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Abstract

Continuous-time autoregressive moving average (CARMA) processes have recently been
used widely in the modeling of non-uniformly spaced data and as a tool for dealing with
high-frequency data of the form Yn∆, n = 0, 1, 2, . . ., where ∆ is small and positive. Such
data occur in many fields of application, particularly in finance and the study of turbulence.
This paper is concerned with the characteristics of the process (Yn∆)n∈Z, when ∆ is small
and the underlying continuous-time process (Yt)t∈R is a specified CARMA process.

AMS 2000 Subject Classifications: 60G51, 62M10.

Keywords: CARMA process, high frequency data, discretely sampled process

1 Introduction

Throughout this paper we shall be concerned with a CARMA process driven by a second-order
zero-mean Lévy process L with EL1 = 0 and EL2

1 = σ2. The process is defined as follows.
For non-negative integers p and q such that q < p, a CARMA(p, q) process Y = (Yt)t∈R,

with coefficients a1, . . . , ap, b0, . . . , bq ∈ R, and driving Lévy process L, is defined to be a strictly
stationary solution of the suitably interpreted formal equation,

a(D)Yt = b(D)DLt, t ∈ R, (1.1)

where D denotes differentiation with respect to t, a(·) and b(·) are the polynomials,

a(z) := zp + a1z
p−1 + · · ·+ ap and b(z) := b0 + b1z + · · ·+ bp−1z

p−1,

and the coefficients bj satisfy bq = 1 and bj = 0 for q < j < p. The polynomials a(·) and b(·) are
assumed to have no common zeroes, and it will be assumed that the zeroes of the polynomial a
all lie in the interior of the left half of the complex plane.
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Since the derivative DLt does not exist in the usual sense, we interpret (1.1) as being equiv-
alent to the observation and state equations

Yt = bTXt , (1.2)

dXt = AXtdt+ epdLt , (1.3)

where

Xt =


X(t)

X(1)(t)
...

X(p−2)(t)

X(p−1)(t)

 , b =


b0
b1
...

bp−2

bp−1

 , ep =


0

0
...
0

1

 ,

A =


0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−ap −ap−1 −ap−2 . . . −a1

 and A = −a1 for p = 1.

It is easy to check that the eigenvalues of the matrix A, which we shall denote by λ1, ..., λp, are
the same as the zeroes of the autoregressive polynomial a(·).

Under the conditions specified it has been shown (Brockwell and Lindner (2009), Lemma 2.3)
that these equations have the unique strictly stationary solution,

Yt =

∫ ∞
−∞

g(t− u)dLu, (1.4)

where

g(t) =


1

2πi

∫
ρ

b(z)

a(z)
etzdz =

∑
λ

Resz=λ

(
ezt

b(z)

a(z)

)
, if t > 0,

0, if t ≤ 0.

(1.5)

and ρ is any simple closed curve in the open left half of the complex plane encircling the zeroes
of a(·). The sum is over the distinct zeroes λ of a(·) and Resz=λ(·) denotes the residue at λ of
the function in parentheses. Evaluating these residues, we can write g more explicitly as

g(t) =
∑
λ

1

(m(λ)− 1)!

[
Dm(λ)−1
z

(
(z − λ)m(λ)eztb(z)/a(z)

)]
z=λ

1(0,∞)(t), (1.6)

where m(λ) denotes the multiplicity of the zero λ and Dz denotes differentiation with respect
to z. The kernel g can also be expressed (Brockwell and Lindner (2009), equations (2.10) and
(3.7)) as

g(t) = b>eAtep1(0,∞)(t). (1.7)

From this equation we see at once that g is infinitely differentiable on (0,∞) with kth derivative,

g(k)(t) = b>eAtAkep, 0 < t <∞.

Since bq = 1 and bj = 0 for j > q, the right derivatives g(k)(0+) satisfy

g(k)(0+) = b>Akep =

{
0 if k < p− q − 1,

1 if k = p− q − 1,
(1.8)
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and in particular g(0+) = 1 if p− q = 1 and g(0+) = 0 if p− q > 1.
Gaussian CARMA processes, of which the Gaussian Ornstein-Uhlenbeck process is an early

example, were first studied in detail by Doob (1944) (see also Doob (1990)). The state-space
formulation, (1.2) and (1.3) (with b> = [1 0 · · · 0]) was used by Jones (1981) to carry out
inference for time series with irregularly-spaced observations. This formulation leads naturally
to the definition of Lévy-driven and non-linear CARMA processes (see Brockwell (2001) and
the references therein). Fractionally integrated Lévy-driven CARMA processes were studied by
Brockwell and Marquardt (2005).

