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Cover picture  Schematic layout of a silicon-on-insulator based protein sensor. 

Two inversion layers are present in the p-type silicon layer. The 

density of these two-dimensional electron gases (2DEGs) can be 

tuned by adjusting the back gate UBG and the electrolyte gate 

potential UG. Ni2+ ions in the electrolyte solution form a chelate 

complex with the NTA headgroups of the functionalized surface 

resulting in a negative interface charge density σNi at the lipid–

electrolyte interface. The amino acid charge is assumed to be 

distributed homogeneously over a width w. The electrolyte region 

includes the histidine-tagged amino acids as well as the neutral 

part of the tag of length d. Upon adsorption of amino acids the 

density in the right inversion layer changes slightly which 

increases the conductivity, and thus the source–drain current in 

the 2DEG. 
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Abstract

This thesis consists of two parts.

The main objective of Part I is to give an overview of some of the methods that
have been implemented into the nextnano3 software. Examples are discussed that give
insight into doping, strain and mobility. Applications of the single-band Schrödinger
equation include three-dimensional superlattices, and a qubit that is manipulated by a
magnetic field. Results of the multi-band k · p method are presented for HgTe–CdTe
and InAs–GaSb superlattices, and for a SiGe–Si quantum cascade structure. Particular
focus is put on a detailed description of the contact block reduction (CBR) method that
has been developed within our research group. By means of this approach, quantum
transport in the ballistic limit in one, two and three dimensions can be calculated. I
provide a very detailed description of the algorithm and present several well documented
examples that highlight the key points of this method. Calculating quantum transport
in three dimensions is a very challenging task where computationally efficient algorithms
– apart from the CBR method – are not available yet.

Part II describes the methods that I have implemented into the nextnano3 software
for calculating systems that consist of a combination of semiconductor materials and
liquids. These biosensors have a solid–electrolyte interface, and the charges in the solid
and in the electrolyte are coupled to each other through the Poisson–Boltzmann equa-
tion. I apply this model to a silicon based protein sensor, where I solve the Schrödinger
equation together with the Poisson–Boltzmann equation self-consistently, and compare
theoretical results with experiment. Furthermore, I have developed a novel approach to
model the charge density profiles at semiconductor–electrolyte interfaces that allows us
to distinguish hydrophobic and hydrophilic interfaces. Our approach extends previous
work where ion specific potentials of mean force describe the distribution of ion species
at the interface. I apply this new model to recently developed graphene and diamond
based solution gated field-effect transistors, and compare my calculations to experiment.

All numerical examples presented in this thesis are available as input files for the
nextnano3 and/or nextnano++ software. It is thus possible for other researchers to
reproduce the results of all calculations of this thesis. Additionally, the respective input
files can easily be modified to study variations of device characteristics, like geometry,
choice of materials, doping, and many more. To date, the nextnano software has been
used successfully in many master and doctoral theses, as well as in numerous scientific
articles to provide either a qualitative understanding or a quantitative analysis of the
electronic and optoelectronic properties of modern semiconductor nanostructures.
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Zusammenfassung

Diese Arbeit besteht aus zwei Teilen.

In Teil I stelle ich einige Modelle vor, die in der nextnano-Software verwendet werden.
Als Beispiele diskutiere ich dotierte und verspannte Halbleiter, sowie die Mobilität von
Ladungsträgern. Dreidimensionale Übergitter und ein durch ein Magnetfeld manipulier-
tes Qubit werden als Anwendungen der Einband-Schrödinger-Gleichung präsentiert. Mit
Hilfe der Mehrband-k · p-Schrödinger-Gleichung berechne ich HgTe–CdTe- und InAs–
GaSb-Übergitter, sowie eine SiGe–Si-Quantenkaskadenstruktur. Besonderes Augenmerk
lege ich auf die detaillierte Beschreibung der ‘Contact Block Reduction’-Methode (CBR),
die in unserer Arbeitsgruppe entwickelt wurde. Sie erlaubt, ballistischen Quantentrans-
port in ein, zwei und sogar drei Dimensionen zu berechnen. Der entsprechende Algo-
rithmus wird sorgfältig anhand mehrerer Beispiele erklärt, um die wesentlichen Aspekte
hervorzuheben. Quantentransportrechnungen in drei Dimensionen sind extrem aufwen-
dig und mit momentan verfügbaren Rechenkapazitäten kaum zu meistern. Außer der
CBR-Methode sind derzeit keine effizienten Algorithmen verfügbar.

Teil II behandelt die Modelle, die ich in nextnano implementiert habe, um Systeme
zu berechnen, die aus einer Kombination von Halbleitermaterialien und Flüssigkeiten
bestehen. Diese Biosensoren weisen eine Festkörper–Elektrolytgrenzfläche auf, wobei
die Ladungen im Festkörper und in der Flüssigkeit über die Poisson–Boltzmann-Glei-
chung gekoppelt sind, die zusammen mit der Schrödinger-Gleichung selbstkonsistent
gelöst wird. Als Anwendung berechne ich siliziumbasierte Proteinsensoren. Des Wei-
teren habe ich eine neue Methode entwickelt, um die Verteilung der Ladungsträger an
Halbleiter–Elektrolytgrenzflächen zu modellieren. Sie erlaubt es, zwischen hydrophoben
und hydrophilen Grenzflächen zu unterscheiden. Mittels ionenspezifischer Potenziale des
mittleren Feldes wird die Verteilung der Ionen an der Grenzfläche beschrieben. Damit
analysiere ich Biosensoren, die aus Graphen und Diamant bestehen, und vergleiche die
theoretischen Ergebnisse mit experimentellen Resultaten.

Die in dieser Arbeit berechneten Beispiele sind als Eingabedateien für die nextnano-
Software verfügbar. Somit können alle hier vorgestellten Ergebnisse reproduziert wer-
den. Die entsprechenden Eingabedateien können modifiziert werden, um Variationen
der Bauelementeigenschaften, wie z. B. Geometrie, Wahl der Materialien, Dotierungen,
usw. zu untersuchen. nextnano wurde bereits in zahlreichen Diplom- und Doktorar-
beiten, sowie wissenschaftlichen Veröffentlichungen erfolgreich verwendet, um sowohl
ein qualitatives Verständnis, als auch eine quantitative Analyse der elektronischen und
optoelektronischen Eigenschaften moderner Halbleiternanostrukturen zu ermöglichen.
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Introduction

The quickly progressing technology of semiconductor quantum structures requires and
depends on reliable predictive theoretical methods for systematically improving, design-
ing and understanding the electronic and optical properties of such structures. Due to
the increase in computing power and the simultaneous decrease of cost for fast processors
and memory, computational physics is no longer a field of specialists (i.e. theorists), that
have access to powerful supercomputers. Computer modeling nowadays has become
a convenient tool for both, educational purposes as well as to support experimental-
ists while analyzing measured data or to design new experiments. The challenge is to
make available to this audience a tool that covers the most important semiconductor
equations, including the related theoretical improvements that have been made over the
past decades, for instance the ones that go beyond the simple ‘single-band effective-
mass’ model that is still widely used due to its simplicity and intuitiveness1. These
more sophisticated models take into account the anisotropy and nonparabolicity of the
electron and hole masses, usually employed within an 8-band k · p model. Strain is
an important degree of freedom to optimize the electronic (e.g. mobility) and optical
properties (e.g. transition energies) of heterostructures. This involves a model to take
into account deformation potentials as well as piezoelectric fields. The technologically
important nitride materials crystallize in the wurtzite structure. This introduces more
complexity into the equations in comparison to the simpler zinc blende materials as the
cubic symmetry is lost. Additionally, pyroelectric fields have to be taken into account
for these materials. Nowadays, semiconductor layers can be grown not only on (001)
oriented wafers but also along less symmetric crystallographic directions like [110] or
[311]. These orientations not only require the rotation of the coordinate systems and the
relevant equations, they also make it necessary to consider nonsymmetric displacement
tensors as well as piezoelectric fields. The variety of possible semiconductor materials
and their alloys (including organic semiconductors) for designing and improving devices
is huge. A software has to take care of all of them, and should provide an up-to-date
database with all relevant material parameters. This is indeed very relevant for the
topic of ‘sustainable materials’, which includes the reduction and eventually elimination
of the use of toxic materials, like the replacement of CdS by ZnS in CIGS solar cells,
or the replacement of rare materials like indium with abundant alternatives. Such a
replacement will inevitably lead to a decrease in performance which requires a detailed
understanding of the device characteristics in order to again enhance performance by
modifying the device layout. Certainly, the detailed analysis of such structures by means
of modeling is an excellent way to support such activities.

1e.g. G. Snider’s ‘1D Poisson’ program. It can be obtained from: http://www.nd.edu/˜gsnider/
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Chapter 0. Introduction

In addition to one-dimensional quantum confinement (e.g. quantum wells, superlat-
tices), two-dimensional and three-dimensional quantum confinement has been studied
intensively during the past decades both experimentally and theoretically (quantum
wires, quantum dots, quantum dot crystals). Consequently, the latter heterostructures
require 2D or 3D simulation environments (e.g. [SGB99]) which go far beyond simple
self-written 1D codes for quantum wells. Most of these structures require the application
of a bias, and thus a model that calculates the current has to be implemented.

In this thesis a selection of the relevant physical models that are implemented in the
software package nextnano are described. nextnano allows one to study the realistic
electronic structure and optical properties of arbitrarily shaped three-dimensional semi-
conductor nanostructures consisting of diamond-type, zinc blende or wurtzite materials
and their alloys. It is possible to study these heterostructures under bias and calculate
the current density close to equilibrium. First, the strain is calculated within a con-
tinuum elasticity approach. Using band offsets and deformation potential theory, the
new conduction and valence band edges are obtained. Then the Poisson, multi-band
Schrödinger and current equations are solved self-consistently, taking into account dop-
ing, piezo- and pyroelectric charges, excitonic effects and magnetic fields. Finally, optical
properties such as transition matrix elements or absorption can be calculated. Describing
the electronic transport on a quantum mechanical level that takes into account scattering
on an equal footing – in contrast to ballistic transport – is still a challenge. The quantum
cascade laser is a nice example of a quantum device that has been invented only recently.
It is for sure that further devices will be engineered that profoundly rely on quantum
mechanics. They are expected to path the way to new disruptive technologies. Possible
candidates might include the fields of quantum information processing, spintronics, ther-
moelectrics or nanostructures for energy generation, conversion or storage. Structures
like biosensors that connect the semiconductor world to the life sciences are expected to
have a promising future and economical potential, but developing these devices requires
a very interdisciplinary approach. A software for biosensors that works as an educational
tool could provide the chemistry and life science experts with a decent introduction into
the field of semiconductor physics, thus contributing to make the designing process of
such devices more efficient. Theoretical modeling of solid-state qubits – the building
blocks of quantum computers – is very likely of great help to experimentalists, whereas
actually building a quantum computer still remains one of the greatest challenges of
current and future research activities in physics. The nextnano software has been, is
and will be of real benefit to the semiconductor community. This thesis highlights some
of the models implemented, and discusses recent applications and results.

2



Part I.

Semiconductors
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1. Calculation of semiconductor
nanostructures

In this chapter we sketch the capabilities of the nextnano software and discuss some
of the main equations that are implemented into the code. We illustrate them using
several examples, like the charge carrier concentrations for different doping properties,
or the strain tensor components of a compressively strained layer for different growth
directions.

nextnano is a simulation tool that aims at providing global insight into the basic
physical properties of realistic three-dimensional mesoscopic semiconductor structures.
It focuses on quantum mechanical properties such as the global electronic structure,
optical properties [Eiß08], and the effects of electric and magnetic fields for virtually any
geometry and combination of semiconducting materials. For the calculation of the carrier
dynamics a drift–diffusion model based on a quantum-mechanically calculated density
is employed [Hac02]. Alternatively, a self-consistent ballistic transport model based
on the contact block reduction (CBR) method can be used (Chapter 4). A detailed
discussion of the implemented models were already presented in previous PhD theses
by Hackenbuchner [Hac02], Sabathil [Sab04], Zibold [Zib07] and Andlauer [And09]. For
that reason we chose to avoid reproducing their equations and focus on aspects of the
nextnano software not previously covered, like a summary of all the various sets of
k · p parameters used in the literature, examples for strain calculations for arbitrary
substrate orientations, examples for doping, calculations of minibands in superlattices,
self-consistent k · p Schrödinger–Poisson calculations for several substrate orientations,
comparison of k · p calculations to tight-binding calculations, and finally the modeling
of semiconductor–electrolyte structures (Part II).

Several empirical band structure methods for semiconductors exist. The three most
common ones are the tight-binding, the pseudopotential and the k · p method. The
nextnano software and this thesis are based on the (multi-band) k ·p method where the
basis functions used to represent the Schrödinger equation are Bloch states (Chapter 3).
Pseudopotential calculations are based on plane-wave basis functions whereas tight-
binding uses atom-like basis functions. The wave functions obtained from the k · p
Schrödinger equation are envelope functions. Therefore, this method is also known as
the multi-band envelope function approximation (EFA). In the special case of taking
into account only one band (usually a conduction band), the multi-band k · p method
reduces to the single-band Schrödinger equation (effective-mass EFA) (Chapter 2).

Once the number of atoms of a device exceeds a few hundreds, microscopic methods
that take into account the detailed atomic structure become not only unfeasible alto-
gether but also impractical as the observables of interest are slowly varying over atomic

5



Chapter 1. Calculation of semiconductor nanostructures

distances. In spite of many attempts to develop alternatives, there is still only one es-
tablished and well-studied electronic structure method that is suitable for systems of
mesoscopic length scales. This approximation widely used for the past 50 years is the
so-called envelope function approximation based on the k ·p method which is described
in more detail in Chapter 3. In spite of its known limitations and shortcomings [WZ96],
this method has been amazingly successful in predicting semiconductor nanostructures
(e.g. [Bas88]). The EFA turned out to be a powerful tool for device simulations since
usually we are not interested in the details of inter-atomic distance scale. The most
attractive feature of the EFA is relatively low computationally cost both in terms of
CPU time and memory size.

1.1. Poisson equation

The Poisson equation describes the electrostatics within the device and reads

∇ · [ε0εr(x)∇φ(x)] = −ρ(x), (1.1)

where φ is the electrostatic potential and ε0 is the vacuum permittivity. The tensor εr

is the material dependent static dielectric constant at position x. It is isotropic in zinc
blende materials but anisotropic for wurtzite.

The charge density distribution ρ(x) within a semiconductor device is given by

ρ(x) = e
[
−n(x) + p(x) +N+

D (x)−N−A (x) + ρfix(x)
]
, (1.2)

where e is the positive elementary charge, n and p are the electron and hole densities, and
N+

D and N−A are the ionized donor and acceptor concentrations, respectively. The latter
are covered in the next section. If required, fixed interface or volume charge densities ρfix

can be taken into account, e.g. arising from piezo- or pyroelectric charges. The electron
and hole densities can be calculated classically within the Thomas–Fermi approximation
or quantum mechanically if quantum confinement effects are important [Hac02].

We discretize the Poisson equation on a nonuniform grid with a finite differences
method and solve it numerically by an iterative Newton–Raphson scheme. More details
about the numerical solution of the Poisson equation can be found in Refs. [Hac02,
LKBJ97, TSCH90]. Typically, Neumann boundary conditions for the Poisson equation
are employed which implies a vanishing electric field at the boundaries

∂φ

∂x
= 0. (1.3)

For nonequilibrium simulations we use Dirichlet boundary conditions [LKBJ97]. Here,
one first has to determine the electrostatic potential in equilibrium (built-in potential)
using zero-field (Neumann) boundary conditions. The electrostatic potential at the
boundaries is then fixed (Dirichlet boundary condition) with respect to the chemical
potentials taking into account the previously calculated built-in potential at the bound-
aries [Hac02]. The chemical potentials at the contacts are fixed and correspond to the
applied bias. An example of a Schottky barrier boundary condition is discussed and
simulated in Appendix A.

6



1.2. Doping

1.2. Doping

The ionized shallow donor and acceptor densities N+
D , N−A are given by

N+
D (x) =

∑
i∈Donors

ND,i (x)

1 + gD,i exp ((EF,n (x)− ED,i (x)) /kBT )
(1.4)

N−A (x) =
∑

i∈Acceptors

NA,i (x)

1 + gA,i exp ((EA,i (x)− EF,p (x)) /kBT )
, (1.5)

where the summation is over all different donor or acceptors species i, kB is the Boltz-
mann constant, T is the temperature, EF,n, EF,p are the electron and hole Fermi levels,
ND,i, NA,i are the donor and acceptor concentrations and ED,i, EA,i are the energies of
the neutral donor and acceptor impurities, respectively, that generally also depend on
x. The latter are determined by the ionization energies Eion

D,i, E
ion
A,i, the bulk conduction

and valence band edges (including shifts due to strain) and the electrostatic potential.
The ionization energies of these shallow donors Eion

D,i, E
ion
A,i are rather small (between

5 − 50 meV) and thus one can assume that the impurities are in equilibrium with the
conduction or valence bands that are energetically very close. Therefore the number of
ionized donors depends on the local quasi-Fermi level of the electrons, and the number
of ionized acceptors on the local quasi-Fermi level of the holes

ED,i (x) = Ec,0 (x)− eφ (x)− Eion
D,i (x) = Ec (x)− Eion

D,i (x) (1.6)

EA,i (x) = Ev,0 (x)− eφ (x) + Eion
A,i (x) = Ev (x) + Eion

A,i (x) . (1.7)

The degeneracy factor is usually given by gD,i = 2 for donors and gA,i = 4 for acceptors
[Böe92] and considers the different transition rates from the impurity into the conduction
or valence band and vice versa.
Shallow donors (gD,i = 2): The outer s orbital is onefold occupied in the neutral state.
There is one possibility to get rid of one electron but there are two to incorporate one
electron (spin up ↑, spin down ↓).
Shallow acceptors (gA,i = 4): The sp3 orbital is threefold occupied. Thus there is one
possibility to incorporate an electron and four possibilities to get rid of an electron.

We assume that both donor and acceptor impurities have only a single energy level
ED,i, EA,i degenerated by factors gD,i, gA,i. For the general case, an impurity can have
several different energy levels. In nitride semiconductors crystallizing in the wurtzite
structure, gA may vary from 4 to 6 due to a small valence band splitting [Sem04].

Now we present results of our calculations on the temperature dependence of the
carrier concentrations in doped bulk germanium samples. Figure 1.1 shows the electron
n and hole concentrations p as a function of temperature. (The melting point of Ge is at
1211.40 K.) The Ge sample is n-type doped with a concentration of ND = 1 · 1017 cm−3.
The ionization energy of the donor is set to Eion

D = 10 meV as in Ref. [Gra99]. In
the saturation regime between 150 K and 600 K, the charge carrier density is equal to
the doping density, i.e. n ∼= 1 · 1017 cm−3, i.e. almost all donors are ionized. For large
temperatures the intrinsic carrier density dominates, i.e. here the electron density is equal
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Figure 1.1.: Electron (dashed line) and hole (dash-dotted) concentrations in n-type
doped Ge as a function of temperature. The band edges (solid lines) re-
veal the temperature dependence of the band gap. For low temperatures,
the position of the Fermi level EF (dotted line) is close to the L conduction
band edge. At higher temperatures it is around the middle of the band gap.

to the hole density. The figure also shows the band gaps of the Γ, L and ∆ conduction
band minima vs. temperature which decrease with increasing temperature. The valence
band edges are also shown: Heavy (hh) and light hole (lh) are degenerate, separated by
∆so from the split-off (so) hole band. The temperature dependence of the band gap is
described using the Varshni formula (eq. (B.2)). For very low temperatures, the position
of the Fermi level EF (chemical potential, blue dotted line), EF(T = 0 K) = EL

c −Eion
D /2,

is close to the L conduction band edge, i.e. it is located between the donor level and the
conduction band edge. For temperatures between 600 K and 900 K, the Fermi level is
around the middle of the band gap.

An interesting situation occurs in real semiconductors that have both, n-type and
p-type doping. It is rather impossible to fabricate devices that are merely n- or p-type
because unintentional doping through impurities is always present. These semiconduc-
tors are called compensated semiconductors. We assume the same Ge sample as above,
i.e. the Ge sample is n-type doped with the same concentration of ND = 1 · 1017 cm−3

and the same ionization energy. Now we also include acceptors with varying acceptor
concentration ranging from NA � ND and NA < ND to NA = ND, i.e. we now have
one donor level and one acceptor level. The ionization energy of the acceptor is set to
Eion

A = 10 meV. Figure 1.2 shows the calculated electron density vs. temperature for
different acceptor concentrations NA. If NA = ND, then the intrinsic behavior of the
electron density is recovered (fully compensated). In the saturation regime, the nominal
dopant density ND −NA determines the electron density (partially compensated).

Now we examine a compensated Ge sample with two donor levels and one acceptor
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Figure 1.2.: Compensated semiconductors: Electron density vs. temperature for different
acceptor concentrations NA and constant donor concentration ND.

level. The acceptor concentration is fixed to NA = 5 · 1016 cm−3 but the donor con-
centrations ND,1 and ND,2 are varied. The ionization energy of the acceptor is set to
Eion

A = 10 meV. The ionization energy of the upper donor level is Eion
D,1 = 10 meV, the

one of the lower donor level Eion
D,2 = 100 meV. We distinguish three cases. The case

where ND,2 = 0 (black solid line) is similar to the figures that have been discussed al-
ready. Its saturation regime has a dopant density of ND,1−NA = 6 · 1016 cm−3. For the
second case (blue solid line) where the concentration of the upper donor level is smaller
than the concentration of the acceptor level, only the ionization of the second donor
level ED,2 is relevant at low temperatures. For the case where both donor levels have
a concentration higher than the acceptor concentration, two plateaus form. The first is
determined by the ionization of the upper donor level and leads to a donor density of
ND,1 − NA = 1 · 1016 cm−3. The second plateau is determined by the ionization of the
lower donor level. Its donor density is ND,1 +ND,2−NA = 6 ·1016 cm−3. For comparison,
for the last case the energetic position of the second donor level ED,2 has been varied
between 70 meV (red dotted line), 100 meV (red solid line) and 130 meV (red dashed
line). The energetic position ED,2 of the upper donor level is always at 10 meV.

Figure 1.4 shows the calculated position of the Fermi level with respect to the band
gap for the cases discussed above. The valence band edge is fixed at 0 eV as in Fig. 1.1.
For the blue solid line where at low temperatures only the ionization of the second donor
level ED,2 is relevant, one can clearly see the position of the Fermi level, EF(T = 0 K) =
Ec − Eion

D,2, at 100 meV below the conduction band edge. For the red curves, the Fermi
level moves from the upper donor level ED,1 at low temperatures to the lower donor level
ED,2 at around 200 K and starts to ionize the second donor level, eventually forming the
second plateau in the electron density (see Fig. 1.3). At high temperatures, the Fermi
levels moves approximately into the middle of the band gap.
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Figure 1.3.: Calculated electron density vs. temperature for two donor levels and one
acceptor level.
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Figure 1.4.: Calculated position of the Fermi level with respect to the band gap vs.
temperature for two donor levels and one acceptor level.

Obviously, for realistic devices with complicated doping profiles where an intuitive
understanding of charge redistribution is lacking, it is very convenient to have a tool by
hand – like the nextnano software – that can handle eq. (1.4) and eq. (1.5) numerically.
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1.3. Strain equation

Strain can be used to alter and optimize the electronic and optical properties of quan-
tum wells, wires and dots by varying both the energy levels and the spatial extent of
the wave functions. Heterostructures made of semiconductor materials with different
lattice constants are subject to elastic deformations. Such deformations can be studied
within a continuum mechanical model based on classical elasticity within the harmonic
approximation, i.e. for small strains. The lattice deformation changes drastically with
the surface orientation (i.e. growth direction). An exact knowledge of the strain fields is
of great importance for the interpretation of experimental data and for the design and
development of optoelectronic and electronic devices. Strain leads to piezoelectric effects,
influences the conduction and valence band edges (including their degeneracies) [VdW89]
and the k · p Hamiltonian of Schrödinger’s equation [Hac02]. Therefore strain is a very
important ‘tool’ for device engineers to alter the electronic (e.g. mobility, see Chapter 5)
and optical properties of semiconductor heterostructures. The nextnano software cal-
culates the strain prior to the Poisson, Schrödinger or current equations, i.e. strain is
independent of all other equations and can thus be separated from the main part of
the program. This separation might not be fully justified for wurtzite structures where
strong pyroelectric fields exist. In this case, the strain and Poisson equations have to
be solved self-consistently, as demonstrated by Willatzen et al. [WLLYVM06], leading
to corrections to the energy levels of the order of several meV in nitride semiconductor
structures.

The components of the strain tensor ε(x), i.e. the symmetrical part of the distortion
tensor ũ(x) (eq. (C.18)), are defined as

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2
(ũij + ũji) = εji, (1.8)

where i, j = 1, 2, 3. The vector u(x) describes the displacement due to lattice deforma-
tions. The strain tensor ε is symmetric, whereas the distortion tensor ũ is in general
not symmetric. The latter is, however, identical to the strain tensor for high symmetry
substrate orientations like (001), (110) and (111). It is not identical for any of the other
low symmetry orientations. The diagonal elements of the strain tensor measure the ex-
tensions per unit length along the coordinate axes (positive values mean tensile strain,
negative values compressive strain), i.e. the lengths of the considered volume element
change while the angles remain constant. In contrast, the off-diagonal elements measure
the shear deformations where the angles change and the volume remains constant. As
the 3×3 matrix ε is real and symmetric, it can always be diagonalized by an appropriate
orthogonal transformation. The resulting diagonal matrix must not necessarily coincide
with the crystal or simulation coordinate system (compare with Appendix C). The trace
of the strain tensor Tr(ε) is equal to the hydrostatic strain, i.e. the change in volume.
The strain tensor components are obtained by minimizing the elastic energy E

E =
1

2

∫
V
Cijklεijεkl dV, (1.9)
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Figure 1.5.: Strain tensor components with respect to the crystal coordinate system for
a compressively strained InAs layer grown pseudomorphically on InP for
different growth directions. Note that [100] growth direction corresponds
to [∞11] and only for this growth direction all off-diagonal strain tensor
components are zero. The maximum value for the volume deformation (hy-
drostatic strain) is obtained for [111]. (The lines are a guide to the eye.)

where Cijkl is the forth-ranked elastic stiffness tensor. A derivation of the numerical
calculation of the strain tensor for arbitrary three-dimensional heterostructures can be
found in Ref. [Hac02].

Analytical equations of the strain and distortion tensors with respect to the crystal
coordinate system are given for cubic crystals in Appendix C.2. Additionally, I derived
analogous equations with respect to the simulation coordinate system [PGBD+11] (Ap-
pendix C.1). These equations are valid for heterostructures that are homogeneous along
two directions, and for arbitrary substrate orientations.

We now present results for a compressively strained InAs layer grown pseudomorphi-
cally on InP for different growth directions. We plot the strain tensor components with
respect to the crystal coordinate system, and with respect to the simulation coordinate
system. The first is identical to the conventional cubic cell basis. The simulation coordi-
nate system is chosen so that the growth direction of the heterostructure is perpendicular
to the plane of the substrate.

Figure 1.5 shows the strain tensor components with respect to the crystal coordinate
system. The maximum value for the volume deformation (i.e. extremal value of the hy-
drostatic strain) is obtained for the [111] growth direction. In zinc blende heterostruc-
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Figure 1.6.: Strain tensor components for the same situation as in Fig. 1.5 but this time
with respect to the simulation coordinate system. For the high symmetry
substrate orientations [100], [011] and [111], all off-diagonal strain tensor
components are zero. (The lines are a guide to the eye.)

tures grown along the [100] direction only diagonal strain components occur but any
other growth direction exhibits off-diagonal strain components that lead to piezoelectric
polarization.

Figure 1.6 shows the strain tensor components with respect to the simulation coor-
dinate system for the same structure. Here, the x axis is assumed to be the growth
direction. The hydrostatic strain must of course coincide with Fig. 1.5 and its maximum
value for the volume deformation is obtained for [111] (as before), where the perpendicu-
lar strain component ε⊥ has its minimum. For the high symmetry substrate orientations
[100], [011] and [111], all off-diagonal strain tensor components are zero. The strain ten-
sor components in the plane parallel to the substrate plane are independent of growth
direction for cubic crystals and are given by the lattice mismatch

ε‖ =
asubstrate − alayer

alayer
, (1.10)

where asubstrate and alayer are the lattice constants of the substrate and of the strained
layer material. For substrate orientations that have even lower symmetry, like e.g. (321),
also the off-diagonal component εxy would be nonzero. The off-diagonal component εyz
is always zero (see Appendix C.1).
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2. Single-band envelope function
approximation

2.1. The single-band Schrödinger equation

The single-band Schrödinger equation is a special case of the 8 × 8 k · p Schrödinger
equation that is described in the next chapter. If the coupling between the conduction
and valence bands is ignored, one obtains a twofold (due to spin) degenerate Schrödinger
equation for the electrons in a heterostructure

HΨn (x) = EnΨn (x) (2.1)(
− h̄

2

2
∇ ·M (x)∇+ V (x)

)
Ψn (x) = EnΨn (x) . (2.2)

The potential energy V (x) is the resulting conduction band edge profile that includes
band offsets, band shifts due to strain, and the electrostatic potential. The effective
mass is described by the tensor M

M =

 1/mxx 1/mxy 1/mxz

1/myx 1/myy 1/myz

1/mzx 1/mzy 1/mzz

 (2.3)

to allow for different values along the directions. In general, the mass tensor is an
ellipsoid. It is spherical for the electrons at the Γ point with its eigenvalues on the
diagonal. This isotropic assumption is a fairly good approximation. For the electron
valleys at the L and X points in the Brillouin zone of a cubic crystal, however, the tensor
is a spheroid, where the masses are characterized by a longitudinal ml and two equal
transverse masses mt (see Section 7.2). It is not necessarily diagonal any more. Off-
diagonal components are required to describe the electron masses at the L valleys because
the principal coordinate system of the corresponding mass tensor does not coincide with
the crystal coordinate system. The same can happen for the X valleys if the crystal
coordinate system does not coincide with the simulation coordinate system. In this case
a rotation of the effective mass tensor is necessary, introducing off-diagonal components
in the general case. Several L and X valleys exist, with the spheroidal mass tensor
oriented differently for each. Therefore several Schrödinger equations must be solved
with identical band edge profiles V (x) but different mass tensors. If the band edges are
split due to strain, each valley and thus each Schrödinger equation has a different band
profile. If the simulation coordinate system is not identical to the crystal coordinate
system, e.g. for growth along the [011] direction, the mass tensor requires an additional
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rotation. In wurtzite, a spherical mass tensor is not appropriate at the Γ point. One has
to distinguish between the effective mass m‖ parallel to the hexagonal c axis, and the
two masses m⊥ perpendicular to it. The inverses of these three masses are the diagonal
components of this spheroidal mass tensor.

One can use the same Schrödinger equation for the heavy, light and split-off holes,
where the respective heavy, light and split-off valence band edge energy is taken as the
potential energy. These energies, including shifts and splittings due to strain, are ob-
tained by diagonalizing for each grid point the bulk 6×6 k ·p Hamiltonian at k = 0, that
takes into account the local strain tensor ε(x) (eq. (1.8)) and the deformation potentials
of the material at position x. Typically, the single-band model with a spherical mass is
not very accurate for the holes, especially if strain is present, because the energy disper-
sion is not isotropic and instead described by so-called ‘warped spheres’, see Section 3.1.
The masses for the heavy and light holes along specific directions can be obtained from
the Luttinger parameters (eq. (3.143) – eq. (3.148)). Nevertheless, this simple model is
still very useful for the heavy hole ground state in heterostructures if one is interested
in a qualitative picture only, like the variation of the electron–hole interband transition
energy as a function of quantum dot radius, electric field or alloy composition, or if the
expected simulation time for a k · p model is huge. In this case a quick calculation of
the single-band Schrödinger equation can be used to test and optimize the design layout
before eventually performing the heavy computations.

The discretization of the single-band Schrödinger equation for a heterostructure in
real space leads to a real, symmetric eigenvalue problem that is solved iteratively by
standard methods (e.g. Arnoldi method (ARPACK) [LSY98]). The dimension of the
matrix is equal to the number of grid points. Possible boundary conditions are Dirichlet,
Neumann and periodic. If a magnetic field is included (Section 2.3), the eigenvalue
problem becomes Hermitian. This is also the case for periodic boundary conditions with
nonzero superlattice vectors (Section 2.2).

1D The Schrödinger equation for a semiconductor grown along the z direction and
homogeneous along the x and y directions is given by eq. (4.11). Because of the three
spatial dimensions one needs three quantum numbers kx, ky and n to label the states.
The relation En

(
k‖
)

(eq. (4.15)) corresponds to a two-dimensional parabola for each n,
the so-called electric subband. The one-dimensional single-band Schrödinger equation is
given by eq. (4.14). It is also discussed in Section 7.2.

2D The two-dimensional Schrödinger equation is appropriate if the electrons are free
to move along the z direction and are confined in the (x, y) plane, e.g. in a quantum
wire. The relation En

(
k‖
)

(eq. (4.37)) now corresponds to a one-dimensional parabola
for each n, which is also called electric subband.

Results of single-band calculations are presented in Chapter 7 for silicon, and in Sec-
tion 10.2 for diamond. The next two sections cover the energy spectra of structures in
a uniform magnetic field and the energy spectra of three-dimensional superlattices.
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2.2. Periodic boundary conditions – Minibands in artificial
quantum dot crystals

Esaki and Tsu proposed in 1969 the concept of a man-made single-crystal with a peri-
odic one-dimensional structural modification, a semiconductor ‘superlattice’ [ET70]. It
is based on a periodic structure of alternating layers of semiconductor materials with
wide and narrow band gaps. After the experimental demonstration of one-dimensional
superlattices using a sequence of GaAs quantum wells and AlGaAs barriers, it was natu-
ral to extend this concept to two-dimensional and three-dimensional superlattices. If the
thickness of the barrier layers is small enough, that electrons tunnel through, their wave
functions are no longer localized in one quantum well but extend over the whole superlat-
tice. A superlattice is termed an artificial crystal if the electronic wave functions exhibit
exactly this tunneling-induced coupling among the superlattice periods. In this section,
we investigate the superlattice energy dispersion relation En (K) = En (Kx,Ky,Kz) for
a regimented ensemble of quantum dots, where n is the miniband index and K the su-
perlattice vector. Such an arrangement is called artificial quantum dot (QD) crystal.
Very remarkably, such three-dimensional structures can nowadays be grown with perfect
periodicity by a combined top-down and bottom-up approach using extreme ultraviolet
interference lithography, reactive ion etching and templated self-organization [GFD+07].
This templated self-organization of nanostructures is a possible route to achieve exact
positioning of quantum dots to create QD arrays, QD molecules and QD crystals. The
properties of crystalline solids that can be grown by nature (e.g. NaCl) or in the lab-
oratory (e.g. GaAs) are determined essentially by their interatomic spacing and their
symmetry. In contrast, the electronic and optical properties of artificial crystals like 1D
quantum well superlattices or QD arrays can be tuned by design and thus offer a lot of
freedom in choice of design parameters in order to develop new artificial materials. An
artificial crystal is made up from artificial atoms (QDs) (see Fig. 3.7), similarly to the
case of a real crystal that is made up from real atoms. If the electronic wave functions
of the QDs overlap, extended electron states are formed. Consequently, the individual
levels in the QDs are split into bands which are called minibands. These are very similar
to the bands in solids. If minibands are formed, not only from a structural point of
view but also with respect to the band structure, the 3D ordered quantum dots can be
regarded as an artificial crystal where the electrons occupy ‘Bloch states’. Future appli-
cations of such structures could be solar cells [JG06], high-temperature thermoelectric
applications or infrared photodetectors.

Before one analyzes real structures, it is necessary to simulate first simple structures in
order to gain confidence in the understanding of the essential features associated to the
choice of basic design parameters like QD geometry, QD spacing, QD material param-
eters, QD asymmetry, etc. Lazarenkova and Balandin [LB01] calculated the miniband
dispersion in a three-dimensional QD crystal using an effective mass envelope function
approximation. Their crystal is made up of a regular pattern of an array of cubic or
tetragonal semiconductor QDs. Their analysis is based on an analytic expression for the
confinement potential which is actually an approximation of the real potential. This al-
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Chapter 2. Single-band envelope function approximation

lows them to separate the three-dimensional Schrödinger equation into three decoupled
one-dimensional Schrödinger equations. For a general QD array of arbitrary QD shape,
such a simplification is generally not possible. For that reason, we solve numerically
the three-dimensional Schrödinger equation. Our approach is so general that it allows
for the inclusion of strain, and arbitrary potential variations (e.g. due to QD material
composition) automatically. We show that for the special case of cubic QDs with rather
high finite barriers, the approach pursued by Lazarenkova and Balandin is reasonably
accurate only for the below-the-barrier states. This has been shown by the same authors
already in a follow-up publication [LB02], although their previous analytical approach
is still used due to its simplicity [JG06].

The coupling of the electronic wave functions of the individual quantum dots leads
to a splitting of the energy levels of the single dots and consequently three-dimensional
minibands are formed. This electronic band structure can be tuned by e.g. varying
QD size, QD spacing, QD materials, QD confinement energies and QD pattern. The
properties (e.g. effective mass tensor) derived from this band structure are substantially
different from the bulk properties of the involved materials.

2.2.1. Theoretical background

We consider a semiconductor structure that is described by a periodic potential

V (x, y, z) = V (x+mxLx, y +myLy, z +mzLz) = V (x + L) , (2.4)

where Lx, Ly and Lz are the lengths of the superlattice periods along the x, y and z
directions, mx, my, mz are integers and L is the translation vector. Such a potential
occurs for instance in an infinite QD superlattice. The eigenfunctions ψ of a one-electron
Hamiltonian with such a periodic potential can be chosen as

ψnK (x) = unK (x) eiK·x, (2.5)

where it holds
unK (x + L) = unK (x) , (2.6)

for all superlattice translation vectors L (Bloch’s theorem or Bloch–Floquet theorem).
ψnK is the Bloch function of band index n and consists of the product of a plane wave
term eiK·x and the periodic function unK which has the same periodicity as the potential
V . Eq. (2.5) and eq. (2.6) imply

ψnK (x + L) = ψnK (x) eiK·L. (2.7)

The periodicity requires that the physical characteristics of the system do not change
if the electron is shifted exactly by integer number of periods. The effect of a lattice
translation is to change the wave function only by a phase factor eiK·L. K denotes the
superlattice wave vector of the electron moving in this potential and is a real number. By
choosing macroscopic periodic (Born–von Karman or cyclic) boundary conditions which
implies that the wave functions must be periodic with respect to the crystal boundaries

ψ (x+MxLx, y +MyLy, z +MzLz) = ψ (x, y, z) , (2.8)
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and applying Bloch’s theorem (eq. (2.7)) to this equation, the number of allowed values
for K will be restricted by the requirement

ei(MxKxLx+MyKyLy+MzKzLz) = 1. (2.9)

Here, the total number of superlattice unit cells in the crystal is denoted by M =
MxMyMz where Mi are all integers. This leads to the allowed values of K

Ki=
mi

Mi

2π

Li
(i = x, y, z) , (2.10)

where the spacing between allowed value of Ki is given by 2π
MiLi

. For large values of Mi

the discreteness of the allowed values of Ki becomes negligible. The charge carriers are
equally likely to be found in any superlattice period. The energy spectrum is a periodic
function of K with period 2π/Li, thus it is sufficient to restrict oneself without loss of
generality to the first superlattice Brillouin zone [−π/Li, π/Li]. For K = 0 or Ki = ± π

Li
,

the Bloch wave is stationary. Usually one only plots the interval [0, π/Li] because the
parity property

En (K) = En (−K) , (2.11)

is fulfilled by any superlattice band. Technically, for the numerical simulations with
nextnano3 one specifies the length of the superlattice periods Li and the number of
superlattice vectors. These two quantities then determine the actual crystal size, i.e.
the number of identical primitive superlattice unit cells. For instance, if one specifies 20
superlattice vectors for the interval [−π/Lx, π/Lx] (ignoring counting the Gamma point
K = 0), the total crystal contains 20 superlattice unit cells along the direction x, and
has a total length of 20Lx. It is important to remember that the number of superlattice
vectors is not only a property that reflects the ‘grid resolution’ of the miniband dispersion
in K space, but that it actually corresponds to the number of repeated unit cells. In
real samples where the number of unit cells is not infinite but has a finite value, the
discreteness of the miniband dispersion might be relevant for evaluating the density
of states. K is actually a quantum number of the system. It characterizes the wave
functions corresponding to different states of the same miniband.

2.2.2. Miniband dispersion in a bulk 1D sample

We consider a simple, trivial example where we take a bulk GaAs sample of length
Lx = 12 nm which corresponds to our superlattice unit cell. We apply periodic boundary
conditions and solve the single-band effective-mass Schrödinger equation for the electrons
for each of the 20 superlattice vectors in the interval between [−π/Lx, π/Lx]. Our choice
of discreteness of the allowed values of Kx determines the sample size (20Lx = 240 nm).
We plot the energy dispersion for the lowest three minibands. They arise from the first,
second and third eigenstate of the 12 nm wide superlattice unit cell. The energies of the
second and third eigenstate are degenerate at Kx = 0, whereas at Kx = −π/Lx and
Kx = π/Lx, the first and second eigenstate are degenerate. It follows, that there are
no band gaps within this miniband spectrum. As we simulated only plain GaAs, the
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Figure 2.1.: Electron energy dispersion of the three lowest minibands of a simple bulk
GaAs sample of periodic length Lx = 12 nm. The conduction band edge is
set to 0 eV. The lines are a guide to the eye.

dispersion of these three minibands must follow the parabolic energy dispersion of bulk
GaAs, i.e. E (k) = h̄2k2

2m , where m = 0.067m0 is the conduction band effective mass of
GaAs. For a very large number of superlattice vectors, i.e. for a very large bulk sample,
the minibands form a continuous spectrum, starting from the conduction band edge.

Figure 2.2 shows the energy levels of the three lowest eigenstates Ei and their corre-
sponding probability density (ψ2

i ) (shifted by their eigenenergies Ei) for the superlattice
vector Kx = 0 (stationary Bloch states). The square of the ground state wave function
ψ2

1 is constant with its energy E1 = 0 eV equal to the conduction band edge energy. The
energies of the second (E2) and third (E3) eigenstate are degenerate at Kx = 0. Their
wave functions have a cosine and sine shape, respectively.

2.2.3. Miniband dispersion in Ge–Si quantum dot crystals

As a second example, we calculate the miniband dispersion of a cubic Ge–Si QD crystal
by numerically solving the three-dimensional Schrödinger equation on a finite-differences
grid. The QD dimensions are Lx = Ly = Lz = 6.5 nm. The barrier thickness is
chosen to be Hx = Hy = Hz = 1.5 nm. The imposed QD periodicity is thus given
by di = Li + Hi = 8.0 nm (i = x, y, z). We solve the single-band Schrödinger equation

20



2.2. Periodic boundary conditions – Minibands in artificial quantum dot crystals

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3
2
3

2
1

E2 = E3

2
2

  

 

en
er

gy
 (e

V)

position (nm)

E1

Figure 2.2.: Stationary Bloch states of a 12 nm bulk GaAs sample with periodic boundary
conditions. Shown are the three lowest energy levels E1, E2 and E3, as well
as their associated probability densities. The conduction band edge is set
to 0 eV.

for the holes assuming an isotropic effective mass tensor. The mass for the QD is
mw = mGe = 0.28m0 and for the surrounding barrier material mb = mSi = 0.49m0. The
valence band offset is taken to be EVBO = 0.45 eV. The choice of material parameters is
based on Ref. [LB01] and corresponds roughly to the heavy hole states in a Ge–Si QD
crystal. In this simple example, we neglect the anisotropic nature of the hole states, strain
and the interaction between heavy, light and split-off hole states. Later, the valence band
anisotropy of a spherical Si QD is discussed in Section 3.4, as well as the influence of spin-
orbit coupling. We solve the 3D Schrödinger equation (eq. (2.2)) in real space where we
impose periodic boundary conditions along the x, y and z directions, i.e. we numerically
discretize only a single QD on a rectangular grid having the grid spacing 0.50 nm (i.e.
16 grid points in each direction). Thus the size of the Schrödinger matrix to be solved
is 16 × 16 × 16 = 4096. This Schrödinger equation has to be solved for different values
of the superlattice vector K = (Kx,Ky,Kz). For K = 0 or Ki = ± π

Li
, where the Bloch

wave is stationary, the matrix eigenvalue problem is symmetric and real. In contrast,
it is Hermitian for all other nonzero superlattice vectors K. With a grid resolution of
0.50 nm for QDs of such size, the expected error compared to an extremely dense grid
has been found to be of the order 1%−4% [LB02]. In this example, we restrict ourselves
to calculating the energy dispersion along special directions in K space only, i.e. from
ΓSL = (0, 0, 0) to XSL = K100 = (1, 0, 0), from ΓSL = (0, 0, 0) to KSL = K110 = (1, 1, 0)
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Chapter 2. Single-band envelope function approximation

and from ΓSL = (0, 0, 0) to LSL = K111 = (1, 1, 1), where ΓSL, XSL, KSL and LSL are
the names for the special points in K space. The directions labeled by [100], [110], [111]
refer to the simulation coordinate system and not to the crystal coordinate system.

