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Conventions
� The signature of the metric is (−+ ++).

� Einstein’s sum convention applies whenever a lower and upper index are equal.

� Latin indices run from 1 to 3, Greek indices run from 0 to 3. The 0-component is

the time component.

� Partial (co-variant) derivatives ∂B
∂α

(∇µB
µ) are often abbreviated by B,α (Bµ

;µ)

� vectors and tensors are written in bold font

Units
Throughout this work, we use natural units c = 1 and G = 1. This implies that

1 s = 2.9979 · 1010 cm ,

1 g = 7.4237 · 10−29 cm .

In consequence, the units of the density and pressure, commonly measured in g/cm3 and

dyn/cm2 = g/(cm · s2), are

1 km−2 = 1.3477 · 1018 g

cm3
,

1 km−2 = 1.2106 · 1030 g

cm s2
.

For better illustration we present some of the properties of the sun in these units:

M� = 1.4766 km ,

R� = 6.960 · 105 km ,

and some typical values for neutron stars

MNS = 2 km ,

RNS = 10 km .

We use the Heaviside-Lorentz magnetic field units, i.e. the stress-energy tensor T µν

is given by

T µν = F µαF ν
α −

1

4
gµνFαβF

αβ ,

where Fαβ is the electromagnetic tensor.



1 Introduction

There are only few if any objects in modern physics which have such fascinating prop-

erties like neutron stars. They have masses between 1 and 2 solar masses (see Lattimer

and Prakash, 2005; Demorest et al., 2010, for observations) compressed by their own

gravity to almost perfect spheres with radii of about 8 to 15 km. Theoretical mod-

els predict densities in the core of neutron stars which exceed the nuclear saturation

density ρ0 = 2.8 × 1014 g/cm3 by a factor of a few. These stars are so compact that

general relativistic effects are important to describe their properties. Some pulsars, i.e.

neutron stars emitting pulsed electromagnetic radiation, are rotating almost 1000 times

per second (millisecond pulsars), and the strongest magnets ever discovered are neutron

stars. While usual neutron stars have magnetic field strengths of the order 1012−1013 G,

a subclass is believed to have fields as strong as ∼ 1015 G. For comparison the natural

magnetic field of the earth is of the order 1 G, that of strong sun spots 4000 G, and the

strongest man-made fields during explosions are about 107 G. The highly magnetized

neutron stars are called magnetars.

All the interesting physics related to the ultra high densities and the ultra strong

magnetic fields makes neutron stars an ideal space laboratory to test the laws of physics

under conditions humans will never be able to achieve on earth.

The interior structure of neutron stars is widely unknown. The simplest models as-

sume pure baryonic matter with leptons, i.e. mainly neutrons with a small fraction of

protons and electrons. Other models require significant fractions of muons, pions and/or

kaons. Since the density in the core of neutron stars is supposed to exceed nuclear den-

sity by a factor of a few, it is not guaranteed that the matter inside neutron stars

can be described with exclusively hadronic matter. Quantum chromodynamics (QCD)

predicts the presence of phases containing deconfined quarks in a quark-gluon plasma.

Additional properties like superfluidity of the neutrons, superconductivity of protons or

color-superconductivity of quarks are heavily discussed. The aim of all different models

is to provide a relation between density and pressure, the equation of state (EoS). The

EoS defines the structure of neutron stars, i.e. it can be used to construct equilibrium

models of these stars. Comparing these theoretical models with observations, allows one

to constrain the EoS (Lattimer and Prakash, 2007; Özel and Psaltis, 2009; Steiner et al.,

2010). This task of constraining the EoS by observed properties is called an inverse

problem. With a better understanding of the EoS of neutron stars scientist could also

draw conclusions on the interaction of the fundamental particles.

The influence of the EoS on the structure of a neutron star is often illustrated in the

mass-radius diagram (see Fig. 1.1, Demorest et al. (2010)), where the allowed neutron

1



2 1. INTRODUCTION

Figure 1.1: Mass-radius relation for neutron stars with different EoS. Green lines rep-
resent models with strange quark matter, magenta lines models with exotic
hadronic matter like kaons or pions, and blue lines give models with “nor-
mal” hadronic matter. Horizontal bands give the range of observed masses
with error bars. Courtesy: Demorest et al. (2010)

star models are given. These models are obtained by providing a central density and in-

tegrating the Tolman-Oppenheimer-Volkoff equations (Tolman, 1939; Oppenheimer and

Volkoff, 1939). The TOV equations give the equilibrium structure of spherically sym-

metric objects in General Relativity, if an EoS is provided. The solution is completely

defined by the central density. Different EoS give different mass-radius relations. There-

fore, a simultaneous measurement of the mass and the radius of a neutron star could

distinguish between different EoS, and thus constrain the number of models significantly.

However, the determination of both properties is very difficult, and the error bars on

each measurement are large, such that up to day no strong constraints on the EoS could

be obtained. Some promising approaches to obtain the mass are the use of Kepler’s laws

(see Lattimer and Prakash, 2005, and references therein) or the Shapiro delay (Demorest

et al., 2010) for neutron stars in binaries. The second method (Shapiro delay) is based

on the relativistic time delay of an electromagnetic wave passing through a gravitational

potential. For neutron stars with accretion disks the association of observed kHz quasi-

periodic oscillations (QPOs) with the rotation period of the inner edge of the disk, and

hence with the innermost stable circular orbit (ISCO) gives a mass estimate, because

the ISCO is a function of the latter (see van der Klis, 2006, for a review on different
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mode name driven by frequency
p pressure pressure ∼ kHz
g gravity buoyancy ∼ 10 Hz
f fundamental pressure ∼ kHz

w gravitational wave
gravitational-radiation- ∼ kHz

reaction

s
spheroidal shear shear in crust ∼ kHz

superfluid superfluid interior ∼ 10 kHz
t toroidal shear shear in crust 10 . . . 1000 Hz
i interfacial ∼ 100 Hz
r rotational Coriolis force ∼rotation period
a Alfvén magnetic field ∼magnetic field

Table 1.1: Selection of oscillation modes, their restoring force and expected frequencies.
(McDermott et al., 1988; Stergioulas, 1998; Kokkotas and Schmidt, 1999)

models for kHz QPOs). Methods to obtain radii are based on estimates of the surface

of the photosphere of thermally emitting neutron stars or the surface of thermonuclear

explosions of accreted matter on the surface. In some objects the two properties may

be obtained simultaneously, e.g. during explosions with photospheric radius expansion

(van Paradijs and Lewin, 1987; Özel et al., 2009), which give estimates of the Eddington

flux and the emitting area. The Eddington flux is defined as the radiation flux, whose

outward pressure balances the inwards directed gravitational attraction. Alternatively

the observation of absorption lines, which may be red-shifted (∼M/R) and broadened

(∼M/R2) by thermal motion, could provide an estimate of mass and radius (Paerels,

1997). In Fig. 1.1 some constraints on the mass-radius relation of neutron stars are given.

The upper shaded regions are forbidden due to theoretical limits, as causality or the ap-

pearance of infinite pressure in the models. The lower shaded region is forbidden due to

the mass shedding limit for the fastest spinning pulsar observed. Horizontal bands give

present mass measurements with the corresponding error bars. The highest measured

mass of about 2 solar masses excludes a number of models for the EoS, i.e. models of

strange quark stars (SQM1, SQM3) and stars with exotic hadronic matter like pions or

kaons (GS1, GM3) are ruled out. For details see Demorest et al. (2010).

In this thesis we follow another idea of obtaining information about the structure of

neutron stars, and hence the EoS. In analogy to seismology on earth, scientists have been

very successful to obtain information about the structure of the sun from solar oscilla-

tions with helioseismology. It is thus natural that astronomers are working to extend the

methods towards asteroseismology, and to study oscillations of neutron stars in order to

extract information about their interior configuration. The idea thereby is to obtain the

EoS by comparing observed frequencies of neutron star oscillations with the correspond-

ing theoretical models based on a particular EoS. The oscillation spectrum of neutron

stars consists of different families of modes, which can be defined by their restoring force.
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Figure 1.2: Illustration of magnetar seismology with the mass-radius relation for neutron
stars with different EoS. Dashed regions give constraints from torsional shear
modes of the crust of neutron stars. These constraints have to be fulfilled
simultaneously, and hence EoS G300 and G240 are ruled out in this example.
Courtesy: Samuelsson and Andersson (2007).

The most important oscillation modes of neutron stars are given in Table 1.1.

An idea how neutron star seismology could work was presented in Samuelsson and

Andersson (2007). Different crustal shear modes depend differently on the radius and

the mass of the neutron star (see Section 3.2 for details). This can be used to constrain

different QPOs as is illustrated in Fig. 1.2. In this mass-radius diagram the constraints

originating from the different modes are indicated by the dashed regions. Since both

constraints have to be fulfilled, only EoS which produce models with masses and radii in

the overlap region are allowed. This is a toy example, because the presented constraints

are derived from very simplified models. Nevertheless the principles apply in general,

and a similar ansatz can be used to constrain the EoS with more realistic models of the

oscillations.

There has been tremendous progress in understanding and modeling the physics of

neutron stars. A large number of models, accounting for different microphysical parame-

ters (i.e. different EoS), have been calculated, and the models of neutron star oscillations

include ever more detailed physics, but still we are only at the beginning to disclose their

properties. Very recently observations begin to constrain the state of the matter in neu-

tron stars. Shternin et al. (2011) and Page et al. (2011) show that the observed decrease

of the surface temperature of the neutron star in the Cassiopeia A supernova remnant

can be explained with current models only if superfluid neutrons and superconducting

protons are present in the core of this neutron star.

A direct way of observing of neutron star oscillations is through the detection of grav-
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itational waves from these objects. The advantage of gravitational waves is that they

do not originate from the photosphere where the electromagnetic radiation is emitted.

Therefore, gravitational waves carry information about the interior of the star where

they are created. Perfectly spherical objects do not emit gravitational waves even when

oscillating radially, because they do not change the gravitational potential outside their

own radii. The lowest order waves in gravity are thus caused by quadrupolar defor-

mations. Therefore, the most promising wave sources from compact stars are rotating

neutron stars. Two possible scenarios are the presence of asymmetries like mountains,

which emit gravitational waves when rotating, or these stars may develop instabilities

like the CFS-instability (Chandrasekhar, 1970; Friedman and Schutz, 1978). Under cer-

tain circumstances this mechanism drives the fundamental oscillation mode unstable

with respect to emission of gravitational waves.

An alternative source of gravitational waves are explosions like the bursts caused by

magnetic reconnection in magnetars. During these very energetic events, oscillations of

the star may be excited, which couple to gravitational waves. However, not even the

next generation of gravitational wave detectors will provide sufficient sensitivity for a

detection of these waves. A merger of binary neutron stars or a neutron star - black

hole binary results in much stronger gravitational wave signals, but in this case the wave

carries less information about the interior structure of a neutron star. The first detection

of a gravitational wave is only expected within the next few years, and the detection of

a signal originating from a neutron star may take even more time. However, once the

window to the detection of gravitational waves is open it will boost our observational

data, and thus increase our understanding of neutron stars significantly.

For the time being we are limited to the information provided by electromagnetic

radiation. Fortunately, there exists already data which is interpreted as being related

to oscillations of neutron stars. During a giant outburst of a so-called soft gamma-ray

repeater (SGR) Israel et al. (2005) found a number of quasi-periodic oscillations. In this

thesis we discuss a possible origin of these oscillations, i.e. magneto-elastic oscillations

of a magnetar, and investigate how the QPOs may influence the gamma-ray signal.

1.1 SGR - observations

SGRs are believed to be one subclass of the magnetar family. They are characterized by

recurrent bursting activity in hard X-rays/soft γ-rays. The first identified burst of a SGR

dates back to 1979 (Mazets et al., 1979). Initially these events have been associated with

gamma-ray bursts. Therefore, they have been termed soft gamma-ray repeater, although

their emission occurs mainly in the hard X-ray band. It was only a couple of weeks after

the first detection of a bursting SGR when on March 5th, 1979 a giant explosion on SGR

0526-66 launched huge amounts of gamma rays that saturated all detectors on that time

X-ray space telescopes. This was one of only three giant flares of SGRs detected up

to date. A short list of confirmed SGRs and some of their properties are given in

Table 1.2. Remarkable features of all SGRs are their young ages (<few×104 years), and
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Name Period [s] B [1014 G] distance [kpc] bursts giant burst
SGR 1806-20 7.6 24 9 X X
SGR 0526-66 8.1 5.6 50 X X
SGR 1900+14 5.2 7.0 12-15 X X
SGR 1627-41 2.6 2.2 11 X

SGR 0501+4516 5.8 1.9 ? X
SGR 0418+5729 9.1 < 0.075 ? X
SGR 1833-0832 7.6 1.8 ? X

Table 1.2: List of confirmed SGRs and their periods, estimated surface magnetic fields
inferred from dipole radiation, distances, and bursting activity. (credit:
http://www.physics.mcgill.ca/~pulsar/magnetar/main.html)

very narrow rotation period P range of 2-10 s. Normal pulsars have a much wider range

of periods between ∼ 1 ms to ∼ 10 s. The reason is probably that magnetars spin down

very efficiently on a short time scale, and they become dim when the magnetic field

has decayed sufficiently, which is expected to occur on time scales of 104 years. One

can use the spin down Ṗ of the rotation period to estimate the magnetic field of a

star by assuming dipolar electromagnetic radiation: B[G] = 3.2 × 1019
(
PṖ
)1/2

. The

corresponding values of the SGRs are given in Table 1.2.

The second group of magnetars are anomalous X-ray pulsars. These AXPs have very

similar properties as the SGRs, but show less if any bursting activity. In the following

we concentrate on SGRs.

For recent reviews on the following observational aspects of magnetars see Mereghetti

(2008) or Rea and Esposito (2011).

Persistent emission

Magnetars emit on average an energy of about few×1035 erg/s. The main radiation from

SGRs is in the X-ray band. Generally the signal can be divided into two contributions,

one at energies < 10 keV and one > 20 keV. The soft part is usually fitted with a

black body of ∼ 0.5 keV plus a non-thermal contribution in form of a power law with a

quadratic dependence on the frequency (photon index ∼ 2). The hard X-ray spectra may

carry a significant amount of the total energy of the radiation, and is usually fitted with

power laws. The optical and infrared emission of all magnetars is very faint if detectable

at all (Mignani, 2011), and transient radio emission has been found only directly after

giant flares.

Bursts

The characteristic property of SGRs is the presence of recurring periods of active burst-

ing. Depending on the source a few up to hundreds of bursts with luminosities of up

to ∼ 1042 erg/s have been observed. The typical duration is of the order of 0.01 to 1
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burster SGR 0526-66 SGR 1900+14 SGR 1806-20
date March 5, 1979 August 27, 1998 December 27, 2004

duration (initial spike) [s] 0.25 0.35 0.5
peak luminosity [erg/s] 3.6× 1044 > 8.4× 1044 >several×1046

duration (tail) [s] 200 400 380
isotropic energy (tail) [ergs] 3.6× 1044 1.2× 1044 1.3× 1044

black body fit (tail) [keV] 30 20 15-30

observed QPO
frequencies[Hz]

43 28, 53, 84, 155

18, 26, 30, 92,
150, 625, 1840

(17, 21, 36, 59, 116)1

[84, 103, 648]2

Table 1.3: Properties of the three observed giant flares of SGRs: date, duration, peak
luminosity, temperature of possible black body fit, and QPO frequencies. The
main part of this table can be found in Mereghetti (2008). Recently detected
QPOs are provided by (1) Hambaryan et al. (2011) and (2) El-Mezeini and
Ibrahim (2010).

s, thereby obeying log-normal distribution1 peaking at 0.1 s. The waiting time between

successive bursts is also distributed log-normally. The spectra of the outburst can be

described by double humped curves which can be tentatively fitted with two black body

spectra in the range of 2-4 keV and 8-12 keV, respectively (see for example Feroci et al.,

2004). However, there is no conclusive physical interpretation for this particular choice

of the fit.

Some authors divide further into normal and intermediate bursts. The latter are

much brighter, but also much rarer than the former ones. These intermediate bursts

have properties in between the normal bursts and the giant flares. They last quite long

(. 40 s), show pulsations at the rotation period, but do not show any initial spike like

the giant flares have. With more and more data available, the bursts seem to span

a continuum of intensities such that a division into normal and intermediate bursts

appears to be artificial. However, a conclusive model to explain all bursting activity has

not emerged yet.

Giant flares

Giant flares are very rare events which are much more energetic explosions (> 1000×) on

the SGRs than normal bursts. Up to date only three of these events have been observed.

Their main properties are summarized in Table 1.3, where we also give the observed

QPOs which are discussed in more detail in Section 1.4. All giant flares show very similar

rise times of about∼ 0.3 s of the initial hard spike, which has a characteristic temperature

of hundreds of keV. The long lasting pulsating tails of the flares persist all for about

1A log-normal distribution is a probability distribution of a random variable whose logarithm is nor-
mally distributed.
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∼ 400 s. The luminosity of the neutron star during the initial spike (1044-1047 erg/s) is so

huge, that most instruments which detected the giant flares have been saturated when

the signal arrived. This makes it very difficult to obtain reliable information about the

peak flux, and the shape of the light curve at this phase of the flare. The spectra of the

decaying tails are generally softer, and show a complicated pulse profile. Despite the

large differences in the luminosity of the initial spikes (1044 . . . 1046 erg/s), all observed

tails have similar energies of ∼ 1044 ergs. The corresponding luminosity is much brighter

than the Eddington limit predicts. However, the latter limit assumes a balance between

the force of the outward radiation pressure and magnetic confinement. The ultra-strong

magnetic field suppresses the interaction between the radiation and the plasma, i.e. the

electron cross section of one polarization state is reduced below (∼ 10−4) the Thompson

cross section, such that more photons are able to escape without blowing the overlying

matter away.

1.2 Magnetars - theoretical model

The estimation of the magnetic field with the dipole-radiation model gives values of

the surface magnetic field strength of 1014-1015 G (see Table 1.2). Initially not many

scientists were convinced that such strong fields, exceeding that of normal pulsars by

orders of magnitude, exist. It was not clear how such strong fields, even stronger than

the quantum electrodynamics field strength BQED = 4.4× 1013 G, can be created2. The

idea of highly magnetized neutron stars became more widely accepted when Duncan and

Thompson (1992) explained the formation of magnetars as the consequence of helical

dynamo action during a short period after the gravitational collapse had occurred. In

the following we will describe in detail the ingredients of the magnetar model. Despite

the ultra-strong magnetic fields, the interior structure of magnetars is almost unchanged

when compared to ordinary neutron stars. Except for a very thin region close to the

surface, the pressure and density inside such compact objects are much larger than the

magnetic pressure. However, the region just outside the star will be affected significantly

by the magnetic field.