Lévy-driven CARMA processes have been applied successfully to the modelling of stochastic
volatility in finance (see Todorov and Tauchen (2006), Brockwell et al. (2006) and Haug and
Czado (2007)), extending the celebrated Ornstein-Uhlenbeck model of Barndorff-Nielsen and
Shephard (2001). The results presented here were motivated by preliminary studies of high-
frequency turbulence data (see Ferrazzano (2010)) which appear to be well-fitted by a continuous
time moving average process sampled at times 0,∆, 2∆, . . ., where ∆ is small and positive.
We return on this topic in Brockwell, Ferrazzano and Klüppelberg (2011). The application to
turbulence data will be investigated in detail in Ferrazzano and Klüppelberg (2011).

Our paper is organised as follows. In Section 2 we derive an expression for the spectral density
of the sampled sequence Y ∆ := (Yn∆)n∈Z. It is known that the filtered process (φ(B)Y ∆

n )n∈Z,
where φ(B) is the filter defined in (3.1), is a moving average of order at most p− 1. In Section 3,
we determine the asymptotic behaviour of the spectral density and autocovariance function of
(φ(B)Y ∆

n )n∈Z as ∆ ↓ 0 and the asymptotic moving average coefficients and white noise variance
in the cases p − q = 1, 2 and 3. In general we show that for small enough ∆ the order of the
moving average (φ(B)Y ∆

n )n∈Z is p− 1.

2 The spectral density of Y ∆ := (Yn∆)n∈Z

From (1.5) we immediately see, since g(t) = 0 for t < 0, that the Fourier transform of g is

g̃(ω) :=

∫
R
g(t)eiωtdt = − 1

2πi

∫
ρ

b(z)

a(z)

1

z + iω
dz =

b(−iω)

a(−iω)
, ω ∈ R. (2.1)

Since the autocovariance function γY (·) is the convolution of σg(·) and σg(−·), its Fourier trans-
form is given by

γ̃Y (ω) = σ2g̃(ω)g̃(−ω) = σ2

∣∣∣∣ b(iω)

a(iω)

∣∣∣∣2 , ω ∈ R.

The spectral density of Y is the inverse Fourier transform of γY . Thus

fY (ω) =
1

2π

∫
R
e−iωhγY (h)dh =

1

2π
γ̃Y (−ω) =

σ2

2π

∣∣∣∣ b(iω)

a(iω)

∣∣∣∣2 , ω ∈ R.

Substituting this expression into the relation

γY (h) =

∫
R
eiωhfY (ω)dω, h ∈ R,

and changing the variable of integration from ω to z = iω gives,

γY (h) =
σ2

2πi

∫
ρ

b(z)b(−z)
a(z)a(−z)

e|h|zdz = σ2
∑
λ

Resz=λ

(
b(z)b(−z)
a(z)a(−z)

ez|h|
)
, (2.2)
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where the sum is again over the distinct zeroes of a(·).
We can now compute the spectral density of the sampled sequence Y ∆ := (Yn∆)n∈Z. This

spectral density f∆ will play a key role in the subsequent analysis. We have, from Corollary 4.3.2
in Brockwell and Davis (1991),

f∆(ω) =
1

2π

∞∑
h=−∞

γY (h∆)e−ihω, −π ≤ ω ≤ π,

and, substituting for γY from (2.2),

f∆(ω) =
−σ2

4π2i

∫
ρ

b(z)b(−z)
a(z)a(−z)

sinh(∆z)

cosh(∆z)− cos(ω)
dz, −π ≤ ω ≤ π. (2.3)

3 The filtered sequence, (φ(B)Y ∆
n )n∈Z

If λ1, . . . , λp are the (not necessarily distinct) zeroes of a(·), then we know from Brockwell and
Lindner (2009), Lemma 2.1, that if we apply the filter

φ(B) :=

p∏
j=1

(1− eλj∆B) (3.1)

to the sampled sequence, Y ∆, we obtain a strictly stationary sequence which is (p−1)-correlated
and is hence, by Lemma 3.2.1 of Brockwell and Davis (1991), a moving average process of order
p− 1 or less.

