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Abstract

This dissertation discusses a Quality of Experience (QoE) driven cross-layer optimization
framework for efficient network resource allocation in the High Speed Downlink Packet
Access (HSDPA) system. The proposed scheme jointly optimizes the application layer and
the lower layers of the wireless protocol stack to determine the application data rate and
the network resources with the aim of improving the service quality perceived by the user.
The Mean Opinion Score (MOS) is used as a unified utility metric that encompasses the
user-perceived quality under certain receiving conditions for the user application. Various
QoE-based optimization schemes taking into account different criteria are proposed and
compared to a throughput maximization scheme and a non-optimized system. Results
show that the QoE-based approaches lead to significant improvements of user perceived
quality.

Zusammenfassung

In der vorliegenden Arbeit wird ein Konzept für die effiziente Zuteilung von Ressourcen
in Mobilfunksystemen beschrieben, das den Einfluss der empfundenen Qualität von Dien-
sten (Quality of Experience, QoE) berücksichtigt. Das vorgeschlagene Verfahren optimiert
gemeinsam die Anwendungsschicht und die unteren Protokollschichten (Physical layer, Link
layer), um die Datenrate der Anwendung und die bestmögliche Verteilung der Ressourcen
zu ermitteln. Der vorgeschlagene Ansatz verwendet den Mean Opinion Score (MOS) als
einheitliche Metrik für die Erfassung der Nutzerzufriedenheit. Verschiedene QoE-basierte
Optimierungsverfahren werden vorgestellt und mit der Maximierung des Gesamtdurch-
satzes und nicht-optimierten Systemen verglichen. Die Ergebnisse zeigen, dass die QoE-
basierten Verfahren zu deutlichen Verbesserungen der Systemperformanz und insbesondere
der Servicequalität führen.
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Chapter 1

Introduction

As Internet multimedia communication moves rapidly into the wireless commercial realm,
it has evolved and changed the way we work and live. End users of the Internet expect no
longer to be exclusively connected to the Internet through a computer at home or in the
office, but also through their handheld devices, and thus enabling a seamless multimedia
communication across devices. For instance, a corporate employee is able to check his
emails on a mobile device whilst travelling, or a consumer is able to watch his favourite
movies on his mobile device whilst on holidays. Though allowing a user to enjoy a multi-
media service from any place, anytime and on any devices regardless of the access network
gives flexibility and convenience, it comes at a cost. In particular, this is a challenge for the
wireless network operators, as wireless network resources are normally scarcer than wired
resources, and become hence more expensive than wired ones.

This introductory chapter highlights multimedia communication in mobile networks, and
provides motivation for research in the topic of mobile multimedia communication by
addressing the problems of mobile multimedia delivery and associated challenges. Subse-
quently, we discuss the scope and contributions of this thesis. Finally, a road map of the
following chapters is provided.

1.1 Mobile multimedia communication

In recent years, the demand for multimedia communication in mobile networks has in-
creased due to the following factors. First, mobile network infrastructures are quickly
evolving to support Internet Protocol (IP) and other transport types required by Internet
multimedia communication. Second, mobile devices are improving with enhanced capabili-
ties such as larger display size, long-life battery, high computational power and touch-screen
feature. Some of them are even equipped with Global Positioning System (GPS) and cam-
era functionality. The latter allows users to create their own multimedia content and share
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CHAPTER 1. INTRODUCTION 2

with others. Furthermore, the mobile radio access networks have been advanced and the
available bandwidth has been increased significantly. For example, the Third Generation
(3G) mobile network, Universal Mobile Telecommunications System (UMTS) [82], with
the maximum downlink speed upto 384 Kbps is enhanced with the High-Speed Downlink
Packet Access (HSDPA) [62] that allows upto 14 Mbps. This broadband wireless commu-
nication further facilitates the delivery of bandwidth-demanding multimedia applications
such as video streaming or video conferencing on mobile terminals.

Besides the voice-only service, people are using their mobile devices for E-mailing, sending
text messages, browsing Internet web-sites, sharing pictures to each other, playing games,
and watching video clips, movies, or even live television. Regular cell phones are giving
way to smart mobile phones (i.e. iPhone [12]), and people are spending more time on
using their devices according to the survey done by Morgan Stanley [140]. In particular,
this survey shows what activities and the duration of each activity that an average user
will spend his time on using a normal cell phone or a smart phone as depicted in Figure
1.1. Obviously, the percentage of time spent on a smartphone for talking is getting much
smaller, since more time is dedicated to web-based and other activities.

Figure 1.1: Mobile device daily usage breakdown showing a percentage of time on each
activities on an average cell phone (left), and on the iPhone (right). (modified from [140])

From the emerging mobile multimedia communications mentioned above, one can classify
them into different categories by considering different perspectives or view points [171],
[34] as follows:

• Content perspective: One can classify multimedia communication into live content
and stored content. Live content is the content that is encoded in real-time, and is
transmitted to the receiver expecting to view and consume the content immediately.
In contrast, stored content is off-line encoded content that is prepared ahead of
consumption time and stored in a specific format. The stored content will be then
transmitted at a later point in time to the receiver, for example, after a user has
requested it.
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• Delivery perspective: Downloading and streaming are sometimes used to classify
multimedia communication. Downloading implies whenever the receiver only views
and consumes the media content after finishing delivery all bit streams of the media
content, whereas streaming refers to a transmission of media content that is split
into separate independent chunks and thus allowing the receiver to play back already
received parts of media content while other parts of bit stream are still being delivered
to the receiver.

• Network configuration perspective: In terms of network model, multimedia commu-
nication can be classified into one of the two categories: client-server model or peer-
to-peer (P2P) model. Client-server model describes the relationship between two
computer programs, in which a central server hosts and transmits the media con-
tent to client(s). P2P model refers to an unstructured and distributed point-to-point
communication among computers. Each computer acts as a peer that plays a role of
both client and server to other peers.

• Interaction perspective: Each multimedia communication session can be classified
into delay-tolerant sessions and delay-sensitive sessions. Sessions without interactiv-
ity such as video streaming or live broadcast are tolerant to delay and delay-jitter,
whereas interactive sessions such as voice call, video conference and gaming require
fast response to user interactions and hence are delay-sensitive.

• Sender and receiver relationship perspective: The relationship between the number
of senders and receivers determines three different types of multimedia communica-
tion: unicast, multicast, and broadcast. A unicast communication is a point-to-point
communication, in which only one sender and one receiver exist. A multicast com-
munication consists of a single sender and a set of elected receivers participating in
the same session. Alternatively, a single sender may transmit a media content to all
receivers connected in a network, which forms a broadcast communication.

In practice, most of the mobile multimedia communication applications usually belong
to multiple categories simultaneously. For example, video conferencing is an interactive
multimedia communication that streams a live video content in real-time. In case of more
than two users joining the conference bridge, it is a multicast communication. Otherwise,
it is considered to be a unicast communication. Another example is IP-TV, which is
a broadcast communication with streaming of live multimedia content. Since it has no
interactivity, it is more tolerant to the delay during transmission compared to voice call
communication.

Although mobile networks support as many types of multimedia communication as fixed
networks, they are different, for example in terms of available transmission rate for wireless
transmission and channel conditions. In the next section, we discuss the differences in detail
and the challenges posed by mobile multimedia delivery.
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1.2 Problem statement and contributions

According to the statistics released by vendors [39], [36], the global mobile data traffic
continues to grow exponentially due to a tremendous demand on multimedia delivery over
mobile networks. In particular, a study of visual networking index by Cisco [36] shows
that voice communication will be a minority of mobile data traffic distribution share, and
over two-thirds of the world’s mobile traffic will be video by 2014 as shown in Figure 1.2.
Even with mobile network upgrades to HSDPA or Long-Term Evolution (LTE) that allow
a peak throughput of 14.4 Mbps and 173 Mbps respectively [11], a huge ramp in mobile
data traffic driven by social networking, mobile Internet browsing, and video services is
still considered to be a major reason causing network congestion. Hence, mobile access
networks remain a bottleneck link of mobile multimedia communication when providing
mobile multimedia services to a large number of users.

Figure 1.2: Forecast of global mobile data traffic growth [36].

Unlike a traditional Internet-based communication over fixed networks, mobile multimedia
communication poses many challenges as follows.

• Wireless lossy channels : Packet losses in wireline networks are usually caused by
congestions in intermediate routers, whereas the wireless channel possesses higher
packet loss rate and bit error rate due to the signal fading from multipath effect,
channel shadowing from urban obstacles, as well as the effects of noise and interfer-
ences from external sources [97], [171]. Mobility and hand-over across base-stations
can also lead to packet loss due to out of order packet delivery as discussed in [122].

• Bandwidth limitation and fluctuation: Mobile networks are characterized by limited
wireless network resources (or network capacity) that are shared among users. Users
accessing the shared wireless medium (or served by the same base station) are usually
mobile, which, in turn, will cause variability of the wireless channel condition. Hence,
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the packet loss rate and the throughput from the time allocated to the respective
user (allocated bandwidth) can also vary significantly over time.

• Different Quality of Service (QoS)1 requirements : Different multimedia applications
have different requirements in terms of bandwidth, data storage (buffer) prior to view-
ing/consuming media content, data transmission reliability, and deadline or timing
for a continuous media playout. For instance, downloading an MP3 song to a portable
device will take much less time and requires much less storage space than download-
ing a video clip file. Making a video call on a mobile phone requires a short delay
of communication, and a good video quality can still be maintained under a certain
amount of packet losses by using available error-resilience techniques. In contrast, a
background service such as emailing and text messaging does not allow any packet
loss, but has a large delay tolerance [165].

• Different impact on Quality of Experience (QoE)2: Packet loss stemming from an
error-prone wireless channel and the application of rate-adaptation schemes to over-
come time-varying wireless channel conditions (e.g. adaptive video coding, adaptive
multirate speech codec) have a high impact on the user-perceived quality. The de-
gree of this impact varies with the multimedia content and multimedia application
type being transmitted. For example, missing a packet containing a scene of the
video stream with dynamic scenes (e.g. sport video) can result into a huge gap of
discontinuity of subsequent scenes, and thus makes it easier for a user to perceive a
quality degradation. Whereas missing a scene of the video with static video content
such as a paronama view or a news reporter, a user can often hardly recognize the
difference, as the video content of subsequent scenes is quite similar.

In this thesis, we address the challenges above, however, we do not intend to provide a
single solution that copes with the very complex and complicated problem. Our aim is
to present a possible unified and formal approach to the problem of multimedia delivery
over mobile networks. We consider several key aspects of how to efficiently use the limited
wireless network resources, and focus on comprehensive traffic management and traffic
engineering solutions that provide a high quality of service perceived by the end user to
the possible largest number of users.

To achieve these goals, one approach is to collect information from all layers (e.g. 7 layers of
the Open System Interconnection (OSI) model [69]) that are involved in a communication
and jointly optimize them. However, this approach seems to be time consuming and not
feasible in practice. We adopt a simplified Cross-Layer Optimization (CLO) framework
that takes into account the link-layer and the application-layer information. The CLO
framework used in this thesis is based on the previous work in [84, 79, 32, 33], in which
only key parameters from the application layer and the lower layers of a wireless protocol

1In ITU-T E.800 [74], QoS is defined as ”totality of characteristics of a telecommunications service that
bear on its ability to satisfy stated and implied needs of the user of the service.”

2In ITU-T P.10 [75], QoE is defined as ”the overall acceptability of an application or service, as perceived
subjectively by the end-user.”
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stack are abstracted. To cope with the problem of network resource allocation across mul-
tiple types of applications run by different users in a single cell scenario, the optimization
scheme maps network and application parameters onto a common metric that quantifies
the user perceived quality of service for the service delivery. For instance, in [87], the video
utility function is obtained by varying the quantization steps for encoding a raw video
and measures the average data rate and the video quality using the Peak Signal to Noise
Ratio (PSNR), which is then linearly mapped to the Mean Opinion Score (MOS) [70] to
capture user satisfaction. In this thesis, we update the video utility function by using the
Structual SIMilarity (SSIM) [162] index and video SSIM index [164], as it matches well to
human visual system quality perception that is highly adapted to extract a deformation of
structural information instead of a pixel-based distortion. For the voice and file transfer
application, we use the utility functions as described in [87]. We adopt the radio link
layer parameter abstraction as proposed in [132], which determines the average maximum
achievable data rate for each user experiencing different wireless channel conditions.

Within this CLO framework, we offer an in-depth discussion of the optimization problem
with the goal of maximizing the overall user perceived quality of all users. In particular,
we use a theoretical analysis to show that the optimum point of the objective function lies
on the boundary of the utility space. Furthermore, we show that using a greedy search
algorithm which starts from an arbitrary point on the boundary can quickly reach to the
optimum. We extend the QoE-based optimization criteria with the max-min fairness for
achieving similar perceived quality for all users. In addition, we apply a new constraint
to the optimization objective, for example, a max-min fairness with a minimum guaran-
teed quality to all users. To substantiate some discussions, simulation results based on
the HSDPA mobile network are included, showing that all QoE-based schemes proposed
outperform the conventional mobile network system and the traditional throughput max-
imization approach.

Unlike work done in [87], we do not assume that the application server is located next to
the base station. In order to avoid any delay of response in adapting the transmitted data
rate due to signaling from the optimization module to the application server, we assume
a rate adaptation module is available in the core network or is located at the base sta-
tion, which uses a transcoding (transrating) or packet dropping technique. We investigate
the complexity and the impact of applying different rate adaptation schemes on the user-
perceived quality, which, in turn, allows us to derive a novel mechanism and algorithm
for an intelligent rate adaptation scheme selection for resource-constrained wireless video
transmission. The proposed scheme can be integrated with the QoE-based resource alloca-
tion optimization regardless of the optimization objective. In our example, we discuss how
to integrate the proposed scheme with the objective of minimizing the media distortion
perceived by the end user.

To further advance our optimization framework, we address a multi-objective optimization
problem. We start with two objectives: the utility maximization and the max-min fairness.
In this thesis, we define the utility as a degree of system efficiency describing how efficient
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the network resources are used in terms of the resulting average quality perceived by
all users. Whereas, the fairness is defined as the difference of quality between the user
experiencing the highest quality and another user experiencing the lowest quality. The
two objectives are strongly depending on each other, since we can increase the system
efficiency only when we decrease the degree of fairness balancing among all users. When
the operation points for these contradicting between the system efficiency and the user
fairness are too far apart, intermediary operation points may be preferred. We design
a tuning mechanism, which allows a system operator to dynamically adjust its operation
point between the extreme points of maximum system efficiency and fair resource allocation
among all users. This mechanism is not limited to the case of static number of users joining
the system, but it can also be applied for a dynamic environment, in which clients come
online or go offline, access different applications, under variable channel conditions.

In addition to the user fairness and system efficiency, we formulate the CLO problem with
a third objective. Here, we consider a constraint on the temporal fluctuation of video
quality due to time-varying wireless channel conditions and the rate adaptation applied.
The objective is to minimize the temporal change of the video quality that is perceivable
by a user and negatively affects the overall user-perceived quality, while at the same time
maintaining the average user-perceived quality of all users as high as possible. In fact,
the novel QoE-based objective function is general, and can be combined with any other
constraint. Furthermore, the proposed scheme gives flexibility to a mobile network operator
to prioritize each of the two objectives according to its policy. The perceivable threshold of
temporal video quality fluctuation is based on the Just Noticeable Difference (JND) concept
[109], and is determined according to our extensive subjective tests that are performed in
a room compliant with recommendation ITU-R BT.500 [72].

Finally, we consider all three criteria: system efficiency, user fairness, and temporal quality
smoothness in our CLO framework. We propose a two-step optimization scheme with the
aim of fulfilling both system efficiency and user fairness, while keeping perceivable quality
fluctuation as low as possible. The proposed scheme is a practical approach searching
for an optimal resource allocation taking into account all three criteria. First, we find
an operating point that meets the constraints of system efficiency and user fairness that
are assumed to be set by the operator prior to the optimization. The result of the first
step optimization will be taken as a basis for finding a new operating point resulting to a
smooth quality fluctuation with a possible highest average quality of all users under the
user fairness constraint.

1.3 Thesis outline

The remainder of the thesis is organized as follows.

Chapter 2 first presents an overview of the state of the art in optimization for wireless
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multimedia delivery, which covers both the end-to-end rate control and the proxy-based
rate control solutions. Some error concealment and scheduler-based techniques that im-
prove the usage of wireless constrained resources are also discussed. The chapter proceeds
to cover relevant basics of Cross-Layer Design (CLD) that enables several possibilities
of interactions between the OSI layers. Following that, existing cross-layer optimization
schemes, which take full advantage of adaptivity according to information sharing across
layers, are discussed.

Fundamentals of our QoE-driven cross-layer optimization framework that is applied to the
HSDPA mobile network are explained in Chapter 3. We start with background of HSDPA
system and the long-term radio link-layer model that we use throughout this thesis. Next,
we formulate multimedia QoE by constructing long-term utility functions (application-layer
model), describe the multiuser utility space and derive its properties. We show analytically
that the maximization of the sum of utility (max-MOS) can be efficiently solved by a
fast greedy algorithm which searches only through the boundary of the utility space. We
investigate two alternatives to the max-MOS approach, which introduce additional fairness
in the system. We compare our proposed QoE-based cross layer optimization schemes to a
system that is configured to maximize the overall throughput. For completeness, we also
compare our approaches to a non-optimized HSDPA system. Besides the network resource
allocation perspective, we investigate different rate adaptation schemes and its impact on
the user-perceived quality. At the end, we discuss how to integrate a novel rate adaptation
scheme selection with our QoE-based optimization framework, which, in turn, allow us
to solve an optimization problem in presence of both constrained computational resources
and constrained transmission resources.

In Chapter 4, the new strategies for QoE-based optimization are presented, adopting multi-
objective optimization and making explicit the constraints and criteria. In particular, we
consider the system efficiency, the user fairness, and the temporal quality fluctuation as
an objective function for the resource allocation optimization. The chapter begins with
the optimization problem taking into account the user fairness together with the average
quality of all users. For this part, a tuning algorithm is presented that allows a mobile
network operator to set constraints for the user fairness and the system efficiency. Next, we
consider another multi-criteria combination of maximizing the average quality of all users
(system efficiency) and minimizing a perceivable temporal video quality fluctuation. The
latter utilizes the result of subjective tests to determine the average threshold of change
in temporal video quality that is perceivable by human eyes. It also mitigates the effect
of time-varying wireless channel condition. To complete this chapter, we discuss how to
make use of the hybrid lexicographic method to solve the cross-layer optimization problem
when taking all three criteria into account.

Chapter 5 concludes the thesis outlining the main lessons learned and pointing out potential
future work.

It should be noted that parts of this dissertation have been published in [147, 89, 85, 149,
148, 150, 151, 146].



Chapter 2

State of the Art

With the fast growth of wireless networks and great success of Internet multimedia appli-
cations, future wireless networks are envisioned not just to provide a higher data rate to
the mobile users, but also to serve various mobile terminals ranging from only-voice phone
(dumb phone) to smart phone, and to support heterogeneous applications with different
quality of service (QoS) requirements in terms of data rates, delay and packet loss [170].
QoS provisioning is a multidisciplinary topic comprising of several contingents, compassing
from applications, terminals, networking architectures to network management, business
models, and ultimately the end users [175]. The latter is crucial, as the network and service
providers needs to know how their customers perceive the service provided. This enables
the network and service providers to improve the service quality, and thus keeps their cus-
tomers to stay in their business in the long term. Nevertheless, providing QoS or QoE in
wireless networks is a challenging task, since the transmission condition of wireless channel
dynamically changes over time as explained in the previous chapter.

In addition to the QoS support, the increased usage of a wide variety of cellular multimedia
services through smart phones is putting an ever increasing demand for high data rates
on the wireless interface. Although the traffic carrying capacity of wireless networks has
increased significantly, the increase in actual user traffic continues to outpace. This has
resulted in increased network congestion and many times in a degraded service experience
for the user. Hence, in wireless networks, network resource management and resource
allocation across multiple users together with QoS support for multiple applications have
become a priority for network operators.

In this chapter, we provide an overview of related works addressing the aforementioned
challenges and problems of wireless multimedia delivery. We start with a review of tech-
nologies available at each layer (independently) from lower layers (including both physical
and link layer) of mobile radio access network upto the application-layer, and then discuss
the Cross-Layer Design (CLD) based approaches. The technologies supporting circuit-
switched services are out of the scope of this chapter of literature reviews, as the thesis

9
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concentrates on improving user-perceived quality for the Internet-based multimedia appli-
cations over wireless networks, which are considered as the packet-switched services.

2.1 Advances in mobile radio access networks

Over the last decade, considerable progress has been made in advancing the radio access
technology in order to realize mobile broadband communication providing high system
throughput, low round trip delay, and better QoS support. The High-Speed Downlink
Packet Access (HSDPA) standardized by the 3rd Generation Partnership Project (3GPP)
[3], [62] is one of the well-known radio access technologies that has been widely commercial-
ized and deployed. In comparison to its predecessor, Universal Mobile Telecommunication
System (UMTS), HSDPA is based on shared channel transmission, in which the chan-
nel codes and the transmission power available at each base station are commonly shared
among users. This leads to a more efficient usage of available codes and transmission power
resources when compared with the use of a dedicated channel. Furthermore, the down-
link shared HSDPA channel (HS-DSCH) is a fast link adaptation channel that is based
on Adaptive Modulation and Coding (AMC), Hybrid Automatic Repeat request (HARQ),
and a short allocation time (Transmission Time Interval, TTI) of 2 msec. AMC adapts the
modulation and coding scheme of the transmitted signal in accordance with variations in
wireless channel conditions, which are periodically reported by the receiver. For instance,
more information bearing bits are transmitted when the channel condition is good, and less
information bearing bits are transmitted when the channel condition deteriorates. Whereas
HARQ aims to control the error of the transmitted information bearing bits caused by the
channel impairment in order to achieve an error-free transmission. HARQ uses both the
Forward Error Correlation (FEC) for error protection and the Automatic Repeat request
(ARQ) for retransmission of the errorneous received data. Another major change of HS-
DPA in constrast with UMTS is to move the packet scheduler from the centralized Radio
Network Controller (RNC) to the base station (NodeB) and to embed the packet schedul-
ing in its Medium Access Control (MAC) layer. With all these features, it enables high
rate and robust data transmission, which in turn increases the total cell throughput up to
approximately 14 Mbps.

In addition to the features introduced by both the PHY-layer and the MAC-layer as dis-
cussed above, HSDPA has another two sub-layers: Packet Data Convergence Protocol
(PDCP) and Radio Link Control (RLC). The PDCP sublayer is used to compress the head-
ers of higher layer protocols for efficient packet delivery, for example, IP header, whereas
the RLC sublayer is used for fragmentation the IP packets to the small data unit to be
transmitted over the HSDPA channel and for reassembling afterwards. The RLC also
provides additional error detection, orderly packet delivery and link-layer retransmission,
which leads to a low packet loss rate.

To differentiate QoS requirements of various types of services, HSDPA adopts the concept
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of UMTS traffic class (TC) and other UMTS bearer attributes (e.g. traffic handling priority
(THP), allocation retention priority (ARP)) [37]. As specified in [2], four traffic classes
have been defined, which are (1) conversational, (2) streaming, (3) interactive, and (4)
background classes. The classification and the prioritized ordering are done according
to their real-time needs (e.g. expected response in time from the user). For instance,
delay sensitive services such as Voice over IP (VoIP) are given the high priority of the
conversational class, whereas Web browsing is considered as an interactive class service,
which has lower priority due to its delay tolerance.

The existing QoS control framework in UMTS has been modified and adapted to the
HSDPA architecture due to the relocation of RNC functionality to the NodeB and the new
features of HSDPA as discussed above. One example is a new QoS interface between the
RNC and the NodeB (Iub interface), in which specific HSDPA QoS parameters set by the
RNC are transferred to the NodeB. The Iub interface also allows the flow control, in which
the NodeB is able to control the amount of data from the RNC in order to avoid packet
loss due to buffer overflow at NodeB and at the same time to keep the delay on the NodeB
buffer at low level. [108] demonstrated the impact of the Iub flow control on the system
performance. The study showed that the IP packet delay increases significantly as the
update period of the control loop becomes larger especially for the user mobility scenario.

In general, one can implement the QoS control in HSDPA [117] by implementing any
combination of the three mechanisms as follows:

• Dynamic transmission resource allocation: HSDPA allows network operators to dy-
namically allocate transmission resources across multiple users in both time and code
domains by adjusting the channelization codes available at each TTI. For example,
upto 15 channelization codes can operate in the 5MHz WCDMA radio channel for a
short TTI of 2 msec.

• QoS-aware packet scheduling : The behaviour of MAC-layer packet scheduler located
at the NodeB is instructed by the HSDPA QoS parameters that are determined by
the RNC based on the user’s traffic class and other bearer attributes. These HSDPA
QoS parameters are the Guaranteed Bit Rate (GBR), Scheduling Priority Indicator
(SPI) and Discard Timer (DT). The scheduler uses the GBR parameter as a target
average bit rate, whereas the SPI expresses the priority of the flow. The DT is used
to avoid an unnecessary transmission of any outdated packets, which may be not
useful at the receiver. The packet will be discarded, if the packet being buffered in
NodeB stays longer than the allowed maximum time.

• Quality-based admission control : Admission control performed by the RNC plays an
important role for efficient use of scarce radio resources. It determines whether a new
user should be granted access or blocked depending on the user’s QoS requirements
and the current load in the cell, so as the QoS requirements of already admitted users
remain fulfilled. The simple admission control uses the threshold-based mechanism
[13], in which the system maintains the total allocated resources for all existing users
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already served in the cell and for the new user less than the threshold. Admission
control has been enhanced by taking into account, for example, the reservation of
handoff calls [63], the estimated user mobility information [99], or the revenue of the
service provider [66]. A comprehensive survey on the state-of-the-art of admission
control solution approaches are presented in [110].