Structure of neutron stars

Like other neutron stars, magnetars can be characterized by a onion skin model, see

Fig. 1.3. The outer shells have densities below nuclear density ρ ≤ 2.8× 1014 g/cm3, and

consist of ordinary matter like neutrons, protons and electrons. Therefore, theoretical

methods developed for nuclear physics under terrestrial conditions can be applied to

these parts of the neutron stars. The deeper one looks into the neutron star, the larger

the uncertainties of the theoretical models become. For a recent review on the physics of

2BQED := mec
3/e~ = mec

2/2µB , where muB is the Bohr magneton. BQED is the magnetic field at
which the potential magnetic energy of an electron becomes of same order as its rest mass energy.
Above this magnetic field quantum electrodynamic effects as for example photon splitting become
important.
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Figure 1.3: Illustration of a neutron star’s interior structure. Courtesy: Page and Reddy
(2006)

neutron star crusts see Chamel and Haensel (2008). The outermost layer, the envelope

(thickness < 100 m), is formed by light nuclei reaching up to iron. In the outer part

of the crust (thickness ∼ 300 m) the nuclei are organized in form of a body-centered,

cubic Coulomb lattice (mainly iron 56Fe). At 106 g/cm3 electrons become degenerate and

contribute very efficiently to the electric and thermal conductivity. Starting at densities

above 107 g/cm3 the nuclei become more and more neutron rich by electron capture when

going deeper into the neutron star. With increasing density one reaches a threshold at

about 4× 1011 g/cm3, where it becomes energetically favorable for neutrons to drip out

of the nuclei, and to move around freely. This is called neutron drip and defines the

interface between outer and inner crust (thickness∼ 1 km). Under the conditions in the

inner crust, neutrons are expected to form a superfluid.

The transition between the lattice structure in the solid crust and homogeneous matter

in the liquid core occurs at around & 1014 g/cm3. This transition is not abrupt and can

be described by a continuous change of the lattice in terms of pasta phases. At low

densities the nucleons form a meatball like structure. With increasing density they get

compressed and form spaghetti like fibers, which in turn merge to lasagna like sheets. At

even higher densities the anti-structures of the pasta phases form, where the pasta-like

structures are formed by tubes or holes. The final pasta phase is the “anti-meatball” or
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“Swiss cheese” structure.

In the outer core (thickness∼ 3 km) the protons drip out and are expected to form

a superconductor. There are predominantly neutrons with smaller fractions of protons

and electrons present. The main pressure contribution comes from free neutrons (the

outer crust is dominated by electron degeneracy pressure). The composition of the inner

core (radius∼ 5 km) is heavily debated and very exotic particles might be able to form.

Different models are for example traditional neutron stars (neutrons, protons, electron,

muons), stars with pion condensates, nucleon stars with kaon condensates, hyperon stars

or quark-hybrid stars with an inner core formed by a quark-gluon plasma. Even strange

stars with color-superconducting strange quark matter and very thin crusts cannot be

ruled out completely.

Neutron star formation

Neutron stars are the end products of stellar evolution for stars with masses between 8

- 20 solar masses. After having consumed all its hydrogen the star burns subsequently

other fuels like helium, carbon, and oxygen. When all elements lighter than nickel-56 are

consumed, no material for exothermic fusion is available and the core of the star consists

of a mixture of iron group nuclei. If the iron core is heavier than the Chandrasekhar

mass limit (∼ 1.4 solar masses), it is not able to balance its self-gravity, and undergoes

a gravitational collapse during which the matter in the core is neutronized due to elec-

tron capture. The explosion powered by huge amounts (∼ 1053 ergs) of gravitational

binding energy ejects the surrounding matter. In the case of neutron star formation

the gravitational collapse is halted at around nuclear saturation density by the large

incompressibility of neutron-rich nuclear matter. The collapsed core is initially very hot

(∼ 1011 K). If the star is too massive the collapse proceeds towards a black hole. The hot

proto-neutron star cools very efficiently by emission of neutrinos within ∼ 20 seconds

after birth to temperatures less than 107 K.

Magnetic fields

Currently there exist two models which may explain the ultra strong magnetic fields

observed in magnetars. One possibility are fossil fields of the progenitor stars, which

become amplified during the collapse because of conservation of magnetic flux (Braith-

waite and Spruit, 2004; Ferrario and Wickramasinghe, 2006). This would imply that

magnetars are the final state of very massive stars which additionally have high total

magnetic fluxes. In the second scenario the proto-neutron star has to be a fast rota-

tor (∼ 1 ms) in order to allow a helical dynamo to operate (Duncan and Thompson,

1992). This selection effect would naturally provide a bimodal distribution. There are

proto-neutron stars which do not rotate sufficiently fast (normal pulsars) and the ones

which rotate with periods around ∼ 1 ms (magnetars). After the initial phase of fast

rotation, the strong magnetic fields in magnetars cause it to subsequently slow down

very efficiently by emission of electromagnetic radiation. The magnetic field freezes in
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Figure 1.4: Left panel: Numerically obtained magnetic field configuration inside a star
with toroidal and poloidal magnetic fields. Yellow lines represent strong mag-
netic field, black weak field. Right panel: Schematic illustration of a twisted
torus configuration. Courtesy: Braithwaite and Spruit (2004); Braithwaite
(2009)

the crust when the latter crystallizes during the cooling of the neutron star. The dynamo

model has further observational consequences. First, the supernova is expected to be

more energetic than ordinary core collapse events. Second, the resulting neutron star

may have received a strong kick during the explosion, because the strong magnetic field

is very likely to produce an anisotropic explosion and magnetic winds.

Interior magnetic fields

Due to the inaccessibility of the neutron star’s interior, its magnetic field is not well

known. However, purely toroidal and purely poloidal configurations are unstable with

respect to different instabilities (Markey and Tayler, 1973; Tayler, 1973; Wright, 1973;

Flowers and Ruderman, 1977). The most promising structure is thus a mixed field. For

an illustration see Fig. 1.4. This configuration has been studied in axisymmetry and with

different approaches by Braithwaite and Spruit (2004, 2006); Braithwaite and Nordlund

(2006); Braithwaite (2009); Ciolfi et al. (2009), and Lander and Jones (2009). All groups

find a poloidal field which looks qualitatively similar to a pure dipole field, and a toroidal

component which is concentrated in the region whose field lines close inside the neutron

star. However, the ratio of the poloidal to the toroidal field strength has very different

values in the different studies. Due to its geometrical form, the configuration found was

termed twisted torus.

Very recently three-dimensional magneto-hydrodynamical simulations confirmed a

twisted-torus like structure also for relativistic stars (Lasky et al., 2011; Ciolfi et al.,
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2011). This configuration is the end state of the numerical evolution, i.e. after reaching

a quasi-equilibrium. The numerical results are not very sensitive to the particular form

of the initial data. In contrast to the previous work, the obtained structure is no longer

axisymmetric.

There is no conclusive theory about the stability of magnetic field configurations in

three dimensions. Most of the previous models are obtained with numerical simulations

and the analytic work by Ciolfi et al. (2009) lacks a stability analysis of the obtained

configurations.

Magnetosphere

The region outside of a neutron star whose dynamics is dominated by a magnetic field is

called magnetosphere. In normal pulsars the magnetosphere is filled with plasma. The

corresponding electric currents are produced by the rotation of the star, and the density

of the charge carriers is called Goldreich-Julian charge density (Goldreich and Julian,

1969).

To explain the persistent emission of magnetars, Thompson et al. (2002) require cur-

rents in the magnetosphere. Since the rotation in magnetars is too slow, P ∼ 2 . . . 10 s,

to create sufficient plasma to explain the observations, the currents have to be created

by a non-vanishing ϕ-component of the magnetic field (see below). Such a configuration

is often referred to as a twisted dipole. This twist creates a very high voltage between

the foot-points of the magnetic field lines in magnetars. Therefore, electrons and even

light ions, which are thermally excited above the surface, can be lifted out of the grav-

itational potential and get accelerated along the magnetic field lines (Thompson et al.,

2000). These particles serve as seeds for avalanches of pair creation (Beloborodov and

Thompson, 2007), and the magnetosphere is filled with an electron-positron dominated

plasma. The charge density in such a magnetar magnetosphere can be orders of mag-

nitude larger than the Goldreich-Julian density. Due to the very strong magnetic fields

around magnetars the charge carriers will flow along the magnetic field lines and the

corresponding current can be assumed to be force-free, i.e. the Lorentz force vanishes

(J ×B = 0). This holds, because the pressure of the plasma is much smaller than the

one from the magnetic field, and the evolution is dominated by the latter. In this case,

i.e. if one neglects all pressure and density terms due to particles, the Maxwell equations

reduce to J ×B = 0. The described twist of the magnetic field is gradually dissipated

on time scales of years (Beloborodov and Thompson, 2007).

Until very recently the models of the force-free magnetospheric magnetic field were

based on a self-similar model for twisted dipoles (Thompson et al., 2002). The possible

applications of this model are very limited. It has one free parameter: the twist angle, i.e.

the azimuthal angle between the foot-points of the magnetic field lines, which defines

the strength of the toroidal magnetic field. The two most extreme configurations of

this model result in the magnetic dipole and the magnetic monopole. By changing the

twist angle, there is a unique transition between both extremes. However, it is neither

possible to describe any configuration which has only localized twist, nor can one specify
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the boundary values for the magnetic field and obtain the corresponding configuration

in the whole magnetosphere. A generalization of this self-similar model to deformed

quadrupolar and higher-order multipoles was given by Pavan et al. (2009).

In a work parallel to ours, Viganò et al. (2011) construct force-free magnetic fields

numerically by using the magneto-frictional method. In this approach one defines a

fictitious friction force proportional to the Lorentz force, which drives the magnetic field

configuration to a force-free equilibrium. This approach was applied very successfully

in the context of the physics of the solar corona (Yang et al., 1986; Roumeliotis et al.,

1994). The magnetic fields constructed can sustain very large twists, i.e. strong toroidal

magnetic field components, and the current in the magnetosphere may have a com-

plicated form. However, the magneto-frictional method used by Viganò et al. (2011)

suffers from the fact that only the radial magnetic field at the surface can be specified

as a boundary condition, and that the same radial field at the boundary does not give

a unique configuration. The latter depends on the initial guess of the magnetic field in

the whole domain.

1.3 Emission mechanism

Persistent emission

To power the persistent emission at ∼ 1036 erg/s observed in magnetars over a time

scale of 104 years requires a huge energy reservoir. This can be provided by the ultra-

strong magnetic field of those stars. For example, a magnetic field of the order of

1015 G may heat the neutron star by ambipolar diffusion sufficiently to produce the

corresponding luminosity (Thompson and Duncan, 1996). Additionally, the currents in

a twisted magnetosphere provide a source of heating, when the energetic charge carriers

hit the surface.

Current models to explain the different contributions to the emission of quiescent mag-

netars are based on resonant cyclotron scattering (RCS)3 of photons emitted from the

neutron star surface. The unscattered fraction of the photons gives the observed Planck

spectrum at a temperature of about 0.5 keV. The large currents present in a twisted

magnetosphere provide a large number of scattering targets for the resonant cyclotron

absorption of X-rays. The magnetosphere is has thus large optical depth. The reso-

nant cross section is orders of magnitudes larger than the Thomson cross section, which

applies in the case of elastic scattering of electromagnetic radiation by free charged par-

ticles. The energy absorbed by the electrons which carry the current is emitted almost

immediately due to synchrotron radiation (Lyutikov and Gavriil, 2006). Therefore, we

are allowed to treat the whole process of absorption and prompt re-emission as scatter-

ing. Lyutikov and Gavriil (2006) show in a 1-dimensional model that the emission is

changed due to the RCS in the following way. The transmitted flux is on average Comp-

3RCS occurs when an electron is excited into a higher Landau level by a photon of the appropriate
energy and the electron re-emits the gained energy by synchrotron radiation. The Landau levels are
the quantized energy values an electron in a cyclotron orbit in a magnetic field can occupy.
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ton up-scattered, and narrow spectral features produced near the surface, like cyclotron

lines, can be erased. This may explain the non-thermal component of the spectrum, and

the absence of cyclotron lines in the observations. In subsequent publications (Fernández

and Thompson, 2007; Nobili et al., 2008a,b; Rea et al., 2008; Zane et al., 2009; Fernández

and Davis, 2011) two different groups applied the RCS model to more realistic axisym-

metric neutron star magnetospheres with self-similar twisted dipole configurations of the

magnetic field. With their three-dimensional Monte-Carlo simulations they were able to

fit the observed spectra with the black body of 0.5 keV and the non-thermal power law

component remarkably well. In all these works only ad-hoc configurations of the mag-

netic field and the corresponding currents were assumed. Beloborodov (2009) started

to investigate more realistic current distributions. The RCS model may also provide an

explanation for the hard X-ray emission above 20 keV. The corresponding investigations

are closely linked to the development of a realistic model for the current distribution.

Normal bursts

The bursting activity probably has its origin in the interior of the neutron star. It

is assumed that the magnetic field diffuses through the neutron star (Goldreich and

Reisenegger, 1992), and hence strains the crust in which the magnetic field is anchored

(Perna and Pons, 2011). At some point the crust (or at least some parts of the crust) can

no longer support the stresses and breaks. The corresponding sudden displacement of the

foot-points of the magnetospheric field, may launch Alfvén waves into the magnetosphere

(Thompson and Duncan, 1995). These waves cascade to smaller scales caused by non-

linear damping, and finally create a photon-pair plasma around the excited magnetic

field lines. This plasma is trapped by the ultra-strong magnetic field, because the charged

particles are forced on trajectories which gyrate along the magnetic field lines and cannot

travel perpendicular to the lines (cyclotron motion). The trapped plasma is also called

trapped fireball, and evaporates due to the emission of soft γ- or hard X-ray radiation.

Giant flares

There exist two promising mechanisms to create a giant flare (Thompson and Duncan,

1995). The first is based on similar physical processes which act in the case of the

normal bursts. Alfvén waves are injected into the magnetosphere as consequence of

foot-point motions caused by cracking of the crust. However, the reason for the crustal

cracking in this case is probably a large scale instability of the magnetic field inside the

core of the neutron star. Since the field is anchored in the crust, the rearrangement of

the field in the core causes enormous stresses on the latter. These stresses are released

subsequently by repeatedly deforming the crust until it cracks. The amount of energy of

the corresponding Alfvén waves injected into the magnetosphere is therefore much larger

than in the case of normal bursts. Alternatively, the foot-points of the magnetospheric

field lines in the crust may evolve smoothly corresponding to the evolution of the internal

magnetic field. The twisted magnetosphere expands more and more with increasing
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twist. When reaching a certain threshold, the exterior magnetic field configuration

becomes energetically unfavored, and a reconnection event takes place. The energy of

the twisted field is released in form of a magnetic plasmoid.

The energy emitted during a giant flare is so large, that the magnetic field cannot trap

all of it. Therefore, the initial phase of a giant flare is expected to be characterized by

a very strong energetic outflow. This is likely to be observed as the initial hard spike in

the spectrum. The decaying tail of the giant flare can be interpreted as the remaining

fireball, which evaporates on a time scale of minutes by emission of X-rays.

Arguments in favor of the magnetar model

To summarize the theoretical interpretation of SGRs we give the arguments in favor of

the magnetar model (B > 1014 G), which explains most of the observational properties

of SGRs.

� At least one SGR (SGR 0526-66) can be associated with a supernova remnant

(SNR N49). Therefore, its age can be estimated to be about 3000 years. To spin

down a neutron star by dipole radiation on this time-scale to rotation periods of

∼few seconds requires huge magnetic fields.

� The persistent emission of SGRs is about 1035 erg/s. Rotation at periods of a few

seconds cannot power this emission during a time of ∼ 104 years.

� The energy reservoir which powers the giant flares, i.e. the magnetic field, has to

have sufficient energy.

� The dissipation of the magnetic field is proportional to its field strength. Very

strong magnetic fields are required to dissipate sufficient energy to power the bursts

and the persistent emission in the short time during which SGRs are active (104

years).

� The magnetic field has to be sufficiently strong to trap the large, hot fireball

appearing in the magnetosphere during the giant flares.

� The cross section of the X-rays with the particles in the fireball has to be reduced

by a sufficiently strong magnetic field to allow for fluxes exceeding the magnetic

Eddington limit by orders of magnitudes.

� The short rise time (∼ 0.2 s) of the giant bursts, which is caused by a large-scale

rearrangement of the magnetic field, has to be shorter than the Alfvén wave travel

time through the star (0.2 & ta ∼ B−1).

Recently, Rea and Esposito (2011) observed SGR like behavior in SGR 0418+5729,

which has a estimated dipolar magnetic field of 7.5 × 1012 G. However, to fit its X-ray

spectra Guver et al. (2011) require a strong magnetic field of the order of 1014 G. Higher

order multipoles may contribute significantly to the total magnetic field strength, while
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the dipolar component responsible for the field strength estimate is very weak. Moreover,

Perna and Pons (2011) and Turolla et al. (2011) discuss aged magnetars with low dipolar

magnetic field strength B . 1013 G as possible sources of SGR like bursts.

Alternative models

The ultra strong magnetic fields involved in the magnetar model encouraged a lot of work

to find alternative scenarios which could explain the observations. The most promising

and most consistent alternative considers accretion from a fossil disk. With such a

model Alpar (2001) explains the rapid spin-down of the AXPs/SGRs by a so called

propeller stage, during which infalling material is expelled in form of winds. When the

propeller efficiency decreases during the evolution the star-disk system may reach a point

at which the propeller turns off and normal accretion from the disk onto the neutron

star sets in. In this phase the quiescent emission of AXPs/SGRs may be powered by the

accretion (Chatterjee et al., 2000). Marsden et al. (2001) claimed that the formation

of disks around the observed AXPs and SGRs is favored compared to usual pulsars,

because AXPs and SGRs are born in regions of dense interstellar medium. This idea

was disproved by further observations and by a paper by Duncan (2002).

There are major problems of the disk model to explain all observations related to mag-

netar candidates. First, there is no unambiguous observation of an infrared excess in the

spectra, which should be caused by a disk. Second, to explain the bursting activity and

the giant flares of SGRs requires an additional mechanism. While in the magnetar model

the ultra strong magnetic field gives a natural explanation (see corresponding subsection

in Section 1.3), the disk does not give rise to bursts in simple models. Moreover, the

observed QPOs in the giant flare may be explained by oscillations of the neutron star, if

there is a coupling through the magnetic field. This coupling is less efficient for weaker

magnetic fields as in normal pulsars with a disk.

Another more tentative idea involves massive, fast rotating, and highly magnetized

(B . 2 × 1011 G) white dwarfs (WDs) (Malheiro et al., 2011) instead of magnetars. In

this case the rotational energy would be sufficient to explain the quiescent emission and

the bursting activity. However, there is the problem to explain the giant flares and their

properties which do not fit in this model at all. Moreover, the high energy emission

above 10 keV cannot be accommodated.

More exotic models are based on the possibility that pure quark matter is the most

stable configuration under the conditions expected in a compact star (Xu et al., 2006;

Xu, 2007; Horvath, 2007). The energy emitted during bursts or giant flares in this model

could be provided by the gravitational energy during star quakes. Solid quark stars are

highly speculative and no further observations have been obtained to support this idea.