Our goal in this section is to study the asymptotic properties, as ∆ ↓ 0, of the moving average
θ(B)Zn in the ARMA representation,

φ(B)Y ∆
n = θ(B)Zn, n ∈ Z, (3.2)

of the high-frequency sequence Y ∆. Here B denotes the backward shift operator and (Zn)n∈Z is
an uncorrelated sequence of zero-mean random variables with constant variance which we shall
denote by τ2.

We shall denote by fMA the spectral density of (θ(B)Zn)n∈Z. Then, observing that the power
transfer function of the filter (3.1) is

ψ(ω) = |
p∏
j=1

(1− eλj∆+iω)|2 = 2pe−a1∆
p∏
i=1

(cosh(λi∆)− cos(ω)), −π ≤ ω ≤ π, (3.3)

we have
fMA(ω) = ψ(ω)f∆(ω), −π ≤ ω ≤ π, (3.4)

where ψ(ω) and f∆(ω) are given by (3.3) and (2.3) respectively.
In principle the expression (3.4) determines the second order properties of (θ(B)Zn)n∈Z and

in particular the autocovariances γMA(h) for h = 0, . . . , p− 1. Ideally we would like to use these
autocovariances to find the coefficients θ1, . . . , θp−1 and white noise variance τ2, all of which
are uniquely determined by the autocovariances, if we impose the condition that θ(·) has no
zeros in the interior of the unit circle. Determination of these quantities is equivalent to finding
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the corresponding factorization of the spectral density fMA (see Sayed and Kailath (2001) for a
recent paper on spectral factorization).

From (2.3), (3.3) and (3.4) we can calculate the spectral density fMA(ω) as −σ2ψ(ω)/(2π)

times the sum of the residues in the left half plane of the integrand in (2.3) , i.e.

fMA(ω) = −σ
2

2π
ψ(ω)

∑
λ

Dm(λ)−1
z

(
sinh(∆z)b(z)b(−z)

(cosh(λ∆)− cos(ω))a(−z)
∏
µ 6=λ(z − µ)m(µ)

)
z=λ

, (3.5)

where the sum is over the distinct zeroes λ of a(·) and the product in the denominator is over
the distinct zeroes µ of a(·), which are different from λ. The multiplicities of the zeroes λ and µ
are denoted by m(λ) and m(µ) respectively. When the zeroes λ1, . . . , λp each have multiplicity
1, the expression for fMA(ω) simplifies to

fMA(ω) =
(−2)pe−a1∆σ2

2π

p∑
i=1

b(λi)b(−λi)
a′(λi)a(−λi)

sinh(λi∆)
∏
j 6=i

(cosω − cosh(λj∆)), −π ≤ ω ≤ π.

Although in principle the corresponding autocovariances γMA(j) could be derived from fMA,
we derive a more direct explicit expression later as Proposition 3.6. The asymptotic behaviour
of fMA as ∆ ↓ 0 is derived in the following theorem by expanding (2.3) in powers of ∆ and
evaluating the corresponding coefficients. Here and in all that follows we shall use the notation,
a(∆) ∼ b(∆), to mean that lim∆↓0 a(∆)/b(∆) = 1.

Theorem 3.1. The spectral density fMA of (θ(B)Zn)n∈Z in the ARMA representation (3.2) of
the sampled process Y ∆ has the asymptotic form, as ∆ ↓ 0,

fMA(ω) ∼ σ2

2π
(−1)p−q−1∆2(p−q)−1cp−q−1(ω)2p−1(1− cosω)p, −π ≤ ω ≤ π, (3.6)

where ck(ω) is the coefficient of x2k+1 in the power series expansion

sinhx

coshx− cosω
=
∞∑
k=0

ck(ω)x2k+1. (3.7)

In particular, c0(ω) = 1
1−cosω , c1(ω) = − 2+cosω

6(1−cosω)2
, c2(ω) = 33+26 cosω+cos(2ω)

240(1−cosω)3
, . . . .

Proof. The integrand in (2.3) can be expanded as a power series in ∆ using (3.7). The integral
can then be evaluated term by term using the identities, (see Example 3.1.2.3. of Mitrinović and
Kečkić (1984))

1

2πi

∫
ρ
z2k+1 b(z)b(−z)

a(z)a(−z)
dz = −1

2
Resz=∞

(
z2k+1b(z)b(−z)
a(z)a(−z)

)
, k ∈ {0, 1, 2, . . .},

from which we obtain, in particular,

1

2πi

∫
ρ
z2k+1 b(z)b(−z)

a(z)a(−z)
dz =

{
0 if 0 ≤ k < p− q − 1,
(−1)p−q

2 if k = p− q − 1.