Details of the HSDPA QoS interface between the RNC and the NodeB are specified in
3GPP TS25.214 [6]. Nevertheless, the ultimate goal of applying the above QoS control
mechanism is left opened in 3GPP specifications, as it is up to the NodeB manufacturer
(vendor) and the operator to select the most appropriate solution taking into account their
business models, for example, providing different service qualities for different classes of
user subscription (e.g. premium user, flat-rate user).

2.2 Data transport and session control protocols

Delivery of Internet multimedia services is based on the Internet Protocol (IP) [119] and
transport protocols standardized by the Internet Engineering Task Force (IETF). There are
basically two transport protocols that are usually used to carry media content: Transmis-
sion Control Protocol (TCP) and User Data Protocol (UDP). TCP [120] is a connection-
oriented protocol that offers an error correction and a reliable and orderly packet data
transfer. It is mainly used for a multimedia application that is not delay sensitive but
requires a guaranteed delivery that the received packet is identical to its original including
the ordering of the data. TCP-based applications are for example web browsing, E-mailing
and file transfer application. In contrast, UDP [118] is a lightweight connectionless protocol
that aims to transmit the content to the receiver as fast as possible without guaranteeing
the correctness. It is suitable for an application that has stringent real-time constraints
such as VoIP or live video streaming. With real-time applications, people prefer to loose
some audio frames or video packets rather than have to wait a few seconds for the network
to recover and retransmit.

In practice, many commercialized multimedia applications often combine the above TCP or
UDP protocol with other protocols standardized by the IETF. For instance, video stream-
ing services use the UDP together with the Real-time Transport Protocol (RTP) [133] to
carry the media stream and the Real-time Transport Protocol (RTCP) [133] to monitor
transmission statistics (e.g. round-trip time, packet loss rate) and control the service qual-
ity. The Real Time Streaming Protocol (RTSP) [134] can also be used simultaneously for
establishing or tearing down a media session and remotely controlling media stream sent
from the server that is similar to VCR-like commands such as play and pause. Alterna-
tively, end-points can establish a session by using the Session Initiation Protocol (SIP) [128]
or the Hypertext Transport Protocol (HTTP) [43]. For web-browsing, it uses HTTP over
TCP to carry the web page information that is usually coded in the Hypertext Markup
Language (HTML) [124]. In addition, IETF specified the Session Description Protocol
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(SDP) [59] providing a standard presentation for describing multimedia sessions for the
purposes of session announcement, session invitation and session establishment. This in-
cludes, for example, the media and transport details (e.g. media type, media format, used
transport protocol), a high-level session description (e.g. session name, purpose, privacy),
etc. Selection of which transport protocol and session control protocol to be used and how
to make use of them is implementation specific, as it depends on the application’s needs
and the service provider’s requirements.

Originally, the above transport protocols were designed and optimized for wired networks.
For example, TCP provides a transmission rate control based on the cumulative acknowl-
edgements of transmitted packets with an aim to efficiently use the available transmission
capacity in the network and to avoid network congestion, which then causes packet losses.
The behaviour of sender-based rate adjustment uses the Additive Increase and Multiplica-
tive Decrease (AIMD) [31] that increases the transmission rate in a step-like fashion in
the absence of packet loss and reduces multiplicatively when congestion is detected. De-
tails of TCP congestion control and TCP Friendly Rate Control (TFRC) are specified in
RFC5681 [10] and RFC5348 [47] respectively. For the UDP, it provides error detection
in the packet header or payload by using the cyclic redundancy check (CRC). However,
the UDP does perform neither any error recovery nor congestion control mechanism. If an
error is detected, it simply discards the whole packet. In [91], IETF specified the Datagram
Congestion Control Protocol (DCCP) that provides an effective congestion control mech-
anism for unreliable datagram flows. The DCCP enables existing and new applications
that are delay sensitive to easily use it to transfer timely data without destabilizing the
network (avoiding network congestion).

Compared to wireline packet networks, multimedia delivery in wireless networks is char-
acterized as low transmission rate and unreliable. The packet losses are induced by both
error-prone wireless channel and network congestion. For TCP, many studies [27, 15, 98]
have shown that the TCP has a poor performance in the context of mobile communica-
tions due to the inherent wireless transmission characteristics such as high bit-error rate,
the user’s mobility and the limited transmission bandwidth. One of the major reasons is
because the TCP considers any lost packet as a signal of network congestion and adjusts
its transmission rate accordingly. However, packet losses can also stem, for example, from
the high bit error rate over wireless links, the call handoff across base stations, or the
unpredictable disconnection while the user is in motion. Using the standard congestion
control and error recovery through retransmission hence results in unnecessary degraded
performance of bandwidth utilization and system throughput [153]. A number of efforts
have been made to improve the performance of TCP in wireless environments, for exam-
ple, freeze TCP [56], and TCP-Probing [152]. This includes efforts in the standardization
communities, for example the IETF provides an Explicit Congestion Notification (ECN)
mechanism [125] that allows any intermediate node located along the transmission path to
inform the end hosts (receiver and sender) about an incipient congestion at its node, such
that the sender invokes a congestion control algorithm and thus avoiding a packet dropping
at the intermediate nodes. However, the ECN is still not widely deployed, since it requires



CHAPTER 2. STATE OF THE ART 14

that all intermediate nodes and end hosts must support ECN. In [129], Sardar et al. clas-
sified TCP enhancements into two categories: connection management related approaches
and wireless loss related approaches. They also provided a qualitative comparative study
of different existing solutions of TCP.

Transmission of UDP packets in error-prone network environments is inefficient, since most
of the corrupted packets are discarded by a checksum at UDP protocol stack. This also
applies for packets containing only a small part of corrupted data or even only single-
bit errors, which are sometimes useful packets to the application layer [95]. Codecs for
voice (e.g. AMR codec [138]) and video (e.g. H.264 [76]) are examples of application
that benefit from having damaged data delivered rather than discarded by the network
due to its build-in error-resilience capability. Consequently, the UDP-Lite [93] has been
introduced to avoid unnecessary packet discarding by UDP, and thus reducing the excessive
packet loss rate for UDP traffic. Instead of having all or none of packets being protected
by a checksum, UDP-Lite provides flexibility in the form of partial checksum that allows
senders to specify the coverage of the checksum on a per-packet basis and to define the
payload as partially insensitive to bit errors. In [137], Singh et al. proved that the use
of flexible checksumming scheme improves the overall performance in terms of delay and
packet loss. However, UDP-Lite imposes the backward compatibility problem, as it has its
own protocol identifier, which makes it compatible only with the devices/applications that
are UDP-Lite capable. Another variance of UDP called UDP-Liter has been proposed in
[92], which requires minor modifications to the traditional UDP and BSD socket API, but
yet maintain backward compatibility. Through the socket call, the application specifies an
option for the UDP-Liter to either retain the traditional UDP behaviour or simply pass
packets to the application. Nonetheless, a drawback of the UDP-Liter is that it is unable
to differentiate header errors from payload errors, which may then lead to a mishandling
of packets at the application-layer.

Using RTP over UDP is resilient against packet losses to some extent, as it provides a
restoration mechanism of packet re-ordering through packet sequence ID and timestamp,
and a feedback mechanism through the exchanging of RTCP report that allows a sender
to adapt the coding scheme and transmission behavior to the observed network Quality
of Service (QoS) such as round-trip delay, jitter, etc. The adaptation can be done in the
order of several seconds to minutes. Additional supplement statistics, which are mainly
useful for real-time monitoring and diagnosis for VoIP application (e.g. average loss rate,
burst duration, gap duration, average mean opinion score for voice quality, etc.), can be
conveyed by the RTCP Extended Report (RTCP-XR) described in the RFC3611 [49].
However, RTP makes no provision for errorneous/distorted packet recovery and a timely
feedback that would allow a sender to repair the media stream immediately. An extension
of RTCP-based feedback for the Audio-Visual Profile (RTP/AVPF) has been proposed to
address the aforementioned problems and standardized by the IETF in RFC4585 [113].
This early feedback profile (AVPF) is used to convey information about events observed
at a receiver such as packet loss, packet reception, frame loss, etc. Having received the
feedback from the receiver, the sender can then react accordingly. For instance, when the
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receiver sends a Picture Loss Indication (PLI) message to inform the sender about the loss
of an intra-picture of the encoded video data, the sender becomes aware that the prediction
chain may be broken and thus may react to a PLI by restransmitting the intra-picture to
recover the error. IETF RFC4588 [127] has specified an RTP payload format for the RTP
retransmitted packets that are sent in a separate stream from the original RTP stream.

The Packet-switched Streaming Service (PSS) defined by the 3GPP [7] specifies an end-
to-end based bitrate adaptation mechanism allowing a sender to control the transmission
bit rate in order to avoid packet losses caused by the network congestion or buffer overflow
at the receiver and a buffer underflow that would interrupt the continuous playback, and
thus providing best possible service quality to the end user. To achieve these goals, PSS
uses several IETF standards such as RTCP-XR [49], RTP/AVPF [113]. Moreover, the PSS
extends the SDP and RTSP in the form of attributes, option tags and headers, so as the
sender is able to periodically monitor both link rate and client buffer status through the
client’s feedback. For example, the SDP attribute ’a = 3GPPAdaptation-Support’ requests
the client (receiver) to provide buffer status feedback and to configure how frequently it
should be done. The RTSP header ’3GPP-Adaptation’ is used to inform the sender about
the client’s buffer size and minimum required buffering to ensure interrupt-free playback.
In [50], results showed that the sender adapts the transmission bit rate with respect to the
change of channel rate capacity, and thus the significant improved media quality is offered.

Lately, IETF has started standardizing how to make use of the ECN concept for the
RTP flows running over UDP [166], which allows real-time applications to respond to
the onset of the congestion (via the ECN flag) before an intermediate network node is
forced to drop packets. The objective is to enable real-time applications to control their
transmission rate, rather than trying to conceal the negative effects of unpredictable packet
loss. In contrast to the conventional ECN for TCP flows [125], ECN for RTP over UDP/IP
requires an extension of the RTP/AVPF feedback for urgent feedback of ECN information,
an extension of the RTCP-XR for ECN summary report for the regular RTCP transmission
period, and an extension of the SDP for negotiation of the ECN capability between the
end hosts.

Media content delivery on the web usually uses HTTP over TCP [43]. In the past, viewing
of the media content was only possible after having finished downloading an entire media
content. But today, many content providers (e.g. YouTube) deliver their media content
using the progressive download approach, which allows the users to view the content as
soon as enough data is retrieved and buffered at the client while the download is still in
progress. However, the progressive download still has several drawbacks. First, it does
not allow the user to change the media content to be downloaded on the fly, if there are
different versions for the same content. This is because the requested media content is seen
as one big chunk from the client side. Consequently, this makes it inappropriate especially
for the wireless network, in which the available transmission rate varies over time. The
user will experience video stalling due to rebuffering, if the available channel bit rate is less
than the data rate for longer period of time, which is required by the media content of the
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selected version. Second, the progressive download does not offer rich features of streaming
(trick modes) such as play, rewind, etc. Adaptive HTTP streaming based approach [16] has
been proposed to address these shortcomings while preserving the simplicity of progressive
download.

Adaptive HTTP streaming is a hybrid of progressive download and streaming. It allows
the user to selectively view the segment of media content (rather than one big progressing
download) and dynamically select the short duration of media segment at different quality
(different bit rate) that matches to the available transmission rate, while continuing to
download the content from the server in the background. The latter is important, as this
would allow an efficient usage of time-varying network resources. Since the media segments
are short, it enables the client to use trick modes efficiently. As a result, the user would
have an impression as of streaming applications. Currently, there are two different imple-
mentations of adaptive HTTP streaming based on the multi-bitrate fragments: Smooth
Streaming from Microsoft [105] and HTTP Live Streaming from Apple [114]. Microsoft’s
implementation uses the Protected Interoperable File Format (PIFF) [20] as an extension
of the MPEG4 (MP4) file format specification [78], whereas the Apple’s variance uses the
MPEG2 Transport Stream file format [77] for the fragmented content storage.

2.3 Adaptive multimedia applications

So far, we have discussed how the radio access networks and its transports are enhanced
to cope with the QoS provisioning focusing on the layer1/2 and transport technologies
respectively. In this section, we will discuss the advances in multimedia applications aiming
to avoid congestion in a packet-switched network and to protect and recover errorneous or
missing bits of media content due to a transmission over an error-prone wireless interface.

2.3.1 Application-level congestion control

Many TCP-based applications such as web-browsing, file downloading, exploit existing
congestion control mechanisms in TCP as discussed in Section 2.1, since they work well for
networks with heavy TCP traffic. With this, the TCP-based application is transparent to
any changes of transmission rate done by the TCP. However, for real-time applications like
VoIP and video conferencing that use UDP/RTP for its transport, the application itself is
actively involved in congestion control. In particular, the application makes use of the QoS
feedback from the receiver through, for example, the RTCP-suit protocols also discussed
in Section 2.1 to control its transmission rate in order to avoid network congestions.

Due to the fact that the networks generally consist of both TCP flows and non-TCP
flows, if we assume that the non-TCP flows exist in the networks and do not have any
mechanisms to adapt their transmission rate, this situation can lead to starvation of TCP
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flows [45]. To avoid any performance degradation due to the aforementioned problem, for
which the TCP flows and the non-TCP flows are competing for transmission on a shared
wireless link, several TCP-friendly congestion/rate control algorithms for non-TCP flows
have been proposed, for example, the Rate Control Scheme (RCS) [145], the Analytical
Rate Control (ARC) [9]. The RCS suits for the typical satellite links, which have high
bandwidth-delay products and high bit error rates, while the ARC is designed for the
wireless networks with low access delay. Another effect of the two schemes is to reduce the
negative impact of the wireless link error on the throughput. However, its drawback is that
they do not adapt well to the abrupt increase of the bandwidth, as they do not consider the
bandwidth variation over wireless networks. In [96], Lee et al. proposed a new TCP-friendly
congestion control algorithm based on the ECN [125] for streaming real-time applications
that takes into account both the wireless link error and the available bandwidth. The
estimation of the available bandwidth of the bottleneck link is done by using the inter-
arrival time of ECN ACK packets. With this, the proposed ECN-based scheme utilizes
the time-varying bandwidth efficiently without penalizing TCP flows, and thus avoiding a
network underutilization in presence of an abrupt increase of the bandwidth.

Other application-level congestion control algorithms are the TCP-Friendly Rate Adap-
tation Based on Loss (TRABOL) [14] and the congestion-threshold based approach [35].
The TRABOL employs the concept of the TCP congestion control at the application level.
The sender’s transmission rate is adapted according to the number of lost packets within
an interval of time measurement at the receiver’s side, but without delay requirements of
real-time applications. In [35], Chua et al. proposed a new solution allowing the appli-
cation to perform a congestion control taking into account the inherent characteristics of
real-time applications (e.g. end-to-end delay requirement, impact of delay variation on the
QoS). The proposed solution consists of the two independent components: congestion de-
tection/notification and adaptive transmission control. The detection/notification is done
at the receiver, whereas the adaptation is performed at the sender. To detect congestion,
it computes the absolute value of the difference between the inter-packet arriving intervals
and the original inter-packet transmission interval. Moreover, the detection algorithm tells
the transmitter to what degree congestion is present by evaluating the computed abso-
lute difference by using a simple first-order infinite impulse response (IIR) filter in order
to obtain severity of the congestion in the network. Using the congestion-severity infor-
mation, the transmitting endpoint selects the bandwidth-reduction method that is most
appropriate for the level of congestion, thereby maintaining optimal link utilization and
throughput while simultaneously curbing congestion. Two bandwidth-reduction techniques
are discussed: compression switching approach and multi-packet merging approach. The
former is simply to switch to a different compression algorithm (e.g. different encoding
quantization parameters) resulting to a variation of bit rate, whereas the latter method is
to transmit the same data with fewer transmissions by covering a longer period of time
with the data it packs into each IP packet.
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2.3.2 Application-layer error control and recovery

In addition to the error detection and retransmission (ARQ), and error correction (FEC)
available at the physical and link-layers of the wireless protocol stack discussed in Section
2.1, many application-layer techniques have been proposed to make the multimedia content
delivery more resilient to wireless transmission errors [55, 34]. One major reason is that
the lower-layer error protection mechanisms only work for wireless link errors, whereas
the application-layer error control mechanisms work for both packet loss due to network
congestion and wireless link errors. Second, though the transport level provides a packet
retransmission to guarantee a certain level of quality as discussed in Section 2.2. However,
it has disadvantages, as retransmission introduces additional delay and thus it is not ap-
propriate to some delay-sensitive applications such as voice call and video streaming. The
application-layer error control avoids such unnecessary delay by using an error protection
or an error correction technique that is fully relied on the end-points [160]. One can clas-
sify the application-layer error control techniques that are provided at the sender or at the
receiver. A comprehensive survey of error resilience techniques can be found in [160] for
a general overview for video application and in [141, 41] for the specific video codecs such
as the H.264-AVC standard. Below, we briefly discuss each approach with the focus on its
application to the delay-sensitive applications.

• Sender-based error resilience: To alleviate quality degradation due to packet losses
during the transmission over a lossy channel, the sender exploits an error resilient
source encoding technique, for example, by adding redundancy in the bitstream. This
helps the receiver to recover from the transmission errors, but it also comes at a cost of
coding efficiency due to the fact that it uses more bits to obtain the same video quality
in the absence of any transmission errors. Hence, its design goal is to minimize the
redundancy while achieving a desired level of resilience in presence of packet losses.
There are several ways to introduce redundancy in the bistream. One simple but
effective approach is to insert resynchronization codes periodically, which is already
supported in MPEG-4 [48], in order to localize transmission errors and to limit the
quality degradation within the same codewords, for example, within the same slice in
a video frame. Instead of discarding the whole slice containing only a few corrupted
bits, the Reversible Variable Length Code (RVLC) [26] further limits the errorneous
region by allowing the receiver to decode in both forward and backward directions
between the two resynchronization codewords. However, in advanced codecs such
as H.264/AVC [168] that uses the temporal prediction to achieve a higher coding
efficiency, an error of a single slice of a frame would lead to an error in decoding of
the subsequent reconstructed frames. To stop such temporal error propagation, one
can insert an intra-coded pictures or blocks [60], which are independently coded.

• Receiver-based error resilience: In contrast to the error resilient source encoding, er-
ror concealment has an advantage of not employing any additional bitrate, however, it
adds computational complexity at the decoder due to the detection and concealment
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of errors. In video applications, a simple error concealment approach is to copy either
the whole previous frame or the slices of co-located positions in the reference frame.
Alternatively, the decoder recovers damaged regions using the texture information
from the surrounding regions in the same frame (spatial interpolation) or in nearby
frames (temporal interpolation) [64]. In [130], it has been shown that a combination
of spatial and temporal interpolation also leads to a significant gain for improving
the video quality in error-prone environments. More sophisticated concealment ap-
proaches are for example the recovery of corrupted blocks by using the motion vector
information of surrounding blocks [53], or replenishment of missing blocks by taking
into account the perception of the human visual system (HVS) [17].

2.4 Cross layer design

Several existing approaches mainly address finding efficient wireless transmission tech-
niques based on optimizing a single layer in the protocol stack, in which messages are
interchanged between entities of the same layer as discussed in previous sections. Each
layer is aware of its own messages and embeds its information into upper layer messages
when they go down in the layer stack, while it discards the lower layers’ information when
messages go up. Although such a layered architecture offers simplicity and modularity of
protocol design, recent results indicate that the traditional seven-layers of the Open Sys-
tems Interconnection (OSI) model [167], which was originally designed for wired networks,
may not lead to a global optimization for wireless communication systems due to different
characteristics and different requirements of the wired and wireless medium. For instance,
one of the well-known assumptions in the TCP protocol is that packet loss is caused by
network congestion. However, in wireless systems, packet loss often occurs due to corrup-
tion. Moreover, the performance in wireless networking is very sensitive to the mobility
and the surrounding environment. This makes the wireless systems much more complex
than wired communication networks, which are assumed to have high reliability and high
communication capacity.

A new paradigm to design networks by optimizing across layers, so called ”Cross-Layer De-
sign (CLD)” has been proposed in [58, 79] to take full advantage of adaptivity according
to information sharing across layers. Figure 2.1 shows the OSI layered model and a subset
of the possible interactions that can be considered in the CLD. As an example of down-
ward information sharing, the application would notify the lower layers of the expected
communication load in the near future, thus allowing the network to reconfigure and move
resources into areas of higher demand. For upward information sharing, the application,
in response to its knowledge of the status of the network, could either modify (or even
totally defer) the requested Web-page information, for instance, by avoiding fetching of
high-volume data.

Nevertheless, the violation of the original OSI architecture brings also some disadvantages
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[83]. For instance, with the CLD architecture, it sometimes does not represent the actual
system and can lead to the complete loss of the meaning of the initial architecture. The level
of modularity of the network and abstraction in the network implementation is reduced due
to the cross layer design, which increases the complexity of the network. It is important to
note that the layers are not independent anymore and any change in one layer could have
impact onto other layers.

Figure 2.1: Subset of Cross-Layer Design in the OSI model.

Applying the CLD approach for the wireless networking was introduced in [135, 29, 139]
to address the poor performance in wireless multimedia delivery and to efficiently allocate
the scarce radio resources while still providing QoS to mobile users. To enable the com-
munication between layers, the CLD requires cross-layer signaling, which can be classified
into two groups as follows:

2.4.1 Internal cross-layer signalling

Internal cross-layer signalling is the message internally exchanged among different OSI
layers inside of a physical entity. For example, due to a bad channel quality (e.g. very low
signal strength between the mobile device and the base station), the physical layer on the
mobile device may inform the conference call application running on that mobile device to
send the video stream at low resolution and framerate.

The simplest way of sharing cross-layer information is to have a common signalling pipe
across all layers as depicted in Figure 2.2-a. The internal signalling can be a dedicated
protocol or a standard protocol. In [172], Wu et al. introduced an extension header for
IPv6 header, called ”Wireless Extension Header (WEH)”. The WEH extension header
is used as an internal storage of the cross-layer information, which is then transported
through the general signalling pipe. Results show that sharing radio-link parameters (e.g.
data rate, radio-link round trip delay, fading conditions) to the TCP will improve the
system performance, since TCP can help the Radio Link Protocol (RLP) by lowering the
Round-trip Time Out (RTO) upper bound and setting a smaller timer back-off factor, to
the extent that it does not lead to congestion collapse.
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Another approach is to use the selected holes method as depicted in Figure 2.2-b. This
method is different than the common signalling pipe, as the internal signalling message
that is used in one propagation path may not be the same as other paths, but still carrying
similar content [142]. For example, the link-layer may use an IP specific additional header
to carry information about the current wireless channel conditions, and the network-layer
may extract this information and send to upper layers in another form such as using the
standard ICMP header.

The Cross-LAyer Signalling Shortcuts (CLASS) proposed in [159] employ a direct signaling
between non-neighboring layers. This scheme is more efficient, flexible and comprehensive
than the two methods discussed above, as the intermediate layer(s) along the propagation
path from the source layer to the destination layer is not involved, and therefore, avoiding
unnecessary processing overhead and propagation latency. CLASS is a new light-weighted
protocol, as it reduces additional headers (e.g. IP headers, common ICMP header), that
are not necessary when performing cross-layer optimization, and simplifies the message
format. The signalling shortcuts concept is depicted in Figure 2.2-c.

Figure 2.2: Options for internal cross-layer signalling: (a) General signalling pipe, (b)
Selected signalling holes and (c) Shortcuts signalling.

2.4.2 External cross-layer signalling

External cross-layer signalling refers to the exchange of messages among different OSI
layers across multiple physical entities. For example, the application server connected to
the core network may inform the base station about the required data rate, so that the
base station may reserve radio resources in order to fulfill the requirement.

Signaling for resource reservation prior to the data transmission has been extensively stud-
ied in the last decades. One of the first standardized resource reservation architecture
was the Integrated Service (IntServ) [21], which uses the Resource reSerVation Protocol
(RSVP) [22] as the underlying mechanism to signal the reservation information across the
network. However, IntServ is not very popular due to its scalability issue in large size net-
works. It requires all nodes along the data path to be stateful, which continuously monitor
their network resource utilization and calculate available resources for the incoming RSVP
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reservation requests. The Differentiated Services (DiffServ) [19] provides a simple and
scalable QoS mechanism that prioritizes IP packets based on the traffic class (e.g. voice,
streaming media, or web-based traffic). Each router treats each data packet based on its
class that are set in the Type of Service (ToS) field of the IP header.

Besides the resource reservation, the external cross-layer signalling is also used to provide
an intelligent multimedia content adaptation [90] or to recover from errors during the
transmission [176]. In [90], an intelligent network service collects and stores the Wireless
Channel Information (WCI) at the WCI server via the logical interfaces linked with the
base stations and other network elements. The collected information is then abstracted in
XML format that can be retrieved through signalling by the application server in order
to adapt the multimedia content with respect to the wireless channel condition. In [176],
Zheng and Boyce proposed a new UDP that utilizes a cross-layer technique to interchange
information from the physical and link layers to the IP or transport layer in order to assist
error recovery at the packet level.

Hints and Notifications (HAN) [94] allow the application and transport layers to commu-
nicate with wireless link layers in order to utilize the wireless network resources efficiently
and improve the service quality for individual users. Hints contain useful application-layer
information which is used to guide the link layer, e.g., the boundaries between parts of a
packet and the acceptable error-rate and delay requirements for each part. Notifications
are information from the link layer sent to the application layer informing the application
layer how to react more accurately due to variations in the physical medium.

The IST project M-Pipe [144] proposed a uni-directional cross-layer signalling, which car-
ries information about the application, so called ”Layer Independent Descriptor (LID)”,
along the user plane path in order to guide the network elements for local resource manage-
ment and rate adaptation. No feedback from the network elements is required. The LID
contains three main information groups: traffic class, packet drop preference, and error
protection preference. The traffic class identifies whether the application is loss-tolerant,
adaptive and scalable. Whereas the packet drop dependency specifies the offsets of trunca-
tion points, which are used to specify the error protection preference due to the error-prone
wireless transmission. The LID uses the standard signalling protocol such as RSVP as its
transport.