1.4 QPOs in Giant flares

The discovery of quasi-periodic oscillations in the decaying tail of the giant flare of

SGR 1806-20 in 2004 (Israel et al., 2005) may have been the first detection of neutron
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Figure 1.5: Light curve of the giant flare of SGR 1806-20 in 2004. Arrows indicate the
presence of long-lasting QPOs. The period of the visible amplitude modula-
tion of the signal coincides with the rotation period. Courtesy: Strohmayer
and Watts (2006)

star oscillations. The authors have found signals in the Rossi X-ray Timing Explorer

(RXTE) data for this event at 18, 30, and 92.5 Hz which last at least 50 s. Later Watts

and Strohmayer (2006) (with Reuven Ramaty High Energy Solar Spectroscope Image

- RHESSI) and Strohmayer and Watts (2006) (reanalyzing the RXTE data) confirmed

these findings and discovered additional QPOs at 26, 150, 625, and 1840 Hz. In Fig. 1.5,

we show the light curve of the 2004 giant flare. The strong modulation with a period

of the order of a few seconds reflects the rotation period. The time span during which

different QPOs are observed is indicated with arrows. As less observational data were

collected during the giant flare of SGR 0526-66 only one QPO at 43 Hz was found by

Barat et al. (1983). The search for further evidence of QPOs in the giant flare of SGR

1806-20 led to the discovery of the frequencies at 28, 54, 84, and 155 Hz, respectively

(Strohmayer and Watts, 2005). Most of the QPOs last of the order of a few minutes and

can be associated to certain intervals in the rotational phase (see Watts and Strohmayer,

2007, for a review). A recent analysis of the RXTE observations by El-Mezeini and

Ibrahim (2010) has also revealed QPOs at 84, 103, and 648 Hz in the normal bursts of

SGR 1806-20. With a different method, Hambaryan et al. (2011) found new QPOs in

the data of the SGR 1806-20 giant burst at frequencies of 16.9, 21.4, 36.4, 59.0, and

116.3 Hz. These are truly fascinating discoveries as the methods employed will allow one

to increase the existing observational database and to extend the set of SGR candidates

showing QPOs to those magnetars not showing giant flares.
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The interpretation of the observed QPOs in terms of oscillations of the magnetar

itself seems very promising. If correct, it provides insight into the properties of these

objects and constrains the EoS above nuclear matter density. The first step towards

such magnetar asteroseismology would be the identification of the modes of the star

which have frequencies in the appropriate range, and which could be observable during

an outburst. Since the discovery of the QPOs in SGR 1900-16 in 1998 the main focus has

been directed towards torsional shear oscillations of the solid crust. Their frequencies lie

in the range between 10s of Hz for node-less modes and kHz for n = 1 modes, and hence

match the observed frequencies cited above (see Duncan, 1998; Strohmayer and Watts,

2005; Piro, 2005; Sotani et al., 2007; Samuelsson and Andersson, 2007; Steiner and Watts,

2009, and references therein). From energetic considerations it is very likely that these

oscillations are excited during a SGR outburst (Duncan, 1998). Moreover, torsional

shear oscillations couple preferably to the exterior magnetosphere (Blaes et al., 1989),

where the emission is supposed to occur in form of a trapped fireball (Thompson and

Duncan, 2001). Therefore, these oscillations may naturally influence the γ-ray signal

emitted during the flare. However, despite some recent improvements of the models

(Steiner and Watts, 2009), the sequence of the frequencies of successive shear modes

does not allow for a complete interpretation of all observed QPOs.

Since the publications by Levin (2006) and Glampedakis and Andersson (2006) an-

other possibility has been investigated. These authors show that the crust-core coupling

due to the extremely strong magnetic field present in magnetars may have significant

impact on the shear oscillations of the crust. It was shown in a simplified toy model

that the shear modes can be damped very efficiently into a MHD continuum of Alfvén

oscillations existing in the core of the neutron star. This idea stimulated further in-

terest into the direction of magneto-elastic oscillations by ever more sophisticated toy

models (Levin, 2007; Lee, 2007, 2008). In particular, Levin (2007) showed that due to

the coupling through the crust long-lived QPOs can be produced inside such a Alfvén

continuum.

Before studying magneto-elastic oscillations in realistic scenarios it is necessary to

understand purely Alfvén oscillations of neutron stars in General Relativity. Studies

using general-relativistic MHD models without taking an extended crust into account

revealed two families of long-lived QPOs in the continuum formed by Alfvén oscillations

of dipolar magnetic field configurations (Sotani et al., 2008b; Cerdá-Durán et al., 2009;

Colaiuda et al., 2009). Cerdá-Durán et al. (2009) derived a semi-analytic model based

on standing waves in the short-wavelength approximation, which agrees with the MHD

numerical results very well, i.e. the frequencies agree within a few per cent for the

fundamental and even more accurate for the overtones. The first family of QPOs is

related to open field lines close to the symmetry axis of the magnetic field, while the

second family can be found in a region of closed field lines near the equator. In this model

the members of the first family of QPOs have their maximum amplitudes at the surface

of the star and are therefore candidates to explain the observed QPOs (see Section 3.3 for

more details). The different overtones have frequency ratios given by integer numbers,
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making them very attractive to explain some of the observed frequencies: 30, 92, and

150 Hz in SGR 1806-20. If these Alfvén QPOs could coexist with crustal shear modes,

the frequencies of the magnetic QPOs may enrich the spectrum of the crustal modes,

and hence be associated to some of the unexplained QPOs observed in SGRs.

Recently a few groups have published results considering magneto-elastic oscillations

in improved neutron star models. van Hoven and Levin (2011) extended a non-relativistic

toy model and showed that the oscillatory spectrum can be influenced significantly by

the physical properties of the model. For example, the presence of an entangled magnetic

field allows for the existence of discrete Alfvén modes, or the decoupling of neutrons in

the core from Alfvén waves can change the frequencies of the continuum. In Gabler

et al. (2011) and Gabler et al. (2010) we presented the first results regarding coupled

magneto-elastic oscillations of magnetars in spherically symmetric models obtained with

tabulated EoS including an extended solid crust. There we calculated the damping time

scale of crustal shear modes when coupled to the Alfvén continuum of the core. This

time scale (∼ 0.01 s) turned out to be orders of magnitude shorter than the time during

which the QPOs were observed (∼ 100 s). We also discussed the influence of the crust

on the Alfvén oscillations and the existence of a threshold at which the magneto-elastic

QPOs reach the surface with significant amplitudes. In a different approach based on

the coupling of a number of linear one dimensional wave equations in the core and a two

dimensional wave equation in the crust, Colaiuda and Kokkotas (2011) found a new set

of global, discrete Alfvén oscillation. Both van Hoven and Levin (2011) and Colaiuda

and Kokkotas (2011) stress the possibility that the frequencies of crustal shear modes

may lie between the frequencies of successive continua of the core. In this case the shear

modes cannot be damped resonantly, i.e. they could be observed as QPOs. These QPOs

are called gap modes.

1.5 Coupled core-crust-magnetosphere oscillations of

neutron stars

The aim of this thesis is to study coupled core-crust-magnetosphere oscillations of highly

magnetized neutron stars in order to improve the understanding of QPOs observed in

the giant flares of SGRs. We extend the analysis of Cerdá-Durán et al. (2009), who

studied purely Alfvén oscillations of neutron stars endowed with a dipolar magnetic

field. In this thesis we consider the structure of a neutron star as illustrated in Fig. 1.6.

In absence of any consensus about the EoS of matter in neutron stars we assume a

neutral perfect fluid in the core and a perfect solid in the crust which are described by

some selected tabulated EoS. Both regions are penetrated by a magnetic field of the

order of 1014-1015 G, which extends further into the surrounding magnetosphere.

In Chapter 2 we present the theoretical formalism and the numerical tools required to

study magneto-elastic oscillations of the neutron star interior. This includes a short in-

troduction to General Relativity, which is the basic framework in which compact objects,

like neutron stars, are described. Before giving the final equations describing torsional,
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magneto-elastic oscillation of neutron stars, we further introduce the basic properties

of general-relativistic magneto-hydrodynamics and relativistic elasticity. Chapter 3 is

concerned with the analysis of results of the numerical solution of these equations. As

introduction we discuss the uncoupled systems of purely shear and Alfvén oscillations

separately. In subsequent sections we present the results of the coupled magneto-elastic

oscillations for dipolar fields (Section 3.4) and magnetic fields confined to the crust (Sec-

tion 3.5).

In our model the QPOs are related to oscillations of the neutron star interior. However,

it is commonly assumed that the emission occurs in the magnetosphere. Therefore, we

need to find a mechanism which modulates the emission outside of the neutron star. A

very promising approach, i.e. resonant cyclotron scattering (RCS) of X-ray photons by

the charge carriers of the currents induced by a twisted magnetospheric field, was applied

to the quiescent emission of magnetars. In Chapter 5 we follow this idea (Timokhin

et al., 2008) and present a Monte-Carlo code able to perform simulations of RCS. The

connection to our simulations of the neutron star interior is provided in Chapter 4. By

assuming that all processes in the magnetosphere occur on much shorter time scales

than in the interior (tmagnetosphere << tinterior), we construct a sequence of force-free

magnetic field configurations in the magnetosphere which are uniquely determined by

the magnetic field at the surface. In this way the QPOs computed in the interior give rise

to different magnetic field configurations in the magnetosphere, which in turn change

the currents. These currents determine the optical depth with respect to RCS, and

hence any modulation of the currents caused by the QPOs is expected to modulate the

emission from the fireball.

Heavy liquid core,
mostly neutrons, 
with other particles

Solid crust
~ 1 ... 2 km

Neutron StarNeutron Star
Mass ~ 1.5 times the Sun
diameter ~ 20 km

Magnetic field
~1014 ... 1015 G

Figure 1.6: Model neutron star with solid crust and fluid core, both penetrated by a
ultra-strong magnetic field which extends into the exterior magnetosphere.



2 General-relativistic

magneto-hydrodynamics in fluids

and solids

This chapter is devoted to derive the theoretical background for the study of our mag-

netar oscillation model to explain the observed quasi-periodic observations (QPOs) in

soft-gamma repeaters. Here, we are interested in a mechanism that could explain the

frequencies. When adopting the general consensus that the QPOs are created by or near

a strongly magnetized neutron star (Thompson and Duncan, 1995), the most promising

source of coherent oscillations over several oscillation periods is the neutron star itself.

Currently two competing ideas dominate the discussion in the literature: shear modes

of the crust (Duncan, 1998; Strohmayer and Watts, 2005; Piro, 2005; Sotani et al., 2007;

Samuelsson and Andersson, 2007; Steiner and Watts, 2009) or Alfvén oscillations of the

core (Sotani et al., 2008b; Cerdá-Durán et al., 2009; Colaiuda et al., 2009). To investi-

gate the more general scenario, including a description of both possibilities, one has to

cope with oscillations of magnetized neutron stars with an extended, elastic crust. This

has been treated approximately with toy models (Levin, 2006; Glampedakis et al., 2006;

Levin, 2007; Lee, 2007, 2008). Only very recently more sophisticated models appeared

(Gabler et al., 2010; van Hoven and Levin, 2011; Colaiuda and Kokkotas, 2011; Gabler

et al., 2011). For compact objects such as neutron stars self-gravity is dynamically im-

portant and any description should include General Relativity (GR). Therefore, we first

give the equations of General Relativity in the so called “3+1” split, which is appropri-

ate for numerical integration. Second, we show how to describe magneto-fluids in GR,

because we can treat the neutron star as such a fluid. In order to include the effects of

an elastic crust on top of the fluid neutron star, we make use of the theory of relativistic

elasticity. Finally, all ingredients are combined to present the elastic GRMHD equations.

In the last part of this chapter we present the numerical methods we used to evolve

the fluid, and we explain how we succeeded to set up the delicate crust-core interface.

2.1 General Relativity in the “3+1” - formalism

2.1.1 Einstein equations

The theory of General Relativity is a geometric description of gravity. The framework is

provided by the spacetime, which is understood as the unification of the familiar three-
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dimensional space with time. The spacetime is defined as a four-dimensional manifold

M equipped with a rank-2 tensor gµν called metric: (M, gµν). A manifold M is

an abstract mathematical structure, where every point has a neighborhood resembling

Euclidean space. The metric enters the line element:

ds2 = gµνdx
µdxν , (2.1)

which measures distances in M. Here dxµ are coordinate basis vectors, and Einstein’s

sum convention applies. gµν is the central object of GR. It defines a scalar product

between vectors, and hence introduces the notion of orthogonality and of measuring

lengths. The metric further serves to raise and lower indices of tensors on M.

In curved spacetimes, i.e. spacetimes containing matter, singularities, radiation or

other forms of energy, the concept of derivatives has to be generalized. The reason is

that if space is curved, basis vectors may differ from one point of the manifold to another

like in the case of curvilinear coordinates. Therefore, the usual directional derivative is

no longer invariant under transformations. By introducing connections, which describe

the change of the basis vectors between two points of the manifold, one can define the

co-variant derivative ∇:

∇αT
µ

λ = T µ
λ,α + Γµ

ραT
ρ
λ − Γρ

λαT
µ
ρ . (2.2)

Here Γµ
ρα is a particular connection called Christoffel symbol, and ∂α is the usual par-

tial derivative with respect to the coordinate xα. The connection Γµ
ρα has the unique

property of generating metric compatible derivatives, i.e. ∇αg
αβ = 0, and the ∇α

are torsion free. The latter expression means for any vector fields X and Y on M
that ∇XY − ∇YX =: [X,Y], where [X,Y] is the Lie bracket for vector fields, and

∇X := Xµ∇µ. The Christoffel symbols are defined by

Γγ
µν :=

1

2
gγρ (gρν,µ + gµρ,ν − gµν,ρ) . (2.3)

With the Christoffel symbols we can write down a tensor, which describes the geometry

of the spacetime, the Riemann tensor Rα
βγδ:

Rα
βγδ := Γα

δβ,γ − Γα
γβ,δ + Γα

γρΓ
ρ
δβ − Γα

δρΓ
ρ
γβ (2.4)

It represents the change of a vector field V while being parallel transported around a

closed loop, and can be expressed alternatively as

Rα
βγδV

β = ∇γ∇δV
α −∇δ∇γV

α . (2.5)

Parallel transport in this context means that any two vectors which are transported

parallel along a smooth path preserve the angle in between them.

The Riemann tensor contains the information of how the spacetime is curved. Two
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related expressions are the contractions

Rµν := Rα
µαν , (2.6)

R := Rα
α . (2.7)

Where Rµν is the Ricci tensor and R is the Ricci scalar. With these two and the stress-

energy tensor Tµν , which describes the energy and matter contained in the spacetime,

we are able to write down the Einstein field equations

Gµν := Rµν −
1

2
gµνR = 8πTµν , (2.8)

where Gµν is the Einstein tensor. Expression (2.8) hides all the complexity incorporated

in it behind the elegant tensor notation. Explicitly written Eqs. (2.8) consist of a set

of ten coupled, non-linear, partial differential equations containing contractions of the

Riemann tensor. In general, the latter is a complicated object itself and consists of

Christoffel symbols, the metric and its derivatives. Altogether thousands of terms are

easily reached. The contraction of the Einstein tensor with the co-variant derivative

leads to

∇νG
µν = 0 , (2.9)

This is a direct consequence of the Bianchi identities, which follow from the symmetry

of the Riemann tensor. Eqs. (2.9) imply directly local conservation of energy and

momentum

∇νG
µν = ∇νT

µν = 0 . (2.10)

In a curved spacetime a straight line is not a priori the shortest connection between

two points. A free falling particle or photon, does not follow a straight line in general.

This is an important difference between GR and Euclidean geometry. The equivalent

to a straight line in a curved manifold is called geodesic. A geodesic is a path, which

parallel transports its own tangent vector

tµ :=

(
dxµ

dλ

)
(2.11)

according to

D

dλ
tµ :=

dxµ

dλ
∇µ

(
dxµ

dλ

)
= 0 , (2.12)

where λ is the affine parameter describing the curve. With the definition of the co-variant

derivative, this can be transformed into the alternative formulation of the geodesic equa-
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tion

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0 . (2.13)

Some standard text books covering the topic of General Relativity are: Misner et al.

(1973), Wald (1984) and Carroll (2004).

2.1.2 The “3+1” split of General Relativity

The formulation of the theory of relativity in terms of Expression (2.8) is very elegant and

very appealing in terms of having a simple expression containing all information. How-

ever, for the numerical implementation and to solve any dynamical problem, Eqs. (2.8)

are not very useful, because of their intrinsic complexity. Following Lichnerowicz (1944)

and Choquet-Bruhat (1952) it is possible to express the Einstein equations in a form

more suitable and more intuitive for numerical integration. In their “3+1”-approach the

four-dimensional manifold is split into three space dimensions and one time dimension,

allowing to write the Einstein equations as a system of partial differential equations.

Later, York (1979) proposed a formalism which is widely used until today. Based on the

“3+1” split Arnowitt, Deser and Misner developed their famous ADM formalism de-

scribing the GR evolution equations in a canonical Hamiltonian formulation (Arnowitt

et al., 1962).

In the “3+1” framework the unified four-dimensional manifold M is decomposed into

a set of space-like hypersurfaces Σt. These three-dimensional submanifolds are said to

be embedded in M. Embedding in the current context is defined as a one-to-one map

from the three-dimensional manifold Σ̂ to its image Σ in M

Φ : Σ̂ → Σ , (2.14)

with Φ and Φ−1 being continuous. See Figure 2.1 for an illustration. This embedding

brings new notions of push-forwards, pull-backs and projections with it. Since Φ carries

points from Σ̂ to M, it trivially describes a curve Φ(C) in M based on C in Σ̂. We have

seen that a parametrized curve defines its own tangent vector (Eq. (2.11). Φ defines thus

a push-forward Φ∗ as a mapping of vectors from Σ̂ to vectors from M, i.e. Φ∗ : Tp(Σ̂) →
Tp(M), where Tp(Σ̂) (Tp(M)) is the tangent space of Σ̂ (M). Similarly one can define

the pull-back Φ∗ of linear forms on M to Σ̂ as the map Φ∗ : T ∗
p (M) → T ∗

p (Σ̂). Here T ∗
p

is the cotangent space of the corresponding manifold.