Substituting the resulting expansion of the integral (2.3) and the asymptotic expression
ψ(ω) ∼ 2p(1 − cosω)p into (3.4) and retaining only the dominant power of ∆ as ∆ → 0, we
arrive at (3.6).
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Corollary 3.2. The following special cases are of particular interest.

p− q = 1 : fMA(ω) ∼ σ2∆

2π
2q(1− cosω)q. (3.8)

p− q = 2 : fMA(ω) ∼ σ2∆3

2π

(
2

3
+

cosω

3

)
2q(1− cosω)q. (3.9)

p− q = 3 : fMA(ω) ∼ σ2∆5

2π

(
11

20
+

13 cosω

30
+

cos(2ω)

60

)
2q(1− cosω)q. (3.10)

Proof. These expressions are obtained from (3.6) using the values of c0(ω), c1(ω) and c2(ω) given
in the statement of the theorem.

Remark 3.3. (i) The right-hand side of (3.8) is the spectral density of a q-times differenced
white noise with variance σ2∆. It follows that, if q = p− 1, then the moving average polynomial
θ(B) in (3.2) is asymptotically (1 − B)q and the white noise variance τ2 is asymptotically σ2∆

as ∆→ 0. This result is stated with the corresponding results for p− q = 2 and p− q = 3 in the
following corollary.

(ii) By Proposition 3.32 of Marquardt and Stelzer (2007) a CARMA(p, q)-process has sample
paths which are (p − q − 1)-times differentiable. Consequently to represent processes with non-
differentiable sample-paths it is necessary to restrict attention to the case p− q = 1. It is widely
believed that sample-paths with more than two derivatives are too smooth to represent the
processes observed empirically in finance and turbulence (see e.g. Jacod and Todorov (2010),
Jacod et al. (2010)) so we are not concerned with the cases when p− q > 3. 2

Corollary 3.4. The moving average process Xn := θ(B)Zn in (3.2) has for ∆ ↓ 0 the following
asymptotic form.

(a) If p− q = 1, then
Xn = (1−B)qZn, n ∈ Z,

where τ2 := V ar(Zn) = σ2∆.

(b) If p− q = 2, then
Xn = (1 + θB)(1−B)qZn, n ∈ Z,

where θ = 2−
√

3 and τ2 := V ar(Zn) = σ2∆3(2 +
√

3)/6.

(c) If p− q = 3, then

Xn = (1 + θ1B + θ2B
2)(1−B)qZn, n ∈ Z,

where θ2 = 2
(
8 +
√

30
)
−
√

375 + 64
√

30, θ1 = 26θ2/(1 + θ2) = 13 −
√

135 + 4
√

30 and τ2 =(
2
(
8 +
√

30
)

+
√

375 + 64
√

30
)

∆5σ2/120.

Proof. (a) follows immediately from Theorem 4.4.2 of Brockwell and Davis (1991).
To establish (b) we observe from (3.9) that the required moving average is the q times

differenced MA(1) process with autocovariances at lags zero and one, γ(0) = 2σ2∆3/3 and
γ(1) = σ2∆3/6. Expressing these covariances in terms of θ and τ2 gives the equations,

(1 + θ2)τ2 = 2σ2∆3/3,
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θτ2 = σ2∆3/6,

from which we obtain a quadratic equation for θ. Choosing the unique solution which makes the
MA(1) process invertible gives the required result.

The proof of (c) is analogous. The corresponding argument yields a quartic equation for θ2.
The particular solution given in the statement of (b) is the one which satisfies the condition that
θ(z) is nonzero for all complex z such that |z| < 1.

Although the absence of the moving-average coefficients, bj , from Corollary 3.4 suggests that
they cannot be estimated from very closely-spaced observations, the coefficients do appear if
the expansions are taken to higher order in ∆. The apparent weak dependence of the sampled
sequence on the moving-average coefficients as ∆ ↓ 0 is compensated by the increasing number
of available observations.

In principle the autocovariance function γMA can be calculated, as indicated earlier, from
the corresponding spectral density fMA given by (3.4) and (2.1). Below we derive a more direct
representation of γMA and use it to prove Theorem 3.7, which is the time-domain analogue of
Theorem 3.1.

