Outlook

A new experimental apparatus has been set up strongly coupling individual rubidium
atoms to a single mode of a high-finesse optical resonator. The atoms are injected into
the cavity mode via an atomic fountain. They can be trapped in the resonator by
means of an intracavity standing-wave dipole trap. Compared to previous experiments,
the new apparatus stands out due to the high detection efficiency, a length adjustable
cavity and excellent optical access.

In a first experiment, we have investigated the mode spectrum of the empty cav-
ity. A systematic frequency splitting of higher-order Laguerre-Gaussian modes was
observed, which is in contradiction with the paraxial approximation. The splitting can
be explained quantitatively by a theoretical model taking into account corrections to
the paraxial approximation.

The main focus of this work lies on the investigation of the dynamics of the external
and internal degrees of freedom of the coupled atom-cavity system. For this purpose,
individual atoms were strongly coupled to the cavity, the system was driven by a near-
resonant laser and the emitted photon stream was recorded.

By analyzing the time evolution of the transmitted intensity, we gain information
about the motional dynamics of the atom trapped in an intracavity dipole trap. We
have used this information to cool the radial motion of the atom via feedback. Our
results are the first conclusive demonstration of feedback cooling of individual neutral
particles. The dramatic increase of the storage time as well as the reduction of the
atomic temperature will be essential for future cavity QED experiments. Because of
its simplicity, this cooling scheme will also be attractive for experiments with other
resonator geometries, in particular those with limited optical access. A further im-
provement of the performance is expected from the implementation of a blue-detuned
dipole trap [1] breaking the radial symmetry [2]. Investigations of more complex feed-
back strategies, an extension of feedback cooling to the axial motion and the potential
to study a small thermodynamic system in the presence of feedback are interesting
prospects.

The emitted photon stream also carries information about the internal dynamics of
the atom-cavity system, which undergoes a complex quantum trajectory. The coherent
time evolution due to the exchange of energy between the atom and the cavity and be-
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tween the cavity and the driving laser is interrupted by unpredictable quantum jumps
owing to spontaneous emission of the atom or photon emission from the cavity. Even
though individual emission events are unpredictable, photon pairs and triplets are emit-
ted in a correlated way giving rise to characteristic temporal patterns in the emitted
photon stream. We have characterized these patterns by evaluating time-dependent
second- and third-order correlation functions. In the second-order correlation function,
the coherent exchange of energy between the atom and the cavity (vacuum Rabi os-
cillations) and between the coupled-atom cavity system and the driving laser (super
Rabi oscillations) are directly observed. The third-order correlation function shows an
interplay between these processes as well as evidence for the coherent dynamics of the
second-oder dressed states of the Jaynes-Cummings ladder. Moreover, a time asymme-
try of the emitted photon stream is observed as a consequence of the cascaded emission
of single photons and photon pairs. All results are in good agreement with theoretical
calculations.

By increasing the probe power, we have entered the strong-driving regime of cavity
QED where the driving amplitude exceeds the dissipation rates. Other recent experi-
ments reporting on the observation of the super splitting of the vacuum Rabi resonance
[3], super Rabi oscillations [4], phase bistability of the emitted light field [5] and several
theoretical proposals [6, 7, 8] highlight a growing interest in this regime. One could ex-
pect that the more photons are in the system the smaller are the effects of the quantum
fluctuations onto the light field. In other words, the system is expected to act more
and more semi-classically. A potential observation of this transition from a quantum
to a semi-classical behavior of the system is an interesting perspective.

Apart from changing the drive power and frequency, we could also consider com-
pletely different driving schemes. Simple examples are driving the atom instead of the
cavity, a pulsed excitation [9] or a two-color excitation to excite the system selectively
to higher-order dressed states [10, 11, 12]. A promising aspect with more fundamental
implications would be to change the noise characteristics of the driving light field by
using for example incoherent [13, 14] or even squeezed light [15, 16].

Another interesting question for future investigations is whether the information
gained from the detection of single or multiple photons can be used to influence or even
control the quantum trajectory of the system by means of feedback. The idea to apply
feedback techniques to open quantum systems has been discussed extensively in theory
(e.g., [17] and references therein). In the long term, it offers new possibilities to control
and reduce decoherence effects in open quantum systems.

The use of third-order correlation functions might also have an impact on investi-
gations of other open quantum systems whose dynamics and properties are dominated
by the interplay of quantum noise and dissipation on the one hand, and coherent evolu-
tion and quantum coherence on the other hand. Examples are nano-electronic devices,
optomechanical systems or ultracold atoms.