2.4.3 Cross layer optimization in wireless networks

Exchanging key parameters across the layers as discussed earlier enables the network op-
erator to perform the Cross-Layer Optimization (CLO). The CLO is basically done by
collecting the correct information from various layers, manipulating them in a decision
center and distributing the decisions to layers so that the overall optimization of the sys-
tem is achieved instead of an individual and separate optimization in the layer. There
are a number of researches on using the CLO technique to solve the problems in wireless
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multmedia delivery. For instance, the network operator implements the CLO with the
aim of efficient packet scheduling [80, 18, 52, 51], efficient modulation scheme selection
[157, 121], efficient joint channel and source coding [44, 23], or even efficient power man-
agement for mobile devices [174, 65]. For resource allocation optimization, most works
are based on the conventional throughput maximization [100, 154], or a combination of
throughput optimization with queue length information in scheduling to ensure fairness
of resource allocation [40, 107, 103]. In [84], a joint optimization of application and link
layers, including the physical and medium access layers, was proposed in order to efficiently
use the limited network resource taking into account the impact on the video quality. Only
key parameters from each layer are abstracted and used for the optimization. Later, a new
way of abstraction of application-layer information for video streaming was proposed by
using the Rate-Distortion (RD) model, which leads to a low number of application model
parameters [33]. The proposed RD models are applicable for both the Mean Square Error
(MSE) or the Peak Signal to Noise Ratio (PSNR). A QoS-aware scheduling algorithm for
wireless video delivery was presented in [101], in which the PSNR was used as a video qual-
ity metric. She et al. [136] proposed an intelligent active packet dropping at the MAC-layer
for real-time video streaming based on a new quality metric taking into account the frame
rate when calculating the video quality.

A utility-based cross-layer optimization framework was first proposed in [86], where a
concave utility function for an elastic traffic (e.g., webbrowsing, file transfer) is used to
capture the user satisfaction as a function of data rate. Whereas, a non-concave sigmoidal
utility functions [102] has been proposed for inelastic flows (e.g., voice or video). For
a comprehensive overview of the Network Utility Maximization (NUM) framework please
refer to [30] and the references therein. In [28, 123], a new fairness concept with utility max-
min allocation has been introduced that corresponds to the satisfaction of each user in the
system being equal regardless of the application type and the channel quality condition.
They showed that the utility max-min allocation outperforms the bandwidth max-min
allocation under a variety of utility functions for different application classes.

Unlike other previous works, which mainly concentrated on the system supporting only
a single application type, Khan et al. [87] extended the CLO by taking into account
the user-perceived quality aspect, and also made it a general framework which can be
applied to any applications (e.g. voice calls, video streaming, file transfer). To achieve
this, the Mean Opinion Score (MOS), which was originally used for voice call quality
assessment [73], is used as a common metric in the optimization scheme to represent the
user perceived quality of each application as a function of transmission data rate and packet
loss rate. Similar to the utility maximization, the resource allocation optimization in [87]
aims to achieve the maximum average user quality. The proposed MOS-based scheme was
extended by targeting at different objective functions such as a modified max-min fairness
that guarantees a minimum service quality to all users [131]. Their simulation results
showed that the MOS-based optimization leads to remarkable improvements in terms of
user-perceived quality respectively an increased number of users in a cell when compared
to the conventional throughput-based optimization and the non-optimized system.
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2.5 Justification and positioning

In this thesis, we focus on the QoE-driven optimization for network resource allocation in
cellular networks based on the work presented in [87], which is important for an network
operator due to several reasons. Firstly, current throughput-based optimization only makes
sense in case of packet-based charging. High cellular bitrates, e.g. 3GPP Long Term
Evolution (LTE), which is expected to approach a peak bit rate of 100 Mbps [38], would
further push a flat-rate billing model or models based on quality guarantees. In that
scenario, the operators would find a clear motivation to maximize the satisfaction of their
customers, irrespective of the requirements of their services. Secondly, user satisfaction
is gaining importance to the operators who realize that unsatisfied users would usually
quit the network without ever complaining to the operator, and would possibly share their
experience with other potential customers, resulting in increased customer churn rate and
thus severe loss of revenues. Thirdly, QoE-based optimization allows potentially more
customers to be served simultaneously without a loss of user perceived quality. Lastly,
the proposed QoE-based resource allocation is performed at every second. It fills a gap
between physical layer transmission intervals (2ms in HSDPA) and long term application
layer mechanisms such as adaptive streaming or TCP congestion control (between 5 and
10 seconds).

Contrary to most of the NUM literatures, where only concave, continuously differentiable
utility functions and theoretical link models are assumed, our scheme proposes a frame-
work considering realistic utility functions and applies the framework to a standardized
cellular network system such as the HSDPA system. Unlike [87], which only takes into ac-
count the network resource constraint, we consider additionally the hardware constraint of
computational resources used for processing the in-network rate adaptation. Furthermore,
we go one more step beyond the state of the art solutions by investigating a multi-criteria
optimization that searches for an optimal resource allocation with the objectives of max-
imizing the average user-perceived quality of all users, minimizing the maximum quality
difference among users, and minimizing the perceivable temporal quality fluctuation. The
last objective function is newly proposed aiming to reduce a temporal quality change that
would have a negative impact on the overall user-perceived quality.



Chapter 3

QoE-driven cross layer optimization

The increased usage of a wide variety of cellular multimedia services is putting an ever
increasing demand for high data rates on the wireless interface. As the downlink of the
cellular system often acts as the bottleneck link, an efficient usage of downlink wireless re-
sources becomes essential in order to provide high quality of services to the largest possible
number of users. The time varying transmission conditions of the wireless channel and the
dynamic changes of application requirements of multimedia services make the optimization
of downlink resources a challenging task. We have seen in the previous chapter that there
have been many studies over the past years for optimizing resource allocation in wireless
systems. The Cross-Layer Design (CLD) based approach is one of the promising techniques
expected to be widely deployed.

The work presented in this chapter is based on the Cross-Layer Optimization (CLO) frame-
work proposed in [87], which jointly optimizes the application layer and the lower layers of
the wireless protocol stack with the aim of improving the user-perceived quality (Quality
of Experience, QoE). In our work, we consider a more practical approach to deploying the
CLO framework in mobile systems, which invalidates some of the assumptions given in [87].
For instance, previous work assumes that video streaming servers are located very near to
the mobile base-station and thus allows data rate adaptation by changing the quantization
at the video encoder. In a realistic scenario, video servers are located outside the mobile
network. Furthermore, using explicit application-layer signalling for rate adaptation has
several drawbacks. For example, it imposes an additional delay in response to the conges-
tion problem. Moreover, it requires a video server end-system to support the signalling for
rate adaptation, and thus leading to a backward-compatibility issue.

In our work, we consider a more realistic scenario, in which each user accesses multimedia
contents that are encoded at high quality and are stored at the Application Server (AS)
located outside the mobile network. To enable the proposed QoE-driven optimization, we
introduce two main functional entities, the Traffic Management (TM) module and a Traffic
Engineering (TE) module that are located inside the mobile core network as depicted in

25
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Figure 3.1. The TM module acts as an optimizer for downlink resource allocation, whereas
the TE module acts as a controller for rate adaptation. Though the figure shows the
location of both modules in the mobile core network, in fact, they can also be placed in
the Radio Access Network (RAN), e.g. at the base station. It is not necessary that both
modules are co-located at the same place. For instance, an operator may place the TM at
the base station and the TE at the gateway towards networks outside the mobile network
such as the Internet. With this, the network operator can save unnecessary traffic coming
from outside for the whole mobile network. Optimization is done based on lower layer
information (e.g., average channel quality), the objective function, and the application
utility functions, which are either stored in advance or sent along with the data stream.

Figure 3.1: Target use case and network configuration considered in this chapter.

Throughout this thesis, we use the High-Speed Data Packet Access (HSDPA) system as
an example of the target mobile network system for the practical approach validation.
However, the QoE-driven optimization framework is general and hence can be applied for
any mobile network systems.

In the following sections, we first quickly go through the basics of the HSDPA system
and discuss the long-term models for both the application utility function and the radio
link-layer model related to the provided functionalities and features of the HSDPA system.
Next, we elaborate the architecture of the CLO framework applied to the HSDPA system.
For determining the goal of the optimization, we discuss various objective functions im-
plemented in an HSDPA simulator, which allows us to compare all proposed QoE-based
schemes with other existing techniques such as the throughput maximization approach.
We describe details of the greedy search algorithm, which is used as a heuristic approach
to find a good solution. Finally, we investigate the impact of applying different rate adap-
tation techniques to the user-perceived quality and discuss how to integrate them into
the proposed CLO framework for the constrained system, which is characterized by both
limited network resources for data transmissions and limited computational resources for
processing of rate adaptation.
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3.1 HSDPA overview

The key concept of HSDPA is to increase the packet data throughput using link adapta-
tion and fast retransmission from the base station (Node B). Link adaptation of HSDPA
uses Adaptive Modulation and Coding (AMC) with two modulation schemes, QPSK and
16-QAM, and a rate 1/3 turbo code with variable amount of puncturing. AMC adapts to
the radio condition based on the Channel Quality Indicator (CQI) report from the receiver
every Transmission Time Interval (TTI) which is fixed at 2ms. For fast packet schedul-
ing and retransmission, HSDPA employs the Hybrid Automatic Repeat-Request (HARQ),
which is also dependent on the wireless channel quality Q.

Figure 3.2 depicts the HSDPA scenario considered in this chapter, with the three main
network elements involved in HSDPA: Radio Network Controller (RNC), Base Station or
NodeB, and the User Equipment (UE). The RNC is responsible for the control of the radio
resources. The NodeB schedules the packets to the UEs, taking advantage of AMC and
HARQ. These functionalities are embedded in the RNC’s and the NodeB’s protocol stack
as shown in Figure 3.3(a). The packet transmissions over the RNC and the NodeB is
illustrated as given in Figure 3.3(b). At the RNC, IP packets are received from the core
network and each of them is encapsulated into one Radio Link Control (RLC) Service Data
Unit (SDU). The RLC-SDU is then segmented into fixed-size RLC-PDUs of 40 Bytes [4].
At the Node B, one transport block (TB) is sent over the air each TTI. The number of
information bits that can be sent in each TB is denoted as the Transport Block Size (TBS)
which depends on the CQI of the user. We discuss typical sizes of the TBS as a function
of the CQI in Section 3.2.

The process of estimating the TBS is shown in Figure 3.4. In each TTI, one or more users
are selected to be scheduled. When multiple users are allowed to be scheduled within the
same TTI, the available power and code resources are calculated using a resource-allocation
algorithm. When user multiplexing is not used, all the available power and code resources
can be allocated to a single user during the TTI. In this thesis, we assume that no user

Figure 3.2: HSDPA scenario example. [148]
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(a)

(b)

Figure 3.3: HSDPA overview: (a) protocol stack, (b) packet transmissions.

Figure 3.4: TBS estimation process adapted from the standard [5] and extended for the
deployed HSDPA system.

multiplexing is used for allocating the HSDPA wireless resources. Look-Up Tables (LUT)
are used to get the TBS, given the available power, code and CQI values as standardized
by 3GPP in [5]. The UE also sends ACK/NACK messages associated to the previous TB.
This helps to estimate the actual Block Error Rate (BLER) of the user. An appropriate
TBS is chosen for a target BLER of 10%. The difference between the target and the current
BLER is used to update the power, code and CQI values to be used in the LUT.

Let S be the set of users, S = {1, 2, · · · , N}. Let it be the user who is given access to the
channel at time t, where t is the index of TTI, i ∈ S, t ∈ Z+ with Z+ being the set of
positive integers. Let Q be the set of possible CQI, Q = {1, 2, · · · , 30}, and Qt

i be the CQI
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of user i at time t, Q1
i ∈ Q.

Using AMC the Node B chooses a transmission format for a fixed target BLER resulting
into a TBS of Bt

i which depends on Qt−d
i :

Bt
i = g(Qt−d

i ) (3.1)

where d is the link adaptation delay. The relationship in Eq. (3.1) is standardized by
3GPP [5].

3.2 Radio link-layer model

In this thesis, we adopt the long term radio link-layer model originally proposed in [132],
which uses the average maximum achievable bandwidth for each user as a representative
of average wireless channel condition experienced by the user. The abstraction model
is less complex for the parameter estimation, parameter exchange, and performing the
optimization. Hence, it allows a network operator to flexibly place the QoE optimization
module anywhere in its network due to its low complexity. Like in [132], we estimate the
long term average rate of each user i, denoted by Rmax,i, i ∈ S, that the user can support
when all the wireless resources are allocated to the user. Let Ri be the long term data
rate provided to user i, given the normalized resource share αi. Then the radio-link layer
is described as:

Ri = αi ·Rmax,i, 0 ≤ αi ≤ 1,∀i (3.2)

Eq. (3.2) defines the HSDPA rate region. In the following the estimation of Rmax,i is per-
formed for HSDPA. For the analysis, we consider an individual user at each time instance.
Hence, we drop the user and the time index. Let r be the instantaneous data rate of the
user. Assuming that the scheduler selects only the users who have packets to send, and Q
is slowly varying, r = B, and from Eq. (3.1) follows:

r = g(Q) (3.3)

Taking expected values on both sides of Eq. (3.3):

E{r} = E{g(Q)} (3.4)

Assuming only one user is scheduled at a TTI, all the resources are allocated to the user,
so that

E{r} = Rmax (3.5)

Due to the user mobility, signal fading from the multipath effect, channel shadowing from
urban obstacles, as well as the effect of noise and interferences from external sources, the
wireless channel condition Q is time varying, and thus changing the maximum achievable
data rate Rmax. However, if we are interested in the average of wireless channel condition
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Figure 3.5: TBS vs. CQI for a category 6 receiver [5]. A variable TBS is attained by using
adaptive modulation and coding, combined with a variable number of spreading codes.
The category 6 receiver can use either QPSK or 16QAM and a maximum of five spreading
codes.

within a time interval (e.g. 1 second period) rather than at each 2ms of TTI, it can be
assumed that the mean CQI does not change considerably. Therefore, although Eq. (3.3)
is a non-linear function when the whole domain of the function is taken into account, it
can be approximated by a piecewise linear curve, as shown in Figure 3.5. Hence,

E{g(Q)} = g(E{Q}) = g(Q̄) (3.6)

where E{Q} = Q̄. From Eq. (3.4), (3.5) and (3.6):

Rmax = g(Q̄). (3.7)

Hence, Rmax can be estimated by observing the mean CQI values over a period of time.

3.3 Application layer model

We use application utility functions to describe the Quality of Experience (QoE) for differ-
ent applications as a function of lower or radio link-layer parameters, e.g., rate or through-
put, time share, power, spreading code, bandwidth, etc. As proposed in [87], the Mean
Opinion Score (MOS) is used to provide a common numerical measure of the QoE across
different applications, and thus allows us to perform a cross-layer optimization for resource
allocation across users accessing different types of application. Like in [143], the utility
functions used therein are described as a function of transmission data rate and packet loss
rate. However, due to the fact that the HSDPA link-layer provides a robust retransmission
mechanism, we assume that all packets are transmitted successfully. Hence, in this thesis,
the utility function U can be simplified as a function of transmission data rate R as given
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below:
U = f(R), f : R →MOS (3.8)

where R is the set of possible rates, and MOS = [1 : 4.5]. As shown in Figure 3.6, MOS
4.5 means that nearly all users would rate the service with an excellent quality, while MOS
1 means the service is expected to be rated by all users with a very poor quality. Below we
describe the derivation of the utility functions of different applications and the multiuser
utility space in more details.

Figure 3.6: Relation between MOS and user satisfaction [73].

3.3.1 Voice call application

End-to-end rate adaptation

Traditionally, assessment of voice quality can be done by performing subjective tests with
panels of human listeners, which is usually time consuming and not feasible for the network
operator to monitor the delievered voice service to their customers in real-time. The ITU-T
has standardized a model, Perceptual Evaluation of Speech Quality (PESQ) [71], which
objectively measures and predicts the one-way voice quality score (MOS) that is likely to
be given by the user. Still, such algorithms are computationally expensive and require
the original speech signal to be compared with the degraded speech. Hence, they are
not suitable for online system monitoring and optimization. To solve this we precompute
voice utility functions that estimate MOS via the PESQ algorithm as a function of the
transmission rate R that determines which voice codec to be used. In Figure 3.7, we
show experimental curves for MOS estimation as a function of R. Each point represents
a different codec (G.723, iLBC, SPEEX and G.711) used at the sender side. The MOS
is measured from a set of speech files with different contents for the case of error-free
transmission. Due to distortion imposed by the source codec, every voice codec leads to a
different MOS value. This utility curve can be stored at the base station for information
when performing QoE-driven optimization for resource allocation.
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Figure 3.7: PESQ-based MOS as a function of the transmission data rate for different voice
codecs. The utility curve consists of 4 discrete points representing the 4 codecs (G.723,
iLBC, SPEEX and G.711) operating at fixed bit rates of 6.4kbps, 15.2kbps, 24.6kbps, and
64kbps respectively. [148]

Figure 3.8: Evaluation scheme for voice transcoding using the PESQ algorithm.

In-network rate adaptation

In case the network operator performs a voice transcoding inside its network, there is an
additional source distortion (2nd source distortion, DS2) caused by the transcoding process
from the codec ’X’ to codec ’Y’ as shown in Figure 3.8. Whereas, the voice utility functions
discussed earlier only considers the encoding distortion at the sender (1st source distortion,
DS1), since the rate adaptation is done by changing to a different codec at the sender. For
the evaluation and prediction of the transcoded voice quality MOS2, we employ the PESQ
algorithm with an assumption that the reference signal is available.

Figure 3.9 shows the results of different in-network voice transcoding possibilities from a
large number of voice samples including both male and female voices available at [71],
[115]. The evaluation is done by assuming that there is no packet loss while transmitting
from the sender to the network entity responsible for the transcoding. This assumption is
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(a) (b)

(c)

Figure 3.9: Comparison of voice quality from the source encoding distortion and the
transcoding distortion: (a) when transcoding from the G711 codec to a lower encoded
rate, (b) when transcoding from the SPEEX codec to a lower encoded rate, and (c) when
transcoding from the iLBC to a lower encoded rate.

valid only when the sender is a fixed terminal, which trasmits voice packets over the fixed
line. Otherwise, if the sender is a wireless terminal, the evaluation scheme in Figure 3.8
is to be updated with an additional packet loss distortion between the 1st and 2nd source
distortion. It is to be noted that wireless voice sender is out of scope. In Figure 3.9-a, the
sender transmits the voice content with a high data rate of 64kbps and the intermediate
node in the network transcodes the voice stream to a different codec so as to achieve a
lower data rate. We observe that the previous model marked with the black triangle fits
well to the average transcoded voice quality. Also, the lower encoding rate we transcode,
the higher standard deviation of the transcoded voice quality we receive. These conclusions
also apply for the cases of the SPEEX transcoding and the iLBC transcoding to a lower
encoding rate as shown in the Figure 3.9-b and Figure 3.9-c respectively. From all results,
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we see that the maximum of the standard deviation of the transcoded voice quality is
roughly about 0.15 MOS, which is marginal. Hence, the average MOS model, which only
takes into account the source encoding at the sender, can be used as a general model for
any voice stream and the additional distortion caused by the transcoding is negligible.
If the network operator would like to optimize its network resource allocation for voice
call applications, it is sufficient to use an average model of voice utility function derived
from the source encoding with different codecs. These models just have to be stored in
advance in the network and no extra signalling from the end-points during the mid-session
is needed.

3.3.2 File download application

File download or web-based applications are considered to be elastic services, for which the
utility function is an increasing, strictly concave, and continuously differentiable function
of throughput [86]. Based on this assumption, the file download utility function is assumed
to be logarithmic with respect to the data rate R as follows:

MOS = a · log10 (b ·R) (3.9)

where a and b parameters are determined from the maximum and minimum user perceived
quality and the user’s service subscription to the network operator. For example, if a
user has subscribed for a specific rate service R and receives this service rate R when
downloading the file, then in case of no packet loss user satisfaction on the MOS scale
should be maximum, i.e., 4.5. On the other hand, we define minimum transmission rate
(e.g. 10kbps in Figure 3.10) and assign to it a MOS value of 1. Using these parameters, we
fit the logarithmic curve in Eq. (3.9) for the estimated MOS. Figure 3.10 presents the MOS
function by varying the R based on the assumption that the user subscribes to a service
of 200kbps data rate. To enable the cross-layer optimization across flows discussed later, a
signalling mechanism for a and b parameters is needed. This can be done in an end-to-end
fashion or through the retrieval of user’s subscription information from the subscription
database in the network.

In fact, file download or web browsing applications use TCP as its transport protocol, which
has its own end-to-end mechanisms between the sender and the receiver such as flow control
and congestion control. The flow control adapts the sending data rate in order to prevent
a fast sender from overrunning a slow receiver, while the congestion control keeps the
data flow below a rate that would trigger a network congestion, which makes the network
performance fall. In order to adapt the transmission rate to optimize the transmission
in a base station, the cross-layer optimizer may contact the sender or simply, e.g., slow
down the TCP flow. If this happens on a small time scale (e.g., seconds) TCP will not
notice. If this situation pertains then TCP will react accordingly by adapting its sending
rate. We assume that the TCP rate adaptation process, which is for example modeled by
the TCP Friendly Rate Control (TFRC) equation [46], has no significant impact on the
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Figure 3.10: MOS as a function of transmission rate for file download applications. [148]

user perceived throughput (as shown in Eq. (3.9)). Alternatively, the proposed cross-layer
optimization framework may leave the TCP connections untouched and only relies on the
TCP end-to-end mechanisms as discussed above.

The above TCP-based application utility function might be different, if a TCP proxy-based
solution is used for a TCP connection. For example, the wireless network operator may
implement the Wireless TCP (WTCP) mechanism [126] in one of their network entities,
which splits the TCP connection into two TCP connections, one from the sender to the
TCP proxy and another from the TCP proxy to the mobile client, and thus gives flexibility
to control the latter connection according to the wireless channel condition experienced by
the mobile client. The works presented in this thesis do not cover such advanced TCP
transport protocol. The file download utility function of the TCP proxy-based solution
and its potential impact are out of scope and require hence further study.

3.3.3 Video streaming application

End-to-end rate adaptation

The schema for deriving the video utility function can be illustrated as in Figure 3.11. In
this diagram, we only have the source distortion D stemmed from the source’s encoding
and the receiver’s decoding process. The video distortion is calculated by the Mean Square
Error (MSE) between the two m× n images A and B, where one of them is considered as
a degraded image of the other. D is defined as follows:

D =
1

m · n

m∑
i=1

n∑
j=1

[A(i, j)−B(i, j)]2 (3.10)

To see the relationship of D and the video encoded rate R, we change the setting of
the quantization parameter for encoding the I-, P- and B-frames, and measure the cor-
responding source distortion as shown in Figure 3.12. Two different video contents
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Figure 3.11: Schema of video utility derivation for an end-to-end rate adaptation.

Figure 3.12: Measurement result and model for video source distortion.

(Mother&Daughter (Mother) and Foreman) are used as an example. Both videos have
QCIF resolution and are encoded with the H.264 AVC at 30 frames/sec. The Group-of-
Pictures (GoP) size is set to 30 frames. In [32], an analytical model of source distortion
is proposed, which requires only three reference points of source distortion from three
different encoding rates to determine the two constant parameters χ and δ in Eq. (3.11).

D =
χ

eR/δ − 1
(3.11)

As shown in the measurement results in Figure 3.12, we see that the source distortion
model proposed in Eq. (3.11) fits well with the experimental measurements for both video
sequences. Moreover, the Foreman video, which contains a dynamic video content, is more
sensitive to the change of encoded rate than the Mother video.

Alternative to the MSE, the Peak Signal to Noise Ratio (PSNR) is also used to measure
the video quality, which is calculated from the source distortion D by using a logarithmic
function as follows:

PSNR = 10 · log10
2552

D
(3.12)
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(a) (b)

Figure 3.13: Linear relationship between PSNR and MOS (a) Video utility functions based
on the PSNR quality measure (b).

To get the MOS model for the video application, we use a linear mapping between the
PSNR and the MOS as given below.

MOS = υ · PSNR + ς (3.13)

The two constant parameters υ and ς in Eq. (3.13) can be determined by specifying a
minimum PSNRmin and a maximum PSNRmax including its corresponding minimal and
maximal user-perceived quality MOSmin and MOSmax respectively. For example, if the
PSNR is less than 20dB then the MOS will be 1, and if the PSNR is more than 38dB
then the MOS will be 4.5. Figure 3.13(a) shows the linear mapping function of the given
example. We apply this linear mapping for the rest of this chapter.

From Eq. (3.12) and (3.13), the video utility function for both ’Foreman’ and ’MthrDotr’
video sequences can be depicted as shown in Figure 3.13(b). We see that a video user
will be more sensitive to a video quality change of the ’Foreman’ video than a quality
change of the ’MthrDotr’ video. For the ’MthrDotr’ video, when the encoded rate is about
90kbps, the user-perceived quality already reaches the maximum level of MOS 4.5. Further
increasing the encoding rate for the ’MthrDotr’ video will not lead to a higher QoE. This
tells us that there is a range of video quality, in which it makes sense and makes no sense
to increase the encoded rate in order to achieve a higher quality perceived by the user. In
contrast, the ’Foreman’ video requires much more data rate in order to reach the highest
MOS of 4.5. This concludes that the user perceived quality is strongly dependent on the
video content and one should encode the video appropriately in order to avoid network
congestion and efficiently use the limited network resources if transmitted over the wireless
networks.
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In-network rate adaptation

The video utility function investigated so far only considers the rate adaptation at the
server (e.g. changing the encoded rate at the video source). However, a network operator
may prefer to perform a rate adaptation in its network, so that it has a control for changing
the video data rate of all traffics in its network, and thus reacting properly to the network
congestion or to a poor wireless channel condition experienced by the user. Furthermore,
having such control also gives a flexibility to the network operator to adapt the data rate
across flows, and not only on a single flow basis. The downside of doing a rate adaptation
in the network is an additional distortion to the video quality, which is illustrated in
the schematic diagram in Figure 3.14. Below, we discuss two in-network rate adaptation
techniques: transcoding and packet dropping, and investigate its impact on the video
utility function.