Define B∆g(t) = g(t−∆) for t ∈ R. We show that φ(B∆)g(·) ≡ 0 for t > p∆.

Lemma 3.5. Let Y be the CARMA(p, q) process (1.4) and ∆ > 0. Define φ(B) as in (3.1).
Then

φ(B∆)g(t) :=

p∏
j=1

(1− eλj∆B∆)g(t) = 0, t > p∆. (3.11)

Proof. Rewriting the product in (3.11) as a sum we find φ(B∆)g(t) =
∑p

j=0A
p
jg(t− j∆), which

has Fourier transform (invoking the shift property and the right hand side of (2.1))∏
λ

(1− e∆(λ+iω))m(λ) b(−iω)

a(−iω)
, ω ∈ R,

where the product is taken over the distinct zeroes of a(·) having multiplicity m(λ). Using the
fact that the product of Fourier transforms corresponds to the convolution of functions, we obtain
from (1.5)

φ(B∆)g(t) = − 1

2πi

∫
ρ

∏
λ

(1−e∆(λ−z))m(λ) b(z)

a(z)
etzdz = −

∑
λ

Resz=λ

(
eztb(z)

∏
λ

(1− e∆(λ−z))m(λ)

(z − λ)m(λ)

)
.

Now note that, for every of the distinct zeroes λj ,

lim
z→λi

(1− e∆(λj−z))m(λj)

(z − λj)m(λj)
= ∆m(λj).

The singularities at z = λj are removable and, therefore, using Cauchy’s residue theorem, The-
orem 1 of Section 3.1.1, p. 25, and Theorem 2 of Section 2.1.2, p. 7, of Mitrinović and Kečkić
(1984), the filtered kernel is zero for every t ∈ R.
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Proposition 3.6. Let Y be the CARMA(p, q) process (1.4) and ∆ > 0. The autocovariance at
lag n of (φ(B)Y ∆

j )j∈Z is, for n = 0, 1, . . . , p− 1,

γMA(n) = σ2
p−n∑
i=1

n+i−1∑
k=0

i−1∑
h=0

ApkA
p
h

∫ i∆

(i−1)∆
g(s− h∆)g(s− (k − n)∆)ds, (3.12)

with
Apk = (−1)k

∑
{i1,...,ik}∈Cp

k

e∆(λi1+···+λik ), k = 1, . . . , p. (3.13)

The sum in (3.13) is taken over the
(
p
k

)
subsets of size k of {1, 2, . . . , p}.

Proof. We note that γMA(n) is the same as E[(φ(B∆)Y )t(φ(B∆)Y )t+∆n] and use the same ex-
pansion as in the proof of Lemma 3.5, i.e.

φ(B∆) =

p∏
j=1

(1− eλj∆B∆) =

p∑
k=0

ApkB
k
∆, (3.14)

which we apply to Y . Observe that for t ∈ R, setting tk := t − k∆ for k = 0, . . . , p, and
tp+1 := −∞,

Bk
∆Yt = Bk

∆

∫ t

−∞
g(t− u)dLu =

∫ tk

−∞
g(tk − u)dLu =

p∑
i=k

∫ ti

ti+1

g(tk − u)dLu. (3.15)

Applying the operator (3.14) to Yt, using (3.15) and interchanging the order of summation gives

(φ(B∆)Y )t =

p∑
m=0

∫ tm

tm+1

m∑
k=0

Apkg(tk − u)dLu. (3.16)

From Lemma 3.5 we know that the contribution from the term corresponding to m = p is zero.
By stationarity, the autocovariance function is independent of t, hence we can choose t = ∆n.
Then we obtain

(φ(B∆)Y )n∆ =

p−1∑
j=0

∫ ∆(n−j)

∆(n−j−1)

j∑
k=0

Apkg((n− k)∆− u)dLu

=

p∑
j=1

∫ ∆(n−j+1)

∆(n−j)

j−1∑
k=0

Apkg((n− k)∆− u)dLu.

For t = 0, we obtain analogously

(φ(B∆)Y )0 =

p∑
i=1

∫ −∆(i−1)

−∆i

i−1∑
h=0

Aphg(−∆h− u)dLu.

For the autocovariance function we obtain for n = 0, . . . , p − 1 by using the fact that L has
orthogonal increments,

γMA(n) = E[(φ(B∆)Y )0(φ(B∆)Y )n∆]

= σ2
p−n∑
i=1

i+n−1∑
k=0

i−1∑
h=0

ApkA
p
h

∫ −(i−1)∆

−i∆
g((n− k)∆− u)g(−∆h− u)du.