The experiments described in this work have profited heavily from the high detection
efficiency of the new experimental apparatus. But so far the length adjustability of the
cavity has not been exploited. In the future, we could use it to realize a situation
where two atomic transitions are simultaneously on resonance or close to resonance
with different longitudinal modes of the cavity. Interesting scenarios are V-type, ladder,
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Λ-type or N-type level schemes. In this kind of systems, the atom can mediate an
effective interaction between the two light modes. Cavity electromagnetically induced
transparency (CEIT) [18, 19] or a strong photon blockade [20] are just two examples of
effects that can be observed.
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Appendix A
Jaynes-Cummings Hamiltonian in a
Rotating Frame

To eliminiate the explicite time-dependence appearing in the driven Jaynes-Cummings
Hamiltonian (Eq. 2.7), it is convenient to transform the full Hamiltonian to a rotating
frame. As the explicit steps of this transformation are omitted in many text books
and articles, this appendix aims to summarize the main steps. It is based on the more
general description in [1]. A state, ∣Ψ⟩, obeying the Schrödinger equation

ih̵
∂Ψ

∂t
=HΨ (A.1)

can be transformed according to

∣Ψ̃⟩ = Û �∣Ψ⟩ = exp (iÂt/h̵) ∣Ψ⟩ (A.2)

where Û � is a unitary operator generated by an arbitrary hermitian operator Â. It can
be shown [1] that the transformed wave function obeys the Schrödinger equation with
a modified Hamiltonian

H̃ = Û �HÛ − Â. (A.3)

In the case of the driven Jaynes-Cummings Hamiltonian, HJC+Hd, we chose the operator
Â = ωl(a�a+σ+σ−) to generate the unitary transformation Û �. After a short calculation
we obtain the transformed Hamiltonian

H̃ = h̵∆aσ+σ− + h̵∆ca
�a + h̵g(a�σ− + aσ+) + h̵η(a + a

�), (A.4)

with the detunings ∆a = ωl−ωa and ∆c = ωl−ωc. This is the Hamiltonian used for most
of the calculations described in this thesis.
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Appendix B
Atomic Distributions

Because of the motion of the atoms with respect to the cavity mode, the coupling
constant and, due to the AC-Stark shift of the stabilization laser, the atomic resonance
frequency fluctuate. Since the observables that we have considered in this work, such
as the average transmission or correlation functions, depend on these parameters, the
atomic motion needs to be taken into account when a quantitative comparison of the
experimental results with theory is to be made. In the past, Monte-Carlo simulations
of the atomic trajectory have been used successfully to reproduce experimental results
such as correlation functions [1], normal-mode spectra [2] or the observation of the two-
photon resonance [3]. However, these simulations are quite time consuming and can be
error-prone, since many physical effects have to be taken into account. Therefore, it
is often more convenient to take into account the atomic motion by averaging over a
suitable atomic probability distribution function P (r⃗)dr⃗. The expectation value of any
position-dependent observable O(r⃗) can then easily be calculated by integrating over
this distribution function:

Ō = ∫ O(r⃗)P (r⃗)dr⃗ (B.1)

In this work, this technique is used twice under very different circumstances. In
Chapter 5, we infer temperature of a trapped atom, which is related to the width of the
atomic distribution, from a measurement of the average cavity transmission. Here, we
explain the underlying theoretical model and make a comparison with further measure-
ments that strongly support the validity of this model. In contrast to these experiments
with trapped atoms, the measurements of the correlation functions, described in Chap-
ter 6 and 7, were performed with passing atoms. Therefore, a very different probability
distribution of the atomic position has to be used that will be discussed in the last part
of this Appendix.

B.0.1 Average Transmission for Trapped Atoms

The first observable that we are interested in is the average cavity transmission. Under
weak excitation, an analytic expression can be derived [4] which yields for the trans-
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mission relative to the empty-cavity transmission:

T (r⃗) =
1

(1 + 2C(r⃗)
1+∆a(r⃗)2/γ2)

2
+ (∆c

κ −
2C(r⃗)∆a(r⃗)

γ(1+∆a(r⃗)2/γ2)
)

2 (B.2)

Here, we have introduced the position-dependent cooperativity C(r⃗) = g(r⃗)2

2γκ . The posi-
tion dependence of the atomic detuning, ∆a = ωl −ωa, is a consequence of the AC-Stark
shift induced by the dipole trap laser. In cylindrical, coordinates it reads:

∆a(r, z) = ∆a0 − 2U0 cos(ktz)
2 exp (−2r2/w2

0) . (B.3)

Here, ∆a0 is the bare atom detuning without AC-Stark shifts, U0 is the depth of the
dipole potential, kt = 2π/λt is the wavevector of the trapping light and w0 the waist
of the cavity mode. The factor of two stems from the fact that the ground state and
the excited state are shifted by almost the same amount but in opposite directions. To
avoid errors due to the periodicity of the potential along the cavity axis, we approximate
the cosine square profile by a Gaussian with the same curvature, i.e., cos(ktz)2 ≈ 1 −
(ktz)2 ≈ exp (−(ktz)2). Furthermore, we write the position in terms of the dimensionless
variables R = r/w0 and Z = ktz/

√
2. This leaves us with the position-dependent atomic

frequency
∆a(R,Z) = ∆a0 − 2U0 exp (−2R2 − 2Z2) (B.4)

The position dependence of the coupling constant is determined by the profile of
the cavity mode

g(r, z) = g0 cos (kpz) exp (−r2/w2
0) . (B.5)

The frequency of the dipole trap laser and the probe laser differ by four FSRs.
Therefore, both modes overlap perfectly only in the center of the cavity. Moving to
other potential wells along the cavity axis degrades the axial overlap. In principle, we
have to consider atoms localized in different potential wells. To simplify the calculations,
we restrict our treatment to a single potential well, but we allow for some finite axial
displacement, z0, of this well with respect to the anti-node of the probe light. The
position dependence of the coupling constant is thus given by

g(r, z) = g0 cos(kp(z − z0)) exp (−r2/w2
0) . (B.6)

Apart from this shift, we neglect the small difference in the probe and trap light wave-
lengths setting kt ≈ kp´. As before, we approximate the axial mode profile by a Gaussian
and introduce dimensionless position parameters. We obtain the position-dependent
coupling constant

g(R,Z) = g0 exp (−R2 − (Z −Z0)
2) . (B.7)

To evaluate the position integration in Eq. B.1, we still need the atomic distribu-
tion function P (r⃗). For an atom in thermal equilibrium in a harmonic potential, the
expected Boltzmann distribution reads

P (R,Z)RdφdRdZ = N exp(
−2(R2 +Z2)

σ2
)RdφdRdZ. (B.8)
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(a) (b)

(c) (d)

Figure B.1: Experimental (○) and theoretical (solid line) normal-mode spectra for dif-
ferent dipole trap depths. The four spectra corresponding to a transmitted trap power
of 340 nW, 310 nW, 280 nW, 250 nW from (a) to (d)). The width of the atomic distri-
bution (σ = 0.35), the displacement (Z0 = 0.43), the AC-Stark shift (2U0/2π = 46 MHz),
the empty-cavity transmission (260 fW) and the dark count rate (1 fW) for the the-
oretical curves were adjusted manually for plot (a) and then kept constant. Only the
Stark-shift was scaled according to corresponding trap power. We find good agreement
without any additional fit parameter.

N normalizes the distribution to one. As we discuss later on the width of the
distribution, σ, is connected to the atomic temperature.

As we have introduced several approximations, it is desirable to test if our model
agrees with the experiment. For this purpose, we first try to reproduce spectroscopic
measurements of the normal modes obtained with the old apparatus [2]. The cavity
parameters are g0 = 2π ⋅ 16 MHz and κ = 2π ⋅ 1.25 MHz. The bare atom-cavity detuning
is ωc − ωa = 2π ⋅ 35 MHz. Four spectra at four different potential depths were recorded
as shown in Fig. B.1. We manually adjust the probe power, dipole potential U0, the
width of the distribution σ, the mode offset Z0, and a vertical offset due to dark counts
to reproduce the first measurement Fig. B.1 (a). Without any additional fit parameter,
we are able to reproduce the other spectra as well (Fig. B.1 (b)-(d)). Interestingly,
the relatively big discrepancy that can be observed at a dipole trap power of 310 nW
(Fig. B.1 (b)) for the left normal mode was also present in the Mont-Carlo simulation
described in [2] suggesting that it is caused by a systematic error of the measurement.