These maps introduce new objects on the hypersurface Σ. One very important appli-

cation of the pull-back operation defines the induced metric γ, which in some context is

also called the three-metric or spatial metric:

γ := Φ∗g . (2.15)

In terms of an appropriate coordinate system xµ = (t, xi), where the scalar field t defines
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M

Φ

ΣΣ̂

vC Φ(C) *
Φ v

Figure 2.1: Illustration of the embedding of a three-dimensional manifold Σ̂ into the
four-dimensional manifold M. The embedding Φ maps Σ̂ to its image Σ, a
hypersurface in M. Φ directly translates any curve C from Σ̂ to Σ, thereby
defining the push-forward of a tangent vector V on C to Φ∗V being a tangent
vector to Φ(C).

the hypersurfaces Σt as its level surfaces, the explicit coordinate form of γ is given by

γij = gij . (2.16)

Strictly speaking this slicing of M into different Σt is only possible for a continuous set

of hypersurfaces (Σt)t∈R that covers the whole manifold M. This implies that (M, gµν)

has to be a globally hyperbolic spacetime (see for example Gourgoulhon, 2007). The

metric dual to the gradient dt of the scalar field t is indicated by ∇t and is always

normal to the hypersurfaces Σt. If Σ is not null, i.e. ∇t 6= 0, the normalization of ∇t is

defined as

n :=
∇t√

±∇t · ∇t
(2.17)

Specifying to space-like hypersurfaces Σt, i.e. the three-metric has to be positive definite,

we define the lapse function

α :=
1√

−∇t · ∇t
. (2.18)

α is associated with the normal n by n := −α∇t. The product m := αn is called

the normal evolution vector and provides a way to evolve the hypersurface Σt along its

normal by a small displacement δtm to the hypersurface Σt+δt. See Figure 2.2 for an

illustration, where we show the “3+1” split in an adapted coordinate system xµ = (t, xi).

The spatial coordinates xi are supposed to vary smoothly from one hypersurface to the

next. The vector ∂t := ∂
∂t

, associated to the coordinate t, is called time vector. In general
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n

β

Σt

x1

x2

x1

x2

x′2

x′1

αn ∂t

Σt+δtO

O′

Figure 2.2: Illustration of the “3+1” split of General Relativity. The time vector ∂t =
αn+β gives the change of coordinates from one hypersurface Σt to the next
Σt+δT . n is the time-like surface normal, β is the shift vector and α the lapse.

∂t is different from the normal evolution vector m, because the coordinate system xi on

Σt may evolve from one hypersurface to the next (Figure 2.2). The coordinates change

between the hypersurfaces by the shift vector β according to

∂t =: m + β = α · n + β (2.19)

The metric gµν expressed in this coordinate system can be represented by the following

line element:

gµνdx
µdxν = −α2dt2 + γij(dx

i + βidt)(dxj + βjdt) (2.20)

Above we have introduced the operations of pull-back and push-forward, which are

maps from T ∗
p (M) → Tp(Σ) and Tp(Σ) → Tp(M), respectively. With the notion of the

normal vector n, we are able to provide the reverse mappings. We therefore define the

orthogonal projector ⊥ as a map from Tp(M) → Tp(Σ) which can be expressed in the

corresponding basis as

⊥α
β := δα

β + nαnβ . (2.21)
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⊥αβ acts in the same way as γij on vectors V on Σ:

⊥αβV
αV β = gαβV

αV β + nαV
αnβV

β = gαβV
αV β = gijV

iV j = γijV
iV j , (2.22)

where the second equality comes from the orthogonality of n and any vector V on Σ,

the third one from the definition of V in adapted coordinates V α = (0, V i), and the last

one from Eq. (2.16). Therefore, ⊥ can be regarded as the extended three-metric γ with

the first index raised by the metric.

With the projections and maps between the four-dimensional manifold M and the

three-dimensional submanifold Σ, we can express the Einstein equations (2.8) as a sys-

tem of second-order, non-linear, partial differential equations. The unknown variables

appearing in this formulation are (γij, α, βi, Kij). Where Kij is the extrinsic curvature

and describes how the three-manifold Σ is “bend” by the embedding inside M (see

Gourgoulhon, 2007).

The resulting set of equations splits into two classes: the evolution equations for the

extrinsic curvature Kij and the three-metric γij, and the constraint equations. The latter

can be obtained from the conservation conditions of the stress-energy tensor ∇νT
µν = 0

and its projections: the mass-energy density E := Tαβn
αnβ, and the momentum density

pα := −Tµν⊥ν
αn

µ (Gourgoulhon, 2007). These equations do not influence the evolution,

but they have to be satisfied on each hypersurface at any time. In this formulation the

Einstein equations are reduced to an initial value problem. Providing the three-metric

and its time derivative at the initial slice Σ0, γ can be evolved subject to the constraints.

For further information about numerical relativity, we refer the reader to the review of

York (1979), and the lecture notes of Gourgoulhon (2007).

To the end of this section we introduce two particular observers naturally arising in

the geometry of the “3+1” split: the Eulerian and the Lagrangian observer. The first

one is associated to the four-velocity n. We can express its components as

nµ =
1

α
(1,−β1,−β2,−β3) , (2.23)

nµ = (−α, 0, 0, 0) . (2.24)

The Lagrangian or co-moving observer can only be defined in spacetimes containing

matter. It follows the path of fluid elements with the four-velocity u. This velocity is

related to the three-velocity of the fluid v as measured by the Eulerian observer

vi :=
⊥i

µu
µ

−nαuα
=

ui

αut
+
βi

α
, (2.25)

where −nαu
α = W is the relative Lorentz factor between u and n. The last equality

can be easily verified when inserting the previous definitions of ⊥ and n.
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2.2 General-relativistic magneto-hydrodynamics

2.2.1 Conservation equations

To describe magnetized fluids in the context of General Relativity it is necessary to

provide the right-hand side of the Einstein equations (2.8), i.e. the stress-energy tensor

Tµν . In this work we follow the Valencian formulation of general-relativistic magneto-

hydrodynamics (GRMHD) mainly presented in Antón et al. (2006). A very compre-

hensive review on the topic of GRMHD containing references to different approaches is

given by Font (2008). More information on the mathematical structure of the equations

and some general applications of the formalism can be found in a textbook by Anile

(1989).

For simplicity the matter is assumed to be in the state of a perfect fluid and per-

fect conductor. Thereby we neglect physical properties/effects like shear stresses, elec-

tric resistivity, viscosity, superfluidity, superconductivity, heat conduction, and radiation

transfer for the moment. Later in Section 2.3 we treat the effect of shear stresses appear-

ing in the solid crust. The other non-adiabatic processes mentioned here are assumed

to have only a small influence on the dynamics of the neutron star interior under the

conditions which we are studying. A perfect fluid is completely described by its rest

frame mass density ρ and the isotropic pressure P . The corresponding stress-energy

tensor is given by

T µν
Fluid = ρhuµuν + Pgµν , (2.26)

where h := 1 + ε+ P/ρ is the specific enthalpy and ε the specific internal energy.

The contribution of the electromagnetic field to the stress-energy tensor is given by

(see Jackson, 1975, for details)

T µν
EM = F µλF ν

λ − 1

4
gµνF λδFλδ . (2.27)

Here we introduced the Faraday electromagnetic tensor F. This tensor completely de-

scribes the electromagnetic field, and defines the electric field E and the magnetic field

B, as they are measured by an arbitrary observer with four-velocity Ũ. With E, B and

Ũ we can express F as:

F µν = ŨµEν − Ũ νEµ − ηµνλδŨλBδ . (2.28)

Here ηµνλδ is defined as

ηµνλδ =
1√
−g

εµνλδ (2.29)

with g = det(gµν) and εµνλδ is the completely antisymmetric Levi-Civita symbol. Note

that the electromagnetic stress-energy tensor in Eq. (2.27) is given in the Heaviside-



2.2. General-relativistic magneto-hydrodynamics 29

Lorentz system of electromagnetic units with c = 1 (Jackson, 1975).

For a co-moving observer with Ũµ = uµ, the electric field vanishes as a consequence of

the ideal MHD condition. In this case F can be expressed in terms of the magnetic field

bµ alone: F µν = −ηµνλδuλbδ. The contribution of the magnetic field to the stress-energy

tensor becomes:

T µν
EM =

(
uµuν +

1

2
gµν

)
b2 − bµbν , (2.30)

where b2 = bµbµ. The complete stress-energy tensor of magneto-fluids is thus given by

T µν = T µν
Fluid + T µν

EM = ρh∗uµuν + P ∗gµν − bµbν , (2.31)

where we introduced the generalized enthalpy h∗ and pressure P ∗, containing the mag-

netic pressure Pmagn := 1
2
b2 and the specific magnetic energy εmagn := 1

2ρ
b2:

h∗ := h+
b2

ρ
= 1 + ε∗ +

P ∗

ρ
(2.32)

ε∗ := ε+ εmagn = ε+
1

2

b2

ρ
(2.33)

P ∗ := P + Pmagn = P +
1

2
b2 (2.34)

Knowing the stress-energy tensor we are able to integrate the Einstein equations in

order to obtain an evolution for the spacetime geometry. However, we have no infor-

mation about the behavior of the matter variables ρ, P , vi, ε, and bµ. To evolve these

unknowns we use the conservation of energy and momentum (Eq. (2.10))

∇νT
µν = 0 , (2.35)

and the baryon number conservation

∇νJ
ν = 0 , (2.36)

where J is the rest mass current Jν = ρuν . Following Antón et al. (2006) by writing

these equations in terms of an Eulerian observer, Eqs. (2.35) and (2.36) can be expressed

as a general-relativistic conservation law:

1√
−g

(
∂
√
γU

∂t
+
∂
√
−gFi

∂xi

)
= S . (2.37)

The conserved variables U, fluxes Fi, and sources S are given by

U =

 D

Sj

τ

 , (2.38)
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Fi =

 Dv̂i

Sj v̂
i + δi

j

(
P + 1

2
b2
)
− bjBi

W

τ v̂i + v̂i
(
P + 1

2
b2
)
− αb0Bi

W

 , (2.39)

S =

 0
1
2
T µν ∂gµν

∂xj

αT µν
(
δ0
ν

∂lnα
∂xµ − Γ0

νµ

)
 , (2.40)

where v̂i := vi − βi/α, and we have introduced the following projections of the different

tensors:

D := Jνn
ν = ρW , (2.41)

Sj := −T µ
j nµ = ρh∗W 2vi − αbib

0 , (2.42)

τ := T µνnµnν = ρh∗W 2 − P ∗ − α2(b0)2 −D . (2.43)

with D being the relativistic mass density, Sj the relativistic momentum density in the

j-th direction, and τ the relativistic energy density.

Eqs. (2.38) and (2.39) contain the four-vector of the magnetic field in the co-moving

frame bµ and the three-vector measured by an Eulerian observer Bi. Both are related

to each other by the following expressions

b0 =
WBivi

α
, (2.44)

bi =
Bi + αb0ui

W
. (2.45)

To close the system (2.38), (2.39), and (2.40) requires an equation of state (EoS) which

relates the thermodynamical quantities pressure P , energy density ρ, internal energy ε,

and temperature. The temperature of a cold, not extremely young neutron star of

T ≈ 106 K is much lower than the Fermi energy of the neutrons TF & 1011 K. Therefore,

we can safely neglect any dependence of the physical variables on the temperature.

This simplifies the relations between the different thermodynamical quantities and a

one parameter EoS is sufficient. Such a barotropic EoS can be expressed as follows:

P = P (ρ) , (2.46a)

ε = ε(ρ) . (2.46b)

This choice of an EoS simplifies the system of equations in the sense that the equation

for the relativistic energy density is redundant.

2.2.2 Maxwell equations

The EoS (2.46) and the system of equations (2.37) with Eqs. (2.38), (2.39) and (2.40)

provide evolution equations for the matter variables D and Sj. However, we also require
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the information about how to propagate the magnetic field. For this purpose we use the

relativistic Maxwell equations:

∇ν
∗F µν = 0 , (2.47a)

∇νF
µν = 4πJ µ , (2.47b)

where ∗F µν = 1
2
ηµνλδFλδ is the dual of the Faraday electromagnetic tensor and J µ is the

electric four-current. This four-current is related to the proper charge density ρq in the

co-moving frame by Ohm’s law

J µ = ρqu
µ + σF µνuν . (2.48)

Here σ is the electric conductivity. We model the fluid as perfect conductor and therefore

assume the conductivity to be infinite. This condition implies that, in order to keep the

current finite, the term F µνuν has to vanish exactly. This signifies that the co-moving

electric field is assumed to be zero eµ = F µνuν = 0. The electric field measured by an

Eulerian observer n is thus determined by the magnetic field B

Eµ =
1

W
ηµνλδuνnλBδ , (2.49)

E0 = 0 , (2.50)

Ei = −αη0ijkvjBk . (2.51)

With ∗F µν = (uµBν − uνBµ) /W the Maxwell equations (2.47) lead to

∂
√
γBi

∂xi
= 0 , (2.52)

1
√
γ

∂
√
γBi

∂t
=

1
√
γ

∂

∂xj

(√
γ
[
(αvi − βi)Bj − (αvj − βj)Bi

])
. (2.53)

2.2.3 Eigenvalues of the equations

The wave structure of the system of equations is best analyzed in terms of the corre-

sponding eigenvalues, which describe how different types of waves propagate according

to the equations. The analysis of the GRMHD system in terms of the co-variant vari-

ables (uµ, bµ, P , s), s being the specific entropy, was done by Anile (1989). In the

present description the eigenvalues along the coordinate directions are given by Antón

et al. (2006)

λe = αvi − βi , (2.54)

λa± =
bi ±

√
ρh+B2ui

b0 ±
√
ρh+B2u0

, (2.55)
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where λe and λa± are the eigenvalues for entropy, and Alfvén waves, respectively. The

third class of eigenvalues for the magneto-sonic waves cannot be expressed explicitly.

They are found by numerically solving a quartic equation (see Antón et al., 2006, for

details).

2.3 Relativistic elasticity

In this section we follow the work of Karlovini and Samuelsson (2003) who developed a

framework to describe elastic matter in General Relativity in a series of papers including

Karlovini et al. (2004); Karlovini and Samuelsson (2004). In the last paper of this series,

Karlovini and Samuelsson (2007) apply their framework to axial perturbations of the

crust of neutrons stars for the first time in full General Relativity. The work of Karlovini

and collaborators is based on the fundamental contribution to the field by Carter and

Quintana (1972), who for the first time developed a consistent theory of perfectly elastic

matter in a general relativistic framework. In Newtonian physics the term perfect or

hyper elasticity is reserved for materials, whose shape under equal conditions is always

the same, i.e. the deformation is independent of the history of the material. The

latter always preserves its shape when the same strain is applied.1 This implies that

any deformation of the material is thermodynamically reversible, or in other words

the entropy of the medium is conserved. Similar to the perfect fluid approximation this

excludes viscous media. However, in General Relativity the condition of perfect elasticity

has to be generalized to include the following requirements (Carter and Quintana, 1972):

First, no energy of the material is allowed to be transported relative to the local rest

frame of the medium, i.e. uµ has to be an eigenvector of the stress-energy tensor T µν .

Second, external fields are not allowed to do work on the medium. In other words, the

force density fµ caused by external fields has to obey the energy momentum conservation

∇νT
µν = fµ, and simultaneously has to satisfy the orthogonality condition fµuµ = 0.

An example for an external field fulfilling these conditions is the electromagnetic field

of an unpolarizable, perfect conductor given by the Faraday tensor F µν described in

the previous section. This property is essential to combine the two physical effects of

elasticity and magneto-hydrodynamics in order to study the magneto-elastic oscillations

of neutron stars.

Recently, a number of existence and uniqueness theorems concerning local solutions

to the equations of relativistic elasticity have been proved by Beig and Schmidt (2003).

Here we sketch the theory of previous work by Carter and Quintana (1972) and

Karlovini and Samuelsson (2003). To start with we introduce a three-dimensional man-

ifold X , which is referred to as the material space (see Figure 2.3). The points in X can

be thought of as being idealized particles of the medium. On this manifold X tensors

1For an introduction to the theory of elasticity in the Newtonian framework see Landau and Lifshitz
(1986).



2.3. Relativistic elasticity 33

∂t

M′
X

ψ

Figure 2.3: Illustration of the projection ψ from the material filled part of the four-
dimensional spacetime manifold M′ ⊂M onto the three-dimensional mate-
rial space X . Red lines indicate the world lines of virtual particles following
the flow vector uµ.

can be defined as usual. We further introduce a differentiable mapping ψ

ψ : M′ → X , (2.56)

which relates X to a material-filled, open four-dimensional submanifold M′ ⊂M of the

full spacetime manifold M. One may interpret M′ as that part of the spacetime M
through which the medium passes. The mapping ψ introduces the corresponding pull-

back ψ∗ and the push-forward ψ∗ as defined in Section 2.1.2. Note that ψ in the current

context maps points fromM′ to a lower-dimensional manifold X . Contra-variant tensors

tλ from M′, are pushed forward to tΛ = ψ∗t
λ on X and co-variant material space tensors

tΛ from X are pulled back to M′ as tλ = ψ∗tΛ. Here we introduced the short-hand

notation that upper case Greek indices {Θ,Γ,Λ} are used to refer to tensors on X and

lower case Greek indices {θ, γ, λ} to tensors on M′. The mapping ψ further gives the

preimage of any point p ∈ X = ψ(M′), and ψ−1(p) is assumed to be a single time-like

curve in M′. Therefore, it can be interpreted as the flowline of an idealized particle

represented by p (see the red lines in Figure 2.3).

The fundamental tensor of the theory of relativistic elasticity is the totally antisym-

metric particle density nΓΘΛ = n[ΓΘΛ]. Its integral over some volume in X is the particle

number inside this volume. The pull back on M′ nγθλ = ψ∗nΓΘΛ defines the flowline

tangential particle current

nα =
1

3!
ηαβγδnβγδ , (2.57)
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which is conserved (∇αn
α = 0), and we can set nα = nuα. This directly provides the

continuity equation. Here n is the usual particle density fulfilling nαβγ = nηαβγ. Note

that ηαβγ = ηαβγδu
δ is the spatial volume form2 of the material.

Our aim is to set up evolution equations for elastic solids. Therefore, the stress-energy

tensor T µν has to be determined. The latter can be derived from an action principle

(Karlovini and Samuelsson, 2003) and has the following general form

Tµν = −ρ′gµν + 2
∂ρ′

∂gµν
= ρ′uµuν + Pµν , (2.58)

where Pµν := 2 ∂ρ′

∂gµν − ρ′hµν is the pressure tensor, ρ′ := ρ(1 + ε) is the total rest frame

energy density, and hµν := uµuν + gµν is the projection onto the co-moving material.