Finally, (3.12) is obtained by changing the variable of integration from u to s = −u.
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Theorem 3.7. The autocovariance function γMA(n) for n = 1, . . . , p − 1 has for ∆ ↓ 0 the
asymptotic form

γMA(n) ∼ σ2∆2(p−q)−1

((p− q − 1)!)2

p−n∑
i=1

n+i−1∑
k=0

i−1∑
h=0

(−1)h+k

(
p

k

)(
p

h

)
C(h, k, i, n; p− q − 1), (3.17)

where for N ∈ N0

C(h, k, i, n;N) :=

∫ 1

0
(s+ i− 1− h)N (s+ i− 1− k + n)Nds.

Proof. We can rewrite the integral in (3.12) as

∆

∫ 1

0
g((s+ i− 1− h)∆)g((s+ i− 1− k + n)∆)ds. (3.18)

Since g is infinitely differentiable on (0,∞) and the right derivatives at 0 exist, the integrand has
one-sided Taylor expansions of all orders M ∈ N,

M∑
l=0

dl [g((s+ i− 1− h)∆)g((s+ i− 1− k + n)∆)]

d∆l

∣∣∣∣
∆=0+

∆l

l!
+ o

(
∆M

)
=

M∑
l=0

l∑
m=0

(
l

m

)
(s+ i− 1− h)l−m(s+ i− 1− k + n)mg(l−m)(0+)g(m)(0+)

∆l

l!
+ o

(
∆M

)
,

as ∆ ↓ 0. Choose M = 2(p − q − 1). Then by (1.8) there is only one term in the double sum
which does not vanish, namely the term for which m = p− q− 1 = l−m. Setting N := p− q− 1

(so that M = 2N) the sum reduces to(
2N

N

)
(s+ i− 1− h)N (s+ i− 1− k + n)N

1

(2N)!
∆2N + o

(
∆2N

)
.

Since
(

2N
N

)
/(2N)! = (N !)−2, the integral in (3.18) is for ∆ ↓ 0 asymptotically equal to

∆2N+1

(N !)2

∫ 1

0
(s+ i− 1− h)N (s+ i− 1− k + n)Nds+ o(∆2N+1), (3.19)

and, since

lim
∆↓0

∑
{i1,...,ih}∈Cp

h

e∆(λi1+···+λih ) =

(
p

h

)
,

we also have
ApkA

p
h = (−1)h+k

(
p

k

)(
p

h

)
+ o(1) as ∆ ↓ 0. (3.20)

Combining (3.19) and (3.20), we obtain (3.17).
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Remark 3.8. (i) For computations the following expansion may be useful (as usual we set
00 = 1)

C(h, k, i, n;N) :=

∫ 1

0
(s+ i− 1− h)N (s+ i− 1− k + n)Nds

=
N∑

l1,l2=0

(
N

l1

)(
N

l2

)
(i− 1− h)N−l1(i− 1− k + n)N−l2

∫ 1

0
sl1+l2ds

=

N∑
l1,l2=0

(
N

l1

)(
N

l2

)
1

l1 + l2 + 1
(i− 1− h)N−l1(i− 1− k + n)N−l2 .

Furthermore, we observe that C depends on p and q only through p− q.
(ii) Note that the right hand sides of (3.5) and (3.6) are the discrete Fourier transforms of (3.12)
and (3.17), respectively. Note also the symmetry between (3.5) and (3.12) in the dependence on
∆ and p− q − 1. 2

So far we know that the moving average process Xn = θ(B)Zn from (3.2) is of order not
greater than p−1 but possibly lower. Our next result presents an asymptotic formula for γMA(p−
1), which shows clearly that this term is not 0.

Corollary 3.9. For lag n = p− 1 the autocovariance formula (3.17) reduces to

γMA(p− 1) ∼ (−1)q
σ2∆2(p−q)−1

(2(p− q − 1))!
(3.21)

and γMA(p− 1) is therefore non-zero for all sufficiently small ∆ > 0.