We have also applied this model to two normal-mode measurements recorded with
the new experimental setup shown in Fig. B.2 (a). The cavity parameters are g0 =

2π ⋅16 MHz and κ = 2π ⋅1.5 MHz. The bare atom-cavity detuning is ωc−ωa = 2π ⋅40 MHz.
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Figure B.2: (a) Normal-mode spectra recorded with the new experimental apparatus
at two different dipole potentials. Reasonable agreement between theory (solid lines)
and experiment (●) is found for both potential depths, U0/h = 16.5 MHz (blue) and
U0/h = 20 MHz (red), keeping all other parameters constant (σ = 0.35, Z0 = 0.43).
(b) Fixing the detuning of the probe light, we can determine the temperature from
a measurement of the average transmission using this calibration curve (Z0 = 0.43,
∆c/2π=0 MHz, U0/h = 20 MHz).

We use the same values of σ and Z0 as before. The only adjustable parameter is the
dipole potential, which we adjust to U0/h = 16.5 MHz and U0/h = 20 MHz, respectively.
Again, we find good agreement between theory and experiment.

Having shown that our simple model does indeed reproduce experimental measure-
ments with reasonable accuracy, we can now proceed to determine the temperature of
a trapped atom from the average transmission. We make use of the fact that the width
of the distribution function, σ, is connected to the atomic temperature via

σ =

√
kBT

U0

. (B.9)

In Fig. B.2 (b), we have plotted the temperature as a function of the average cavity
transmission for the parameters used for the feedback experiments (U0/h = 20 MHz,
∆c/2π=0 MHz, ∆a/2π=46 MHz, Z0=0.43). This gauge curve was used to determine
the temperature from the transmission measurement described in Section 5.3.4.

B.0.2 Correlation Functions for Passing Atoms

In Chapter 6, we have determined the second- and third-order correlation function
for atoms that are passing through the cavity mode. It is obvious that, compared to
experiments with trapped atoms, a different distribution function is required. We write
⟨a�a�(τ)a(τ)a⟩Ð→x to denote the explicit position dependence of the correlation function.
On timescales that are much shorter than the transit time of an atom through the
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Figure B.3: (a) For homogeneously distributed atoms, a quadratic (blue line) effective
distribution is expected. However, a modified distribution (red line) yields much better
agreement with the experiment. This is illustrated in (b). The experimental second-
order correlation function (●, ∆C = −2π ⋅ 12 MHz, η = 3.5κ) is nicely reproduced by the
modified distribution (red). The agreement with the quadratic distribution (blue) is
considerably worse.

cavity mode, the correlation function that we measure is then given by

g(2)(τ) = ∫
⟨a�a�(τ)a(τ)a⟩Ð→xP (

Ð→x )dÐ→x

(∫ ⟨a�a⟩Ð→xP (
Ð→x )dÐ→x )

2 . (B.10)

For the position-dependent atom-cavity detuning and coupling constant, we use
the same expression derived before (cf. eq. B.4 and B.7). However, we neglect the
offset between the probe and trap mode setting Z0 = 0. Under this assumption,
atom-cavity detuning and coupling constant depend only on the dimensionless, ra-
dial position ρ =

√
R2 +Z2. If the same holds true for the atomic distribution (i.e.,

P (r⃗) = P (ρ)), the three-dimensional position integral appearing in B.1 can be reduced
to a one-dimensional integral

Ō = ∫

∞

0
O(ρ)P (ρ)4πρ2dρ = ∫

∞

0
O(ρ)Peff(ρ)dρ (B.11)

with an effective one-dimensional distribution Peff(ρ) = P (ρ)4πρ2. This reduction to
one dimension greatly simplifies the integration, in particular, for observables, such as
correlation functions, whose computation is time consuming.

If the atomic trajectories are neither affected by the resonant probe light nor by
the far-detuned laser that is used to stabilize the cavity length, the passing atoms are
expected to be distributed homogeneously in the cavity mode, i.e., P (ρ) = P0. This
leaves us with the effective one-dimensional distribution Peff(ρ) = 4πP0ρ2 plotted in Fig.
B.3 (a) (blue line). P0 normalizes the distribution. As we only consider atoms that
cause an increase of the transmission above a certain threshold, the integration has to
be truncated at some finite radial position, ρmax. Even by using this truncation and a
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vertical scaling factor as a fit parameter, we do not find satisfying agreement between
experiment and theory (cf. Fig. B.3 (b)). However, a slightly modified distribution
(red line in Fig. B.3 (a)) yields much better agreement with the experiment (cf. B.3
(b)). The main difference is a higher probability to find the atom at the center of the
cavity mode, which can be attributed to the attractive potential created by the weak
dipole trap laser that guides the atoms towards the center of the cavity mode.