The following three figures show the calculated heavy hole energy dispersion of an
artificial cubic Ge–Si quantum dot crystal along the [100] (Fig. 2.3), [110] (Fig. 2.4(a))
and [111] (Fig. 2.4(b)) quasicrystallographic directions with the parameters Lx = Ly =
Lz = 6.5 nm and Hx = Hy = Hz = 1.5 nm. The minibands are labeled by three quantum
numbers nx, ny, nz which indicate the symmetry of the corresponding wave functions.
This labeling is strictly speaking only correct in the case of separable wave functions
along the x, y and z directions. The superscript indicates the number of degeneracy.
The right part of Fig. 2.3 shows schematically the valence band edge profile of the QD
and the position of the energy levels for K = 0. The figures show the energy spectrum of
the lowest 50-60 eigenstates (neglecting spin degeneracy) with respect to the heavy hole
valence band edge. The energy scale has been chosen such that the maximum valence
band edge energy of the Ge QD is at Ev,Ge = 0.45 eV, and the maximum valence band
edge energy of the Si barrier is at Ev,Si = 0 eV which is indicated by the dashed line. The
number of superlattice vectors along the directions in K space determines the resolution
of the energy dispersion plots. We used 11 superlattice vectors in these plots, i.e. the
Schrödinger equation had to be solved 11 times. Our results agree very well with the
analytical calculations of Ref. [LB01] in the energy region where the confinement inside
the QD is strong. For the higher lying states inside the QD and above the barrier,
our results differ because we use the correct 3D QD confinement potential, whereas in
Ref. [LB01] the potential landscape has been approximated with an analytical ansatz
that allows for the separation of the x, y and z variables. We want to point out that
this ansatz is only justified for states confined deep inside the QD. For states above the
barrier, this ansatz will lead to significant (i.e. three times the valence band offset energy)
artificial potential barriers at the positions where the three independent potential barriers
overlap. We thus believe that one of the conclusions of Ref. [LB01], namely that the
3D regimentation of quantum dots in QD crystals leads to the appearance of ‘resonant’
quasidiscrete energy levels above the potential barrier for large interdot distances is
a pure artefact of this separation ansatz. At K = 0, the degeneracy is higher than
at nonzero K vectors where the symmetry in the superlattice Brillouin zone is lower.
Note that the eigenstates along the [111] direction show a higher degree of degeneracy
throughout the superlattice Brillouin zone as compared to [100] and [110]. Both, the
QD itself and the QD superlattice have the same cubic symmetry in this example. Thus
the degeneracy of the 123 (including permutations) energy band is sixfold throughout
the Brillouin zone along the [111] directions (Fig. 2.4(b)). Since the tunneling-induced
coupling increases with miniband index (i.e. energy), the width of the bands with respect
to energy also increases. Consequently, the higher bands must overlap and the narrowest
band is the ground state band. An important feature are the band gaps in the dispersion
curve which define the energy intervals in which propagating states do not exist. For a
detailed discussion of these dispersion curves and their degree of degeneracy we refer to
Ref. [LB01].
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Figure 2.3.: Heavy hole energy dispersion of an artificial cubic Ge–Si quantum dot crystal
along the [100] quasicrystallographic direction with the parameters Lx =
Ly = Lz = 6.5 nm, Hx = Hy = Hz = 1.5 nm. The valence band edge of
the Ge dot is at 0.45 eV, the valence band edge of the Si barrier is at 0 eV
which is indicated by the dashed line. The minibands are labeled by the
three quantum numbers nx, ny, nz. The right part shows schematically the
valence band edge profile of the QD and the position of the energy levels for
K = 0.
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Figure 2.4.: Heavy hole energy dispersion of the artificial QD crystal of Fig. 2.3 along
the (a) [110] and (b) [111] quasicrystallographic directions.
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Now we change the QD shape, as well as the shape of the repeating pattern, from
a cubical to a tetragonal shape, analogous to Ref. [LB01]. The parameters are Lx =
Ly = 5 nm, Lz = 2.5 nm and Hx = Hy = 2.5 nm, Hz = 1.25 nm. The superlattice
periods are dx = dy = 7.5 nm and dz = 3.75 nm. The grid spacing is 0.25 nm in all three
directions. The resulting Schrödinger matrix has a dimension of 30 × 30 × 15 = 13500.
All other assumptions are the same as for the above cubic QD superlattice example. The
following three figures show the calculated dispersion relation along the [100] (Fig. 2.5),
[110] (Fig. 2.6(a)) and [111] (Fig. 2.6(b)) quasicrystallographic directions. Our results
are in excellent agreement to the numerical results of [LB02].

The above calculations have been performed for an ideal model QD system in order to
benchmark our results with previous publications. The algorithm that we implemented
into the nextnano3 software is so general that arbitrary QD geometries, strain, doping
and different crystallographic orientations, for instance, can be treated as well.
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Figure 2.5.: Heavy hole energy dispersion of an artificial tetragonal Ge–Si quantum dot
crystal along the [100] quasicrystallographic direction with the parameters
Lx = Ly = 5 nm, Lz = 2.5 nm, Hx = Hy = 2.5 nm, Hz = 1.25 nm. The
valence band edge of the dot is at 0.45 eV, the valence band edge of the
barrier is at 0 eV which is indicated by the dashed line. The minibands are
labeled by the three quantum numbers nx, ny, nz.
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Figure 2.6.: Heavy hole energy dispersion of an artificial tetragonal Ge–Si quantum dot
crystal along the (a) [110] and (b) [111] quasicrystallographic directions.
The QD crystal is the same as in Fig. 2.5.
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2.3. Magnetic field

An important but sometimes ignored aspect of the numerical solution of the Schrödinger
equation in a magnetic field is gauge invariance. Since the vector potential increases lin-
early as a function of position, its values tend to be one or two orders of magnitude larger
at the boundaries of the simulation region than in the center. Therefore, the numerical
solutions depend sensitively on the chosen gauge for nonzero magnetic field, even if the
zero field wave functions are small at the boundaries. This problem was successfully
addressed in Ref. [GU98] for single-band, nonrelativistic Hamiltonians. Andlauer et
al. [AMV08, TZA+06] recently generalized this scheme for arbitrary envelope function
Hamiltonians in a way that ensures manifestly gauge invariant results for any magnetic
field.

2.3.1. Fock–Darwin spectrum

Quantum dots (QDs) that are subject to a magnetic field are an interesting research
subject since many years. A popular approach to study the energy spectrum of such
systems theoretically is the assumption of a two-dimensional parabolic confinement po-
tential that is subject to a perpendicularly oriented magnetic field which introduces
a further parabolic confinement, thus making it possible to solve this equation ana-
lytically [KAT01]. Obviously, such an approach only makes sense for self-assembled
quantum dots that have a strong confinement in the growth direction z and a weak
(roughly parabolic) confinement in the plane perpendicular to it. However, this model
might not be applicable to all QD systems, such as spherical QDs, where the above
mentioned two-dimensional model neglects completely the quantum confinement along
the third direction. Consequently, it would be desirable to have a more predictive model
that takes into account the realistic three-dimensional potential profile of quantum dots
of arbitrary shape, including strain, deformation potentials and piezoelectric effects, and
then apply the magnetic field and calculate the energy levels. Governale et al. [GU98]
showed how to discretize the single-particle Schrödinger equation on a two-dimensional
homogeneous grid in a gauge-invariant way assuming a constant effective mass tensor.
We extended their method to spatially varying effective masses and to an inhomoge-
neous grid [Hac02] and are now able so solve the Schrödinger equation in two and three
dimensions including a uniform magnetic field. The Hamilton operator of eq. (2.1) has
to be modified to include the magnetic field and is now given by

H = − h̄
2

2
((∇+ igA) ·M (x) (∇+ igA)) , (2.12)

where g = e/h̄ and A(x) is the vector potential which is discretized in the symmetric
gauge

A(x) = −1

2
x×B. (2.13)

As a benchmark for our method, we chose to reproduce the well-known Fock–Darwin
spectrum [KAT01] which is an analytical result. We note that our result is completely
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Figure 2.7.: Calculated single-particle energy levels of a two-dimensional parabolic con-
finement potential (h̄ω0 = 3 meV) as a function of magnetic field (Fock–
Darwin spectrum). The states are labeled by (n, l) which refers to the radial
quantum number n and the angular momentum quantum number l.

numerical, i.e. we solve the single-particle 2D Schrödinger equation in the (x, y) plane
for a two-dimensional parabolic confinement potential where the uniform magnetic field
is applied along the z direction. The parabolic confinement had been chosen so that the
energy separation between the states is h̄ω0 = 3 meV (without magnetic field) where
ω0 is the oscillator frequency of the parabolic confinement. The effective mass tensor
has been assumed to be isotropic and constant (m = 0.067m0, electron effective mass of
GaAs). Without magnetic field, and neglecting the twofold spin degeneracy, the ground
state is not degenerate, the second level is twofold degenerate, the third level threefold,
and so on, as can be seen from the analytical result of the energy spectrum

En,l = (2n+ |l| − 1) h̄ω0, (2.14)

where n = 1, 2, 3, ... is the radial quantum number and l = 0,±1,±2, ... the angular
momentum quantum number. If the magnetic field is present, the eigenenergies are

En,l = (2n+ |l| − 1) h̄

(
ω2

0 +
1

4
ω2

c

)1/2

− 1

2
lh̄ωc, (2.15)
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where ωc = eB/m is the cyclotron frequency. Thus the degeneracy of the 2D harmonic
oscillator is lifted as can be seen in the calculated energy spectrum (Fig. 2.7), where the
energy levels are plotted as a function of the magnetic field magnitude.

A more detailed discussion of this energy spectrum can be found in Ref. [KAT01].
We conclude that our numerical calculations are in perfect agreement to the analytical
results (not shown), and therefore, our method can be straightforwardly applied to
realistic, three-dimensional confinement potentials to obtain the energy spectrum of the
transitions of quantum dots subject to a magnetic field.

2.3.2. Results: Qubit manipulation

We now apply this method to coupled quantum wires in a longitudinal magnetic field
[BZA+07]. Two GaAs quantum wells, each with a width of 14.5 nm, are vertically stacked
along the y direction and are separated by a thin Al0.32Ga0.68As tunnel barrier of width
1 nm. Electrons are provided by two δ-doped layers on each side of the double quantum
well structure (δtop = 2.1 ·1012 cm−2, δbottom = 2.9 ·1011 cm−2). The upper well is 60 nm
below the surface where we pin the Fermi energy by surface states (see Appendix A) at
the middle of the band gap. A top gate voltage of 0.04 V is applied to this Schottky
contact leading to nearly symmetric quantum wells. The top gate voltage can be used
to tune the electron density, i.e. to shift the ground state from the top to the bottom
well (the first excited state is then located in the opposite well) or to vary the degree of
wave function mixing (bonding–antibonding) among the two wells. The actual quantum
wires are obtained by wet-etching nanogrooves into the semiconductor surface which
locally deplete the two-dimensional electron gas of the GaAs–AlGaAs double quantum
well heterostructure and produce two electrostatically defined quantum wires on top
of each other (Fig. 2.8(c)). The experimental details are described in Ref. [FAK+06].
Such wires are short, ballistic 1D electron systems. (Ballistic transport is covered in
Chapter 4.) They recently attracted attention because controllable coupling can be
achieved, making such devices interesting for solid-state quantum information processing.
Superposition states are formed by tunnel coupling between the quantum wires. They
can be altered by an applied magnetic field along the wire direction leading to tunable
wave function mixing, in addition to the mixing produced by the top gate. To implement
such quantum logic devices in quantum circuits, one would like to understand and have
detailed control over all involved electron levels which calls for a realistic modeling such
as provided by nextnano. We have solved the 2D Schrödinger–Poisson equation of the
double quantum well heterostructure for electrons self-consistently, taking into account
the spatially varying material parameters. We have modeled the confinement due to
the nanogrooves by a parabolic potential along the x direction and set its characteristic
energy such that it matches the observed low-lying level spacing of 10 meV.

For the resulting 2D confinement potential (Fig. 2.8(a)), we have calculated the elec-
tronic eigenstates as a function of a magnetic field oriented along the wire (z) direction,
i.e. perpendicular to the 2D confinement potential landscape. For the conduction band
offset between GaAs and Al0.32Ga0.68As we have used a value of 0.30 eV.

Our numerical calculations of the energy spectrum (Fig. 2.9) reproduce the experi-
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Figure 2.8.: (a) Two-dimensional conduction band profile Ec(x, y) of the coupled quan-
tum wires in the (x, y) plane with z = constant, (b) square of the wave
functions |Ψi (x, y)|2 for the six lowest electron eigenstates at a magnetic
field of 4.5 T oriented along the wire (z) direction, (c) schematic cross sec-
tion of the electron systems (dark), the 1D quantum wires are formed by
electrostatically depleting the two-dimensional electron gas (2DEG).

mental transconductance maxima (compare with Fig. 8(b) of Ref. [FAK+06]) very well.
These maxima directly image the subband edges of one-dimensional ballistic electron
transport in electron waveguides. One can clearly see level anticrossings to occur at cer-
tain magnetic fields. For those energies, the tunneling coupling is significantly reduced or
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Figure 2.9.: Calculated energy spectrum of the eight lowest electron eigenstates of the
coupled quantum wires as a function of magnetic field strength. (The lines
are a guide to the eye.) The dashed ellipse highlights the energies of the
six eigenstates at 4.5 T that are plotted in Fig. 2.8(b). For comparison, the
rectangle shows the gray-scale plot of the transconductance maxima versus
top gate voltage and magnetic field from 0 T to 8 T (experimental data after
Fig. 8(b) of Ref. [FAK+06]). The top gate voltage was scaled so that the
subband energies approximately align with the energy scale.

vanishes. This is the case, for example, for the third and forth eigenstate in Fig. 2.9 for
a magnetic field strength of 4.5 T. Consequently, the probability densities of these states
(labeled e3 and e4 in Fig. 2.8(b)) are not smeared out any longer over the two wires, in
contrast to the other states which still show wave function tunneling. Such a structure
can be considered a qubit with logic states that are represented by the presence of the
electron in the upper or lower quantum wire, respectively, and a coupling window that
allows for electron transfer between these wires. By varying the magnetic field, one is
able to switch between the different logic states. Note that the energy spectrum shown
in Fig. 2.9 does not include the (very small) spin splitting. Our results agree nicely
qualitatively with analytic studies [MSF07] that ignored charge redistribution due to
doping and applied gate voltages. An important difference is the fact that we find anti-
crossing behavior, whereas the analytical results always yield a crossing behavior which
is equivalent of assuming that the tunnel splitting vanishes completely for some fields.
The challenge in this concept is to grow symmetric quantum wire structures in order to
reduce the tunnel splitting as much as possible.
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3. Multi-band k · p envelope function
approximation

3.1. The multi-band k · p Schrödinger equation

In this section we focus on the k · p method but do not consider strain. The effect
of strain on the k · p Hamiltonian has been described in detail in Ref. [Hac02]. We
describe the k · p Hamiltonian for a bulk semiconductor but use the notation suited
for heterostructures. In subsequent sections we present results on heterostructures, like
spurious solutions and intersubband transitions in multi-quantum well structures. We
also model heterostructures showing the untypical type-II and type-III band alignments
and compare our results to tight-binding calculations. In Section 10.2, we analyze self-
consistent k · p calculations of a two-dimensional hole gas in diamond for different sub-
strate orientations. Results of k · p calculations on bulk semiconductors are presented
in Section 3.6 for unstrained and strained InAs, and in Section 10.1 for diamond. Also
these results are compared to tight-binding calculations. The main emphasis of this
section, however, is to pull together all the various definitions of the k · p parameters
available in the literature, and provide equations that relate them to each other, for both
zinc blende and wurtzite crystals. We believe that such a summary on a few pages is
very useful, not only for beginners but also for experienced researchers that quickly want
to look up conversion formulas. However, it turns out that we are not the first ones to
write up such a collection. Meanwhile, the recently published book by Lew Yan Voon
and Willatzen [LYVW09] offers an even more detailed description and comprehensive
overview on all the different k · p Hamiltonians used in the literature for both bulk and
nanostructured semiconductors.

Compared to the single-band model, a more accurate description of the band struc-
ture can be obtained by using the multi-band k · p method that has been used since
the 1950s. There are a number of different k · p models discussed in the literature, e.g.
Refs. [CP66, RAF04, PZ96, BRRB+11, CC92, Bah90]. They differ mainly in the number
of bands considered and their treatment of strain and spin-orbit interaction. The model
that considers up to 14 bands predicts almost perfectly the bulk band structure but the
computational effort turns out to be nearly as large as for the empirical tight-binding
approach. In nextnano we make use of the 8-band model (e.g. [Bah90]). It is a compro-
mise between the accuracy and the computational cost, as well as the number of required
(and known) material parameters. This model includes the lowest conduction band and
the three highest valence bands. All other remote bands are treated as perturbations.
Spin-orbit interaction and strain are taken into account as small perturbations.

There are basically two ways in obtaining the bulk k · p Hamiltonian matrix, the
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Chapter 3. Multi-band k · p envelope function approximation

first one is based on a perturbative approach pioneered by Dresselhaus, Kip and Kittel
[DKK55], the second one is based on symmetry analysis (method of invariants) intro-
duced by Luttinger [Lut56]. A few years ago, Foreman derived six- [For93] and eight-
band Hamiltonians [For97] from Burt’s exact envelope function theory [Bur92, Bur99]
for heterostructures. He showed that his nonsymmetrized Hamiltonian for a homoge-
neous infinite sample is consistent to the bulk k · p Hamiltonian, and that deriving
the heterostructure Hamiltonian from the bulk one using a symmetrization procedure
is incorrect (symmetrized Hamiltonian). These works solved the problem of operator
ordering. The reason lies in the noncommutativity of the differential operator and the
(position dependent) material parameters. We note that the potential energy term of
Burt’s exact envelope function equation contains an extra nonlocal term (Vnm (x,x′))
that has been neglected. In fact, using some approximations, it can be shown that the
nonlocal part does not contribute for slowly varying envelope functions. At distances
far away from a heterointerface the potential tends to a constant, the local periodic po-
tential, and the nonlocal contribution is small. Close to heterointerfaces, Burt’s theory
leads to two correction terms to the potential function. Another view is that perturbative
effects of material inhomogeneities lead to so-called interface Hamiltonians. A detailed
derivation and discussion of the Burt–Foreman theory is given in Ref. [LYVW09].

The key feature of the k · p method is the envelope function ansatz based on Bloch’s
theorem, according to which the electron wave function in a crystal with translational
symmetries can be separated into an oscillating Bloch part which is periodic over atomic
distance and a smooth envelope function which varies on a mesoscopic scale. Using
Löwdin perturbation theory the rapidly oscillating Bloch functions can be eliminated
from the electron Hamiltonian. Thus the resulting electron Hamiltonian only contains
the envelope functions. A detailed summary of the k · p method has been presented in
Refs. [Zib07, And09].

Compared to the single-band Schrödinger equation (eq. (2.2)), we now consider an
additional term Hso that approximately takes into account the relativistic effect of spin

Hso =
h̄2

4m2
0c

2
(∇V × p) · σ, (3.1)

where V is the potential energy term, p is the momentum operator and σ is the vector of
the Pauli matrices σ = (σ1, σ2, σ3)T. The one-electron Schrödinger equation now reads

(H0 + Hso) Ψnk (x) = En (k) Ψnk (x) (3.2)(
p2

2m0
+ V (x) +

h̄2

4m2
0c

2
(σ ×∇V ) · p

)
Ψnk (x) = En (k) Ψnk (x) , (3.3)

where Ψnk is the Bloch function

Ψnk (x) = eik·xunk (x) , (3.4)

composed of the product of a plane wave eik·x and the periodic Bloch factors unk (x).
n is the band index and k is a wave vector in the first Brillouin zone which corresponds
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3.1. The multi-band k · p Schrödinger equation

to the periodicity of the potential energy V (x). If we insert the Bloch function Ψnk (x)
into eq. (3.3), we obtain after canceling the plane wave eik·x

(H0 + Hk + Hk·p + Hso)unk (x) = En (k)unk (x)

(3.5)(
p2

2m0
+ V (x) +

h̄2k2

2m0
+

h̄

m0
k · p +

h̄2

4m2
0c

2
(∇V × p) · σ

)
unk (x) = En (k)unk (x) ,

(3.6)

which is now written for the periodic Bloch spinor unk (x) only. Within our approxi-
mation we consider only the part of the spin-orbit interaction Hamiltonian that is inde-
pendent of k because the contribution of the k dependent part is much smaller. Solving
this equation for k = 0 (Γ point) yields the Bloch factors uj0 which form a complete
and orthonormal basis. The Bloch factor unk is expanded for any value of k using the
known Bloch factors uj0 at the Γ point

unk (x) =

8∑
j=1

aj (k)uj0 (x) . (3.7)

For our k · p model, the index j goes from 1 to 8 for 8 × 8 k · p (one conduction and
three valence bands, including spin), and from 1 to 6 for 6×6 k ·p (three valence bands,
including spin). However, in our algorithmic implementation for 6× 6 k ·p it goes from
3 to 8 because in this case we use the same Hamiltonian matrix (eq. (3.10)) and omit
the indices 1 and 2 related to the conduction band.

The band structure near the Γ point is described by perturbation theory around
k = 0 using a number of perturbationally defined parameters. The Γ point electron
wave function is expanded into s and p orbital functions. A perturbation model that
includes the spin-orbit interaction which is responsible for the splitting ∆so between the
Γ7 and Γ8 valence bands, requires a basis of eight so-called Bloch functions

{|S ↑〉 , |S ↓〉 , |X ↑〉 , |Y ↑〉 , |Z ↑〉 , |X ↓〉 , |Y ↓〉 , |Z ↓〉} , (3.8)

where X, Y , Z are the p-type Bloch functions referring to the three principal directions
in the crystal and the arrows denote the spin. The designations S, X, Y , Z refer to
the corresponding symmetry properties under operations of the tetrahedral group. For
heterostructures, the envelope functions ψ that correspond to the Bloch functions in
eq. (3.8) are given by

{ψS↑, ψS↓, ψX↑, ψY ↑, ψZ↑, ψX↓, ψY ↓, ψZ↓} . (3.9)

The structure of the bulk 8 × 8 k · p Hamiltonian operator H0 without strain and
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Chapter 3. Multi-band k · p envelope function approximation

without spin-orbit coupling in the basis of eq. (3.8) is given by

|S ↑〉 |S ↓〉 |X ↑〉 |Y ↑〉 |Z ↑〉 |X ↓〉 |Y ↓〉 |Z ↓〉
|S ↑〉 Hcc 0 Hcv 0
|S ↓〉 0 Hcc 0 Hcv

|X ↑〉
|Y ↑〉 Hvc 0 Hvv 0
|Z ↑〉
|X ↓〉
|Y ↓〉 0 Hvc 0 Hvv

|Z ↓〉

. (3.10)

It describes the electrons in the Γ6 conduction band, or the Γ7 or Γ8 valence bands.
Our choice of ordering is due to the fact that we are using the same routines within our
algorithm for the setup of the 8 × 8 and the 6 × 6 Hamiltonian. In the latter case, the
first two rows and the first two columns are ignored. For zinc blende, Hvv is given by

Hvv =

 Ev,av + h̄2

2m0
k2

Ev,av + h̄2

2m0
k2

Ev,av + h̄2

2m0
k2

+ (3.11)

 kxLkx + kyMky + kzMkz kxN
+ky + kyN

−kx kxN
+kz + kzN

−kx
kyN

+kx + kxN
−ky kxMkx + kyLky + kzMkz kyN

+kz + kzN
−ky

kzN
+kx + kxN

−kz kzN
+ky + kyN

−kz kxMkx + kyMky + kzLkz

,
where Ev,av is the energy of the average of the three valence band edges, without strain
shifts and without taking spin-orbit splitting into account (see Fig. 3.1). The contribu-
tion of the free electron term

h̄2

2m0
k2 =

h̄2

2m0

(
k2
x + k2

y + k2
z

)
(3.12)

could in principle be incorporated into the L and M parameters. This will be discussed
further below. For wurtzite the second term has to be replaced by

 kxL1kx + kyM1ky + kzM2kz kxN
+
1 ky + kyN

−
1 kx kxN

+
2 kz + kzN

−
2 kx

kyN
+
1 kx + kxN

−
1 ky kxM1kx + kyL1ky + kzM2kz kyN

+
2 kz + kzN

−
2 ky

kzN
+
2 kx + kxN

−
2 kz kzN

+
2 ky + kyN

−
2 kz kxM3kx + kyM3ky + kzL2kz

 .

(3.13)

The DKK (Dresselhaus–Kip–Kittel) parameters [DKK55] L, M , N+, N− can either
be calculated from the appropriate matrix elements (see Refs. [LYVW09, Hac02]) or
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3.1. The multi-band k · p Schrödinger equation

from the Luttinger parameters γ1, γ2, γ3, κ [Bah90, And09]

L = F + 2G = (−γ1 − 4γ2 − 1)
h̄2

2m0
(3.14)

M = H1 +H2 = (2γ2 − γ1 − 1)
h̄2

2m0
(3.15)

N+ = F −G = (−3γ3 − (3κ+ 1))
h̄2

2m0
=
N

2
− (3κ+ 1)

h̄2

2m0
(3.16)

N− = H1 −H2 = (−3γ3 + (3κ+ 1))
h̄2

2m0
=
N

2
+ (3κ+ 1)

h̄2

2m0
. (3.17)

As ki and kj commute in bulk, it holds

N = N+ +N− = F −G+H1 −H2 = −6γ3
h̄2

2m0
. (3.18)

The inverse relations for F , G, H1 and H2 are

F =
1

3
(L+ 2N+) =

(
−1

3
γ1 −

4

3
γ2 − 2γ3 − 2κ− 1

)
h̄2

2m0
= −6σ

h̄2

2m0
(3.19)

G =
1

3
(L−N+) =

(
−1

3
γ1 −

4

3
γ2 + γ3 + κ

)
h̄2

2m0
= −6δ

h̄2

2m0
(3.20)

H1 =
1

2
(M +N−) =

(
−1

2
γ1 + γ2 −

3

2
γ3 +

3

2
κ

)
h̄2

2m0
= −6π

h̄2

2m0
(3.21)

H2 =
1

2
(M −N−) =

(
−1

2
γ1 + γ2 +

3

2
γ3 −

3

2
κ− 1

)
h̄2

2m0
, (3.22)

where the Foreman parameters σ, π and δ will be introduced further below. Rather than
specifying the four parameters L, M , N+, N−, occasionally another set of parameters
L, M , N , K is specified, where K = − h̄2

2m0
2(3κ+ 1) [Lut56]. The parameters F , G, H1

and H2 are defined in Ref. [Law71]. There, also an additional fifth Luttinger parameter
q [Lut56] related to spin-orbit splitting is given which is typically neglected, and also
neglected in our work. The inverse relations for the Luttinger parameters are

γ1 = −1

3
(L+ 2M)

2m0

h̄2 − 1 (3.23)

γ2 = −1

6
(L−M)

2m0

h̄2

γ3 = −1

6
(N+ +N−)

2m0

h̄2 = −1

6
N

2m0

h̄2

κ = −1

6
(N+ −N−)

2m0

h̄2 −
1

3
,

37



Chapter 3. Multi-band k · p envelope function approximation

and

γ1 = −1

3
(F + 2G+ 2H1 + 2H2)

2m0

h̄2 − 1 (3.24)

γ2 = −1

6
(F + 2G−H1 −H2)

2m0

h̄2

γ3 = −1

6
(F −G+H1 −H2)

2m0

h̄2

κ = −1

6
(F −G−H1 +H2)

2m0

h̄2 −
1

3
.

The parameter H2 is small and thus it is often neglected, e.g. in Ref. [For97]. This leads
to N− ≈M and N+ = N −N− ≈ N −M . This is exactly equivalent to the case where
κ is not known, and therefore approximated by

κ ≈ −1

6
(N − 2M)

2m0

h̄2 −
1

3
= −1

3
(γ1 − 2γ2 − 3γ3 + 2) , (3.25)

where N is defined in eq. (3.18). Using this definition for κ, i.e. assuming H2 = 0,
eq. (3.16) and eq. (3.17) can be expressed using the Luttinger parameters

N− ≈ H1 = M = (2γ2 − γ1 − 1)
h̄2

2m0
(3.26)

N+ = F −G = N −N− ≈ N −M = (−6γ3 − (2γ2 − γ1 − 1))
h̄2

2m0
. (3.27)

For the k ·p dispersion of bulk semiconductors without magnetic field, the contribution
of the term 3κ+ 1 to N+ (eq. (3.16)) and N− (eq. (3.17)) effectively cancel each other.
Therefore, κ is not needed and can be ignored, suggesting to use only the parameter
N for the bulk Hamiltonian. This misleads to effectively using N+ = N− = N/2
(eq. (3.18)), a practice that was adopted by the whole k · p community until the last
decade. However, Foreman identified this symmetrized k ·p Hamiltonian to be incorrect
for heterostructures [For93], pointing out the noncommutativity of the momentum and
position operators in heterostructures. It is thus crucial to use the correct form of the
nonsymmetrized k · p Hamiltonian which includes the correct definitions of N+ and
N−. In both cases the entire matrix is Hermitian whereas in the symmetrized approach,
additionally, each matrix element is Hermitian. The symmetrized Hamiltonian has been
derived from the bulk k · p Hamiltonian, whereas the nonsymmetrized version is based
on Burt’s exact envelope function theory for heterostructures [Bur92], which has been
extended by Foreman to multi-band k · p. For that reason it is usually called the
Burt–Foreman Hamiltonian [LYVW09]. If the k · p material parameters do not depend
on position, e.g. in the case of a quantum well with infinite barriers, i.e. no material
interfaces, both symmetrizations lead to the same results in the case of zero magnetic
field. If one is only interested in the bulk k · p dispersion, there is no need to explicitly
use N+ and N−, and thus N can be used instead (eq. (3.18)). Unfortunately, in a lot
of articles in the last decades N+ and N− (and also κ) have been ignored and only N
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has been used, which we now know is definitely not correct for heterostructures. The
noncommutativity of the off-diagonal matrix elements has already been pointed out in
the early work of Luttinger [Lut56], where he derived the most general form of the 6× 6
k · p Hamiltonian in the presence of an external homogeneous magnetic field.

Foreman introduced another set of dimensionless parameters σ, π and δ [For93]

σ = −1

6
F

2m0

h̄2 = − 1

18
(L+ 2N+)

2m0

h̄2 ≈ −
1

2
δ + γ (3.28)

π = −1

6
H1

2m0

h̄2 = − 1

12
(M +N−)

2m0

h̄2 ≈
3

2
δ + µ

δ = −1

6
G

2m0

h̄2 = − 1

18
(L−N+)

2m0

h̄2 ≈
1

9
(γ1 + γ2 − 3γ3 + 1),

where γ and µ are defined as

γ =
1

2
(γ3 + γ2) (3.29)

µ =
1

2
(γ3 − γ2). (3.30)

The notation in Greek letters σ, π and δ is derived from the s, p, d (and f) orbitals
of the constituent atoms. Here, the contribution of the f orbitals is neglected which is
equivalent to setting H2 = 0, i.e. approximating κ (eq. (3.25)). The inverse relations
show how the Luttinger parameters can be expanded to reflect the symmetry of the
interaction of the bands [LYVW09]

γ1 ≈ −
1

3
(F + 2G+ 2H1)

2m0

h̄2 − 1 = 2σ + 4π + 4δ − 1 (3.31)

γ2 ≈ −
1

6
(F + 2G−H1)

2m0

h̄2 = σ − π + 2δ

γ3 ≈ −
1

6
(F −G+H1)

2m0

h̄2 = σ + π − δ

κ ≈ −1

6
(F −G−H1)

2m0

h̄2 −
1

3
= σ − π − δ − 1

3
.

They are similar to eq. (3.24), with the exception that the term H2 has been neglected.
Consequently, the forth parameter κ is not an independent parameter here. It depends
on the choice of σ, π and δ, or γ1, γ2 and γ3, respectively. The corresponding relation
for κ in terms of the Luttinger parameters is given in eq. (3.25). Finally, we list the
related equations for the DKK parameters

L = F + 2G = (−6σ − 12δ)
h̄2

2m0
(3.32)

N+ = F −G = (−6σ + 6δ)
h̄2

2m0

M ≈ H1 = −6π
h̄2

2m0

N− ≈ H1 = −6π
h̄2

2m0
.
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The Luttinger parameters are based on the method of invariants whereas the DKK
parameters are based on the perturbation method for deriving the k · p Hamiltonian
matrix. This is the reason for the various definitions of k · p parameters.

For the DKK parameters L, M , N , there is another frequently used definition in the
literature (e.g. used by Bir and Pikus [BP74] and in Ref. [VSW07]), also called L, M , N ,
which often causes confusion in the numerical values of the parameters and thus even in
some cases leading to incorrect use of parameters (see Section 3.4). They originally were
used by Luttinger and Kohn [LK55]. There, they were termed A, B, C, and should not
be confused with A, B, C of eq. (3.137), eq. (3.138) and eq. (3.139). These alternative
LK (Luttinger–Kohn) parameters, labeled with superscript ‘LK’, read

LLK = ALK = L+
h̄2

2m0
= (−γ1 − 4γ2)

h̄2

2m0
(3.33)

MLK = BLK = M +
h̄2

2m0
= (2γ2 − γ1)

h̄2

2m0
(3.34)

NLK = CLK = NLK+ +NLK− = N = −6γ3
h̄2

2m0
(3.35)

NLK+ = N+ ≈ NLK −
(
MLK − h̄2

2m0

)
= N −M (3.36)

NLK− = N− ≈MLK − h̄2

2m0
= M. (3.37)

Here, LLK and MLK are defined including the free electron term h̄2

2m0
(see eq. (3.12)).

Expressing them using the Luttinger parameters now differs because the term ‘−1’ that
is present in eq. (3.14) and eq. (3.15) has disappeared. Consequently, the diagonal term
h̄2

2m0
k2 must be omitted in Hvv, i.e. the term Ev,av + h̄2

2m0
k2 in eq. (3.11) has to be

replaced by Ev,av. The inverse relations for the Luttinger parameters read

γ1 = −1

3

(
LLK + 2MLK

) 2m0

h̄2 = −1

3
(L+ 2M)

2m0

h̄2 − 1 (3.38)

γ2 = −1

6

(
LLK −MLK

) 2m0

h̄2 = −1

6
(L−M)

2m0

h̄2 (3.39)

γ3 = −1

6
NLK 2m0

h̄2 = −1

6
N

2m0

h̄2 (3.40)

κ = −1

6
(NLK+ −NLK−)

2m0

h̄2 −
1

3
= −1

6
(N+ −N−)

2m0

h̄2 −
1

3
, (3.41)

where the formula for γ1 differs for the two possible definitions of the DKK or LK
parameters. The term ‘−1’ in eq. (3.38) shows how they are related to each other. The
relations for γ2, γ3, and κ correspond to the ones given in eq. (3.23). In order to avoid
confusion, we recommend to provide values for the Luttinger parameters when publishing
or comparing material parameters, rather than the ambiguous L, M , N parameters.

For wurtzite the Rashba-Sheka-Pikus (RSP) parameters of the valence band A1, A2,
A3, A4, A5, A6 are similar to the Luttinger parameters in zinc blende. The A7 parameter
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that describes the k dependent spin-orbit splitting is usually neglected. From those six
parameters one can obtain the nine parameters L1, L2, M1, M2, M3, N+

1 , N−1 , N+
2 , N−2

as follows [FB03]

L1 =
h̄2

2m0

(
A5 + Ã

)
= −6(σ + δ) (3.42)

L2 =
h̄2

2m0
(A1 − 1) = −6σz

M1 =
h̄2

2m0

(
−A5 + Ã

)
= −6δ

M2 =
h̄2

2m0
Â = −6π

M3 =
h̄2

2m0
(A2 − 1) = −6πz

N+
1 =

h̄2

2m0

(
3A5 − Ã

)
= N1 −M1 = −6(σ − δ)

N−1 =
h̄2

2m0

(
−A5 + Ã

)
= M1 = −6δ

N+
2 =

h̄2

2m0

(√
2A6 − Â

)
= N2 −M2 = −6σxz

N−2 =
h̄2

2m0
Â = M2 = −6π,

where we used

Ã = A2 +A4 − 1 (3.43)

Â = A1 +A3 − 1. (3.44)

It also holds

N1 = N+
1 +N−1 = L1 −M1 =

h̄2

2m0
2A5 = −6σ (3.45)

N2 = N+
2 +N−2 =

h̄2

2m0

√
2A6 = −6σxz − 6π. (3.46)

The ‘Foreman’ parameters σ, σz, σxz, π, πz and δ have actually been introduced by
Mireles and Ulloa [MU99]. The relation N1 = L1 − M1 is due to the sixfold rota-
tional symmetry of the Hamiltonian [CC96]. The related matrix elements are given in
Refs. [LYVW09, MU99]. The contribution of the term ‘−1’ (free electron term) for L1,
L2, M1, M2 and M3 has the same origin as in the zinc blende case. Thus one should
be careful when comparing material parameters because for wurtzite there are also two
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definitions possible. The inverse relations to eq. (3.42) read [CC96, MU99]

A1 =
2m0

h̄2 L2 + 1 = 1− 6σz (3.47)

A2 =
2m0

h̄2 M3 + 1 = 1− 6πz (3.48)

A3 =
2m0

h̄2 (M2 − L2) = −6(π − σz) (3.49)

A4 =
2m0

h̄2

1

2
(L1 +M1 − 2M3) = −3σ − 6(δ − πz) (3.50)

A5 =
2m0

h̄2

1

2
(L1 −M1) =

2m0

h̄2

1

2
N1 = −3σ (3.51)

A6 =
2m0

h̄2

√
2

2
N2 = − 6√

2
(π + δ). (3.52)

Finally, the ‘Foreman’ parameters can be expressed as

σ = −1

6
(L1 −M1)

2m0

h̄2 = −1

6
N1

2m0

h̄2 = −1

3
A5 (3.53)

σz = −1

6
L2

2m0

h̄2 = −1

6
(A1 − 1) (3.54)

σxz = −1

6
(N2 −M2)

2m0

h̄2 = −1

6
N+

2

2m0

h̄2 = −1

6

(
−A1 −A3 +

√
2A6 + 1

)
(3.55)

= −1

6

(√
2A6 − Â

)
π = −1

6
M2

2m0

h̄2 = −1

6
N−2

2m0

h̄2 = −1

6
(A1 +A3 − 1) = −1

6
Â (3.56)

πz = −1

6
M3

2m0

h̄2 = −1

6
(A2 − 1) (3.57)

δ = −1

6
M1

2m0

h̄2 = −1

6
(A2 +A4 −A5 − 1) = −1

6
(Ã−A5). (3.58)

Hcc in eq. (3.10) is defined as

Hcc = Ec + kxAckx + kyAcky + kzAckz (3.59)

for zinc blende, and

Hcc = Ec + kxAc2kx + kyAc2ky + kzAc1kz (3.60)

for wurtzite, where Ec is the conduction band edge (without strain shifts). The param-

eter Ac is defined as Ac = h̄2

2m0
S and S is a dimensionless parameter defined for zinc

blende as [Hac02]

S = 1 + 2F =

(
1 + 2

1

m0

∑
n∈B

|〈S |px|n〉|2

Ec − En

)
, (3.61)
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where the summation is over all bands apart from the valence bands. Here, F should
not be confused with the parameter F of eq. (3.19). In contrast to our definition of
the valence band parameters L, M , N+ and N−, the conduction band parameter Ac

includes the free electron term h̄2

2m0
which corresponds to the ‘1’ in eq. (3.61). If the

free electron term were not included, then it must be included explicitly into the Hcc

term, analogous to the first line of eq. (3.11) for the valence band part Hvv. S can also
be evaluated through the experimentally determined conduction band mass me at the Γ
point using the relation [LFC96]

S =
m0

me
− 2EP

3Egap
− EP

3(Egap + ∆so)
=
m0

me
− EP

Egap + 2
3∆so

Egap (Egap + ∆so)
, (3.62)

where Egap is the (unstrained) band gap energy between the lowest conduction band
edge and the highest valence band edge energy. If one wants to switch off the coupling
between electrons and holes, simply setting EP = 0 eV leads to an isotropic and parabolic
energy dispersion for the electrons. In this case, the S parameter is the inverse of the
effective electron mass, S = m0

me
, giving an intuitive meaning to this k · p parameter. In

Ref. [VMRM01] the dimensionless F parameter (eq. (3.61)) is given for all zinc blende
materials, where F = (S−1)/2. However, as the band gap Egap is temperature dependent
(eq. (B.2)), nextnano3 by default calculates S directly from the actual band gap and the
effective electron mass me, rather than using the S parameter of the database. We notice
that different definitions of the S or Ac parameter occur in the literature depending on
whether the free electron term is included or not. Thus one has to be careful when
comparing different sets of material parameters. For wurtzite, the parameter Aci is
defined as Aci = h̄2

2m0
Si with index i = {1, 2}. The index i = 1 refers to the direction

parallel to the hexagonal c axis and i = 2 to the directions perpendicular to it. It holds
Si = 1 + 2Fi and [CC96]

S1 =
m0

me,‖
− EP1

Egap + 2∆2

(Egap + ∆1 + ∆2)(Egap + 2∆2)− 2∆2
3

(3.63)

S2 =
m0

me,⊥
− EP2

(Egap + ∆1 + ∆2)(Egap + ∆2)−∆2
3

Egap

[
(Egap + ∆1 + ∆2)(Egap + 2∆2)− 2∆2

3

] . (3.64)

In the limit ∆1 = 0, ∆2 = ∆3 = 1
3∆so, the zinc blende result (eq. (3.62)) is obtained.

The coupling between conduction and valence bands in eq. (3.10) is defined as

Hcv =
(
HSX

cv HSY
cv HSZ

cv

)
, (3.65)

and

Hvc =

 HSX
vc

HSY
vc

HSZ
vc

 . (3.66)

For zinc blende, the components are given by

HSX
cv = kyBkz + iPkx (3.67)

HSY
cv = kzBkx + iPky (3.68)

HSZ
cv = kxBky + iPkz, (3.69)
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and

HSX
vc = kzBky − ikxP (3.70)

HSY
vc = kxBkz − ikyP (3.71)

HSZ
vc = kyBkx − ikzP. (3.72)

For wurtzite they are

HSX
cv = kyB1kz + iP2kx (3.73)

HSY
cv = kzB2kx + iP2ky (3.74)

HSZ
cv = kxB3ky + iP1kz, (3.75)

and

HSX
vc = kzB1ky − ikxP2 (3.76)

HSY
vc = kxB2kz − ikyP2 (3.77)

HSZ
vc = kyB3kx − ikzP1. (3.78)

We notice that Hvc is not the Hermitian conjugate of Hcv because the operator ordering
is different. This ordering is the one suggested by Foreman [For97]. The correct form of
the inversion asymmetry parameter B has been derived by Loehr [Loe95]. B is zero for
materials that possess inversion symmetry as is the case for diamond-type crystals. Zinc
blende crystals do not have inversion symmetry, thus B 6= 0. This also applies to wurtzite
crystals, thus B1 6= 0, B2 6= 0 and B3 6= 0. For one-dimensional simulations, B only
contributes for nonzero k‖ vectors. It is common practice in the k ·p literature to neglect
the contribution of the B parameter. However, this inversion asymmetry parameter is
responsible for a spin-splitting of the bulk k ·p dispersion for the bands along directions
other than [001] and [111], where the splitting is suppressed by symmetry elements of
the group of k [ESC87] (see Fig. 3.11). For heterostructures the B parameter leads
to a splitting of the states for any direction of k‖, even if the structure itself has an
inversion center, i.e. no structural inversion asymmetry (SIA). In Section 3.6, we present
an example (Fig. 3.17). The optical matrix parameter P (Kane momentum matrix
element) that mixes the conduction and valence band states is given by

P = − ih̄

m0
〈S |px|X〉 =

√
h̄2

2m0
EP (3.79)

EP =
2m0

h̄2 P 2, (3.80)

where the Kane parameter EP is the energy equivalent to P , whose values are usually
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around 22 eV for almost all semiconductors. They are similar for wurtzite

P1 = − ih̄
m
〈S |pz|Z〉 =

√
h̄2

2m0
EP1 (3.81)

P2 = − ih̄
m
〈S |px|X〉 = − ih̄

m
〈S |py|Y 〉 =

√
h̄2

2m0
EP2. (3.82)

In bulk, P only contributes for nonzero k vectors, whereas for heterostructures it is also
relevant for k‖ = 0.

Any algorithmic implementation of the k · p Hamiltonian should be the one of the
wurtzite Hamiltonian. It implicitly contains the zinc blende and diamond-type cases by
setting L1 = L2 = L, M1 = M2 = M3 = M , N+

1 = N+
2 = N+, N−1 = N−2 = N−,

P1 = P2 = P , B1 = B2 = B3 = B and S1 = S2 = S.

Spin-orbit coupling The relativistic effect of spin is approximately taken into account
by including an additional term Hso in the Schrödinger equation (eq. (3.1)). Using the
definition

∆so = −3i

(
h̄2

4m2
0c

2

)〈
X
∣∣∣(∇V × p)y

∣∣∣Z〉 , (3.83)

we can write down the spin-orbit interaction Hamiltonian for zinc blende [HS90]. In the
basis of eq. (3.8) it reads

Hso =
1

3
∆so



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −i 0 0 0 1
0 0 i 0 0 0 0 −i
0 0 0 0 0 −1 i 0
0 0 0 0 −1 0 i 0
0 0 0 0 −i −i 0 0
0 0 1 i 0 0 0 0


, (3.84)
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where ∆so is the spin-orbit split-off energy. The spin-orbit Hamiltonian matrix can be
diagonalized if one chooses the Bloch basis [LFC96]

|ue ↑〉 =

∣∣∣∣12 , 1

2

〉
e

= |S ↑〉 (3.85)

|ue ↓〉 =

∣∣∣∣12 ,−1

2

〉
e

= |iS ↓〉

|uhh ↑〉 =

∣∣∣∣32 , 3

2

〉
=

1√
2
|(X + iY ) ↑〉

|uhh ↓〉 =

∣∣∣∣32 ,−3

2

〉
=

i√
2
|(X − iY ) ↓〉

|ulh1〉 =

∣∣∣∣32 , 1

2

〉
=

i√
6

[|(X + iY ) ↓〉 − 2 |Z ↑〉]

|ulh2〉 =

∣∣∣∣32 ,−1

2

〉
=

1√
6

[|(X − iY ) ↑〉+ 2 |Z ↓〉]

|uso1〉 =

∣∣∣∣12 , 1

2

〉
=

1√
3

[|(X + iY ) ↓〉+ |Z ↑〉]

|uso2〉 =

∣∣∣∣12 ,−1

2

〉
=

i√
3

[|− (X − iY ) ↑〉+ |Z ↓〉] ,

leading to the eigenstates known as heavy hole (hh), light hole (lh) and spin-orbit split-
off hole (so) with positive and negative angular momentum projection. The prefactors
are normalization constants and these linear combinations are known as the ‘angular
momentum representation’. The basis states for the electrons are included for complete-
ness. They are not affected by the spin-orbit interaction. The heavy and light holes
are degenerate and their eigenvalues are 1

3∆so, whereas the eigenvalue of the split-off
hole is −2

3∆so). Here we classified the six valence states in terms of |J, Jz〉 states with
the use of the Clebsch-Gordan coefficients for the angular momentum J = LB + S and
its z component [EO56]. LB is the angular momentum of the Bloch orbit and S is the
spin. The terms ‘heavy’ and ‘light’ originate from the distinct curvatures of the energy
dispersions of these bands. For nonzero k values, the states cannot be label any more
as pure heavy, light and split-off holes. Projecting the calculated solution in the basis
of eq. (3.8) onto the basis given in eq. (3.85), determines if the corresponding spinors
are dominated by the character of a heavy, light or split-off hole. Further details about
the bulk band dispersion can be found for instance in Ref. [CC92]. As an example we
provide the band structure of InAs in Fig. 3.11.

For wurtzite, the spin-orbit interaction Hamiltonian in the basis of eq. (3.8) is given
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by

Hso =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −i∆2 0 0 0 ∆3

0 0 i∆2 0 0 0 0 −i∆3

0 0 0 0 0 −∆3 i∆3 0
0 0 0 0 −∆3 0 i∆2 0
0 0 0 0 −i∆3 −i∆2 0 0
0 0 ∆3 i∆3 0 0 0 0


, (3.86)

with ∆2 corresponding to the direction parallel to the hexagonal c axis, and ∆3 to the
plane perpendicular to it. It is usually assumed that ∆2 = ∆3 = 1

3∆so, which actually
yields the zinc blende spin-orbit Hamiltonian (eq. (3.84)).

Crystal field splitting In wurtzite we additionally have to consider the crystal field
splitting, i.e. the energy splitting produced by the anisotropy of the hexagonal symmetry.
In the basis of eq. (3.8) it is given by

Hcr =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 ∆1 0 0 0 0 0
0 0 0 ∆1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 ∆1 0 0
0 0 0 0 0 0 ∆1 0
0 0 0 0 0 0 0 0


, (3.87)

where ∆1 = ∆cr is the crystal field splitting energy which is zero in both diamond and
zinc blende materials.