We follow Karlovini and Samuelsson (2003) and search for an explicit expression of T µν

in terms of scalars s1, s2, ... , which can be formed from pull backs of the material

tensor fields tλ... by contractions with gγλ. One already known example of such a scalar

is the particle density n. To get T µν = T µν(n, s1, s2, ...) one thus has to find an explicit

expression for the total rest frame energy density ρ′ in terms of this/these scalar/s. This

relation is called an equation of state:

ρ′ = ρ′(n, s1, s2, . . . ) , (2.59a)

Pµν = Pµν(n, s1, s2, . . . ) . (2.59b)

In what follows it is convenient to express ρ′ in terms of n and the energy per particle ε:

ρ′ = nε. The kind of scalars required above can alternatively be obtained on the material

space by using the pushed forward tensor gΓΛ to contract with material tensors tΛ.... With

this definition the total energy density is a function of gΓΛ. At a given particle density

n we therefore can look for a minimum of ε under variations of gΓΛ. This ε̌ describes

the unsheared state of the material. If there exists an absolute minimum of ε, it can be

called the completely relaxed state. However, under the extreme conditions in the crust

of a neutron star whose crystal structure exists only due to the very strong pressure, the

existence of such a completely relaxed state is not expected. The unsheared state will be

used as a reference state, and we will denote the metric tensor at ε = ε̌ with the symbol

ǧΓΛ such that gΘΓǧΓΛ = δΘ
Λ. To measure the strength of the strain causing a certain

deformation on the material, one expands the deviation around a locally unsheared

state. We therefore define the constant volume shear tensor sµν

sµν =
1

2
(hµν − ǧµν) . (2.60)

Hereafter we call sµν in short the shear tensor. At this point we specify the equa-

tion of state. In addition to n only one further scalar of the shear tensor the shear

scalar s2 is considered. Furthermore we adopt the quasi-Hookean idealization and only

2The integral of the volume form in a given volume is the value of the volume itself
V =

∫
vol

ηαβγdxαdxβdxγ
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consider the lowest non-vanishing contributions to the equation of state. The prefix

quasi in quasi-Hookean refers to an expansion around a unsheared state, instead of

around a totally relaxed state. The definition of s2 is not unique and different authors

use different expressions. For perfect solids, i.e. for materials with isotropic symme-

try in the elastic properties of the unsheared state, Carter and Quintana (1972) define

s2 = ǧ−1µν ǧ−1λδsνλsδµ − 1
3
(ǧµνsµν)

2, while Karlovini and Samuelsson (2003) use the ex-

pression s2 = 1
36

[
(ǧµ

µ)3 − ǧµ
ν ǧ

ν
λǧ

λ
µ − 24

]
. In the following discussion the particular choice

for s2 is unimportant, and we do not specify it. In terms of n and s2 an equation of

state can be shown to have the following form (Carter and Quintana, 1972, see)

ρ′ = ρ̌′ + µSs
2 , (2.61a)

P µν =

[
P̌ +

(
n
∂µS

∂n
+

1

3
µS

)
s2

]
hµν − 2µS

[
ǧµ(λǧδ)ν − 1

3
ǧµν ǧλδ

]
sλδ , (2.61b)

where checked quantities refer to an unsheared state, and µS = µS(n) is the shear

modulus of the material. Eqs. (2.61) define the stress-energy tensor given in Eq. (2.58)

and one could solve the corresponding system of equations in principle. The total stress-

energy tensor of an elastic solid is:

T µν =T µν
Fluid + T µν

Elas

=(ρ̌′ + P̌ )uµuν + P̌ gµν+

µSs
2uµuν +

(
n
∂µS

∂n
+

1

3
µS

)
s2hµν − 2µS

[
ǧµ(λǧδ)ν − 1

3
ǧµν ǧλδ

]
sλδ (2.62)

However, in Eq. (2.60) the shear tensor is defined in an abstract manner, but to solve

the system of equations numerically we require to express sµν explicitly. Such a relation

is obtained with the Lie derivative L of sµν along the four-velocity uµ. Lus
µν can be

related to the rate of strain tensor σµν

σµν :=
1

2

(
uµ

;αh
αν + uν

;αh
αµ
)

+
1

3
hµνuα

;α , (2.63)

by (Carter and Quintana, 1972; Schumaker and Thorne, 1983):

σµν = Lus
µν . (2.64)

In Section 2.4.1 we show that if an appropriate coordinate system is selected, this equa-

tion gives rise to an expression for the strain tensor sµν in terms of the displacement ξi.

The latter is related to the four-velocity of the fluid by ξi
,t := αvi

2.3.1 Eigenvalues of the equations

For simplicity we only give the eigenvalues obtained for the limit of vanishing shear. For

the general expressions we refer to Karlovini and Samuelsson (2003). There the complete

analysis for the Euler equations ∇νT
µν = 0 of elastic media in General Relativity is
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presented, including also the non-zero shear case. The principal speeds of the evolution

for longitudinal and for transverse propagation are

v2
‖ =

dP̌

dρ̌′
+

4

3

µS

ρ̌′ + P̌
(2.65)

v2
⊥ =

µS

ρ̌′ + P̌
. (2.66)

It is satisfactory that these correspond perfectly to their Newtonian counterparts, where

we have to assume P̌ → 0, and in case of vanishing shear µS = 0 we recover purely

sound waves with v2
‖ = dP̌

dρ̌′
.

2.4 Elastic GRMHD equations for spherically symmetric

background/ unsheared state

The combined stress-energy tensor of a perfectly conducting and perfectly elastic ma-

terial with magnetic fields was presented in Carter and Samuelsson (2006a) and Carter

and Samuelsson (2006b). In contrast to the previous section we omit the check on the

unsheared variables ρ and P hereafter, because give all deviations from the unsheared

state in terms of sλσ. The stress-energy tensor takes the form

T µν =T µν
Fluid + T µν

Elas + T µν
EM

T µν = (ρ(1 + ε) + P )uµuν + Pgµν+

µSs
2uµuν +

(
n
∂µS

∂n
+

1

3
µS

)
s2hµν − 2µS

[
ǧµ(λǧδ)ν +

1

3
ǧµν ǧλδ

]
sλδ+(

uµuν +
1

2
gµν

)
b2 − bµbν

=ρh]uµuν + P ]gµν − bµbν − 2µS

[
ǧµ(λǧδ)ν − 1

3
ǧµν ǧλδ

]
sλδ (2.67)

Here we introduced the generalized enthalpy h] and pressure P ], containing the magnetic

pressure PEM := 1
2
b2, the non-linear elastic pressure Pelas :=

(
n∂µS

∂n
+ 1

3
µS

)
s2, the specific

magnetic energy εEM := 1
2ρ
b2, and the specific elastic energy εelas := µSs

2/ρ:

h] := h+
b2

ρ
= 1 + ε] +

P ]

ρ
(2.68)

ε] := ε+ εEM + εelas = ε+
1

2

b2

ρ
+
µSs

2

ρ
(2.69)

P ] := P + PEM + Pelas = P +
1

2
b2 +

(
n
∂µS

∂n
+

1

3
µS

)
s2 (2.70)

We are now able to write down the system of conservation equations describing magneto-

elastic oscillations in neutron stars. This includes the conservation of energy and mo-
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mentum ∇νT
µν , baryon number conservation ∇νρu

ν = 0, and the Maxwell equations

∇νF
µν = 4πJ µ for the magnetic field. The general metric is given by Eq. (2.20). In

compact form the equations for the evolution of the matter variables and the magnetic

field can be cast into a general-relativistic conservation law:

1√
−g

(
∂
√
γU

∂t
+
∂
√
−gFi

∂xi

)
= S . (2.71)

The conserved variables U, the fluxes Fi, and the sources S are given by

U = [D,Sj, τ, B
k] , (2.72)

Fi =


Dv̂i

Sj v̂
i + δi

jP
] − bjBi

W
− 2µS

[
ǧi(λǧ

δ)
j − 1

3
ǧi

j ǧ
λδ
]
sλδ

τ v̂i + v̂iP ] − αbtBi

W

v̂iBk − v̂kBi

 , (2.73)

S =

[
0,

1

2
T µν ∂gµν

∂xj
, αT µν

(
δt

ν

∂lnα

∂xµ
− Γt

νµ

)
, 0, 0, 0

]
, (2.74)

where

D = ρW , (2.75)

Si = ρh]W 2vi − αbib
t , (2.76)

τ = ρh]W 2 − P ] − α2(bt)2 −D . (2.77)

2.4.1 GRMHD equations for torsional oscillations of neutron stars

In this subsection we specify the rather general expressions of the previous section to the

case of torsional oscillations of neutron stars by applying a number of simplifications.

� When neglecting the magnetic field, the background neutron star is assumed to

be spherically symmetric. The natural choice of coordinates is thus the system of

spherical coordinates xµ = (t, r, θ, φ). The corresponding slices Σt can be trivially

mapped with the three-dimensional spheres characterized by (r, θ, φ). Spherical

symmetry excludes the effects of the deformation caused by the magnetic field.

However, these deviations are supposed to be negligible for realistic magnetic field

strength of B . 5× 1015 G (see Bocquet et al. (1995)).

� Additionally we neglect any effect due to rotation, i.e. βi = 0 and consequently

v̂i = vi. This simplification applies, in particular, in the case of magnetars which

have ultra-strong magnetic fields and very long, sub-Keplerian rotation periods.

Taking these considerations into account, the four-metric(2.20) takes the form

ds2 = −α2dt2 + Φ4
(
dr2 + r2dθ2 + r2 sin θ2dϕ2

)
. (2.78)
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This is the metric in isotropic coordinates. It trivially prescribes a slicing into

Σt = (r, θ, φ), where all Σ are constant in time, i.e. Σt+δt = Σt.

� The adopted slicing of the equilibrium configuration also describes the unper-

turbed, and hence unsheared state of the neutron star. The mapping on the

material space ψ (see the previous section (see Eq. (2.56)) can be expressed as

tΛ = ψ∗(t
λ) = ti such that the coordinates on X are (r, θ, ϕ) of the unperturbed

metric in M. ǧ is given by ǧµν = g
(0)
µν , where g

(0)
µν is the unperturbed metric at

t = 0 of the unsheared equilibrium model. T µν
Elas takes the following form

T µν
Elas =µSs

2uµuν +

(
n
∂µS

∂n
+

1

3
µS

)
s2hµν − 2µS

[
s(µν) − 1

3
ǧµνsλ

λ

]
(2.79)

Because sµν is a symmetric and trace-free tensor the last term further simplifies

to 2µS

[
s(µν) − 1

3
ǧµνsλ

λ

]
= 2µSs

µν .

� For simplicity we consider first-order contributions from the elastic part of the

stress-energy tensor only. This is justified in case of small oscillations. For larger

perturbations assumptions like adiabaticity, required for the quasi-Hookean ap-

proximation of the elastic properties to be applicable, break down. From the

physical point of view this could happen when the crust is close to breaking or

melting. In this work we are not interested in these processes and our goal is to

study magneto-elastic oscillations. Therefore, we assume the oscillations to have

sufficiently small amplitudes in order to apply the approximation of perfect elas-

ticity. After performing the computations, this assumption has to be tested for

validity. Finally, the elastic contribution to the stress-energy tensor is given by

T µν
Elas = −2µS

[
s(µν) − 1

3
ǧµνsλ

λ

]
= −2µSs

µν , (2.80)

where we have neglected terms of the order s2 and the last equality holds for any

symmetric and trace-less strain tensor sµν .

� As was mentioned in Section 2.2 the temperature of typical neutron stars is well

below the Fermi temperature of the neutrons. Therefore, we restrict the current

study to barotropic EoS. The equation for the generalized total energy density τ is

thus redundant and should be fulfilled automatically during the evolution at least

at the linear level.

� In this work we consider only purely poloidal and axisymmetric background mag-

netic field configurations. For these magnetic fields and spherically symmetric

matter backgrounds, torsional and spherical oscillations decouple at the linear

level. Assuming small amplitude oscillations it is thus allowed to evolve the ϕ

components of B and S separately from the r and θ components. In that case Br,

Bθ, Sr and Sθ are kept constant and the corresponding evolution equations need
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not to be solved. Therefore, when providing initial data with vanishing amplitude

in r and θ directions the corresponding perturbations of Br, Bθ, vr, and vθ vanish

by construction.

� The previous simplification directly implies that

∂
√
γD

∂t
+
∂Dv̂ϕ

∂xϕ
=
∂
√
γD

∂t
= 0 , (2.81)

where the first equality is due to axisymmetry. Therefore, D is constant during

the evolution and the continuity equation is not required to be solved explicitly. A

consequence of this result is that the eigenvalues of the system do no longer depend

on the speed of sound (see below in this section). Otherwise the time step would

be strongly restricted because the sound speed is much larger than the Alfvén

speed for reasonable magnetic field strength < 1016 G. In more general models the

problem of the time step size arises again. However, Bonazzola et al. (2007) sug-

gested that the removal of the pressure dependencies from the fluxes F i could solve

this issue. This is known as the anelastic approximation and could be a promising

approach when extending the current study to more realistic configurations, where

density and pressure perturbations are allowed, and more complicated magnetic

fields couple spherical and torsional oscillations.

� We are interested, in particular, in torsional oscillations of neutron stars. As these

couple only very weakly to matter perturbations and the gravitational field, this

allows us to neglect the evolution of the gravitational degrees of freedom. Hence,

we keep the spacetime fixed, i.e. we set δgµν = 0. This well known Cowling

approximation is widely applied in the context of neutron star oscillations.

� In the Cowling approximation and for spherically symmetric stars the unperturbed

metric is diagonal gµν = diag(gµµ). For the chosen slicing it is possible to derive

the shear tensor sµν for linear dependence on the displacements explicitly from

σµν = Lus
µν = utsµν

,t (Eq. (2.64)):

sij =
1

2α

[
gik
(
ξjα
)

,k
+ gjk

(
ξiα
)

,k

]
− gij

3α

(
ξkα
)

,k
. (2.82)

Here we have introduced the displacement ξj, which is related to the three-velocity

of the fluid by

ξj
,t := αvj =

δuj

ut
. (2.83)

The components stµ and sµt vanish. In the current context, for purely torsional
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oscillations Eq. (2.82) specifies to

sij =
1

2

 0 0 grrξϕ
,r

0 0 gθθξϕ
,θ

grrξϕ
,r gθθξϕ

,θ 0

 . (2.84)

� The explicit appearance of the displacement ξϕ and its derivatives in the shear

tensor requires one to include an evolution equation for ξϕ. One could evolve

Eq. (2.83) directly, but in the course of the computations it turned out to be

numerically advantageous to evolve ξϕ
,r and ξϕ

,θ instead of ξϕ. This has a number

of reasons:

(i) By using directly the derivatives ξϕ
,r and ξϕ

,θ, we avoid an explicit numerical

evaluation of the spatial derivatives of ξϕ in the fluxes F i. This may lead to

some numerical inaccuracy, in particular, in regions where the displacement

changes strongly.

(ii) A possibility to avoid this problem would be to move the terms including the

derivatives of ξϕ to the sources S, but then one would have to evaluate spatial

derivatives of the shear modulus. The latter is provided in tabular form only,

and thus the corresponding derivatives might produce spurious oscillations.

Additionally, the introduction of sources would destroy the conservation form

of the equations, and is thus numerically not desirable.

(iii) The most important argument, however, appears during the set-up of the

interface conditions at the crust-core interface. The conditions are given in

terms of ξϕ
,r and ξϕ

,θ (see below in Section 2.6.2). It turned out that it is

essential to accurately describe the values of ξϕ
,r at the interface.

The corresponding evolution equations for ξϕ
,r and ξϕ

,θ are derived from the defini-

tion of ξϕ
,t (Eq. (2.83))

(ξϕ
,r),t − (vϕα),r = 0 , (2.85a)

(ξϕ
,θ),t − (vϕα),θ = 0 . (2.85b)

To summarize all aspects we will state the system of equations we integrate numerically

in this work:

1√
−g

(
∂
√
γU

∂t
+
∂
√
−gF k

∂xk

)
= 0 , (2.86a)

(ξϕ
,k),t − (vϕα),k = 0 . (2.86b)



2.5. Boundary conditions at the surface 41

Here k = {r, θ} and

U = [Sϕ, B
ϕ] , (2.87)

F r =

[
−bϕB

r

W
− 2µSs

r
ϕ,−vϕBr

]
, (2.88)

F θ =

[
−bϕB

θ

W
− 2µSs

θ
ϕ,−vϕBθ

]
. (2.89)

The corresponding eigenvalues are derived in Appendix A:

λk
1/2 =

√
(Bk)2 + µS/gkk

A
, (2.90)

where A = ρhW 4(1+vϕv
ϕ)+BrBr +BθBθ. Without magnetic field we recover the shear

speed v⊥ of Eq. (2.65), because we are considering oscillations in ϕ-direction propagating

in the r − θ plane. For zero shear the eigenvalue corresponds to the Alfvén velocity for

transverse propagation.

2.5 Boundary conditions at the surface

The system of equations for magneto-elastic torsional oscillations contains two degrees

of freedom related to the two non-vanishing eigenvalues (2.90). Therefore, we have to

impose boundary conditions at the surface of the star that mimic the incoming waves

from the magnetosphere, which are not included in our simulations. In the core, where

µS = 0, there are still two degrees of freedom. Since we are simulating both regions

(crust and core) having the same number of degrees of freedom there is no need for

boundary conditions at the crust-core interface (although there is a need for a special

treatment for numerical reasons, see Section 2.6.2).

We assume that there are no current sheets at the surface of the star, i.e. the tangential

magnetic field components have to be continuous

bϕcrust = bϕatmosphere (2.91)

at the surface.

The conservation of momentum gives the continuity of the traction tϕ

tϕ = T (ñ, ϕ̃) = T (r̃, ϕ̃) = T rϕ , (2.92)

i.e. the tangential stresses inside and outside the star have to balance each other. Here

the tilde indicates normalized vectors, ñ is the normal to the surface of the star and thus

ñ = r̃.

The continuous traction condition can be simplified in the case of continuous bϕ and
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leads to a condition for ξϕ
,r:

T rϕ
crust = T rϕ

atmosphere (2.93)

brbϕcrust +
µS

Φ4
ξϕ

crust,r = brbϕatmosphere (2.94)

ξϕ
crust,r = 0 . (2.95)

Trivially, the same condition applies for the time derivative of the displacement(
ξϕ
crust,r

)
,t

=
(
ξϕ
crust,t

)
,r

= 0 . (2.96)

Eqs. (2.91), (2.95) and its time derivative are the set of boundary conditions that we

apply at the surface of the star. We need the additional condition (2.96), because we are

evolving more variables than the system has the degrees of freedom. In fact, Eq. (2.95)

is a direct consequence of Eq (2.91) and hence no separate condition. In principle we

could set a condition for continuous ξϕ
,θ at the surface, but this variable is not needed

for the fluxes at radial cell interfaces.

The assumptions made here are motivated by the picture that the magnetospheric

field close to the surface will move with its foot-points in the crust, i.e. the exterior

solution relaxes to a force-free field on a much shorter time scale than the interior evolves.

This implies that currents can be maintained in the magnetosphere, which is necessary

to support more general equilibrium configurations than considered here and hence to

create a twisted magnetospheric field. A more detailed discussion of the coupling to the

magnetosphere is postponed to Chapter 4.

Our boundary conditions are similar to those used in previous work without the pres-

ence of a crust (Sotani et al., 2008b; Cerdá-Durán et al., 2009; Colaiuda et al., 2009)

and in simulations with a crust (Gabler et al., 2011; Colaiuda and Kokkotas, 2011).