This very same distribution is used for all the theoretical calculations presented in
Chapter 6 and 7. For each individual measurement, we adjust the truncation parameter,
ρmax, and we allow for a small adjustment of the atom-cavity detuning of ±1 MHz.
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Appendix C
Evaluating Correlation Functions

In the following, we summarize how the correlation functions g(2)(τ) and g(3)(τ1, τ2)

are evaluated and normalized. To make sure that an atom is present, we evaluate the
correlation function only for intervals in which the average transmission surpasses the
empty-cavity transmission by a certain threshold (cf. Chapter 6). For each of these
intervals with duration Ti, we count the number of photon pairs, ni(τ), separated by the
time τ within some binning time ∆t (5 ns unless otherwise stated). Because of the dead
time and after pulsing of the detectors, we only evaluate photon pairs that arrive at
different detectors. The finite interval duration Ti is taken into account by multiplying
with a normalization factor of (1 − τ/Ti)−1. Next, the coincidence counts ni(τ) for all
intervals are summed up. At last, the correlation function has to be normalized to the
number of coincidences that is expected for uncorrelated, i.e., statistically independent
clicks. As the probability to detect a single photon within the binning time is ∆tN/T
(where N is the total number of photon clicks and T the sum of the duration of all the
intervals), the expected number of uncorrelated coincidences is ∆tN2/T . Multiplying
this by the probability that the two clicks are registered by different detectors, which is
0.75 in our case, we end up with the normalized time-dependent second-order correlation
function

g(2)(τ) =
T

0.75N2∆t
∑
i

ni(τ)

1 − τ2/Ti
. (C.1)

The generalization to the third-order correlation function is straightforward. This time,
we count the number of triple coincidences n3,i(τ1, τ2) with the time separations τ1 and
τ2 between the first and second click, and the second and third click, respectively. The
expected number of uncorrelated photon clicks is ∆t2N3/T 2 and the probability that
all three photons hit different detectors is 0.375. In total, we find

g(3)(τ1, τ2) =
T 2

0.375N3∆t2
∑
i

n3,i(τ1, τ2)

1 − τ2+τ1
Ti

. (C.2)
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Appendix D
Detailed Balance and Time-Asymmetric
Fluctuations

The principle of detailed balance plays a central role in classical statistical mechanics
[1, 2]. For example, it simplifies the calculation of stationary states of a system, and it
is the basis of the Onsager reciprocal relations [3]. Its definition is most straightforward
for a classical system described by a set of discrete states, labeled by l, that undergoes
random transitions between the states l and k at a rate γkl. The time evolution of the
probability pl(t) of finding the system at the time t in the state l is described by a
(classical) master equation:

dpl(t)

dt
=∑

k

γlkpk(t) − γklpl(t) (D.1)

A steady-state solution,
dpsl
dt = 0, of this master equation is said to be in detailed balance

if the transition amplitudes between each pair of states is balanced, i.e., γlkpsk = γklp
s
l .

A more general definition of the detailed balance condition for a classical system, which
is described by the distribution function p(b, t) of some arbitrary observable b, is given
in [1]: The steady-state distribution ps(b) is in detailed balance, if the transition rate
from b′ to b is balanced by the time reversed transition from b to b′, i.e.,

p(b, τ ∣b′,0)ps(b′) = p(εb′, τ ∣εb,0)ps(b). (D.2)

Here, p(b, τ ∣b′,0) is the conditional probability to find the system in the state b at
the time τ after an initial occupation of the state b′. The εb designates the time
reversed observable (e.g., εx = x and εv = −v for position and velocity, cf. [1] for
a detailed discussion). One important consequence of detailed balance is that two-
time correlation functions of arbitrary observables A and B are time symmetric, i.e.,
⟨A(τ)B⟩ = εAεB⟨B(τ)A⟩ where εA and εB is the parity of the respective operators under
time reversal. A stationary state of a closed system always fulfills detailed balance as
a consequence of the microreversibility (i.e., time reversal invariance) of the underlying
physical laws [2]. For an open system, the situation is more delicate. In thermal
equilibrium, detailed balance always holds. However, a driven system can assume a
steady state with or without detailed balance.
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Theoretical investigations of open quantum systems (e.g., lasers) in the 60s and 70s
established a lot of parallels to classical statistical mechanics. This naturally stimulated
the question, whether, and how, the principle of detailed balance can be generalized
to this kind of systems. The generalization is not trivial, since the quantum master
equation for the density matrix (cf. Chapter 2) does usually not have the same diagonal
form as Eq. D.1. While transitions between the diagonal elements are analogous to Eq.
D.1, the appearance of non-diagonal elements inhibits the use of our previous definition
of detailed balance. Therefore, Agarwal [4] has proposed an alternative definition based
on the mentioned time reversal symmetry of the correlation functions. According to this
definition, an open quantum system is in detailed balance if the two-time correlation
functions of arbitrary system operators Â and B̂ are symmetric in time, i.e.,