Within the algorithm of the nextnano program, it is sufficient to only implement the
wurtzite spin-orbit Hamiltonian. It includes both crystal field splitting and spin-orbit
coupling and reads

Hso,cr =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 ∆1 −i∆2 0 0 0 ∆3

0 0 i∆2 ∆1 0 0 0 −i∆3

0 0 0 0 0 −∆3 i∆3 0
0 0 0 0 −∆3 ∆1 i∆2 0
0 0 0 0 −i∆3 −i∆2 ∆1 0
0 0 ∆3 i∆3 0 0 0 0


. (3.88)

It implicitly includes the zinc blende case. The basis states that diagonalize this wurtzite
spin-orbit Hamiltonian are not the same as the ones we used before in the zinc blende
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case (eq. (3.85)). They are [CC96]

|iS ↑〉 (3.89)

|iS ↓〉

|u1 ↑〉 = − 1√
2
|(X + iY ) ↑〉

|u2 ↑〉 =
1√
2
|(X − iY ) ↑〉

|u3 ↑〉 = |Z ↑〉

|u4 ↓〉 =
1√
2
|(X − iY ) ↓〉

|u5 ↓〉 = − 1√
2
|(X + iY ) ↓〉

|u6 ↓〉 = |Z ↓〉 .

After diagonalization, one obtains the following eigenvalues [CC96]

E1 = EA = ∆1 + ∆2 (3.90)

E2 = EB =
∆1 −∆2

2
+

√(
∆1 −∆2

2

)2

+ 2∆2
3 (3.91)

E3 = EC =
∆1 −∆2

2
−

√(
∆1 −∆2

2

)2

+ 2∆2
3, (3.92)

where A, B and C refer to the heavy hole, light hole and crystal field split-off hole
energies in wurtzite. For zinc blende one has to set ∆1 = 0 and ∆2 = ∆3 = 1

3∆so. The
zinc blende eigenvalues can further be simplified to

E1 = E2 = Ehh = Elh =
1

3
∆so (3.93)

E3 = Eso = −2

3
∆so, (3.94)

where heavy hole (hh) and light hole (lh) are degenerate. They are separated from the
split-off hole (so) by the spin-orbit splitting energy ∆so. Thus the valence band edges at
Γ and the conduction band edges at Γ, L and X are determined as follows

EΓ
c = Ev,av + max(E1, E2) + EΓ

gap (3.95)

ELc = Ev,av + max(E1, E2) + ELgap (3.96)

EXc = Ev,av + max(E1, E2) + EXgap (3.97)

Ehh = Ev,av + E1 (3.98)

Elh = Ev,av + E2 (3.99)

Eso = Ev,av + E3, (3.100)
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Figure 3.1.: Conduction (Ec) and valence band (Ev) alignment in a zinc blende semicon-
ductor. The heavy hole (hh), light hole (lh) and split-off hole (so) band edges
are obtained by adding the spin-orbit Hamiltonian to the average valence
band edge energy Ev,av.

where we use the average of the three valence bands Ev,av as our reference point (Fig. 3.1).
In fact, this reference is the average valence band edge energy in the absence of spin-orbit
(and crystal field) splitting. This definition is valid for both zinc blende and wurtzite
and is used to specify the valence band offset between different materials on a global
scale [VdW89]. Very often, however, the valence band offset is instead defined as the
difference in energy with respect to the highest hole band edges between two materials.

Modified k · p parameters In a 6 × 6 k · p Hamiltonian all conduction bands are
considered as a perturbation. In 8 × 8 k · p theory, the lowest conduction band is now
included in the k · p Hamiltonian and not treated as a perturbation any more. Thus
the related material parameters are different in 6× 6 k ·p and 8× 8 k ·p Hamiltonians.
Therefore, the L, M , N+, N− parameters in eq. (3.11) must be replaced by the modified
DKK parameters L′, M ′, N+′, N−′ and N ′ because the latter include the now required
correction term

L′ = L+
h̄2

2m0

EP

Egap
= L+

P 2

Egap
(3.101)

M ′ = M (3.102)

N+′ = N+ +
h̄2

2m0

EP

Egap
= N+ +

P 2

Egap
(3.103)

N−′ = N− (3.104)

N ′ = N +
h̄2

2m0

EP

Egap
= N +

P 2

Egap
. (3.105)

The correction term is temperature dependent because obviously the band gap depends
on temperature (see Appendix B.2 and Appendix B.3).
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The modifications of the L1, L2, N+
1 , N+

2 , N1 and N2 parameters for wurtzite have
to be done in a similar manner [AO00], whereas the M1, M2, M3, N−1 , N−2 parameters
remain unchanged as in the case of zinc blende

L′1 = L1 +
P 2

1

Egap
(3.106)

L′2 = L2 +
P 2

2

Egap
(3.107)

N+′
1 = N+

1 +
P 2

1

Egap
(3.108)

N+′
2 = N+

2 +
P1P2

Egap
(3.109)

N ′1 = N1 +
P 2

1

Egap
(3.110)

N ′2 = N2 +
P1P2

Egap
. (3.111)

For the RSP parameters the modifications read [AO00]

A′1 = A1 +
EP2

Egap
(3.112)

A′2 = A2 (3.113)

A′3 = A3 −
EP2

Egap
(3.114)

A′4 = A4 +
1

2

EP1

Egap
(3.115)

A′5 = A5 +
1

2

EP1

Egap
(3.116)

A′6 = A6 +

√
2

2

√
EP1EP2

Egap
, (3.117)

where EP1 refers to the orientation parallel and EP2 perpendicular to the hexagonal c
axis.

For zinc blende, it holds for the modified Luttinger parameters [PB66]

γ′1 = γ1 −
1

3

EP

Egap
(3.118)

γ′2 = γ2 −
1

6

EP

Egap
(3.119)

γ′3 = γ3 −
1

6

EP

Egap
(3.120)

κ′ = κ− 1

6

EP

Egap
. (3.121)
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Finally, we list the modifications of the F , G, H1, H2 parameters

F ′ = F +
h̄2

2m0

EP

Egap
= F +

P 2

Egap
(3.122)

G′ = G (3.123)

H ′1 = H1 (3.124)

H ′2 = H2, (3.125)

and Foreman’s σ, π and δ parameters

σ′ = σ − 1

6

EP

Egap
(3.126)

π′ = π (3.127)

δ′ = δ. (3.128)

For wurtzite, the latter are modified to

σ′ = σ − 1

6

EP1

Egap
(3.129)

σ′z = σz −
1

6

EP2

Egap
(3.130)

σ′xz = σxz −
1

6

√
EP1EP2

Egap
(3.131)

π′ = π (3.132)

π′z = πz (3.133)

δ′ = δ. (3.134)

I have implemented full flexibility for the user into the nextnano3 software with respect
to choice of k·p parameters. The user can either specify the 6×6 k·p L, M , N parameters
or the Luttinger parameters γ1, γ2, γ3. The user can decide whether he wants to include
κ or if he wants to approximate κ. The L′, M ′, N ′ parameters for 8 × 8 k · p can be
specified directly, or calculated automatically from the 6 × 6 k · p DKK or Luttinger
parameters taking into account the temperature dependent band gap. Additionally, the
modified Luttinger parameters for 8×8 k ·p (with or without κ′) can be entered instead.
The user can specify the S parameter, or the program calculates S from the temperature
dependent band gap and the effective electron mass. By default, a rescaling of the k · p
parameters is not performed by nextnano3, in contrast to nextnano++. However, the
user can choose to rescale the parameters automatically to S = 0 or S = 1 (eq. (3.158)
or eq. (3.158), respectively). This is sometimes necessary in order to avoid spurious
solutions (see Section 3.2). In any case, a consistent set of all k · p parameters (DKK,
Luttinger, Foreman, ...) are written out, also the ones not specified, including the 6× 6
parameters if 8×8 parameters are specified. This gives as much transparency as possible
to the user, especially when comparing own results with calculations and k·p parameters
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Chapter 3. Multi-band k · p envelope function approximation

of published work by others. Additionally, the bulk k ·p dispersion along the [001], [110]
and [111] directions is part of the output, so that the user can check whether the energy
dispersion for a particular choice of k · p parameters is meaningful, e.g. if the curvature
of the energy dispersion has the correct sign (see Fig. 10.1). This is important to check
for e.g. alloys, if strain is present or for rescaled k ·p parameters, or if spurious solutions
are present. Finally, we also output the calculated A, B, C parameters that have been
used by Dresselhaus, Kip and Kittel [DKK55]. They are of no practical relevance for
our software because they only apply along certain symmetry directions in the Brillouin
zone where the energies are twofold degenerate, e.g. along the line from L to Γ to X. The
DKK (Dresselhaus–Kip–Kittel) equation [DKK55] for the energy dispersion of the holes
is valid only for energies small compared to the spin-orbit splitting energy. Nevertheless,
they provide insight into the choice of k · p parameters. From these parameters, the
energy dispersion for the heavy and light holes are obtained

Ehh(k) = Ak2 +
√
B2k4 + C2

(
k2
xk

2
y + k2

yk
2
z + k2

zk
2
x

)
(3.135)

Elh(k) = Ak2 −
√
B2k4 + C2

(
k2
xk

2
y + k2

yk
2
z + k2

zk
2
x

)
. (3.136)

The anisotropy is caused by C. Therefore the constant energy surfaces in reciprocal
k space are ‘warped spheres’ and show a cubic symmetry. This deviation from the
spherical symmetry is a direct consequence of the cubic crystal system. If C is zero,
then the energy dispersion is isotropic (spherical approximation). If both, B and C are
nonzero, the dispersion is nonparabolic. Both, A and B are negative with diamond being
an exception, according to Yu and Cardona [YC99], although there is still uncertainty
in the choice of parameters for diamond, see Section 10.1. A, B and C are related to
the Luttinger and DKK parameters as follows

A = −γ1
h̄2

2m0
=
L+ 2M

3
+

h̄2

2m0
(3.137)

B = −2γ2
h̄2

2m0
=
L−M

3
(3.138)

C2 = 12
(
γ2

3 − γ2
2

)( h̄2

2m0

)2

=
1

3
(N2 − (L−M)2). (3.139)

Usually, the A, B, C and L, M , N parameters are given in h̄2

2m0
units, and the Luttinger

parameters in dimensionless units although some authors use different conventions, e.g.
atomic units where h̄2

2m0
leads to a factor of 1/2 in the equations. Also opposite sign

conventions for A, B, C are used, thus very often only |A|, |B|, |C| are listed, and in fact
only the sign of A, which is obvious, is relevant. If A and B are defined as in eq. (3.135)
and eq. (3.136), it is clear that A must be negative, but the signs for B and C are not
determined from B2 or C2, respectively. Therefore, for the inverse relations it is not so
obvious to assign the correct sign to γ2 and γ3, as the signs for B and C are not well
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defined

γ1 = −A2m0

h̄2 (3.140)

γ2 = −B
2

2m0

h̄2 (3.141)

γ2
3 =

(
B2

4
+
C2

12

)(
2m0

h̄2

)2

. (3.142)

Usually for all cubic group IV, III-V and II-VI materials that we included in the
nextnano database, all three 6 × 6 k · p Luttinger parameters are positive. The only
exceptions from this rule, that we are aware of, are the group IV materials C (diamond),
Sn and the II-VI materials HgS, HgSe, HgTe. For all these materials apart from diamond
all three Luttinger parameters are negative. Apart from diamond, all have an unusual
band structure having either a zero band gap or a negative band gap. For diamond
several sets of Luttinger parameters exist (see Section 10.1). The signs of the Luttinger
parameters vary among these sets. A possible reason for this is, to our believe, that
some of the Luttinger parameters have been calculated from A, B and C.

It is often convenient to know estimates of effective masses in particular directions
or averaged over all directions. They can be obtained by projection of the angular
momentum operators onto a coordinate system that contains the desired direction.
Within nextnano3, we write out the effective heavy and light hole masses along the
[001], [110] and [111] directions. They can be extracted from the Luttinger parameters
[HF63, VMRM01]

m0

m
[001]
hh

= γ1 − 2γ2 =
2m0

h̄2 (−A+B) (3.143)

m0

m
[001]
lh

= γ1 + 2γ2 =
2m0

h̄2 (−A−B) (3.144)

m0

m
[111]
hh

= γ1 − 2γ3 (3.145)

m0

m
[111]
lh

= γ1 + 2γ3 (3.146)

m0

m
[110]
hh

= γ1 −
1

2
(γ2 + 3γ3) (3.147)

m0

m
[110]
lh

= γ1 +
1

2
(γ2 + 3γ3) . (3.148)

Also the isotropic, averaged heavy, light and split-off hole masses can be derived. For
the latter, two approximations are commonly employed [YC99, VMRM01]. The first
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one is

m0

mhh,av
=

2m0

h̄2

(
−A+B

(
1 +

2C2

15B2

))
(3.149)

m0

mlh,av
=

2m0

h̄2

(
−A−B

(
1 +

2C2

15B2

))
(3.150)

m0

mso,av
= γ1 −

EP∆so

3Egap(Egap + ∆so)
. (3.151)

The second one uses instead of eq. (3.149) and eq. (3.150)

m0

mhh,av
=

2m0

h̄2

(
−A+

2

5
B

(
1 +

3

2

√
1 +

4C2

9B2

))
(3.152)

m0

mlh,av
=

2m0

h̄2

(
−A− 2

5
B

(
1 +

3

2

√
1 +

4C2

9B2

))
. (3.153)

Both approximations become identical if C = 0, corresponding to negligible warping
[YC99].

Finally, we remark that it is sometimes useful to compare the numerical implemen-
tation of the k · p Hamiltonian to analytical or numerical single-band (‘effective-mass’)
results at k = 0, where the energy dispersion is isotropic and parabolic, and described
by an effective mass m. By setting EP = 0 eV, one decouples the electrons from the
holes. Then the 8 × 8 k · p Hamiltonian effectively becomes a 6 × 6 k · p Hamiltonian
for the holes and a single-band Hamiltonian for the electrons, the latter being twofold
degenerate due to spin. To be consistent, one then has to use the 6× 6 k ·p parameters
for the holes (L, M , N+, N− rather than L′, M ′, N+′, N−′), and the parabolic single-
band effective mass me of the electron. This is achieved by setting S = m0

me
. To obtain a

dispersion for the holes that is both isotropic and parabolic, it requires us to set L = M ,
N+ = 0 and N− = 0 which implies N = 0. This is equivalent to setting γ2 = γ3 = 0,
and κ = −1

3 , or setting F = G and H1 = H2 = 3
2F . For instance, if we want to achieve

a dispersion corresponding to an effective mass of mh = 0.5m0 for each of the three hole
bands, where the split-off band is separated from the degenerate heavy and light hole
band energies by the spin-orbit splitting energy ∆so, our k ·p parameters must be given
by

• γ1 = m0
mh

= 2, γ2 = γ3 = 0, κ = −1
3 or

• L = M = (−γ1 − 1) h̄2

2m0
= −3 h̄2

2m0
, N+ = 0, N− = 0 or

• F = G = L
3 = − h̄2

2m0
, H1 = H2 = L

2 = −3
2
h̄2

2m0
.

• (For the Foreman parameters it follows σ = δ = 1/6 and π = 1/4. However, they
implicitly assume H2 = 0. This is definitely not the case here because now H2 6= 0
and its contribution is even larger than the one of F or G.)
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These conditions are valid for bulk. They are also valid for heterostructures because
we specified four parameters, except for the Foreman parameters. For bulk (without
magnetic field), it is sufficient to specify only three parameters, and thus we can also
use the Foreman parameters. To obtain an isotropic dispersion for the holes, it requires
us to set N = L−M , i.e. N+ = L− 2M and N− = M (spherical approximation). This
is equivalent to setting γ2 = γ3, leading to

κ = −1

6
(L− 3M)

2m0

h̄2 −
1

3
= −1

3
(γ1 − 5γ2 + 2) . (3.154)

For instance, setting M = 0, N = L, i.e. N+ = L and N− = 0 yields an isotropic
dispersion. This is equivalent to γ2 = γ3 = 1

2(γ1 + 1) = −1
6L

2m0

h̄2
. The spherical

approximation is also obtained by replacing γ2 and γ3 by

γ̂ =
1

5
(2γ2 + 3γ3). (3.155)

Replacing γ2 and γ3 by

γ̃ =
1

2
(γ2 + γ3), (3.156)

yields the axial approximation, which is characterized by a cylindrical symmetry of the
Hamiltonian, i.e. axial symmetry in the (x, y) plane.

If it holds L = M (or N = 0), i.e. N+ = −M = −L and N− = M = L, the hole
dispersion is both isotropic and parabolic. This is equivalent to setting γ2 = γ3 = 0,
leading to

κ =
1

3
L

2m0

h̄2 −
1

3
= −1

3
(γ1 + 2) = −F 2m0

h̄2 −
1

3
= 6σ − 1

3
. (3.157)

If γ1 is given, the four sets of parameters are related through L = (−γ1−1) h̄2

2m0
, F = −1

3L

and σ = L
18

2m0

h̄2
. In this case it holds G = −2F = 2

3L, H1 = −3F = L and H2 = 0.

The consistent Foreman parameters are δ = −2σ = −1
9L

2m0

h̄2
and π = −3σ = −1

6L
2m0

h̄2
,

implicitly assuming H2 = 0. For these conditions it further holds A = −γ1
h̄2

2m0
, and

B = C2 = 0.
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Chapter 3. Multi-band k · p envelope function approximation

Summary The zinc blende 8×8 k ·p Hamiltonian can be parametrized by the following
10 quantities,

• the band gap energy Egap at the Γ point,

• the spin-orbit split-off energy ∆so (∆2, ∆3, crystal field splitting ∆1),

• the optical momentum matrix element EP (EP1, EP2),

• the energy of the average of the three valence band edges Ev,av,

• the conduction band mass at the Γ point me (me,‖, me,⊥),

• the Luttinger parameters γ1, γ2, γ3, κ (A1, A2, A3, A4, A5, A6, A7),

• the inversion asymmetry parameter B (B1, B2, B3),

where the 19 wurtzite parameters are given in parenthesis if different from the zinc
blende ones. To account for strain effects 4 additional parameters are required for zinc
blende, and 7 for wurtzite (see Ref. [Hac02] for details),

• the hydrostatic conduction band deformation potential aΓ
c (aΓ

c,‖, a
Γ
c,⊥),

• the valence band deformation potentials av,av, b, d (d1, d2, d3, d4, d5, d6).
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3.2. Spurious solutions

The numerical discretization of the single-band and k·p Schrödinger equations have been
discussed in detail in Refs. [Hac02, And04]. Everybody that numerically implements a
k·p Hamiltonian will sooner or later encounter ‘spurious solutions’. These are unphysical
wave functions that look strange, e.g. if they oscillate very strongly or if they have spikes
at material interfaces. Occasionally, their energies are even lying within the forbidden
band gap. These solutions might arise from incorrect operator ordering (i.e. incorrect
discretization) or from the used k · p parameters. A detailed discussion on spurious
solutions can be found in Ref. [And04]. Veprek et al. [VSW07] related the spurious
solution problem to the loss of ellipticity of the differential operator. They derived a
criteria that must be fulfilled by the k · p parameters to establish ellipticity. For all
materials used in a calculation, nextnano3 automatically outputs this information so
that one can check if this criteria is fulfilled. Foreman [For97] suggested to get rid of
spurious solutions by setting S = 0 (eq. (3.62)). This requires a rescaling of the EP

parameter

EP =

(
m0

m∗c

)
Egap (Egap + ∆so)

Egap + 2
3∆so

, (3.158)

in order to still get the correct conduction band dispersion. Now EP is fitted to the
electron mass, rather than having S as the fitting parameter. Essentially this implies
that remote-band contributions cancel the free-electron term. An alternative is to set
S = 1 which corresponds to entirely neglecting remote bands. This is the default imple-
mentation of the nextnano++ software. The appropriate equation for EP then reads

EP =

(
m0

m∗c
− 1

)
Egap (Egap + ∆so)

Egap + 2
3∆so

. (3.159)

To be consistent, the modified DKK (eq. (3.101), eq. (3.103), eq. (3.105)) or the mod-
ified Luttinger parameters (eq. (3.118), eq. (3.119), eq. (3.120), eq. (3.121)) have to be
recalculated using the new value of EP. Analogous equations for the wurtzite case can
be obtained from eq. (3.63) and eq. (3.64).

According to Andlauer [And04], for (L′ + 1)S < 0 no oscillatory spurious solutions
exist. He discussed spurious solutions for one-dimensional structures in Ref. [And09].
Here we give the details of a simple two-dimensional example so that anyone interested
in spurious solutions can reproduce these results. We have verified that nextnano3,
nextnano++ and the nextnano.net software produce the same spurious results for this
example. A quadratic InAs quantum wire of dimensions 5 nm × 5 nm is surrounded by
a GaAs barrier of 10 nm thickness. The k · p parameters (without rescaling) for InAs
are γ1 = 20.0, γ2 = 8.5, γ3 = 9.2, mc = 0.026m0, ∆so = 0.39 eV, Egap = 0.417 eV,
EP = 28.8 eV and the ones for GaAs are γ1 = 6.98, γ2 = 2.06, γ3 = 2.93, mc = 0.067m0,
∆so = 0.341 eV, Egap = 1.519 eV, EP = 21.5 eV. The actual parameters that were
used have been rescaled so that S = 1 (eq. (3.159)) following the suggestions described
above. For the valence band offset between InAs and GaAs we took EVBO

v,av = 0.044 eV.
This is the offset with respect to the average energy of all three hole band edges. The
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Chapter 3. Multi-band k · p envelope function approximation

Figure 3.2.: Probability density ψ2
1(x, y) of the ground state of a square InAs nanowire.

Also shown are horizontal and vertical slices through the center.

Figure 3.3.: Probability density ψ2
2(x, y) of the first excited state of a square InAs

nanowire. This spurious solution shows a very pronounced oscillatory be-
havior. The black squares indicate zero probability density.
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dimension N of the 8× 8 k ·p Hamiltonian matrix is N = 6728 corresponding to a total
of 29× 29 grid points with a grid spacing of 1.0 nm in each direction. Figure 3.2 shows
the probability density ψ2

1(x, y) of the ground state of this square InAs nanowire. While
the 2D plot looks kind of okay, the horizontal and vertical slices through the center
reveal some kinks in the density which should not be there. The energies of the ground
state at E1 = 0.138 eV (twofold degenerate) and of the excited state at E2 = 0.220 eV
(fourfold degenerate) are within a reasonable range. Figure 3.3 shows the probability
density ψ2

2(x, y) of the first excited state of this square InAs nanowire. This spurious
solution is oscillating very strongly which can easily be seen. The black squares in the
2D plot indicate zero probability density.

It is very challenging to develop a self-consistent k · p Schrödinger–Poisson–current
solver that will detect automatically spurious solutions if the eigenenergies are within
a reasonable range (i.e. not within the band gap) and if relevant states that contribute
to the density (e.g. the ground state in our example) show a ‘reasonable’ probability
density, especially if the band edge profile is complicated due to alloy profiles, doping
profiles, strain or piezoelectric fields. Rather than having a convenient ‘black-box tool’,
the user must always check if the wave functions are reasonable. There are also situations
possible where the probability density looks perfectly okay but the wave function itself is
spurious [TES]. In this case one is probably not able to recognize the spurious solution
by looking at the density, band edge profile or energy levels. However, quantities that
depend on the correctness of the wave functions, like matrix elements or calculated
optical absorption spectra will likely show strange results. It is challenging to detect
this. Recent progress on the topic of spurious solutions has been made by Eißfeller and
Vogl. They developed a spurious-solution-free real-space multi-band envelope function
approach that they termed ‘symmetry adapted finite element method’ [EV11].

3.3. Energy levels in unipolar devices based on intersubband
transitions

Figure 3.4 shows a comparison between the widely used single-band effective-mass model
and the more sophisticated 8-band k · p model for the electron eigenstates of a single
(a), double (b) and triple quantum well (c). The geometry, material parameters and
doping profiles of these structures are based on Ref. [SCF94] with the exception of the
k ·p parameters which are taken from Ref. [VMRM01] including bowing terms. The QW
material consists of In0.53Ga0.47As and the barrier material of Al0.48In0.52As. Their alloy
contents have been chosen so that both materials are lattice-matched to the underlying
InP substrate. Thus we can safely neglect strain in this example. The structures are
weakly doped, so band bending is hardly recognizable. The band profiles have been
obtained by a self-consistent single-band Schrödinger–Poisson calculation and were used
as the potential profiles for the subsequent k · p calculation. One can clearly see that
for the ground state, the single-band approximation is acceptable. However, the single-
band model overestimates intersubband transition energies because for the states further
above the conduction band edge, the assumption of parabolic dispersion becomes inac-
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Chapter 3. Multi-band k · p envelope function approximation

Figure 3.4.: Lowest electron eigenstates of a single (a), double (b) and triple quantum
well (c) calculated with an 8-band k · p model (thick black lines). The thin
gray lines show the eigenstates obtained with a single-band effective mass
model. Only for the ground state, these two models are in good agreement
but differ significantly for the higher-lying states. In all three cases, the
ground state is lying below the Fermi level EF = 0 eV and thus dominates
the charge density. The calculated transition energies are indicated.
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3.3. Energy levels in unipolar devices based on intersubband transitions

curate. Consequently, for unipolar devices that are based on intersubband transitions
like quantum cascade lasers (QCL) or quantum well infrared photodetectors (QWIP), a
model that takes into account the nonparabolicity of the effective mass is mandatory to
get correct energies for the higher-lying states. Our calculated energies for intersubband
transitions are in good agreement with the experimental measurements and theoretical
calculations of Ref. [SCF94]. For the triple quantum well, our values for the intersub-
band transition energies of E12 = 118 meV, E13 = 261 meV and E14 = 370 meV compare
well with both, the calculated values of Sirtori et al. (116 meV, 257 meV and 368 meV)
and their measured values (compare with absorption curve in Fig. 5 of Ref. [SCF94]).
For the double quantum well our results are E12 = 150 meV and E13 = 267 meV (Sir-
tori: 150 meV and 271 meV) and for the single quantum well the transition energy is
E12 = 255 meV (Sirtori: 258 meV). For strained structures where the nonparabolicity
and anisotropy of the effective masses can change dramatically, the deviations between
the single-band and the k · p model are even more pronounced.

A common procedure for estimating the probability of intersubband transitions in
QCLs or QWIPs between initial state i and final state f , is to evaluate the intersubband
dipole moments Mfi

|Mfi| =
∣∣∣∣∫ ψ∗f (x)pxψi(x)dx

∣∣∣∣ =

∣∣∣∣−ih̄∫ ψ∗f (x)
d

dx
ψi(x)dx

∣∣∣∣ , (3.160)

where the structure is assumed to be grown along the x direction, and ψf and ψi are
the envelope wave functions involved in the transitions of interest. In order to model
and optimize QCL structures, the four main outputs of a single-band Schrödinger solver,
typically used in the QCL community, are wave functions, energy levels, intersubband
transition matrix elements, and LO phonon scattering rates (lifetimes) which are im-
plemented in nextnano3. The latter is based on Ref. [FB89] and is described in detail
in Ref. [Sca02]. Only recently, more sophisticated approaches based on the nonequilib-
rium Green’s function method (NEGF) have been developed [Kub09], that gain much
further insight into relevant QCL operation principles, like e.g. the concrete influence
of LO phonon scattering and population inversion. The NEGF approach is sketched
in Ref. [BKV08]. An example of a quantum cascade structure is shown in Fig. 3.5.
The SiGe–Si design is based on Ref. [DDG+00]. The valence band edges of the heavy
hole and light hole at an electric field of 50 kV/cm are indicated by the black and red
thin solid lines. In Si, they are degenerate whereas in SiGe they are nondegenerate
due to strain with respect to a Si substrate. We solved the 6 × 6 k · p Hamiltonian
including strain. The probability densities of the calculated eigenstates are shifted by
their energies. Most of the states are shown in thin gray lines. Some of the states of
the injector and collector regions are shown in color, highlighting the periodicity of the
structure. The calculated electronic transition energy between the upper state (labeled
with HH1, thick black solid line) and the lower state (HH2, thick red solid line) of the
vertical transition in the active SiGe QW of width 4 nm is 124.5 meV, which matches
surprisingly well to the experimental result of 125 meV [DDG+00]. We emphasize that
we used the default parameters of the nextnano3 database, so there was no fitting of
material parameters to match the experiment. This is indeed remarkable, because a lot
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Chapter 3. Multi-band k · p envelope function approximation

of material parameters were involved, namely lattice constants and associated temper-
ature dependence constants (T = 50 K in this example), DKK parameters, spin-orbit
splitting energies, elastic constants, and valence band deformation potentials of Si and
Ge, as well as the valence band offset between Si and Ge. Additionally, in the quantum
wells, the respective linearly interpolated material parameters for the Si0.68Ge0.32 and
Si0.79Ge0.21 alloys were involved.
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Figure 3.5.: Probability densities, shifted by their eigenenergies, and valence band edges
(black and red thin solid lines) of a strained SiGe–Si quantum cascade struc-
ture. The vertical transition in the active SiGe QW takes place between the
HH1 state (upper state, thick black solid line) and the HH2 state (lower
state, thick red solid line).

3.4. Spin-orbit coupling in silicon quantum dots

It is difficult to compare numerical results of a three-dimensional k · p calculation to
analytical results due to its complexity. Thus one needs simple model systems where
one can compare the results of different numerical implementations against each other.
In this example we demonstrate the effect of spin-orbit coupling on the degeneracy of
the eigenstates of a spherical silicon quantum dot (QD) with a diameter of 5 nm. We
solve the 6 × 6 k · p Schrödinger equation for the hole eigenstates where we set the
spin-orbit coupling energy either to ∆so = 44 meV or to zero. For simplicity we assume
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Figure 3.6.: Hole energy levels of a spherical silicon quantum dot of diameter 5 nm with
(blue squares) and without (red squares) spin-orbit coupling calculated with
the k · p method. The degeneracies of the levels are indicated by numbers.

infinite barriers at the QD boundaries which is a reasonable approximation as silicon
nanocrystals are typically surrounded by a SiO2 shell with a large valence band offset
around 5 eV. The valence band edge energy inside the QD has been set to be 0 eV. The
DKK parameters that have been used are

L = −6.8
h̄2

2m0
, M = −4.43

h̄2

2m0
, N = −8.61

h̄2

2m0
, (3.161)

that correspond to the Luttinger parameters γ1 = 4.22, γ2 = 0.39 and γ3 = 1.44. They
represent the anisotropy of the hole dispersion in silicon which is rather strong.

Figure 3.6 shows the energy spectrum of the spherical Si QD with (red squares) and
without (blue squares) spin-orbit splitting. Without splitting there is a sixfold degen-
eracy of the ground state. Spin-orbit splitting reduces this degeneracy to fourfold. In
general, each state is twofold degenerate due to spin. Additional geometric degeneracies
arise due to the spherical symmetry of the QD. According to Burdov [Bur02] one can cal-
culate the ground state energy for this particular system from the L and M parameters
with a high degree of accuracy using

E1 = − h̄2

2mh

π2

R2
(3.162)

mh =
3m0

(2m0

h̄2
L+ 1) + 2(2m0

h̄2
M + 1)

=
3m0

2m0

h̄2
(L+ 2M) + 3

, (3.163)
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Figure 3.7.: Hole energy levels of a spherical silicon quantum dot (‘artificial atom’) of
diameter 5 nm for heavy (black squares), light (red squares) and split-off
holes (blue squares) calculated with the single-band Schrödinger equation.
The degeneracies of the levels are indicated by the standard atomic orbital
notation known from the electron configuration of atoms.

where R is the radius of the sphere and mh = −0.237m0 is the isotropic hole mass
for our choice of parameters with the minus sign for the hole mass indicating that the
dispersion in the bulk material is bent downwards. The calculated value for the ground
state energy E1 = −0.254 eV is close to our numerical value of −0.237 eV using the 6×6
k ·p method. Burdov writes down eq. (3.163) without the free electron term ‘+1’ which
is overall consistent within their article but their parameters [Bur02] are unfortunately
incorrect. The parameters given in eq. (3.161) which are derived from the Luttinger
parameters of Lawaetz [Law71] are the correct ones whereas the parameters termed L and
M in Burdov’s article are actually the LLK and MLK parameters (eq. (3.33), eq. (3.34)).

Thus they have to be corrected by ‘+1’, i.e. LLK = −5.8 h̄2

2m0
and MLK = −4.43 h̄2

2m0

would have been the correct values to be consistent within their article (see also the
discussion on the different and thus confusing definitions of the L and M parameters
in Section 3.1). Consequently, their calculated hole mass of mh = −0.19m0 has to be
corrected by our value of mh = −0.237m0.

For comparison, the results of the single-band calculations with isotropic heavy, light
and split-off hole masses are shown in Fig. 3.7 for the same quantum dot. Here, each
state is twofold degenerate due to spin but only one of these two energy levels is shown.
The numbering of the horizontal axis, however, is taking spin into account. Figure 3.6
shows the lowest 60 eigenvalues. This numbering corresponds roughly to the first 20
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3.5. Type-III broken-gap band alignment – HgTe–CdTe quantum well

eigenvalues for each hole species in Fig. 3.7. The degeneracies of the levels are indicated
by the standard atomic orbital notation known from the electron configuration of atoms
(1s, 2p, 3d, 2s, 4f , ...). From that labeling it becomes clear why quantum dots are
termed ‘artificial atoms’. In contrast to real atoms, their energy levels can be tuned to
match technologically relevant energy regimes, while showing qualitatively similar energy
spectra as atoms, at least for spherical dots. Self-organized quantum dots, however, are
mainly showing an energy spectrum similar to a two-dimensional harmonic oscillator as
their confinement potential in the plane perpendicular to the growth direction can often
be approximated by a parabolic confinement (see also the discussion in Subsection 2.3.1).
The fivefold degeneracy of the d levels and the sevenfold degeneracy of the f level is
not reproduced well because the ideal shape of the spherical QD is approximated by a
QD discretized on a rectangular grid having cubic symmetry. Obviously, the numerical
single-band results are very poor in comparison to the k · p results with the exception
of the ground state energy E1 = −0.265 eV.

We have verified that both the nextnano3 and the nextnano++ software lead to the
same k ·p eigenvalue spectrum (not shown). For both, we used a cuboidal shaped quan-
tum region although nextnano3 is capable of using arbitrarily shaped quantum regions,
e.g. a spherical quantum region which is numerically more efficient as less quantum grid
points are needed. If m grid points can be excluded from the quantum region due to
an optimal choice of quantum region shape, the dimension N of the 6 × 6 k · p matrix
reduces to N − 6m.

For this particular spherical geometry, the eigenvalues are highly degenerate, not only
due to spin but also due to geometry. This sometimes causes problems for certain eigen-
value solvers as they might miss some of these degenerate eigenvalues. For instance,
our implementation of the Arnoldi method that uses Chebyshev polynomials as precon-
ditioner [TZA+06] missed some degenerate eigenvalues. For this reason it is of great
advantage if any numerical software has redundancy in terms of several eigensolvers,
where one can choose from, in order to check results for consistency and accuracy, as
well as performance. The ARPACK eigenvalue solver [LSY98] took around 6 minutes
for 60 eigenvectors where the dimension of the matrix was N = 55566 corresponding to
21× 21× 21 = 9261 grid points with a grid resolution of 0.25 nm in each direction.

3.5. Type-III broken-gap band alignment – HgTe–CdTe
quantum well

HgTe is an interesting material for studies of the intrinsic spin Hall effect [BRN+10] and
the quantum spin hall effect [BHZ06], or spin splitting effects in general due to its large
Rashba-type spin-orbit splitting. HgTe is a zero-gap semiconductor that can be embed-
ded between CdTe layers to form a HgTe–CdTe quantum well (QW) heterostructure
which shows an interesting type-III band alignment where the valence band edge in the
HgTe QW lies above its conduction band edge. Due to this band alignment it is not
possible to apply a single-band Hamiltonian. Thus a k · p or tight-binding approach is
required. Large HgTe quantum wells have an inverted band structure where the highest
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Figure 3.8.: Probability density of the lowest electron (e1) and highest hole (h1) eigen-
states of a 6.5 nm HgTe quantum well calculated with the k · p method. In
the k · p method, the eigenstates correspond to envelope functions. The
conduction (black solid line) and valence band edges (red solid line) form a
type-III band alignment.

hole state (h1) lies above the lowest electron state (e1). For smaller quantum well widths,
the quantum confinement increases and below a critical well width, the band structure
becomes normal again with the electron state above the hole state. Figure 3.8 shows the
square of the calculated k · p wave functions of e1 and h1 at the crossover well width at
6.5 nm. Increasing the well width shifts the e1 state below the h1 state. This is shown in
Fig. 3.9 where the probability density of the relevant states have been calculated with
the empirical tight-binding method for a 7.8 nm HgTe quantum well. One can nicely see
that in the tight-binding method the envelope of the probability density corresponds to
k ·p envelope functions. For the sp3d5s∗ tight-binding [JSBB98] calculations, we used a
valence band offset of 0.4 eV. For the k · p calculations, we took exactly the same ma-
terial parameters as in Ref. [NPJJ+05], including their valence band offset of 0.570 eV.
In both cases, we neglected strain effects for simplicity.

Figure 3.10 shows the energies of the electron and hole states in a HgTe–CdTe quantum
well as a function of HgTe QW width calculated with the 8 × 8 k · p method. The
crossover of normal to inverted band structure occurs around 6.5 nm and corresponds
to the situation in Fig. 3.8. The dashed lines indicate the energetic positions of the
conduction and valence band edges of the HgTe QW. Our results for the crossover width
are in good agreement to the calculations of Novik et al. [NPJJ+05], and also close to
tight-binding calculations [CST].

I have implemented Peter Vogl’s TIGHTEN superlattice code into the nextnano3

software package, so that it is now more convenient to perform systematic comparisons
between the k · p and the tight-binding method for quantum wells.
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Figure 3.9.: Probability density of the lowest electron (e1) and highest hole (h1) eigen-
states of a 7.8 nm HgTe quantum well calculated with the empirical tight-
binding method.
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Figure 3.10.: Calculated energies of the electron and hole states in a HgTe–CdTe quan-
tum well as a function of HgTe QW width (8 × 8 k · p). The crossover of
normal to inverted band structure occurs around 6.5 nm and corresponds
to the situation in Fig. 3.8. The dashed lines indicate the conduction and
valence band edges of the HgTe QW.
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3.6. Type-II broken-gap band alignment – InAs–GaSb
superlattice

Type-II broken gap heterostructures have the unusual property that in one material the
lowest conduction band edge energy lies below the highest valence band edge energy of
the material next to it. Consequently, they cannot be modeled by a single-band model,
similar as the type-III structures of the previous section. There will be a strong coupling
of the electron and hole wave functions, in some cases even a very strong wave function
hybridization, making it eventually impossible to distinguish between electron and hole
states if the lowest ‘conduction’ band state lies below the highest ‘valence’ band state
[GYFE95, ZYC01, AV09]. In this section, we calculate the energy dispersion of an InAs–
GaSb superlattice along the in-plane directions k‖ and along the superlattice direction
kSL by two different methods, the 8 × 8 k · p and the sp3d5s∗ [JSBB98] tight-binding
method. Such structures are relevant for infrared detectors or to study semimetal–
semiconductor phase transitions. Remarkably, for certain layer widths the in-plane sub-
band dispersion becomes linear, indicating vanishing effective masses [AV09]. In such
a situation, the band structure of the InAs–GaSb superlattice is similar to the band
structure around the Dirac point in graphene (see Section 9.1), where a two-dimensional
gas of massless Dirac fermions is formed. It is interesting to notice that such properties
can also be achieved by growing InAs–GaSb superlattices. However, such topics are not
part of our study here.

First, we examine the bulk band structure of InAs along the [110] and [100] directions
in k space at zero temperature. We compare our 8 × 8 k · p model to the single-
band effective mass dispersions and to the more sophisticated sp3d5s∗ tight-binding
model which allows one to calculate the bulk band structure in the whole Brillouin zone
accurately also for higher-lying conduction bands, e.g. the ones with minima at the X
points in the Brillouin zone. The latter is also possible for a k · p model where more
than eight bands are included [RAF04]. Figure 3.11 shows the results. The parabolic
model (dotted lines) is reasonable only for small k vectors around the Γ point. We used
effective masses of me = 0.023m0, mhh = 0.41m0, mlh = 0.026m0 and mhh = 0.14m0 for
the electron, heavy hole, light hole and split-off hole, respectively. The energies for the
band gap Egap = 0.417 eV and for the split-off energy ∆so = 0.38 eV, which are obtained
from experiment, are the same in all models and are indicated by the arrows. For the
parabolic and the k ·p model, these values are input parameters while the tight-binding
parameters are fitted to yield these values. InAs is a material where the band gap and
the split-off energy are of similar energy. This is typically not the case for the group IV or
most other III-V materials. Along the [100] direction the energies are twofold degenerate
in all models. Due to symmetry arguments, also along the [111] directions the energies
are twofold spin degenerate (not shown). However, this spin degeneracy is lifted along
the [110] direction for both the k ·p (black solid lines) and the tight-binding model (red
dashed lines). For both, intersubband transitions in InAs quantum wells and density
calculations, where the carriers are located mainly around the Gamma point, only small
k values are relevant. For small k values, the k · p energy dispersion is reasonably close

68



3.6. Type-II broken-gap band alignment – InAs–GaSb superlattice

- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

E g a p

k 1 0 0  ( A n g s t r o m - 1 )k 1 1 0  ( A n g s t r o m - 1 )

 

 

en
erg

y (
eV

)  s i n g l e - b a n d
 8 x 8  k . p
 t i g h t - b i n d i n g

D s o

Figure 3.11.: Energy dispersion of bulk InAs along the [110] and [100] directions in k
space calculated with the parabolic model (dotted lines), the 8×8 k·p model
(black solid lines) and with the sp3d5s∗ tight-binding parameterization (red
dashed lines) at T = 0 K. Along the [100] direction the energies are twofold
degenerate while this spin degeneracy is lifted along the [110] direction for
both the k · p and the tight-binding model.

to the tight-binding dispersion for both directions, also in terms of spin-splitting. In
this calculation, the k · p inversion asymmetry parameter B (eq. (3.67)) was taken to

be nonzero (B = 3.60 h̄2

2m0
[Car03]). If it were zero, which is the typical assumption in

practically all k · p calculations, a spin-splitting along the [110] direction would not be
obtained. We conclude that the k · p model is sufficiently accurate as a description of
the realistic band structure. Of course, the tight-binding approach is also a model but
it has been fitted to energies and masses through the entire Brillouin zone, so one can
assume that it is a very reasonable model.

We now examine the bulk band structure of biaxially, tensilely strained InAs with
respect to a GaSb substrate. The biaxial strain ε‖ = 0.0062 (eq. (1.10)) is with respect
to the (x, y) plane (which we call in-plane) and the strain ε⊥ = −0.0067 (eq. (C.6)) is with
respect to the z direction (which we call out-of-plane direction). Figure 3.12 shows the
energy dispersion of biaxially, tensilely strained InAs along the [110] and [100] directions
(in-plane directions) in k space calculated with the parabolic model (dotted lines), the
8× 8 k ·p model (black solid lines) and with the sp3d5s∗ tight-binding parameterization
(red dashed lines) at T = 0 K. Along the [100] direction the energies are still twofold
degenerate for the k · p model, while this spin degeneracy is now lifted for the tight-
binding model. The single-band results have the same masses as for unstrained InAs
but the band edges are shifted in the same way as for the k · p model. The energies of
these band edges can easily be obtained by diagonalizing the bulk k · p Hamiltonian,
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Figure 3.12.: Energy dispersion of biaxially, tensilely strained InAs along the [110] and
[100] directions (in-plane directions) calculated with the parabolic model
(dotted lines), the 8×8 k ·p model (black solid lines) and with the sp3d5s∗

tight-binding parameterization (red dashed lines) at T = 0 K. Along the
[100] direction the energies are still twofold degenerate for the k · p model
while this spin degeneracy is lifted for the tight-binding model.

that includes the deformation potentials and strain [Hac02], at k = 0 . Alternatively,
for growth along any direction, analytical equations can be used instead to obtain the
shifted and split band edges due to strain for the single-band model [VdW89, PGBD+11].
The common zero point of energy for all three models has been set to the highest hole
energy level. The band gap has decreased to Egap = 0.359 eV because the unit cell
has increased, corresponding to a positive hydrostatic strain of εhydro = 0.0057. (If the
unit cell increases due to increasing temperature, the band gap also gets smaller.) The
degeneracy of the heavy and light hole band edges at the Γ point is now lifted and they
are separated by 0.049 eV.

Figure 3.13 shows the same as Fig. 3.12 but along the [001] (out-of-plane) and [100]
(in-plane) directions. Along both directions the energies are twofold degenerate for the
k · p model, while this spin degeneracy is lifted for the tight-binding model. Along the
[001] (out-of-plane) direction the dispersion is now very different. The heavy and light
hole dispersions cross along the out-of-plane direction. Now the highest hole band is
‘light’ along the out-of-plane direction, and ‘heavy’ along the in-plane directions. The
first excited hole state is however ‘heavy’ along the out-of-plane direction, and ‘light’
along the in-plane directions. Both, the k · p and the tight-binding model show very
similar results although the dispersion is now rather complicated. This gives further
confidence into our k · p model.

I have implemented Peter Vogl’s TIGHTEN bulk code into the nextnano3 software
package. Therefore, it is now possible to calculate with only one input file the k · p and
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Figure 3.13.: Energy dispersion along the [001] (out-of-plane) and [100] (in-plane) direc-
tions for the same situation as in Fig. 3.12. Along the [001] (out-of-plane)
direction the dispersion is now very different. Both, the k · p (black solid
lines) and the tight-binding model (red dashed lines) show very similar
results although the dispersion is now rather complicated.

the tight-binding bulk band structure for unstrained or biaxially strained zinc blende
materials, and also for ternary alloys, making it very convenient to perform systematic
comparisons between the bulk k · p and the tight-binding method.