• Transcoding : Video transcoding can actually be done in several ways [173, 8]. The
simplest method of transcoding is to decode the already encoded video stream to
an intermediate format (i.e., YUV for video), and re-encode the resulting file into
the target format [106] with the target data rate. Alternative is the sample rate
conversion approach, which converts the digital signal from one sampling rate to
another [156]. While converting, it also minimizes the change of information carried
in the signal. Throughout this thesis, we use the simple re-encoding scheme as an
example of transcoding due to its simplicity of implementation for evaluation. After
performing a transcoding, we measure the average data rate and the video quality,
which is done by comparing the transcoded video with the original video.

• Packet dropping : In H.264 AVC codec, a video frame can be encoded in three different
frame types: I-frame, P-frame, and B-frame. The Intra coded picture or I-frame is
the conventional, full size frame that contains all contents in the original frame. The

Figure 3.14: Schema of video utility derivation for an in-network rate adaptation..
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predicted picture or P-frame is a delta frame, which stores only changes in respect
to the previous I- or P-frame. And the bi-directional predicted picture or B-frame
stores the data with reference to both the previous and precedent frames. Both P-
frame and B-frame are used in order to improve the video compression efficiency.
With these three frame types, the video can be encoded with any encoding schemes
such as I-P-P scheme, or I-B-P scheme and thus allows a hierarchical frame encoding
that tells about the importance of each frame type. In this case, the I-frame is the
most important frame, as it is the head-end frame that are used as a reference for
both P- and B- frames. The second most important frame is the P-frame, as the
B-frame is dependent on it. And the least important one is the B-frame, since they
are not referred by any other frames. To achieve rate adaptation, one can simply
drop a packet or the whole frame from the video stream. However, this should be
done carefully in order to minimize the overall quality degradation that may cause
by the packet dropping due to the structure of frame dependencies when encoding
the raw video. For instance, in our work, the video is encoded with the I-P-B-B-P
structure. The typical way for frame dropping is to first drop all B frames. If further
rate reduction is still needed, then we start dropping P-frames, until there are no
P-frames left. As a last possibility, we then have to drop an I-frame causing a still
image for the whole period of the Group of Pictures (GoP). For P-frame dropping
in a single GoP, we start dropping from the last P-frame instead of dropping the
first P-frame in the GoP or a random dropping to avoid a distortion propagation as
explained in [155].

Figure 3.15(a) shows the Rate-Distortion (RD) curve for the Foreman video when applying
transcoding and packet dropping for adapting video data rate. The upper bound curve is
the source-encoding distortion caused by the H.264 AVC codec at the sender. Each red
points represents the actual average video rate and the video quality that we measure after
varying the quantization parameter at the sender (video streaming server). The red line is
the RD model based on the function proposed by Choi et al. in [32]. Prior to performing a
transcoding or a packet dropping, we assume that the sender transmits a video with high
data rate (e.g. at 450kbps) to the receiver. In the network, we transcode the high bit
rate video stream to a lower rate by decoding and re-encoding with the same H.264 codec
but different quantization parameter. The RD measurement for the ”H.264 ⇒ H.264”
transcoding is shown by the blue dots and the blue line from Choi’s RD model. In case,
the mobile terminal does support only the MPEG4 codec and not the H.264 AVC codec,
the network operator may transcode the original H.264 AVC video stream to the MPEG4
codec format. The result of an additional distortion from the MPEG4 transcoding is shown
with the green dots and green line. We see that transcoding with the same codec (H.264
AVC ⇒ H.264 AVC) does not deviate much from the original source encoding RD curve,
whereas transcoding to a different codec (e.g. H.264 AVC ⇒ MPEG4) would lead to a
stronger degradation of the video quality.

The black dots in Figure 3.15(a) show the measurement results of the video quality when
applying an intelligent packet dropping scheme based on the importance of different video
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(a)

(b)

Figure 3.15: Rate-Distortion curve for Foreman video (a) and Mthr&Dotr video (b) when
applying different rate adaptation techniques: source encoding (red line), transcoding (blue
and green lines) and packet dropping scheme (black line).

frame types as discussed earlier. In this result, we use the frame copy for an error con-
cealment in case of a lost frame. We see that dropping the B-frame causes less quality
degradation than dropping the P-frame. Another observation is when dropping each B
frame, the change of data rate and its corresponding video quality (PSNR) is quite similar.
This means a linear function can be used to model the experimental result of dropping B
frames. The RD curve for dropping each P frame can also be modelled by using a linear
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Table 3.1: Statistical results of transcoding 25 video sequences
Transcoding scheme Avg. ∆PSNR Std. ∆PSNR Max. ∆PSNR Max. ∆MOS
H.264 ⇒ H.264 0.747 0.307 1.054 0.247
H.264 ⇒ MPEG4 3.205 1.06 4.211 0.99

function, but with different constant parameters.

In Figure 3.15(b), we show how the transcoding and packet dropping have an impact on
the video quality for the Mother&Daughter video, which contains a low motion of video
scenes. Like the Foreman video, we see that the transcoding outperforms the packet
dropping. However, the reduction rate of video quality for the Mother&Daughter video
is much less than the Foreman video when applying both rate adaptation schemes. This
implies that a dynamic video is more sensitive to any rate adaptation scheme than the
static video. Thus, the video content plays an important role and should be taken into
account when performing rate adaptation in the network.

In addition to those two videos, we have done an extensive evaluation of video transcoding
with 25 different video contents. Table 3.1 shows the statistical results from this experi-
ment. In short summary, the maximum PSNR difference for the H.264 AVC⇒ H.264 AVC
transcoding (∆PSNRH264⇒H264) is about 1.054 dB, whereas the maximum PSNR differ-
ence for the H.264 AVC ⇒ MPEG4 transcoding (∆PSNRH264⇒MPEG4) is much higher
(about 4.211 dB). When using the linear relationship between the PSNR and the MOS as
presented in Figure 3.13(a), these can be translated to the maximum of MOS difference
of 0.247 and 0.99 for the H.264 AVC ⇒ H.264 AVC transcoding and the H.264 AVC ⇒
MPEG4 transcoding, respectively.

Figure 3.16 depicts the video utility for ’Foreman’ and ’Mother&Daughter’ videos based
on the linear mapping between the PSNR and the MOS as given in Eq. (3.13). In this
Figure, we only depict the H.264 AVC⇒ H.264 AVC transcoding, as we use it for the rest
of this thesis and not the H.264 AVC ⇒ MPEG4 transcoding scheme.

HVS-based video utility function

Previously, we measured the video quality by using the PSNR due to its simplicity of
calculation. However, many studies [54],[161],[163] show that such pixel-based distortion
measure does not match well to user perceived visual quality due to the fact that human
eyes are highly adapted to structural information. Structural SIMilarity (SSIM) index [163]
was first used to measure an image quality based on the structural distortion. In principle,
SSIM measures the similarity of two signals (the original signal and the distorted signal) by
comparing the luminance, the contrast and the structure. The luminance is the mean in-
tensity from the signal. The contrast is the standard deviation of the signal. The structure
is the signal after luminance subtraction and variance normalization. These two signals
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Figure 3.16: PSNR-based video utility functions for different rate adaptation schemes.

are taken from a local window, which is just a part of the whole image. In [164], Wang
et al. extended the image SSIM to support video applications. The Video SSIM (VSSIM)
considers the chrominance part of the image and employs some adjustment methods that
assign different importances for different regions in a frame and for different frames in the
video sequence. The adjustment improves the accuracy of the quality assessment algorithm
due to two reasons. First, dark regions in a frame are assigned with smaller weighting val-
ues, since they do not attract fixations. Second, human eyes perceive the video quality
differently in each frame depending on the degree of motion in the video sequence, which
can be measured by using the motion vector information during the encoding process.

To obtain the video utility functions, we vary the quantization steps for encoding the raw
video and measure the average data rate and the average VSSIM index. Transformation
of the objective video quality (e.g. VSSIM) to the predicted user perception in quality
degradation (DMOS) can be done in several ways. For example, the Video Quality Expert
Group (VQEG) in ITU recommended to use a nonlinear regression function as shown in
Figure 3.17. DMOS 0 means that the user does not see the quality degradation compared
to the perfect video quality. Whereas, the higher DMOS refers to the lower video quality
that the user would rate. Since all test video sequences that are used in the VQEG Phase
I test [158] are not available publicly, for simplicity, we map the VSSIM value to the MOS
scale using a linear function with an upper and lower bound as follows:

MOS =


1, if V SSIM < 0.74

a · V SSIM + b, if 0.74 ≤ V SSIM ≤ 0.98

4.5, if V SSIM > 0.98

(3.14)

Note that the upper and lower bound, and the constant parameters (a and b) of the
linear function are determined such that it fits best to the scatter plot of objective and
subjective measurements as depicted in Figure 3.17. Figure 3.18 depicts an example of
a VSSIM-based video utility curve for the ’Foreman’ and the ’Mother&Daughter’ video
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Figure 3.17: Scatter plot and linear/non-linear regression of the VSSIM-based video quality
assessment model on VQEG Phase I test dataset. [164]

Figure 3.18: VSSIM-based video utility functions for different rate adaptation schemes.

sequences. In contrast to the PSNR-based video utility, the video quality will not degrade
that much when transcoding the video. Whereas, for the packet dropping scheme, user-
perceived quality will reach a minimum MOS of 1 earlier than the PSNR-based result for
the ’Foreman’ video. But for the ’Mthr&Dotr’ video, the MOS will be higher even though
all B- and P-frames are dropped in every GoP. This implies that human eyes are more
sensitive for the dynamic video content than the static video content when performing a
packet dropping for rate adaptation.
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Complexity of in-network video rate adaptation

Complexity of performing a video transcoding or dropping video packets are different and
has to be considered when performing rate adaptation in the network due to hardware
constraints. To measure complexity, we have performed experiments by, for example, mea-
suring the processing time (in second) needed to perform transcoding and packet dropping
for the ’Foreman’ and the ’MthrDotr’ videos as depicted in Figure 3.19. In this exper-
imental measurement, the computer used for the transcoding and packet dropping only
has a CPU of Pentium 4 processor and a RAM of 750 Mbytes. If using a PC with better
performance, it is expected that the processing time will be significantly reduced. Results
show that transcoding is computationally more expensive than packet dropping. The time
for transcoding ranges between 1 second and 4.2 seconds depending on the target data
rate and the video content itself. Whereas, packet dropping only requires a 100 ms, and
the required processing time is independent of the video content and the target data rate.
In case, there is a computational constraint of hardware (e.g. processor), an intelligent
selection of which video stream to be applied the transcoding is necessary, since video
transcoding causes less video quality degradation than packet dropping. We discuss in
details our proposed rate adaptation scheme selection across multiple videos in Section
3.9.

Figure 3.19: Experimental measurement of time consumption for different rate shaping
schemes.
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3.4 Multiuser utility space

The multiuser utility space, U , defines a set of feasible utility vectors constrained by the
total system resources:

U ⊆ Rn,
∑
i

αi ≤ 1, (3.15)

where Rn is the n dimensional Euclidean Space and αi is a normalized resource share to
user i. Considering a simple wireless access network system with a total symbol rate S∗,
we can formulate a resource allocation constraint across users as

∑i=1
N Si ≤ S∗, where Si is

the symbol rate assigned to user i. αi, which is fraction of total symbol rate assigned to
user i, can be calculated as αi = Si/S

∗.

In Figure 3.20, we show the utility functions U of video and file download applications
for different channel conditions given S∗=100Ksymbol/sec. Each curve corresponds to
the bound on the QoE of the user as a function of the given resource for a particular
long-term receiver Signal-to-Noise Ratio (SNR) experienced by the user. We note that
the utility functions are monotonically increasing with respect to α. In general, U is non-
concave and non-differentiable. A multiuser utility space U can be formed by combining
the transmission policies of every user under a certain wireless channel condition and a
constraint of total resources shared among users. Figure 3.21(a) shows an example of U for
a two user case: one video user and one FTP user. The receiver SNR for the two users are
15dB and 5dB, respectively. The individual points correspond to all possible combinations
of (α1,α2) such that α1 +α2 ≤ 1. Figure 3.21(b) shows the boundary of the U . We denote
this boundary as U15,5, the subscripts specifying the channel state of the users. a–b and
d–e correspond to user rates of (0, Rmax,1) and (0, Rmax,2). c is the optimum point with
respect to the objective function described in the next section.

(a) (b)

Figure 3.20: Utility function for different channel conditions: (a) video streaming applica-
tion and (b) file download application.



CHAPTER 3. QOE-DRIVEN CROSS LAYER OPTIMIZATION 46

(a) (b)

Figure 3.21: Utility space (a) and boundary of utility space (b) for the two user case;
SNR(video) = 15dB, SNR(FTP) = 5dB. [89]

3.5 QoE-driven CLO framework

In this section, we discuss a Quality of Experience (QoE) driven optimization framework
for resource allocation in HSDPA [1]. The framework is integrated into a HSDPA mobile
system as shown in Figure 3.22. The long-term link layer and the application layer models
discussed in previous sections are communicated to a QoE-based optimizer acting as a
downlink resource allocator. For example, we use the maximum achievable data rate Rmax

for each user i when assuming that the total resources are allocated to the user as a key
parameter from the link-layer, while in the application-layer we use the utility function U
representing the user’s QoE for different applications. Depending on the objective function
that is set prior to the optimization, the optimizer finds an optimal resource allocation
αopt and then sets the applications-layer data rate Ropt for each user accordingly. In the
following subsections, we discuss different objective functions and how the rate adaptation
done by the application-layer can be realized at the HSDPA base station.

3.5.1 Utility-based objective functions

The utility functions introduced in Section 3.3 provide the information about the required
transmission rate at the application-layer in order to achieve a certain level of QoE. The
representation of the lower-layers depends on the channel quality of each user. Information
about the channel quality is obtained through the CQI feedback from the UE as described
in Section 3.2. Depending on the selected objective function, the optimizer allocates the
wireless system resources differently. Below we discuss two QoE-based objective functions
applied in our work.
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Figure 3.22: QoE-driven optimization framework for HSDPA

Utility maximization

With the objective function of utility maximization, which has been first proposed in
[79, 32], the optimizer maximizes the average utility of all users as given in Eq. (3.16):

F(x̃) =
1

N
·
N∑
i=1

Ui(x̃) (3.16)

where F(x̃) is the objective function with the cross-layer parameter tuple x̃ ∈ X̃. N is the
total number of users in the system, X̃ is the set of possible parameter tuples abstracted
from the protocol layers representing the set of candidate operation modes. The decision
of the optimizer can be expressed as:

x̃opt = arg max
x̃∈X̃
F(x̃) (3.17)

where x̃opt is the parameter tuple which maximizes the objective function. After selection
of the optimal values of the parameters, those parameters are sent back to the individual
layers, which are responsible for translating them back into actual layer-specific modes of
operation. Further details of parameter abstraction can be found in [79], [33] and [88].

Depending on the type of application, we create different sets of transmission policies,
which specify possible transmission data rates. We denote the set of transmission policies
for a user i by Ti. With utility-based optimization, the optimizer chooses a combination
of resource allocation that maximizes the following objective function:

F(x̃) =
N∑
i=1

|Ti|∑
j=1

E{Iij · Uij(x̃)} (3.18)

where i denotes the user index, j refers to the index of the transmission policy. Iij is the
indicator function. Its value is 1 when the transmission policy j is chosen for user i, and
0 otherwise.
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In principle, with the utility maximization, all users are served with very high quality,
if all are experiencing a good channel condition. Otherwise, in constrained systems, the
optimizer will give less network resources to the user having a very bad channel condition
or the user accessing a high-demand application.

Max-min utility

The max-min fairness concept [123] applied to our QoE-based cross layer optimization
means that the optimizer allocates the resources such that all users experience the maxi-
mally possible same level of quality. The max-min objective function is defined as:

x̃opt = arg max
x̃∈X̃

{
min
i∈N

Ui(x̃)
}

(3.19)

A drawback of using max-min fairness is the unequal quality loss. For instance, when
a single user runs a very demanding application or has a very poor channel quality, the
optimizer tries to give this user more resources and therefore forces all other users to share
this poor experience fairness. A modified max-min technique [131] has been proposed to
allow for setting a minimum guarantee of service quality. It first checks whether there is
enough resources to provide all users with that guaranteed quality. If not, the system will
drop the user with the highest resource consumption, meaning that no resources are given
to this user until the next optimization loop. After checking the constraint, it performs a
usual max-min utility based optimization as described in Eq. (3.19).

3.5.2 Realization of rate adaptation in HSDPA

At each TTI, a number of data blocks or RLC PDUs are passed from the higher layers to
the radio link layer. The size of a data block to be transmitted in one TTI depends on the
Channel Quality Indicator (CQI), which is carried via the uplink High Speed-Dedicated
Physical Control Channel (HS-DPCCH). The TTI is set to 2ms, meaning that there are
500 TTI slots available in one second period to be shared among users.

The optimizer decides the best combination of all user’s operation modes, which maximizes
the selected objective function. To assure the data rate of each user, the number of TTI
slots must be assigned correctly. Estimation of the required number of TTI is done by
using the following equation:

Si = dAapp,i +OHi

B̄i

e (3.20)

where Si is the number of transmission opportunities to be allocated to user i. Aapp,i is
the number of bits to be sent in one second. We assume that the application is sending
with a constant bit rate (CBR) during the time interval of interest. B̄i is the mean size
of a transport block. OHi is the amount of overhead due to transport and network layer
headers.
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The use of the proposed framework does not exclude the possibility of setting Guaran-
teed Bit Rate (GBR), Scheduling and Priority Indicator (SPI) and Discard Timer (DT)
for quality control, as proposed in [117]. GBR can be set at once as the values out of
the optimization or periodically reconfigured during optimization. Setting SPI would be
essential in order to ensure delay guarantees. In this paper we assume that the streaming
and realtime traffic are prioritized with respect to file download traffic. The exact priority
indices would largely depend on the scheduler used. The approach taken in this paper does
not rely on any particular scheduling scheme, and hence can be used with any scheduler.

In order to work harmoniously with an admission control policy, it should be considered
that for a relatively small number of users all the resources are not exhaustively distributed
to the existing users. Otherwise, as each new user is admitted into the system, the existing
users would be forced to lower their share of resources, resulting into lower quality and
unsatisfied users. It should be noted that for audio-visual services users would usually
prefer to keep the quality level fairly constant rather than being exposed to fluctuations
of quality, even if the mean quality of the latter is higher. We propose an extension of
QoE-driven optimization that addresses the issue of temporal quality fluctuation in Section
4.2.

3.6 Greedy search optimization

Greedy algorithm was first devised by Gross [57] for solving general discrete resource allo-
cation problem, in which the objective is to minimize a separable convex function under
a single budget constraint. The resource allocation problem is extended by considering
upper bounds [42] or both upper and lower bounds [61]. In [61], Hochbaum discusses
an application of greedy algorithm for a continuous nonlinear variable. A comprehensive
review of algorithmic approaches including greedy algorithm for discrete and continuous
resource allocation problem are provided in [67] and [116] respectively. In general, a greedy
algorithm makes a locally optimal choice at each step with the hope of finding the global
optimum, and therefore, cannot guaranteed to find the optimal solution since it does not
operate exhaustively on the whole constraint space. Due to its low complexity, greedy
algorithm has also been applied for other problems such as the knapsack problem [25], the
outsourcing warranty repair service problem [111], etc.

In telecommunications, greedy algorithm has also been used to find an optimal solution
for network resource allocation problem, for example, to minimize a total transmit power
across multiple wireless users [169], or to minimize video quality degradation of all users
in multipath networks [81]. It is to be noted that most works of greedy algorithm in
resource allocation problem usually start its greedy algorithm with zero resource allocation.
Brehmer et al. [24] propose to initialize a resource allocation for multiple users that lies
along the Pareto efficient set. They analytically illustrate how the proposed Iterative
Efficient set Approximation (IEA) develops step-by-step along the set of possible resource
allocations that satisfy the equality of the constraint (Pareto efficient set) with an aim of
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maximizing the sum of utilities of all users. In principle, the concept of IEA algorithm
is similar to the greedy algorithm. Namely, both IEA and greedy algorithms find the
next best possible operating point of resource allocation by taking a small amount of
resources from the user with the minimum quality degradation and assigning them to the
user receiving the maximum benefit. To achieve this, the IEA algorithm uses the gradient
projection method on the tangent space of the current operating point, whereas, the greedy
algorithm uses a max-gain and min-loss ranking method across all users.

In this thesis, we use the greedy search algorithm to solve a discrete resource allocation
problem and consider a linear budget constraint, which would then result to a flat plane of
Pareto efficient set. In contrast, the IEA algorithm deals with non-linear Pareto efficient
set for a continuous optimization problem. Nevertheless, both greedy and IEA algorithms
have a commonality, in which they initialize its algorithm with an operating point that lies
on the Pareto efficient set.

In the following sub-sections, we first derive some properties of the constraint space which
we call the utility space U . Then we elaborate the greedy search algorithm for discrete
resource allocation optimization problem in detail. Lastly, we discuss the worst case prop-
erties of the algorithm and compare it with that of the full search approach.

3.6.1 Properties of utility space

It is to be noted that the Theorem and the Proof discussed below have been published
earlier in [148].
Theorem 1. Let P be a set of points in the utility space corresponding to

∑
i αi(p) = 1, P =

{p ∈ U s.t.
∑
αi(p) = 1}. Let x̃∗ be the optimum mode of operation: x̃∗ = arg max

∑
i Ui.

Then, x̃∗ ∈ P .
Theorem 2. The optimum of the objective function, x̃∗ lies on the boundary of the utility
space, i.e., x̃∗ ∈ BU .

Proof. Let p be an interior point of the utility space U , p ∈ U , p /∈ BU and let d(x, y)
denote the Euclidean distance between points x and y. Then there exists another point
q ∈ U , d(q, 0)− d(p, 0) > 0 such that F(p) < F(q). The existence of q is guaranteed until
q lies on the boundary of U , i.e., q ∈ BU . But

∑
i Ui(p) <

∑
i Ui(q), so that an interior

point of U cannot be an optimum. In other words, the optimum must lie on the boundary:
x̃∗ ∈ BU .

Theorem 3. Assume monotonically increasing utility functions, Ui(α) for ∀i. Let P be a
set of points in the utility space corresponding to

∑
i αi = 1, P = {p s.t. ∑i αi = 1}. Then

P = BU .

Proof. First we show that P ⊆ BU . Let q ∈ U , q ∈ P and q /∈ BU . Then there exists
another point r ∈ BU such that d(r, 0) − d(q, 0) > 0. Hence,

∑
U(q) <

∑
U(r) and

Ui(q) < Ui(r) for some i. Since Ui(αa) > Ui(αb) only if αa > αb (non-decreasing utility
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functions),
∑
α(q) <

∑
α(r) which implies

∑
α(r) > 1. But then r /∈ U and hence, r /∈ BU .

Therefore, q ∈ BU which implies P ⊆ BU . Similarly, BU ⊆ P can be proved by using the
fact that αa > αb only if U(αa) > U(αb) (strictly increasing utility functions). P ⊆ BU
and BU ⊆ P implies that P = BU .

The proof of Theorem 1 follows from results of Theorem 2 and Theorem 3.

Discussion: Theorem 1 implies that the optimum of the utility maximization problem lies
on the boundary of the utility space, so that a search through the whole utility space is
not required. Hence, any algorithm that performs an exhaustive search over the set BU
would eventually find the global optimum.

3.6.2 Algorithm description

We consider a time window of So TTI. Let Si be the number of TTI assigned to user i.
Then we have,

∑N
i=1 Si ≤ So.

The greedy algorithm for the utility maximization is described below. Throughput max-
imization is performed in a similar fashion. The algorithm is initialized by assigning an
amount of resource for every user such that

∑N
i=1 Si = So. At each subsequent iteration a

small amount of resources is taken from the user with the lowest sensitivity with respect
to decrease of utility and assigned to the user which receives the maximum benefit. This
process is repeated until there is no further improvement in the objective function.

Let Ui denote the utility function and αi the fraction of total TTI assigned to user i:
αi = Si

So
,
∑N
i=1 αi = 1. We consider a discrete set of αi:

αi ∈ {n ·∆α s.t. n ∈ Zo, 0 ≤ αi ≤ 1},∀i (3.21)

where Zo denotes the set of non-negative integers. Let ∆Ui denote the change of utility for
user i due to a change of its resource share, ∆α. The greedy algorithm can be expressed as
an iterative maximization of the incremental utility values of two users i+ and i−, i+ 6= i−

such that
i+ = arg max

i
{∆Ui|αi ← αi + ∆α} (3.22)

i− = arg min
i
{∆Ui|αi ← αi −∆α} (3.23)

The greedy algorithm for the utility maximization is summarized in Algorithm 1.

3.6.3 Complexity

The worst case complexity of the greedy algorithm described in the previous section de-
pends on the number of users and the granularity of the sampling of α. It can be shown
that the cardinality of the constraint set, and hence the number of points that have to be
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Algorithm 1 Greedy Algorithm
Input: Utility function U , Transmission policies T , number of user N , resource budget So,
step size ∆α, increase of step size ∆αinc, minimum expected utility change ∆Umin, maximum
number of iterations Imax.

2: Output: Optimal operating mode x̃opt;
Initialization: initial resource share: α = [1, 0, 0, ·, 0], set ∆Umax,inc to a value greater than
∆Umin. Iteration index, I = 0.