However, our boundary conditions differ from those of Lander et al. (2010) and Lander

and Jones (2011) who impose zero displacement and magnetic field perturbations at the

surface. This requires the introduction of a current sheet at the surface, which increases

the complexity of the problem. We see no physical reason to prescribe some ad hoc

configuration of currents at the surface. Other approaches (Braithwaite and Nordlund,

2006; Lasky et al., 2011; Ciolfi et al., 2011) involve the evolution of some parts of the

neutron star’s atmosphere. For purely toroidal oscillations it is possible, however, to

impose appropriate boundary conditions and to avoid that evolution.

2.6 Numerical implementation

The numerical code used to simulate the torsional oscillations of magnetars is an ex-

tension of the non-linear GRMHD code described in Cerdá-Durán et al. (2009). The

code has been developed in order to investigate various astrophysical scenarios where

both magnetic fields and strong gravitational fields play an important role in the evo-

lution of the system. (Dimmelmeier et al., 2002a,b, 2005; Cerdá-Durán et al., 2008).
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The code uses high-resolution shock-capturing schemes to solve the GRMHD equations

for a dynamical spacetime, under the approximation of the conformally flat condition

(CFC) for the Einstein’s equations (Isenberg, 2008; Wilson et al., 1996). For a spheri-

cally symmetric spacetime the CFC metric is an exact solution of Einstein’s equations,

and reduces to the solution in isotropic coordinates. Therefore, this numerical code is

well suited to describe the spacetime used in the simulations of the present work. The

equations are cast in a first-order, flux-conservative hyperbolic form, supplemented by

the flux constraint transport method to ensure the solenoidal condition of the magnetic

field.

The basic version of the code including the solution of the ideal GRMHD equations was

thoroughly tested in Cerdá-Durán et al. (2008), who demonstrate the robustness of the

code for a number of stringent tests, such as relativistic shocks, highly magnetized flu-

ids, equilibrium configurations of magnetized neutron stars, and the magneto-rotational

core collapse of a realistic progenitor. One important feature is the ability of the code

to handle different classes of EoS which range from simple analytical expressions to mi-

crophysically derived tables. We want to emphasize that although the current project

is concerned with small-amplitude perturbations in order to apply simplifications ap-

propriate to a linear regime, the code can in principle handle large amplitudes and in

general is nonlinear.

In this section we describe the main features of the code, i.e. we discuss how to

solve the magneto-hydrodynamical equations with appropriate high-resolution shock-

capturing (HRSC) methods. The generalization to materials with elastic properties is

shown and the numerical implementation of the additional evolution equations for the

derivatives of the displacement (Eq. (2.85)) is given. When calculating models of neutron

stars with solid crust numerically, the treatment of the crust-core interface is non-trivial

and requires further considerations (see Section 2.6.2).

In all simulations we use a grid of spherical polar coordinates {r, θ, φ} and assume

axial symmetry with respect to the rotation axis. The azimuthal grid is equidistant,

while the radial grid is equidistant only for simulations where the detailed structure of

the crust plays a minor role for the overall dynamics. For the study of (the damping

of) crustal modes, however, it is necessary to increase the resolution inside the crust.

In this case we use a radial grid with a grid spacing ∆r that decreases from the center

towards the crust-core interface, and that is equidistant inside the crust. We ensure that

the size of the grid zones in the core is comparable to that of simulations without crust

(Cerdá-Durán et al., 2009).

2.6.1 Riemann solver methods

The GRMHD equations are a system of non-linear equations which may produce dis-

continuities like shocks from initially smooth data. In this case standard finite difference

methods fail to reproduce the correct evolution. Fortunately, there exists a class of nu-

merical schemes tailored to solve this kind of hyperbolic equations, i.e. HRSC methods.

These methods are based on the finite volume approach where the variables given at
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the cell center represent cell-averaged quantities. To obtain the evolution of the system,

the numerical fluxes of the conservation law (2.37) are evaluated at the cell interfaces

between adjacent cells. Therefore, one interpolates the cell-centered quantities to re-

construct the values at the cell interfaces. The two state vectors obtained in this way,

one on each side, are in general different from each other and represent a discontinuity,

i.e. they define a Riemann problem. At each time step the solution is propagated by

solving the corresponding Riemann problems at the cell interfaces. There exist a number

of different approaches of how to reconstruct the state vector and how to calculate the

numerical fluxes. The functionality and application of HRSC methods have been de-

scribed extensively in the literature. See Toro (1999) and Leveque (2002) for the general

formulation and for applications.

The solution of the Riemann problem involves an inversion from the conserved vari-

ables (here U = {D, Si, τ, Bj}) to the primitive variables (ρ, vi, ε, Bj). This is trivial

in a Newtonian framework where an explicit dependence is given, but becomes cumber-

some in General Relativity, because the primitive variables cannot be obtained in closed

form from the conserved ones. To recover the primitive variables from the conserved

ones, we use an iterative Newton-Raphson method. For general application of HRSC

schemes in special-relativistic hydrodynamics we refer to Mart́ı and Müller (2003), and

to Font (2008) for the GRMHD case.

The specific methods used in the simulations are the piecewise-hyperbolic method

(PHM) reconstruction (Toro, 1999) and the flux approximation by Kurganov and Tad-

mor (2000). The Kurganov-Tadmor scheme is approximative in the sense that only the

information of the fastest traveling waves is used to solve the Riemann problem. The

required eigenvalues for the GRMHD case were obtained by Antón et al. (2006), and are

given in Eq. (2.90) for the application to torsional magneto-elastic oscillations.

When evolving the conserved quantities according to the conservation law of GRMHD,

the condition of ∇·B = 0 will not be necessarily fulfilled numerically. This may produce

non-physical data or in the worst case render the evolution unstable. Therefore, special

care has to be taken when evolving the magnetic field. Numerically the problem can be

avoided by using the constraint-transport (CT) scheme (Evans and Hawley, 1988). The

latter conserves the magnetic flux by construction and after a reformulation gives an

evolution scheme for the magnetic field, which fulfills the divergence constraint for B.

The conserved variables are propagated in time using the method of lines combined

with an explicit Runge-Kutta method of second-order accuracy in time.

As we included the elastic effects of the crust up to linear order in the displacements,

the statements of this section are not affected, and we can use the same numerical meth-

ods as described above. However, one has to include additional terms in the equations

(see Eqs. (2.88) and (2.89)). These terms involve the derivatives of the displacement

ξϕ
,r and ξϕ

,θ which are not present in the problem without crust. The evolution of these

two quantities is performed by evaluating Eqs. (2.85a) and (2.85b) in the following way.

We calculate the (non-relativistic) fluxes −αvϕ at cell interfaces with the corresponding

approximate Riemann solver. The derivatives of the fluxes are approximated by divid-
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ing the difference of the fluxes at the two opposite cell interfaces of a zone by the zone

spacing. This method provides a second-order approximation and is applicable also in

the presence of discontinuities. As for the conservation law (2.37) the time update is

performed by the method of lines combined with a Runge-Kutta algorithm.

2.6.2 Treatment of the crust-core interface

In the core, where µS = 0, there are two degrees of freedom. Since we are simulating the

crust and core, and both regions have the same number of degrees of freedom there is no

need for boundary conditions at the crust-core interface. Knowing the variables at one

instant of time on both sides of the crust-core interface one should be able to evolve the

system. However, the stability of the employed scheme turned out to depend sensitively

on the particular treatment of the reconstruction of the variables, which are allowed to

be discontinuous or to have discontinuous spatial derivatives (see below).

In the case of ideal-MHD without charges, the electric field is continuous everywhere,

and hence the velocity vϕ, too. This implies continuity of the displacement, ξϕ, and of

its time derivative, ξϕ
,t. Consequently, in spherical symmetry the tangential derivative,

ξϕ
,θ, is continuous at the surface of the star and at the core-crust interface, while no

restrictions apply to the continuity of ξϕ
,r.

Since the conservation of energy has to hold everywhere, the traction is continuous,

in particular, at the crust-core interface

T rϕ
core = T rϕ

crust , (2.97)

−brbϕcore = −brbϕcrust −
µS

Φ4
ξϕ

,r . (2.98)

This can be transformed by virtue of the linearized induction equation

bϕ = brξϕ
,r + bθξϕ

,θ , (2.99)

the continuity of the displacement, and thus ξϕ
core,θ = ξϕ

crust,θ, into

br(brξϕ
core,r + bθξϕ

core,θ) = br(brξϕ
crust,r + bθξϕ

crust,θ) +
µS

Φ4
ξϕ

crust,r (2.100)

ξϕ
core,r =

(
1 +

µS

Φ4(br)2

)
ξϕ

crust,r . (2.101)

Obviously the discontinuous radial derivative allows bϕ to be discontinuous, too (see

Eq. 2.99). Hence, in general, there are current sheets present at the crust-core interface,

which are unavoidable, and a consequence of the coupled evolution and the assumption

of ideal MHD.

We have shown that due to the discontinuity of the shear modulus µS we do not expect

all variables to be continuous at the crust-core interface. In principle, Riemann solvers

are able to cope with discontinuities at cell interfaces. Therefore, we define the crust-core

interface to be located at a cell interface. However, it turned out to be crucial to ensure
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that the reconstruction procedure gives a value for ξϕ
,r ∼ sr

ϕ which is consistent with

the continuous traction condition (Eq. 2.101). Any standard reconstruction method not

taking this condition explicitly into account failed, and the simulations produced spikes

in the radial profiles that spoilt the evolution, or in the worst case rendered the whole

evolution unstable. The main cause for this behavior is the discontinuity of the shear

modulus at the crust-core interface. For intermediate and weak magnetic fields, the very

large shear modulus on one side and the vanishing shear modulus on the other cause

the different terms in the momentum equation for the radial flux Eq. (2.88) to be much

larger on the side of the crust than on the side of the core, i.e.,∣∣∣∣bϕBr

W

∣∣∣∣
crust

,
∣∣µSs

r
ϕ

∣∣
crust

>>

∣∣∣∣bϕBr

W

∣∣∣∣
core

. (2.102)

The evaluation of the flux at the core-crust interface is numerically problematic due to

non-cancellations of the two terms on the side of the crust. However, when taking the

continuous traction condition appropriately into account, this problem does not arise and

the flux at the core-crust interface is well behaved, allowing one to perform simulations

also for intermediate and weak magnetic fields.

We are using the following numerical treatment based on the continuous traction

condition ξϕ
core(rcc) = ξϕ

crust(rcc) ≡ ξϕ(rcc) and ξϕ
core,r(rcc) = ηξϕ

crust,r(rcc) with η = 1 +

µS/ (Φ4(br)2). For an illustration see Figure 2.4. The derivatives at the crust-core

interface can be approximated by

ξϕ
core,r(rcc) =

ξϕ(rcc)− ξϕ
core(rcc − 0.5∆r)

0.5∆r
, (2.103)

ξϕ
crust,r(rcc) =

ξϕ
crust(rcc + 0.5∆r)− ξϕ(rcc)

0.5∆r
, (2.104)

where rcc is the radius of the crust-core interface and ∆r the grid spacing in radial

direction. The combination of both equations leads to the following expression for ξϕ:

ξϕ(rcc) =
ξϕ

core(rcc − 0.5∆r) + ηξϕ
crust(rcc + 0.5∆r)

1 + η
. (2.105)

Knowing ξϕ at the crust-core interface one can calculate the radial derivatives ξϕ
crust,r

and ξϕ
core,r, and finally the fluxes. Since relation (2.101) has to be fulfilled at all times,

a corresponding relation has to hold for the time derivative ξϕ
,t, too. This provides a

reconstruction for the velocity field vϕ. For the calculations presented in this work we

used a second-order approximation of the derivatives instead of Eqs. (2.103) and (2.104).

The accuracy of the reconstruction of the magnetic field can also be improved by using

the traction condition Eq. (2.98). For simplicity, we introduce the following abbreviation

Λ :=
µS

Φ4br
ξϕ

,r , (2.106)
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ξϕ(rcc −∆r/2)

ξϕ(rcc + ∆r/2)
ξϕ(rcc)

rcc

ξϕcrust,r

ξϕcore,r

core crust

r(k + 1) r(k + 2)r(k − 1) r(k)
(rcc −∆r/2) (rcc + ∆r/2)

Figure 2.4: Illustration of the reconstruction of ξϕ, and thus ξϕ
,r. A very careful treatment

of the interface is required in order to ensure the continuity of the traction
across this interface.

such that Eq. (2.98) becomes

bϕcore = bϕcrust + Λ . (2.107)

To reconstruct the magnetic field on each side of the crust-core interface we set up ghost

cells, whose magnetic field is given by

bϕcore(k + 2) = bϕcrust(k + 2) + Λ(k + 2) , (2.108a)

bϕcore(k + 1) = bϕcrust(k + 1) + Λ(k + 1) , (2.108b)

bϕcrust(k) = bϕcore(k)− Λ(k) , (2.108c)

bϕcrust(k − 1) = bϕcore(k − 1)− Λ(k − 1) . (2.108d)

Here the crust-core interface is set between the k-th and (k+1)-th zone in radial direction,

bϕcore (bϕcrust) is defined on a grid of i = {0 . . . k} (i = {k + 1 . . . imax}), and has two ghost

cells at i = {k+1, k+2} (i = {k, k−1}). This is illustrated in Fig. 2.5. The reconstruction

of bϕ on each side is performed with the corresponding ghost cells. This procedure gives a

more accurate reconstruction taking the magnitude of the discontinuity of the magnetic

field at the crust-core interface Λ(rcc) = bϕcore(rcc)− bϕcrust(rcc) into account.
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rcc

core crust

r(k + 1) r(k + 2)r(k − 1) r(k)

bϕ(k − 1) bϕ(k)

bϕ(k + 1)
bϕ(k + 1)

bϕ(k + 1) + Λ(k + 1) bϕ(k + 2) + Λ(k + 2)
bϕ(k − 1)− Λ(k − 1) bϕ(k)− Λ(k)

bϕcrust(rcc)

bϕcore(rcc)

Figure 2.5: Illustration of the reconstruction of bϕ. Λ(k) is a correction to the
magnetic field used for the reconstruction, corresponding to Λ(k) =
µS(rcc)ξ

ϕ
,r(k)/ (Φ(k)4br(k)). Crosses indicate positions of the evolved val-

ues of the magnetic field bϕ, while circles are the values in ghost cells used
for the reconstruction only.



3 Magneto-elastic oscillations of

magnetars

In this chapter we present the results of our two-dimensional simulations of magnetized

neutron stars with an extended, solid crust. We first state which equilibrium models

are used in Section 3.1. This includes the choice of the EoS and the numerical tool to

construct the initial data. Furthermore we describe how to calculate the shear modulus,

which is an essential ingredient for the calculation of the shear oscillations. As a test case

for our dynamical code we calculate the purely shear oscillations of the crust in Section

3.2. Additionally, the corresponding eigenvalue problem is computed in Appendix D.

Section 3.3 is concerned with the basic properties of purely Alfvén oscillations of neutron

stars. There, we extend the corresponding discussion of Cerdá-Durán et al. (2009) to

tabulated EoS. In Section 3.4 the coupled magneto-elastic oscillations are studied. The

discussion includes the absorption of crustal shear modes, the behavior of Alfvén QPOs

which are confined to the core for magnetic field strengths . 1015 G and the magneto-

elastic QPOs at even stronger fields. We further investigate at which magnetic field the

QPOs begin to be have significant amplitudes in the crust, and search for crustal modes

which might not be damped, because their frequencies do not match any frequency of

the Alfvén continuum of the core. In the last section of this chapter we discuss a different

magnetic field configuration, and its influence on the magneto-elastic oscillations.

3.1 Equilibrium models

The initial models are self-consistent general relativistic equilibrium models of magne-

tized non-rotating neutron stars with a purely poloidal magnetic field (Bocquet et al.,

1995). We use the numerical code “magstar” of the LORENE library1 to compute these

models, which include the effects of the magnetic field on the matter and the spacetime.

The magnetic field is generated by a current of the form J ϕ = ρhC, where C is a con-

stant which determines the strength of the magnetic field. Hereafter, we will label the

different models by the surface value of their magnetic field strength at the pole.

As we assume a spherically symmetric spacetime and matter background in our sim-

ulations we angle-average the density of the background model to obtain a spherically

symmetric model from the LORENE data. In the most extreme cases, i.e. for a very

strong magnetic field this simplification changes the structure of the neutron star by at

most about one per cent. For example the density at different angles but constant radius

1http://www.lorene.obspm.fr
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varies within less than one per cent at B = 5 × 1015 G. Therefore, the influence on the

oscillations is in general less than that of other approximations we are applying.

3.1.1 Equation of state and used models

For the EoS we can choose between different realistic barotropic models including the

description of a crust. We use four combinations of two EoS in the core matched to two

distinct EoS for the crust. For the core we chose the APR EoS (Akmal et al., 1998)

and the stiffer EoS L (Pandharipande and Smith, 1975), while for the low density region

of the crust we select EoS NV (Negele and Vautherin, 1973) and EoS DH (Douchin

and Haensel, 2001). The recent discovery of a 2 M� neutron star by Demorest et al.

(2010), excludes EoS which cannot reproduce such large masses. The properties of the

equilibrium models used in this work are summarized in Table 3.1. These models are a

subset of the models used in Sotani et al. (2007). We note that table 1 of Sotani et al.

(2007) shows ∆r/rcc, instead of ∆r/rs and thus the percentage for the relative size of

the crust is different in their case. However we, checked that the value of ∆r is the same

in both cases. The frequency of the crustal modes with n > 0 depend sensitively on the

size of the crust (Samuelsson and Andersson, 2007). Therefore, good accuracy in the

determination of the size of the crust is important to properly determine the former.

If not state otherwise we select one particular model to discuss the main results in the

remainder of this work. The model of reference uses the APR core EoS combined with

the DH crustal EoS. For the mass we chose 1.4 M�.

3.1.2 Shear modulus

The shear oscillations of the crust are mainly determined by the shear modulus µS which

we obtain from the zero-temperature limit of Strohmayer et al. (1991) given by

µS = 0.1194
ni(Ze)

2

a
, (3.1)

where ni is the ion density, (Ze) the ion charge and a = [3/(4πni)]
1/3 the average ion

spacing. This equation is derived for a perfect bcc lattice, and the shear modulus, which

has different magnitude along different crystal axes is averaged in order to obtain an

isotropic effective shear modulus µS (see Strohmayer et al., 1991). For the NV EoS of

the crust we use a simple fitting formula derived by Duncan (1998)

µS = 1.267× 1030erg cm−3ρ
4/5
14 , (3.2)

where ρ14 = ρ/(1014g cm−3).