Now we turn to the InAs–GaSb heterostructure. Our structure consists of a 3.7 nm (24
atomic layers) GaSb and a 6.7 nm (44 atomic layers) InAs region. Similar structures have
been investigated theoretically with the k · p method by e.g. Grein et al. [GYFE95] or
Zakharova et al. [ZYC01]. Periodic boundary conditions are used to mimic a superlattice
with a periodic length of L = 10.4 nm corresponding to kSL,max = π/L = 0.30 nm−1.
Strain has been included assuming that the GaSb layer is unstrained and that the InAs
layer is biaxially strained with respect to a GaSb substrate with ε‖ = 0.0062 and ε⊥ =
−0.0067, i.e. InAs is tensilely strained. In order to avoid spurious solutions, the k · p
material parameters were rescaled according to eq. (3.159) so that S = 1 (see Section 3.2).
These rescaled parameters were also used in the previous figures for the band structure
of bulk InAs. The grid spacing resolution was 0.1 nm in the k · p calculation. The
tight-binding calculations have been performed with the same method as in the previous
section. For both the bulk k · p and the tight-binding calculation, the conduction and
the three valence band edge energies at k = 0 are identical. This holds for strained InAs
(Fig. 3.12, Fig. 3.13) and for GaSb. However, it cannot be avoided that slight deviations
in the bulk dispersion occur for nonzero k vectors due to the different methods employed,
in particular if strain is present. Consequently, it is expected that for heterostructure
calculations, the k · p and tight-binding calculations deviate even more.
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Figure 3.14.: Energy dispersion of a strained InAs–GaSb superlattice along the in-plane
directions in k space, k100

‖ and k110
‖ , and along the superlattice growth

direction kSL calculated with the k · p method. For small k‖ vectors the

dispersion is practically isotropic.
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Figure 3.15.: Same as Fig. 3.14 but now showing the results of the tight-binding cal-
culations. The dispersion along k‖ is split by strain and shows a slight

anisotropy.
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3.6. Type-II broken-gap band alignment – InAs–GaSb superlattice

Figure 3.14 shows the energy dispersion of the strained InAs–GaSb superlattice along
the in-plane directions in k space, k100

‖ and k110
‖ , and along the superlattice growth di-

rection kSL calculated with the 8× 8 k · p method. For small k‖ vectors the dispersion
is practically isotropic. The highest hole state h1 does not have any curvature along
the superlattice direction kSL. The reason is that the ground state hole wave function
is strongly confined in the individual GaSb layers (not shown) and does not couple to
neighboring GaSb layers. All other states couple to neighboring layers and thus form
minibands (see Section 2.2). The corresponding tight-binding results are shown for com-
parison in Fig. 3.15. Now the dispersion along k‖ is split by strain and shows a slight
anisotropy. The spin-splitting is due to the fact that zinc blende materials do not have
inversion symmetry. This is called bulk inversion asymmetry (BIA). Furthermore, the
interfaces do not have a common atom, such as the As anion in AlAs–GaAs heterostruc-
tures. The latter can have a mirror plane if the number of arsenic layers is odd. Thus
for our tight-binding calculations, no mirror plane is present. This is called structural
inversion asymmetry (SIA). Consequently, both BIA and SIA were involved. The B pa-
rameter that is related to the missing inversion symmetry in zinc blende materials was
assumed to be zero in the k·p calculations of Fig. 3.14. Structural asymmetry due to the
atomic arrangement of the interfaces cannot be taken into account by the k ·p method.
However, spin-splitting due to structural asymmetry introduced by e.g. an electric field
or by a heterostructure that does not have an inversion center, is automatically taken
into account by the k · p method. Within the k · p model, our superlattice structure
has a mirror plane, i.e. our structure is symmetric, therefore spin-splitting cannot be
obtained here because SIA is absent, and BIA was ignored. Both the tight-binding and
the k · p calculations show qualitatively very similar results, apart from the crossing
of the second and third holes states along the superlattice direction. Also the energy
levels look very similar. There are rare cases in the literature where the B parameter
was actually set to a nonzero value. Typically it is said that it can be neglected or that
the parameter is not known. Cartoixà [Car03] lists values for a few III-V materials. In

Fig. 3.16 we used his values of B = 13.1 h̄2

2m0
(GaSb) and B = 3.60 h̄2

2m0
(InAs). The

isotropic dispersion for small k‖ vectors, that we had for B = 0, is now slightly lifted.
Also the twofold spin-degeneracy along the k‖ directions is no longer present. The order
of magnitude of the spin-splitting is comparable to the tight-binding results. Finally,
we show the energy dispersion of a strained InAs–GaSb superlattice along the in-plane
directions k100

‖ and k110
‖ calculated with the k·p method, where the inversion asymmetry

parameter B is zero (black solid lines), and where it is nonzero (red dotted lines) to high-
light the differences. In the latter case the twofold spin degeneracy of the energy levels
for nonzero k‖ is lifted due to the bulk inversion asymmetry parameter B as discussed
above. Therefore the results are closer to the tight-binding calculations. We conclude
that it is important to use a nonzero value for the inversion asymmetry parameter B in
order to get more realistic results. Further examples on superlattice dispersions using
the single-band model were discussed in Section 2.2.
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Figure 3.16.: Energy dispersion of a strained InAs–GaSb superlattice along the in-plane
directions in k space, k100

‖ and k110
‖ , and along the superlattice growth

direction kSL calculated with the k · p method, where the inversion asym-
metry parameter B has a nonzero value. The isotropic dispersion for small
k‖ vectors is now slightly lifted. Also the twofold spin-degeneracy along k‖
is no longer present.
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Figure 3.17.: Energy dispersion of a strained InAs–GaSb superlattice along the in-plane
directions k100

‖ and k110
‖ calculated with the k · p method, where the in-

version asymmetry parameter B is zero (black solid lines) and where it is
nonzero (red dotted lines). In the latter case, the twofold spin degener-
acy of the energy levels for nonzero k‖ is lifted due to the bulk inversion

asymmetry parameter B.
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4. Ballistic quantum transport using the
contact block reduction (CBR) method
– An introduction

This chapter is based on the work of Sabathil [Sab04] and Mamaluy et al. [MSV03]
on the contact block reduction (CBR) method. I have summarized this method and
presented it in an elaborate form in Ref. [BSG+09] providing several intuitive examples.
This work is presented in this chapter.

The CBR method is a variant of the nonequilibrium Green’s function formalism, where
the local density of states is occupied using an equilibrium distribution of the carriers.
It can be used to describe quantum transport in the ballistic limit very efficiently. Here,
I review a numerical implementation of a charge self-consistent version of the CBR
algorithm. I show in detail how to calculate the electronic properties of open quantum
systems such as the transmission function, the local density of states and the carrier
density. Several 1D, 2D and 3D examples are provided to illustrate the key points. The
CBR method is a very powerful tool to tackle the challenge of calculating transport in
the ballistic limit for 3D devices of arbitrary shape and with an arbitrary number of
contacts.

4.1. Introduction

Since electronic devices have been shrinking steadily to nanometer dimensions, quantum
transport is increasingly becoming a topic of interest not only to physicists but also to the
electrical engineering community [Dat05]. The nonequilibrium Green’s function (NEGF)
formalism (e.g. Ref. [KYV+09]) provides a rigorous framework for the development of
quantum device models. Here, we describe one of its implementations – the contact
block reduction (CBR) method [MSV03]. It can be used to describe quantum transport
in the ballistic limit very efficiently. Our aim in this article is to make the Green’s
function formalism in the limit of ballistic quantum transport accessible to a more general
audience. Thus, a detailed description of the underlying algorithm is given and numerical
examples are provided as concrete illustrations. As it is very important to perform
charge self-consistent calculations, we also give details on how to solve the nonlinear
system of coupled Schrödinger and Poisson equations. Interested readers should be able
to reproduce these results by setting up their own computer program.
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4.2. Ballistic quantum transport

A conductor shows nonohmic behavior if its dimensions are smaller than certain char-
acteristic lengths: The mean free path and the phase-relaxation length of the elec-
tron [Dat95]. If the length of a conductor becomes shorter than the mean free path,
the conductance approaches a limiting value. This classical ballistic limit has still noth-
ing to do with quantum mechanics. Quantum mechanics does not become important
until the dimensions of the conductor are smaller than the phase-relaxation length and
interference-related effects come into play. In present day high-mobility semiconductor
heterostructures such as modulation doped GaAs–AlGaAs heterojunctions or quantum
wells, mean free paths and phase-relaxation lengths of several µm are relatively easy to
obtain at low temperatures. Thus ballistic quantum transport plays an important role
in many mesoscopic transport experiments.

The theoretical approach that has proven to be most useful in describing mesoscopic
transport was introduced by Landauer [Lan88, Lan92] in 1988. A generalization to
multiterminal devices in magnetic fields was proposed by Büttiker [Büt86, Büt88] and
is generally referred to as the Landauer–Büttiker (LB) formalism. It is equivalent to
the nonequilibrium Green’s function formalism in the limit of no inelastic or elastic
scattering. The essential idea behind the LB formalism is that the current through a
ballistic conductor is determined by the probabilities of the electrons to be transmitted
or reflected. The contacts of the conductor are assumed to be large electron reservoirs
in equilibrium, so that each contact can be described by its own Fermi distribution with
a chemical potential µ. The difference between the chemical potentials in the contacts is
equal to the externally applied bias voltage. By the Landauer–Büttiker formula, these
relations are expressed as follows

Iλλ′ =
gse

h

∫
Tλλ′ (E) [f (E,µλ)− f (E,µλ′)] dE, (4.1)

where Iλλ′ is the current between contact λ and contact λ′, Tλλ′ (E) is the corresponding
energy dependent transmission function between these contacts, µλ and µλ′ are the
chemical potentials in these contacts, E is the energy, h is Planck’s constant, e is the
positive elementary charge, and gs = 2 is the spin degeneracy of the electrons.

f (E,µλ) =
1

1 + exp [(E − µλ) / (kBT )]
(4.2)

is the equilibrium Fermi–Dirac distribution function inside contact λ, kB is Boltzmann’s
constant and T is the temperature. Thus the Landauer–Büttiker formalism reduces the
problem of calculating the ballistic current in a mesoscopic device to the determination of
the transmission probabilities of an open device connected to reservoirs. We emphasize
that eq. (4.1) has been simplified here. It generally involves an integration over all
quantum numbers that characterize the lead states [DCVP94]. We suppressed their
momentum dependence (which is, however, included in the calculations as described
further below) to keep things as simple as possible and assume conservation of spin,
energy E and parallel momentum. We also assume a parabolic dispersion of the bands
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so that the integration over the parallel momentum can be simplified. Several numerical
methods have been developed to determine the transmission coefficient for quantum
devices via the scattering matrix, e.g. the transfer matrix method [Kan69, SC83], the
quantum transmitting boundary method [LK90], the R-matrix method [Smr90] and the
recursive Green’s function method [FG97, LKBJ97]. In this article, we will describe in
detail how to obtain the transmission function Tλλ′ (E) by means of the contact block
reduction (CBR) method, where the transmission is calculated from the retarded single
particle Green’s function. In passing, we note that the transmission function not only
determines the electrical current. Also heat currents can be calculated with a Landauer
formula similar to eq. (4.1) [KDL09]. Thus optimizing the thermoelectric coefficients
in devices by quantum-engineering the transmission function is an interesting topic in
thermoelectrics research.

4.3. The contact block reduction (CBR) method – An overview

The CBR method is a very efficient Green’s function technique which has been developed
by Mamaluy et al. [MSV03]. It can be used to calculate the electronic properties of open
quantum systems such as the transmission function, the local density of states, and the
carrier density in the ballistic limit for 1D, 2D and 3D devices of arbitrary shape and
with an arbitrary number of contacts. We start with a device that is discretized in real
space on NT total grid points. It can be characterized by a corresponding Hamiltonian
matrix H0 of size NT. The device has no contacts and is thus termed a closed system.
It has sharp resonant energies (eigenvalues of H0) and the electrons are described by
wave functions (eigenfunctions of H0). We now add contacts to the device and divide
the total number of grid points into NC contact grid points and ND interior device grid
points (NC +ND = NT). Connecting the device to contacts leads to a broadening of the
resonant energies: The discrete energy spectrum transforms into a continuous density
of states. This is described by the broadening matrix Γ(E). It depends on energy E
and has the same size as H0. It can directly be calculated from the self-energy Σ(E).
This self-energy matrix is added to the Hamiltonian to account for the new boundary
conditions due to the contacts (see Subsection 4.4.3 for details). It is non-Hermitian,
thus leading to complex eigenvalues. In fact, the imaginary part of the eigenvalues is the
origin of the broadening of the density of states and introduces a finite lifetime to the
eigenstates. Consequently, the device wave functions leak out into the contacts (open
device). As Σ also depends on energy, it is more convenient to look at the device from
another point of view. Rather than asking for the eigenenergies of the system, it is more
appropriate to ask: How does the open device respond to incident electrons that have a
certain energy E? In the ballistic case, all observables of interest can be obtained from
the retarded Green’s function GR of the open device. It is defined as

GR(E) =
(
E1−H0 −Σ

)−1
, (4.3)
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where 1 is the identity matrix. It can be expressed in terms of the retarded Green’s
function G0 of the closed device via the Dyson equation

GR = A−1G0 =
(
1−G0Σ

)−1
G0 (4.4)

G0(E) =
(
E1−H0 + i0+

)−1
=
∑
n

|ψn〉 〈ψn|
E − En + i0+

. (4.5)

The last expression (spectral representation) shows how to write the retarded Green’s
function G0 in terms of the eigenenergies and wave functions of the closed device Hamil-
tonian (see Subsection 4.4.1). |ψn〉 〈ψn| is the dyadic product where 〈ψn| is a row vector
and |ψn〉 is a column vector (bra–ket or Dirac notation), each of size NT. In a numerical
implementation of this equation, the infinitesimally small positive imaginary number i0+

can be ignored if one ensures that E 6= En. Additionally, if the wave functions ψn are
real, the retarded Green’s function of the closed device is real. Thus it is identical to
the advanced Green’s function of the closed device. (The conjugate transpose (†) of the

retarded Green’s function is called the advanced Green’s function GA
C = GR†

C .) We call
G0 just the Green’s function of the closed device and omit i0+ and the term retarded in
the following for simplicity.

Once the self-energy matrix has been calculated (see Subsection 4.4.3), the evaluation
of the retarded Green’s function GR of the open device requires – in general – the
inversion of a large matrix A whose size is proportional to the number NT of total grid
points of the device. Even in two spatial dimensions, this can be a quite demanding
task.

The essence of the contact block reduction method consists in the decomposition of
the retarded Green’s function into blocks such that the transmission function of the open
device can be calculated by inverting only small matrices: The retarded Green’s function
can be ‘reduced to the contact block’ GR

C. The contact block (labeled with subscript
C) consists of all lead grid points that are in contact with the device. This number
is orders of magnitude smaller than the number of device grid points. This explains
the astonishing efficiency of this approach and makes it possible to address quantum
transport in 3D devices. The CBR method has been applied to calculate the transport
in 3D structures, like quantum dots [SBMV03], quantum interference devices such as
a quantum logic gate [SMV04] or nano-FinFETs [VMK+08]. The latter requires us to
include the Poisson equation in order to guarantee charge self-consistency (self-consistent
CBR [MVS+05], see Section 4.8). The CBR method has been extended to describe
systems of two interacting particles for the study of two-qubit devices [ZVB07]. It has
also been extended to more sophisticated band structure models, like the k · p method
in order to describe hole transport in quantum wires [MVS+05] and to tight-binding
methods [RK08]. It has been integrated into the nextnano3 software package [BZA+07]
which is available online [www]1.

1Online resource: A demo that includes a Windows executable and the input files of the
CBR examples presented in the figures of this chapter can be downloaded from this link:
http://www.nextnano.de/customer/downloadCBR.php
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In this article we describe in detail how to calculate the transmission function T (E)
and the local density of states ρ(x, E) from the Green’s function matrix GR of the open
system

GR =

(
GR

C GR
CD

GR
DC GR

D

)
. (4.6)

This matrix has been subdivided into four blocks, a submatrix within the contact block
(C) and another one within the interior of the device (D). The other two correlate the
contact grid points to the device grid points (CD and DC). To obtain the transmission
function, it is only necessary to evaluate the upper left part – the contact block

GR
C = A−1

C G0
C. (4.7)

For calculating the local density of states, additionally the lower left part

GR
DC = G0

DCB−1
C (4.8)

has to be evaluated. Thus for each energy E of interest, the two matrices

AC = 1C −G0
CΣC (4.9)

and
BC = 1C −ΣCG0

C (4.10)

have to be inverted where 1C is the identity matrix of dimension NC. The dimension
of these matrices is very small and is determined by the number NC of grid points
that connect the device to the contacts. For one-dimensional devices NC = 2, so both
matrices are of size 2× 2. In the ballistic case, the self-energy matrix Σ is nonzero only
at the contact grid pints and can thus be reduced to ΣC. This is the reason why only
small parts of the Green’s functions have to be evaluated. The transmission function
determines the current through the device, and from the local density of states, the
charge density can be derived. This is all one needs to describe quantum transport in
arbitrary devices within the ballistic limit, i.e. for situations where scattering can be
ignored.

4.4. The CBR method for one-dimensional devices

In this section we describe the contact block reduction (CBR) method for simple one-
dimensional devices where the device geometry is assumed to be translationally invariant
in the (x, y) plane. Current transport is assumed to be along the z direction. We choose
the 1D case in order to highlight the main points of the CBR method, avoiding therefore
to include the additional, more complicated features coming into play when one deals
with two-dimensional and three-dimensional devices described in Section 4.5. We try to
avoid reproducing the equations and the arguments of the original CBR papers [MSV03,
MVS+05] and adopt the more straightforward approach to focus specifically on the
aspects with respect to a numerical implementation.
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In a one-dimensional device one can only have two leads (i.e. contacts) in total (L = 2).
These leads are located at the leftmost and rightmost boundary points of the device and
each lead λ contains exactly one grid point (Nλ = 1) that connects the lead to the device,
i.e. the total number of (relevant) lead grid points is thus equal to NC =

∑L
λ=1Nλ =

2. This simplifies the CBR method substantially because the dimension of the CBR
contact matrices is exactly equal to NC = 2. This means that for the calculation of
the transmission coefficient T (E) (see eq. (4.1)), for each energy E only a small square
matrix of size NC = 2 has to be inverted. A further simplification is that each lead has
only one mode. In a 2D or 3D simulation, each lead consists of several lead grid points
connected to the device (Nλ > 1). The number of lead grid points corresponds to the
number of lead modes (see Section 4.5), i.e. each lead has Nλ modes. In a 1D simulation,
the CBR algorithm is then implemented as follows:

4.4.1. Energy levels and wave functions of the device Hamiltonian (closed
system)

First, we calculate the energy levels and the wave functions of the device Hamiltonian
without taking the leads into account. This Hamiltonian H0 is then identical to the
Hamiltonian of the closed system. We use a standard approach to solve the Schrödinger
equation, namely the envelope function approximation assuming a parabolic dispersion
(single-band effective mass equation).

The Schrödinger equation for a semiconductor structure grown along the z direction
and homogeneous along the x and y directions reads

H0
k‖

Ψn

(
z,k‖

)
= En

(
k‖
)

Ψn

(
z,k‖

)
. (4.11)

The wave function Ψn

(
z,k‖

)
can by factorized into a solution ψn

(
z,k‖

)
along the z

direction, and a plane wave eik‖·x in the (x, y) plane

Ψn

(
z,k‖

)
= ψn

(
z,k‖

)
eik‖·x. (4.12)

In the following we ignore the dependence of ψn
(
z,k‖

)
on the parallel momentum k‖.

Then the envelope functions ψn (z) of the nT quantized states are obtained as the solu-
tions of the one-dimensional Schrödinger equation (n = 1, ..., nT where nT = NT):

H0ψn(z) = Enψn(z) (4.13)[
− h̄

2

2

∂

∂z

(
1

m⊥(z)

∂

∂z

)
+ V (z)

]
ψn(z) = Enψn(z) (4.14)

m⊥ (z) is the effective mass tensor component along the z direction, h̄ is Planck’s con-
stant divided by 2π, V (z) = Ec (z) = Ec,0 (z)− eφ (z) is the spatially varying potential
energy (conduction band edge profile), Ec,0 (z) represents the conduction band edge
profile of the particular band of interest including band offsets at material interfaces
and φ (z) is the electrostatic potential which is obtained from solving Poisson’s equation
(see Subsection 4.8.1). It includes the external bias potential and the internal potential
resulting from mobile charge carriers and ionized impurities.
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4.4. The CBR method for one-dimensional devices

We discretize this equation with a finite differences method on a uniform grid using
Neumann boundary conditions at the left and right device boundaries. At these points
the device is in contact to the leads, once they are added to form the open system.
It has been found that Neumann boundary conditions at the contact grid points are
much better suited for the CBR method than Dirichlet boundary conditions [MSV03].
The discretized sparse, square and Hermitian (in most cases even real and symmetric)
Hamiltonian matrix of size equal to the number of total device grid points NT has to be
diagonalized numerically to yield the eigenvalues and eigenvectors.

The eigenenergies En correspond to the energies of the electron along the z direction.
The total energy of the electron includes the parallel momentum of the electron due to
k‖ = (kx, ky)

En
(
k‖
)

= En +
h̄2

2m‖
k2
‖, (4.15)

where m‖ derives from the mass tensor components in the (x, y) plane. For more detailed
information on how to solve eq. (4.14) numerically, we refer to e.g. Ref. [TSCH90].

The one-dimensional envelope functions ψn are usually normalized to 1∫
ψ∗n(z)ψn(z) dz =

NT∑
i=1

ψ∗n,iψn,i∆i = 1, (4.16)

where ψn,i is the amplitude of the wave function at grid point i, and ∆i the corresponding
grid spacing along the z direction. If the latter has units of [nm], then the wave functions
ψn have units of

[
nm−1/2

]
. In principle, the wave functions could have been calculated

using a nonuniform grid spacing. However, in the following sections we assume that the
grid spacing ∆i is homogeneous for all grid points. This allows us to renormalize the
wave functions so that they become dimensionless. This is achieved by dividing ψn by
the norm 1/

√
∆. Then the normalization reads

NT∑
i=1

ψ∗n,iψn,i = 1. (4.17)

Incomplete set of eigenstates We want to emphasize that the actual number nα of
eigenvalues and wave functions needed to get meaningful results within the CBR method
can be much smaller than the total number nT of eigenfunctions of the Hamiltonian
matrix. The energy Enα of the highest eigenvector taken into account is the cutoff
energy. It should be significantly above the energy interval of interest in order to get
reliable results (see Fig. 4.4 and Fig. 4.6). For a 2D and 3D simulation, using such
an incomplete set of eigenstates will drastically improve the computational performance
as only nα eigenstates have to be calculated (nα ≈ 10% of nT). This fact makes it
attractive to use fast, iterative solvers [LSY98] for calculating only a small number of
eigenstates of these sparse matrices. In 1D, where it is not a computational challenge to
calculate all eigenvalues of the spectrum, exact solvers [LAP] might be preferable that
either return all or only the requested number of eigenvalues (or eigenvalues within the
specified energy interval of interest).
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Chapter 4. Ballistic quantum transport using the CBR method

4.4.2. Projection of device eigenfunctions onto lead modes

This part is very easy for a one-dimensional simulation where for each of the two leads
only one lead mode exists. One simply has to store – for each eigenvalue n – the values
of the wave functions ψn,i at the leftmost grid point (i = 1) and at the rightmost grid
point (i = NT)

Lead 1 : χλ=1
n = ψn,1 (left boundary) (4.18)

Lead 2 : χλ=2
n = ψn,NT

(right boundary). (4.19)

For each eigenvalue n these projected eigenvector amplitudes χλn are stored in a vector
of size NC = 2

χn =

(
χλ=1
n

χλ=2
n

)
. (4.20)

4.4.3. Setup energy interval and calculate properties for each energy Ei

We are interested in the transmission coefficient T12 (E) from lead λ = 1 (left contact)
to lead λ = 2 (right contact) for all energy values E in the energy interval of interest
(Emin < E < Emax). To do this, we divide this energy interval into NE energy grid
points and calculate for each the transmission coefficient T12 (Ei) from lead 1 to lead

2 for the energy value Ei = Emin + (i− 1) ∆E where ∆E = (Emax−Emin)
NE−1 is the energy

grid spacing and i = [1, ..., NE ]. For each energy Ei the following matrices have to be
calculated:

• self-energy matrix ΣC(Ei)

• broadening matrix ΓC(Ei)

• Green’s function G0
C(Ei) of the closed device

• retarded Green’s function GR
C(Ei) of the open device

For the latter, a square matrix of dimension NC has to be inverted (for each energy
Ei). The subscript C (contact) indicates that all quantities are reduced contact block
matrices of size NC, i.e. relatively small matrices that have to be evaluated only at
the boundary points where the device overlaps with the contact grid points. In a 1D
simulation, NC = 2, so that only 2×2 matrices occur. The energy Ei corresponds to the
energy Ez of the electron along the z direction because in 1D the transmission coefficient
is a function of the energy Ez only: T (Ei) = T (Ez). The energy due to the parallel
momentum of the electron does not have to be considered for calculating T . However,
one should keep in mind that the total energy of the electron is given by

Etotal = Ez +
h̄2

2m‖
k2
‖, (4.21)

which becomes relevant when calculating the density and the current.
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4.4. The CBR method for one-dimensional devices

Self-energy matrix ΣC

ΣC is the contact self-energy matrix which represents the coupling of the device to
the leads. The self-energy matrix in a real space representation is nonzero only at the
boundary points of the device which are in contact with the leads. In a mode space
representation (see Subsection 4.5.2) the self-energy matrix Σ is a diagonal matrix. In
1D the contact self-energy matrix ΣC has only two nonzero entries on the diagonal (Σλ=1

and Σλ=2)

ΣC =

(
Σ1 0
0 Σ2

)
. (4.22)

We assume that each lead is represented by a semi-infinite one-dimensional wire described
by a one-band effective mass Hamiltonian. The potential energy Eλc of this contact
Hamiltonian is equal to the conduction band edge energy of the corresponding grid
point at the left or right device boundary. Then the contact self-energy Σλ for lead λ is
given by [Dat05]

Σλ = −t exp
(
ikλ∆

)
, (4.23)

where t is the kinetic coupling matrix element (also called constant intersite coupling
element). It is defined as

t =
h̄2

2m

1

∆2
, (4.24)

where m is the effective electron mass of the contact, and ∆ is the grid spacing of the
contact grid point along the propagation direction z. The wave vector kλ(Ei) of lead λ
has to be calculated for each energy Ei from the lead dispersion E(kλ). The dispersion
of a discrete lattice is given by

E(kλ) = Eλ + 2t
(

1− cos
(
kλ∆

))
, (4.25)

where we assume the lead to be discretized with the same grid spacing ∆. Thus the
corresponding wave vector kλ is obtained as follows

kλ(Ei) =
1

∆
arccos

(
Ei − Eλ

2t
− 1

)
. (4.26)

arccos(x) is the inverse function of the trigonometric cos(x) function which must be
expressed using the complex logarithm

arccos(x) = −i ln
(
x+ i

√
1− x2

)
(4.27)

in order to allow for complex k vectors. For real wave vectors, the self-energy Σλ corre-
sponds to a traveling plane wave (eq. (4.23)) with a particular energy. The response of
the open system to an incident electron wave tells us if this electron wave will be reflected
or transmitted. Complex wave vectors, on the other hand, give rise to exponentially ris-
ing (unphysical) or decaying waves. Here, we only consider the decaying evanescent
waves. In 1D, the conduction band edge energy Eλc at the corresponding lead λ has to
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Chapter 4. Ballistic quantum transport using the CBR method

be taken for the energy Eλ. In general, the relation for the wave numbers k will differ at
each contact. In 1D, there is only one mode for each lead, so only one k vector for each
lead has to be calculated (for each energy). Consequently, the contact self-energy Σλ is a
scalar for each lead but in general it is a matrix whose size is determined by the number
of contact grid points of this lead (or lead modes taken into account, respectively). In
this work, the concept of self-energy only describes the coupling of the device to the
leads. However, this concept is far more general and can be used to describe all kinds
of interactions, e.g. scattering processes that can be included in more advanced NEGF
algorithms [KYV+09].

Broadening matrix ΓC

The broadening matrix ΓC is the anti-Hermitian part of ΣC and corresponds to the
broadened density of states in the device. It has units of energy and is given by

ΓC = i
(
ΣC−Σ†C

)
. (4.28)

The eigenstates of the closed system Hamiltonian correspond to sharp energy levels, and
thus they have an infinite lifetime: An electron in one of these states will stay there
forever. In contrast, the broadening matrix ΓC describes the leakage of the eigenstates
into the contacts. Consequently, this will lead to a finite lifetime of the electronic states
in the device.

Green’s function G0
C of the closed device

The reduced contact block matrix G0
C (Ei) can be written in terms of the projected wave

functions χn of the decoupled device Hamiltonian H0 at the contact grid points

G0
C (Ei) =

nα∑
n=1

|ψn,C〉 〈ψn,C|
Ei − En

=

nα∑
n=1

χnχ
T
n

Ei − En
. (4.29)

Here we use the spectral representation in terms of the wave function amplitudes ψn,C
of the closed device Hamiltonian at the contacts to calculate the Green’s function G0

C.
χnχ

T
n is the dyadic product where χn is a column vector and χT

n its transpose, i.e. a row
vector, each of size NC containing the projection of the wave function amplitude onto the
two lead grid points (see Subsection 4.4.2). In 1D this dyadic product leads to a square
matrix of dimension NC = 2. Only for the exact solution, one has to take into account
all nT eigenstates (nα = nT). For 2D and 3D simulations, nα is typically chosen to be
much smaller (≈ 10% of all eigenstates), making use of an incomplete set of eigenstates.
To guarantee an optimal use of the CBR method, the value of nα should be chosen as
small as possible to minimize computational effort. However, one has to ensure that it
is still large enough in order to get meaningful results for the energy interval of interest
(see Subsection 4.4.1).

The matrix G0
C can further be understood by decomposing it into submatrices

G0
C =

(
G0
λλ G0

λλ′

G0
λ′λ G0

λ′λ′

)
=

(
G0

11 G0
12

G0
21 G0

22

)
. (4.30)
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4.4. The CBR method for one-dimensional devices

The submatrix G0
λλ′ couples lead λ to lead λ′. In 1D this submatrix is a scalar because

χλn is a scalar

G0
λλ′ (Ei) =

nα∑
n=1

|ψλn,C〉〈ψλ
′
n,C|

Ei − En
=

nα∑
n=1

χλnχ
λ′
n

Ei − En
. (4.31)

Retarded Green’s function GR
C of the open device

In order to calculate the transmission coefficient, we first have to evaluate the retarded
Green’s function GR

C within the contact region from the Dyson equation

GR
C = A−1

C G0
C (4.32)

AC = 1C −G0
CΣC, (4.33)

where 1C is the identity matrix and G0
CΣC is a simple matrix multiplication. GR

C is a
small submatrix of size 2× 2 of the open device’s retarded Green’s function GR within
the contact regions (see eq. (4.6)). GR has the size of the total number of grid points
NT and is thus a very large matrix for 2D and 3D devices. The direct evaluation of the
retarded Green’s function requires the inversion of a large matrix of dimension NT which
is practically impossible for a 3D device, and can be quite demanding even in two spatial
dimensions. The essence of the CBR method consists in realizing that for the calculation
of the transmission function, only the small part GR

C is needed. The determination of
this small submatrix from G0 and Σ actually requires only the inversion of a matrix
that is proportional to the number of grid points NC that connect the device with the
leads.

The inversion of the matrix AC to obtain A−1
C is the central part of the CBR algo-

rithm because in a 2D or 3D simulation, most of the CPU time is consumed here. The
inversion can be performed by a standard inversion routine from a numerical library
(e.g. LAPACK routine ZGESV [LAP] which is also available from precompiled libraries
that make efficient use of multicore processor architectures). For a matrix of dimension
NC, this usually requires of the order of (NC)2.8 to (NC)3 operations. Luckily, NC is
generally very small because the number of contact grid points is much smaller than the
number of device grid points.

Transmission coefficient

Finally, we calculate for each energy the transmission coefficient Tλλ′ (Ei) from the broad-
ening matrix ΓC and the retarded Green’s function GR

C within the contact region

Tλλ′ (Ei) = Tr
(
ΓλCGR

CΓλ
′

C GR†
C

)
(λ 6= λ′), (4.34)

where † indicates the conjugate transpose. The three matrix multiplications only have
to be performed for the relevant elements that contribute to the trace of the square
matrix of dimension NC. The elements of the small matrix GR

C completely determine
the transmission function from lead λ = 1 to lead λ′ = 2. ΓλC is the broadening matrix
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Chapter 4. Ballistic quantum transport using the CBR method

Figure 4.1.: Calculated transmission coefficient T (E) as a function of energy for a dou-
ble barrier structure with varying barrier widths of 2 nm, 4 nm and 10 nm
(barrier height 100 meV, barrier separation 10 nm). At 25 meV there is a
peak where the double barrier becomes transparent, i.e. T (E) = 1. This is
exactly the energy that matches the resonant state in the well. The inset
shows the conduction band edge profile and the probability density of this
quasibound resonant state for the case of 10 nm barrier widths.

for lead λ defined analogously to eq. (4.28). It is nonzero only at the contact points
of the relevant lead. In the basis we employ here, it is a diagonal matrix. In fact, for
a 1D simulation only one element of this matrix is nonzero and the calculation of the
transmission coefficient involves the multiplication of four scalars, two of them are due to
the nonzero entries of the broadening matrices of the leads, and the other two originate
from the off-diagonal elements of the reduced matrix GR

C.

4.4.4. Transmission function of a double barrier structure (1D example)

As a simple intuitive example we present in Fig. 4.1 the calculated transmission coeffi-
cient T (E) as a function of energy for a double barrier structure with varying barrier
widths of 2 nm, 4 nm and 10 nm (barrier height 100 meV, barrier separation 10 nm, ef-
fective mass m = 0.067m0, grid spacing 0.5 nm, device length 50 nm). At 25 meV there
is a peak where the double barrier becomes transparent, i.e. T (E) = 1. This is exactly
the energy that matches the resonant state in the well. The inset shows the conduction
band edge profile and the probability density of this quasibound resonant state for the
case of 10 nm barrier widths where the resonant state hardly couples to the two leads.
In the opposite case of strong coupling of this resonant state to the leads (2 nm barrier
widths), the local density of states (LDOS) ρ(z, E) around this resonant state broadens,
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4.4. The CBR method for one-dimensional devices

Figure 4.2.: Calculated local density of states ρ(z, E) for a double barrier structure (bar-
rier widths 2 nm, barrier height 100 meV, barrier separation 10 nm). The
conduction band edge profile is indicated by the thick solid line. The res-
onant state inside the double barrier is very broad with respect to energy
because it couples strongly to the leads at the left and right boundaries.
This is in contrast to the situation for the 10 nm barriers (not shown) where
due to the large barrier widths the resonant state is quasibound, i.e. with a
very sharp and high density of states at the resonance energy because of the
very weak coupling to the contacts. Red (blue) color indicates high (low)
density of states.

leading to a broadening of the peaks in the transmission coefficient. This is shown in
Fig. 4.2 where the LDOS is plotted as a function of position and energy for the 2 nm
case. The red (blue) color indicates high (low) density of states. This is in contrast to
the situation for the 10 nm barriers (not shown) where due to the large barrier widths
the resonant state is quasibound, i.e. with a very sharp and high density of states at the
resonance energy because of the very weak coupling to the contacts. If the energy grid
is not fine enough, very sharp resonances can be missed in a numerical calculation. This
is the reason why we used an energy grid spacing of 0.5 meV. However, this grid spacing
is still not fine enough to get perfect transmission (T = 1) for the first peak of the 10 nm
barrier structure. Only if the energy grid point exactly matches the resonance energy,
the peak would be well resolved. As it is very instructive to investigate the local density
of states in different parts of the device, we will show in Section 4.6 how to calculate it
with the CBR method.

The calculated density of states (DOS) for the 2 nm, 4 nm and 10 nm double barrier
structures is shown in Fig. 4.3. The DOS corresponds to the LDOS integrated over
position. The first peak in the DOS for the 10 nm barrier structure differs substantially
from the other two structures because it is extremely sharp and high. It is actually much
higher than the figure suggests because its maximum is not included on this scale. The
second peak in the DOS at 87 meV due to the second confined well state is only visible
for the 10 nm structure. This is consistent to the transmission coefficient (see Fig. 4.1)
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Chapter 4. Ballistic quantum transport using the CBR method

Figure 4.3.: Calculated density of states D(E) for the double barrier structures. The
first peak in the DOS for the 10 nm barrier structure differs substantially
from the other two structures because it is extremely sharp and high. The
second peak in the DOS at 87 meV due to the second confined well state is
only visible for the 10 nm structure. This is consistent to the transmission
coefficient (see Fig. 4.1) which shows a sharp maximum only for the 10 nm
structure at this energy.

which shows a sharp maximum only for the 10 nm structure at this energy.

Figure 4.4 shows the calculated transmission coefficient T (E) of the 2 nm double bar-
rier structure highlighting the CBR feature of using an incomplete set of eigenstates
(10%, 40% and 100% of the eigenstates of the closed device Hamiltonian). Even if only
10% of the eigenstates are used, the first resonance can nicely be reproduced. The cutoff
energy in this case is at 180 meV which explains the sudden drop in T (E) for energies
exceeding this value. Using 40% of the eigenstates, the main features in the energy
interval of interest can be reproduced very well because only the low-energy part of the
retarded Green’s function is relevant for the transmission function near the band edge.

In Fig. 4.1, Fig. 4.2, Fig. 4.3 and Fig. 4.4, the energy E actually refers to the energy
Ez of the electron along the z direction.

4.5. The CBR method for two- and three-dimensional devices

This section has the same structure as the one for one-dimensional devices. We only men-
tion the differences with respect to the 1D devices. The most important aspect is, that
now we have to deal with lead modes. For 2D devices the contacts are one-dimensional
lines with one-dimensional eigenfunctions. An example is shown in Fig. 4.7 that is further
discussed in Subsection 4.5.4. For 3D devices the contacts are two-dimensional surfaces
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4.5. The CBR method for two- and three-dimensional devices

Figure 4.4.: Calculated transmission coefficient T (E) of a double barrier structure (bar-
rier widths of 2 nm) showing the CBR feature of using an incomplete set
of eigenstates (10%, 40% and 100% of the eigenstates of the closed device
Hamiltonian). Even if only 10% of the eigenstates are used, the first reso-
nance can nicely be reproduced. The cutoff energy in this case is at 180 meV
which explains the sudden drop in T (E) for energies exceeding this value.
Using 40% of the eigenstates, the main features in the energy interval of
interest can be reproduced very well.

leading to two-dimensional lead eigenfunctions (Subsection 4.5.5). To obtain these lead
eigenfunctions χλm a corresponding one- or two-dimensional Schrödinger equation has
to be solved for each lead. The 1D Schrödinger equation is identical to eq. (4.13), and
the normalization of the wave functions has to be done consistently to the device wave
functions (eq. (4.16), eq. (4.17)). The dimension of the contact Hamiltonian matrix is
given by the number Nλ of contact grid points connecting this lead to the device. The
total number of modes mλ of this lead is then also equal to Nλ.

4.5.1. Energy levels and wave functions of the device Hamiltonian (closed
system)

For 2D and 3D devices, the corresponding two-dimensional and three-dimensional Schrö-
dinger equations are solved for the closed system. At the device boundary grid points
where the device is in contact to the leads, Neumann boundary conditions are employed
along the propagation direction, i.e. perpendicular to the lead line (2D device) or lead
surface (3D device). For all other device boundary grid points that are not connected
to leads, Dirichlet boundary conditions are taken. Usually, only a small number nα of
the total number nT of eigenvectors has to be calculated.
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4.5.2. Projection of device eigenfunctions onto lead modes

In general, the vector χn of eq. (4.20) has now the following structure

χn =



χλ=1
n,m=1

...
χλ=1
n,m=m1

...
χλ=L
n,m=1

...
χλ=L
n,m=mL


, (4.35)

and takes into account that for each lead λ (λ = 1, ..., L) several lead modes m (m =
1, ...,mλ) exist. The components of the vector χn are calculated by projecting the parts
of the device eigenvectors ψn,C (real space representation) that are in contact to the
leads into the basis of the orthogonal lead eigenfunctions (mode space representation).
For each eigenvalue n, the amplitude of the wave function ψλn,i at the contact grid point i

is projected onto the amplitude of the lead eigenfunction χλm,i of mode m at this contact
grid point

χλn,m =
∑
i

〈ψλn,i | χλm,i〉. (4.36)

The sum runs over all contact grid points i of the relevant lead λ.

Incomplete set of lead modes Within the mode space basis the self-energy matrix ΣC

is diagonal and can be truncated at the cutoff energy. We want to emphasize that the
actual number mλ

α of lead eigenvalues and lead wave functions needed to get meaningful
results within the CBR method can be much smaller than the total number mλ of lead
modes of this lead Hamiltonian matrix. Neglecting nonpropagating high energy modes
reduces the size of the contact block matrices that have to be inverted for each energy.
The new size is then given by NC,m which is also the size of the vector χn that now only
takes into account the modes up to mλ

α for each lead. For an exact solution all modes
mλ have to be included. The energy Emλα of the highest lead eigenvector taken into
account is the cutoff energy for this lead. It should be significantly above the energy
interval of interest in order to get reliable results. This lead mode cutoff energy should
have about the same value as for the expansion of G0

C (see eq. (4.29)). For a 2D and
3D simulation, using such an incomplete set of lead modes will significantly improve the
computational performance. For further details on the transformation into the subspace
of the propagating lead modes for a 2D or 3D device, we refer to Section V. “Mode space
reduction in single-band case” of Ref. [MVS+05].
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4.5.3. Setup energy interval and calculate properties for each energy Ei

For a 3D simulation, the energy Ei corresponds to the total electron energy whereas for
a 2D simulation Ei = Ex,y with Ex,y being the energy of the electron in the (x, y) plane

Etotal = Ex,y +
h̄2

2m‖
k2
‖. (4.37)

Here, we assume the device to be translationally invariant along the z direction (k‖ = kz,
m‖ = mz).

Self-energy matrix ΣC

Within the basis of the orthogonal lead eigenfunctions (mode space representation) the
self-energy matrix ΣC is diagonal

ΣC =

 Σλ=1 0 0
0 ... 0
0 0 Σλ=L

 . (4.38)

For each lead a small diagonal submatrix Σλ of dimension mλ
α has to be calculated. Its

components are the contact self-energies Σm
λ for each mode m (m = 1, ...,mλ

α) of the
relevant lead

Σm
λ = −t exp

(
ikλm∆

)
. (4.39)

Therefore a wave vector kλm for each lead and for each transverse mode m has to be
calculated (for each energy Ei)

kλm(Ei) =
1

∆
arccos

(
Ei − Eλm

2t
− 1

)
. (4.40)

Obviously, the propagation direction can now be along the x, y or z direction, depending
on the orientation of the lead with respect to the device. Then for the contact boundary
grid point the corresponding mass tensor component and the grid spacing ∆ along the
appropriate propagation direction has to be taken for t. Eq. (4.40) can be derived from
the dispersion of a discrete lattice

E(kλm) = Eλm + 2t
(

1− cos
(
kλm∆

))
, (4.41)

where Eλm is the eigenenergy of the mth mode of lead λ.

4.5.4. Transmission function of a 2D structure with several barriers (2D
example)

As a simple 2D illustration we take the same example as presented in Ref. [MSV03]. The
structure consists of three leads with a Gaussian shaped barrier of height 1.0 eV in the
middle and a double barrier in the upper part of the device with a height of 0.4 eV. The
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Figure 4.5.: Conduction band profile (barrier of 2D Gaussian shape and a double barrier
of height 0.4 eV) of a 2D device that is connected to three leads. Indicated
is the square of the wave function of the 26th eigenstate which is a resonance
state of the device where the transmission coefficient T13(E) between lead 1
and lead 3 shows a local maximum at around 0.18 eV (see Fig. 4.6).

device has a width of 20 nm and is discretized with 41 grid points in each direction leading
to a Hamiltonian matrix of dimension NT = 1681 (grid spacing 0.5 nm). For further
details we refer to the original publication [MSV03]. Figure 4.5 shows the conduction
band edge profile and the square of the wave function of the 26th eigenstate which is a
resonance state of the device where the transmission coefficient T13(E) between lead 1
and lead 3 shows a local maximum at around 0.18 eV (see Fig. 4.6). This corresponds
to resonant tunneling in the upper path where the electron tunnels through the double
barrier. The first peak at 0.11 eV in the calculated transmission coefficient is not due
to a resonance of the double barrier – as one might first be tempted to guess. It is
related to the electron travelling the lower path around the Gaussian shaped barrier.
Such information can be obtained by the visualization of the relevant wave functions or
local density of states at this energy (not shown). This example demonstrates that even
for very simple structures, it is vital to have access to calculated quantum mechanical
properties in order to characterize the peaks correctly.

Figure 4.6 shows that using an incomplete set of eigenstates of only 7% (118 of 1681) of
the 2D device Hamiltonian of the closed system is sufficient to calculate the transmission
coefficient up to energies of 0.4 eV. In 1D devices the transmission function cannot exceed
the value of 1. For 2D and 3D devices the maximum value of the transmission function is
obtained if each of the mλ lead modes in one lead transmits perfectly to the other lead.
So in our example where the leads 1 and 3 each have 41 modes, the maximum of the
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4.5. The CBR method for two- and three-dimensional devices

Figure 4.6.: Transmission coefficient T13(E) between lead 1 and lead 3 using an incom-
plete set of eigenstates of 7% (thin line) and 18% (thick solid line with
squares) of the 2D device Hamiltonian of the closed system for the structure
presented in Fig. 4.5. The first peak at 11 meV is a resonance due to elec-
trons traveling the path below the Gaussian shaped barrier, the next two
peaks are resonances where the electrons travel the other path where they
tunnel through the double barrier.

transmission can certainly exceed T = 1 but the upper limit is T = 41. Figure 4.7 shows
the calculated lead modes (eigenfunctions of the one-dimensional Schrödinger equation)
of lead no. 1 of the same structure. The conduction band edge profile at the contact
grid points (squares) is not constant due to the Gaussian shaped barrier in the center of
the device that extends to the contacts. Shown are the lowest four eigenenergies (thin,

constant lines) and their corresponding probability amplitudes
∣∣χλ=1
m

〉2
that are shifted

with their eigenenergies. The lead modes have been calculated by discretizing the 1D
Schrödinger equation with a grid spacing of 0.5 nm and 41 grid points, using Dirichlet
boundary conditions. The lead modes of lead no. 3 are identical because the structure
is symmetric.

4.5.5. Transmission function of a nanowire structure (3D example)

Here we calculate the transmission of a three-dimensional example. We use a simple
GaAs nanowire of cuboidal shape with a diameter of 10 nm × 10 nm and a length of
20 nm (see Fig. 4.8).

The device consists of two leads. They are represented by two-dimensional planes
with dimensions 10 nm × 10 nm. Each lead has a total of 121 grid points (11 × 11 grid
points). In each lead a two-dimensional Schrödinger equation has to be solved to obtain
the eigenenergies and wave functions of the lead modes. The device region consists of
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Figure 4.7.: Calculated lead modes (eigenfunctions of the one-dimensional Schrödinger
equation) of lead no. 1 of the same structure as in Fig. 4.5. The conduction
band edge profile Ec at the contact grid points (squares) is not constant
due to the Gaussian shaped barrier in the center of the device. Shown are
the lowest four eigenenergies (thin, constant lines) and their corresponding
probability amplitudes that are shifted with their eigenenergies.

11 × 11 × 21 = 2541 grid points, which is equivalent to a grid spacing of 1.0 nm in
all directions. Therefore the device Hamiltonian is a matrix of size 2541 × 2541. The
conduction band edge profile is assumed to be constant and set to Ec = 0 eV. Also, the
effective electron mass is constant throughout the device and equals 0.067m0.