4: for i = 1 to N do
get operating mode x̃i from αi, x̃i ∈ Ti

6: Compute Ui
end for

8: loop
for i = 1 to N do

10: get operating mode x̃inc,i from αi + ∆α, where x̃inc,i ∈ Ti;
get operating mode x̃dec,i from αi −∆α, where x̃dec,i ∈ Ti;

12: compute ∆Ui(x̃inc,i) and ∆Ui(x̃dec,i);
end for

14: ∆Umax,inc = ∆Ui(x̃inc,i)−∆Ui(x̃dec,i)
if ∆Umax,inc < ∆Umin then

16: set ∆α to ∆α+ ∆αinc
else

18: find i+, i− using equations 3.22 and 3.23
set ∆α to ∆αinc

20: end if
I + +;

22: if I > Imax then
break;

24: end if
end loop

26: output: x̃opt

searched in the worst case increases with both the number of users and the granularity of
sampling. Specifically, it is shown that the cardinality of the constraint set stays constant
when the number of users and the number of samples are interchanged.

Let h be the number of possible modes for each user, h ∈ {1, 2, · · · }. We assume the
modes to be equally spaced, so that ∆α = 1/(h − 1). Let P be a set of vectors such
that P = {(p1 · · · pN)

′
s.t.

∑N
i=1 pi = h, pi ∈ {0, 1, · · · , h}}. Then P is the set of points

corresponding to
∑N
i=1 αi = 1. Hence the cardinality of the set P , |P | is the worst case

number of iterations for the greedy algorithm.

Let |P | = NG(h,N). Then, NG(h,N) =(
h+N − 1

N − 1

)
=

(
h+N − 2

N − 1

)
+

(
h+N − 2

N − 2

)
= NG(h− 1, N) +NG(h,N − 1).
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Figure 3.23: High-level architecture of OPNET HSDPA simulator.

This results in a 2D symmetric matrix of NG(h,N) which implies that we can interchange
the number of users with the granularity of the sampling and yet the worst case number
of iterations for the algorithm stays constant. This fact can be taken advantage of by
using less granularity of sampling as the number of users grow, such that the real-time
computation of the optimum remains feasible. In comparison, the number of iterations for
a full search is hN which becomes infeasible when N � 1.

3.7 OPNET HSDPA simulator overview

Throughout this thesis, we use the OPNET HSDPA module to emulate and simulate the
HSDPA mobile system. The OPNET HSDPA provides complete and validated TCP/IP
models, along with configurable settings that are needed to run a HSDPA simulation. The
configurations include for example network node settings or application profiles of which
the emulated HSDPA user is accessing. With this, it allows to repeat the same scenario
compare applications of different schemes implemented in the HSDPA system.

Figure 3.23 depicts an architecture of the OPNET HSDPA simulator. The core simulator
is the module that performs actual simulations based on the given simulation settings (e.g.
random seeds, simulation period). The simulation interface allows us to configure any
network nodes in the simulation project such as the application server, the Radio Network
Controller (RNC) node, the Base Station (BS) or even the client in the HSDPA module.
One can use the standard Generalized Network Application (GNA) library that contains
a large number of standard network nodes (e.g. SUN work station) and interfaces (e.g.
ethernet cable, or fiber cable) that are commercially available hardware and implemented
by various vendors (e.g. CISCO, 3COM). Moreover, the simulation interface also collects
simulation results and provides a number of statistics after finishing a simulation for an
evaluation of system performance.

A screenshot of the Graphical User Interface (GUI) of OPNET HSDPA simulator is shown
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Figure 3.24: Screenshot of OPNET HSDPA simulator.

in Figure 3.24. In this example, we consider a single HSDPA base station (BTS) that
is connected with the core network entity (RNC) responsible for radio network resource
control across multiple users. The standardized Iub interface is used to connect between
the BTS node and the RNC node. There are two types of mobile users: a single user
(UE) and a group of mobile users (subnet). The latter mobile user type can be used, for
example, in a scenario, where a group of mobile users is moving together or staying exactly
at the same place, and thus experiencing the same wireless channel condition. The char-
acteristics of each application type can be defined in the ”Application Definition (App)”
such as the packet interarrival time or the packet size. Configuration of how each user
runs an application on his/her mobile terminal (e.g. start time or duration of application)
can be specified in the ”Application Profile Definition (Pro)”. The ”Network Manager
(NWMGR)” is a place where all parameters related to network resource management can
be configured such as a maximum transmission power and a maximum transmission code
used for the high-speed downlink shared channel (HSDSCH).

3.8 Performance of QoE-driven CLO for network re-

source constrained system

3.8.1 Simulation setup

A HSDPA single cell scenario, where limited resources are shared among 10 users running
different applications (voice, video streaming, video conferencing and file transfer), is con-
sidered in our simulation as depicted in Figure 3.2. Data traffic of all users is transmitted
over the shared channel HS-DSCH and no dedicated channels are considered. For perfor-
mance evaluation, five schemes to be compared are implemented in the HSDPA simulator
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as follows:

1. No-adaptation: This is the default HSDPA mode. The system is left to run into
overloaded situations (network congestion), as no application-layer rate adaptation
is supported. If the data rate measured at the UE is lower than the data rate sent
by the application server and the packet delay exceeds the playout buffer time (e.g.
2 seconds), then we assume that the user experiences a minimal quality level (MOS
1). This is because the user cannot enjoy watching the video continuously, as the
video player will stop displaying the video due to late packet arrival.

2. Max-Rate: Based on the channel conditions, adaptation is done so as to achieve
maximum cell throughput regardless of the application type and the content. In this
case, the utility function is based on the average data rate R̄i as defined below:

Ui = R̄i, ∀i ∈ S (3.24)

Resources will be given to a user with good channel condition to achieve the highest
data rate for the video that a user is accessing. If there are resources left, they will
be given to the user, who has the next best channel conditions.

3. Max-MOS : Adaptation is done to maximize the mean user-perceived quality over all
users. The utility function is a function of MOS as described as follows:

Ui = MOSi(R̄i), ∀i ∈ S (3.25)

Resources are first given to a user having a good channel condition and accessing a
low-demand application.

4. MaxMin-MOS : Based on the utility function defined in Eq. (3.25), the max-min
fairness allocates resources such that all users experience the same perceived quality
regardless of channel condition and application sensitivity.

5. MaxMin-MinMOSX.Y-MOS : Similar to the max-min fairness approach, this scheme
first sets a minimum guarantee of MOS X.Y for all users and then adapts the resource
allocation so as to achieve the same MOS that is equal or higher than the guarantee
MOS. If the system cannot provide all users with the guaranteed MOS, a user or
more requiring the highest amount of resources is dropped.

It should be noted that schemes 2) to 5) are application-aware, and a simple transcoding
is used for rate adaptation in order to avoid network congestion. The optimization is
performed every second.

The parameters used in our simulations are given in Table 3.2. The wireless channel
model in the HSDPA simulator is based on the measured CQI trace representing different
mobility schemes under different environments. Examples of CQI trace for a HSDPA static
user and a HSDPA mobile user are shown in Figure 3.25. It is obvious that the mobile
user experiences more dynamic and drastic changes of wireless channel conditions than
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the static user. For the packet scheduler, we use a proportional fair scheduler, and we
assign lower priority to FTP with respect to other services. A set of possible rates, Rvs,
Rvc, Rvoice, and RFTP for video streaming, video conferencing, voice and FTP services,
respectively are chosen as shown in Table 3.2. Discard timer, DT are set as shown in the
table.

Table 3.2: Simulation Parameters
Total transmit power 15.8W

Power allocated to HS-DSCH 11W

Carrier Frequency 2GHz

User speed 3km/h

Distance from Node B 500m – 1.8km

UE category 6

Target BLER 10%

CQI averaging cycle 1sec

RLC PDU size 40byte

Scheduler Proportional Fair

Rvs {0, 30, ..., < 500}kbps

Rvc {0, 96}kbps

Rvoice {0, 6.4, 15.2, 24.6, 64}kbps

RFTP {0, 50, 100, · · · , 250}kbps

Video codec used H.264

Voice codec used G.723, iLBC, SPEEX, G.711

Loss concealment Copy previous frame

Video/Voice rate shaping Transcoding

DTvs, DTFTP 2sec

DTvc, DTvoice 150ms

Simulator OPNET 9.1 with NTT DoCoMo

HSDPA plugin

(a) (b)

Figure 3.25: HSDPA CQI trace examples for (a) a static user, (b) a mobile user.
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Figure 3.26: Schematic diagram of off-line evaluation methodology.

3.8.2 Evaluation methodology

The evaluation methodology is of particular importance to the quality-aware optimization
framework, as we are interested in characterizing the system performance in terms of user
perceived quality instead of only network-related parameters.

The simulation of a particular scenario produces packet traces which contain the time of
generation and arrival of each packet and the chosen rate/operating mode corresponding
to the packet. From this information, an offline evaluation is performed. Each media type
is encoded into a set of possible rates. The packet trace file is used to infer the rates chosen
for each user. Errors introduced to the bit-stream due to late arrival of the packets are
simulated using the packet arrival times. This distorted bitstream is then decoded by the
audio/video decoder with error-concealment enabled. The distortion between the original
input stream and the output distorted stream is measured and converted to MOS following
the approach outlined in Section 3.3. Figure 3.26 depicts an overview of the aforementioned
methodology for evaluating the user-perceived quality given the simulation results.

3.8.3 Simulation results

Figure 3.27 shows the mean utility of all the users over the simulation period of 3 min.
From time 10sec to 35 sec, users join the system one by one. The rate-based scheme and all
utility-based schemes start around 40 sec. We see a significant performance gain between
the no-adaptation scheme and the other schemes. Also, all MOS-based utility optimization
schemes lead to an additional gain compared to the rate-based scheme. The Max-MOS
scheme is the scheme resulting to the highest mean MOS under a constraint of network
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Figure 3.27: Mean utility for the 10 user case as a function of simulation time.

Figure 3.28: Mean utility and the corresponding mean CQI values for 10 users. [148]

resources shared among all users.

The average MOS of each user from one simulation is shown in Figure 3.28. Most of
the gain for Max-MOS schemes comes from the users experiencing relatively bad channel
conditions and demanding applications, e.g. video streaming user 3 (VS3). With the
MaxMin-MOS approach, all users experience a similar service quality (around MOS 3.4)
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except the video conference (VC) user, who perceives higher quality than others due to the
fact that its utility function consists of only one data rate (96kbps). By setting a minimum
guarantee of service quality with MOS 3.5, the VS3 user suffers the most, since it requires
the most resource to achieve the guaranteed MOS. But the overall quality of other users
compared to no adaptation or rate-based scheme is still better. Note that the average
perceived service quality for the two FTP users is slightly lower than other users due to a
lower priority setting at the scheduler and the TCP slow-start behaviour.

Figure 3.29(a) shows the Cumulative Distribution Function (CDF) of mean MOS over
all users over 300 simulation runs, each consisting of three minutes of simulation time.
To avoid the effects of startup, in which users join the system one by one, we take the
results of only the last two minutes. For clarity of the picture, we have left out the results
of MaxMOS with full search, since the MaxMOS with greedy optimization performs as
good as MaxMOS with full search as shown in Figure 3.27. Also, it is not feasible to
do full search for each simulation run due to its complexity. We see that the rate-based
optimization outperforms the no adaptation scheme with an average of 0.6 MOS. A further
gain of 0.4 is achieved when using the MOS-based utility optimization scheme. The results
also show that the MOS-based schemes have less dispersion around the mean value, which
results in more stable user perceived quality compared to the other schemes. Although
using Max-Rate approach would lead to the best result in terms of throughput, it does not
guarantee that the quality perceived by the end-user will be the best. With the MOS-based
schemes, the resources are allocated taking into account the cost and the gain in terms of
user-perceived quality when allocating more or less resources to the users, who are running
different multimedia applications and experiencing different wireless channel conditions.

By having more voice call users in the cell and less users for other applications, the gain

(a) (b)

Figure 3.29: CDF of mean utility for the 10 user case using VSSIM (a) and PSNR (b) as
a video quality assessment.
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of MOS-based schemes is expected to be less due to the fact that the voice utility function
only has a smaller number of steps and the voice call application is usually not a high-
demanding application. Consequently, there are fewer operating points to adjust the data
rate in the network, and less possibility to find an operating point that improves the quality
for other users.

All the results that we have discussed so far are based on the MOS derived from the
VSSIM-based video quality assessment as described in Section 3.3.3. We have also run
similar simulations for the PSNR-based video quality measurement, and the CDF curve
depicted in Figure 3.29(b) shows a similar result as for the case of the VSSIM-based CDF
results. We conclude from the similarity of these two results that whichever video quality
assessment type we use, the MOS-based utility optimization schemes always lead to a
noticeable improvement of overall user satisfaction compared to the no-adaptation and the
rate-based optimization scheme.

So far, we only see the advantage of the MOS-based scheme in terms of the mean utility
(mean MOS) of all user. However, the proposed schemes also has another advantage that
the operator can serve more users in the cell. Figure 3.30 shows the average increase in
number of users Ninc of the system as a function of target mean MOS MOStarget. This
result is drawn from a large number of simulations with the MaxMOS and the Max Rate
schemes using the same random set of channel realizations for a ten user scenario as previous
simulations. In another set of runs, we arbitrarily add from 0 to 10 new voice users. Out of
all the simulations from the first and second set, we find the set of simulation which have a
mean MOS that is more than or equal to a target mean MOS of MOStarget. We calculate
the average increase in number of user Ninc by taking the average of the number of users
within this set of simulations. From Figure 3.30, we observe that the MaxMOS scheme
can add more than four users on the average when the MOStarget is set to 3.5 MOS, while
the Max-Rate scheme can only add an average of 0.8 users. The fractional increase of user
number less than unity for the Max-Rate case indicates that in many cases no user can be

Figure 3.30: Target mean MOS vs. the increase in number of users for maxMOS and
maxThroughput scheme. [89]
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added in order to keep the MOStarget. For both schemes, the number of users that can be
added decreases slowly with the increase of the MOStarget. We observe that the MaxMOS
scheme can admit significantly more number of users than the Max-Rate scheme.

3.9 QoE-driven optimization for computational- and

network resource constrained system

In this section, we consider a wireless network system for which a network entity perform-
ing a rate adaptation has a constraint of computational resource (processing power). To
achieve an optimal rate adaptation with the new constraint, the QoE-based optimization
framework discussed in Section 3.5 is now consisting of two steps: (1) selecting an opti-
mal scheme for rate adaptation taking into account the resulting user-perceived quality
(QoE) and the limited computational resources, and (2) finding an optimal network re-
source allocation with a constraint of limited network resources. The additional step prior
to the QoE-driven optimization for resource allocation does an intelligent selection of rate
adaptation scheme to be applied to each data stream taking into account the resulting
user-perceived quality and the limited computational resources. To enable this, we assume
that the video utility functions as shown in Figure 3.18 are precomputed at the streaming
server and are signalled as side information along with the video bitstream, which will be
then extracted in the core network for performing the QoE-driven rate adaptation scheme
selection and the QoE-driven optimization. Due to the fact that video applications will
become a majority of mobile traffic, we do consider the scenario, in which users only access
different video content from server providing a high video quality with high data rate.

3.9.1 Rate adaptation scheme selection

In general, a node performing rate adaptation in the network has limited computational
resources. Also as discussed in Section 3.3.3, transcoding is the technique that takes most of
the computational resources. As a result, by knowing the hardware specification, one could
assume a maximum number of video bitstreams to be transcoded simultaneously Nmax. In
case there are more video bitstreams than Nmax, an algorithm for rate adaptation scheme
selection to be applied for each video stream is needed. We propose a novel algorithm
using the gradient between the user perceived quality and the network parameter from the
packet dropping scheme as a measure of video sensitivity. With this, we avoid applying
the packet dropping scheme to the videos that are more sensitive to packet dropping.

Two examples of network parameter are used in our work: the data rate R, or the required
network resource α to provide the certain data rate. Using the data rate, the gradient is
fixed for the whole period of the simulation, whereas the latter alternative takes the impact
of channel quality into account, and hence, the gradient changes for each optimization cycle.
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Figure 3.31: Gradient calculation for ’News’ and ’Soccer’ video sequences. [150]

Below, we describe how to calculate the gradient (η) using the data rate as the input for
network parameter.

η =
Umax − Umin
RUmax −RUmin

(3.26)

where Umax and RUmax are the maximum of utility and data rate from the utility function
of packet dropping respectively, in which no packet is dropped. Umin and RUmin

are the
minimum of utility and data rate from the packet dropping scheme. Alternatively, the
minimum could be a point, where the utility has first reached the minimum value. Figure
3.31 depicts an example of how the gradient is calculated for two video sequences. Since
the Soccer video has a higher gradient, the operator first applies video transcoding to the
Soccer video if there are sufficient computational resources available to perform transcoding
for only one video. To calculate channel-based gradient, we apply the radio link layer model
Eq. (3.2) and Eq. (3.7) as described in Section 3.2 and substitute RUmax and RUmin

in Eq.
(3.26) with αUmax and αUmin

respectively. In this case, the αUmax is the fraction of network
resource required in order to achieve the maximum utility Umax, and the αUmin

is for the
fraction of network resource that results to the minimum utility Umin.

3.9.2 Utility-based network resource allocation

After selecting the rate adaptation scheme to be applied for each video stream, we optimize
the network resource allocation across users. As discussed in Section 3.5, the optimiza-
tion can be done in several ways depending on the objective function set by the network
operator. To validate the proposed scheme for rate adaptation scheme selection, we use
the utility maximization as an example for the objective function, which maximizes the
average utility of all K users. (see Section 3.5.1 for details) Also, we use a greedy search
algorithm (GR) that leads to close-to-optimal results but is feasible in practice as shown
in the simulation results in Section 3.8.3.
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3.9.3 Simulation results

In our simulation, six video users located in a single cell are accessing different video content
through HSDPA. To emulate a constraint on the computational resources, we assume a
maximum of three video streams can be transcoded simultaneously. For the remaining
videos, packet dropping is used due to its low complexity. Except the parameters related
to the voice and FTP applications, other HSDPA simulation parameters given in Table 3.2
are used for the simulations. The two variants of the proposed scheme described below is
compared with the No-adaptation scheme, the MaxRate scheme and the MaxMOS scheme
(GR-Worst). The details of the latter three schemes are described in Section 3.8.1.

• MaxMOS-RateSelect (GR-Rate): In addition to the MaxMOS scheme, the rate-based
gradient is used to prioritize among multiple video streams and to decide which rate
adaptation scheme to be applied for each single video stream.

• MaxMOS-ChanSelect (GR-Channel): Before performing QoE-based resource alloca-
tion, we use the channel-based gradient for rate adaptation scheme selection.

To show the advantage of applying our rate adaption scheme selection, we fix the rate adap-
tation schemes for the optimization scheme 1, 2 and 3. For instance, we apply transcoding
for the low-motion video and packet dropping for the high-motion video. Figure 3.32 gives
an overview of the quality perceived by each user. VS1, VS2 and VS5 are users that access
low-motion video content (e.g. ’News’) and experience better channel quality, and therefore
receive better video quality. The gain for the Max-MOS scheme comes from VS1, VS4 and
VS6 by taking the application-layer knowledge into account. By performing an appropriate
rate adaptation scheme selection prior to network resource allocation optimization, we see

Figure 3.32: Mean utility and the corresponding CQI for each user. [150]
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Figure 3.33: Mean utility for 6 users over time for a single simulation run. [150]

Figure 3.34: CDF of mean utility for 6 video users from 30 simulation runs.

a significant gain coming from the user VS3 and VS4 accessing a high motion video (e.g.
’Soccer’ or ’Football’).

Figure 3.33 depicts the mean utility of all 6 users over the simulation period of 2 min. We
see a significant gain between the no adaptation case and the other schemes. All MOS-
based schemes further improve the average mean MOS of all users when compared to the
rate-based adaptation scheme. It is obvious that applying the QoE-based rate adaptation
scheme selection prior to the QoE-based optimization for resource allocation leads to an
additional gain of 0.25. The gain is achieved by transcoding the video, which is more
sensitive to packet dropping, and thus avoiding the most drastic video quality degradation
when performing an in-network rate adaptation.

Figure 3.34 shows the CDF of mean MOS of all 6 users over 30 simulation runs, for which
each simulation last for two minutes period. We see an average improvement of 0.5 MOS
for the Max-Rate optimization scheme when compared to the no-adaptation case. All
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QoE-based approaches lead to additional improvements of user perceived quality. How-
ever, in case the QoE-based rate adaptation is applied prior to the QoE-based optimization
for network resource allocation, the results are further improved in average of 0.4 MOS
when compared to the utility maximization without the QoE-based rate adaptation scheme
selection. Also, we observe that using the information of wireless channel condition experi-
encing by each user when selecting the rate adaptation scheme to be applied for each video
flow (MaxSum-ChanSel) is better than the rate-based scheme selection (MaxSum-RateSel).
However, the difference between the two schemes is marginal (0.07 MOS in average).

3.10 Summary

This chapter discusses and evaluates key problems faced by the multimedia communica-
tions over wireless networks. We focus on the loaded single cell scenario, in which there
is no enough resources to support all users accessing different applications and experienc-
ing different wireless channel conditions. We introduce a general QoE-driven optimization
framework for network resource allocation across multiple users, which alleviates conges-
tion at the base station. Conventionally, this situation is avoided by a strict admission
control policy. But by doing this, users would suffer from high blocking probability and
operators would loose revenue. We propose that the applications be re-adapted, taking into
account the wireless channel conditions and the application utility functions that describes
the relationship between the estimated user-perceived quality to the network performance
parameters. This policy results in better mean quality of experience for given system re-
sources and for a fixed number of users, and the admission of more users for a given target
quality.

We use the HSDPA system as an example of a mobile access network in order to evaluate
the proposed scheme and compare it with other existing approaches. Simulation results
show that all QoE-driven optimization schemes (maximization mean MOS, max-min MOS
fairness and max-min MOS with minimum MOS guarantee) outperform the no adaptation
and the throughput maximization. Nevertheless, we do not conclude which QoE-based ob-
jective function is the best, as selection of the QoE-based objective function depends solely
on the network operator’s needs and their policy on allocating their network resources.

Furthermore, we propose a QoE-based rate adaptation scheme selection for video applica-
tions that allows a network operator to easily handle multiple video streams with various
contents and to select dynamically an appropriate rate adaptation scheme to be applied
to each video stream. The proposed selection algorithm is easily integrated with the
QoE-driven network resource allocation optimization. Results have shown a significant
improvement of having such additional intelligent selection of the rate adaptation scheme.

Although the proposed QoE-based framework and the QoE-based rate adaptation scheme
selection are implemented in the HSDPA system, it can be also integrated into future
packet-based systems, e.g. in LTE, due to its generality.
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Chapter 4

Multi-objective QoE-driven
optimization

Due to a hugh ramp in video traffic, the mobile access networks is expected to remain
a bottleneck link when providing video services to a large number of users. In Chapter
3, we discuss the QoE-driven Cross-Layer Optimization (CLO) schemes that optimize
wireless resource allocation and perform application-layer rate adaptation according to the
pre-defined objective function. For example, the resources are allocated so as to achieve
maximum average user-perceived quality of the whole system (utility maximization) or to
satisfy all users with the same quality regardless of the application type and the channel
quality condition (utility maxmin fairness). Moreover, it has been shown that applying
any of the utility-based approaches leads to significant improvements of user perceived
quality compared to other approaches including the throughput maximization. However,
we do not deal with the optimization of wireless resource allocation addressing multiple
objectives simultaneously.

In this chapter, we discuss the QoE-driven optimization for wireless resource allocation
taking into account multiple objectives. First, we introduce a tuning mechanism that allows
the network operator to prioritize their resource allocation policy from the two utility-
based objectives (utility maximization and utility maxmin fairness) already mentioned in
Chapter 3. Then we combine the utility maximization with the novel objective function
that minimizes the perceivable temporal change of the video quality negatively affecting the
overall quality of experience. The combined objective function aims at achieving minimal
perceivable change of temporal quality while at the same time maintaining the average
perceived quality of all users as high as possible. Lastly, we talk about a practical approach
for the multi-criteria QoE-driven optimization that includes all three objective functions.
Throughout this chapter, we consider the scenario, in which multiple users only access
video contents and not other application types due to the fact that video applications are
expected to contribute to a majority of user-plane traffic in mobile networks. Also, we
assume that

67
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Figure 4.1: VSSIM-based video utility functions for different video sequences obtained with
transcoding. [151]

• the VSSIM-based video utility functions discussed in Section 3.3.3 are precomputed
at the streaming server and are signalled as side information along with the video
bitstream, which will be then extracted in the core network for performing the QoE-
driven optimization and necessary rate adaptation; and

• the base station sends periodically the long-term link-layer information as discussed
in Section 3.2 to the QoE optimizer module, which is located nearby or at the base
station.

Figure 4.1 depicts video utility functions for five different video contents that we use in all
simulations presented in this chapter.

4.1 QoE-driven optimization addressing system effi-

ciency and user fairness

In this section, we focus on a QoE-driven CLO for wireless video delivery that takes into
account two objectives: utility maximization and utility max-min fairness. Like in Chapter
3, the utility is defined as a degree of user-perceived quality of the service delivered by the
network operator. The first objective emphasizes achieving a maximum average perceived
quality of all users which can be interpreted as how efficient the network resources are
used and distributed to all users. Whereas for the second objective, its goal is to achieve a
similar perceived quality among all users. It emphasizes minimizing the quality difference
between the user experiencing the highest quality and another user experiencing the lowest
quality. We formulate and solve the optimization problem which allocates the total system
resources among the active clients so as to satisfy the chosen optimization criteria. While
in perfect systems with users having good channel conditions, all applications can be served
with very high quality, in constrained systems, the resource allocation must be carefully
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Figure 4.2: Schematic depiction of the proposed tuning mechanism between system effi-
ciency e and quality unfairness k.

performed as a consequence of the trade-off between the system efficiency of the allocated
resources and the fairness balancing among all users. When these two operation points are
too far apart, the network operator may prefer to have an intermediary operation point.
We propose a tuning mechanism allowing a system operator to dynamically adjust its
operation point between the extreme points of maximum system efficiency and maximum
fairness of perceived quality among all users. Its purpose is to provide flexibility to the
network operator, and not to show whether the tuning algorithm outperforms the existing
QoE-based optimization schemes, for example, in terms of the mean utility of all users.