To calculate the shear modulus for the DH EoS, one has to evaluate ni in Eq. (3.1)

in terms of the nucleon number A, the proton number Z, and the neutron fraction Xn

(Piro, 2005): ni = ρimi and Aρi ∼ ρ(1 − Xn). The composition at a given density is
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EoS mass circumferential inner radius relative size of
[M�] radius rs[km] of crust [km] crust ∆r

rs
[%]

APR+DH

1.4 12.10 11.22 7.2
1.6 12.07 11.38 5.7
1.8 12.00 11.43 4.8
2.0 11.90 11.44 3.9
2.2 11.63 11.31 2.8

APR+NV

1.4 11.94 10.85 9.1
1.6 11.93 11.07 7.2
1.8 11.92 11.19 6.1
2.0 11.81 11.23 4.9
2.2 11.56 11.12 3.8

L+DH

1.4 14.74 13.33 9.6
1.6 14.85 13.72 7.6
1.8 14.93 13.94 6.6
2.0 14.99 14.13 5.7
2.2 14.94 14.22 4.8

L+NV

1.4 13.29 11.88 10.6
1.6 13.58 12.35 9.1
1.8 13.86 12.76 7.8
2.0 14.02 13.08 6.7
2.2 14.12 13.30 5.8

Table 3.1: EoS, masses, radii of the star, radii of the crust-core interface, and sizes of
the crust of the models studied in this paper (without magnetic field).

given in Douchin and Haensel (2001). The shear modulus can be estimated to be

µS = 1.2× 1030erg cm−3ρ
4/3
14

(
Z

38

)2(
302

A

)
×
(

1−Xn

0.25

)4/3

. (3.3)

Sotani et al. (2007) introduced the following fit to this equation

µS = 1030erg cm−3(0.02123 + 0.37631ρ14 + 3.13044ρ2
14

− 4.718141ρ3
14 + 2.46792ρ4

14) . (3.4)

This function provides a good approximation for densities larger than ρ = 5×1011g cm−3,

but below we will rely on the more general expression in Eq. (3.3). The main motivation

to use this fit is to allow for a direct comparison of the results obtained in this work to

the results presented in Sotani et al. (2007) and Colaiuda and Kokkotas (2011).

The crust-core boundary for the NV and DH EoS is defined at ρcc,NV = 2.4 ×
1014g cm−3, and ρcc,DH = 1.28× 1014g cm−3, respectively.
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Figure 3.1: Shear speed of different stellar models. The color gives the EoS and the line
style the mass of the model (solid - 1.4M�, dashed - 1.8M�, dotted - 2.2M�).
The NV EoS gives thicker crusts and higher shear velocities compared to the
DH EoS. The range of speeds is similar in all models.

Equipped with the shear modulus we can calculate the corresponding shear speeds in

the crust with Eq. (2.90). In Fig. 3.1 we give the shear speed as a function of the radius

r for the different equilibrium models introduced in the previous subsection.Comparing

models obtained with the DH EoS for the crust with those of the NV EoS shows that

the latter EoS not only leads to thicker crusts, but also to higher shear speeds. The

shear speed for all models lies in the range between 0.3 to 1 % of the speed of light.

3.2 Crustal shear oscillations

The task of calculating the crustal shear oscillations can be cast into an eigenvalue

problem (Appendix D). The solution of the latter consists of an infinite number of

discrete eigenmodes which form a complete and orthogonal set. The different solutions

can be labeled by the number of nodes in radial direction inside the crust (n = 0, 1, 2, . . . )

and by the angular number l of the Legendre polynomials which are related to the

solution in θ-direction. We test our numerical implementation including the shear terms

against the expected results for the crustal shear modes by evolving neutron star models

without a magnetic field.

The purely shear oscillations for various realistic EoS in general relativity have been

calculated for the linearized problem by Messios et al. (2001) and Sotani et al. (2007).

To recover their results, we performed a series of simulations for a selection of models

with zero magnetic field strength. As initial velocity perturbation we use a simple radial
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Model n=0 mode frequency in Hz (±1Hz)
l = 2 l = 3 l = 4 l = 5 l = 6

APR+DH 1.4 25.4 (24.6) [25.1] 40.0 (38.9) 53.6 (52.2) 67.3 (65.1) 80.0 (77.8)
APR+DH 1.6 24.3 (23.4) [24.0] 38.5 (37.0) 51.2 (49.6) 64.3 (61.9) 76.5 (73.9)
APR+DH 2.0 21.9 (21.3) [21.7] 34.6 (33.6) 46.3 (45.1) 58.0 (56.3) 69.2 (67.3)

L+DH 1.6 21.0 (20.6) [20.9] 33.1 (32.5) 44.8 (43.7) 55.6 (54.5) 66.8 (65.1)
L+DH 2.0 19.5 (18.9) [19.2] 30.7 (29.9) 40.9 (40.2) 51.2 (50.1) 61.4 (59.9)

APR+NV 1.6 23.9 (23.8) [23.6] 37.5 (37.6) 50.7 (50.5) 62.9 (63.0) 75.5 (75.3)
APR+NV 2.0 21.5 (21.4) [21.2] 33.7 (33.9) 45.4 (45.5) 56.5 (56.7) 67.8 (67.8)

L+NV 1.6 22.0 (21.8) [21.8] 34.7 (34.5) 46.8 (46.3) 58.6 (57.7) 69.7 (69.0)
L+NV 2.0 19.5 (19.7) [19.6] 31.2 (31.1) 41.9 (41.7) 52.2 (52.1) 62.5 (62.2)

Model mode frequency in Hz (±20Hz)
n = 1 n =2

APR+DH 1.4 741 (761) [734] 1190 (1270)
APR+DH 1.6 829 (860) [825] 1340 (1430)
APR+DH 2.0 1052 (1083) [1045] 1842 (1810)

L+DH 1.6 565 (586) [567] 917 (980)
L+DH 2.0 682 (713) [677] 1100 (1190)

APR+NV 1.6 692 (689) [684] 1230 (1220)
APR+NV 2.0 838 (858) [827] 1501 (1520)

L+NV 1.6 526 (525) [522] 936 (930)
L+NV 2.0 615 (615) [608] 1092 (1090)

Table 3.2: Frequencies of some torsional shear modes of the crust for different EoS.
Numbers following the abbreviation of the EoS give the mass of the stellar
model in solar mass units. The frequencies in round parenthesis are from
Sotani et al. (2007), and the squared brackets give the result of the eigenmode
analysis (see Appendix D). For the n = 1 and n = 2 modes we compare to
the l = 2 case only. The frequencies of the eigenvalue calculation for n = 0
and l > 2 can be obtained by multiplying the corresponding frequencies for
l = 2 with

√
(l − 1)(l + 2)/2 . The error ranges shown in the table header

have their origin in the Fourier transformation, which should dominate other
numerical errors.

law in the form v ≈ sin (π/2 ∗ (r − rcc)/(rs − rcc)) multiplied by a sum of the first ten

vector spherical harmonics for the angular dependence. With this kind of perturbation

we ensure to excite single modes with different values for the radial and angular mode

numbers n and l. We evolve the system for 1 s in the case of n = 0 modes and 50 ms

for the modes with n ≥ 1. The resolution of the simulations was 120(r) × 60(θ) points

in the domain [0, rs] × [0, π/2], the grid is equidistant in both directions and we used

equatorial symmetry. The chosen grid corresponds to about 20 radial zones inside the

crust.

Table 3.2 gives the oscillation frequencies of our dynamical simulations extracted from

the Fourier analysis at points inside the crust. The frequencies of the modes agree up to
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Figure 3.2: Numerical damping of crustal oscillations. The upper panel shows the evo-
lution of the maximal amplitude of ξϕ

,t normalized to its initial value, at a
point in the crust near the pole for different grid resolutions. The numer-
ical damping decreases with increasing resolution. The lower panel shows
the order of convergence (circles) computed using the three highest resolu-
tion simulations compared to the expected second order convergence (dashed
line).

a few percent with those of the linear approximation (given in round parenthesis). For

modes with n ≥ 1, the frequency resolution of the Fourier transform does not allow us to

resolve modes with the same n but different l, which are only separated from each other

by a few Hz. Therefore, the measured frequency is a mixture of different l contributions,

and its value is expected to be slightly larger than that of Sotani et al. (2007) for l = 2,

which are reported in the Table 3.2 as well.

Additionally, we have computed the frequencies from the associated eigenvalue prob-

lem (AppendixD). For the computation of these frequencies we used a radial grid of

about 80 zones in the crust. The results for the n = 0, l = 2 and n = 1 modes are given

in squared brackets in Table 3.2. They agree up to a similar accuracy with those that

have been obtained in the literature.

To investigate the convergence properties of our code when no magnetic field is present,

we have calculated the evolution of the n = 0 and l = 2 mode of our reference neutron

star model for different grid resolutions: 180 × 60, 150 × 50, 120 × 40, and 90 × 30.

The angular grid is equidistant, while the radial grid is equidistant only in the crust,

where 40 percent of the zones are located, and coarsens towards the center of the star.

The finer mesh in the crust ensures higher accuracy without significant increase of the
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Figure 3.3: Upper row of panels: Fourier amplitude at the frequencies of some crustal
modes with l and n given in the corresponding panel. We recover the ex-
pected behavior of the vector spherical harmonics. In the fourth panel the
node in radial direction of the n = 1, l = 2 mode is visible. Lower row of
panels: Phase corresponding to the modes in the upper row. For all modes
the phase inside the crust can be considered to be constant.

computational costs. In order to save further computational power we assume equatorial

symmetry. The mode frequencies extracted from the simulations at different resolutions

agree within the frequency resolution of the Fourier transform. The upper panel of

Fig. 3.2 shows the time evolution of the maximum amplitude of ξϕ
,t at the crust for

different grid resolutions. One clearly sees that the numerical damping decreases with

increasing resolution. For this simple test case it is possible to compute the order of

convergence using the results for the three highest resolutions, when one assumes that

the error in the interesting variable, f , scales as ∆p, where ∆ is the size of the numerical

cell and p the order of convergence. To compute p one searches for roots of

fcoarse − fmedium

fmedium − ffine

=
∆p

coarse −∆p
medium

∆p
medium −∆p

fine

, (3.5)

where the subscripts denote fine, medium or coarse grid resolution. The lower panel of

Fig. 3.2 shows that after a short initial transient the order of convergence, p, rapidly

converges to 2, which is the expected order of convergence of our numerical scheme.

In Fig. 3.3 we show exemplary the first three n = 0 and the n = 1, l = 2 crustal

modes and their phases as obtained from the simulations. The plots are obtained from

a Fourier analysis at the expected frequencies provided in Table 3.2. The dependence
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on the angular number l of the vector spherical harmonics is recovered as expected. We

also obtain the correct structure in r-direction including one node for the n = 1 mode

(compare with Appendix D and Fig.D.1). The phase of all modes is constant as one

would expect for a solution in terms of eigenfunctions (lower row of panels in Fig. 3.3).

3.3 Alfvén oscillations

Purely Alfvén oscillations of neutron stars with dipolar magnetic fields have been studied

by Sotani et al. (2008b) and Cerdá-Durán et al. (2009). Colaiuda et al. (2009) investi-

gated the effect of an additional toroidal background field. In this section we discuss the

main features of these oscillations and extend the investigation of Cerdá-Durán et al.

(2009) to tabulated EoS.

In the lower left panel Fig. 3.4 we show the frequency spectrum of the field lines as

obtained with the semi-analytic model of Appendix B. The frequencies of the open field

lines (black in the figure) form a continuum. This is in contrast with the crustal modes

which have discrete frequencies. The continuum formed by the first overtones of all open

field lines connects in frequency space to the continuum formed by oscillations occurring

the closed field lines (red lines). From the analysis of toy models (Levin, 2006, 2007)

one would expect to observe QPOs at turning points and edges of the different continua.

The expected QPOs of the fundamental oscillations and the first overtone are marked

in the left panel of Fig. 3.4. Following Cerdá-Durán et al. (2009) we label the QPOs

related to the turning point in the spectrum of the overtones of the open field lines close

to the pole upper QPOs U
(±)
n , the ones related to the overtones of the turning point of

the closed field lines lower QPO L
(±)
n and the ones related to spectrum of the last open

field line and overtones edge QPOs E
(±)
n .

To understand why the QPOs appear at the edges or turning points of the continuum,

we sketch the argumentation of Levin (2007). He considers a toy model which is based on

a big pendulum (crust) coupled to many smaller pendula (magnetic strings of the core).

Neighboring pendula have slightly different oscillation frequencies, and hence form a

continuum of frequencies. The described frequency difference is the reason why different

pendula get out of phase when excited coherently in the beginning. The phase difference

between nearby oscillators may be so large, that they swing in opposite directions, and

thus give opposite contribution to the overall oscillation of the big pendulum. This pro-

cess is often called phase mixing. However, there exist regions like continuum edges where

no neighboring pendula exist, which could annihilate the contribution of the pendula

near the edge. Therefore, the net effect of the small pendula on the big one is reduced

to the oscillations occurring near an edge. In other words, only the pendula near the

edge pull coherently on the big pendulum. Similar arguments hold near a turning point

of the continuum, where neighboring pendula contribute coherently. With time also the

pendula near the edge/turning point get out of phase, and the corresponding QPOs are

damped. In the case of pure Alfvén oscillations the crust is emulated by the boundary

condition at the surface and neighboring magnetic strings are coupled numerically.
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Figure 3.4: Upper left panel: Illustration of the dipolar magnetic field configuration in-
cluding field lines which close inside the neutron star (red) and open lines
which extend to the exterior (blue and black).
Lower left panel: Frequencies of the fundamental oscillation and its first
overtone for the corresponding field lines. The ensemble of the frequencies of
all field lines forms a continuum with edges and turning points as indicated
with the arrows. We call the QPOs related to the turning point of the open
field lines upper QPOs, the QPOs related to the turning point of the closed
field lines lower QPOs, and the QPOs related to the edge of the continuum
at the last open field line edge QPOs.
Right panel: Frequency continuum of the reference model APR+DH 1.4 at
B = 4 × 1015 G. The colors show the Fourier amplitude averaged along in-
dividual field lines. The x-axis is the crossing radius of the field lines with
the equatorial plane. Black dots highlight the location where QPOs are ex-
pected. The QPOs observed with significant Fourier amplitude are indicated
by the corresponding name: upper U

(±)
n , lower L

(±)
n or edge E

(−)
n QPO. The

color scale ranges from white-blue (minimum) to orange-red (maximum).

In the right panel of Fig. 3.4 we show a realistic spectrum obtained for the reference

model APR+DH 1.4 at B = 4×1015 G and compare it with the magnitude of the Fourier

amplitude of the corresponding simulation (grid resolution 100×80, evolution time 4.5 s).
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Thereby, we average the Fourier amplitude along individual field lines and label each

field line with its crossing point with the equatorial plane, which is given in the x-axis

of the figure. As expected from toy models (Levin, 2006, 2007) we observe QPOs at the

frequencies of the turning points of the spectrum near the pole and equator. However,

the fundamental QPO U
(−)
0 has a very low amplitude, probably because the particular

initial data used in this simulation did not excite this particular QPO significantly. The

theory of the toy models also predicts QPOs at the edges of the continuum. We find only

one edge QPOs with significant amplitude, namely E
(−)
0 . For polytropic models no edge

QPOs was observed. We interpret the absence of the major part of the edge QPOs to

be caused by the steep gradients of the spectrum near the edge of the continuum which

enhance the phase mixing (Levin, 2007; Cerdá-Durán et al., 2009). Furthermore, the

numerical coupling of open field lines and closed ones introduces an additional channel

which may cause phase mixing, i.e. the sharp edges of the continuum may be coupled

to the continuum of the closed field lines. Consequently, one would expect a very rapid

damping of the oscillations due to the phase mixing.

The spatial structure of the first nine QPOs with significant amplitudes is displayed

in Fig. 3.5, and the corresponding frequencies are given in Table 3.3. As above we dis-

tinguish between upper QPOs near the pole (panels b, d, e, and h), lower QPOs near

the equator (panels c, e, g, and i), and edge QPOs related to the last closed field line

(panel a). The frequencies obtained in the simulations are in good agreement with the

ones predicted by the semi-analytic model (see Table 3.3).

Upper QPOs can be divided into two families: one symmetric (+) and one antisym-

metric (-) with respect to the equatorial plane. Edge QPOs exist only for the continua

of the antisymmetric overtones. In Fig. 3.5 the geometrical interpretation of the index

k in U
(±)
k becomes clear. It describes the number of nodes along the field lines inside

the star, i.e. there are 2k + 1 nodes for antisymmetric QPOs and 2(k + 1) nodes for

symmetric QPOs, respectively.

The relation of the frequencies of the different families of QPOs is

f
(
U (−)

n

)
= (2n+ 1)f

(
U

(−)
0

)
(3.6)

f
(
U (+)

n

)
= (n+ 1)f

(
U

(+)
0

)
= 2(n+ 1)f

(
U

(−)
0

)
(3.7)

f
(
E(−)

n

)
= (2n+ 1)f

(
E

(−)
0

)
(3.8)

f
(
L(±)

n

)
= (n+ 1)f

(
L

(±)
0

)
(3.9)

In Fig. 3.6 we display the phase of the Fourier transform shown in Fig. 3.5. In contrast

to the eigenmodes in the crust (see lower row of panels in Fig. 3.3) the phase changes

continuously in direction perpendicular to the field lines, which is best seen for the edge

and upper QPOs (panels a, b, d, f, and h). The Fourier analysis gives phase values

between −π/2 and π/2. By adding π each time when the phase jumps from π/2 to

−π/2 in the computed values for the edge and upper QPO, we are able to follow the

increase of the phase in direction perpendicular to the field lines over a larger range of
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Figure 3.5: Fourier amplitude of the lowest frequency QPOs of model APR+DH 1.4.
We discriminate upper QPOs (panels b,d,f, and h), lower QPOs (panels c, e,
g, and i), and edge QPOs (panel a). The frequencies corresponding to each
panel are given in Table 3.3. Blue lines indicate the magnetic field, and the
color scale ranges from white (minimum) to red-black (maximum).

values (−5π to 8π). Therefore, the range of phases in different panels may be different.

However, the important feature is the continuous change of the phase, which all graphs

have in common. For the lower QPOs (panels c, e, g, and i) the procedure is not

practicable, because there are more nodes on smaller spatial scales. Nevertheless one

can clearly follow the phase change in direction perpendicular to the field lines in panels

c and e. Note that some features appear because of the very low amplitude of the Fourier

amplitude near the nodes of the QPOs, see e.g. the dark region for r < 2 km in panel b,

or the line in θ direction at about 5 km in panel d.
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panel in Fig. 3.5 a b c d e f g h i

QPO name E
(−)
0 U

(−)
0 L

(±)
0 U

(+)
0 L

(±)
1 U

(−)
1 L

(±)
2 U

(+)
1 L

(±)
3

frequency in Hz (±0.2 Hz) 3.9 4.6 5.6 9.8 11.1 15.0 16.7 19.9 22.3
frequency expected from the

3.6 4.85 5.5 9.7 11.0 14.6 16.5 19.4 22.0
semi-analytic model in Hz

Table 3.3: Frequencies of the QPOs displayed in Fig. 3.5 compared to the frequencies
predicted by the semi-analytic model.
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3.4 Magneto-elastic oscillations of a liquid core coupled

to a solid crust

In the two preceding sections we have studied the two extreme cases of pure shear modes

in the crust and pure Alfvén oscillations in the core. We have seen that they are of very

distinct type. The crustal oscillations form a complete set of orthogonal eigenmodes,

while the magnetic oscillations of the core are characterized by a frequency continuum,

and quasi-periodic oscillations at the turning points and edges of the latter. It is very

interesting to see how the system of coupled magneto-elastic oscillations behaves. For

very weak magnetic fields B < 5 × 1013 G the crust dominates the dynamics and we

effectively recover the pure shear modes, which are practically unaffected by the presence

of the magnetic field. In contrast the Alfvén oscillations are effected drastically and are

confined to the core. However, they occur on much longer time scales than the crustal

oscillations such that their effect on the crustal modes is negligible at that low magnetic

field strength. In Section 3.4.2 we discuss the properties of these QPOs in detail. For very

strong magnetic fields B > 5×1015 G the crustal shear modes disappear completely and

global, predominantly Alfvén oscillations dominate the evolution. The results at such

strong magnetic fields are qualitatively the same as in Section 3.3. As in this preceding

section we restrict ourselves here to dipolar magnetic field configurations.