Figure 4.9 shows the calculated transmission coefficient T (E) between the leads 1 and
2 as a function of energy. For the blue line 23.6% (600 of 2541) of all eigenvectors were

Figure 4.8.: Schematic sketch of the 3D nanowire showing the GaAs region (blue) that
is placed between two contacts (red and green leads).
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Figure 4.9.: Transmission coefficient T (E) of a GaAs nanowire as a function of energy
for three different percentages of eigenvectors taken into account.

used whereas for the red line only 15.7% (400 of 2541) had to be calculated. For the black
line only 7.9% (200 of 2541) of all eigenvectors were used. Thus, a small percentage of
eigenvalues suffices for the transmission function in the relevant energy range of interest,
i.e. one does not have to calculate all eigenvectors of the device Hamiltonian which grossly
reduces CPU time. Note that the transmission drops significantly once the cutoff energy
of the highest eigenvector taken into account is reached.

The same data as in Fig. 4.9 is shown again in Fig. 4.10 as a zoom into the energy
range 0 eV – 0.5 eV. The colored figures show the wave function amplitude of the lowest
energy lead modes. Once the energy reaches 78 meV, the first lead mode energy is
reached and then this mode transmits perfectly, giving a transmission of 1. The second
and third lead mode states are degenerate due to the symmetry of the lead cross section,
thus they have the same energy (191 meV). Consequently, once the energy of 191 meV
is reached, the transmission increases by 2. The total transmission is now equal to 3 as
all lead modes transmit perfectly. The energy of the 4th lead mode is at 305 meV. The
degeneracy of the 5th and 6th mode is accidental. They have the same energy. As one
can clearly see, in this low energy limit, it is sufficient to calculate only a few percent of
all eigenfunctions of the device Hamiltonian. For the leads, i.e. lead Hamiltonians, in all
cases 80 of 121 (66.1%) eigenstates have been calculated.

Figure 4.11 shows the same transmission data as before but this time including the
density of states. Again, the colors indicate taking into account 200, 400 or 600 eigen-
vectors of the decoupled system (closed system). The shape of the density of states is
the typical one of two-dimensional confinement in quantum wires.

Technically, within the nextnano3 software, for each contact (lead), a quantum clus-
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Figure 4.10.: Transmission coefficient T (E) of a GaAs nanowire and relevant low energy
lead modes. The energy of the lead modes is related to the steps in the
transmission curve.
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Figure 4.11.: Transmission coefficient T (E) of a GaAs nanowire and corresponding den-
sity of states showing the typical shape of two-dimensional confinement.

ter (‘lead quantum cluster’) has to be defined because in each lead a two-dimensional
Schrödinger equation has to be solved which gives us the lead modes (i.e. energies and
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4.6. Local density of states

eigenvectors of the leads). In addition, a quantum cluster is required for the device itself
(‘main quantum cluster’). For each quantum cluster, the number of eigenstates to be
calculated has to be specified.

The CBR algorithm is extremely well suited for parallelization, i.e. the calculation
of T (E) can be (ideally) parallelized for each energy step E. For each energy E (250
energy steps in this example) a matrix of size 160 × 160 has to be inverted. The size
of 160 is determined by the sum over the number of lead modes taken into account for
each lead. The upper limit would be the number of grid points in each lead that are in
contact to the device, i.e. in this example where each lead has 11×11 = 121 grid points,
the maximum size of the matrix to be inverted could be 242 = 121 + 121. Here, only 80
eigenvalues for each lead were used.

I implemented an OpenMP parallelization which is the method of choice for multi-core
processors. For 200, 400 and 600 eigenvalues the calculations took roughly 20, 25 and 34
seconds for the whole simulation including overhead (approx. 5 seconds for processing
input file, generating output files, ...) on a 12-core computer. On a single-core CPU, the
respective times were 44, 58 and 77 seconds. The eigenvectors of the device Hamiltonian
have been calculated with the ARPACK eigenvalue solver [LSY98]. We note that in this
example the time-consuming part was the calculation of the eigenvectors, which itself
is not parallelized2 with the exception of calls to BLAS [BLA] and LAPACK [LAP]
routines, and not the implementation of the (ideal) OpenMP-parallelization of the T (E)
calculation.

As an alternative to OpenMP, I also implemented a Coarray Fortran parallelization
which allows us to connect several multi-core CPUs over a network using the g95 Fortran
compiler3 which showed similar performance as the OpenMP implementation.

4.6. Local density of states

In order to obtain the local density of states (LDOS) for each energy Ei, some additional
steps are required. In the following the subscript C indicates that the matrices have size
NC. If an incomplete set of lead modes has been used (see Subsection 4.5.2) all these
matrices are in fact smaller and have only a size of NC,m. However, for better readability
we now omit the subscript m and write only C.

We need the lower left part GR
DC of the retarded Green’s function that correlates the

device and the contacts (see eq. (4.6)). It is obtained from the corresponding Dyson
equation

GR
DC = G0

DCB−1
C (4.42)

BC = 1C −ΣCG0
C, (4.43)

where 1C is the identity matrix and ΣCG0
C is a simple matrix multiplication of two small

matrices that have been calculated already (see Subsection 4.4.3 and Subsection 4.4.3).

2A parallel version of ARPACK (Parallel ARPACK, PARPACK) [MS96] which is suitable for dis-
tributed memory parallel architectures is also available.
http://www.caam.rice.edu/˜kristyn/parpack home.html

3http://www.g95.org

97



Chapter 4. Ballistic quantum transport using the CBR method

The matrices GR
DC and G0

DC are not square matrices. As they correlate the interior
device grid points with the leads, they have the dimension ND × NC. They are rep-
resented within a mixed real space and lead mode space representation. The Green’s
function G0

DC of the closed device can be expressed in terms of the following spectral
representation

G0
DC =

nα∑
n=1

|ψn,D〉 〈ψn,C|
Ei − En

, (4.44)

which reads in mixed real space (index z) and lead mode space (index m)

G0
DC(z,m) =

nα∑
n=1

〈z|ψn,D〉 〈ψn,C|m〉
Ei − En

(4.45)

=

nα∑
n=1

ψn,D χT
n

Ei − En
= ΨDM. (4.46)

In fact, this only involves a matrix multiplication ΨDM where the dimensions of the
matrices are

G0
DC : ND ×NC (4.47)

ΨD : ND × nα (4.48)

M : nα ×NC. (4.49)

The matrix ΨD contains in columns 1, ..., nα the wave vectors ψn,D of the eigenstate n
of the closed device Hamiltonian

ΨD =
(
ψ1 ... ψnα

)
. (4.50)

The matrix M is defined as

M =

 MT
1

...
MT
nα

 , (4.51)

where we store for each eigenvalue En the following vector

Mn =
1

Ei − En
χn. (4.52)

This is actually the same as eq. (4.20) (or eq. (4.35), respectively) apart from the co-
efficient 1/(Ei − En). M is of dimension nα × NC where nα ≤ nT is the number of
eigenvalues taken into account, and NC is the dimension of the χn vectors in the mode
space representation.

The inverted matrix B−1
C can be obtained using the same implementation of an in-

version algorithm analogously to Subsection 4.4.3. The matrix multiplications involv-
ing large matrices (eq. (4.42), eq. (4.46)) can be performed efficiently using standard
routines from numerical libraries (e.g. BLAS routines ZGEMM and DGEMM [BLA],
respectively).
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4.6. Local density of states

The local density of states ρ(z, E) is the diagonal (divided by 2π) of a more general
concept called the spectral function A(E) = A (z, z′, E). The local density of states ρλ

for each lead λ (lead connected local density of states) can easily be calculated at each
grid point z from the retarded Green’s function GR

DC(z,m) (in mixed real space and
mode space representation) and the broadening matrix Γ

ρλ(z, Ei) =
1

2π
Aλ(z, z, Ei) (4.53)

=
1

2π

〈
z
∣∣∣GRΓλGR†

∣∣∣ z〉 (4.54)

=
1

2π

mλα∑
m=1

∣∣GR
DC(z,m)

∣∣2 Γλmm. (4.55)

Γλ is diagonal in the subspace of the propagating lead modes. The sum runs over all
modes m of lead λ. For a 1D simulation, there is only one mode, and thus GR

DC is a
ND × 2 matrix and Γλmm is the diagonal of Γλ, i.e. only a vector of length 2 has to be
stored. The LDOS must have units of 1/energy 1/length (eV−1nm−1) in a 1D simulation
(2D: 1/energy 1/area, 3D: 1/energy 1/volume). As we normalized the wave functions to
be dimensionless (eq. (4.16), eq. (4.17)), the calculated LDOS has to be divided by the
grid spacing ∆ for consistency. The total local density of states is simply the sum over
the LDOS of each lead

ρ(z, Ei) =
L∑
λ=1

ρλ(z, Ei). (4.56)

So far we calculated the local density of states only at the interior device grid points
ND. All of the equations in this section apply equally well to the contact grid points
NC if one replaces the subscript D with the subscript C. In a numerical implementation,
one simply has to use in eq. (4.46) the wave vectors ψn,T of the total device

G0
TC(z,m) = ΨTM, (4.57)

and to replace in eq. (4.42) and eq. (4.55) GR
DC by GR

TC to obtain the local density of
states ρλ(z, Ei) for both interior and contact grid points simultaneously. The matrix ΨT

is stored in memory and has been obtained from numerically solving the Schrödinger
equation (eq. (4.14)).

Density of states The density of states (DOS) Dλ(Ei) for each lead can be obtained
by integrating the local density of states ρλ(z, Ei) for each energy Ei over the spatial
coordinate z

Dλ(Ei) =

∫
ρλ(z, Ei) dz = ∆

NT∑
z=1

ρλz (Ei). (4.58)

Thus the DOS Dλ(Ei) can easily be obtained by adding the components of the vector
that stores ρλz (Ei) and multiplying this sum by the grid spacing ∆. The total density of
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Chapter 4. Ballistic quantum transport using the CBR method

states is then simply the sum over the DOS for each lead

D(Ei) =

L∑
λ=1

Dλ(Ei). (4.59)

The DOS is in units 1/energy.

4.7. Density

The charge density can be calculated via the density matrix or via the local density
of states [VMK+08]. We recommend to use the local density of states. This is favor-
able within a self-consistent scheme, since it allows for the use of a predictor–corrector
scheme (see Subsection 4.8.2) to improve the convergence. From the lead connected
local density of states ρλ(x, E), the local energy resolved carrier density nλE(x, E) for
each lead λ is obtained by occupying each level with the distribution function f(E,µλ)
of the corresponding lead

nλE(x, E) = gsgvρ
λ(x, E)fdD (E,µλ) , (4.60)

where gs = 2 is the spin degeneracy and gv is the valley degeneracy. The latter is relevant
when treating electrons that are in the X or L valleys, like in AlAs, silicon or germanium.
In higher dimensions or if these bands are split due to strain, usually for each valley a
separate Schrödinger equation has to be solved. Depending on the simulation dimension
(d = 1, 2, 3) the appropriate Fermi function fdD has to be used which takes into account
the k‖ vectors that occur in 1D and 2D simulations. For a device that is homogeneous
along the x and y directions (1D simulation) it is given at a particular energy Ez by

f1D(Ez, µ) =
m‖kBT

2πh̄2 ln
(

1 + e−(Ez−µ)/kBT
)
, (4.61)

where m‖ (z) is the effective mass tensor component in the (x, y) plane of the respective
valley (which generally varies with position z and thus has to be averaged over the spatial
coordinates weighted with the local density of states for each energy). f1D is in units of
1/area.

The analogous equations for 2D and 3D devices are

f2D(Ex,y, µ) =

√
m‖kBT

2πh̄2 F−1/2 ((µ− Ex,y)/kBT ) , (4.62)

wherem‖(x, y) is the effective mass tensor component along the homogeneous z direction,
and F−1/2 is the Fermi–Dirac integral of order −1/2 which can be evaluated efficiently
using approximation formulas [Ant93]. f2D is in units of 1/length. In 3D the usual Fermi
function is used which is of course dimensionless

f3D(E,µ) =
1

1 + exp ((E − µ)/kBT )
. (4.63)
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From the lead connected local energy resolved density nλE(x, E), the local carrier density
nλ(x) for each lead λ is obtained by integrating over the energy E

nλ(x) =

∫
nλE(x, E) dE. (4.64)

The total density is the sum over the contributions from all leads

n(x) =
L∑
λ=1

nλ(x). (4.65)

The units are 1/volume in all dimensions.

In the explanations above we introduced the term energy resolved density. For 1D and
2D simulations this energy E = Ez did not take into account the energy due to k‖ 6= 0.
The total energy of the electron is given by eq. (4.21) for the 1D case and by eq. (4.37) for
the 2D case. It is necessary to include these k‖ contributions into the energy resolved
density to get meaningful plots. This is done by first evaluating the local density of
states ρ(z, Etotal) for the total energy, and then occupying the LDOS by the usual Fermi
function (eq. (4.63)). In 1D simulations, information about the system under study can
be obtained by plotting the energy resolved electron density n(x, Etotal) and the energy
resolved electron density nλ(x, Etotal) for each lead. These are two-dimensional plots
like the local density of states. The density can be split into two parts, one originating
from the left lead, and one from the right lead (see Fig. 4.14). In 2D simulations the plot
of the energy resolved electron density or local density of states is a three-dimensional
plot. This makes it difficult to analyze these quantities in 3D simulations where they
are four-dimensional. Thus one can only plot slices through these 4D data.

4.8. Self-consistent CBR algorithm

The self-consistent solution of the ballistic transport properties of an open device requires
the repeated solution of the Schrödinger and Poisson equations due to the coupling via
the potential and the quantum mechanical density. Also, the lead modes are calculated
self-consistently using the potential at the contacts, obtained from the solution of the
Poisson equation. In principle, it is possible to simply iterate the solution of theses
equations, and with enough damping this will lead to yield a converged result. To
improve the convergence of a highly nonlinear set of coupled equations, such as the
Schrödinger–Poisson problem, the Newton algorithm is usually the first choice. But since
the exact Jacobian cannot be derived analytically and a numerical evaluation would be
too costly, the simple adaption of this method is not feasible. For the case of a closed
system this problem has been solved using a predictor–corrector approach [TGPR97].
The aim of this highly efficient method is to find a good approximation for the quantum
density as a function of the electrostatic potential where an expression for the Jacobian
is known. Within this approximation the nonlinear Poisson equation can efficiently be
solved using the Newton scheme resulting in a predictor update for the electrostatic
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Chapter 4. Ballistic quantum transport using the CBR method

potential and the carrier density. If this approximation is close enough to the real
quantum density, only very few updates will be necessary to yield a converged solution.
This means that for each bias step, the Schrödinger equation has to be solved less than
approximately 10 times until the potential and the density are sufficiently converged.
In the nin–resistor example presented below, the Schrödinger equation had to be solved
only 2–3 times for each bias step.

4.8.1. Poisson equation in the CBR method

The Poisson equation (eq. (1.1)) describes the electrostatics within the device and has
been described in Section 1.1. In all CBR calculations in this thesis, we only take into
account one conduction band and calculate the electron density n quantum mechanically
as described in Section 4.7. Here, we only consider fully ionized donors N+

D (Section 1.2)
and neglect all other contributions to the density. For the CBR calculations we discretize
the Poisson equation on a uniform grid. For both equilibrium and nonequilibrium cal-
culations, we use Neumann boundary conditions for the Poisson equation which implies
a vanishing electric field at the boundaries (eq. (1.3)). This is the recommendation for
ballistic devices [Dat05]. An alternative would be to use Dirichlet boundary conditions
for nonequilibrium simulations [LKBJ97]. Here, one first has to determine the electro-
static potential in equilibrium (built-in potential) using zero-field (Neumann) boundary
conditions. The electrostatic potential at the boundaries is then fixed with respect to
the chemical potentials taking into account the previously calculated built-in potential
at the boundaries. For both boundary conditions, the chemical potentials at the con-
tacts are fixed and correspond to the applied bias. Further boundary conditions are
summarized in Ref. [LKF04]. These include the concept of a drifted Fermi distribution
function in the leads that accounts for a net current flow in those leads.

4.8.2. Predictor–corrector approach

A fast and robust iterative method for obtaining self-consistent solutions to the coupled
system of Schrödinger and Poisson equations is very important. Basically, a simple
expression describing the dependence of the quantum electron density on the electrostatic
potential is required ( ∂ρ∂φ). This expression is then used to implement an iteration scheme,
based on a predictor–corrector type approach, for the solution of the coupled system of
differential equations. Within the CBR method, a predictor–corrector approach can
easily be applied making use of the previously calculated local density of states by
modifying eq. (4.60) slightly to get the energy resolved density for the predictor potential.
This predictor density nλE,p(x, E,∆φ) is then given by

nλE,p = gsgvρ
λ(x, E)fdD (E − e∆φ(x), µλ) . (4.66)

The idea behind this approximation is that to first order the wave functions, and there-
fore the local density of states ρλ(x, E), remain unchanged for small deviations in the
potential. Only the eigenenergies are adjusted locally to small changes in the electro-
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static potential ∆φ(x). This is achieved by using E − e∆φ(x) instead of E as the new
argument for the Fermi function fdD.

The charge density used in the Poisson equation is a function of the electrostatic
potential (‘nonlinear’ equation). The nonlinear Poisson equation can be solved very
fast using a predictor density. This density avoids the time-consuming procedure of
solving the Schrödinger equation many times. Once the new electrostatic potential for
the predictor density has been obtained, the new quantum mechanical density, i.e. the
new local density of states for this potential can be evaluated. This procedure is iterated
until convergence of both the electrostatic potential and the quantum mechanical charge
density is achieved.

The nonlinear Poisson equation itself is solved by a Newton–Raphson method where
the functional

F = A · φ+ ρ = 0 (4.67)

is minimized. Here, A represents the discretized Poisson matrix and ρ is a vector repre-
senting the charge density for each grid point. The Newton algorithm finds an electro-
static potential vector φj+1 = φj + ∆φ such that the magnitude of the residuum vector
F becomes smaller than a certain small threshold of ε. The electrostatic potential φj of
the jth iteration step is kept fixed within the Newton method. The index j refers to the
outer Schrödinger–Poisson iteration and counts how often the Schrödinger equation has
to be solved until convergence is obtained. Once the Newton algorithm has converged
to a correction ∆φ, the Schrödinger equation (i.e. the CBR algorithm) is solved for the
updated electrostatic potential φj+1. The new local density of states is then input to
the next iteration of the Newton algorithm.

For the Newton correction, the Jacobi matrix J is needed. It is simply the Poisson
matrix plus the derivative of the density with respect to the potential

J =
∂F

∂φ
= A +

∂ρ

∂φ
= A +

∂np

∂φ
. (4.68)

Thus within the CBR method, the derivative of the predictor density np with respect to
the potential is needed. This derivative is available using eq. (4.66) and the derivative
of the Fermi functions fdD with respect to ∆φ.

The iteration approach presented in this section simplifies the numerical implementa-
tion of the nonlinear Schrödinger–Poisson problem significantly. In addition, it provides
excellent convergence speed and stability. Further details about it can be found in
Ref. [VMK+08].

4.8.3. Self-adapting energy grid

For the numerical implementation of a self-consistent scheme using a continuous density
of states, the energy grid is of high importance. To integrate the carrier density, we
discretize the local density of states in energy space and then employ a simple numer-
ical integration by summing up the values for each energy step weighted by the Fermi
distribution and the energy grid spacing ∆E . Since the DOS is a very spiky function
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with peaks corresponding to highly localized states due to the onset of the conduction
band edges at the contacts (1D) or due to the propagating lead mode energies (2D, 3D),
it is very important for the convergence of the self-consistent CBR algorithm to have
these features properly resolved. Additional peaks arise from quasibound states, like for
instance in the double barrier structure (10 nm barrier widths) as discussed in Subsec-
tion 4.4.4. Usually the main structural features in the DOS are due to the lead modes. If
quasibound states are the dominant features in the DOS, one could use the information
about their energy levels (which is available within the CBR method) to optimize the
energy grid. Thus we need an energy grid that is self-adapting to the density of states
which varies for each iteration. Otherwise, a well converged self-consistent solution is
not possible unless a lot of energy grid points are used.

In 2D simulations of e.g. a double gate MOSFET where the channel acts as a one-
dimensional wire, the peaks show a 1/

√
(Ei − Eλm) dependence, where Eλm is the peak

energy arising due to the onset of the lead modes. In 2D and 3D there are always several
onsets as there are typically many lead modes involved. The peaks in our 1D nin–resistor
example (Fig. 4.15) show also a 1/

√
(Ei − Eλm) dependence, where Eλm = Eλc is the peak

energy arising due to the onset of the conduction band edges at the contacts. In 1D
simulations there are only two onsets, one for each contact. The integral over the peak
is thus very poor when using an energy grid with constant grid spacing (uniform energy
grid, see Subsection 4.4.3), since the relative distance between the nearest energy grid
point Ei and the peak energy Eλm is arbitrary. Additionally, the lead mode energy is
slightly shifted with each iteration step, leading to a varying integration error during
the self-consistent cycle, which is an extreme handicap for any self-consistent algorithm.
Thus a solution to this problem is to use the physical information we have about the
system and employ a self-adapting energy grid that resolves each known (i.e. relevant)
peak m with a local energy grid of a few tens of energy grid points that is fixed to the lead
mode energy Eλm. Additionally, extra points are distributed in the space between the
peaks to obtain a smooth enough energy grid. An exponential grid type is recommended
since it provides a good resolution of the 1/

√
E behavior of the peaks. In order to avoid

singularities the energy grid points are not allowed to match exactly the eigenenergies
of the closed system. For each peak, the first grid point is set slightly below the onset
of the peak and then each grid point i is set with increasing energy grid spacing

∆Ei = g ∆Ei−1 = gi ∆E0 , (4.69)

starting with the initial grid spacing ∆E0 = 0.1 meV, and a grid factor g = 1.2, for
instance. A grid factor of g = 1.0 leads to a locally linear grid which has been found to
be not as efficient as the exponential grid. The parameters that specify the energy grid
are the total number of energy grid points, the maximum number of peaks taken into
account, the number of energy grid points in the local grid around a peak, and the grid
factor. The minimum value of the energy grid should be slightly below the minimum
of the conduction band edges of the contacts, the maximum value should not be higher
than Emax = 0.25t, where t is defined analogously to eq. (4.24).

Figure 4.15 demonstrates that the peaks in the LDOS and DOS of a simple nin–
structure (see Subsection 4.8.5) are well resolved, and that for other regions in the energy
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interval less grid points are fully sufficient. The energy grid consists of 300 grid points
including the extra points used to resolve the onsets of the two peaks at the conduction
band edges of the contacts. Importantly, the integration error is reduced compared to
the uniform grid and remains constant within the iteration, since the grid is locally fixed
to the shifting lead mode energies (or conduction band edges in a 1D simulation). The
convergence behavior of a uniform grid with an order of magnitude more energy grid
points is very similar for the first iteration steps. The achieved convergence is measured
by a residuum which is a very small number. Compared to the self-adapting grid, the
uniform grid reaches a bottom at the residuum, which cannot be reduced further. This
is due to the fluctuating integration error. In contrast, the self-adapting energy grid
guarantees satisfying convergence.

As the contact block matrices have to be inverted for each energy, the computational
time depends linearly on the total number of energy grid points. Therefore, a numerical
implementation of an optimized energy grid is very important for an efficient use of the
CBR method.

4.8.4. Extracting the quasi-Fermi level

For all calculations presented in this paper, the extraction of the quasi-Fermi level was
not necessary because only one conduction band has been involved. For equilibrium
solutions, we so far assumed that the Fermi level (chemical potential) is constant and
fixed to EF = 0 eV, allowing the semiconductor band edges to adjust according to the
electrostatic potential as calculated from the Poisson equation (see Subsection 4.8.1). For
nonequilibrium calculations where the device is under bias, one could extract a spatially
varying quasi-Fermi level EF(z) in order to get meaningful (or to avoid artificially wrong)
charge densities for all other bands that are not treated quantum mechanically with the
CBR method, e.g. hole bands or higher lying electron bands. This might be necessary for
the self-consistent CBR algorithm under high bias conditions, where for each iteration the
quasi-Fermi levels have to be obtained self-consistently. The reason is that the equation
for the classical densities needs a reasonable value for the local quasi-Fermi level. In
nonequilibrium calculations electrons and holes can be described by different quasi-
Fermi levels (EF,n(z), EF,p(z), respectively). The quasi-Fermi level for electrons can be
obtained by finding (e.g. using a bisection algorithm) for each grid point z the appropriate
local quasi-Fermi level EF,n(z) that corresponds to the actual electron density at this
grid point (and similar for the holes). These Fermi levels would lie in between the
chemical potentials of the left and right contact which are kept fixed in a nonequilibrium
calculation. Rather than occupying the lead connected local density of states with the
chemical potential of the relevant lead (eq. (4.60)), one would occupy the total local
density of states (eq. (4.56)) at position z by taking a suitable average (EF,n(z)) of the
chemical potentials of all leads.

Bound states treatment Electronic states that are below the conduction band edges
of the contacts do not get occupied within a ballistic algorithm. All higher lying states
contribute via the local density of states to the quantum mechanical density. It is not a re-
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Chapter 4. Ballistic quantum transport using the CBR method

alistic treatment to ignore the lower lying bound states as they usually get filled through
scattering events. Therefore the density originating from the bound states obviously
contributes to the electrostatics of the device and should be included into the Poisson
equation. An example calculation of a quantum well that is completely empty within a
ballistic calculation but gets filled once scattering is included has been discussed in detail
in Ref. [KTV05]. As the probability densities of the electronic states are available (see
Subsection 4.4.1), one could use this information and occupy the states that are below the
conduction band edges of the contacts locally with a self-consistently determined quasi-
Fermi level. This is the standard approach usually employed in Schrödinger–Poisson
solvers. Here, however, for energies where the LDOS from the ballistic calculation is
available, the CBR density is used instead. So the total density has two contributions,
one from the bound states and one from the CBR density. Another approach how to
include bound states is described in Ref. [VMK+08].

4.8.5. nin–resistor (1D example)

As a simple example to illustrate the self-consistent CBR method, we choose a nin–
structure where quantum confinement effects are not relevant. Hence, the equilibrium
solution can easily be checked against the standard approach for calculating the carrier
concentration in semiconductor devices. This classical density is obtained using Fermi–
Dirac integrals and the effective density of states of the conduction (and valence) bands.
We emphasize that in Fig. 4.12 and Fig. 4.13 we only used quantum mechanical densities
calculated with the CBR method (see Section 4.7). In equilibrium, the CBR approach
leads to the same conduction band profile and the same carrier densities as the classical
approach (not shown). The nin–structure consists of GaAs and has a length of 80 nm.
The doping profile is symmetric with a donor concentration of N+

D = 1 · 1018 cm−3

(fully ionized). The 35 nm wide n–type doped regions at the source and drain sides are
separated by a 10 nm wide intrinsic region in the middle. For comparison, we also study
an asymmetrically doped n+in–structure where the left n–type region has a doping
concentration of N+

D = 2 · 1018 cm−3 (0-35 nm) and the right doping region has a
concentration of N+

D = 1 · 1018 cm−3 (45-80 nm). The temperature is set to 300 K. The
device is discretized with a grid spacing of 1 nm. A self-adapting energy grid of 300
energy grid points is used. For each bias point, it is sufficient to solve the Schrödinger
equation only 2–3 times to get well converged results. This shows that this nin–resistor
is well suited as a test case to benchmark an efficient implementation of both the self-
adapting energy grid, and the predictor–corrector algorithm.

Figure 4.12 and Fig. 4.13 show the conduction band edge profiles and electron den-
sities of the symmetric nin– and asymmetric n+in–structures, respectively, calculated
with the self-consistent CBR method. The solid lines are equilibrium results and the
dotted lines correspond to an applied bias of VSD = −50 mV at the right contact. The
chemical potential in equilibrium is equal to µ = 0 meV (dashed line). Under bias, the
chemical potential of the right contact is increased by 50 meV, indicated by the vertical
arrows. As a consequence of the zero-field boundary conditions for the Poisson equation,
the band edges are flat at the contacts. However, for the symmetric nin–structure the
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Figure 4.12.: Conduction band edge profiles and electron densities of a symmetric nin–
structure calculated with the self-consistent CBR method. Solid lines are
equilibrium results, dotted lines correspond to an applied bias of VSD =
−50 mV at the right contact. The chemical potential in equilibrium is
equal to µ = 0 meV (dashed line). Under bias, the chemical potential of
the right contact is increased by 50 meV, indicated by the vertical arrow.
The doping profile is symmetric (N+

D = 1 · 1018 cm−3).

Figure 4.13.: Same as Fig. 4.12 but for the n+in–structure that has an asymmetric dop-
ing profile (0-35 nm: N+

D = 2 · 1018 cm−3, 45-80 nm: N+
D = 1 · 1018 cm−3).

107



Chapter 4. Ballistic quantum transport using the CBR method

Figure 4.14.: Individual electron densities due to the left (blue lines) and the right (red
lines) contact are shown for the asymmetric n+in–structure. The total
density is identical to Fig. 4.13 (black lines). Solid lines are equilibrium
results, dotted lines correspond to the applied bias VSD = −50 mV. The
donor concentration profile N+

D is also shown. Raising the chemical po-
tential at the right contact increases (decreases) the density due to the
occupation of the corresponding local density of states of the right (left)
contact.

difference in the conduction band edges at the left and right contact is smaller than the
actual difference in the chemical potentials. The same holds for the asymmetric n+in–
structure if one takes the built-in potential (of the equilibrium calculation) into account.
The reason for this behavior is as follows (see Section 11.4 “Where is the voltage drop”
of Ref. [Dat05]): In ballistic simulations a fraction of the density of states at one contact
is always controlled by the contact at the other end. Making the end regions of the
device longer will not change this situation. This can easily be understood by separately
visualizing the electron densities that originate from the left and right contacts. This
is shown in Fig. 4.14 where the individual electron densities due to the left (blue lines)
and the right (red lines) lead are shown for the asymmetric n+in–structure. The total
density is identical to Fig. 4.13 (black lines). Solid lines are equilibrium results, dotted
lines correspond to the applied bias VSD = −50 mV. The donor concentration profile N+

D

is also shown. Raising the chemical potential at the right contact increases the density
due to the occupation of the corresponding local density of states of this contact (lead
connected local density of states, see Section 4.6). Consequently, the density due to
the other lead must decrease to guarantee global charge neutrality. There are two ways
for the density to decrease, one is changing the chemical potential of the relevant lead
(which is not possible as it is fixed due to the boundary condition), the other possibility
is to adjust the electrostatic potential, and thus the conduction band edge. The latter
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Figure 4.15.: Local density of states (LDOS) at the left (Lead 1, black solid line) and
right (Lead 2, red dotted line) contact of the asymmetric n+in–structure in
equilibrium. The self-adapting energy grid is able to resolve the peaks in the
LDOS sufficiently accurate (300 energy grid points in total). Also shown is
the density of states (DOS, blue dashed line) which is the integrated LDOS
over the position (sum over all lead contributions). The DOS has peaks at
the onset of the conduction bands edges at the left and right contacts.

situation corresponds to zero-field boundary conditions (Neumann). This explains why
Dirichlet boundary conditions are inappropriate for ballistic devices. For quantum cas-
cade laser (QCL) simulations where the doping concentration is low, Neumann boundary
conditions seem to be a natural choice where one allows the derivative of the potential
at the left and right boundaries

∂φ

∂z
= const (4.70)

to adjust self-consistently under the condition of global charge neutrality, i.e. requiring
equal slope at the boundaries. The slope is adjusted in such a way that the potential
drop across the device equals the bias voltage that is defined by the difference between
the chemical potentials in the contacts [KYV+09]. This will lead to finite electric fields
at the boundaries that correspond to the applied electric field in the QCL.

Figure 4.15 shows the local density of states at the left (Lead 1, black solid line) and
right (Lead 2, red dotted line) contact of the asymmetric n+in–structure in equilibrium,
i.e. one-dimensional slices at the first (z = 1) and last (z = NT) grid point of the two-
dimensional LDOS ρλ(z, Ei) plot of lead λ (eq. (4.55)). The self-adapting energy grid
is able to resolve the peaks in the LDOS sufficiently accurate (300 energy grid points in
total). This is very important in a self-consistent algorithm to ensure converged results
for the electron density which has to be integrated over energy (eq. (4.64)). Also shown is
the density of states (DOS, blue dashed line). It is obtained by integrating for each lead
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Figure 4.16.: Linear regime of the current–voltage characteristics of the symmetric (solid
line) and asymmetric (dotted line) nin–structures calculated with the self-
consistent CBR method at a temperature of 300 K.

the LDOS over the position, and then adding the contributions of each lead (eq. (4.59)).
The DOS has peaks at the onset of the conduction bands edges at the left and right
contacts. Note that the energy axis corresponds to the energy Ez along the z direction
and not to the total energy Etotal which includes the integration over k‖. The spin
degeneracy factor is included in this figure.

The linear regime of the current–voltage characteristics of the symmetric (solid line)
and asymmetric (dotted line) nin–structures has been calculated with the self-consistent
CBR method and is shown in Fig. 4.16. For the asymmetric n+in–resistor the applied
voltage corresponds to reverse bias operation. In comparison to the symmetric nin–
structure, the asymmetric resistor shows a higher current density because the effective
barrier width and the effective barrier height due to the intrinsic region is reduced. In
this small device, the limiting case of ballistic quantum transport is a suitable approxi-
mation. For such low biases, the calculated current density of the ballistic calculations
do not deviate strongly from calculations that include both scattering and more ad-
vanced lead models (not shown). The main reason is the absence of confined states
below the conduction band edges of the leads. These states get only filled if scattering
is present, and can then influence the charge carrier distribution significantly. In such
a case, a ballistic quantum transport model is not adequate. When modeling resonant
tunneling devices and especially quantum cascade lasers, it is very important to include
scattering [VK10]. The latter might be designed based on e.g. resonant conditions with
longitudinal optical phonons (LO phonon scattering).
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4.9. Current

The transmission function T (E) can be computed, once the band edge profile of the
device has been obtained by means of a charge self-consistent calculation. The ballistic
current from lead λ to lead λ′ can be calculated based on the Landauer–Büttiker formula
(see eq. (4.1)). This equation has to be adjusted for 1D and 2D simulations if the
transmission coefficient is a function of Ez or Ex,y, respectively, rather than of the total
energy. In 1D, the integration has to be performed over Ez, and the Fermi function
f(E,µ) has to be replaced with the corresponding Fermi function f1D(Ez, µ) given in
eq. (4.61). In 2D, the integration has to be performed over Ex,y and the appropriate
Fermi function f2D(Ex,y, µ) is given in eq. (4.62). The Fermi functions include the
corresponding units, so the current in 1D is given in units of A/m2, in 2D in A/m and
in 3D in A.

If more than two leads are present in the device, then for the total current through a
particular lead λ the contributions from all other leads λ′ have to be summed up

Iλ =
L∑

λ′=1

Iλλ′ (λ′ 6= λ). (4.71)

4.10. Conclusions

In this chapter we presented in detail a numerical implementation of the contact block
reduction (CBR) method which is a variant of the nonequilibrium Green’s function
formalism. Charge self-consistent calculations can be performed very efficiently even for
3D structures by means of the CBR approach. Once the potential profile of a device
with an arbitrary number of contacts has been obtained, the ballistic current can be
calculated based on the Landauer–Büttiker formula. The presented model is suitable
for extremely small devices or very low temperatures, where the elastic and inelastic
scattering lengths exceed the geometrical device size. In these cases, the ballistic current
model is a reasonable model.
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5. Calculation of electron mobility in a
two-dimensional electron gas

For basic research experiments high-mobility samples are very important where mo-
bilities reach in AlGaAs–GaAs samples up to 107 Vs/cm2. But also for real device
applications in e.g. CPUs (transistors), mobile phones (HEMTs) or RF power transistor
technology (GaN HEMTs), carrier mobility is a very important parameter that has to
be optimized in device design. In particular, the product µn of mobility µ and electron
density n is the important parameter because the current is proportional to it. Studying
mobility is especially relevant if new materials like InAs or InSb should replace silicon,
or if strain is used to enhance the mobility, e.g. uniaxial strain in state-of-the art 22 nm
transistors (strained silicon). While the influence of strain on the electron mobility is
easier to understand in situations where only the first subband is occupied, the situation
becomes much more complicated for holes. This is not only due to the warped and
anisotropic hole band structure but also for the fact that more subbands are occupied
as the hole energy levels are lying closer to each other. Also for drift–diffusion trans-
port models, the mobility is an important (input) parameter that is essentially a grid
point dependent quantity. For silicon channels, mobility models have been developed
that require up to 70 parameters (35 for electrons, 35 for holes) [DLP+97]. Such models
have their justification in the TCAD industry but are certainly not suited for less well
studied materials. For the physicist it is more attractive to rely on models where no
mobility parameters are needed as input. It is even better if no (in case of ‘ab initio’ or
‘from first principles’ calculations) or only a few input parameters are needed that are
experimentally accessible. An example for the latter is the calculation of the transport
properties in quantum cascade lasers by the nonequilibrium Green’s function (NEGF)
method [KYV+09]. However, what we need here within the framework of nextnano is
a simple algorithm that takes the self-consistently calculated band profile of a general
two-dimensional electron (2DEG) or hole gas (2DHG), its energy levels (band structure)
and wave functions, and their occupation to calculate the mobility. While sophisticated
methods have previously been used to calculate the mobility, e.g. by a combination of k·p
and Monte Carlo methods [OZV98], it seems not to be an easy task to implement such
approaches into a general Schrödinger–Poisson solver like nextnano. In the literature
we identified simpler models that might be suitable for us to get rough estimates on the
mobility values. One of them is based on a single-band effective mass approach proposed
by Shao et al. [SSRM06] that includes scattering from ionized impurities, background
neutral impurities, deformation potential acoustic phonons and polar optical phonons to
calculate the mobility in delta-doped heterostructures. Later the same authors extended
their work to a k · p model [SSRMY07] in order to take into account nonparabolicity
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Figure 5.1.: Calculated conduction band edge profile Ec, Fermi level EF and the square of
the lowest two electron wave functions (ψ2

1, ψ2
2) at T = 1 K of a modulation

doped InSb quantum well of width 40 nm.

effects. The latter work is very likely suited to include strain and it might be possible to
extend it in order to also calculate hole mobilities. For this reason we implemented their
single-band model into nextnano3 in order to test it against experimental results. In
this thesis, we do not want to reproduce their equations used to calculate the mobility
and refer the interested reader to Ref. [SSRM06]. Our implementation is based on these
equations with the exception of eq. (3.5) in their paper which we corrected by adding a
factor of 1

4π because of SI units. We only want to mention that we extended their model
to include the scattering rate by random alloy scattering (alloy disorder scattering) based
on the equations given in Ref. [WRLG84]. In the following we present our results.

Figure 5.1 shows the calculated conduction band edge profile Ec, the Fermi level EF

and the square of the lowest two electron wave functions (ψ2
1, ψ2

2) at T = 1 K of a
modulation doped InSb quantum well (QW) of width 40 nm. It is surrounded by and
strained with respect to Al0.15In0.85Sb barriers. At z = −20 nm there is a δ-doping layer
with a sheet doping density of 1 · 1012 cm−2. It is separated from the InSb QW by a
40 nm Al0.15In0.85Sb spacer layer. This spacer layer is introduced in order to reduce
scattering by ionized impurities. We now discuss the agreement and disagreement of the
calculated mobility results compared to Fig. 3(a) in Ref. [SSRM06] of Shao et al. for
this delta-doped InSb 2DEG channel. Figure 5.2 shows our calculated mobility as a
function of temperature. The mobility µacoustic due to acoustic phonon scattering is
in excellent agreement and also the mobility µpolar due to polar optical LO phonon
scattering (if one takes into account that their figures miss a factor of 1

4π ). However, the
mobility µimpurity due to ionized impurity scattering and the mobility µbackground due to
background impurity scattering differ. It seems that the disagreement is not only due
to the different sheet density that has been used. Some minor differences in the input
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Figure 5.2.: Calculated total electron mobility of the InSb quantum well (black solid line)
as a function of temperature. The contributions of the individual scattering
mechanisms to the total mobility are indicated by the other solid lines.

parameters are the Schottky barrier height and the conduction band offset. We used
∼ 0.15 eV whereas Shao et al. used ∼ 0.25 eV. As the implementation of a self-consistent
Schrödinger–Poisson algorithm is rather complex, this might be another reason that the
results differ slightly.

The mobility is defined as µ = eτ/m where m is the effective mass, τ is the scattering
time (life time) due to the individual scattering mechanism, and 1/τ is called the trans-
port scattering rate. The total mobility is calculated as usual from the other mobilities
by using Matthiessen’s rule

1

µtotal
=

1

µimpurity
+

1

µbackground
+

1

µacoustic
+

1

µpolar
+

1

µalloy
. (5.1)

To benchmark the implemented model to non-δ-doped structures, other calculations
and experiment, we present a further example. Here, we test our algorithm on results of
GaAs 2DEGs of another publication. Walukiewicz et al. [WRLG84] calculated the mo-
bility of a modulation doped AlGaAs–GaAs heterostructure and compared their results
to the experimental values of Hiyamizu et al. [HSNI83]. We note that our algorithm
is suitable for δ-doped QW 2DEGs but this GaAs example is not δ-doped, and not a
sharp quantum well but an inversion layer with a triangular confinement potential in
the GaAs region. Figure 5.3 shows the calculated conduction band edge profile Ec, the
Fermi level EF and the square of the lowest two electron wave functions (ψ2

1, ψ2
2) at

T = 1 K of the modulation doped GaAs–AlGaAs heterostructure. The Al0.3Ga0.7As
region from 0 nm to 100 nm is doped with a concentration of 1 · 1018 cm−3. A 20 nm
Al0.3Ga0.7As spacer layer separates the 2DEG channel from the remote doping area.
Figure 5.4 shows our calculated mobility as a function of temperature. The agreement
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Figure 5.3.: Calculated conduction band edge profile Ec, Fermi level EF and the square of
the lowest two electron wave functions (ψ2

1, ψ2
2) at T = 1 K of a modulation

doped AlGaAs–GaAs heterostructure.

of the total mobility µtotal to experiment (squares) is very good for all temperatures.
The experimental values have been extracted from Fig. 5 of Ref. [HSNI83]. At large
temperatures the total mobility is dominated by polar optical phonon scattering and for
very low temperatures by remote ionized impurity scattering. In the intermediate range,
acoustic phonon scattering dominates. Alloy scattering is only relevant for the part of
the wave function that penetrates into the AlGaAs barrier. As the material where the
2DEG resides (GaAs) is not an alloy, the mobility due to alloy scattering does not have
a dominant influence on the total mobility. Our numerical values for the mobility due
to remote ionized impurity scattering at low temperatures is in perfect agreement to the
calculations by Walukiewicz (see Fig. 2 in Ref. [WRLG84]) although different models
have been used.

We have further tested the algorithm on GaN–AlGaN quantum wells and InGaAs
quantum wells where in the latter example the well material is an alloy, and thus the
total mobility is dominated by alloy scattering up to temperatures of 100 K (not shown1).

The calculated mobility for each temperature step automatically took into account
the temperature dependent band gap (eq. (B.2)). The sheet density of the δ-doping
layer, the spacer width and the calculated sheet electron density of the 2DEG which also
depends on the temperature is used as input for the calculation of the mobility due to
remote ionized impurity scattering. The sheet electron density of the 2DEG also enters
the mobility due to background impurity scattering, together with the background dop-
ing concentration. The quantum well width is input parameter to the mobility due to
deformation potential acoustic phonon scattering. In Fig. 5.4 we used 0.35 ·1012 cm−2 as

1These results have been documented online. nextnano3 tutorial: Mobility in two-dimensional electron
gases (2DEGs), http://www.nextnano.de/nextnano3/tutorial/1Dtutorial 2DEGmobility.htm

116



Figure 5.4.: Comparison of calculated total electron mobility µtotal of a GaAs 2DEG
(black solid line) to experiment (squares) as a function of temperature.

the remote doping sheet density. Furthermore, as there is only a triangular confinement
and no defined quantum well width, we approximated the latter input quantity to be
13 nm which corresponds to the extension of the ground state wave function along the
growth direction where the effect of barrier penetration has been taken care of. Whereas
Walukiewicz did not use the bulk value for the effective electron mass in GaAs but used
a higher value of mc = 0.076 m0 to take into account nonparabolicity effects, we used
mc = 0.067 m0 as this gives better agreement to the mobility at higher temperatures
and also because this is the usually accepted material parameter for GaAs. In contrast
to previous calculations where often for all temperatures the same 2DEG sheet density
had been assumed – Walukiewicz used a 2DEG density of 0.3 · 1012 cm−2 – our imple-
mented model allows us to calculate this input parameter dynamically. The background
impurity concentration was 9 ·1013 cm−3. An obvious improvement is the inclusion of in-
terface (surface) roughness scattering, which is important for thin wells and high 2DEG
densities, and piezoelectric scattering into eq. (5.1).

In conclusion, we have implemented and evaluated a single-band approach to calculate
the electron mobility in two-dimensional electron gases and compared our results to other
theoretical calculations and experiment. This allows one to easily identify the relevant
scattering mechanisms at various temperature ranges. Device parameters like spacer
width, doping concentration, quantum well width or alloy profile can easily be varied to
study their influence on mobility, or on the product µn of mobility and electron density in
a very transparent way. We conclude that this model seems to be suited to be extended
to a k · p formalism in order to calculate strained electron or hole mobilities.
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6. Introduction

In the second part of this thesis I examine semiconductors that are in contact to liquids.
Such an arrangement is typical of biosensors where the fields of semiconductor physics,
semiconductor technology, electrochemistry, chemistry and biology are involved. Addi-
tionally, also expertise in biotechnology or medical research is extremely useful in order
to propose and evaluate potential applications. Consequently, a very interdisciplinary
collaboration of the experts in each discipline is necessary. In this thesis I contribute
my knowledge on modeling of such systems to this very active research area. I focus
on the treatment of the semiconductor physics on a quantum mechanical level, and on
the description of the electrostatics in the liquid. First, I present a protein sensor based
on silicon and describe the modeling approach using the Poisson–Boltzmann equation.
I compare this model to the much simpler Debye–Hückel (DH) approximation that was
previously used to analyze experimental results. Our calculations show that significant
more insight into the actual charge distribution in the electrolyte is obtained which
cannot be accounted for within the DH model. Furthermore, I have developed a novel
approach to model the charge density profiles at semiconductor–electrolyte interfaces
that I will discuss in the following sections. It allows us to distinguish hydrophobic and
hydrophilic interfaces. Typically, such a differentiation has not been considered so far
in semiconductor based biosensors, mainly because they are made of materials that are
passivated by a native oxide layer (e.g. Si–SiO2 sensors). This insulating region separates
the charges in the semiconductor and the charges due to ion accumulation in the elec-
trolyte, thus hiding the importance of the nonpolar or polar character of the interface. I
apply this new model to recently developed graphene and diamond based solution gated
field-effect transistors. In both materials, no insulating material layer between the semi-
conductor charge carrier gas and the accumulated ions in the liquid is present. Therefore
the influence of the hydrophobic or hydrophilic character leads to completely different
results in terms of sensitivity of such devices. By comparing the calculated results to
experiment we demonstrate that the hydrophobic character of these materials must be
taken into account to properly reproduce and understand experimental results. Our
approach extends previous work where potentials of mean force for the ions are included
in the Poisson–Boltzmann equation.
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7. Theoretical model for the detection of
charged proteins with a
silicon-on-insulator sensor

The work presented in this chapter is based on the preliminary studies of Uhl [Uhl04].
I have extended his effort and summarized the results in a joint publication [BUBV08]
which is presented in this chapter.