Proof. From the expansion (3.17) we find

γMA(p− 1) ∼ σ2∆2(p−q)−1

((p− q − 1)!)2

p−1∑
k=0

(−1)k
(
p

k

)
C(0, k, 1, p− 1; p− q − 1). (3.22)

Set d := p− q ≥ 1, then

C(0, k, 1, p− 1; d− 1) =

∫ 1

0
sd−1(s− k + p− 1)d−1ds,

and, from Remark 3.8, this is a polynomial of order d−1. In order to apply known results on the
difference operator, we define the polynomial f(x) =

∫ 1
0 s

d−1(x + s + p − 1)d−1ds. Then, using
Eq. (5.40), p. 188, and the last formula on p. 189 in Graham et al. (1994), the sum in (3.22) can
be written as

p−1∑
k=0

(−1)k
(
p

k

)
C(0, k, 1, p− 1; d− 1)

=

p∑
k=0

(−1)k
(
p

k

)
f(x− k)|x=0 − (−1)p

(
p

p

)
C(0, k, 1, p− 1; d− 1)

= 0 + (−1)p+1

∫ 1

0
sd−1(s− 1)d−1ds = (−1)p+d

∫ 1

0
sd−1(1− s)d−1ds, (3.23)
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p− q 1 2 3 4
γMA(p− 1) ∆(−1)p−1σ2 6−1∆3(−1)p−2σ2 120−1∆5(−1)p−3σ2 5040−1∆7(−1)p−4σ2

Table 1: Values of γMA(p− 1) for p− q = 1, . . . , 4.

where we have used the fact that d− 1 = p− q − 1 < p. To obtain Eq. (3.21) it suffices to note
that (−1)p+d = (−1)2p−q = (−1)q and that the integral in (3.23) is a beta function. Hence∫ 1

0
sd−1(1− s)d−1ds =

(Γ(d))2

Γ(2d)
=

((d− 1)!)2

(2d− 1)!
> 0, d ∈ N.

Remark 3.10. If Y is the CARMA(p, q) process (1.4) then, from Theorem 3.1, the spectral
density of (1−B)p−qY ∆ is asymptotically, as ∆ ↓ 0,

σ2

2π
∆(−2∆2)p−q−1cp−q−1(ω)(1− cosω)p−q, π ≤ ω ≤ π.

If p − q = 1, 2 or 3 this reduces to the corresponding spectral densities in Corollary 3.2, each
divided by 2q(1− cosω)q. The corresponding moving average representations are as in Corollary
3.4 without the factors (1−B)q .

In particular, for the CAR(1) process, (1−B)Y ∆ has a spectral density which is asymptot-
ically σ2∆/(2π) so that, in the Gaussian case, the increments of Y ∆ for small ∆ approximate
those of Brownian motion with variance σ2t. 2

In this paper we have considered only second-order properties of Y ∆. It is possible (see
Brockwell (2001), Theorem 2.2) to express the joint characteristic functions, E exp(i

∑m
k=1 θkY

∆
k ),

for m ∈ N, in terms of the coefficients aj and bj and the function ξ(·), where ξ(θ), for θ ∈ R,
is the exponent in the characteristic function, EeiθL1 = eξ(θ), of L1. In particular the marginal
characteristic function is given by E exp(iθY ∆

k ) = exp
∫∞

0 ξ(θb′eAue)du, where b, A and e are
defined as in (1.2)-(1.3).

These expressions are awkward to use in practice, however Brockwell, Davis and Yang (2011)
have found that least squares estimation (which depends only on second-order properties) for
closely and uniformly spaced observations of a CARMA(2,1) process on a fixed interval [0, T ]

gives good results. They find in simulations that for large T the empirically-determined sample
covariance matrix of the estimators of a1, a2 and b0 is close to the matrix calculated from the
asymptotic (as T → ∞) covariance matrix of the maximum likelihood estimators based on
continuous observation on [0, T ] of the corresponding Gaussian CARMA process.

4 Conclusions

When a CARMA(p, q) process Y is sampled at times n∆ for n ∈ Z, it is well-known that the
sampled process Y ∆ satisfies discrete-time ARMA equations of the form (3.2). The determination
of the moving average coefficients and white noise variance for given grid size ∆, however, is a
non-trivial procedure. In this paper we have focussed on high frequency sampling of Y . We have
determined the relevant second order quantities, the spectral density fMA of the moving average
on the right-hand side of (3.2) and its asymptotic representation as ∆ ↓ 0. This includes the
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moving average coefficients as well as the variance of the innovations. We also derived an explicit
expression for the autocovariance function γMA and its asymptotic representation as ∆ ↓ 0. This
shows, in particular, that the moving average is of order p− 1 for ∆ sufficiently small.
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