4.1.1 Efficiency vs Fairness trade-off problem formulation

To formulate the tuning problem, we define the system efficiency and the quality unfairness
among users as follows:

Definition 1: The system efficiency e is the total sum of the MOS values perceived by all
N users as given in Eq. (4.1).

e =
N∑
i=1

MOSi (4.1)

Definition 2: The quality unfairness k is the maximum MOS deviation among users in a
user group S, which is the perceived quality difference between the user experiencing the
highest MOS (MOSmax) and another user experiencing the lowest MOS (MOSmin) at each
time instance t.

k = MOSmax −MOSmin (4.2)

where MOSmax = maxi∈S {Ui(t)} and MOSmin = mini∈S {Ui(t)}.
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Figure 4.2 shows how the two objectives (utility maximization and utility max-min) can
be mapped on a two-dimensional diagram capturing the system efficiency and the quality
unfairness. In this example, the utility maximization results to the highest system efficiency
and the lowest quality fairness. Whereas, the highest fairness can be achieved by using the
utility maxmin, however, it comes at a cost of system efficiency. The operation points of
maxmin and maxsum are denoted with index 1 and 2 respectively, which then specifies the
fairness interval F and the system efficiency interval E. Alternative to achieving maximum
system efficiency or maximum quality fairness, the network operator may prefer to have
any intermediary operation point or to set a desired fairness level and a targeted system
efficiency. Hence, an algorithm that enables a control of operation point is necessary. The
desired operation point p is assumed to lie within the fairness interval F and the system
efficiency interval E as shown in the figure.

4.1.2 Influence factors for fairness and efficiency tuning problem

Investigation of the trade-off problem (e.g. determination of the fairness interval F and
the efficiency interval E) is important in order to construct a tuning algorithm that works
well within these borders. Some of the important factors that influence the fairness and
efficiency of a system are, for example, the variance of wireless channel quality among users
σ2, the number of users accessing the same wireless medium N , and the video content types
V the users are watching. We use the maximum achievable data rate Rmax defined in Eq.
(3.7) as a measure of wireless channel quality. The higher variance of channel quality σ2

means the Rmax among users is more diverging. In other words, some users experience a
very good channel condition and some experience a very bad channel condition. Taking
into account these three factors, the fairness interval F and the efficiency interval E can
be formulated as follows:

F = f1(σ2, N, V ), E = f2(σ2, N, V ) (4.3)

Through simulations of a mobile access system, we examine these relations to comprehend
the factors that influence the tunable range of the resource allocation. Figure 4.3(a) and
Figure 4.3(b) show an impact of the three influence factors on the F and the E intervals
respectively. Obviously, both intervals increase when the wireless channel condition among
users is getting more diverging (higher σ2) regardless of the video content type and the
number of users in the system. The same observation can be made when there are more
users joining the system. This is due to the fact that when there are less number of users,
the system becomes less loaded and has more resources to be allocated to all users. For
a comparison of having different video contents, we see that when users access a video
with dynamic scenes (’Soccer’), both F and E intervals are larger than the case of users
accessing static video content (’News’). The reason is that the ’Soccer’ video requires more
resources to achieve the same QoE as of the ’News’ video. Also, the ’Soccer’ video is more
sensitive to the data rate as shown in Figure 4.1.
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(a) (b)

Figure 4.3: Impact of influence factors on the fairness interval F (a), and the system
efficiency interval E (b).

4.1.3 Efficiency and fairness tuning mechanism

From the results shown in previous section, we see that it is not easy to construct and
derive a mathematical formular that is applicable to all kinds of users and video groups,
since the tuning parameters (e.g. E, F ) are strongly dependent on the scenario specified
by the number of users, channel variation among users, and application utility functions.
Hence, we propose a tuning algorithm based on the heuristic and iterative solution. From
the two criteria as discussed in Section 4.1.1, we devise three tuning algorithms allowing
the network operator to find a desired operation point of resource allocation by specifying
A) only e-constraint, B) only k-constraint, or C) both e and k constraints at the same time.
The search for optimal resource allocation that meets the given constraint(s) is determined
by using the greedy search algorithm. We elaborate each of the tuning algorithm in the
following subsections.

Sum-MOS algorithm (e-constraint)

The Sum-MOS algorithm enables a full control of resource allocation in order to deliver
the target sum of quality ereq (or target mean quality) of all users that is pre-defined by
the network operator. To avoid large quality differences among the users, the Sum-MOS
algorithm starts allocating the resources based on the utility max-min resource distribution
[28]. From this point, the algorithm improves the total sum of quality of all users by using
the greedy-based utility maximization (Max-Sum MOS) as given in Algorithm 1 in Section
3.6.2. However, we do add a ereq constraint to the optimization problem, which can then
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Figure 4.4: Comparisons of the Sum-MOS algorithm and the MaxSum/MaxMin algo-
rithms: (I) Mean MOS of all users over time, (II) Unfairness over time.

be formulated as follows:

α̃opt = arg max
α̃∈αS

1

N

N∑
i=1

Ui(α̃i) (4.4)

subject to
∑N
i=1 α̃i = 1 and 1

N

∑N
i=1 Ui(α̃opt) ≥ ereq.

Comparing with the objective function in Eq. (3.17), the cross-layer parameter tuple in
Eq. (4.4) is the fraction of allocated resources α̃ ∈ αS, where αS is the set of possible
resource allocations from operation modes. In ideal case and under a continuous utility
function U , the algorithm is able to stop when the target sum of quality ereq is achieved.
Unless, if the ereq is set too high, the algorithm will stop at the maximum sum of perceived
quality of all users that is achievable as of the Max-Sum MOS algorithm. In case U is
a discrete function, the algorithm will stop when the average utility of all users is higher
than the ereq. In brief, the Sum-MOS algorithm is slightly different than the Max-Sum
MOS algorithm, as there is the aforementioned additional constraint and condition after
the line 20 in Algorithm 1.

Figure 4.4 shows the system efficiency e and the unfairness k as a function of time, when
applying the utility maximization (MaxSum), the utility max-min optimization (MaxMin),
and the Sum-MOS algorithm with different settings of ereq constraints. In this scenario,
multiple video users access different video contents and experience different wireless channel
condition at a time instance. Obviously, with the MaxSum, the differences in perceived
quality among all users are much larger than applying the MaxMin, however, the MaxSum
has a higher mean MOS of all users in the system. With the Sum-MOS algorithm, the
target mean MOS ereq is maintained during the simulation period, for example at mean
MOS 3.3. In case, the ereq is set too high and cannot be achieved, it allocates resources
so as to achieve a possible maximum mean MOS as result in the MaxSum case. This can
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be seen in Figure 4.4, for example, the maximum achievable mean MOS at 6th second is
about 3.2 although the ereq is set to 3.4.

k-algorithm (k-constraint)

As its name indicates, the k-algorithm focuses on the quality (un)fairness k. It allows the
network operator to apply a strict fairness constraint kreq that is set in advance and to
allocate its network resource accordingly, while maintaining the system efficiency e as high
as possible under this fairness condition. The optimization problem is similar as defined
in Eq. (4.4), however the constraint is now changed to

∑N
i=1 α̃i = 1 and MOSmax(α̃opt)−

MOSmin(α̃opt) ≤ kreq. The MOSmax(α̃opt) and MOSmin(α̃opt) are the maximum and the
minimum of utility among all users given the optimal resource allocation α̃opt as defined
below.

MOSmax(α̃opt) = maxi∈S {Ui(α̃opt)}

MOSmin(α̃opt) = mini∈S {Ui(α̃opt)}

In case, the algorithm cannot find an operation point that meets the fairness constraint,
for example, due to the discrete application utility function, it will find the operation point
closest to the desired fairness operation point. The k-algorithm is summarized in Algorithm
2. Figure 4.5 compares the k-algorithm for different kreq settings with other utility-based
schemes. The same scenario as mentioned in the Sum-MOS algorithm is applied here. In
contrast to the Sum-MOS algorithm, the k-algorithm maintains the difference in quality
among users over time according to the pre-defined kreq. However, this results to a variation
of the mean MOS over time. Moreover, we observe that the higher kreq we set, the higher
mean MOS of the system we could achieve.

Advanced k-algorithm (e and k constraints)

Advanced k-algorithm allows the network operator to allocate its network resource with
pre-defined ereq and kreq constraints. Since it is possible that both constraints may not be
met from any feasible set of resource allocation, we propose a two-step optimization that
combines the Sum-MOS algorithm with the k-algorithm. We start with the k-algorithm
as described in Algorithm 2 in order to fulfill the fairness criteria. From this point, we
check whether the mean quality of all users is equal or greater than the desired mean
quality ereq. If this is the case, the resource is allocated as of the output of k-algorithm.
Otherwise, based on the result of k-algorithm, we proceed with the 2nd-step optimization
aiming at utility maximization (Max-Sum MOS) as given in Algorithm 1 in Section 3.6.2.
The optimization stops either when the sum of perceived quality of all users reaches at
the level of ereq or when the maximum sum of perceived quality of all users is achieved.
The latter case will happen when the ereq is set too high. The objective function for the
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Algorithm 2 k-algorithm
Input: Utility function U , number of users N , quality unfairness constraint kreq.

2: Output: Optimal operation mode α̃opt
Initialization: zero resource share: α̃ = [0, 0, ..., 0], U = [1, 1, ..., 1].

4: loop
for i = 1 to N do

6: Calculate the difference to next MOS level and the required resource: ∆Ui, ∆α̃i
Compute utility gain Gi = ∆Ui

∆α̃i

8: end for
Ordering all users by utility gain G

10: Find the user giving highest utility gain (imax = arg maxi∈N{Gi|α̃i ← α̃i + ∆α̃})
Precalculate the fairness knew and the total allocated resources α̃new =

∑N
i=1 α̃i by assuming

that resource share is given to the user imax
12: if knew ≤ kreq and α̃new ≤ 1 then

Allocate ∆α̃ to the user imax
14: else

Continue searching for the user inext with smaller G but satisfying the kreq and resource
constraints

16: end if
break if there is no resource left (α̃new ≥ 1)

18: end loop

Figure 4.5: Comparisons of the k-algorithm and the MaxSum/MaxMin algorithms: (I)
Mean MOS of all users over time, (II) Unfairness over time.

advanced k-algorithm is similar to the objective function defined in Eq. (4.4), except that
there are now three constraints to be considered as given below.∑N

i=1 α̃i = 1

MOSmax(α̃opt)−MOSmin(α̃opt) ≤ kreq
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1
N

∑N
i=1 Ui(α̃opt) = ereq

In case the result of the 2nd-step optimization dissatisfies the kreq, we find a new operation
point that is based on the priority of system efficiency ce and quality fairness ck, which are
assumed to be specified in advance by the network operator. The advanced k-algorithm is
summarized in Algorithm 3.

We illustrate the optimization progress of the advanced k-algorithm by using two hypo-
thetical examples as depicted in Figure 4.6. In this example, the kreq and the ereq are set
to 1 and 4.2 respectively. The operation mode in an ideal case will be the desired point.
However, as depicted in Figure 4.6, it is possible that there is no feasible operation mode
that fulfills both requirements at the same time. By using the k-algorithm and the Sum-
MOS algorithm, we can achieve the reference points (denoted as p1 and p2) respectively.
With the reference points and the prioritization coefficients ce and ck, a new desired point
is determined, for which we find the closest feasible operation mode as denoted with the
point popt.

Figure 4.7 shows how the mean MOS and the unfairness develop over time when applying
the advanced k-algorithm with ereq and kreq set to 3.3 and 0.35 respectively. We see that
when both requirements cannot be met at the same time (e.g. at 6th second), the priority
parameters ce and ck play an important role. For instance, if the ce is set to a higher

Algorithm 3 Advanced k-algorithm
Input: Utility function U , number of users N , step size of resource ∆α, quality unfair-
ness constraint kreq, system efficiency constraint ereq, weighting coefficients for fairness and
efficiency ck and ce

2: Output: Optimal operating mode α̃opt
Initialization: zero resource share: zero resource share: α̃ = [0, 0, ..., 0], U = [1, 1, ..., 1].

4: call: k-algorithm (Algorithm 2).
Output of k-algorithm → p1 operating mode α̃opt,p1
if ep1 ≥ ereq then

6: return: α̃opt ← α̃opt,p1
else

8: Run Max-Sum algorithm (Algorithm 1) until e(α̃) ≥ ereq.
Output of Max-Sum algorithm → p2 operating mode α̃opt,p2
if kp2 ≥ kreq then

10: eend = ep1 + ce(ep2 − ep1)
kend = kp1 + ck(kp2 − kp1)

12: recall: Max-Sum algorithm starting from p1 until e(α̃) ≥ eend
Output of Max-Sum algorithm ← p3 operating mode
return: α̃opt ← α̃opt,p3

14: else
return: α̃opt ← α̃opt,p2

16: end if
end if
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Figure 4.6: Optimization progress with the advanced k-algorithm from a hypothetical
example.

Figure 4.7: Comparisons of the advanced k-algorithm (with ereq=3.3 and kreq=0.35) and
the MaxSum/MaxMin algorithms: (I) Mean MOS of all users over time, (II) Unfairness
over time.

priority, the resulting mean MOS is getting closer to the ereq and vice versa.

Concluding remarks

From the results of all three tuning algorithms, one can observe that the user fairness comes
at a cost of the system efficiency. It should be also noted that all tuning mechanisms do not
intend to get a better result than the MaxSum and the MaxMin in terms of the mean MOS
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and the degree of user fairness respectively. In fact, they are used to provide the network
operator a flexibility in specifying its policy for allocating its network resources in different
ways based on the pre-defined system efficiency ereq and user fairness kreq constraints.

4.2 QoE-driven optimization with unperceivable tem-

poral video quality fluctuation

The QoE-driven CLO discussed so far does allocate network resources and adapt video
data rate by considering the video content sensitivity and the wireless channel condition
experiencing by the user at each time instance. But it does not deal with the problem of
how to avoid noticeable quality fluctuations over time. Even if the user-perceived quality
is good on average, drastic quality changes can lead to a negative impression of the service
quality. Hence, temporal quality fluctuation is an important factor for wireless video
transmission.

In this section, we extend the previous QoE-driven CLO framework by introducing a new
objective function incorporating the temporal video quality fluctuation. Let us explain
this extension along with the drawbacks of two typical utility-based objective functions
(a) maximization of average user-perceived quality and (b) maxmin fairness. With the
utility maximization, when the channel quality changes drastically over time, the user
experiences perceivable changes of video quality and may be annoyed while watching the
video. Specifically, when the channel quality condition is getting poor, the optimizer
allocates less network resources to the user. Or in the worst case, if the system is very
congested, no resource is given to the user. But when the channel quality is very good,
the optimizer will give a higher priority for network resource allocation to the user. Thus,
the service quality perceived by the user strongly depends on the channel condition. In
fact, early work in the area of Variable Bit Rate (VBR) versus Constant Bit Rate (CBR)
encoding of video has shown that users prefer constant quality compared to temporally
fluctuating quality even if the average quality is lower [112]. In contrary, with the maxmin
fairness objective function, all users perceive the same quality, which would make the
temporal quality smooth. However, this leads to a minimum of system efficiency in terms
of network resource utilization, as most of the network resources are given to the user having
a poor channel quality or to the user accessing a high-demand application. Considering the
impact of temporal quality changes perceived by the user in the objective function of the
network resource allocation problem hence has the potential to improve the overall user
perceived quality. We apply the Just Noticeable Difference (JND) concept [109] to find a
threshold of the temporal video quality change perceivable by the human eyes.

In the following subsections, we discuss how we determine the JND for video quality
fluctuation through subjective tests, and how to apply the JND concept to the QoE-driven
optimization problem in order to achieve a smooth temporal video quality while keeping
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the network resource usage (system efficiency) as high as possible.

4.2.1 Perceivable temporal video quality fluctuation

Similar to any other instances in which a human is able to perceive the change of a stimulus,
for example the perception of the weight change of carried objects, which is only perceivable
if the weight change exceeds a certain threshold, there is also a threshold for the temporal
video quality change humans are able to recognize. Incorporating such a threshold into the
objective function of network resource allocation improves the overall user-perceived quality
of the whole period of accessing the service/application. Also, it gives more flexibility for
network resource allocation. For instance, within the range of unperceivable video quality
change, some of the network resources allocated to the user accessing a low-demand video
or to the user having a good channel condition may be given to the user accessing a high-
demand video or to the user having a bad channel condition, while the user giving the
resources to others is not aware of any quality change.

Subjective test

To find the Just Noticeable Difference (JND) for the change of temporal video quality, we
have performed a subjective test with 30 persons using the forced-choice method as specified
in [68]. Note that all persons participating the subjective test are mainly students at the
Technische Universität München (TUM) whose age ranges from 23 to 28 year’s old. In
this recognition testing, we present a stimulus (test video sequence) to the subject (user),
and ask him/her ”Do you recognize any changes of video quality?” As specified in the ITU
standard, it is required that each subject should not perform user tests longer than 30 min.,
as human eyes will be tired and the results will not be reliable. Due to the time constraint,
two video sequences: ’Mother and Daughter’ (static scene) and ’Foreman’ (dynamic scene)
are used in our test. For each video, we create 16 test video sequences that are encoded
at two different levels of video quality. For instance, if the length of a video is 8 sec, the
video is encoded at MOS 3.0 quality for the first 4 seconds, and at MOS 4.0 quality for the
last 4 seconds. In this case, we have a magnitude of quality change ξ of MOS 1.0 quality,
and the time of quality change τ at 4 second. All test video sequences are encoded with
H.264/AVC at 30 frames/sec, and have QCIF resolution. Table 4.1 gives an overview of
the test conditions for all test sequences. Note that we use the Variable Bit Rate (VBR)
techniques such as encoding the video by fixing a quantization step to maintain the video
quality for a certain period. Also, we calculate the video quality in terms of MOS using
the VSSIM index as discussed in Section 3.3.3.

Figure 4.8 depicts the GUI design that is used in our subjective test. From the control
panel of the subjective test, a participant has a possibility to check three reference videos
that are constantly encoded at three different video quality levels for the whole period of
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Figure 4.8: Screenshot of GUI used in the subjective test. [151]

Table 4.1: Test conditions for video sequences in user test. [151]
Video content Rate (kbps) ξ (MOS) τ (sec)
Mother and Daughter [20;120] [-0.23;0.33] [2;4]
Foreman [65;200] [-0.39;0.28] [2;4]

the video. In particular, these references help participants to decide whether the test video
sequence being watched should be regarded as a perceivable change of video quality, in
case the participant is uncertain on his/her decisions. In order to control the period of
time that each participant needs to finish their subjective test, we allow each participant
to view each test video sequence at maximum of 3 times. To replay the current test video
sequence, he/she just clicks on the ’Current Video’ button. With this, the participant can
reconsider their opinion prior to giving their answer for each test video sequence. Also, we
do not employ a time limit (in seconds) for each test video sequence, so as the participant
can carefully give their answers without being under pressure due to the time constraint.
As soon as the participant is sure about giving their answers, he/she continues watching
the next test video sequence by clicking the ’Next Video’ button. If all test video sequences
of the same video content have been voted, the participant watches the next video set with
different video contents. With the ’End’ button, the participant indicates that he/she has
finished the subjective test and we then save all his/her votes for the statistical analysis of
JND.

From the subjective tests, we collect the statistics of how many users recognize the temporal
video quality change with different magnitude of ξ as depicted in Figure 4.9. Results show
that the JND for ’Mother and Daughter’ video is -0.02 and 0.024 for negative and positive
change of video quality respectively. Whereas, for ’Foreman’ video, we have JND of -0.026
for negative change and 0.022 for positive change of video quality. These JNDs are the
threshold at which 15 persons (50 percent of all subjects) are able to recognize the change
of temporal video quality. From the results, we conclude that the JND for both video
sequences in negative and positive changes are pretty close.



CHAPTER 4. MULTI-OBJECTIVE QOE-DRIVEN OPTIMIZATION 80

(a) (b)

Figure 4.9: Percentage of users recognizing a video quality change for (a) ’Mother and
Daughter’, and (b) ’Foreman’ video sequence.

Figure 4.10: CDF of magnitude of perceivable quality change. [151]

Another observation from the result of the user test is that the JND in VSSIM or MOS
scale seems not to deviate much, when comparing the two cases of encoding the video with
very good quality and with an intermediate quality. This is different than the Weber’s law,
which states that for people to really perceive a difference, the stimuli (magnitude of change
in tested video sequence) must differ by a constant ”proportion” not a constant ”amount”.
Taking Weber’s law into account, the JND in MOS scale from our subjective test should
be different depending on the original video quality level prior to the change. However,
this is not the case for our subjective test as shown in Figure 4.9. One of the reason is
that the VSSIM has presumably taken into account such influence of initial intensity.

To incorporate these findings in the framework of QoE-driven resource allocation optimiza-
tion, we consider the JND of the absolute value of ξ from all persons participating in the
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subjective test. Using the linear mapping between the VSSIM and the MOS in Eq. (3.14),
we plot the CDF of the absolute value of ξ from all persons participating in the subjective
test as shown in Figure 4.10. We see that the JND for ’Mother and Daughter’ and for
’Foreman’ is 0.21 MOS and 0.26 MOS respectively. We apply the average JND threshold of
ξth= 0.23 MOS to our QoE-driven optimization framework so as to achieve unperceivable
change of temporal video quality as much as possible when allocating network resources
and adapting the video data rate as a result of optimization.

4.2.2 Temporal quality smoothness maximization

We enhance the objective function in Eq. (4.4) by taking into account the threshold of
perceivable quality change ξth as:

α̃opt = arg max
α̃∈αS

[
1

N

(
N∑
i=1

Ui(α̃i)− β
N∑
i=1

(ξi − ξth)
)]

(4.5)

subject to
∑N
i=1 α̃i = 1

where
ξi = |Ui(α̃i(t− 1))− Ui(α̃i(t))| (4.6)

β =


0, if ξi < ξth

1, if ξi ≥ ξth
(4.7)

t is the notion of time scale in second, and Ui(α̃i(t − 1)) is the average MOS for user
i with the fraction of allocated resource α̃i during the last 1 second in the past. The
subtracted element in Eq. (4.5) is regarded as a penalty parameter, which negatively
affects the overall perceived quality, if the temporal change of video quality exceeds the
threshold ξth. β is a weighting factor used for giving priority for the smoothness of temporal
video quality. Using the enhanced objective function in Eq. (4.5), the optimizer allocates
resources such that all active users (if possible) experience a smooth and unperceivable
change of temporal video quality even in the presence of a drastic change of wireless
channel condition, while maintaining the system efficiency in terms of network resource
utilization as high as possible. With the β defined in Eq. (4.7), we use a linear function
to penalize the conventional utility maximization. To increase the impact of the penalty
term, an operator may use for example a quadratic function by defining β as follows:

β =


0, if ξi < ξth

σ · ξi + ρ, if ξi ≥ ξth
(4.8)

where σ and ρ are constant parameters that are set prior to network resource allocation
optimization. For example, we use the value 100 and -22 for σ and ρ respectively. The
optimal resource allocation with the new objective function is achieved by using a greedy
search algorithm as summarized in Algorithm 4.
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Algorithm 4 Greedy Algorithm for Smoothness Maximization
Input: Utility function U , number of users N , step size of resource ∆α, increase of step
size ∆αinc, minimum change of utility gain ∆Gmin, maximum number of iterations Imax,
perceivable threshold ξth, prioritized weighting factor for smoothness β.

2: Output: Optimal operating mode α̃opt;
Initialization: initial resource share: α̃ = [1, 0, 0, ..., 0], set ∆Gmax,inc to a value greater
than ∆Gmin. Iteration index, I = 0.

4: for i = 1 to N do
Compute Ui(α̃i(t)),

6: Compute ξi(α̃i(t)) = |Ui(α̃i(t− 1))− Ui(α̃i(t))|
Compute utility gain Gi(α̃i(t)) = Ui(α̃i(t))− β · (ξi(α̃i(t))− ξth)

8: end for
loop

10: for i = 1 to N do
get operating mode α̃inc,i from α̃i + ∆α, where α̃inc,i ∈ αS,i;

12: get operating mode α̃dec,i from α̃i −∆α, where α̃dec,i ∈ αS,i;
compute ∆Ui(α̃inc,i) , ∆Ui(α̃dec,i) , ∆ξi(α̃inc,i) , ∆ξi(α̃dec,i) , ∆Gi(α̃inc,i) and ∆Gi(α̃dec,i);

14: end for
if ∆Gmax,inc < ∆Gmin then

16: set ∆α̃ to ∆α̃+ ∆α̃inc
else

18: find i+ = arg maxi∈N{∆Gi(α̃inc,i)|α̃i ← α̃i + ∆α}
find i− = arg mini∈N{∆Gi(α̃dec,i)|α̃i ← α̃i −∆α}

20: ∆Gmax,inc = ∆Gi(α̃inc,i+)−∆Gi(α̃dec,i−)
set ∆α̃ to ∆α̃inc

22: end if
I + +;

24: if I > Imax then
break;

26: end if
end loop

28: output: α̃opt

Performance evaluations

We use the HSDPA simulator to emulate a resource-constrained single cell scenario, in
which six users access different video contents at high data rates and experience different
wireless channel conditions. The parameters used in our simulations are the same as already
given in Table 3.2. The wireless channel model in the HSDPA simulator is based on the
measured CQI trace representing different mobility schemes under different environments.
To evaluate the performance of the new objective function given in Eq. (4.5), we compared
the proposed scheme with the other four schemes (No-adaptation, MaxRate, MaxMOS
and MaxMin-MOS), which have already been described in details in Section 3.8.1. The
proposed scheme is briefly summarized as following:
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Figure 4.11: Plot of mean utility of all users as a function of simulation time. [151]

• MaxMOS-MinFluc: In addition to utility maximization as done in MaxMOS, the
proposed scheme in Eq. (4.5) performs the resource allocation such that the change
of temporal video quality lies within the unperceivable threshold ξth. Based on the
results of the subjective test, we assume that users are able to perceive a change
of video quality with the average threshold of 0.23 on the MOS scale for all video
contents. The two cases of β described in Eq. (4.7) and (4.8) are denoted as ’Case 1
(C1)’ and ’Case 2 (C2)’ respectively. These two cases are used to see its effect when
giving higher priority to the temporal quality fluctuation objective.