For a biosensor device based on a silicon-on-insulator structure, we calculate the sen-
sitivity to specific charge distributions in an electrolyte solution that arise from protein
binding to the semiconductor surface. The surface is bio-functionalized with a lipid
layer so that proteins can specifically bind to the headgroups of the lipids on the surface.
We consider charged proteins such as the green fluorescent protein (GFP) and artificial
proteins that consist of a variable number of aspartic acids. Specifically, we calculate
self-consistently the spatial charge and electrostatic potential distributions for different
ion concentrations in the electrolyte. We fully take into account the quantum mechan-
ical charge density in the semiconductor. We determine the potential change at the
binding sites as a function of protein charge and ionic strength. Comparison with exper-
iment is generally very good. Furthermore, we demonstrate the superiority of the full
Poisson–Boltzmann equation by comparing its results to the simplified Debye–Hückel
approximation.

7.1. Introduction

The quickly progressing technology of low-dimensional semiconductor nanostructures re-
quires and depends on reliable predictive theoretical methods for systematically improv-
ing, designing and understanding the electronic and optical properties of such structures.
The situation becomes even more complicated if these nanostructures are combined with
biomaterials to form biosensors [CWPL01]. These sensors are gaining importance due to
their large potential in commercial applications, like pH, protein, virus or DNA sensors
(biochips). Ion-selective field-effect transistors (ISFETs) usually contain biomaterials
in an electrolyte and consist of a two-dimensional electron (or hole) gas (2DEG) in the
semiconductor region where a source–drain voltage is applied in the 2DEG plane perpen-
dicular to the solid–electrolyte interface. The measured source–drain current depends
on the electron density in the 2DEG. The goal is to influence the electron density in the
2DEG in a reproducible manner through changes in the electrostatic potential which
are caused by the charge distribution inside the electrolyte and in the vicinity of the
interface between the semiconductor and the electrolyte, i.e. the electrolyte acts through
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this field-effect as a gate. Several variations of this concept are possible, e.g. instead of
having a 2DEG one could use a nanowire with quantum confinement in two directions,
and thus enhance the sensitivity due to the increased surface-to-volume ratio, or one
could use an optical device where the electrostatic potential in the electrolyte modifies
transition energies in quantum wells, quantum wires or even quantum dots. Modeling
of such devices [HK07] is essential not only for analyzing and interpreting experimental
results, but also for verifying theoretical concepts, and for the understanding of how to
efficiently improve sensitivity. For a review on the challenges in the use of nanostructures
for on-chip biosensing and diagnostics, see e.g. Ref. [Bal10].

In this chapter we present realistic models of the electrolyte solution, its interaction
with the semiconductor device surface, and of the semiconductor device itself. We dis-
cuss detailed simulations of protein sensors based on silicon in order to demonstrate the
applicability of this approach. In Section 7.2, we describe how we solve the Schrödinger
equation and calculate the charge density in the semiconductor region. Our method that
models the charge density in the electrolyte is outlined in Section 7.3. Comments about
the numerical treatment of the coupled system of semiconductor and electrolyte equa-
tions are given in Section 7.4. Details of previously performed relevant experiments, and
the theoretical model of the sensor are discussed in Section 7.5. In Section 7.6, we present
results of self-consistent calculations of the spatial charge and electrostatic potential dis-
tributions for various protein charges and different ion concentrations in the electrolyte.
Finally, the calculated surface potential is compared with experiments. The results in-
dicate that the full Poisson–Boltzmann equation is able to reproduce experimental data
whereas the widely used Debye–Hückel approximation faces severe limitations.

7.2. Modeling the semiconductor

The charge distribution within a general semiconductor device is given by eq. (1.2). The
p-type doped silicon sensor that is investigated in this work is operated in the inversion
regime. Hence, only a quantum mechanical treatment of the conduction band electrons
close to the X points in the Brillouin zone is necessary. The contributions to the density
of all other bands like the conduction bands at the Γ and L points, and the heavy, light
and split-off hole valence bands are negligible. In bulk silicon there are six equivalent
conduction band valleys close to the X points in the Brillouin zone that are described
by ellipsoidal effective mass tensors with one longitudinal and two transverse masses,
ml and mt, respectively. As these ellipsoidal mass tensors are oriented differently with
respect to each other, we have to treat these minima separately, i.e. we have to consider
three different valleys where each one is twofold degenerate. The quantum mechanical
electron charge density for each of these three valleys is given by

n(x) = gvgs

∑
n

|Ψn(x)|2 f
(
En − EF(x)

kBT

)
, (7.1)

where gs = 2 is the spin degeneracy and gv = 2 is the valley degeneracy. Ψn and En
are the wave functions and eigenenergies of the three-dimensional Schrödinger equation
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(eq. (2.2)) and depend on the orientation of each of the three ellipsoidal mass tensors,
i.e. each valley requires the solution of the Schrödinger equation. The occupation of the
eigenstates is governed by the Fermi–Dirac distribution function f (eq. (4.63)) taking
into account the local quasi-Fermi level EF(x). kB is Boltzmann’s constant and T is the
temperature.

We use a standard approach to calculate the energy levels and wave functions, namely
the single-band effective mass Schrödinger equation within the envelope function ap-
proximation. We discretize this equation with a finite differences method and assume
a parabolic energy dispersion [TSCH90]. For a semiconductor structure that is grown
along the z direction and that is homogeneous along the x and y directions, the envelope
functions ψn(z) and the energies En of the n quantized electronic states are obtained as
the solutions of the one-dimensional Schrödinger equation (eq. (4.14)) where the poten-
tial energy is given by V (z) = Ec,0(z) − eφ(z), and m⊥(z) is one of the three effective
mass tensor components along the growth direction z, i.e. ml or mt for (001) oriented
silicon. Ec,0(z) represents the conduction band edge profile of the relevant valley and
takes into account band offsets at material interfaces. φ(z) is the electrostatic potential
which is obtained from solving Poisson’s equation (eq. (1.1)). It includes the external
bias potential and the internal potential resulting from mobile charge carriers and ion-
ized impurities. For a one-dimensional device that is homogeneous along the x and y
directions, the quantum mechanical electron charge density is calculated for each valley
as

n(z) = gvgs

∑
n

|ψn(z)|2
m||(z)kBT

2πh̄2 ln

(
1 + exp

(
EF(z)− En

kBT

))
, (7.2)

where the sum over n is only over the lowest occupied subbands. m||(z) is the effective
mass in the (x, y) plane. Obviously, this value depends on the conduction band valley, i.e.
for unstrained (001) oriented silicon layers, the ground state electron level is associated
with the longitudinal electron mass and thus m|| is the transverse mass mt. For the
other valleys where the transverse mass is oriented along the growth direction z, the
parallel mass is calculated as m|| =

√
mlmt (density of states mass). Equation (7.2)

leads to discontinuous charge densities at material interfaces if the value of m|| differs
between neighboring materials. In order to avoid this, we calculate for each subband n
the parallel mass m|| according to Ref. [DT94].

Taking into account the charge neutrality requirement, we first solve the Schrödinger–
Poisson equation self-consistently in the whole device with the equilibrium requirement
that the Fermi level in the silicon layer is assumed to be constant at EF = 0 eV. In
this case, we solve the Poisson equation with Neumann boundary conditions and obtain
the built-in electrostatic potential. The boundary values of the built-in potential plus
optionally applied bias potentials at ohmic or Schottky contacts (Fig. A.1) are then used
as Dirichlet boundary conditions for the Poisson equation in nonequilibrium calculations.

125



Chapter 7. Detection of charged proteins with a silicon-on-insulator sensor

7.3. Modeling the electrolyte

An electrolyte is an aqueous solution containing dissolved ions (e.g. Na+, Cl–) that result
from the dissociation of salts. Electrolytes that are used as biosensors are usually buffer
solutions (see Section 8.3) and therefore resist changes in H3O+ and OH– ion concen-
trations (and consequently the pH) upon addition of small amounts of acid or base, or
upon dilution. The concentrations of the ions that are contained in the buffer depend
on the pH and the pK ′a,T value (dissociation constant) and can be calculated using the
well-known Henderson–Hasselbalch equation (eq. (8.12)). In addition, the pK ′a,T value
depends on temperature and on ionic strength I (eq. (8.9)) in a self-consistent way. For
instance, when using a phosphate buffer, the concentrations of the buffer ions at a par-
ticular pH are governed by three different pK ′a,T values and thus it is extremely difficult
to derive the concentrations analytically. However, they can be calculated numerically
in an iterative scheme [BE96]. In Section 8.3, we describe the details of our buffer model
where we allow the variables pH, pK ′a,T and ionic strength to vary with spatial coordi-
nates. Such an approach is necessary for analytes that produce local charge variations in
the electrolyte, e.g. a charged molecule that binds to the semiconductor device surface.
Furthermore, a local variation of pH is critical for the operation of EnFETs (enzyme
field-effect transistors) where the enzyme reaction depends on the pH value.

The distribution of all ion charges in the electrolyte solution is governed by the non-
linear Poisson–Boltzmann equation which is composed of the nonlinear Poisson equation
(eq. (1.1)) and the equation that describes the charge density distribution in the elec-
trolyte (eq. (7.3)). Conventionally, the Poisson–Boltzmann equation is linearized which
leads to the Debye–Hückel approximation (Section 8.2). However, as we will show in
Subsection 7.6.1 such a simplification is generally not applicable in real devices and only
valid for special and very limited cases. The solution φ(x) of the Poisson–Boltzmann
equation determines the charge density in the electrolyte at position x

ρ(x) =

N∑
i=1

zieci(x) =

N∑
i=1

zieci,0 exp

(
−zie (φ (x)− UG)

kBT

)
, (7.3)

where zi is the ion valency, e is the positive elementary charge, ci is the resulting ion
concentration and ci,0 is the bulk concentration of the ion species i. The bulk electrolyte
potential φ(∞) can be adjusted by varying the potential of the reference gate electrode
UG that is connected to the electrolyte (Dirichlet boundary condition). φ(x) is the
electrostatic potential that is obtained by solving the nonlinear Poisson equation in the
overall device self-consistently and kBT is the thermal energy of the system. Interface
reactions can be taken into account by the so-called site-binding model for amphoteric
oxide surfaces [Ber70, HW78] where the adsorption and dissociation of H+ and OH– ions
at the interface between the electrolyte and the oxide lead to interface charge densities
which depend on both the electrostatic potential at the interface and the pH of the
electrolyte. These interface charge densities simply have to be added to the charge
density that enters the Poisson equation.
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7.4. Modeling the coupled system of semiconductor and
electrolyte

The electrostatics within the electrolyte and the semiconductor require the self-consistent
solution of the Poisson and Schrödinger equations. Both equations are discretized on
a nonuniform grid with a finite differences method. They are solved numerically by
iterative methods that are described in more detail in Ref. [TZA+06]. We point out that
we solve only one single Poisson equation, given in eq. (1.1), which includes both the
electrolyte as well as the semiconductor region. εr is then the static dielectric constant of
either the electrolyte or any of the semiconductor or insulator materials. In regions where
the electrolyte is present, the charge density ρ(x) is described by eq. (7.3), and in regions
where the semiconductor materials or the oxides are present, the typical semiconductor
equation is used (eq. (1.2)) which may include a suitable fixed or variable sheet charge
density at the interface between the semiconductor device and the electrolyte. We note
that it is not necessary to solve the Schrödinger equation in regions where the quantum
mechanical density is negligible or zero, e.g. in insulators. However, wave function
penetration into the barrier materials (e.g. at Si–SiO2 interfaces) is fully taken into
account by including a small region of the barrier material into the Schrödinger equation.
We have implemented the above mentioned equations and similar ones for the two- and
three-dimensional Schrödinger equations into the software package nextnano3 [www].
This enables us to model combined semiconductor–electrolyte systems in one [BUV05],
two [Ped06] and three dimensions for arbitrary geometries and material compositions.
Typically, nanowire sensors are more sensitive than planar sensors, and if the nanowire
dimensions are less than 50 nm, the sensitivity can increase even further [Ped06].

7.5. Description of the geometry and composition of the
protein sensor

7.5.1. Sensor structure

Here, we discuss a silicon-on-insulator (SOI) based thin-film resistor that we will model
in detail in Section 7.6. Indeed, such a device has been realized experimentally for
chemical and biological sensor applications [NRL+03, NRB04]. Peptides with a single
charge can be detected and it is possible to distinguish single charge variations of the
analytes even in physiological electrolyte solutions [LNH+06].

Figure 7.1 shows the layout of this bio-functionalized silicon-on-insulator device. It
consists of a SiO2–Si–SiO2 structure. Specifically, we take a silicon dioxide buffer layer
with a thickness of 200 nm and a conducting silicon layer of 30 nm which is homoge-
neously p-type doped with boron (doping density p = 1 · 1016 cm−3). The silicon layer
is covered by a native SiO2 layer with a thickness of 2 nm. This oxide layer is passi-
vated by an ODTMS (octadecyltrimethoxysilane) monolayer which is required for the
bio-functionalization of the semiconductor device. We take a 1.5 nm thick oxide-like
ODTMS layer and use a static dielectric constant of εr = 1.5. Due to the passivation
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Figure 7.1.: Schematic layout of the considered SOI structure (after C. Uhl [Uhl04]).
There is a negative interface charge density σNi at the lipid–electrolyte in-
terface. The amino acid charge is assumed to be distributed homogeneously
over a width w. The electrolyte region includes the histidine-tagged amino
acids as well as the neutral part of the tag of length d.

by ODTMS, we assume that no interface charges are present at the native oxide sur-
face. The ODTMS layer is surface-functionalized with a lipid membrane that allows for
the specific binding of molecules. This lipid monolayer (2 nm) consists of DOGS-NTA
(1,2-dioleoyl-sn-glycero-3-{[N(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl}) in-
corporated into two matrix lipids (DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine)
and cholesterol). The lipid membrane is treated as an insulator using the same material
parameters as for ODTMS. Thus, no charge carriers are assumed to be present within
this layer. As the lipid layer is very dense, no electrolyte is considered within the lipid
region.

For the ionic content of the electrolyte we consider a variable concentration of KCl (10,
50, 90 or 140 mM), and a fixed concentration of 1 mM of NiCl2 and 1 mM of phosphate
buffer saline (PBS, see Subsection 8.3.5) solution, respectively. The NiCl2 dissociates into
1 mM of doubly charged cations and 2 mM of singly charged anions. For all calculations,
the pH of the bulk electrolyte has been set to 7.5. The calculated concentrations of
the PBS buffer ions are listed in Table 7.1 for different salt concentrations. These
values refer to the bulk electrolyte. In the vicinity of the semiconductor surface and
in regions around charged analytes, however, the actual concentrations of the buffer
ions vary locally. Our buffer model automatically takes this into account because the
spatial variations of pH, ionic strength and pK ′a,T are determined self-consistently (see
Section 8.3 for more details). The ionic strengths of the electrolyte solutions considered
in this work are largely dominated by the respective concentrations of singly charged
anions and cations from KCl as can be seen in Table 7.1. In these particular cases,
i.e. small concentrations of PBS with respect to KCl, the Debye screening length κ−1

(eq. (8.5)) is fully dominated by the KCl concentration.

The functionalized surface exposes NTA headgroups that carry two negative charges to
the electrolyte solution. They have the ability to form a chelate complex with nickel ions
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Table 7.1.: Concentrations of ions in units of mM, ionic strength I and Debye screening
length κ−1 for several configurations of the electrolyte (1 mM PBS, 0 or 1 mM
NiCl2, pH = 7.5, T = 25 ◦C)

Ion 0 mM KCl 10 mM KCl 50 mM KCl 90 mM KCl 140 mM KCl

[H2PO–
4] 0.303 0.256 0.214 0.192 0.176

[HPO2–
4 ] 0.697 0.740 0.786 0.808 0.824

[PO3–
4 ] 0.135 · 10−4 0.206 · 10−4 0.335 · 10−4 0.430 · 10−4 0.524 · 10−4

[Na+] 1.697 1.740 1.786 1.808 1.824
[K+] 0 10 50 90 140
[Cl–] 0 10 50 90 140
[Ni2+] 0 1 1 1 1
[Cl–] 0 2 2 2 2
[H+] 0.316 · 10−4 0.316 · 10−4 0.316 · 10−4 0.316 · 10−4 0.316 · 10−4

[OH–] 0.316 · 10−3 0.316 · 10−3 0.316 · 10−3 0.316 · 10−3 0.316 · 10−3

I (mM) 2.393 15.481 55.573 95.616 145.648
κ
(
nm−1

)
0.159 0.405 0.768 1.007 1.243

κ−1 (nm) 6.277 2.468 1.302 0.993 0.805

if the latter are present in the solution. Upon loading with nickel, the charge of the head-
group changes by +1e [SDT94] and is then considered to be −1e. This results in a nega-
tive sheet charge density σNi at the lipid–electrolyte interface. The surface density of the
DOGS-NTA lipids is considered to be 5% (fNTA = 0.05). The approximated headgroup
area, i.e. the average area per functional DOGS-NTA is assumed to be ANTA = 0.65 nm2.
Consequently, the density of the headgroups is sNTA = fNTA/ANTA = 7.7 · 1012 cm−2, so
that the resulting charge density σNi is given by σNi = −esNTA, where we have assumed
that each headgroup carries one negative charge upon exposure to Ni.

The charge carrier concentration of the conducting silicon layer is controlled by ap-
plying a back gate voltage UBG which allows for switching between the accumulation
(negative UBG) and the inversion regime (positive UBG) and particularly for tuning the
sensitivity of the device. In all calculations that are mentioned in this work, the sensor is
operated in inversion at UBG = 25 V to allow for comparison with experiment. The ex-
periment has shown that this is a compromise between the highest possible sensor signal
and a low noise level. With this configuration, the p-doped silicon channel is inverted
and becomes n-type. One can adjust the potential in the electrolyte by varying the volt-
age UG of the reference electrode in the solution, mainly to vary the electron density of
the right inversion layer with respect to the left one (see Fig. 7.1 and Fig. 7.2). In order
to get a reasonable magnitude for the charge density in the right channel close to the
functionalized surface, we have set UG = 1.0 V for all calculations. These assumptions
allow for a realistic comparison with specific protein binding experiments [LNH+06].
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7.5.2. Model of the protein charge distribution

We consider two types of proteins: Aspartic acids and the green fluorescent protein. If
divalent nickel ions (Ni2+) are bound to the NTA headgroups of the lipid membrane, this
surface functionalization then allows for the specific coupling of histidine-tagged (his-
tag) proteins or peptides to the membrane [SDT94]. This process can be reversed by
adding EDTA (ethylenediaminetetraacetic acid) to the electrolyte. A his-tag is a short
amino acid sequence including histidines. They can be fused to one end of a protein and
can also bind transition metal cations. We study a protein charge distribution that is
spatially separated from the lipid membrane due to a neutral tag of width d in between
the charged protein and the lipids. For simplicity, the protein charge is assumed to be
distributed homogeneously over a width w.

Aspartic acid

We consider an artificial protein structure where amino acids are tagged to a histidine
chain. This artificial peptide binds to an NTA headgroup of the lipid membrane. A
part of this artificial protein remains uncharged since no amino acids get attached there.
By contrast, the rest of the histidine backbone is negatively charged since we consider
aspartic acids that carry one negative charge each for the binding to the tag. It is
possible to manufacture the hexahistidine-tagged (His6) peptides with different numbers
of charged residues, i.e. one can engineer the number of aspartic acids (Asp) that bind
to the tag. The charge of the aspartic acids have been varied between carrying a single
charge (His6Asp1) and up to ten charges (His6Asp10). It is expected that for each
charge, a different signal can be detected and that peptides with higher charges result
in an increased sensor response. The width of the neutral part has been taken to be
d = 2.3 nm or d = 2.8 nm, depending on the concentration of KCl. The length of the
uncharged part of the peptide consists of the length of the complete NTA headgroup
including the spacer of 12 carbon atoms plus the his-tag. The width of the charged part

w(n) = n · b (7.4)

has been assumed to depend linearly on the number n of aspartic acid units and on
the length b of one aspartic acid residue [LNH+06]. Thus, the spatial extent of the
charge density increases with the number of aspartic acids. Each additional aspartic
acid therefore shifts the center of the charge distribution about b/2 farther away from
the lipid membrane. Additionally, we perform calculations where we keep this width w
constant. The integrated charge density in the protein region changes in magnitudes of
−esNTA by increasing the number n of the aspartic acid units. Furthermore, we assume
that the amino acid charges tend to repel each other. It is plausible that the strength of
this repulsion is influenced by the ionic strength of the electrolyte. For that reason we
reduce the length b of one aspartic acid unit at large ion concentrations. The electrolyte
region starts at the membrane surface and includes the regions of both the neutral part
of the tag and the protein charge distribution so that the ions in the aqueous solution
screen the protein charge (Fig. 7.1).
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Green fluorescent protein

As a second protein, we consider the binding of the so-called green fluorescent protein1

(GFP) to the lipid membrane. GFP is also histidine-tagged to the NTA headgroups of
the membrane. The size of GFP is larger (length of 4-5 nm) compared to his-tagged
aspartic acids. We assume a charge distribution of width w = 3.0 nm that is connected
with a neutral tag of width d = 2.3 nm to the NTA headgroups. At pH = 7.5, GFP
carries eight negative charges that we assume to be homogeneously distributed over the
protein region w.

7.6. Results of the calculations

Since we have specified all about the sensor and the proteins in the electrolyte, we are now
ready to calculate the electrostatic potential in the semiconductor–electrolyte system
for several protein charge distributions. The quantum mechanical charge densities are
calculated self-consistently by solving the Schrödinger equation in the silicon channel.
The Schrödinger and Poisson equations are coupled via the electrostatic potential and
the charge densities.

First, we estimate the change in surface potential φs when one loads the NTA lipids
with Ni2+. We assume a sheet charge density change of ∆σ = −2esNTA − σNi. We have
actually calculated that the surface potential increases for a 140 mM KCl solution by
13.5 mV which is in agreement with the measurements [LNH+06].

Figure 7.2 shows the calculated conduction band edge and the electron density in the
silicon channel for a back gate voltage of UBG = 25 V. Indicated is also the position of
the Fermi level EF and the electrostatic potential. Specifying a value for the potential
UG of the reference electrode is equivalent to a Dirichlet boundary condition for the
electrostatic potential of the Poisson–Boltzmann equation. An increase of UG leads to
higher electron densities in the right channel. Therefore, the variation of UG and the
back gate voltage UBG allows one to increase the sensitivity of the sensor by adjusting the
ratio of the densities of the two channels. Our calculations yield channel densities of the
order of a few 1012 cm−2. They are modulated slightly by the actual configuration of the
system in terms of ion concentrations and protein charges. Since a lower surface potential
φs yields a lower electron density in the inverted silicon channel, the source–drain current
is expected to decrease if negatively charged proteins bind to the functionalized sensor
surface.

7.6.1. Influence of the protein charge on the sensitivity

In this subsection we discuss results of the artificial protein that consists of several
aspartic acids as described in Subsection 7.5.2. For the 50 mM KCl solution, the neutral
part of the histidine tag is assumed to have a width d = 2.8 nm and the respective protein
charges are homogeneously distributed over a distance w = nb where n is the number

1In 2008, the Nobel prize in chemistry was jointly awarded to Shimomura, Chalfie and Tsien “for the
discovery and development of the green fluorescent protein, GFP”.
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Figure 7.2.: Calculated conduction band edge (black solid line) and electrostatic po-
tential (red solid line) for the SOI structure at 50 mM KCl. The electron
charge density (blue dotted line) of the two inversion layers is shown. In
the semiconductor, the Fermi level (gray dash-dotted line) is set constant at
EF = 0 eV. Upon binding to the lipid membrane, the charge of the aspartic
acid (Asp8) modifies the surface potential φs. The interface between the
lipid membrane and the electrolyte is indicated by the vertical dashed line.

of aspartic acid units and b = 0.3 nm. For the 140 mM KCl solution, the respective
values are d = 2.3 nm and b = 0.1 nm [LNH+06]. These parameters are reasonably
close to the chemical structure of the histidine-tagged amino acids. Figure 7.3 shows
the calculated potential distributions for a varying number of aspartic acids at 50 mM
KCl. The magnitude of the negative protein charge density increases with the number
of aspartic acids. This results in a lower electrostatic potential in the protein region.
Also, the surface potential φs decreases with increasing protein charge. The region of
the charged part of this protein is indicated schematically by the shaded triangle. We
note that the electrolyte region starts at the lipid surface at 235.5 nm.

In the following, we calculate the potential change at the interface between the lipid
membrane and the electrolyte as a function of the number of aspartic acids that are
attached to each histidine tag for KCl concentrations of 50 mM and 140 mM. The ref-
erence level φref

s for the scale of the surface potential change is set to the case for zero
protein charge. The surface potential change ∆φs is then defined as

∆φs(n) = φref
s − φs(n), (7.5)

where n denotes the number of aspartic acid units. A positive potential change therefore
implies that the reference level is higher compared to the situation with a nonzero num-
ber of aspartic acids. The results are shown in Fig. 7.4 and show excellent agreement
with the experimental data of Ref. [LNH+06] where the surface potential was extracted
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Figure 7.3.: Calculated electrostatic potential distributions for varying protein charge
at 50 mM KCl. Shown are the cases where no acids are bound and where
the number of acids is n = 1, 2, 3, ..., 10. From top to bottom, the number
of aspartic acids increases. The width w of the negative protein charge
distribution is assumed to increase linearly with the number of aspartic
acids. This width is indicated schematically by the shaded triangle.

from measurements of the sheet resistance of the silicon channel. Due to the lower ion
concentrations in the case of 50 mM KCl, the protein charge density is less efficiently
screened. Consequently, the surface potential change is larger compared to the case of
140 mM KCl. Therefore, the variation of the charge density in the silicon channel – and
thus the sensitivity – is greater for a 50 mM KCl solution, as compared to 140 mM KCl.

One important parameter of our model is the width d of the neutral part of the
histidine tag. This distance between the lipid membrane and the beginning of the charge
distribution of the aspartic acids influences the screening of the protein charges by ions
in the solution. Hence, the impact of the amino acid charges decreases with increasing
spacing of the lipid membrane, assuming the same protein charge distribution. This
means that the influence on the semiconductor device can be enhanced by using a tag
that allows small distances of the protein to the lipid membrane.

So far, we have considered homogeneous protein charge distributions where the width
w has been varied as a function of the number of aspartic acid units n. In the following,
we demonstrate that also a constant width w reproduces experimental data. Now, the
number of aspartic acids solely determines the magnitude of the charge density but
leaves the spatial extent of the peptide unchanged. For the 50 mM KCl solution, we
use d = 2.8 nm and a constant width of w = 1.5 nm for all n. For the 140 mM KCl
concentration, values of d = 2.3 nm and w = 0.5 nm are taken. The surface potential
change as a function of the number of aspartic acids is illustrated in Fig. 7.5 for a protein
charge of constant width w. Indicated are the results for both the Poisson–Boltzmann
(PB) and the Debye–Hückel (DH) equation (Section 8.2). The latter show a linear
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Figure 7.4.: Calculated surface potential change at the lipid membrane as a function of
the number of aspartic acids in the artificial protein. The solid line depicts
the case of a KCl concentration of 50 mM whereas the dashed line represents
the case of 140 mM KCl in the electrolyte solution. The experimental data
points are from Ref. [LNH+06].

variation of the surface potential change with the number of aspartic acids. This is
expected from the DH equation because a linear variation of the charge density leads
to a linear variation of the surface potential change. In contrast, the results of the
nonlinear PB equation resemble a logarithmic behavior and are in very good agreement
with the experimental data. This nonlinear dependence is attributed to screening effects
in the electrolyte which cannot be reproduced correctly within the DH approximation.
It is important to note that both assumptions, i.e. a constant width w and the linear
variation of w with the number of aspartic acids n, reproduce experimental data, whereas
the DH equation leads to unsatisfactory results. This emphasizes the importance of using
the full PB equation rather than the linearized DH equation as it allows more insight
into the screening of charges in electrolyte solutions. This is especially true if complex
bio-functionalized surfaces are used where the binding of charged molecules occurs at
about 5-10 nm from the surface, and where the prediction of the sensitivity limitations
is desirable.

The differences in the surface potential change that is either obtained within the
full Poisson–Boltzmann theory or the simplified Debye–Hückel approximation can be
further understood by investigating the spatial potential distributions in the electrolyte
for different numbers of aspartic acids. This is shown in Fig. 7.6 where part (a) refers
to the PB solutions and part (b) depicts the solutions of the DH approximation. Again,
we have included the cases for integer numbers of aspartic acids n from 0 to 10. In both
figures, the number of aspartic acids increases from the top to the bottom. As one can
see from Fig. 7.6(b), the potential differences at the membrane surface between adjacent
potential solutions are constant. By contrast, the potential solutions in Fig. 7.6(a) do
not show this behavior, in agreement with the experiment (see also Fig. 7.5).
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7.6. Results of the calculations

Figure 7.5.: Calculated surface potential change as a function of the number of aspartic
acids for two different salt concentrations (50 mM and 140 mM). Included
are the results for the solution of the Poisson–Boltzmann (PB) equation
(solid lines) and the Debye–Hückel (DH) equation (dashed lines). The latter
show a linear dependence and deviate substantially from the PB results
which are in good agreement with the experimental data.

Figure 7.6.: Calculated spatial potential distributions for (a) the full Poisson–Boltzmann
equation and (b) the linearized Debye–Hückel equation for a negative protein
charge distribution of constant width w = 1.5 nm. This width is indicated by
the shaded region. Both figures include the solutions for different numbers
of aspartic acids n = 0, 1, ..., 10.
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Chapter 7. Detection of charged proteins with a silicon-on-insulator sensor

Figure 7.7.: Calculated change of the surface potential as a function of the KCl con-
centration where we have assumed a charge distribution that resembles the
green fluorescent protein. Included are experimental data of Ref. [LNH+06].
The lines are a guide to the eye.

7.6.2. Influence of the ionic strength on the sensitivity

In this subsection we use the same sensor structure as in Fig. 7.1 but detect another
protein. We consider the specific binding of the green fluorescent protein (GFP) to the
lipid membrane and calculate the change of the surface potential as a function of the salt
concentration (10, 50, 90 or 140 mM KCl) in the electrolyte. At pH = 7.5, GFP carries a
net negative charge of −8e as can be derived from the primary structure if one calculates
the charge of the side chains for the used buffer solution. Consequently, the integrated
charge density of GFP is given by σGFP = −8esNTA. We assume for simplicity that this
charge is distributed evenly over a distance of wGFP = 3 nm which is close to the length
of the GFP (4-5 nm). Based on the previous section, the length of the neutral part of
the tag has been taken to be d = 2.3 nm. Here, this length has been assumed to be the
same for all KCl concentrations.

We have calculated the change of the surface potential as a function of the KCl con-
centration in the electrolyte. The electrolyte has the same properties as for the aspartic
acids (1 mM PBS, 1 mM NiCl2). Figure 7.7 shows the results and compares them to the
experimental data of Ref. [LNH+06]. The trend of the influence of the ionic strength on
the sensitivity is well reproduced by our calculations. We note that the exact orienta-
tion of the GFP molecule at the surface is not known. A slight tilt angle can increase
the measured sensor response due to the exponential dependence of the signal from the
distance of the charges. The reduction of the spacing d or the width wGFP of the charge
distribution leads to larger surface potential changes. At higher ion concentrations, the
Debye screening length of the electrolyte decreases, and thus the charges of the protein
are more efficiently screened by the ions in the electrolyte. This leads to a reduced sen-
sitivity which is approximately linear to the inverse of the Debye screening length. The
Debye screening lengths of the different salt concentrations are listed in Table 7.1.
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Table 7.2.: Material parameters

Description Symbol Value Units

longitudinal electron effective mass (Si) ml 0.916 m0

transverse electron effective mass (Si) mt 0.190 m0

static dielectric constant (Si) εr 11.7
static dielectric constant (SiO2) εr 3.8
static dielectric constant (ODTMS) εr 1.5
static dielectric constant (electrolyte) εr 80

7.7. Conclusions

In this section we presented calculations on the sensitivity of a silicon-on-insulator struc-
ture with respect to specific charge distributions in the electrolyte solution that may arise
from protein binding to the semiconductor surface. Screening effects in the electrolyte
have been taken into account using the Poisson–Boltzmann equation. The potential
change at the bio-functionalized semiconductor surface has been calculated for various
protein charge distributions. Comparison with experiment is generally very good. We
have demonstrated the superiority of the Poisson–Boltzmann equation by comparing its
results to the simplified Debye–Hückel approximation. In agreement with experiment,
we have found that the sensitivity of the structure is enhanced at low ion concentra-
tions. We demonstrated that our numerical approach – the self-consistent solution of
the Schrödinger and Poisson–Boltzmann equation – is well suited to model semiconduc-
tor based biosensors in a systematic manner, which is a requirement in order to both
understand and optimize their sensitivity. Relevant material parameters that were used
in the calculations of this section are listed in Table 7.2.
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8. Extension to the Poisson–Boltzmann
equation

In this chapter we first discuss an analytical solution to the Poisson–Boltzmann equa-
tion – the Gouy–Chapman solution. Then we briefly show how the Poisson–Boltzmann
equation can be linearized. This is known as the Debye–Hückel approximation. We then
summarize the equations that we used in the previous chapter to include buffer solutions
in our algorithm. These three sections are closely related to the previous chapter on sili-
con based protein sensors. Finally we discuss how the Poisson–Boltzmann equation can
be extended to include potentials of mean force (PMF) for the ions. Essentially, these
PMFs modify the concentrations of different ions in the vicinity of a surface. These po-
tentials are different for each ion type, and they depend on the properties of the surface,
e.g. if it is hydrophobic or hydrophilic. The latter also influences the water density close
to the surface which will be taken care of within this model. We call this model the
extended Poisson–Boltzmann equation and it leads at the surface to a significantly dif-
ferent ion distribution in the electrolyte compared to the standard Poisson–Boltzmann
model. This will be demonstrated in both cases for a simple monovalent salt. For the
Gouy–Chapman solution the results of a NaCl or NaI salt will be identical as only the
charge and the valency of the ions are input to the equation. In the extended Poisson–
Boltzmann model the results for NaCl and NaI will differ as the PMFs are different for
Cl– and I–. The extended Poisson–Boltzmann model will be the topic of the following
two chapters on graphene and diamond based solution gated field-effect transistors.

8.1. The Gouy–Chapman solution

In general, there are only very rare cases where the Poisson–Boltzmann (PB) equation
can be solved analytically. The Gouy–Chapman solution is one example of such a so-
lution. It is valid for a planar solid–electrolyte interface and for a symmetric salt like
NaCl which consists of singly charged cations (Na+) and singly charged anions (Cl–) in
a solution. The Gouy–Chapman solution relates the surface charge σs at the interface
to a position dependent electrostatic potential φ(x) in the electrolyte which determines
the ion distribution. The surface potential φs is related to the surface charge density via
the Grahame equation which is also valid for nonsymmetric salts like divalent CaCl2.
For a monovalent salt it is particularly simple and reads

σs =
√

8ε0εrkBT sinh

(
eφs

2kBT

)
√
csalt, (8.1)
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Figure 8.1.: Calculated electrostatic potential distribution (Gouy–Chapman solution) for
different salt concentrations of NaCl at a fixed surface charge at the solid–
electrolyte interface of σs = −0.2 C/m2. The squares indicate the Debye
screening lengths.

where csalt is the salt concentration. In the following, we show our numerical solution
of the PB equation for a monovalent salt which is equivalent to the Gouy–Chapman
solution. The NaCl concentration is varied from 0.1 mM to 1 M1 at a temperature of
T = 25 ◦C. The static dielectric constant of water is assumed to be εr = 78. Figure 8.1
shows the electrostatic potential for different salt concentrations at a fixed surface charge
at the solid–electrolyte interface of σs = −0.2 C/m2 = −124.8·1012 |e|/cm2 as a function
of distance from the interface. The squares indicate for each salt concentration the
calculated values of the Debye screening length: 0.3 nm for the 1 M, 3 nm for the 10 mM
and 31 nm for the 0.1 mM NaCl solution. The Debye screening length is defined in
eq. (8.5) and is shown as a function of concentration for a monovalent salt such as NaCl
in Fig. 8.2. For a monovalent salt the nominal value of the salt concentration is equal
to the ionic strength (eq. (8.9)) which is a measure for the screening of charges in a
solution.

Figure 8.3 shows the resulting ion distribution for the 0.1 M NaCl electrolyte. The
multiples of the Debye screening lengths are indicated by the vertical lines. The negative
surface charge is screened by the positive Na+ ions (solid line) which are attracted
to the surface whereas the negatively charged Cl– ions (dotted line) are repelled from
the surface. At about 5 nm, both ions again reach their equilibrium distribution of
0.1 M. One can see a clear weakness of the Poisson–Boltzmann equation, namely that
ions are allowed to come infinitely close to the interface where they reach very high
concentrations.

The Gouy–Chapman solution can also be used to assess the linearization of the

1The SI-unit for the molar concentration (or molarity) is mol/m3. However, typically the unit ‘molar’
(M = mole/liter) is used. 1 M = 1 mol/l = 1000 mol/m3
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Figure 8.2.: Debye screening length as a function of salt concentration for a monovalent
salt such as NaCl showing typical length scales
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Figure 8.3.: Distribution of Na+ and Cl– ions as a function of distance from a negatively
charged solid–electrolyte interface. The Debye length κ−1, and multiples of
it, are indicated by the vertical lines. The equilibrium density of 0.1 M is
reached after 5 nm.

Poisson–Boltzmann equation (Debye–Hückel approximation, Section 8.2). In this ap-
proximation, surface charge σs and surface potential φs can be related through the basic
capacitor equation

σs = φsCDL, (8.2)

where CDL is the capacitance per unit area of the electric double layer. This approxima-
tion is only valid for low potentials (up to several tens of mV) where the surface charge
density is proportional to the surface potential. The validity of this approximation is
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Figure 8.4.: Calculated surface potential (squares) as a function of surface charge for
NaCl at different salt concentrations. The solid lines show the analytical
solution of the Grahame equation for a monovalent salt whereas the dotted
lines are the solutions of the Debye–Hückel approximation. Only for high
salt concentrations or small surface charges, the linear relation of surface
charge and surface potential is fulfilled.

better for higher salt concentrations.
Figure 8.4 shows the surface potential at the solid–liquid interface as a function of

interface charge for the monovalent salt NaCl at different salt concentrations calculated
numerically with the Poisson–Boltzmann equation (squares). The solid lines are the
analytical solutions of the Grahame equation (eq. (8.1)) for a monovalent salt demon-
strating that our calculations are correct. The dotted lines have been calculated using
the Debye–Hückel approximation (eq. (8.7)). It can be clearly seen that only for high salt
concentrations or small surface charges the linearization is valid. In Fig. 8.4, for 0.1 M
NaCl, σs = −0.025 C/m2 and the numerically calculated value of the surface potential
φs = −33 mV, a capacitance per unit area of CDL = 77 µF/cm2 is obtained according
to eq. (8.2). Very often, the double layer capacitance is instead approximated by the
parallel plate capacity per unit area

CDL,‖ =
ε0εr

κ−1
. (8.3)

Here, the Debye screening length κ−1 has the meaning of an (effective) ‘thickness’ of the
electric double layer. In this case, using κ−1 = 0.96 nm and εr = 78, a capacity per unit
area of CDL,‖ = 72 µF/cm2 is obtained. In the latter case, the capacity does not depend
on the surface charge density. It only depends on the salt concentration through the
Debye screening length. Hence, the ability to store charge, i.e. the capacity, increases
for higher salt concentrations.

The numerical Poisson–Boltzmann calculations for the capacitance (using the same
data as in Fig. 8.4) are shown in Fig. 8.5. The capacitance increases rapidly for higher
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Figure 8.5.: Calculated capacitance of the electric double layer at different salt concen-
trations. The capacitance has a nearly constant value only for very small
potentials.

potentials but at very small surface potentials, the capacitance is equal to the approxi-
mation of eq. (8.3). This is expected because in the limit of low potentials, the solution
of the Poisson–Boltzmann equation must converge to the solution of the Debye–Hückel
equation.

The following effects are not taken into account in this model: Ion-correlation, steric
hindrance, finite ion size, ion adsorption, fixed charge distribution away from the inter-
faces (e.g. adsorbed molecules), hydrophobic or hydrophilic surfaces. Improvements of
the Gouy–Chapman model very often discussed in literature are the Stern and Helmholtz
layers. These models are useful in terms of giving a qualitative picture of the electric
double layer and have been discussed in detail in Ref. [Lub06]. However, they are practi-
cally not very useful as in general no parameters for typical length scales, charge density
accumulations and dielectric constants of specific arrangements are available introducing
too many adjustable fitting parameters to the system. Therefore we chose to improve our
electrolyte model by implementing a recently developed approach that uses potentials of
mean force. Additionally, this model also allows for the description of hydrophilic and
hydrophobic interfaces. This leads to a so-called extended Poisson–Boltzmann equation
which is described in Section 8.4. Later, we will apply this model to graphene and
diamond based biosensors and compare results with experiment.

8.2. Debye–Hückel approximation

The full Poisson–Boltzmann equation is a nonlinear differential equation for the elec-
trostatic potential and describes long-ranged electrostatic interactions quite accurately.
Very often, one is interested in reducing it to a simpler form which can be solved analyt-
ically. Within the Debye–Hückel (DH) approximation, the Poisson–Boltzmann equation

143



Chapter 8. Extension to the Poisson–Boltzmann equation

is linearized by expanding the exponential of eq. (7.3) up to first order in φ so that the
potential distribution in the electrolyte is governed by(

∇2 − κ2
)
φ(x) = 0, (8.4)

where the Debye screening length is given by

κ−1 =

(
N∑
i=1

εrε0kBT

(zie)2ci,0

)1/2

. (8.5)

The symbols have the same meaning as in eq. (7.3). The Debye screening length is often
used as a descriptive parameter of the system of investigation and is of the order of a
few nanometers. For instance, for an electrolyte with a planar surface at x0 = 0 nm, the
solution that satisfies the one-dimensional variant of eq. (8.4) is given by

φ(x) = φDH exp(−κx), (8.6)

where φDH is the Debye–Hückel potential at x0. It is related to the (effective) surface
charge density σDH at x0 as follows (compare with eq. (8.2) and eq. (8.3))

σDH =
εrε0φDH

κ−1
. (8.7)

One should keep in mind that the Debye–Hückel equation is only applicable for low
electrostatic potentials where it holds

eφ(x)� kBT. (8.8)

Effectively a diffuse double layer at low potential behaves like a parallel plate capacitor
where the electrochemical double layer capacitance per unit area can be estimated by
eq. (8.3). Therefore, κ−1 is often termed the ‘thickness’ of the double layer although
this is somehow imprecise as the thickness is larger (compare with Fig. 8.3). For larger
potentials the actual surface charge density σs or surface potential φs are substantially
different from σDH and φDH (compare with Fig. 8.4). Typically, the Debye–Hückel
approximation is used to estimate surface potentials and it is not used in numerical
calculations. In Chapter 7 we compared the validity of the DH approximation to the
Poisson–Boltzmann equation by solving both equations numerically for a situation where
the electrolyte region contains a charged region of amino acids close to the surface.

8.3. Buffer solutions

In Chapter 7 we applied a Poisson–Boltzmann model to a silicon protein sensor where
we have added a sophisticated model to our electrolyte that takes into account buffer ion
concentrations as a function of pH value. To calculate the concentrations of the buffer
ions, we briefly sketch the relevant equations that have been implemented into our self-
consistent algorithm. While the details of buffer solutions have been described in detail in
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Ref. [BE96] and are thus widely known, to our knowledge these equations have not been
considered so far when modeling the pH dependence of solid–liquid systems. However,
this is important as the buffer ion concentrations and thus the screening behavior of
electrolytes, as well as chemical or biological reactions, depend strongly on the pH value.
Therefore, it is useful to study the behavior of biosensors at various pH values, and at
various salt concentrations using monovalent and divalent salts. Theoretical models that
reproduce experimental results for a particular pH value can then be benchmarked if they
will also work at other pH values and for other salt properties. If they do, this gives
confidence into the model.

8.3.1. Ionic strength

The ionic strength of the electrolyte is defined as

I(x) =
1

2

N∑
i=1

ci(x)z2
i , (8.9)

where N is the number of all different ion species that are present in the electrolyte, ci is
the concentration and zi is the valency of the ion species i. Because the concentrations of
the ions in the vicinity of the semiconductor surface depend on the spatial coordinates,
our algorithm allows for a spatially varying ionic strength. In physiological systems the
ionic strength is of the order 150 mM.

8.3.2. Effect of temperature on buffers

The parameter dpKa/dT defines the change in pKa with temperature. This quantity
depends on the buffer, and can be negative or positive or even close to zero. Thus the
temperature dependent pKa,T value is given by

pKa,T = pKa + dpKa/dT · (T − 298.15 K) . (8.10)

Here, T is given in units of Kelvin and the ‘thermodynamic’ pKa value is defined for
25 ◦C.

8.3.3. Debye–Hückel relationship

When using biological sensors, the pH is typically adjusted by titration and can be mea-
sured. Thus the pH of the bulk electrolyte is an input quantity for our simulations.
Knowing the pH, one can calculate the concentrations of the buffer ions taking into
account the temperature and the ionic strength of the solution. The pK ′a,T value deter-
mines the concentrations of the buffer ions but itself depends on the ionic strength I(x)
and on temperature T . As the ionic strength depends on the concentrations of the buffer
ions, we have to solve this nonlinear equation self-consistently by an iterative scheme.
The usually employed Debye–Hückel relationship reads

pK ′a,T = pKa,T + (2za − 1)

[
A
√
I

1 +
√
I
− 0.1 · I

]
, (8.11)
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where pK ′a,T is called the ‘modified’ (or ‘apparent’ or ‘working’) pKa value, za is the
charge on the conjugate acid species and the constant A(T ) depends on the temperature
of the solution. The value of A is around 0.5 (at T = 0 ◦C: A = 0.4918, at T = 100 ◦C:
A = 0.6086). pK ′a,T (x) is a function of position x because the ionic strength I(x) is a
function of position whereas pKa,T only depends on the temperature.

8.3.4. Henderson–Hasselbalch equation

The Henderson–Hasselbalch equation

pH = pK ′a,T + log10

[base]

[acid]
, (8.12)

relates the pH of the electrolyte to the pK ′a,T of the conjugate acid–base pair and the
relative concentrations of acid and base. Since all quantities of this equation depend
on spatial coordinates, the local pH value is also a function of position. In the vicinity
of the semiconductor surface, the local pH therefore differs from the pH of the bulk
electrolyte. Most buffers involve only one chemical reaction, thus a single pKa value
is sufficient. Some buffers are more complicated and involve three reactions, e.g. the
phosphate buffer saline (PBS) solution, which is used in Chapter 7, requires three pKai

values (i = 1, 2, 3). As the concentrations of the ions also depend on the electrostatic
potential through the Poisson–Boltzmann equation (eq. (1.1) and eq. (7.3)) – which is
influenced by the Schrödinger equation that determines the quantum mechanical charge
density in the semiconductor device region – it is clear that only a numerical approach
is feasible to solve this coupled system of equations self-consistently.