⟨Â(τ)B̂⟩ = εAεB⟨B̂(τ)Â⟩. (D.3)

It has been shown that this condition, just like the classical counterpart, follows from
microreversibility for a closed quantum system and it relaxes to the classical definition
of detailed balance for a diagonal master equation [5].

In a more recent paper by Denisov et al. [6], it was argued that the observation of
a time asymmetry of a time and normally ordered correlation function in driven open
quantum systems demonstrates a violation of Eq. D.3. It can thus be considered as
a consequence of the breakdown of detailed balance. Even though the authors only
discuss intensity-field and second-order, cross-correlation functions explicitly, the same
arguments are also applicable to the asymmetry of the third-order correlation function
that we observe here

⟨a�a�2(τ)a2(τ)a⟩ ≠ ⟨a�2a�(τ)a(τ)a2⟩. (D.4)

However, the connection between a normally ordered correlation function as it ap-
pears in Eq. D.4 and Eq. D.3 is by far not trivial. As this issue is neither discussed in
[6] nor in the more detailed account in [7], we would like to summarize the underlying
reasoning in the following. We have to thank Howard Carmichael for pointing out these
arguments in a private communication.

First, we note that measurements (the detection of photons) are performed not
directly on the cavity field but on the field that is leaking from the cavity. In the
framework of the input-output formalism of cavity QED [8, 9], this output field can be
written as a sum of the field leaking from the cavity and the input field:

aout(t) =
√

2κa + ain(t). (D.5)

Strictly speaking, our measurement thus shows

⟨a�outa
�2
out(τ)a

2
out(τ)aout⟩ ≠ ⟨a�2outa

�
out(τ)aout(τ)a

2
out⟩. (D.6)

This is equivalent (except for the normalization) to the correlation function of the
intracavity field, which we have discussed so far, only in the case of vacuum input
fields. Next, we make use of the fact that the output fields commute like free fields
[8, 9], i.e.,

[aout(τ), a
�
out(τ

′)] = δ(τ − τ ′), (D.7)
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to regroup Eq. D.6:

⟨a�2out(τ)a
2
out(τ)a

�
outaout⟩ ≠ ⟨a�out(τ)aout(τ)a

�2
outa

2
out⟩. (D.8)

Now, by defining the operators Â(τ) = a�2out(τ)a
2
out(τ) and B̂(τ) = a�out(τ)aout(τ)

with εA = εB = +1, we see that this inequality does indeed represent a violation of Eq.
D.3.

Unfortunately, there is still one subtle issue. Agarwal’s original definition of detailed
balance for open quantum systems [4] only refers to correlation functions involving
system operators Â and B̂. The output fields do also depend on the state of the
reservoir, i.e., the input field. Since measurements are always performed on the output
field, this generalization of the detailed balance condition, which was assumed implicitly
in [6], is very natural from an experimental point of view. However, a discussion of
possible theoretical consequences is beyond the scope of this work.
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gungsisolierung und Vakuumkammer am Computer entworfen sondern auch die zeitnahe
und einwandfreie Fertigung sichergestellt.

Franz Denk und Helmuth Stehbeck wussten zu jedem technischen Problem eine
Lösung. Das Einfliegen der Vakuumkammer über einen Kran sei hier nur stellvertretend
genannt als einer ihrer zahllosen großen und kleinen Beiträge. Gleiches gilt auch für
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haben als studentische Hilfskräfte und Praktikanten an verschiedenen Stellen in und
um den experimentellen Aufbau ihre Spuren hinterlassen.

Allen Mitgliedern der Arbeitsgruppe danke ich für den regen Austausch von Wissen,
Ideen und Equipment. Eine besondere Erwähnung verdienen Thomas Rieger, dessen
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