Figure 4.11 shows the mean MOS over all users over the simulation period of 1 min. Like
in other simulation results, we see a significant gain between all application aware schemes
and the no-adaptation scheme. A further gain of 0.5 on the MOS scale is achieved when
applying our proposed MOS-based optimization (scheme 3 to 5) when compared to the
throughput maximization scheme. Among all MOS-based schemes, maxmin fairness is the
worst. The MaxMOS and our proposed scheme perform approximately the same.

Figure 4.12(a) and 4.12(b) depict the results of each UE for the average temporal quality
change ξ and its standard deviation. In this scenario, VS1 and VS2 are users experienc-
ing a good and stable wireless channel condition compared to other video users. Also,
their videos contain static video scenes, whereas others watch a dynamic video content
and experience worse and dynamic channel quality. It is obvious that the throughput
maximization (MaxRate) performs the worst, as the resources are allocated based on the
wireless channel condition. This results into a high fluctuation of user-perceived quality
in presence of drastic change of wireless channel condition. The MaxMOS scheme partly
follows the MaxRate-based strategy with respect to the wireless channel condition, how-
ever it considers whether the allocated resources contribute to the maximally increment of
average mean MOS of all users. Hence, the average quality fluctuation for the MaxMOS
scheme is less than the MaxRate scheme. In contrast, the MaxMinMOS scheme performs
fairly equal for all users due to the fact that all users perceive similar quality. Thus, if one
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(a)

(b)

Figure 4.12: Simulation results of each UE: (a) average video temporal quality fluctuation
ξ, (b) standard deviation of ξ from a simulation run of 6 video users.

user experiences a bad wireless channel condition at one moment due to his mobility or
his location such as at the edge of cell coverage, all other users would experience a drop
of their perceived quality so as to achieve similar quality for all users and thus causing
quality change to all of them. Nevertheless, the average ξ and the standard deviation
of ξ are slightly different for each user due to the discrete operation mode from different
video utility functions. The proposed schemes (MinFlucC1 and MinFlucC2) outperform
all other approaches by achieving less temporal quality fluctuation in both the average
and the standard deviation. It should be noted that the no-adaptation scheme results in
a lower quality fluctuation than the MaxSum and the MaxMin schemes, as many users
perceive minimal quality for almost the whole period of the simulation time.
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Figure 4.13: CDF of number of users experiencing quality changes exceeding the experi-
mentally determined perception threshold. [151]

To complement the advantages of the proposed scheme, we perform a number of simulation
runs and plot the CDF of the number of users experiencing the changes of temporal video
quality exceeding the threshold ξth as shown in Figure 4.13. We see that three video users
in average (50 percent of all users) perceive the temporal quality change when the rate-
based optimization is applied. With the MaxMOS and the MaxMin scheme, less number
of users perceive the change of temporal video quality. The proposed scheme achieves the
best user-perceived quality compared to other schemes, as the users experience a smooth
change of quality even in the presence of drastic changes of the wireless channel condition.
By applying the MaxMOS-MinFluc scheme with Case 2, the result is further improved, as
fewer users are able to perceive a temporal video quality fluctuation due to the fact that
more priority is given to the temporal quality smoothness.

4.3 Optimization with system efficiency, quality fluc-

tuation and fairness

In previous sections, we discussed how to combine two criteria into the optimization prob-
lem of network resource allocation, for example, a combination of mean utility of all users
(system efficiency e) and quality differences among users (user fairness k), or a combina-
tion of system efficiency and temporal quality fluctuation ξ. In addition, we showed that
there are several factors that influence allocating resources across multiple users, and it is
difficult to come up with a mathematical formular covering all issues. Hence, we propose
to use a heuristic and iterative approach to solve the two-criteria optimization problem.

In this section, we discuss how to integrate all three criteria (the system efficiency e, the
user quality fairness k and the temporal quality fluctuation ξ) into the QoE-driven opti-
mization. Solving multiple criteria optimization problem is actually not a new dimension.



CHAPTER 4. MULTI-OBJECTIVE QOE-DRIVEN OPTIMIZATION 86

In the last decades, there has been a large number of literatures addressing and solving
multiple criteria optimization problem. One of the good literature reviews is summa-
rized by Marler et al. [104]. Therein, authors stated that there is no simple answer to
which method to use for a particular problem, as each optimization method has different
properties suited for different type of problems. By looking at our resource allocation opti-
mization problem in wireless networks with three criteria aforementioned, we have chosen
the priori-articulation of preferences approach assuming that the network operator wants
to be flexible in specifying its preferences among multiple criteria prior to the optimization.

4.3.1 Weighted-sum method

Since the multiobjective optimization problem is usually characterized by the presence of
many conflicting objectives, it is unlikely that there exist a solution, which simultaneously
fulfills all the objectives. Furthermore, there exist sometimes no clear relationship between
the objectives, and thus making the optimization even more complicated.

To see a relationship between the three criteria in our QoE-driven optimization problem, we
have simulated a single HSDPA cell scenario with 8 video users by applying the normalized
weighted-sum method to our multi-criteria optimization problem, which can be aggregated
to one single figure of merit as follows:

α̃opt = arg min
α̃∈αS

[(
λ1 · (4.5− f1(α̃))

3.5

)
+

(
λ2 · f2(α̃)

3.5

)
+

(
λ3 · f3(α̃)

3.5

)]
(4.9)

subject to ∑N
i=1 α̃i = 1

λ ∈ R|λj ≥ 0 ,
∑3
j=1 λj = 1

where fj(α̃) is the j-th objective function that depends on the resource distribution α̃ across
N users and λj is a weighting factor that allows a network operator to prioritize the j-th
objective function. In this work, f1(α̃) aims to maximize the average utility of all users.
f2(α̃) focuses on minimizing the perceivable temporal quality fluctuation and f3(α̃) aims
to minimize the quality difference among all users. We formulate the objective functions
f1(α̃), f2(α̃) and f3(α̃) as follows:

f1(α̃) =
1

N

N∑
i=1

Ui(α̃) (4.10)

f2(α̃) =
1

N

N∑
i=1

|ξi(α̃)− ξth| (4.11)

f3(α̃) =
1

N

N∑
i=1

|Ui(α̃)− Uavg| (4.12)
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(a) (b)

Figure 4.14: Mean utility as a function of λ1 by fixing λ2 (a), and λ3 (b).

(a) (b)

Figure 4.15: Average maximum quality difference kavg as a function of λ3 by fixing λ1 (a),
and λ2 (b).

where Uavg is the average utility of all users based on the allocated resource allocation
as defined in Eq. (4.10). We run simulations for a single HSDPA cell scenario with 8
video users by varying λ1, λ2 and λ3 with the step size of 0.1. Figure 4.14, 4.15 and 4.16
show the results in terms of average utility Uavg, average maximum quality difference kavg
and average percentage of perceivable temporal quality fluctuation ξavg respectively. Each
point represents a combination of λ1, λ2 and λ3. In Figure 4.14 and 4.15, we see that the
maximum average quality of all users is about 3.4. The maximum mean MOS is achieved
by almost all of the case of fixing λ2, except when λ2 is equal to 1 as depicted in Figure
4.14(a). In contrast, by fixing λ3, the maximum mean MOS can also be achieved but only
for the case of having λ3 setting from 0 to 0.3. This results show that setting a higher
priority for the quality fairness objective comes at a cost of the mean MOS. In particular,
by setting the λ3 to 1, we achieve a minimum average quality of all users about 3.09 MOS.



CHAPTER 4. MULTI-OBJECTIVE QOE-DRIVEN OPTIMIZATION 88

(a) (b)

Figure 4.16: Mean percentage of perceivable change of temporal quality as a function of
λ2 by fixing λ1 (a), and λ3 (b).

Figure 4.15(a) and 4.15(b) show the maximum quality difference among users when fixing
λ1 and λ2 respectively. Obviously, in both cases, when the λ3 increases, the quality differ-
ence among users is decreasing, and thus resulting to more quality fairness. The minimum
quality difference from the considered scenario is about 0.6. Fixing higher λ1 results to less
maximum achievable quality fairness, but a higher maximum mean MOS can be achieved
as shown in Figure 4.14(b).

Figure 4.16(a) and 4.16(b) show the result of the average percentage of number of users
that perceive the temporal quality fluctuation as a function of λ2 when fixing the weighting
factor for the average mean MOS λ1 and for the quality fairness λ3. Unlike the previous
results, we observe that increasing λ2 does not guarantee that we will receive less users
perceiving temporal change of video quality. One of the reasons is that both objectives
of quality fairness maximization and utility maximization do not have a clear relationship
with the temporal quality smoothness. For example, results discussed in Section 4.2.2 show
that it is possible to find a resource allocation so as to minimize the perceivable temporal
quality fluctuation while maintaining the average quality as high as possbile as of achieving
by the utility maximization scheme. But having more perceivable temporal change does
not necessarily mean that the mean MOS will decrease.

This observation becomes more obvious when looking at the scatter plot of the result from
all combinations of λ1, λ2 and λ3 as depicted in Figure 4.17(a), 4.17(b) and 4.17(c). In
Figure 4.17(a), we see that there is a clear relationship between Uavg and kavg. A higher
average MOS is achieved when the average quality difference among users is getting larger.
Whereas, no relationship can be concluded for the other two results shown in Figure 4.17(b)
and 4.17(c). For instance, allocating resources with an aim of having a minimal perceivable
temporal quality fluctuation could result to both high and low fairness.
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(a) (b)

(c)

Figure 4.17: Relationship among three criteria: (a) average maximum quality difference
and average MOS, (b) average perceivable quality fluctuation and average maximum qual-
ity difference, and (c) average perceivable quality fluctuation and average MOS.

4.3.2 Hybrid-lexicographic method

To avoid uncertainty of allocating resources in presence of having a clear policy, we decouple
the fairness and the quality fluctuation and apply the hybrid-lexicographic method for
the multi-criteria QoE-driven optimization. It is hybrid-lexicographic, as we perform the
sequential optimization of two steps, and each step consists of two criteria as described
below.

1. Fairness+Efficiency: Finding an optimal resource allocation given that the network
operator has specified its requirement of the average MOS ereq and the fairness kreq
through the advanced k-algorithm as described in Algorithm 3.

2. Smoothness+Efficiency: Finding an optimal allocation resulting to a smooth tempo-
ral quality fluctuation while keeping the average MOS as high as possible as done in
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Algorithm 5 2loopKcon algorithm
Input: Utility function U , number of user N , step size of resource ∆α, increase of step size
∆αinc, minimum change of utility gain ∆Gmin, maximum number of iterations Imax, perceiv-
able threshold ξth, prioritized weighting factor for smoothness β, quality unfairness constraint
kreq, system efficiency constraint ereq, weighting coefficients for fairness and efficiency ck and
ce.

2: Output: Optimal operating mode α̃opt;
Initialization: zero resource share: zero resource share: α̃ = [0, 0, ..., 0], U = [1, 1, ..., 1], set
∆Gmax,inc to a value greater than ∆Gmin. Iteration index, I = 0.

4: call: advanced k-algorithm (Algorithm 3).
Output of advanced k-algorithm → p1 operating mode α̃opt,p1, and kend
call: smoothness maximization algorithm (Algorithm 4). Imposing a fairness constraint of
kend prior to taking resource ∆α̃dec from user i− and allocating ∆α̃inc to user i+.
Output of smoothness maximization → p2 operating mode α̃opt,p2

6: output: α̃opt ← p2

the MaxMOS-MinFluc algorithm described in Algorithm 4.

Note that we consider the average utility in both steps, as it is an important measure
of the whole system performance. Also, the network operator usually aims to achieve
their system performance as high as possible. The first-step ensures that the resource
allocation satisfies both ereq and kreq constraints, whereas the second-step ensures that the
temporal quality fluctuation is kept as minimal as possible while maximizing the average
user-perceived quality of all users. Initialization of the 2nd-step optimization is the result
of optimal resource alocation from the 1st-step optimization. This affects the search for
the 2nd-step optimal solution such that the quality difference among users is not far apart
from the result of the 1st-step optimization when compared with other initialization points.
We name the two-step optimization as ”2loop” optimization.

In case, the network operator would like to make the fairness constraint more important,
the kreq can be added into the 2nd-step of ”2loop” optimization. We call this variant of
”2loop” as the ”2loopKcon” optimization scheme whose the algorithm is summarized as
shown in Alogirthm 5.

4.3.3 Simulation results

We do simulations of a HSDPA single cell scenario, in which eight users are accessing
videos over the HSDPA downlink shared channel. To evaluate the performance of the
proposed ”2loop” and ”2loopKcon” schemes, we compare them with the ”No adaptation
(NoOpt)”, ”Throughput Maximization (MaxRate)”, ”Max-Min utility (MaxMinMOS)”,
”Utility Maximization (MaxMOS)”, ”Smoothness Maximization (MaxMOS-MinFluc)”
and ”advanced k-algorithm (adv-k)”. Details of the first four schemes, the adv-k and
the MaxMOS-MinFluc are already described in Section 3.8.1, 4.1 and 4.2.2 respectively.
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For the adv-k, 2loop and 2loop-kcon schemes, we set the target mean utility ereq and the
target quality fairness kreq to 3.5 and 1 in MOS scale. In case, both requirements can’t be
met at the same time, we apply the prioritization coefficients ce and ck.

Figure 4.18(a) shows the CDF plot of the mean MOS of all eight users from 30 simulation
runs for each scheme. Like other simulation results presented in this thesis, all QoE-
driven optimization approaches lead to significant improvements of user-perceived quality
when compared with the non-optimized HSDPA system and the rate-based adaptation
scheme. The least improvement among all QoE-based schemes is the MaxMinMOS, as the
resources are distributed so as all users perceive a similar quality regardless of the video
utility function and the wireless channel condition. Three QoE-based schemes (MaxMOS,
MaxMOS-MinFluc and 2loop) result to the most improvement, as all of them focus on
achieving a maximum mean MOS. By considering the fairness constraint, it comes at a
cost of the mean MOS, e.g. the more importance we put on the fairness, the less mean MOS
we receive. This effect can be seen when looking at the ”adv-k” and ”2loopKcon” results

(a)

(b)

Figure 4.18: CDF of mean utility for 8 video users: (a) comparison of all 8 schemes, (b)
zoom view of all QoE-based schemes.
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Figure 4.19: CDF of maximum quality difference among users.

with different values of ck. In average, having a hard kreq constraint (with ck = 1), the
mean MOS is reduced by an average of 0.1 in MOS. Whereas with a softer kreq constraint
(with ck = 0.5), we only have 0.03 of MOS reduction from the maximum achievable mean
MOS. It is to be noted that the mean MOS for both ”adv-k” and ”2loopKcon” schemes are
similar, though the ”2loopKcon” algorithm employs the MaxMOS-MinFluc in the 2nd-step
optimization as discussed earlier.

Figure 4.19 shows a CDF comparison of all schemes for the average of maximum quality
difference among users representing the system performance in terms of quality fairness.
Both non-optimized HSDPA system and throughput maximization schemes have a min-
imal fairness, as their adaptation is only based on the wireless channel condition. The
resources are hence often given to the users experiencing a good channel quality. Whereas
the QoE-based schemes optimally allocate the network resources by taking into account
the gain of user-perceived quality (utility) prior to network resource allocation. Among all
QoE-based schemes, the most fair approach is the Max-Min utility scheme. Both MaxMOS
and MaxMOS-MinFluc similarly perform the worst in terms of fairness due to the fact that
they mainly concentrate on other objectives of utility maximization and smoothness max-
imization without considering the fairness. For instance, the MaxMOS first allocates its
resources to the user having better channel quality and accessing the video that is low
demanding but results in high user-perceived quality such as a static video. Until the
gain of giving resource to the user is less than others, the MaxMOS starts allocating net-
work resources to a user watching a high-demanding video or experiencing a poor channel
condition. All schemes that consist of k-algorithm (”adv-k”, ”2loop” and ”2loopKcon”)
take into account the fairness constraint while optimizing its resource allocation, and thus
resulting to a higher fairness when compared to the MaxMOS and the MaxMOS-MinFluc
schemes. By increasing the value prioritization coefficient ck, we could achieve less quality
difference among users (high quality fairness).

Results of number of users recognizing the temporal quality change that exceeds the per-
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Figure 4.20: CDF of number of users experiencing quality changes exceeding the perceivable
threshold.

ceivable threshold ξth are shown in Figure 4.20. We see that the rate-based optimization
results to the most perceivable fluctuation as it adapts the application data rate and allo-
cates resources based on the wireless channel condition. With the MaxMOS, MaxMinMOS
and adv-k schemes, there are less number of users perceiving the temporal video quality
fluctuation. Both MaxMOS-MinFluc and 2loop perform the best in terms of unperceiv-
able change of temporal video quality as their objective is to minimize the perceivable
temporal quality fluctuation. By applying the kreq constraint to the 2loop optimization
scheme (2loopKcon), we receive a marginal performance degradation of smooth temporal
quality change. This implies that if we allow a little increase of number of users being able
to perceive temporal quality change, we can get closer to the desired maximum quality
difference among user kreq. Nevertheless, we observe that changing the ck for both adv-k
and 2loopKcon scheme does not have any impact on the system performance in terms of
temporal quality fluctuation. For the result of no-adaptation scheme, it should be noted
that there is also less number of users perceiving temporal quality fluctuation, as many
users are perceiving minimal quality for almost the whole period of the simulation time
due to the congestion at the base station and no application-layer adaptation being applied
when network gets congested.

4.4 Summary

This chapter has addressed the multi-criteria optimization problem of network resource
allocation in a loaded single cell scenario where users consume only video applications on
their mobile devices. First, we introduce a novel tuning mechanism that allows the network
operator to adapt its network resource allocation based on its policy in terms of the mean
perceived quality of all users (system efficiency) and the quality fairness among users.
The proposed algorithm makes use of the utility maximization and the utility max-min
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fairness, and extends them by introducing additional constraints of system efficiency and
user fairness that are defined by the network operator prior to the optimization of network
resource allocation. Three variants of tuning algorithms are introduced, which allows the
network operator to set their requirements differently, e.g., only the system efficiency, or
only the user fairness, or both of them. Simulation results show the feasibility of the
proposed tuning algorithms.

Next, we discuss a novel QoE-based objective function for cross-layer optimization of wire-
less video, which considers the change of temporal video quality and the corresponding
human perception threshold into the overall user-perceived quality rating. The threshold
is based on the Just Noticeable Difference (JND) concept and is derived by performing
subjective tests. The proposed scheme is implemented in the resource allocation optimiza-
tion across multiple users accessing different video contents and being present in the same
wireless cell. The goal of the optimization is to achieve minimal perceivable change of
temporal quality while at the same time maintaining the average perceived quality of all
users as high as possible. Results show that our proposed scheme achieves a better user-
perceived quality compared to other schemes, as the users experience a smooth change of
quality even in presence of drastic changes of the wireless channel conditions.

Lastly, we consider all three criteria (the system efficiency, the user-perceived quality fair-
ness and the smooth temporal quality fluctuation) in the QoE-driven optimization problem.
Due to the fact that one criteria has an impact on another, we propose a practical imple-
mentation of multi-criteria optimization based on the hybrid-lexicographic method. The
proposed two-step optimization enables us to decouple the interdependency between the
quality fairness and the temporal quality fluctuation. The 1st-step optimization considers
both the mean perceived quality of all users and the quality fairness among users by ap-
plying the tuning algorithms as discussed earlier. In the 2nd-step optimization, we apply
the aggregate objective function consisting of the utility maximization and the perceivable
temporal quality fluctuation minimization. Alternative, one can add the fairness constraint
in the 2nd-step optimization in order to direct the optimal resource allocation such that
the maximum quality difference among users is getting close to the fairness constraint as
much as possible. Results show that it is feasible to find an optimal resource allocation
with the two-step optimization that tries to fulfill all three criteria as much as possible
without degrading a lot of system performance in terms of mean utility, quality fairness
and unperceivable temporal quality fluctuation.



Chapter 5

Conclusion and Outlook

The continued growth of data traffic on mobile networks driven by the rapidly increasing
use of ’always on’ smart devices (e.g., smart phones, tablets, PCs using dongles, etc.) that
support various and numerous applications is congesting the mobile networks, and thus
degrading user service experience. To cope with the growing demands, the network oper-
ator may add more base stations and enhance its network facilities in its core/backhaul
network, however, such investments are usually expensive and not cost effective. More-
over, although the data capacity of networks has been increased significantly, the observed
increase in traffic continues to outpace the growth in capacity. Hence, the operators are
looking at ways of managing the growth of traffic efficiently to deliver acceptable level of
Quality of Experience (QoE) to their users in the presence of constrained network resources,
which result in reduction of their expenditures during the downturn of economy.

In this thesis, a QoE-driven optimization for resource allocation and rate adaptation has
been proposed for mobile multimedia communication. The optimization framework consists
of two main functional entities: the Traffic Management (TM) and the Traffic Engineering
(TE). The TM acts as a resource allocator that jointly optimizes the application layer and
the lower layers of wireless protocol stack with an aim of improving the user perceived
quality. The optimizer periodically reviews the total system resources and makes an es-
timate of the time-share needed for each user for each possible application-layer rate. If
necessary, the optimizer suggests re-adaptation of the application rates. The TE performs
actual rate shaping and adaptation according to the instruction given by the TM. In order
to compare the proposed QoE-based optimization schemes with other approaches such as
throughput maximization and non-optimized system, we perform simulations using a soft-
ware implementation of a developed High-Speed Data Packet Access (HSDPA) system. In
the following, we summarize the major results, draw conclusions, and give directions for
future work.

95
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Application Utility Functions

We formulate multimedia QoE by constructing long-term utility functions, which use the
Mean Opinion Score (MOS) as a unified utility metric that encompasses the user-perceived
quality under certain receiving conditions for all application types. The utility function is
simplified as a function of transmission data rate by assuming that all packets are most
likely to be transmitted successfully due to the HSDPA MAC-layer retransmission mecha-
nism providing a more reliable transmission over the wireless interface. Three application
types (voice call, video streaming and file transfer) are considered and their utility func-
tions were presented, when changing the transmission data rate at the server or sender side.
For voice and video applications, we investigate an impact of in-network rate adaptation,
for example, by transcoding or dropping packets in the mobile network. Our conclusions
are that our voice utility based on the source encoding rate is sufficient enough, since the
impact of transcoding is marginal and can be negligible. Whereas, transcoding the video
stream in the network should be taken into account as it has more impact on the user-
perceived quality. Our investigation shows that dropping video packets results in much
worse video quality than the video transcoding. This tells us that the network operator
shall employ transcoding technique and apply it to all video streams in order to minimize
the degraded service quality delivered to the user when network gets congested. If not
possible due to the hardware constraints, transcoding shall be first applied to the video
stream with dynamic content, as it is more sensitive to the packet dropping than the video
with static scenes.

Single-criteria QoE-driven Optimization

In a single loaded cell scenario, where limited resources are shared among users running
different applications and experiencing different wireless channel quality, we describe the
multiuser utility space and derive its properties. Depending on the objective function, the
QoE optimizer finds an optimal resource allocation and then sets the applications-layer
data rate for each user accordingly. Two conventional utility-based schemes are imple-
mented: utility maximization and max-min utility. The former targets at the maximum
average user quality, whereas the latter aims to achieve a similar quality for all users re-
gardless of the application type and the channel quality condition. We show analytically
that the maximization of the sum of utility can be efficiently solved by a fast greedy al-
gorithm which searches only through the boundary of the utility space. The QoE-based
schemes are compared to the non-optimized HSDPA system and the system configured
to maximize the overall throughput. Results show that our QoE-based approach leads
to significantly improved user perceived quality compared to the other approaches. In
addition to the network resource constrained system, we integrate the novel QoE-based
rate adaptation scheme selection in the optimization framework taking into account the
hardware computational constraints when performing rate adaptation for multiple flows
simultaneously that is computationally expensive such as transcoding. From the obtained
simulation results, we see that further improvement of user-perceived quality is achieved
by optimally selecting the rate adaptation scheme to be applied for each media flow prior
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to the QoE-driven resource allocation optimization.

Multi-criteria QoE-driven Optimization

Network operators sometimes prefer to have flexibility in specifying their policies for man-
aging their network resources by inclusion of multiple criteria rather than having only one
target goal as discussed earlier. For example, instead of the utility maximization or the
max-min utility, an operator may prefer to allocate network resources in order to meet the
target average quality of all users and/or the desired maximum quality difference among
users. Due to the fact that the optimization problem is influenced by several factors such
as the number of users in the cell, the channel variation among users and the application
type, we propose to solve the problem by using a heuristic and iterative algorithm which
allows the network operator to change dynamically its operating point of resource alloca-
tion based on its pre-determined constraints of the average user-perceived quality and the
quality fairness among users. From the simulation results of tuning algorithms, we learned
that the mean utility and the utility fairness are contrary to each other.

In addition to the two objectives, a novel objective function that minimizes the temporal
change of the video quality as perceivable quality fluctuations negatively affect the overall
quality of experience has been proposed and combined with the utility maximization. The
new aggregated objective function aims to allocate resources such that the fluctuations lie
within the range of unperceivable changes that is determined via extensive subjective tests,
while maintaining the average quality of all users as high as possible. Our results show that
the proposed scheme leads to a noticeable improvement of temporal quality fluctuation,
and a similar average utility as for the utility maximization.