8.3.5. Phosphate buffer

Phosphate buffer saline (PBS) is made of orthophosphoric acid H3PO4 and shows three
dissociation reactions:

H3PO4

pK′a1,T−−−−−⇀↽−−−−− H2PO−4 + H+
pK′a2,T−−−−−⇀↽−−−−− HPO2−

4 + 2H+
pK′a3,T−−−−−⇀↽−−−−− PO3−

4 + 3H+ (8.13)

Using the Henderson–Hasselbalch equation (eq. (8.12)), the concentrations of the in-
volved ions can be calculated by the following formulas:

[H3PO4] =
[PBS]

1 + 10pH−pK′a1,T ·
(

1 + 10pH−pK′a2,T ·
(

1 + 10pH−pK′a3,T
)) (8.14)

[H2PO−4 ] = [H3PO4] · 10pH−pK′a1,T (8.15)

[HPO2−
4 ] = [H2PO−4 ] · 10pH−pK′a2,T (8.16)

[PO3−
4 ] = [HPO2−

4 ] · 10pH−pK′a3,T (8.17)

[Na+] = −z1[H2PO−4 ]− z2[HPO2−
4 ]− z3[PO3−

4 ] (8.18)

Here, z1 = −1, z2 = −2 and z3 = −3 are the valencies of the respective ions H2PO–
4,

HPO2–
4 and PO3–

4 . In our implementation, the concentration of the PBS buffer and the
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Figure 8.6.: Calculated concentrations of the buffer ions (solid lines) of the phosphate
buffer saline (PBS) solution as a function of pH. At small and large pH val-
ues, the ionic strength (dashed line) strongly increases due to the increase
in [H3O+] and [OH–] concentrations, and their corresponding anions and
cations. The influence of the valency on ionic strength (quadratic depen-
dence, see eq. (8.9)) is noticeable for [HPO2–

4 ].

pH in the bulk electrolyte are fixed. However, the local value for the pH depends on
the local concentration of H3O+ ions. The concentrations of the buffer ions [H2PO–

4],
[HPO2–

4 ], [PO3–
4 ] and [Na+] are then calculated using the parameters listed in Table 8.1.

For a given local value of pH, equations (8.9), (8.11) and (8.12) (i.e. equations (8.14),
(8.15), (8.16), (8.17) and (8.18)) have to be solved self-consistently in an iterative man-
ner. Figure 8.6 shows the concentrations of the buffer ions and the ionic strength as a
function of pH for a 1 mM PBS buffer. The second column (0 mM KCl) of Table 7.1 lists
these values at pH = 7.5 (vertical dotted line in Fig. 8.6).

Table 8.1.: Buffer parameters: Phosphate buffer saline (PBS)

Symbol Value Units

pKa1(25 ◦C) 2.15
pKa2(25 ◦C) 7.21
pKa3(25 ◦C) 12.33
dpKa1/dT 0.0044 K−1

dpKa2/dT −0.0028 K−1

dpKa3/dT −0.026 K−1

za1 0
za2 −1
za3 −2
A(25 ◦C) 0.5114
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8.4. Extended Poisson–Boltzmann equation: Potentials of
Mean Force

Various corrections to the Poisson–Boltzmann equation have been proposed and are
reviewed in Ref. [BKN+05]. In this section we describe the extended Poisson–Boltzmann
(ePB) equation that includes corrections through a potential energy term. It treats the
long-ranged electrostatic interactions between ions and the net surface charge and among
the ions at finite bulk salt concentrations ci,0 on an approximate mean-field level and
simultaneously takes into account ion-specific surface interactions through potentials of
mean force (PMF). The PMFs are defined for each ion depending on a hydrophobic
(nonpolar) or hydrophilic (polar) solid–electrolyte interface. This approach is based on
the work of Schwierz, Horinek and Netz [SHN10] and allows us to distinguish between
the behavior of different ions, like that the repulsion of F– ions is much stronger than
for Cl– or I– ions at hydrophobic surfaces. They published fitting functions for the
PMFs obtained from molecular dynamics simulations that we will use throughout this
thesis. In fact, these functions have been obtained from hydrophobic CH3-terminated
and from hydrophilic OH–-terminated self-assembled monolayers and are valid for planar
surfaces. In the following chapters we apply this model to diamond and graphene based
sensor structures. Obviously, our interfaces are different compared to self-assembled
monolayers. Thus we consider the provided fitting functions as a model system in order
to be able to compare hydrophobic vs. hydrophilic semiconductor–electrolyte interfaces.
The ion density in the electrolyte is now given by

ρ(x) =

N∑
i=1

zieci,0 exp

(
−
zie (φ (x)− UG) + VPMF,i(x)

kBT

)
, (8.19)

where the potential energy term VPMF,i(x) is the spatially varying potential of mean
force of ion species i. The other symbols have the same meaning as in eq. (7.3). The
PMFs are only relevant in the vicinity of the interface (0 nm to 1.4 nm) and introduce
a repulsive term which prevents the unphysical situation of too many ions coming too
close to the surface.

Instead of assuming a constant value of ε
H2O
r = 78 for the dielectric constant of water,

for all PMF calculations a local dielectric constant for the electrolyte based on the water
density will be employed, hence including effects such as the water replacement by the
distribution of ions at surfaces. We assume the local dielectric constant εr(x) that enters
the Poisson–Boltzmann equation to vary in the electrolyte as a function of distance x
from the solid–liquid interface at x0 = 0 nm like

εr(x) = εr,s +
(
ε

H2O
r − εr,s

) ρH2O(x)

ρ
H2O
0

. (8.20)

Here, the dielectric constant is assumed to be proportional to the water density profile

ρH2O(x) (see Fig. 8.7) where ρ
H2O
0 is the bulk density of water. This density profile

has been obtained by a fitting function. The fitting parameters were chosen to match
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the according profiles obtained from molecular dynamics simulations (see [SHN10]). In
fact, this density profile is different for hydrophobic compared to hydrophilic surfaces
as shown in Fig. 8.8. Thus the microscopic structuring of water in the vicinity of a
nonpolar or a polar solid wall is taken into account in our model. εr,s is the relative
dielectric constant at the surface of the electrolyte which can be the constant of e.g.
a self-assembled monolayer or the constant of vacuum (εr,s = 1) if there is a distance
of a few Angstrom where there are no ions or water molecules at the solid–electrolyte
interface. For the calculations in this section, we assume εr,s = 4 as in Ref. [SHN10]
for a self-assembled monolayer but in the following sections on graphene and diamond

Figure 8.7.: Spatially varying static dielectric constant εr(x) (red dotted line) of the elec-
trolyte at a hydrophobic solid–liquid interface according to the parameters
of Ref. [SHN10]. The static dielectric constant varies from εr = 1 at the
interface to εr = 78 in the bulk electrolyte. It is proportional to the water
density profile (black solid line).

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4
 

 

r /
 r 0

p o s i t i o n  ( n m )

 h y d r o p h i l i c           ( p o l a r )
 h y d r o p h o b i c  ( n o n p o l a r )

Figure 8.8.: Resulting water density profile (fitting function) at hydrophobic (solid line)
and hydrophilic (dotted line) solid–liquid interfaces.
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Figure 8.9.: Ionic potentials of mean force (PMF) for the ions Na+ (black lines) and
I– (red lines) at a hydrophobic (solid lines) and a hydrophilic solid–liquid
interface (dotted lines). The interface is at 0 nm, and the PMFs are zero
beyond 1.4 nm indicated by the vertical line.

based sensors we use εr,s = 1. The water density only varies along the first 2 nm away
from the interface. The water is depleted from the interface in the hydrophobic case
by approximately 0.3 nm. In general, the water density profile will differ slightly for
different solids, e.g. it was found that for diamond and graphene the spatial variation of
the density had roughly the same shape but the maxima and minima in graphene were
more pronounced leading to a slightly different dielectric constant profile. The reason
for this is probably that the first atomic layer (which has by far the biggest influence) of
graphene is denser than the first layer of diamond [Bon]. For the purpose of our model
where we are mainly interested in qualitative trends, these deviations are thus negligible
from our current point of view. However, as we show in Fig. 10.14, a shift of the water
density profile of ±0.05 nm, i.e. a shift in the onset, changes the results slightly. In
contrast, we found that shifting the PMFs by this amount has only negligible influence.
In fact, the PMFs are quite robust, for instance calculations on various hydrophobic
surfaces showed nice agreement [Net]. This gives us confidence in applying the PMFs,
derived for the interface of self-assembled monolayers in contact to water, to our graphene
and diamond based solid–liquid interfaces in the next two chapters.

As a simple example to illustrate the extended Poisson–Boltzmann equation, we model
a 50 nm electrolyte solution containing 1 M or 10 mM of NaI. It is the example used by
Schwierz et al., where they compared their predictions of ion distributions at various
salt concentration successfully against molecular dynamics simulations, demonstrating
the robustness of the extended PB equation. We assume solid interfaces at the left and
right boundary of the electrolyte that are either both hydrophobic or hydrophilic.

Figure 8.9 shows the PMF of Na+ and I– ions at hydrophobic and hydrophilic surfaces
as a function of distance from the interface (see Supporting Information of Ref. [SHN10]
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for more detailed information). Very large values for the potential energies indicate
strong repulsion of the ions, implying no ions close to the surface. The repulsion of ions
at hydrophobic interfaces is obviously stronger. Further away from the interface the
repulsion is modulated by the water density, and there is even a region of attraction for
I– at around 0.6 nm for the hydrophobic interface. However, we note that the actual
shape of the potentials of mean force does not have much influence on our calculations
in Chapter 9 and Chapter 10 because we are interested in the carrier density in the solid,
and not so much in the actual ion distribution in the electrolyte. What has significant
influence is the onset of the strong repulsion of the ions, and the dielectric constant of
water. As these two ingredients strongly differ for hydrophobic and hydrophilic solids,
significantly different results are obtained for these two cases. Additionally, when com-
pletely ignoring PMFs as in the standard Poisson–Boltzmann model (PB), the results
will be even more different. In any case, the hydrophilic results are expected to lie in
between the results of the hydrophobic and the PB model. In this thesis we are inter-
ested in showing the differences among the three models: hydrophobic solid, hydrophilic
solid, standard Poisson–Boltzmann model. In most cases our interfaces are charged (e.g.
the charge in a two-dimensional electron gas in the solid), thus always the ion type with
the opposite charge strongly dominates the ion concentration profiles at the interface
and its concentration is much higher than its equilibrium concentration. Consequently,
we do not care much about the tiny modulations in the PMF profiles. They are how-
ever noticeable for uncharged solid interfaces. In this case the ion concentration profiles
oscillate around their equilibrium value to a lesser extent and thus strongly follow the
shape of their PMFs. This can be seen for the hydrophobic case in Fig. 8.10 and for the
hydrophilic case in Fig. 8.11, respectively, where the concentrations of the Na+ ions are
shown in red, and the I– ions in black. The vertical lines indicate the barrier from where
on the PMFs are zero and the usual Poisson–Boltzmann screening behavior takes place.
The concentration of I– ions is stronger at the hydrophobic surface than for Na+ ions
indicating that their adsorption is stronger. This situation is reversed at hydrophilic
surfaces. In both cases the preference of one ion over the other decreases with increasing
ionic strength. Thus the shapes of the ion density profiles ci/ci,0 for 1 M (solid lines) and
10 mM solutions (dotted lines) are not identical, although within our model, the water
density and the PMFs are independent of the equilibrium concentration of the salt in
the solution. A self-consistent solution of the extended Poisson–Boltzmann equation not
only takes into account the PMFs and the water density but also takes care of the local
electrostatic potential and the spatial variation of the ionic strength (eq. (8.9)) that
dominates the complicated overall screening behavior of the electrolyte at the interface.
The results of our calculations show perfect agreement to Fig. 3(A) and Fig. 3(C) of
Ref. [SHN10].

Figure 8.12 shows the electrostatic potential −φ(x) for the hydrophobic surface for
1 M (solid lines) and 10 mM (dotted lines) NaI solutions. The 1 M solution has a higher
ionic strength and thus interface effects vanish after approximately 2 nm completely,
whereas for the 10 mM solution the screening is not so effective. The red lines show the
same data on a logarithmic scale (arrows) which are in perfect agreement to Fig. 4(A)
of Ref. [SHN10].
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Figure 8.10.: Ion concentration profiles of 1 M (solid lines) and 10 mM (dotted lines) NaI
solution at a hydrophobic (nonpolar) surface (Na+ ions: red lines, I– ions
black lines)
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Figure 8.11.: Ion concentration profiles of 1 M (solid lines) and 10 mM (dotted lines) NaI
solution at a hydrophilic (polar) surface (Na+ ions: red lines, I– ions black
lines)
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Figure 8.12.: Electrostatic potential of 1 M (solid lines) and 10 mM NaI (dotted lines)
solution at a hydrophobic surface. The red lines show the same data on a
logarithmic scale (arrows).

In the following two sections, our electrolytes contain Na+ and Cl– ions, therefore
we show their potentials of mean force (PMF) for the hydrophobic (solid lines) and
hydrophilic interfaces (dotted lines) in Fig. 8.13. We note that the PMF for Na+ ions
is identical to the one of Fig. 8.9. The PMFs are zero beyond 1.4 nm indicated by the
vertical line. One can clearly see that the PMFs for the hydrophobic interface repel the
ions strongly for distances below 0.4 nm from the interface.
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Figure 8.13.: Ionic potentials of mean force (PMF) for the ions Na+ (black lines) and
Cl– (red lines) at a hydrophobic (solid lines) and a hydrophilic solid–liquid
interface (dotted lines). The PMFs repel the ions strongly for distances
below 0.4 nm from the interface for the hydrophobic case.
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9. Modeling graphene based solution gated
field-effect transistors

In this chapter we model graphene based solution gated field-effect transistors (SGFET).
First, we discuss the band structure of graphene. Then we compare the density and
capacitance of ideal graphene layers with graphene layers that are subject to potential
fluctuations. Finally, we model graphene based sensors in liquid environments. We apply
our new extended Poisson–Boltzmann approach (see Section 8.4) and compare its results
to simpler models and to experiment. The effect of the solution-gate potential on the
electronic properties of graphene is explained using a model that takes into account the
microscopic structure of water at the graphene–electrolyte interface.

9.1. Band structure of graphene

Graphene is a two-dimensional crystal which consists of a monolayer of graphite. Al-
though its band structure and related properties have been studied and known since
decades [Wal74], only recently the material has been subject of intensive research world-
wide mainly due to its exceptional physical properties and numerous potential appli-
cations in electronics but also due to its low-cost fabrication techniques (e.g. ‘Scotch
tape technique’). Eventually, in 2010 the Nobel prize was awarded to A. Geim and
K. Novoselov for their pioneering work [NGM+04]. Compared to silicon, graphene shows
superior chemical stability and is expected to be bio-inert which makes it an ideal ma-
terial for biosensor and bioelectronic applications. Its electronic properties allow it to
outperform silicon for sensing devices because graphene is an ideal two-dimensional sys-
tem with very high mobilities for both electrons and holes even at room temperature. In
addition, it is sensitive to environmental conditions and charge adsorption. So far most
of the reports on graphene field-effect transistors have addressed operation under vacuum
or atmospheric conditions. Recently also operation under aqueous electrolyte environ-
ments were demonstrated for pH sensing and protein adsorption [ACWL08, HCM+09].
A summary of the technological challenges and references to recent work can be found in
Ref. [DHL+10]. However, a detailed understanding of the graphene–electrolyte interface
and the effect of the electrolyte on the electronic transport in graphene is still lacking.
The former will be addressed in this thesis.

In this section we analyze the band structure of graphene using a tight-binding ap-
proach in the nearest-neighbor (nn) and third-nearest-neighbor (3rd-nn) approximation.
We compare three different sets of parameters with the widely used linear E(k) relation-
ship.
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Figure 9.1.: Calculated band structure of graphene using the tight-binding method. Con-
duction band π∗ (upper part) and valence band π (lower part) of graphene
along special high symmetry directions in the two-dimensional hexagonal
Brillouin zone for different models.

The conduction (E+) and valence band energies (E−) can be calculated by

E± =
E2p ∓ γ0w(k)

1∓ s0w(k)
, (9.1)

where E2p is the site energy (orbital energy) of the 2pz atomic orbital, and γ0 is the C–C
transfer energy which is typically in the interval −3 eV < γ0 < −2.5 eV. The overlap
of the electronic wave function on adjacent sites is denoted with s0. Since it is a small
value, it is often neglected. Finally, w(k) is given by [SK01]

w(k) =

√
1 + 4 cos

aky
2

cos

√
3akx
2

+ 4 cos2
aky
2
. (9.2)

Figure 9.1 shows the conduction band π∗ (E+) and valence band π (E−) of graphene
along special high symmetry directions in the two-dimensional hexagonal Brillouin zone
in k space. The high symmetry points that are used in this graph (from left to right) are:

K =
(
0, 2

3

)
2π
a , Γ = (0, 0), M =

(√
1
3 , 0
)

2π
a , K′ =

(√
1
3 ,

1
3

)
2π
a . The blue solid lines are

the third-nearest-neighbor tight-binding approximation using the parameters of Reich
et al. [RMTO02]. Using this set of parameters, the band gap at the K and K′ points
is not exactly zero. The red dashed lines are the nearest-neighbor approximation using
the parameters of Saito [SK01]. They are nonsymmetric with respect to the electron
and hole dispersion and are close to calculations from first principles and experimental
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9.1. Band structure of graphene

Figure 9.2.: Calculated energy dispersion E(kx, ky) of graphene using the parameters of
Saito with s0 = 0.129 in the nearest-neighbor approximation. The upper
part refers to the conduction band, the lower part to the valence band.
At the six Dirac points where the conduction band edge energy equals the
valence band edge energy, the dispersion becomes linear.

data. Setting s0 = 0 yields the green dotted lines that are symmetric with respect to
the Fermi level EF = 0 eV. Then the dispersion of both π∗ and π is the same (apart
from the sign). In this case the splitting energy at Γ is three times as large as at the M
point (indicated by the arrows). The black dash-dotted lines correspond to the linear
E(k) relationship that is typically used (k · p approximation or linear expansion). It is
valid at the K and K′ points for low energies, and this is the approximation that we will
use in the following sections. The linear dispersion is independent of the parameter s0.
Thus for small values of k (with respect to the K point), the energy dispersion can be
approximated by a linear dispersion relation

E(k) = E2p ± h̄vF |k| = E2p ±
√

3γ0
a

2
k, (9.3)

where a is the lattice constant of graphene (a = 0.24612 nm), k =
(
k2
x + k2

y

)1/2
and the

Fermi velocity of the charge carriers is given by vF =
√

3 |γ0| a2h̄ ∼= 0.98·106 m/s ∼= 0.003c,
where c is the velocity of light. At the K and K′ points, the band gap is zero.

Figure 9.2 shows the calculated energy dispersion E(kx, ky) of graphene using the
parameters of Saito with s0 = 0.129 in the nearest-neighbor approximation. The upper
part refers to the conduction band, the lower part to the valence band. They are not
symmetric for the parameterization of Saito (see Fig. 9.1). At the six Dirac points (three
K and three K′ points) where the conduction band edge energy equals the valence band
edge energy, and thus the band gap is zero, the dispersion becomes linear. The point in
the middle is the Γ point. The x axis shows kx within the interval [−2/3, 2/3] 2π

a , the
same holds for ky.
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9.2. Density and capacitance of graphene films

In this section, we calculate the density in graphene layers according to Ref. [FKXJ07]
assuming a linear energy dispersion E(k) leading to symmetric electron densities n and
hole densities p with respect to |η|. They are calculated to be

n =
2

π

(
kBT

h̄vF

)2

F1 (+η) (9.4)

p =
2

π

(
kBT

h̄vF

)2

F1 (−η) , (9.5)

where the Fermi velocity vF of the charge carriers in graphene was chosen to be vF =
0.98 · 106 m/s. F1 is the Fermi–Dirac integral of the order 1 having η = (EF − ED) /kBT
as its argument, where the position of the Fermi level EF relative to the Dirac point
ED determines the charge density. Usually ED is assumed to be at ED,0 = 0 eV due
to the symmetry of the energy dispersion. Fermi–Dirac integrals of any order can be
evaluated numerically very efficiently using approximation formulas [Ant93]. For reasons
that become clear in the next section, we assume the Fermi level to be constant and fixed
at EF = 0 eV, i.e. the position of the Dirac point equals 0 eV only in the case of zero
electrostatic potential

ED = ED,0 − eφ(x). (9.6)

Figure 9.3 shows the calculated electron and hole sheet carrier densities as a function
of the position of the Fermi level at room temperature. Usually one is interested in small
Fermi level variations. Figure 9.4 shows the same data in the regime of lower applied
voltages (zoom of Fig. 9.3).
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Figure 9.3.: Calculated electron and hole sheet densities in graphene as a function of
position of the Fermi level for T = 300 K.
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9.2. Density and capacitance of graphene films

Figure 9.4.: Calculated electron and hole sheet densities in graphene as a function of
position of the Fermi level for T = 300 K in the low voltage regime.

- 2 - 1 0 1 20

1 0

2 0

3 0

4 0

5 0
 

 

T  =  3 0 0  K

��
�

�
�
��

�	
���

���
�� �

v o l t a g e  ( V )  [  =  -  F e r m i  l e v e l  ( e V )  ]

Figure 9.5.: Quantum capacitance of an ideal graphene layer at room temperature.

The quantum capacitance, C = ∂Q/∂U , of ideal graphene is shown in Fig. 9.5. It is
obtained by calculating the derivative of the total charge, Q = n + p, with respect to
the voltage (i.e. local channel electrostatic potential).

An improvement to this ideal quantum capacitance model has been proposed by Xu
et al. [XZP11]. They assumed that a real graphene layer differs from a perfect graphene
layer due to potential fluctuations that obey a Gaussian distribution. The potential
fluctuations lead to a fluctuation of the local density of states. They calculated the
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Figure 9.6.: Quantum capacitance of a nonideal graphene layer at room temperature for
different values of the potential fluctuations.

average quantum capacitance of a large graphene sheet with fluctuating local potential by
a microscopic capacitance model in which the macroscopic graphene plane is divided into
N small cells with the same area. Essentially, they view the graphene plane as composed
of many cells connected in parallel. We implemented their model slightly differently as
our numerical Schrödinger–Poisson solver needs an expression for the density rather than
the capacitance. The density in graphene including potential energy fluctuations δE is
thus given by

n′(EFD, δE) =

∫ ∞
−∞

n(E)P (E,EFD, δE)dE, (9.7)

where EFD = EF − ED is the difference in energy of the Fermi level with respect to
the Dirac point, and n(E) is the equation for the density in ideal graphene (eq. (9.4)
and eq. (9.5)). The potential energy fluctuations are assumed to follow a Gaussian
distribution given by

P (E,EFD, δE) =
1√

2πδE
exp

(
−(E − EFD)2

2δE2

)
. (9.8)

Using this model, the quantum capacitance with respect to the voltage is shown in
Fig. 9.6 for five different values of the potential fluctuation. In order to compare our
results with the calculations of Xu et al., we used a Fermi velocity of 1.15 · 106 m/s
in this figure. Only the quantum capacitance at low voltages is affected by potential
fluctuations where they are responsible for the lower limit of the quantum capacitance.
For large voltages the potential fluctuations are negligible because the density is already
very high.

Finally, Fig. 9.7 shows the calculated intrinsic carrier density in thermal equilibrium
and under no external perturbation (V = 0) where the Fermi level is at the Dirac point,
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Figure 9.7.: Calculated intrinsic sheet carrier density in graphene vs. temperature. The
arrow indicates the intrinsic carrier density at room temperature.

i.e. exactly in the middle of the (zero) band gap energy. The intrinsic carrier density
depends quadratically on the temperature. At room temperature (T = 300 K) it is about
ni = pi = 8.5 · 1010 cm−2.

9.3. Results: Modeling graphene based sensors in liquid
environments

In this section we describe our approach for modeling graphene based sensors in liq-
uid environments and present our results. First we discuss the operation principle of a
graphene solution-gated field-effect transistor. Figure 9.8 shows the effective modulation
of the graphene conductivity by the electrolyte potential. Using the concept of an ide-
ally polarizable graphene–electrolyte interface, the modulation of the conductivity by the
electrolyte potential can be described as follows: The reference electrode is used to con-
trol the potential at the graphene–electrolyte interface. An applied gate potential fixes
the potential drop between the Fermi level EF in graphene and the reference electrode.
From now on, the electrolyte potential will be referred to as gate potential UG. For gate
potentials more negative than the Dirac point (left part of figure), the position of EF is
driven further below the valence band maximum, increasing the number of holes in the
graphene film and thus the conductivity. If the potential is reversed and more positive
gate potentials are applied (right part of figure), EF in the graphene film will be pushed
above the conduction band minimum, increasing the number of electrons in graphene.
This symmetric switching between electrons and holes is due to the semimetallic nature
of graphene (see Fig. 9.3, Fig. 9.4). Therefore, the applied gate voltage modulates both
the type and the number of free carriers. However, in order to fully understand the
modulation of the carrier density in graphene by the electrolyte potential, it is necessary
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Figure 9.8.: Operation principle of a graphene solution-gated field-effect transistor. The
schematic drawing demonstrates the modulation of the carrier density in the
graphene layer. The applied gate voltage UG with respect to the reference
electrode shifts the Fermi level EF in graphene below (left) or above (right)
the Dirac point, thus modulating both the type and the number of free
carriers. A negative value of UG leads to an access of holes (left) whereas a
positive UG induces an electron gas (right).

to examine the charge distribution at the graphene–electrolyte interface. An electric
double layer is expected to form at an ideally polarizable electrode–electrolyte interface.
For carbon based electrodes this interfacial layer is typically described by a double layer
capacitance varying from a few µF/cm2 for diamond electrodes to a few tens of µF/cm2

for graphite electrodes. For graphene not only the double layer capacitance is relevant.
The quantum capacitance of the graphene film (Fig. 9.5, Fig. 9.6) must be taken into
account as well.

A much simpler approach than ours for modeling liquid-gated graphene field-effect
transistors has been presented by Heller et al. [HCM+09]. They compared liquid gating
vs. back gating and found a striking difference in gating efficiency, namely that the
liquid gating is more efficient (strong coupling). They conclude that the strength of the
gate coupling determines the induced potential shifts that tune the Dirac point relative
to the Fermi level, which in turn determines the number of electrons and holes in the
conducting channel. They correctly point out that the total capacitance Ctotal (interfacial
capacitance) of liquid gating is a series capacitance of the liquid gate capacitance (electric
double layer capacitance) CDL and the quantum capacitance CQ of graphene

1

Ctotal
=

1

CDL
+

1

CQ
. (9.9)

Consequently, the applied gate potential drops over these two capacitances and the ap-
plied gate voltage cannot be directly assigned to the electrostatic potential in graphene
since part of the voltage drops in the electrolyte close to the surface. In the case of back
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gating (weak coupling) where an insulating layer (SiO2) is below the graphene in Heller’s
sample, the geometric capacitance of the oxide is in series to the quantum capacitance.
Heller et al. calculate the total capacitance by assuming a constant value for the liquid
gate capacitance based on a parallel plate capacitor model, although they mention that
it is in fact gate dependent. The parallel plate capacitance per unit area is given by
eq. (8.3). They assume κ−1 = 1 nm, corresponding to the Debye screening length of
0.1 M monovalent salt (compare with Fig. 8.2), and εr = 80 for water. Thus they derive
a (constant) value for the liquid gate capacitance of 70 µF/cm2. In contrast, our model
allows us to take into account the gate dependent liquid gate capacitance, as well as
a spatially varying dielectric constant εr for water. We calculated self-consistently the
spatial charge ρ(x) and electrostatic potential φ(x) distribution in the SiC–graphene–
electrolyte system by solving the nonlinear Poisson equation (eq. (1.1)). We use the
Dirichlet boundary condition φ(∞) = UG for the electrostatic potential in the bulk elec-
trolyte which is determined by the voltage UG of the reference electrode (corresponding
to zero net ion charge density in the electrolyte far away from the interface), and the
Neumann boundary condition ∂φ

∂x = 0 V/m (vanishing electric field) deep in the SiC
layer corresponding to overall charge neutrality. The sheet charge density in graphene
is calculated as described in Section 9.2. The Fermi level is assumed to be constant and
fixed at EF = 0 eV, i.e. the energetic position of the Dirac point ED equals 0 eV only in
the case of zero electrostatic potential (eq. (9.6)). Consequently, an applied gate voltage
UG in the electrolyte modifies the electrostatic potential in the graphene layer and thus
alters its charge density by moving the Dirac point with respect to the Fermi level. For
the graphene layer we assume a thickness of 0.334 nm, corresponding to half the lattice
spacing in graphite, i.e. the thickness of one monolayer. The dielectric constants of SiC
and graphene were chosen to be εr = 10.3 and εr = 5.68, respectively, where the latter is
actually the one for diamond. The dielectric constant in the electrolyte is proportional
to the water density according to Ref. [SHN10] (see Fig. 8.7) and varies from εr = 1 at
the interface to εr = 78 further away from the interface. The distribution of the ions
in the electrolyte is calculated using an extended Poisson–Boltzmann approach that
takes into account recently published [SHN10] ionic potentials of mean force (PMFs)
VPMF,i(x) (i =

{
Na+,Cl−

}
). They were described in detail in Section 8.4. The ion den-

sity is given by eq. (8.19). The temperature has been assumed to be room temperature
(T = 298.15 K). The Poisson equation has been discretized on a nonuniform grid using
the finite differences method. It is solved numerically with a Newton–Raphson scheme.
As CPU time is not critical (order of seconds) the grid spacing has been chosen to be
very small (0.02 nm) to resolve the fitting functions of the potentials of mean force rea-
sonably well at the solid–liquid interface. More details on the simulation of the combined
system of semiconductor–electrolyte systems with the nextnano3 software are described
in Chapter 7. The PMFs describe hydrophobic (i.e. nonpolar) or hydrophilic (i.e. po-
lar) solid–liquid interfaces and are based on fitting functions obtained from molecular
dynamics simulations [SHN10]. They are shown in Fig. 8.13 together with the ones for
hydrophilic interfaces. The PMFs have the effect of repelling the ions from the inter-
face and are zero at distances larger than 1.4 nm from the interface. We compare this
approach with the traditional Poisson–Boltzmann (PB) equation where no PMFs are
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Figure 9.9.: Total ion density profile ρ(x) for applied gate potentials of UG = 0.2 V (solid
lines) and UG = 0.4 V (dotted lines) for the hydrophobic solid–liquid inter-
face (extended Poisson–Boltzmann model, black lines) and for the standard
Poisson–Boltzmann approach (red lines). The gray rectangle indicates the
region where the potentials of mean force are nonzero. The 0.34 nm wide re-
gion of zero charge at the solid–liquid interface in the case of the hydrophobic
extended PB model corresponds to an effective ‘insulator thickness’.

employed while assuming a constant value of εr = 78 for the static dielectric constant
of the electrolyte. We find significant differences for both the spatial distribution of the
resulting ion density and the electrostatic potential distribution. Figure 9.9 shows the
calculated total ion density profile ρ(x) for applied gate potentials of UG = 0.2 V (solid
lines) and UG = 0.4 V (dotted lines) for the hydrophobic solid–liquid interface (extended
Poisson–Boltzmann model, black lines). The results of the standard Poisson–Boltzmann
approach (red lines) are shown for comparison. The gray rectangle indicates the region
where the potentials of mean force are nonzero. One can clearly see the effective ‘insula-
tor thickness’, i.e. the 0.34 nm wide region of zero charge at the solid–liquid interface in
the case of the hydrophobic extended Poisson–Boltzmann model. For higher gate volt-
ages, the Poisson–Boltzmann approach leads to unrealistically high ion concentrations
at the interface (not shown). We note that the integrated ion density in the electrolyte
corresponds exactly to the sheet charge density in graphene due to the overall charge
neutrality requirement.

Figure 9.10 shows the calculated electrostatic potential distribution for applied gate
potentials UG = 0.2 V, UG = 0.4 V and UG = 1.0 V across the hydrophobic graphene–
electrolyte interface (extended Poisson–Boltzmann, black solid lines). The results of the
standard Poisson–Boltzmann approach (red dashed lines) are shown for comparison. In
the latter case, the potential drop in the electrolyte is very small, so that the applied
gate voltage nearly directly changes the Fermi level in the graphene layer with respect
to the Dirac point. In the hydrophobic model, there is a significant potential drop in
the electrolyte in the region close to the interface where the total ion density is very low
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Figure 9.10.: Electrostatic potential distribution for applied gate potentials UG = 0.2 V,
UG = 0.4 V and UG = 1.0 V across the hydrophobic graphene–electrolyte
interface (extended Poisson–Boltzmann model, black solid lines). The re-
sults of the standard Poisson–Boltzmann approach (red dashed lines) are
shown for comparison. In the hydrophobic model, there is a significant
potential drop in the electrolyte in the region close to the interface where
the total ion density is very low (see Fig. 9.9).

(see Fig. 9.9), resulting in a lower value of the electrostatic potential in the graphene
layer. Consequently, for the same gate voltage the carrier density is expected to be
lower in the hydrophobic model. Only results for positive UG are shown. The results for
negative UG are symmetric with respect to the potential axis for the PB model, and also
roughly symmetric for the extended PB model apart from very small deviations due to
the different PMFs of the Na+ and Cl– ions.

We also find differences in terms of integrated charge densities (sheet densities) and
capacitances among our two models. Figure 9.11 (left) shows the calculated carrier
sheet density in the graphene layer as a function of applied gate electrode potential UG

for the hydrophobic solid–liquid interface using the extended Poisson–Boltzmann (ePB)
approach (blue line). The results of the standard Poisson–Boltzmann (PB) approach
(red line) are shown for comparison. The gray line shows the ‘quantum limit’ in bulk
graphene where a shift in the applied voltage corresponds directly to a shift of the Fermi
level with respect to the Dirac point, i.e. Egraphene

F = eUG The upper x axis corresponds
to the experimental results of in-solution Hall effect measurements of Ref. [DHL+10]
(blue dots), the lower x axis has been shifted so that the Dirac point is at UG = 0 eV.
Close to the Dirac point, no experimental data is provided because it is difficult to
estimate the number of carriers from Hall effect experiments in this case. The reason is
that the Hall voltage goes to zero if the number of holes and electrons is similar. From
Fig. 9.4 and Fig. 9.7 (arrow) the density around the Dirac point at room temperature
is expected to be about 1011 cm−2. The experiment indicates a linear slope of the
electron density vs. (positive) gate voltage and a supralinear dependence for the hole

165



Chapter 9. Modeling graphene based solution gated field-effect transistors

Figure 9.11.: Left: Calculated carrier sheet density in the graphene layer as a function
of applied gate electrode potential UG for the hydrophobic solid–liquid
interface using the extended Poisson–Boltzmann (ePB) model (blue line)
and the standard Poisson–Boltzmann (PB) approach (red line). The gray
line shows the quantum limit in bulk graphene where a shift in the applied
voltage corresponds directly to a shift of the Fermi level with respect to
the Dirac point. The upper x axis corresponds to the experimental results
(blue dots), the lower x axis has been shifted so that the Dirac point is at
UG = 0 eV. Right: Calculated capacitance C = ∂Q/∂UG from the same
data. In each graph, the left half corresponds to holes, and the right half
to electrons. The blue dots are experimental data.

density vs. (negative) gate voltage. In the case of the PB model, the potential drop in the
electrolyte is almost negligible (compare with Fig. 9.10), i.e. the electrostatic potential in
graphene approximately equals UG, resembling the ‘quantum limit’ situation. In the case
of the extended PB model, an important potential drop occurs in the electrolyte, which
strongly reduces the effective electrostatic potential in the graphene film and thus the
carrier density. In any case, the graphene–electrolyte interface cannot be solely described
by the quantum capacitance since the experimental carrier density is much smaller than
predicted by the quantum limit. The right part of this figure shows the calculated
capacitance C = ∂Q/∂UG from the same data. The latter is defined as the derivative
of the total charge Q = e (p− n) in the graphene sheet with respect to the applied gate
potential UG. In each graph, the left half corresponds to holes, and the right half to
electrons. The qualitative agreement between theory and experiment is quite good for the
electrons. The hydrophobic model leads to results reasonably close to measured electron
densities in graphene. This also applies to the calculated capacitance as a function
of voltage which shows a similar behavior than the experimentally obtained values.
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However, our results for the hole densities were much lower compared to experiment.
Thus we were not able to reproduce the measured asymmetry with respect to the electron
and hole densities. Consequently, also the asymmetry in the capacitance plot could not
be reproduced. We want to emphasize that we did not use any adjustable parameters for
our calculations. Experimentally, also a clear asymmetry for electron and hole mobilities
was found [DHL+10], with the electron mobility being noticeably higher than the hole
mobility for the same carrier concentration. The asymmetry in the charge densities in
graphene could possibly be explained by ion (OH–) adsorption at the graphene interface
(similar as in diamond), which is only present at negative gate voltages [ACWL08].
This effect has not been taken into account in our simulations. In our model, the pH has
been set to 7, thus the concentrations of OH– and H3O+ ions are not relevant for the
simulations compared to the Na+ and Cl– concentrations of 100 mM NaCl. The buffer
ions (5 mM PBS buffer) have not been included in the simulations as they are nearly two
orders of magnitude lower and potentials of mean force are not yet available for them.
We also did not take into account the presence of charged impurities that can induce
chemical doping, which would significantly increase the number of carriers by shifting
the Fermi level away from the Dirac point in the absence of a gate potential. For
simplicity, pyroelectric charges at the SiC–graphene interface have not been considered
in our model. They arise due to the spontaneous polarization in hexagonal SiC–6H. A
built-in electric field at the SiC–graphene interface could lead to electron doping of the
graphene layer. Bilayer graphene has a different effective mass for electrons and holes.
This would lead to asymmetry in the results for the carriers. It cannot be excluded with
certainty that some parts on the experimental samples consisted of bilayer instead of
single layer graphene.

Figure 9.12 shows the interfacial capacitance of the graphene–electrolyte system as
a function of applied gate electrode potential UG for the hydrophobic solid–liquid in-
terface (extended Poisson–Boltzmann model, black solid line). The results of the stan-
dard Poisson–Boltzmann approach (red dashed line) are shown for comparison. The
blue line shows the quantum limit of bulk graphene. These curves are the same as
in Fig. 9.11 (right). The gray line corresponds to a simple plate capacitor model of
width d = 0.32 nm and a static dielectric constant of εr = 1. One can see that at large
voltages UG the plate capacitor model describes nicely the hydrophobic double layer
capacitance whereas for small voltages the quantum capacitance of graphene dominates.
The reason for this behavior is simply the fact that the interfacial capacitance is a series
capacitance of the quantum capacitance of graphene and the double layer capacitance
of the electrolyte (eq. (9.9)). As shown in Fig. 9.6, potential fluctuations in graphene
increase the quantum capacitance only at low voltages, thus increasing the interfacial
capacitance only in this voltage regime. For the modeling of liquid-gated graphene in
this section, we assumed no potential fluctuations, corresponding to an ideal graphene
layer. The influence of these fluctuations can easily be estimated by comparing Fig. 9.12
with Fig. 9.6, i.e. only the low-voltage regime will be affected where the capacitance
will increase slightly. Essentially, fluctuations will reduce the gate dependence of the
interfacial capacitance, and may even lead to a rather constant value for the interfacial
capacitance. Consequently, our results for ideal graphene are in fact the lower limit for
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Figure 9.12.: Interfacial capacitance of the graphene–electrolyte system as a function of
applied gate electrode potential UG for the hydrophobic solid–liquid inter-
face (extended Poisson–Boltzmann model, black solid line). The results
of the standard Poisson–Boltzmann approach (red dashed line) and the
quantum limit (blue dotted line) of bulk graphene are shown for compari-
son (same data as in Fig. 9.11). The gray line corresponds to a simple plate
capacitor model of width d = 0.32 nm and a static dielectric constant of
εr = 1. At large voltages UG the plate capacitor model describes nicely the
hydrophobic double layer capacitance whereas for small voltages the quan-
tum capacitance of graphene dominates. For completeness we also include
the results for the hydrophilic extended PB model (green dash-dotted line).

the interfacial capacitance. Our value for the capacitance of the double layer (parallel
plate model) is around 3 µF/cm2 and thus much lower than the value of 70 µF/cm2

as estimated by Heller et al., who significantly overestimated the double layer capaci-
tance. Also the standard Poisson–Boltzmann model overestimates the capacitance. For
completeness, we also include our results for the capacitance of a (hypothetically) hy-
drophilic graphene–electrolyte interface (green dash-dotted line). Here, we used the
same extended Poisson–Boltzmann model as for the hydrophobic case but instead used
the hydrophilic parameters for the water density, i.e. static dielectric constant of the
electrolyte, and for the PMFs of the ions, see Fig. 8.8 and Fig. 8.13, respectively. The
hydrophilic results are somewhat closer the PB model but significantly different from
the hydrophobic model. As our hydrophobic model leads to results that are closer to
experimental results than the hydrophilic or the simple PB model, it seems to be very
important to consider the hydrophobic nature of interfaces when analyzing, optimizing
and modeling device behavior. In the next chapter we test our hydrophobic model on a
different material system, namely diamond.
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10. Modeling diamond based solution gated
field-effect transistors

In this chapter we are investigating diamond–electrolyte interfaces. First, we discuss the
band structure of diamond. Then we analyze the properties of the two-dimensional hole
gas in surface conducting diamond as a function of substrate orientation. Finally, we
model the hydrophobic interaction and charge accumulation at the diamond–electrolyte
interface.

Hydrogen-terminated diamond is known to be surface conducting and hydrophobic
when in contact with water. While the hydrophobic interaction of surfaces with water
is a well-known phenomenon, there is not much known on its influence on biosensor de-
vices. In this chapter we calculate the interfacial potential at the hydrogen-terminated
diamond–aqueous electrolyte interface. We show that experimental results on the sheet
charge density of diamond field-effect devices can be reproduced by our simulations, only
if we include the hydrophobic nature of the surface into our model. Thus the perfor-
mance of potentiometric biosensor devices strongly depends on the hydrophobicity of the
surface. In Ref. [DLB+11] we published our work on modeling the diamond–electrolyte
interface where we particularly focused on the hydrophobicity of diamond and the charge
accumulation in this electric double layer as a function of electrode gate potential. The
hole charge distribution in the diamond had been described successfully with a single-
band effective-mass model, although such a model is typically not appropriate to describe
the hole energy levels in a semiconductor. However, for the purpose of that work where
only the total charge as a function of gate potential was relevant, the single-band model
worked reasonably well. In this chapter we extend the previous approach [DLB+11], by
now using a 6 × 6 k · p Hamiltonian to describe the charge accumulation at the dia-
mond surface. To our knowledge this is the first attempt to apply a self-consistent k · p
formalism to a semiconductor–electrolyte structure, where nonparabolicity effects and
warping are included. Self-consistent solutions of the Schrödinger–Poisson equation for
hydrogen-terminated diamond (surface conducting diamond) have previously been per-
formed by Edmonds et al. [EPL10]. They considered a single-band model with effective
masses derived from the Luttinger parameters of Willatzen et al. [WCC94] for diamond.
In contrast to the single-band model with parabolic and isotropic masses, the k ·p model
allows us to compare different diamond substrate orientations, namely (100), (110) and
(111) with respect to their sensitivity. However, an important ingredient for k ·p calcu-
lations are the Luttinger parameters that describe the hole masses. It seems that there
is not much known on the precise values of the valence band masses in diamond. This
will be the topic of the next section.
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10.1. Band structure of diamond

Intrinsic diamond is an insulator with an indirect band gap of 5.5 eV at room tempera-
ture. In this section we discuss the valence band structure of diamond and compare the
energy dispersion along several directions in k space. For the k · p energy dispersions a
number of different sets of Luttinger parameters that can be found in the literature will
be tested against each other. Surprisingly, there is still a substantial lack of information
about the details of the band structure of diamond. Willatzen et al. [WCC94] collected
eight different sets of Luttinger parameters from different authors. Further comparisons
have been made by Gheeraert et al. [GKTK99] and Reggiani et al. [RWZ83]. So we have
at least 13 different sets of Luttinger parameters. Only two of them are similar (the ones
of Saslow et al. and van Vetchen et al.), all others deviate more or less substantially. Pre-
vious work did not compare the resulting valence band structures for these parameters.
We found that for actually four of these sets of Luttinger parameters the hole dispersion
bends into the opposite direction (negative mass). Figure 10.1 shows our results. We
only plot the energy dispersion along the directions [110] (solid lines) and [111] (dotted
lines) (left part of the figure) where the sets of parameters lead to incorrect curvature of
the hole bands. The dispersion along [100] is plotted in all cases (right part of the figure,
solid lines). In diamond the split-off energy is very small (∆so = 6 meV) and indicated by
the arrow. As we discard these sets of Luttinger parameters in the following, we do not
list the actual Luttinger parameters and their references. Instead we refer to Table IV
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Figure 10.1.: Comparison of different sets of Luttinger parameters where the 6× 6 k · p
valence band energy dispersion leads to incorrect curvature of the hole
bands. Negative x axis: energy dispersion along the [110] (m = 0, solid
lines) and [111] (m = 1, dotted lines) directions; positive x axis: energy
dispersion along the (100) direction (solid lines).
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in Ref. [WCC94] and references therein. The parameters by Eremets et al. (black solid
lines) and Bashenov et al. (red solid lines) lead to a dispersion along the [110] direction
where the curvature is almost flat and has negative slope at |k| > 0.035 Å−1 (Eremets)
or at |k| > 0.016 Å−1 (Bashenov). This fact was already discussed by Bashenov. Kono
et al. have published two sets of parameters. For both the first set (blue lines) and the
second set (green lines), the dispersion of the uppermost hole state has negative slope
along all three directions [100], [110] and [111]. Furthermore, the second set (green dot-
ted line) leads to negative slope for values of |k| > 0.025 Å−1 along the [111] direction.
This makes us believe that not all authors actually calculated the band structure for
their set of Luttinger parameters. Luttinger parameters are usually determined by cy-
clotron resonance experiments. This was the method employed by Rauch [Rau61] who
derived an effective light hole mass of mlh = 0.70m0 that showed little anisotropy and
a split-off hole mass of mso = 1.06m0 with no anisotropy. He also derived a value for
the heavy hole mass of mhh = 2.18m0 [Rau62]. We used these values in our previous
work [DLB+11] where we employed a single-band model. We note that the A, B and
C parameters of the early work of Rauch are significantly different to all other sets of
Luttinger parameters, and there seems to be even doubt on the correct interpretation of
his experiment [GKTK99].

Figure 10.2 and Fig. 10.3 show the dispersion along [110] and [111], respectively, as
well as along [100] for other sets of Luttinger parameters. We did not include the sets
published by van Haeringen et al., Reggiani et al., Saslow et al., van Vetchen et al. and
Hall. The purpose of the figures is to demonstrate that there is significant variance
among those parameters, and that the energy dispersion of the heavy hole for the Rauch
parameters corresponds to a much larger, i.e. heavier hole mass than for other sets of
Luttinger parameters.

As there is currently no consensus about any experimentally derived set of Luttinger
parameters, we also investigated the band structure obtained from the sp3d5s∗ tight-
binding (TB) parameterization of Jancu et al. [JSBB98]. They published empirical TB
parameters for diamond. However, this set does not lead to a spin-orbit splitting at k = 0
and thus all three hole bands are degenerate at the Γ point. The reason for this is that
they set their ∆/3 parameter to zero. We adjusted this parameter to ∆/3 = 0.0024 eV
so that we now obtain a split-off energy of ∆so = 0.006 meV. This change is negligible
with respect to the overall band structure so that we can still use the original Jancu
parameterization for all other parameters. Only the valence band structure at the Γ
point is affected by our choice of ∆/3. We compared the k · p dispersions for all sets of
Luttinger parameters to our calculated tight-binding band structure (not shown). The
Luttinger parameters of Willatzen et al. were the ones that were closest to the TB valence
band structure along all three high symmetry directions as shown in Fig. 10.4. This is the
reason why we use Willatzen’s parameters in the following although we do not claim that
this is the ‘best’ choice. Their parameters have been derived within the framework of
density-functional theory (local density approximation, self-consistent scalar-relativistic
linear muffin-tin-orbital method). Having established our set of Luttinger parameters we
are now prepared to analyze diamond heterostructures in general or diamond surfaces
as a function of substrate orientation in the next section.
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Figure 10.2.: 6×6 k·p valence band energy dispersion along the [110] and [100] directions
for different sets of Luttinger parameters.
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Figure 10.3.: Same as Fig. 10.2 but along the [111] and [100] directions.

10.2. Results: Influence of substrate orientation on the density
of a two-dimensional hole gas in diamond

In this section we investigate the density of a two-dimensional hole gas (2DHG) in
diamond for different substrate orientations at room temperature. Our model system
consists of diamond where the 2DHG is induced by a constant surface charge density. In

172



10.2. Results: Influence of substrate orientation on the density of a 2DHG in diamond

- 0 . 1 0 - 0 . 0 5 0 . 0 0 0 . 0 5 0 . 1 0- 1 0 0

- 7 5

- 5 0

- 2 5

0

k 1 0 0  ( A n g s t r o m - 1 )k 1 1 m  ( A n g s t r o m - 1 )

 

 

en
erg

y (
me

V)

 1 0 0 ,  T B
 1 1 0 ,  T B
 1 1 1 ,  T B
 1 0 0 ,  W i l l a t z e n
 1 1 0 ,  W i l l a t z e n
 1 1 1 ,  W i l l a t z e n

D s o

Figure 10.4.: Energy dispersion along the high symmetry directions [100] (black), [110]
(green), [111] (red) in k space calculated by the tight-binding (TB) method
(solid lines). For comparison the results obtained by diagonalizing the
bulk 6 × 6 k · p Hamiltonian for each k vector is shown for the Luttinger
parameters of Willatzen et al. (dotted lines).

real samples the 2DHG is induced by the hydrogen termination of the diamond surface.
This results in a negative electron affinity of about χ = −1 eV which causes p-type surface
conductivity (surface conducting diamond). The hydrogen at the diamond surface has
another effect, namely that the surface gets hydrophobic. This will be the topic of the
next section. In this section we solve the 6× 6 k · p Schrödinger–Poisson equation self-
consistently for (100), (110) and (111) substrate orientations. As boundary conditions
we used a negative interface charge density of σ = −5 ·1013 cm−2 at the diamond surface
in order to induce a 2DHG, and a flat band boundary condition in the bulk diamond, i.e.
zero electric field far away from the interface. The doping concentration was assumed
to be n-type in the whole diamond (0.5 · 1018 cm−3, nitrogen with ionization energy
Eion

D = 1.7 eV).

Figure 10.5 shows our results. It can be clearly seen that the (111) substrate orienta-
tion (red dashed lines) has a higher density than the (100) orientation (black solid lines).
Even a higher density is obtained for the (110) orientation (blue dash-dotted lines). The
corresponding 2DHG sheet densities are σ110 = 5.8·1012 cm−2, σ111 = 4.5·1012 cm−2 and
σ100 = 3.0 · 1012 cm−2, respectively. The different results for each orientation are due to
the anisotropy of the valence band structure. It can also be seen from the sheet densities
that the interface charge σ is not completely canceled (screened) by the 2DHG sheet
charge density. Thus there is additional band bending further away from the 2DHG re-
gion and not a flat band. This also reveals the difference between the capacitance of an
ideal parallel plate capacitor and the ‘quantum capacitance’ [Lur88] of a two-dimensional
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Figure 10.5.: Hole densities and valence band edges (vb) of a two-dimensional hole gas
in diamond for various substrate orientations ((110) – blue dash-dotted
lines, (111) – red dashed lines, (100) – black solid lines). The single-band
results are independent of substrate orientation (gray dotted lines) because
isotropic masses are used. The Fermi level EF is indicated by the gray
dashed line.

electron or hole gas. We used the Luttinger parameters of Willatzen et al., motivated
by the discussion of the previous section. The parameters by Reggiani et al., Saslow et
al., van Haeringen et al. and van Vetchen et al. show a higher anisotropy (warping) in
terms of [111] vs. [100] directions leading to a slightly larger difference with respect to
the respective densities in this example (not shown). For comparison we also show the
single-band results (gray dotted lines) obtained with the parabolic and isotropic effective
masses by Rauch (mhh = 2.18m0, mlh = 0.70m0, mso = 1.06m0) where for each of the
three valence band edges the single-band Schrödinger equation was solved. In this case
the results are independent of substrate orientation. As these masses are much heavier
than the masses by Willatzen (see also Fig. 10.2 and Fig. 10.3), the density is larger
than for the k · p formalism. In fact, the single-band density is almost entirely due to
the occupation of the highest heavy hole ground state. Also for k · p along [110] only
the ground state contributes to the density. This is consistent as the mass along [110]
is much heavier than along the other directions (see Fig. 10.4). For [111] the ground
state and the first excited state contribute to the density because they have very similar
energies, whereas for [100] the ground state and the first two excited states contribute
to the density. The latter two excited states also have very similar energies. This can be
seen in Fig. 10.6 which shows the three uppermost eigenstates (square of the probability
amplitude shifted by its eigenenergy) for each substrate orientation at k‖ = 0. In fact
because of spin the six highest eigenstates are shown but the two spin states have the
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Figure 10.6.: Three uppermost eigenstates (square of the probability amplitude shifted
by its eigenenergy) for each orientation at k‖ = 0, valence band edge ener-

gies (vb) and Fermi level.

same energy and the same probability density at k‖ = 0. Only for [110] (blue dash-
dotted lines) the energy of the ground state lies above the Fermi energy (gray dashed
line), compare also with Fig. 10.10. The probability densities of the uppermost three
states have only one maximum for [100] (black solid lines) and [111] (red dashed lines)
directions, i.e. they are derived from the ground states of the heavy, light and split-off
hole but these are in fact mixed states. Only for [100] at k‖ = 0, the second state is
a pure heavy hole, and for [111] the ground state is 50% heavy and 50% light with no
contribution from split-off hole at k‖ = 0. All other states shown in this figure are
mixed states. For [110] the second excited state has one node. For all orientations our
calculations indicate that states with one node are not occupied (not shown). For con-
finement along [110] direction, the maximum of the probability density is much closer
to the surface. This will have influence on the capacitance of diamond biosensors as
the 2DHG density is then more sensitive to potential changes at the surface. In the
figure it looks as if only the first two states are plotted for [100] and [111] but in fact
three states are plotted for each. The reason is that for [100] the two excited states have
almost the same energy (separated by 4 meV) and the same shape, whereas for [111] the
ground state and the first excited state have almost the same energy (also separated by
4 meV) and the same shape (see also Fig. 10.10 where the energies are shown in more
detail). As the triangular-like confinement potential is very strong, the 2DHG is located
within the first few nanometers. This justifies to use a small quantum region of 10 nm
(nonuniform grid, 151 quantum grid points) with Dirichlet boundary conditions. The
k‖ = (kx, ky) space has been discretized on 41 × 41 = 1681 k points with a maximum

value of kmax = 0.18 Å−1 along the kx and ky directions.
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Figure 10.7.: k‖-resolved hole density distribution p(kx, ky) for (110) oriented diamond.
Here, kx is related to [100] and ky to [011] direction. The confinement
direction is parallel to [011]. The right part shows the horizontal and
vertical slice through the center.

Figure 10.8.: k‖-resolved hole density distribution p(kx, ky) for (111) oriented diamond.
Here, kx is related to [112] and ky to [110] direction. The confinement
direction is parallel to [111].

Figure 10.9.: k‖-resolved hole density distribution p(kx, ky) for (100) oriented diamond
Here, kx is related to [100] and ky to [010] direction. The confinement
direction is parallel to [001].
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10.2. Results: Influence of substrate orientation on the density of a 2DHG in diamond

Figure 10.7, Fig. 10.8 and Fig. 10.9 show the k‖-resolved hole density distribution
p(kx, ky) for (110), (111) and (100) oriented diamond, respectively. In these plots one
can see the amount that each k‖ point contributes to the density. The k‖ = (kx, ky) space
refers to the rotated coordinate system and thus the kx and ky direction are different
for each orientation (see figure captions). In all cases the growth direction is meant to
be along the z direction. The k‖-resolved hole density distribution for (100) oriented
diamond has to be symmetric with respect to kx and ky (Fig. 10.9). The k‖-resolved
hole density distribution for (111) looks symmetric with respect to kx and ky (Fig. 10.8).
A detailed analysis of the energy dispersion (see Fig. 10.10) reveals that the dispersion
along kx is in fact very similar to the one along ky (red dotted lines), thus justifying to
expect an almost symmetric k‖-resolved density. This is not the case for (110) oriented
diamond (Fig. 10.7). In this case the k‖-resolved hole density distribution is elongated
along the kx direction indicating that it is more favorable to occupy states along kx
rather than along ky. To understand this preference it is necessary to analyze the energy
dispersion of the occupied states. Figure 10.10 reveals that the energy dispersion of the
ground state h1 (blue dash-dotted line) has less curvature along the kx direction rather
than the ky direction. Consequently, this favors the occupation of the states along the
kx direction for increasing energy.

Finally, we show the calculated energy dispersions of the highest hole eigenstates for
each substrate orientation in Fig. 10.10. The energy scale is the same as for Fig. 10.6
which shows the eigenstates at k‖ = (kx, ky) = 0. Only for (110) oriented diamond the
ground state h1 lies above the Fermi level EF. The hole energy dispersion for (100)
oriented diamond is symmetric with respect to kx and ky whereas for (111) diamond
a slight asymmetry is present. (110) diamond shows a very pronounced asymmetry as
already discussed. Also the energies at k‖ = 0 and their contributions to the density
have already been discussed when analyzing the square of the probability amplitudes
(Fig. 10.6). At k‖ = 0 each state is twofold spin degenerate. Thus we labeled the
uppermost ‘three’ states with h1, h2 and h3 although there are actually six states.
The spin-splitting at nonzero k‖ is due to structural inversion asymmetry (SIA). The
triangular confinement potential induces SIA in contrast to bulk diamond which has a
center of inversion, i.e. no bulk inversion asymmetry (BIA) and no SIA. Only the spin-
splitting of the states h1 and h2 for (100) diamond is noticeable in this figure, in all
other cases it can hardly be recognized.

Our calculations reveal a lot of information in terms of energies, energy dispersions,
spatial extension and character of wave functions for each k‖ vector, as well as informa-
tion on subband densities or even k‖-resolved densities for each substrate orientation.
This information is useful in understanding and optimizing device designs, although we
emphasize that reliable band structure parameters are needed as input. Our analysis
is extremely useful when transitions between these hole subbands are involved, e.g. in
optical absorption experiments, as different orientations show a significantly different
energy spectrum, e.g. due to selection rules. However, for experiments where mainly the
density is involved, e.g. in capacitance–voltage measurements, only the total density is
relevant. Thus the contribution of the individual subband densities to the total density
is somehow irrelevant, i.e. the precise spectrum of the energy levels is not as important
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Figure 10.10.: Dispersion of the highest hole energy levels for (100), (110) and (111)
oriented diamond. Only for (110) oriented diamond (blue dash-dotted
lines) the ground state lies above the Fermi level. The kx and ky directions
are with respect to the rotated coordinate system and thus are different for
each orientation. (100) oriented diamond (black solid lines) is symmetric
with respect to kx and ky whereas (111) diamond (red dashed lines) shows
a slight asymmetry. (110) diamond shows a very pronounced asymmetry.

as for optical absorption experiments. Depending on the orientation either one or several
subbands are occupied but this is not vital as here merely the total density is relevant.

Neglecting any additional surface effects like surface relaxation or surface reconstruc-
tion, our calculations demonstrate that a (110) sample has a higher 2DHG sheet density
than a (111) sample, and that the latter has a higher sheet density than a (100) sample
with respect to the same boundary condition (negative interface charge). This is equiv-
alent to saying that the change in 2DHG sheet density of a (110) sample is larger with
respect to potential changes at the surface than for a (111) or for a (100) sample, i.e. a
(110) sample is more sensitive than (111) and (100) samples, and consequently better
suited for sensor devices. The change of 2DHG sheet density due to potential changes
will be discussed in more detail in the next section where the surface potential is varied
by changing the potential in an electrolyte.

10.3. Results: Hydrophobic interaction and charge
accumulation at the diamond–electrolyte interface

Biosensor and bioelectronic devices are still a matter of intensive research and their
commercial success has remained a challenge. Interfaces with water play a major role in
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10.3. Results: Hydrophobic interaction at the diamond–electrolyte interface

these devices. Most biosensors are based on silicon where the silicon layer has a native
thin oxide layer between the silicon and the electrolyte. This is a similar arrangement
as in MOSFETs where the silicon layer is separated from the gate by an oxide which
acts as an insulator. Analogous to a plate capacitor, the potential-dependent charge
in the conductive channel of a field-effect transistor constitutes the capacitance of the
interface. Consequently, the influence of the oxide on the capacitance is well studied
in silicon. To increase silicon CMOS device performance the thickness of this oxide
layer has been reduced over the last decades, but also SiO2 has been replaced with
high-k dielectric materials like HfO2 with a large dielectric constant of εr = 26.1 (see
Fig. A.3). The dominance of silicon in biosensor applications is being challenged by new
materials like nitrides, graphene (see Chapter 9), carbon nanotubes or diamond due to
their better biocompatibility, chemical and electrochemical stability in electrolytes and
functionalization possibilities. The carbon based materials do not have a native oxide and
thus the two-dimensional carrier gas is very close to the electrolyte which acts as a gate.
One can thus assume that the sensitivity is higher than in silicon based devices. In most
biosensors the sensing signals are generated by potential changes across the interface
that modulate the concentration of the charge carriers, and thus the conductivity. We
will show in the following that the strong hydrophobic nature of the diamond interface
will reduce the sensitivity in comparison to hydrophilic interfaces. This is due to the
fact that the hydrophobicity of the surface leads to a depletion of water in the vicinity
of the surface. Therefore this hydrophobic ‘gap’ acts as a small insulating layer of very
low dielectric constant which influences the total capacitance, i.e. in this very narrow
region the dielectric constant drops from around εr = 78 to approximately εr = 1. An
additional effect that influences the capacitance is the position of the ion charges in the
electrolyte relative to the two-dimensional carrier gas. For hydrophobic interfaces the
ions are further away than for hydrophilic interfaces. These effects have been barely
discussed in the literature when explaining the operation of biosensor devices, but in
fact the hydrophobicity of a surface has a major effect on its interaction with water.
In the more commonly employed Si–SiO2 based biosensors such effects are negligible.
First, because their surface is hydrophilic, and secondly because the oxide acts as a
dielectric spacer between the charges in the solid and in the liquid. Thus any effects
of additional hydrophobic separation would be hardly noticeable. We note that organic
semiconductors also exhibit strong hydrophobicity. Due to the electrochemical stability
of the diamond surface, it is possible to bring it into an electrolyte solution and to apply
a potential between the electrically contacted diamond surface and a reference electrode
in the electrolyte. The potential across the diamond–electrolyte interface determines
the position of the band edges relative to the Fermi level at the diamond surface. If the
valence band edge is pushed close to or above the Fermi level, holes are accumulated and
form a two-dimensional hole gas at the diamond surface. Its charge carrier density is
determined by the position of the valence band edge relative to the Fermi level. Thus the
hole density at the diamond surface increases with applied voltage where the capacitance
of the interface determines the respective part of the voltage drop in the diamond and
in the electrolyte. In the following we will model this potential drop by calculating
the electrostatic potential distribution across the interface and its corresponding charge
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accumulation by solving the coupled system of the 6×6 k·p Schrödinger and the Poisson
equation self-consistently. The Schrödinger equation is solved only in the diamond but
the Poisson equation is solved in both the diamond region and in the electrolyte region.
The charge density consists of the density of all ions in the electrolyte and the hole density
in the diamond determined by the wave functions and the energy levels as obtained by
the Schrödinger equation. We use a Dirichlet boundary condition for the electrostatic
potential in the bulk electrolyte (φ(∞) = UG) and a Neumann boundary condition
(∂φ∂x = 0) in the bulk diamond at the left side. UG is the gate potential applied between
the reference electrode and the diamond contact. We will compare three different models,
the standard Poisson–Boltzmann (PB) approach and the extended Poisson–Boltzmann
approach assuming a hydrophobic or a hydrophilic interface. The latter two models
take into account a spatially varying dielectric constant εr(x) and the potential of mean
force (PMF) for the electrolyte ions (see Section 8.4), whereas the PB model assumes
a homogeneous dielectric constant of water (εr = 78) in the whole electrolyte region up
to the interface, and no PMFs. The electrolyte consists of 50 mM NaCl. As we do not
have available the PMFs for the 10 mM potassium based phosphate buffer ions (PBS,
see Subsection 8.3.5), we simply ignore the buffer ions in the following.

In the previous section we found differences among the three diamond substrate ori-
entations. Experiments on (110) diamond are difficult because (110) oriented diamond
samples are hardly available. While studying the electronic transport at the hydrogen-
terminated diamond–electrolyte interface, Lippert found experimentally that (111) dia-
mond is more sensitive than (100) diamond [Lip10]. This was qualitatively confirmed by
our diamond–electrolyte simulations (not shown) but the increase in sensitivity was not
as large as expected. Therefore we cannot fully explain the difference in experimental
results between (111) and (100) diamond. We thus believe that the increased sensitivity
of the (111) oriented diamond sensor cannot be explained only by the different hole
band structure along this direction. It seems reasonable that also the different atomic
arrangement at the surface has a significant effect, e.g. surface relaxation or surface
reconstruction, or that the (111) surface is slightly less hydrophobic than the (100) sur-
face. In the following we present our results on the calculations of diamond–electrolyte
interfaces where the diamond surface is oriented in the (100) plane.

In order to quantitatively understand the modulation of the 2DHG density by varying
the electrolyte potential, we have to analyze the charge distribution at the solid–liquid
interface in more detail. Figure 10.11 shows the calculated valence band edge energy
(black lines) of the hydrogen-terminated diamond–electrolyte interface for an applied
gate voltage UG = −0.2 V. By adjusting the gate potential applied between the reference
electrode in the electrolyte and a contact on the diamond, one can shift the valence
band edge with respect to the Fermi level. This modifies the confinement potential of
the resulting triangular well, and thus also the positive charge density (blue lines) of
the two-dimensional hole gas in the diamond, leading to a band bending at the surface.
The hole density is mirrored by the corresponding total ion charge density (net negative
charge) in the electrolyte indicated in red. The results of the Poisson–Boltzmann (PB)
calculation are shown in dotted lines whereas the results obtained with our new extended
Poisson–Boltzmann model that takes into account the hydrophobic interface are shown
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Figure 10.11.: Calculated valence band edge energy (black lines) of the hydrogen-
terminated diamond–electrolyte interface for an applied gate voltage
UG = −0.2 V. By adjusting the gate potential applied between the refer-
ence electrode in the electrolyte and a contact on the diamond, one can
shift the valence band edge with respect to the Fermi level (EF = 0 eV
in diamond). This modifies the confinement potential of the resulting
triangular well, and thus also the positive charge density (blue lines) of
the 2DHG in the diamond, leading to a band bending at the surface.
The hole density is mirrored by the corresponding total ion charge den-
sity (net negative charge) in the electrolyte (red lines). The results of
the Poisson–Boltzmann calculation are shown in dotted lines whereas the
results obtained with our new extended Poisson–Boltzmann model that
takes into account the hydrophobic interface are shown in solid lines. The
arrow indicates the region of low water density (hydrophobic region).

in solid lines. The arrow indicates the region of low water density (hydrophobic region)
which has a width of approximately 0.3 nm. The same situation is shown in Fig. 10.12.
In the left part the three highest eigenstates (square of the probability amplitude shifted
by its eigenenergy) at k‖ = 0 are shown for both the hydrophobic (red solid lines)
and the standard PB approach (blue dotted lines). In fact, at k‖ = 0 the states are
twofold degenerate due to spin, so essentially six states are shown. In the right part
the distribution of the Cl– and the Na+ ions is shown for both models. In the bulk
electrolyte both ions reach their equilibrium concentration of 50 mM. The potential of
mean force (PMF) for the Na+ ions causes the local maximum in the Na+ ion density
profile. For the PB model both the 2DHG and the Cl– ions are closer to the interface.
In this case also higher densities are present on both sides (compare with Fig. 10.11). In
the diamond part, this is achieved by moving the energy levels closer to the Fermi level.
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Figure 10.12.: Calculated valence band edge energy (black lines) for an applied gate
voltage UG = −0.2 V, i.e. same situation as in Fig. 10.11. The arrow
indicates the region of low water density (hydrophobic region). In the left
part the three highest eigenstates (square of the probability amplitude
shifted by its eigenenergy) at k‖ = 0 are shown for both the hydrophobic
(red solid lines) and the standard Poisson–Boltzmann (PB) approach (blue
dotted lines). In the right part the distribution of the Na+ and Cl– ions is
shown for both models (solid lines: extended PB model with hydrophobic
interface, dotted lines: PB calculation).

As already shown in Fig. 10.6 of the previous section, the second and the third eigenstate
have almost the same energy (also separated by 4 meV for both the hydrophobic and
the PB model) and the same shape for (100) oriented diamond. This is however difficult
to see in this figure. The 2DHG sheet charge density for the hydrophobic model is
σ = 3.8 · 1012 cm−2 and for the PB model σ = 10 · 1012 cm−2.

Figure 10.13 shows the calculated electrostatic potential and valence band edge energy
(black lines) for an applied gate voltage UG = −0.2 V, i.e. same situation as in previous
figures. Again, the results of the Poisson–Boltzmann (PB) calculation are shown in dot-
ted lines, whereas the results obtained with our new extended Poisson–Boltzmann model
that takes into account the hydrophobic interface are shown in solid lines. The applied
gate voltage UG in the electrolyte cannot be directly related to the electrostatic potential
in the diamond because part of the applied voltage drops in the electrolyte region close
to the interface. The electrostatic potential distribution reveals the potential drop across
the diamond–electrolyte interface. We found that there is a striking difference between
the two models. The arrow indicates the large potential drop in the electrolyte region for
the hydrophobic model (red solid lines). The potential drop in the electrolyte for the PB
model (blue dotted lines) is much smaller because here the ions are allowed to approach
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Figure 10.13.: Calculated electrostatic potential and valence band edge (black lines) of
the hydrogen-terminated diamond–electrolyte interface for an applied gate
voltage UG = −0.2 V, i.e. same situation as in previous figures. The
arrow indicates the large potential drop in the electrolyte region for the
hydrophobic model (red solid lines). The potential drop in the electrolyte
for the standard Poisson–Boltzmann model (blue dotted lines) is much
smaller. Consequently, the surface potential at the interface has almost
the same value as the applied potential (solid lines: extended PB model
with hydrophobic interface, dotted lines: PB calculation).

the interface infinitely close and additionally, the dielectric constant of water is very high
even close to the surface. Both effects minimize the potential drop in the electrolyte.
Consequently, the surface potential at the interface has almost the same value as the
applied potential. In the latter case, most of the potential drop occurs in the diamond,
whereas for the extended Poisson–Boltzmann model most of the potential drop happens
in the hydrophobic ‘gap’ region where the ion concentration and the water density is
very low. Recall that for the PB model the dielectric constant has a value of εr = 78 up
to the interface, whereas the extended PB model assumes a dielectric constant of εr = 1
in the hydrophobic ‘gap’ where no ions are present. Consequently, this potential drop
is very similar to the drop in the insulator region of a metal–insulator–semiconductor
structure (see Appendix A). As a result, the valence band edge for the hydrophobic
model is closer to the Fermi level resulting in a lower 2DHG density.

The experimental carrier concentrations [Lip10] for different gate potentials from in-
liquid Hall effect measurements and the simulated results obtained with our k ·p calcula-
tions are compared in Fig. 10.14. The experimental data sets (symbols) for several (100)
diamond samples are normalized with respect to their threshold voltage. Above the
threshold voltage all of them show a nearly linear increase of the carrier concentration
with the gate potential UG. The slope of the experimental data points is almost the same
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Figure 10.14.: Comparison of the experimentally obtained carrier concentrations for dif-
ferent gate potentials with our k · p calculations. The experimental data
sets (symbols) for several (100) diamond samples are normalized with re-
spect to their threshold voltage. The extended Poisson–Boltzmann model
for the hydrophobic interface (black solid line), the hydrophilic interface
(red dashed line) and the conventional Poisson–Boltzmann model (blue
dash-dotted line) are compared. Results of the extended PB model for
the hydrophobic case when a shift of the water density of ±0.05 nm is
considered are additionally shown (dash-dot-dot and dot).

for all samples. From the slope one can determine the interfacial capacitance to be about
2 µF/cm2, see Fig. 10.15. This value is in agreement with results obtained from cyclic
voltammetry and impedance spectroscopy [GNHS08]. The extended Poisson–Boltzmann
model for the hydrophobic interface (black solid line), the hydrophilic interface (red
dashed line) and the conventional Poisson–Boltzmann model (blue dash-dotted line) are
compared. The agreement between the hydrophobic extended PB model and the slope
of the experimental data is remarkable. We note that the hydrophobic model employed
in our work is based on molecular dynamics simulations, see Section 8.4. In order to
test the influence of the size of the water-depleted region, we have shifted the water den-
sity profile by a tiny amount of ±0.05 nm with respect to the surface. This is a typical
variation for different hydrophobic surfaces. These calculations (dash-dot-dot and dot)
show that our assumed water density profile works surprisingly well. We also found that
shifting the PMFs by this amount has only negligible influence (not shown).

Figure 10.15 shows the calculated capacitance–voltage characteristics of the extended
Poisson–Boltzmann model for the hydrophobic interface (black solid line). Results of
the extended Poisson–Boltzmann model for the hydrophobic case when a shift of the
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Figure 10.15.: Calculated capacitance–voltage characteristics of the extended Poisson–
Boltzmann model for the hydrophobic interface (black solid line). Results
of the extended Poisson–Boltzmann model for the hydrophobic case when
a shift of the water density of ±0.05 nm is considered are additionally
shown (dash-dot-dot and dot).

water density of ±0.05 nm is considered are additionally shown (dash-dot-dot and dot).
The capacitance values of around 2 µF/cm2 are of similar magnitude than for graphene
based biosensors (see Fig. 9.12). The conventional PB model clearly overestimates the
capacitance of (100) oriented hydrogen-terminated diamond biosensors because it does
not take into account the depletion of water and ions. The hydrophilic model, however,
takes into account PMFs for the ions and a spatially varying water density. It is inter-
esting to see that both the PB and the extended PB model for a hydrophilic interface
lead to similar capacitances (around 7 µF/cm2, not shown). In the latter case the PMFs
and the water density profile for a hydrophilic interface were used rather than the ones
for a hydrophobic interface. In the hydrophilic case, both the ions and the water can
approach the surface closer but still not as close and not with such a high density as with
the PB model. The shortcomings of the PB model are less pronounced for hydrophilic
surfaces such as the Si–SiO2–electrolyte interface, investigated in Chapter 7.

In conclusion we have demonstrated that the hole accumulation at the hydrogen-
terminated diamond–electrolyte interface can therefore be simulated to great accuracy
with the extended Poisson–Boltzmann model where the hydrophobic character of the
surface is explicitly taken into consideration. Hydrophobicity limits the approach of
electrolyte ions to the surface and therefore increases the potential drop in the elec-
trolyte. This reduces the effective potential at the semiconductor surface. Consequently,
the sensitivity of potentiometric biosensor devices which depend on the variation of the
number of charge carriers with potential change is profoundly affected by the modifica-
tion of the interfacial capacitance for any hydrophobic surface.
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A. Metal–insulator–semiconductor
structures

Based on the previous work of Ref. [Hac02], we are describing here in little more detail
the modeling of metal-insulator-semiconductor (MIS) contacts that are very important
for MOSFET simulations. They are also termed MOS (metal–oxide–semiconductor)
contacts. A very good review about MOS structures can be found in [Sze81]. In this
work we are treating a MIS contact as a Schottky contact by specifying an appropriate
Schottky barrier.

When a metal is in contact with a semiconductor, a potential barrier is formed at the
metal–semiconductor interface. In 1938, Walter Schottky suggested that this potential
barrier arises due to stable space charges in the semiconductor [Sch38]. At thermal
equilibrium, the Fermi levels of the metal and the semiconductor must coincide. There
are two limiting cases:

• Ideal Schottky barrier

In a metal–n-type semiconductor structure, the barrier height φB is the difference
of the metal work function φm and the electron affinity χs of the semiconductor

eφB = e (φm − χs) , (A.1)

where e is the positive elementary charge.
In a metal–p-type semiconductor structure, the barrier height φB,p is given by

−eφB,p = e (φm − χs)− Egap, (A.2)

where Egap is the band gap energy.

• Fermi level pinning

If surface states on the semiconductor surface are present, then the barrier height
φB is determined by the property of the semiconductor surface and is independent
of the metal work function φm. The conduction band edge is then pinned at eφB

above the Fermi level.

The Schottky barrier model of nextnano3 is implemented as a Fermi level pinning,
where we assume that the conduction band edge Ec is pinned with respect to the Fermi
level EF due to surface states (interface states). Thus the barrier height is independent
of the metal work function and is entirely determined by the surface states. Although it
is not possible to automatically take into account the work function of the metal, we will
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show in the following how the Schottky barrier height is related to the work functions of
the metal and the semiconductor, and to the electron affinities of the insulator and the
semiconductor. The barrier height can thus be adjusted manually to take into account
the dependence on electron affinities, doping concentrations or surface charge. For a
Schottky contact, only the barrier height φB and the applied voltage are needed as input
parameters.

Figure A.1 shows the calculated conduction band edge profile of a Schottky contact
at a metal–semiconductor interface at zero gate bias (VGS = 0 V). In this example,
the semiconductor is GaAs with an n-type doping concentration of 1018 cm−3 (fully
ionized) at T = 300 K and a Schottky barrier height of φB = 0.53 V (solid line). If the
semiconductor is doped, the conduction and valence band edges are shifted with respect
to the Fermi level, and thus depend on doping. This is a bulk property and independent
of surface effects, such as an ohmic contact or a Schottky barrier height (see right
boundary of Fig. A.1). At the left boundary, however, the band profile is affected by the
type of contact. For comparison, the dotted line shows the calculated conduction band
profile for a Schottky barrier of φB = 0 V. The dashed line shows the conduction band
edge profile for an ohmic contact where one assumes Neumann boundary conditions in
the Poisson equation (eq. (1.1)), i.e. the derivate of the electrostatic potential ∂φ

∂x =
−Fx = 0. The latter is the flat band condition, i.e. zero slope for the electrostatic
potential, which is equivalent to a vanishing electric field F. Note that a Schottky
barrier of φB = 0 V is not equivalent to an ohmic contact. A Schottky barrier is a
Dirichlet boundary condition for the electrostatic potential, thus fixing the value of the
conduction band edge at the surface with respect to the Fermi level. This is because the
semiconductor band edge energies at the metal–semiconductor interface are in a definite
energy relationship with the Fermi level of the metal

Ec − EF = eφB. (A.3)

In this particular example, an artificial Schottky barrier of φB = −0.042 V would be
equivalent to an ohmic contact, but only for the same temperature and the same doping
concentration.

Instead of specifying a Schottky barrier φB, one can alternatively specify an interface
charge density of the surface states at the metal–semiconductor interface. A fixed inter-
face sheet charge density of σ = −4.434 · 10−3 As/m2 (corresponding to a sheet charge
carrier concentration of −2.768 · 1012 cm−2) leads to exactly the same conduction band
edge profile (not shown) as for φB = 0.53 V in Fig. A.1. In this case, the interface charge
density corresponds to a Neumann boundary condition for the electrostatic potential
with a fixed, nonzero slope, i.e. a nonzero electric field at the boundary (∂φ∂x = −Fx 6= 0).
The electric field Fx is related to the sheet charge density

Fx =
σ

ε0εr
, (A.4)

where ε0 is the vacuum permittivity and εr is the static dielectric constant of the semi-
conductor. In this example (εr = 12.93 for GaAs), the electric field at the surface is
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Figure A.1.: Calculated conduction band profile of a Schottky contact at a metal–
semiconductor interface (n-type GaAs). The Schottky contact is completely
specified by the Schottky barrier height φB = 0.53 V (solid line). The con-
duction band edge Ec is pinned with respect to the Fermi level EF = 0 eV
(dash-dotted line) due to surface states. For comparison, the dotted line
shows the calculated conduction band profile for φB = 0 V. The dashed line
shows the conduction band profile for an ohmic contact where one assumes
a flat band boundary condition for the electrostatic potential.

387 kV/cm. Numerically, within the nextnano3 software the interface sheet charge den-
sity is converted into a volume charge density and enters the Poisson equation as a fixed
charge density (eq. (1.2)).

In the engineering literature for MOS structures two values are important. The work
function of the metal φm and the work function of the semiconductor φs. The work
function φm is the energy that is needed to move an electron at the Fermi level EF,m of
the metal to the vacuum level Evac

eφm = Evac − EF,m. (A.5)

For the semiconductor the work function reads analogously

eφs = Evac − EF,s, (A.6)

where the work function depends on the doping properties. Another quantity that has
to be defined is the electron affinity which describes the energy difference between the
vacuum level and the conduction band edge. The electron affinity of the insulator is
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Figure A.2.: Band diagram of a MIS structure which is not in thermal equilibrium. φm

is the work function of the metal, φs of the semiconductor, χi is the electron
affinity of the insulator, χs of the semiconductor, EF,m is the Fermi level
of the metal, EF,s of the semiconductor, Ec is the conduction band edge
of the semiconductor and ∆Ec is the conduction band discontinuity at the
interface between the insulator and the semiconductor.

labeled by χi, the one of the semiconductor by χs. These quantities are depicted in
Fig. A.2 for a MIS structure that is not in thermal equilibrium. Once the MIS structure
is in thermal equilibrium, space charges are created that lead to a built-in potential.
Thus the vacuum energy is shifted accordingly, resulting in a constant Fermi level of
the whole device. This is shown in Fig. A.3 where the Poisson equation has been solved
in the insulator–semiconductor region of a metal–SiO2–Si structure at T = 300 K. The
silicon layer is p-type doped with boron with a concentration of 3 · 1017 cm−3. For the
Schottky contact the barrier height φB reads

φB = φm − χi. (A.7)

Furthermore it holds for the conduction band discontinuity ∆Ec at the interface between
the insulator and the semiconductor

∆Ec + eχi = eχs. (A.8)

Thus it follows
eφB = eφm − eχs + ∆Ec, (A.9)

which can be written in terms of the difference of the work functions

eφB = e (φm − φs) + (Ec − EF,s) + ∆Ec. (A.10)
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Figure A.3.: Band diagram of a MOS structure in thermal equilibrium. Technically,
one can assume a Schottky barrier of height eφB = eφm − eχs + ∆Ec as
the boundary condition. Due to the built-in potential the vacuum energy
is bent (only shown for the case of the 3 nm SiO2 layer (solid line)). For
comparison, the conduction and valence band edges for a 1 nm SiO2 gate
dielectric (dash-dotted line), and for a 3 nm high-k gate dielectric (HfO2,
εr = 26.1, dotted line) are included.

In this equation both φs and Ec − EF,s depend on the doping of the semiconductor,
whereas in eq. (A.9) only doping independent material parameters are used. Thus it
is sufficient to know the work function φm of the metal, the electron affinity χs of the
semiconductor and the conduction band offset ∆Ec between the insulator and the semi-
conductor in order to determine the appropriate Schottky barrier boundary condition.

In Fig. A.3, a Schottky barrier height of φB = 3.2 V has been used. The conduction
and valence band edges for a 1 nm SiO2 gate dielectric (dash-dotted line), and for a 3 nm
high-k gate dielectric (HfO2, εr = 26.1, dotted line) are shown for comparison. Reducing
the oxide thickness or increasing the dielectric constant of the oxide has a similar effect on
the conduction band edge profile, and thus on the charge carrier density. For simplicity,
and in order to better demonstrate the influence of the large dielectric constant of HfO2,
all other parameters were taken to be the ones of SiO2. Nowadays, a lot of effort is put
into the optimization of metal–SiO2–Si or metal–HfO2–Si contacts in order to continue
the down-scaling of CMOS transistors.
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B. Temperature dependent material
parameters

I have implemented temperature dependent material parameters into the nextnano3

software only if reasonable interpolation formulas were available. This is currently the
case for lattice constants, band gaps and band gap dependent k · p parameters.

B.1. Temperature dependent lattice constants

The lattice constants that are given in the database are only relevant for the strain cal-
culations, although there are some exceptions to this rule for very specialized features
like the calculation of alloy scattering. They vary with temperature and correspond-
ing coefficients b (in units of nm/K) for the most important semiconductor materials
are available. The lattice constant in the database is given for 300 K. For all other
temperatures T (in units of K), the lattice constant a is calculated by

a = a300 K + b(T − 300 K). (B.1)

The parameters for the temperature dependent lattice constants in the database were
taken from Ref. [VMRM01]. For cubic crystals, the lattice constant is specified by a, in
wurtzite two lattice constants are required, namely a in the plane perpendicular to the
[0001] axis, and c parallel to the [0001] axis. Unfortunately, no expansion coefficients
for nitrides are given in Ref. [VMRM01] and Ref. [VM03]. For these materials more
complicated formulas are necessary. They take into account that, for instance, AlN has
a negative expansion coefficient below 100 K.

B.2. Temperature dependent band gaps

In a bulk semiconductor, both direct (Γ) and indirect band gaps (L, X) depend on
temperature. The variation between 0 K and 300 K is of the order 0.1 eV and must be
considered in realistic simulations. Most common is the empirical Varshni formula where
the functional form is fitted to

Eigap (T ) = Ei,0 K
gap −

αiT 2

T + βi
, (B.2)

where α and β are the Varshni parameters given in the database for each material
and for each band gap (i = Γ,L,X). In the literature several different combinations
of Varshni parameters exist for each material depending on which temperature range
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should be fitted most accurately. The Varshni parameters in the database were taken
from Ref. [VMRM01].

Experimentally, one only knows the temperature dependence of the band gap but
unfortunately not the corresponding individual shifts of the valence and conduction band
edge energies. Within the nextnano3 program, the valence and conduction band edges
are defined for all materials on a global scale [VdW89]. For simplicity, we assume that for
all materials the valence band edges are independent of temperature. Consequently, also
the valence band offsets are independent of temperature. It follows that the temperature
dependence of the band gap only affects the conduction band edge energies Eic(T ). This
implies that only the conduction band offsets are temperature dependent. However, this
is not entirely correct as in reality also the valence band offsets depend on temperature,
although not as much as the conduction band offsets. Optionally, one can manually
adjust the conduction and valence band offsets if more reliable experimental data is
available.

For a ternary alloy AxB1−x composed of two binary materials A and B, the Varshni
parameters are not interpolated linearly. Instead, the following procedure is applied.
First, the average valence band edge energy Ev,av (see Fig. 3.1) of the ternary is calcu-
lated according to eq. (B.3) taking into account a possible bowing of the valence band
offset. Then the temperature independent valence band edges of the ternary are calcu-
lated using the split-off energy ∆so of the ternary, where a possible bowing of ∆so has
been taken care of. Then for each binary, the temperature dependent band gaps at Γ, L
and X are calculated using the respective Varshni parameters. The next step is to calcu-
late the band gaps of the ternary from the binary band gaps including bowing. Finally,
the temperature dependent conduction band edge energies of the ternary are obtained by
adding the band gap energies of the ternary to the value of the topmost valence band
edge energy of the ternary.

The equation for interpolating a material parameter M is given by

MAxB1−x = xMA + (1− x)MB − x(1− x)C, (B.3)

where MAxB1−x is the resulting material parameter of the ternary alloy and x is the
alloy composition. C is the bowing parameter. It accounts for deviations of the linear
interpolation (virtual-crystal approximation) by introducing a quadratic term. Occa-
sionally, the last term is written with the opposite sign. Then the sign of C has to be
adjusted accordingly. The linear interpolation of the lattice constants is called Vegard’s
law. Interpolation formulas for quaternary materials are discussed in Ref. [Zib07] and
Ref. [VMRM01].
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B.3. Temperature dependent k · p parameters

The following 8 × 8 k · p parameters are temperature dependent because they depend
on the band gap Egap at the Γ point.

Zinc blende

• S (eq. (3.62))

• the modified DKK parameters L′, N+′, N ′ (eq. (3.101), eq. (3.103), eq. (3.105))

• the modified Luttinger parameters γ′1, γ′2, γ′3, κ′ (eq. (3.118), eq. (3.119), eq. (3.120),
eq. (3.121))

• the modified Foreman parameter σ′ (eq. (3.126))

• F ′ (eq. (3.122))

• If the k · p parameters are rescaled, also the Kane parameter EP (eq. (3.158) or
eq. (3.159), respectively) is affected, and consequently also the Kane momentum
matrix element P (eq. (3.79)).

Wurtzite

• S1, S2 (eq. (3.63), eq. (3.64))

• the modified DKK parameters L′1, L′2, N+′
1 , N+′

2 , N ′1, N ′2 (eq. (3.106), eq. (3.107),
eq. (3.108), eq. (3.109), eq. (3.110), eq. (3.111))

• the modified RSP parametersA′1, A′3, A′4, A′5, A′6 (eq. (3.112), eq. (3.114), eq. (3.115),
eq. (3.116), eq. (3.117))

• the modified Foreman parameters σ′, σ′z, σ
′
xz (eq. (3.42))

• If the k·p parameters are rescaled, also the Kane parameters EP1 and EP2 (eq. (3.63),
eq. (3.64)) are affected, and consequently also the Kane momentum matrix ele-
ments P1 and P2 (eq. (3.81), eq. (3.82)).
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C. Analytical equations for biaxial strain for
arbitrary substrate orientations

Here, we list analytical equations for the strain tensor of cubic crystals. They are
valid for heterostructures that are homogeneous along two directions, and for arbitrary
substrate orientations. First, we present the results of our derivation of the equations
for the simulation coordinate system [PGBD+11], then we list the results for the crystal
coordinate system.

C.1. Simulation coordinate system

The strain tensor components ε′ij in the simulation coordinate system basis a = (a, b, c)
for arbitrary substrate orientation indicated by the Miller index (hkl) are given by

ε′ =

 1 0 DM
1

0 1 DM
2

DM
1 DM

2 −DM
0

 ε′‖, (C.1)

where DM
0 = −ε′cc/ε′aa = −ε′⊥/ε′‖ is the biaxial Poisson ratio (notated DM by Van

de Walle [VdW89]). Here, the substrate is oriented parallel to the (a, b) plane, and
the growth direction is the c axis perpendicular to it. We define DM

1 = ε′ca/ε
′
aa and

DM
2 = ε′bc/ε

′
aa as the shear-to-biaxial strain ratios. Finally, the strain tensor components

read

ε′aa = ε′bb = ε′‖ =
asubstrate − alayer

alayer
(C.2)

ε′ab = ε′ba = 0 (C.3)

ε′ac = ε′ca =
λµ− ηω
λκ− η2

ε′‖ = DM
1 ε′‖ (C.4)

ε′bc = ε′cb =
ω − ηDM

1

λ
ε′‖ = DM

2 ε′‖ (C.5)

ε′cc = ε′⊥ =
α− 2C ′34D

M
2 − 2C ′35D

M
1

C ′33

ε′‖ = −DM
0 ε′‖, (C.6)
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where the denominators in eq. (C.4), eq. (C.5) and eq. (C.6) are always nonzero and

α = −
(
C ′13 + C ′23

)
(C.7)

β = −
(
C ′14 + C ′24

)
(C.8)

γ = −
(
C ′15 + C ′25

)
(C.9)

λ = 2C ′33C
′
44 (C.10)

κ = 2C ′33C
′
55 (C.11)

η = 2
(
C ′33C

′
45 − C ′34C

′
35

)
(C.12)

ω = C ′33β − C ′34α (C.13)

µ = C ′33γ − C ′35α. (C.14)

The coefficients α, β, and γ are first order, whereas the coefficients λ, κ, η, ω and
µ are second order in the elastic stiffness tensor components C ′ij . The 6 × 6 matrix
C ′ij contains the elastic constants in the Voigt notation with respect to the simulation
coordinate system basis a. It is obtained by rotating the forth-rank elastic stiffness
tensor Cijkl from the crystal coordinate system basis x = (x, y, z) to the simulation
coordinate system basis a

C ′mnop = RM
miR

M
njR

M
okR

M
pl Cijkl, (C.15)

where RM is the rotation matrix defined as

a = RMx. (C.16)

The rotated forth-rank tensor C ′mnop has to be mapped into the contracted C ′ij Voigt
notation that has more nonzero entries as compared to Cij . The strain tensor ε′ can be
rotated into the crystal coordinate system basis using

ε =
(
RM

)−1
ε′RM . (C.17)
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C.2. Crystal coordinate system

C.2. Crystal coordinate system

The strain tensor components εij in the crystal coordinate system x = (x, y, z) for
arbitrary substrate orientation (hkl) are obtained by symmetrizing the components ũij
of the distortion tensor (see eq. (1.8)). The distortion tensor ũ is identical to the strain
tensor for high symmetry orientations like (001), (110) and (111) but in general it is
nonsymmetric for low symmetry substrate orientations and given by [JaM, And09]

ũ =

 u0 0 0
0 u0 0
0 0 u0

+D

 n2
1D1 n1n2D1 n1n3D1

n2n1D2 n2
2D2 n2n3D2

n3n1D3 n3n2D3 n2
3D3

 , (C.18)

where n1, n2 and n3 are the components of the normalized vector ĉ along the growth
direction [hkl]

ĉ =

 n1

n2

n3

 =
1√

h2 + k2 + l2

 h
k
l

 . (C.19)

The lattice mismatch is defined as

u0 =
asubstrate − alayer

alayer
, (C.20)

and the other variables are given by

D =
−u0 (C11 + 2C12)

DxDyDz + (C12 + C44)
(
n2

1D1 + n2
2D2 + n2

3D3

) (C.21)

D1 = DyDz (C.22)

D2 = DzDx (C.23)

D3 = DxDy (C.24)

Dx = (C11 − C12 − C44)n2
1 + C44

(
n2

2 + n2
3

)
(C.25)

Dy = (C11 − C12 − C44)n2
2 + C44

(
n2

3 + n2
1

)
(C.26)

Dz = (C11 − C12 − C44)n2
3 + C44

(
n2

1 + n2
2

)
. (C.27)

To rotate the strain tensor ε into the simulation coordinate system basis, use

ε′ = RM ε
(
RM

)−1
. (C.28)
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