Finally, we address the QoE-driven optimization problem for multi-user wireless video
delivery with all three criteria aforementioned. Through simulations with the weighted-
sum method, we see a clear relationship between the average quality of all users and the
fairness, but not the relationship for other objectives such as between the quality fairness
and the temporal quality change. To avoid complication and uncertainty when optimizing
network resources, a practical two-step optimization based on the hybrid-lexicographic
method is used which decouples the fairness and the temporal quality fluctuation. The
obtained simulation results show that the proposed two-step optimization scheme is able
to search for an optimal resource allocation for all users taking into account all three
criteria. In particular, the network resources can be allocated so as to meet the constraints
of average utility and quality fairness as much as possible, while keeping the perceivable
temporal quality fluctuation at minimum.

Outlook

In this thesis, we have proposed a QoE-driven optimization framework including several
algorithms and methodologies for performance evaluation, which can serve as a basis for
further research. In the following paragraphs, we briefly discuss interesting subjects for
future work in the area of user-plane traffic management and traffic engineering.
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The video utility presented in this work is based on the H.264 AVC, which is now widely
deployed and supported in many mobile devices. In the near future, it is foreseen that more
advanced video codecs such as the H.264 Scalable Video Coding (H.264 SVC) will become
available. With the H.264 SVC, the encoded video bitstream contains one or more subset
bitstreams (layers) providing different spatial resolution (picture size), different temporal
resolution (frame rate) and different video quality. User perception of different scalability
modalities should be investigated, so that a SVC utility function can be constructed and
used for the optimization framework. For instance, how a user perceives the video quality
for a video with low spatial resolution and good video quality and for a video with high
spatial resolution but with poor video quality. Though transmitting a scalable video bit-
stream gives the network operator more flexibility to reduce the bandwidth required for the
bitstream through packet (layer) dropping, it comes at a cost of increased complexity in
finding an optimal resource allocation and requires a modification of the search algorithm
or even the objective function.

The scenario considered in this work assumes that the network operator is in control of
application servers. Performing a QoE-driven optimization for legacy application servers,
which do not provide any utility functions and the operator is not in control, is important
and should be taken into account. The network operator may apply a default utility func-
tion, if it knows about the application type running on the user’s devices. Nevertheless, the
loss in gain of applying such default utility function has to be investigated. Alternatively,
the network operator may employ Deep Packet Inspection (DPI) at its gateway network
entity to get additional information out of the media flow. An example is the motion vector
information that is useful for deriving the video characteristic whether the video content
is dynamic or static.

Another challenge that has not been addressed yet is the QoE-driven resource allocation
optimization for the user moving across cells. In this case, it is necessary that all QoE
optimizers located at each base station communicate and collaborate with each other.
For example, if the objective is to achieve a low perceivable temporal quality fluctuation, a
history of user-perceived quality at the source base station has to be forwarded to the target
base station. Furthermore, prediction of user’s mobility trace may be useful information
and incorporated into the optimization framework, so as to have a smooth transition for
both the handover users and the other existing users served by the target base station.
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Abbreviations

3G Third Generation
AMC Adaptive Modulation and Coding
ARQ Automatic Repeat request
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CDF Cumulative Density Function
CLD Cross-Layer Design
CLO Cross-Layer Optimization
CQI Channel Quality Indicator
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FEC Forward Error Correlation
FTP File Transfer Protocol
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GPS Global Positioning System
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[23] T. Breddermann, H. Lüders, P. Vary, I. Aktas, and F. Schmidt. Iterative Source-
Channel Decoding with Cross-Layer Support for Wireless VoIP. In ITG Conference
on Source and Channel Coding, Siegen, Germany, Jan. 18-21, 2010.

[24] J. Brehmer and W. Utschick. A decomposition of the downlink utility maximization
problem. In Proceedings of the Conference on Information Sciences and Systems,
Baltimore, USA, Mar. 14-16, 2007. Johns Hopkins University.

[25] K. M. Bretthauer and B. Shetty. The nonlinear knapsack problem - algorithms and
approaches. European Journal of Operations Research, 138(3):459–472, 2002.



BIBLIOGRAPHY 109

[26] M. Budagavi, W. R. Heinzelman, J. Webb, and R. Talluri. Wireless MPEG-4 video
communiction on DSP chips. IEEE Signal Processing Magazine, 17(1):36–53, Jan.
2000.

[27] R. Caceres and L. Iftode. Improving the Performance of Reliable Transport Protocols
in Mobile Computing Environments. IEEE Journal on Selected Areas in Communi-
cations, 13(5):850–857, Jun. 1996.

[28] Z. Cao and E. W. Zegura. Utility max-min: An application-oriented bandwidth
allocation scheme. In IEEE Conference on Computer Communications (INFOCOM),
New York, NY, USA, Mar. 21-25, 1999.

[29] G. Carneiro, J. Ruela, and M. Ricardo. Cross-Layer Design in 4G Wireless Terminals.
IEEE Wireless Communications, 11(2):7–13, Apr. 2004.

[30] M. Chiang, S. H. Low, R. Calderbank, and J. C. Doyle. Layering as optimization
decomposition: a mathematical theory on network architectures. Proceedings of the
IEEE, 95(1):255–312, 2007.

[31] D. Chiu and R. Jain. Analysis of the increase/decrease algorithms for congestion
avoidance in computer networks. Journal of Computer Networks and ISDN Systems,
17(1):1–14, Jun. 1989.

[32] L. U. Choi, W. Kellerer, and E. Steinbach. Cross-Layer Optimization for Wireless
Multi-user Video Streaming. In IEEE International Conference on Image Processing
(ICIP), Singapore, Oct. 24-27, 2004.

[33] L. U. Choi, W. Kellerer, and E. Steinbach. On Cross-Layer Design for Streaming
Video Delivery in Multi-User Wireless Environments. EURASIP Journal on Wireless
Communications and Networking, special issue on Radio Resource Management in
3G+ Systems, 2006:1–10, Aug. 2006.

[34] A. P. Chou and M. van der Schaar. Multimedia over IP and Wireless Networks.
Academic Press, 2007.

[35] T. K. Chua and D. C. Pheanis. Application-Level Adaptive Congestion Detection and
Control for VoIP. In International Conference on Networking and Services (ICNS),
Athen, Greece, Jun. 19-25, 2007.

[36] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2009-2014. http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/

ns537/ns705/ns827/white_paper_c11-520862.html, 2010.

[37] S. Dixit, Y. Guo, and Z. Antoniou. Resource Management and Quality of Service in
Third-Generation Wireless Networks. IEEE Communications Magazine, 39(2):125–
133, Feb. 2001.



BIBLIOGRAPHY 110

[38] H. Ekstrom, A. Furuskar, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and
M. Wahlqvist. Technical solutions for the 3G Long-Term Evolution. IEEE Com-
munications Magazine, 44(3):38–45, Mar. 2006.

[39] Ericsson. Global mobile data traffic nearly triples in 1 year. http://www.ericsson.
com/news/1437680, 2010.

[40] A. Eryilmaz and R. Srikant. Fair Resource Allocation in Wireless Networks Using
Queue-length-based Scheduling and Congestion Control. In IEEE Conference on
Computer Communications (INFOCOM), Miami, Florida, USA, Mar. 13-17, 2005.

[41] M. Etoh and T. Yoshimura. Advances in Wireless Video Delivery. Proceedings of the
IEEE, 93(1):111–122, Jan. 2005.

[42] A. Federgruen and P. Zipkin. Solution techniques for some allocation problems.
Mathematical Programming, 25(1):13–24, Nov. 1983.

[43] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. B. Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, IETF, Jun. 1999.

[44] T. Fingscheidt, T. Hindelang, R. V. Cox, and N. Seshadri. Joint Source-Channel
(De)Coding for Mobile Communications. IEEE Transactions on Communications,
50(2):200–212, Feb. 2002.

[45] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the
Internet. IEEE/ACM Transaction Networking, 7(4):458–472, Aug. 1999.

[46] S. Floyd, J. Padhye, and J. Widmer. TCP Friendly Rate Control (TFRC): Protocol
Specification. RFC 3448, IETF, Jan. 2003.

[47] S. Floyd, M. H. J. Padhye, and J. Widmer. TCP Friendly Rate Control (TFRC):
Protocol Specification. RFC 5348, IETF, Sep. 2008.

[48] I. O. for Standardization. Information technology – Coding of audio-visual objects
– Part 2: Visual. Technical Report ISO/IEC 14496-2, ISO, 2004.

[49] T. Friedman, R. Caceres, and A. Clark. RTP Control Protocol Extended Reports
(RTCP XR). RFC 3611, IETF, Nov. 2003.

[50] P. Froejdh, U. Horn, M. Kampmann, A. Nohlgren, and M. Westerlund. Adaptive
Streaming within the 3GPP Packet-Switched Streaming Service. IEEE Network,
20(2):34–40, Mar. 2006.

[51] F. Fu and M. van der Schaar. Decomposition Principles and Online Learning in
Cross-Layer Optimization for Delay-Sensitive Applications. IEEE Transactions on
Signal Processing, 58(3):1401–1415, Mar. 2010.

[52] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and cross-layer
control in wireless networks. Foundations and Trends in Networking, 1(1):1–146,
2006.



BIBLIOGRAPHY 111

[53] S. Ghanbari, L. Cieplinski, and M. Bober. Recovery of Lost Motion Vectors for Error
Concealment in Video Coding. In Picture Coding Symposium, Saint-Malo, France,
Apr. 23-25, 2003.

[54] B. Girod. What’s wrong with mean-squared error? Digital Images and Human
Vision, pages 207–220, May 1993. the MIT press.

[55] B. Girod and N. Faerber. Wireless Video in Compressed Video over Networks. New
York: Marcel Dekker, 2001.

[56] T. Goff, J. Moronski, D. S. Phatak, and V. Gupta. Freeze-TCP: A True End-to-End
TCP Enhancement Mechanism for Mobile Environments. In IEEE Conference on
Computer Communications (INFOCOM), Tel Aviv, Israel, Mar. 26-30, 2000.

[57] O. Gross. A class of discrete type minimization problems. Technical Report RM-1644,
RAND Corporation, 1956.

[58] Z. J. Haas. Design Methodologies for Adaptive and Multimedia Networks. IEEE
Communications Magazine, 39(11):106–107, Nov. 2001.

[59] M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol. RFC
4566, IETF, Jul. 2006.

[60] P. Haskell and D. Messerschmitt. Resynchronization of motion compensated video
affected by ATM cell loss. San Francisco, California, USA, Mar. 23-26, 1992.

[61] D. S. Hochbaum. Lower and upper bounds for the allocation problem and other
nonlinear optimization problems. Mathematics of Operations Research, 19(2):390–
409, 1994.

[62] H. Holma and A. Toskala. HSDPA/HSUPA for UMTS. Wiley, Apr. 2006.

[63] D. Hong and S. S. Rappaport. Traffic Model and Performance Analysis for Cellular
Mobile Radio Telephone Systems with Prioritized and Nonprioritized Handoff. IEEE
Transaction on Vehicular Technology, 35(3):77–92, Aug. 1986.

[64] M. C. Hong, L. Kondi, H. Schwab, and A. K. Katsaggelos. Video Error Concealment
Techniques. Signal Processing: Image Communication, 14(6-8):473–492, 1999.

[65] K. Hongseok, C. Chan-Byoung, G. de Veciana, and R. W. Heath. A cross-layer
approach to energy efficiency for adaptive MIMO systems exploiting spare capacity.
IEEE Transactions on Wireless Communications, 8(8):4264–4275, Aug. 2009.

[66] J. Hou, J. Yang, and S. Papavassilou. Integration of Pricing with Call Admission
Control to Meet QoS Requirements in Cellular Networks. IEEE Transaction on
Parallel and Distributed Systems, 19(9):898–910, Sep. 2002.

[67] T. Ibaraki and N. Katoh. Resource Allocation Problems: Algorithmic Approaches.
The MIT Press, Boston, MA, 1988.



BIBLIOGRAPHY 112

[68] International Telecommunication Union. Studies toward the unification of picture
assessment methodology. ITU-R Report BT.1082-1, Jan. 1990.

[69] International Telecommunication Union. Information technology - Open System In-
terconnection - Basic reference model: The basic model. ITU-T Recommendation
X.200, 1994.

[70] International Telecommunication Union. Method for subjective determination of
transmission quality. ITU-T Recommendation P.800, 1996.

[71] International Telecommunication Union. Perceptual evaluation of speech quality
(PESQ): an objective method for end-to-end speech quality assessment of narrow-
band telephone networks and speech codecs. ITU-T Recommendation P.862, 2001.

[72] International Telecommunication Union. Methodology for the Subjective Assessment
of the Quality for Television Pictures. ITU-T Recommendation BT.500, 2002.

[73] International Telecommunication Union. The E-model, a computational model for
use in transmission planning. ITU-T Recommendation G.107, 2005.

[74] International Telecommunication Union. Terms and definitions related to quality of
service and network performance including dependability. ITU-T Recommendation
E.800, Sep. 2008.

[75] International Telecommunication Union. Vocabulary for performance and quality of
service. ITU-T Recommendation P.10/G.100 Amendment 2, Jul. 2008.

[76] International Telecommunication Union. Advanced video coding for generic audio-
visual services. ITU-T Recommendation H.264, Mar. 2010.

[77] ISO. ISO/IEC 13818-1: Information technology: Generic coding of moving pictures
and associated audio information: Systems. http://www.iso.org/iso/catalogue_
detail.htm?csnumber=51533, 2007.

[78] ISO. ISO/IEC 14496: Information technology: Coding of audio-visual objects: Part
12: ISO base media file format. http://www.iso.org/iso/catalogue_detail.htm?
csnumber=51533, 2008.

[79] M. T. Ivrlac and J. A. Nossek. Cross Layer Optimization-an Equivalence Class
Approach. In ITG Workshop Smart Antennas, Munich, Germany, Mar. 18-19, 2004.

[80] H. Jiang, W. Zhuang, and X. Shen. Cross-layer design for resource allocation in 3G
wireless networks and beyond. IEEE Communications Magazine, 43(12):120–126,
Dec. 2005.

[81] D. Jurca and P. Frossard. Media-Specific Rate Allocation in Heterogeneous Wireless
Networks. In IEEE Packet Video Workshop, Hangzhou, China, Apr. 20-21, 2006.

[82] H. Kaaranen, A. Ahitainen, L. Laitinen, S. Naghian, and V. Niemi. UMTS Networks:
Architecture, Mobility, and Services. John Wiley and Sons, 2001.



BIBLIOGRAPHY 113

[83] V. Kawadia and P. Kumar. A Cautionary Perspective on Cross Layer Design. IEEE
Wireless Communications, 12(1):3–11, Feb. 2005.

[84] W. Kellerer, L. U. Choi, and E. Steinbach. Cross-layer adaptation for optimized B3G
service provisioning. In International Symposium on Wireless Personal Multimedia
Communications (WPMC), Yokosuka, Japan, Oct. 21-22, 2003.

[85] W. Kellerer, S. Thakolsri, S. Khan, and E. Steinbach. Quality of Experience Driven
Cross-Layer Optimization for the Future Mobile Internet. In 2nd GI/ITG KuVS
Workshop on The Future Internet, Karlsruhe, Germany, Nov. 11, 2008.

[86] F. P. Kelly. Charging and rate control for elastic traffic. European Transactions of
Telecommunication, 8:33–37, Jan. 1997.

[87] S. Khan, S. Duhovnikov, E. Steinbach, and W. Kellerer. MOS-Based Multiuser
Multiapplication Cross-Layer Optimization for Mobile Multimedia Communication.
Advances in Multimedia, (doi:10.1155/2007/94918), 2007.

[88] S. Khan, M. Sgroi, Y. Peng, E. Steinbach, and W. Kellerer. Application-driven cross-
layer optimization for video streaming over wireless networks. IEEE Communications
Magazine, pages 122–130, Jan. 2006.

[89] S. Khan, S. Thakolsri, E. Steinbach, and W. Kellerer. QoE-based Cross-layer Opti-
mization for Wireless Multiuser Systems. In 18th ITC Specialist Seminar on Quality
of Experience, Karlskrona, Sweden, May 29-30, 2008.

[90] B. J. Kim. A network service providing wireless channel information for adaptive
mobile applications: part I: proposal. In IEEE International Conference on Com-
munications (ICC), Beijing, China, May 19-23, 2001.

[91] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol
(DCCP). RFC 4340, IETF, Mar. 2006.

[92] P. P. K. Lam and S. C. Liew. UDP-Liter: an improved UDP protocol for real-time
multimedia applications over wireless links. In International Symposium on Wireless
Communication Systems, Mauritius, Sep. 20-22, 2004.

[93] L. Larzon, M. Degermark, and S. Pink. The Lightweight User Datagram Protocol
(UDP-Lite). RFC 3828, IETF, Jul. 2004.

[94] L. A. Larzon, U. Bodin, and O. Schelen. Hints and Notifications. In IEEE Wireless
Communications and Networking Conference (WCNC), Orlando, Florida, USA, Mar.
17-21, 2002.

[95] L. A. Larzon, M. Degermark, and S. Pink. Efficient use of wireless bandwidth for
multimedia applications. In IEEE International Workshop on Mobile Multimedia
Communications (MoMuC), San Diego, CA, USA, Nov. 15-17, 1999.



BIBLIOGRAPHY 114

[96] H. J. Lee, J. H. Jeon, and J. T. Lim. On Congestion Control for Streaming Real-time
Applications over Wireless Networks with Bandwidth Variation. In 14th Asia-Pacific
Conference on Communications (APCC), Tokyo, Japan, Oct. 14-16, 2008.

[97] W. C. P. Lee. Mobile Communincations Design Fundamentals. John Wiley and Sons,
1993.

[98] K. Leung and V. O. K. Li. Transmission control protocol (TCP) in wireless networks:
issues, approaches, and challenges. IEEE Communications Surveys and Tutorials,
8(4):64–79, Oct. 2006.

[99] D. A. Levine, I. F. Akyildiz, and M. Naghshineh. A resource Estimation and Call
Admission Algorithm for Wireless Multimedia Networks Using the Shadow Cluster
Concept. IEEE/ACM Transaction on Networking, 5(1):1–12, Feb. 1997.

[100] X. Liu, E. K. P. Chong, and N. B. Schroff. Transmission scheduling for efficient wire-
less utilization. In IEEE Conference on Computer Communications (INFOCOM),
Anchorage, Alaska, USA, Apr. 22-26, 2001.

[101] H. Luo, S. Ci, D. Wu, J. Wu, and H. Tang. Quality-driven cross-layer optimized video
delivery over LTE. IEEE Communications Magazine, 48(2):102–109, Feb. 2010.

[102] S. Z. M. Chiang and P. Hande. Distributed rate allocation for inelastic flows: Opti-
mization frameworks, optimality conditions, and optimal algorithms. In IEEE Con-
ference on Computer Communications (INFOCOM), Miami, Florida, USA, Mar.
13-17, 2005.

[103] G. Manfredi, P. Annese, and U. Spagnolini. A channel aware scheduling algorithm
for hsdpa system. In 16th IEEE Internation Symposium on Personal, Indoor and
Mobile Radio Communications, Berlin, Germany, Sep. 11-14, 2005.

[104] R. Marler and J. Arora. Survey of multi-objective optimization methods for engi-
neering. Structural and Multidisciplinary Optimization, 26(6):369–395, Apr. 2004.

[105] Microsoft. Smooth Streaming. http://www.iis.net/download/SmoothStreaming,
2011.

[106] Y. Nakajima, H. Hori, and T. Kanoh. Rate conversion of mpeg coded video by re-
quantization process. In IEEE International Conference on Image Processing (ICIP),
Washington, DC , USA, Oct. 23-26, 1995.

[107] N. Nasser, Al-Manthari, and H. Hassanein. A performance comparison of class-based
scheduling algorithms in future umts access. In IEEE International Performance,
Computing and Communications Conference, Phoenix, Arizona, USA, Apr. 7-9, 2005.

[108] M. C. Necker and A. Weber. Impact of Iub Flow Control on HSDPA System Perfor-
mance. In 16th IEEE Internation Symposium on Personal, Indoor and Mobile Radio
Communications, Berlin, Germany, Sep. 11-14, 2005.



BIBLIOGRAPHY 115

[109] M. T. Nietzel. Introduction of clinical psychology. Prentice Hall, 1991.

[110] D. Niyato and E. Hossain. Call Admission Control for QoS Provisioning in 4G
Wireless Networks: Issues and Approaches. IEEE Network, 19(5):5–11, Sep. 2005.

[111] M. Opp. Outsourcing Warranty Repair Services. Phd thesis, University of North
Carolina at Chapel Hill, 2003.

[112] A. Ortega and M. Khansari. Rate control for video coding over variable bit rate chan-
nels with applications to wireless transmission. In IEEE International Conference
on Image Processing (ICIP), Washington, DC , USA, Oct. 23-26, 1995.

[113] J. Ott, S. Wenger, N. Sato, C. Burmeister, and J. Rey. Extended RTP Profile for
Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF). RFC
4585, IETF, Jul. 2006.

[114] R. Pantos and W. May. HTTP Live Streaming. Draft draft-pantos-http-live-
streaming-06, IETF, Mar. 2011.

[115] A. D. Patel. The harvard-haskins database of regularly-timed speech. http://

vesicle.nsi.edu/users/patel/download.html.

[116] M. Patriksson. A survey on the continuous nonlinear resource allocation problem.
European Journal of Operational Research, 185(1):1–46, 2008.

[117] K. I. Pedersen, P. E. Mogensen, and T. E. Kolding. Overview of QoS options for
HSDPA. IEEE Communications Magazine, 44(7):100–105, Jul. 2006.

[118] J. Postel. User Datagram Protocol. RFC 768, IETF, Aug. 1980.

[119] J. Postel. Internet Protocol. RFC 791, IETF, Sep. 1981.

[120] J. Postel. Transmission Control Protocol. RFC 793, IETF, Sep. 1981.

[121] L. Qingwen, Z. Shengli, and G. B. Giannakis. Queuing with adaptive modulation
and coding over wireless links: cross-Layer analysis and design. IEEE Transactions
on Wireless Communications, 4(3):1142–1153, May 2005.

[122] A. Racz, A. Temesvary, and N. Reider. Handover Performance in 3GPP Long Term
Evoluation (LTE) Systems. In 16th IST Mobile and Wireless Communications Sum-
mit, Budapest, Jul. 1-5, 2007.

[123] B. Radunovic and J.-Y. L. Boudec. A unified framework for max-min and min-max
fairness with applications. IEEE/ACM Trans. on Networking, 15(5):1073–1083, Oct.
2007.

[124] D. Raggett, A. L. Hors, and I. Jacobs. HTML 4.0 Specification. Recommendation
REC-html40-971218, W3C, Dec. 1997.

[125] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168, IETF, Sep. 2001.



BIBLIOGRAPHY 116

[126] K. Ratnam and I. Matta. WTCP: an efficient mechanism for improving TCP perfor-
mance over wireless links. In IEEE Symposium on Computers and Communications
(ISCC), Athens, Greece, Jun. 30 - Jul. 2, 1998.

[127] J. Rey, D. Leon, A. Miyazaki, V. Varsa, and R. Hakenberg. RTP Retransmission
Payload Format. RFC 4588, IETF, Jul. 2006.

[128] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261, IETF,
Jun. 2002.

[129] B. Sardar and D. Saha. A survey of TCP enhancements for last-hop wireless networks.
IEEE Communications Surveys and Tutorials, 8(3):20–34, Jul. 2006.

[130] B. Sardar and D. Saha. Spatial and Temporal Error Concealment Techniques for
Video Transmission Over Noisy Channels. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 16(7):789 – 803, Jul. 2006.

[131] A. Saul. Wireless Resource Allocation With Perceived Quality Fairness. In IEEE An-
nual Asilomar Conference on Signals, Systems, and Computers, PACIFIC GROVE,
CA, USA, Nov. 1-4, 2008.

[132] A. Saul, S. Khan, G. Auer, W. Kellerer, and E. Steinbach. Cross-Layer Optimization
With Model-Based Parameter Exchange. In International Conference on Communi-
cations (ICC), Glasgow, Scotland, Jun. 24-28, 2007.

[133] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport protocol
for real-time applications. RFC 3550, IETF, Jul. 2003.

[134] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP).
RFC 2326, IETF, Apr. 1998.

[135] S. Shakkottai, T. S. Rappport, and P. C. Karlsson. Cross-Layer Design for Wireless
Networks. IEEE Communications Magazine, 41(10):74–80, Oct. 2003.

[136] J. She, F. Hou, B. Shihada, and P. H. Ho. MAC-layer active dropping for real-time
video streaming in 4G access networks. IEEE Systems Journal, 4(4):561–572, Dec.
2010.

[137] A. Singh, A. Konrad, and A. D. Joseph. Performance Evaluation of UDP Lite
for Cellular Video. In International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), New York, USA, Jun. 25-26, 2001.

[138] J. Sjoberg, M. Westerlund, A. Lakeaniemi, and Q. Xie. Real-Time Transport Protocol
(RTP) Payload Format and File Storage Format for the Adaptive Multi-Rate (AMR)
and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs. RFC 3267, IETF,
Jun. 2002.



BIBLIOGRAPHY 117

[139] C. Soon-Hyeok, D. Perry, and S. M. Nettles. A Software Architecture for Cross-
Layer Wireless Network Adaptations. In Seventh Working IEEE/IFIP Conference
on Software Architecture (WISCA 2008), pages 281–284, Vancouver, Canada, Feb.
18-22, 2008.

[140] M. Stanley. The mobile internet, consumer usage and implications for me-
dia and marketing brands. http://www.viralhousingfix.com/2010/02/

12/the-mobile-internet-consumer-usage-and-implications-for-media/

-and-marketing-brands/, 2010.

[141] T. Stockhammer, M. M. Hannuksela, and T. Wiegang. H.264/AVC in Wireless
Environments. IEEE Transaction on Circuits and Systems for Video Technology,
13(7), Jul. 2003.

[142] P. Sudame and B. R. Badrinath. On Providing Support for Protocol Adaptation in
Mobile Wireless Networks. Mobile Networks and Applications, 6(1):43–55, Jan. 2001.

[143] G. J. Sullivan and T. Wiegand. Rate-distortion optimization for video compression.
IEEE Signal Processing Magazine, 15(6):74–90, Nov. 1998.
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