3.4.1 Absorption of crustal shear modes by the Alfvén continuum

This subsection is concerned the absorption of purely shear n = 0 and n > 0 modes of

the crust into the Alfvén continuum of the core. We will often refer to this process as

the damping of crustal shear modes. This expression may mislead the reader to think

of dissipation processes. However, damping in the current context refers to the transfer

of energy from crustal modes into the continuum of the core, but not to dissipation of

energy. Only when referring to numerical damping we mean the usual concept describing

the loss of ordered kinetic energy by numerical dissipation.

n = 0 crustal shear modes

As we have shown in Gabler et al. (2011) purely shear oscillations are absorbed very

efficiently by the Alfvén continuum of the core for magnetic field strengths B & 5 ×
1013 G. In this case the amplitude of the perturbations of the crust is damped by trans-

ferring their energy to the Alfvén continuum. To analyze how this damping scales

with the magnetic field strength, we have performed a series of simulations for differ-

ent crustal modes with n = 0, l ≥ 2 for different magnetic fields (0, 1013,2 × 1013,

5× 1013, 8× 1013,1014 and 2× 1014 G). For these simulations we use a grid of 150× 100

zones covering a domain [0, rs] × [0, π], which is equivalent to the medium grid of

the previous section but not assuming equatorial symmetry. Here, we use the solu-

tion of the eigenvalue problem for the unmagnetized crust (see AppendixD) as initial
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Figure 3.7: Left panel: The maximum of the normalized overlap integral for the n = 0,
l = 2 eigenmode of the crust as a function of time. Stronger magnetic field
results in faster damping of the initially excited crust mode. Orthogonality
of different eigenmodes is fulfilled numerically up to about 10−5. In the
legend we introduced the abbreviation B13 = 1013 G. Right panel: Damping
of l = 2, 3, and 9 initial perturbations due to resonant absorption of the
fundamental (n = 0) crustal shear modes for a magnetized model with 5 ×
1013 G (dots). In the corresponding unmagnetized models (solid lines) only
numerical damping occurs which increases with the angular order l of the
mode.

perturbation for the velocity. Symmetries are exploited whenever a perturbation is

purely symmetric or antisymmetric with respect to the equatorial plane.

In the following we will discuss our results by using so-called overlap integrals (derived

in AppendixD). These overlap integrals are the expansion coefficients of an arbitrary

spatial function in the basis of the crustal oscillation eigenmodes, i.e. they give a measure

of how strong the different eigenmodes are excited (see Gabler et al., 2009, for an appli-

cation to radial oscillations of neutron stars). In Fig. 3.7 we show the time dependence

of the maxima of the overlap integrals defined in Eq. (D.11) corresponding to the n = 0,

l = 2 crustal mode for different magnetic field strengths. The stronger the field is the

faster the damping of the shear mode proceeds. For high field strength, B > 2× 1014 G,

it is not possible to obtain a characteristic damping time τ , because the time scale is

shorter than one oscillation period. Therefore, the latter can be used as an upper bound

for τ . For 2× 1014 G we show the evolution of the overlap integral only up to the time

when global magneto-elastic oscillations start to dominate and interfere with the purely

shear modes of the crust.

In the right panel of Fig. 3.7 we show the maximum (absolute) amplitudes of the

overlap integrals for different initial perturbations and for simulations both without

magnetic field (solid lines) and with a polar magnetic field of 5 × 1013G (dots) . In

the field-free case the lines represent the numerical damping of crustal modes due to

finite-differencing. When a magnetic field is present, the damping (now due to resonant
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Figure 3.8: Overlap integrals for different n = 0 crustal modes at 0, 5 × 1013, and 5 ×
1014 G. Resonant absorption of the modes becomes stronger with increasing
magnetic field strength. The displayed modes are l = 2 (upper left), l = 3
(upper right), l = 9 (lower left), and l = 10 (lower right).

absorption) increases with the magnetic field strength. For all modes, the timescale of

resonant absorption is much shorter than that of numerical damping (see Table 3.4).

After about 500ms, the overlap integrals no longer sample the crust oscillations, but

instead the magneto-elastic oscillations which then dominate the evolution (see below).

We show the overlap integrals for different crustal modes (l = {2, 3, 9, 10}) as a function

of time for different magnetic field strengths in Fig. 3.8. For all modes we find almost

complete damping of the crustal mode after ∼ 0.5 s at a magnetic field strength of

5×1013 G (red line in Fig. 3.8). For a stronger magnetic field (B = 5×1014 G, black line

in the figure) the crustal modes become damped after a few msec, and only the dominant

magneto-elastic oscillations remain. As observed before, the numerical damping of the

unmagnetized models (green lines) increases with the mode number l.

Table 3.4 shows the damping timescales, obtained by analyzing the overlap integrals,

for different n = 0, l ≥ 2 modes and different magnetic field strengths. The values

for zero magnetic field serve as a measure of the numerical damping of the code. As
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magnetic τ [ms] for mode n = 0
field [G] l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8

0 1130 1110 1030 874 654 466 313
1× 1013 688 835 846 764 599 441 302
2× 1013 102 287 478 534 481 385 279
5× 1013 83 85 72 54 38 63 104
8× 1013 58 60 43 38 37 34 28
1× 1014 46 48 37 38 40 33 27
2× 1014 20 21 21 23 19 21 21

Table 3.4: Damping timescale τ in ms for different n = 0, crustal shear modes for dif-
ferent magnetic field strengths.

expected for numerical dissipation processes, modes with higher l suffer stronger from

numerical damping than lower l (see also Cerdá-Durán, 2010). For weak magnetic fields,

e.g. 1013 G, the damping of high l modes is dominated by numerical dissipation, while

for low l modes it is caused by the interaction with the Alfvén continuum of the core.

For magnetic fields stronger than 5 × 1013 G, we are confident that the damping time

of all studied modes is physical and not due to numerical dissipation. Above 2× 1014 G

the oscillations are damped on shorter time scales than the respective oscillation period,

and hence it is impossible to obtain accurate damping times.

Figure 3.9 shows τ/tA, where tA is the Alfvén crossing time of the star at the pole. The

damping time of crustal modes due to the absorption by the Alfvén continuum scales

linearly with tA, i.e. τ decreases with increasing magnetic field. The mean damping

time is about 0.04 tA. Deviations from this value (see Fig. 3.9) depend non-trivially

on the magnetic field and the mode number l. The spread decreases with increasing

magnetic field strength, being smallest for our B = 2× 1014 G simulation. Low l-modes

(filled circles in Figure 3.9) show a smaller spread around the mean value than the higher

l-modes (crosses in the same figure).

These deviations are expected, because the damping depends on a variety of param-

eters as for example the frequency of the crustal mode, the frequencies available in the

Alfvén continuum of the core, and the spatial structure of the crustal modes. Numerical

effects may also affect the damping times. These are: Firstly, the grid resolution neces-

sary to obtain a comparable accuracy for different modes increases with increasing mode

number l. Secondly, waves in the crust reaching the core-crust interface will propagate

into the core as Alfvén waves. Due to the jump in the wave velocity at the interface, the

wave number increases, i.e. the resolution requirements in the core are more restrictive.

This holds, in particular, for weak magnetic fields, where the jump in the wave velocity

is larger, and for large l modes with higher frequencies.

The damping time at a given magnetic field strength B > 1013 G varies only by at

most a factor of two between different l, but may vary significantly with the magnetic

field strength. This indicates that the damping is dominated by the magnetic field and
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does not depend sensitively on the mode structure itself, i.e. there will always be a part

of the continuum that is able to drain the energy from the crustal oscillations.

A more detailed discussion of the damping of the different crustal modes is beyond

the scope of this work. Our results do not favor a crustal-mode interpretation of the

observed QPOs in SGRs, because any crustal shear mode is damped sufficiently fast for

magnetic field strengths well below the typical magnetar field strengths ∼ 5 × 1013 G.

Although there might exist SGRs with weaker magnetic fields (Rea et al., 2010), QPOs

have only been observed so far in magnetars with the strongest fields.

Different equilibrium models

All previous results were obtained for a model based on the APR+DH EoS and a mass

of 1.4 M�. Simulations using other EoS or different masses for the equilibrium model

yield qualitatively similar results.

In table 2 of Gabler et al. (2011) we showed that the damping of purely crustal

shear modes occurs on the order of 100 ms or less for a variety of EoS and masses

at a magnetic field strength of B = 1014 G. The initial models that we used in those

simulations employed a different prescription for the internal energy (ideal gas) than

the values provided in the EoS tables. As these models were thus thermodynamically

inconsistent, we have recomputed them with the appropriate internal energy values. The

resulting damping times are at most 20% longer than the values reported in Gabler et al.
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EoS τ [ms] at B = 1014 G
n = 0, l = 2 n = 0, l = 3 n = 0, l = 9

APR+DH 1.6 45 47 21
APR+DH 2.0 38 41 17

L+DH 1.6 57 61 27
L+DH 2.0 52 56 25

Table 3.5: Damping timescales τ due to resonant absorption of crustal shear modes by
the Alfvén continuum for initial perturbation modes l = 2, l = 3, and l = 9
for different combinations of equations of state at B = 1014 G. The number in
the labeling of the EoS represents the mass of the neutron star model in M�.

(2011). Some of the corrected damping times are shown in Table 3.5. The other EoS

used to calculate the models in Gabler et al. (2011) cannot reproduce neutron stars with

solar masses of about 2M�, and are thus no longer considered in the present work.

The variation of the damping times with the EoS at a given magnetic field is not

surprising. The relative size of the crust of these models varies roughly by a factor of

3 (see Sotani et al., 2007), and the shear modulus of both crustal EoS is of comparable

size. This explains the smallness of the observed variations in Gabler et al. (2011) which

do not exceed a factor of 5. A significantly lower shear modulus, as proposed in Steiner

and Watts (2009), would lead to even shorter damping times of the crustal shear modes.

The influence of the details of the EoS are not substantial because when trying to

explain the frequencies of the QPOs observed in SGRs as shear oscillations, the shear

modulus should lie in the range we use in this work. Otherwise it is already impossible to

reproduce the correct range of frequencies within the crustal oscillation model. Changing

the shear modulus somewhat would have only a modest effect on the damping times.

However, even for a hypothetically exotic shear modulus, which could be one order of

magnitude larger than the actual values we use, the crustal shear oscillations would be

damped much too fast to explain long-lived QPOs. We therefore argue that we can

safely exclude shear oscillations as a viable explanation of observed magnetar QPOs, for

the magnetic field configurations studied here.

n > 0 crustal shear modes

The higher radial overtones (n > 0) of the shear modes have frequencies above 500 Hz

(see Table 3.2) and are usually used to explain the QPOs of SGR 1806-20 with the highest

frequencies of 625 and 1840 Hz. As these modes have at least one node inside the crust

computing their evolution demands much higher spatial resolution than necessary for

the n = 0 modes. Thus, it was practically impossible for us to follow their evolution over

several Alfvén crossing times to the same accuracy as for the n = 0 modes. However

this would have been necessary to draw more reliable conclusions about damping times

or interaction of these modes with the Alfvén continuum in the core. Nevertheless, we

can make some qualitative statements.
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The time needed for a shear wave (vS ∼ 1000 km/s) to travel through the crust

(∆rcrust ∼ 1 km) corresponds to the inverse of the frequency of the first overtone (n =

1), which is of the order of f ∼ 1 kHz. Assuming that the wave travels inside the

crust along the θ-direction (travel path ∆r ∼ 10π km), a similar estimate results in

frequencies vS/∆r ∼ 30 Hz which is of the order of the frequency of the fundamental

n = 0 oscillation. Therefore, we may conclude that the n = 0 modes represent waves

that travel predominantly parallel to the crust-core interface, while the n = 1 modes

correspond to waves that travel radially. This may explain the strong dependence of the

n = 0 modes on the angular number l and the weak dependence of the n = 1 modes (see

Table 3.2 with the corresponding discussion, and Sotani et al., 2007). Hence, we expect

the n = 0 modes, derived with isotropic shear modulus, to be much more affected by

the presence of an anisotropic magnetic field than the n = 1 modes. In particular, near

the equator where the coupling between the crust and the core is weaker than close to

the pole (see Eq. 2.101) the shear waves may travel back and forth in the crust without

interacting strongly. Additionally, at the equator the magnetic field is almost parallel to

the θ-direction, i.e. the direction of the Alfvén waves is perpendicular to the direction

of the n = 1 shear waves. This suggests that the n = 1 shear waves are not influenced

strongly by the presence of moderate magnetic fields (. 1015 G). According to these

theoretical considerations we expect the overtones of the shear modes to survive longer

than the n = 0 modes.

To investigate this issue, we have performed two simulations with our reference model

at magnetic field strengths of 2×1014 G and 5×1014 G. The resolution for antisymmetric

simulations (l = {2, 4, 6, ..}) was 150×50 zones. The initial perturbation consisted of the

n = 1, l = 2 mode of the crust only. In Figure 3.10 we show the main contributions to the

oscillations as obtained by Fourier analyzing the time evolution of the simulation with

5×1014 G. The QPO patterns are compressed towards the equator and strongly distorted

from the typical l-dependence of spherical harmonics of the purely shear eigenmodes of

the crust (see Appendix D). To account for this difference we label these QPOs with

l′. Naturally, the initial data of the undistorted l-mode excites many distorted l′-QPOs.

As expected from the theoretical considerations above, the strongest amplitudes of the

oscillations appear near the equator, where the coupling to the core is weakest (see

Fig. 3.10). The magnetic field also increases the spacing between the frequencies of

successive n = 1, l′ modes from ∆f ≈ 1 Hz without field to ∆f ≈ 10 Hz (see Sotani

et al., 2007, for a discussion of purely shear eigenmodes).

To study the behavior of the different QPOs, we calculate the corresponding overlap

integrals (Eq. (D.11)) but taking the spatial structure obtained from the Fourier analysis

(Fig. 3.10) as basis functions. The time evolution of the maxima of these overlap integrals

for l′ = {2, 4, 6, 8} can be seen in the left panel of Figure 3.11. Indeed all of l′-QPOs are

excited by the purely shear n = 1, l = 2 eigenmode perturbation. Since the frequencies

of the different n = 1 modes are very similar, i.e. hard to disentangle in any analysis

of the simulations, we average all n = 1 modes to estimate the total damping time of

the n = 1 QPOs. To this end we calculate the overlap integral with the radial function
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Figure 3.10: The spatial structure of the first n = 1, antisymmetric crustal shear modes
in the presence of a moderate magnetic field of 5 × 1014 G. The oscilla-
tion patterns are strongly distorted from the typical l-dependence of the
spherical harmonics and only exist in regions close to the equator, where
the coupling between the core and the crust is weakest. We therefore label
their angular dependence with l′. The dashed lines indicate the region of
the crust and the color scale ranges from white (minimum) to red-black
(maximum).

Ξi(r, θ) = Rλr corresponding to the pure shear eigenmodes obtained with Eq. (D.8). This

effectively averages over the angular dependence, and provides a measure of how strong

the ensemble of all l′, n = 1 QPOs is excited. The corresponding plots for B = 2×1014 G

and B = 5× 1014 G are shown in the right panel of Fig. 3.11.

As indicated by the fitting functions with damping times of 150 and 230 ms, the

damping timescale of the n = 1 QPOs is much longer than for the n = 0 modes at the

given magnetic field strength of a few 1014 G.

However, one has to be very cautious at this point. With the resolution used here, we

are not able to resolve the Alfvén oscillations inside the core of the neutron star which

could damp the crustal shear oscillations resonantly. At 5 × 1014 G the fundamental

Alfvén oscillation is about 2 Hz. To resolve the resonant coupling to the crustal n = 1

mode of roughly 500 Hz one would need the 250th overtone. Simulations with appro-
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Figure 3.11: Left panel: The normalized overlap integrals of the evolution for the first
few n = 1, antisymmetric magneto-elastic modes at B = 5×1014 G. The ap-
proximate mode structure is taken from the Fourier analysis (see Fig. 3.10).
Strictly speaking there are no modes in terms of the result of the linear
analysis, but the influence of the magnetic field is insufficient to destroy
the coherent oscillations in all parts of the crust. The initial perturbation
of the n = 1, l = 2 crustal mode excites a large number of the magneto-
elastic modes which are all damped on a timescale of ∼ 150ms. Right panel:
The overlap integral performed for a basis with purely radial dependence
Ξi(r, θ) = Rλr (see Appendix D) of the n = 1 modes. These integrals are a
measure of how strong the ensemble of all l′, n = 1 modes is excited. The
damping time, indicated by the fits to an exponential (dashed lines), for
2× 1014 G (5× 1014 G) of τ = 230 ms (150 ms) is much longer than that of
the n = 0 modes, which is of the order of several ms only.

priate grid resolution would take of the order of years. For the damping process itself

this lack of resolution should not be a problem, because the numerical method employed

should take all necessary information into account, i.e. the Riemann solver at the crust

core interface considers all the local information of possible waves traveling into the core.

The problem arises inside the core, where a low resolution leads to an averaging out of

all fine-scale structure. Hence, the energy of the Alfvén overtones of the continuum

is transformed to resolved low order oscillations, i.e. we cannot trust the oscillations

inside the core. However, as long as the Alfvén oscillations do not reach the crust at the

opposite side of the star at t ≈ tA = 0.5/fA = 1.2 s (for B = 5 × 1014 G), a simulation

of the crust region should give correct results. Therefore, the present estimate of the

damping time of the n = 1 overtones should be considered as a lower limit, because the

main effect we are missing is the excitation of crustal magneto-elastic QPOs by incoming

Alfvén oscillations of the core.
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3.4.2 Predominantly Alfvén QPOs in the core at intermediate

magnetic fields 5× 1013 < B < 1015 G

In Gabler et al. (2010, 2011) we have shown that the crust significantly changes the

structure of the QPOs for intermediate magnetic field strengths between 5×1013−1015 G

compared to models without crust. In this section we investigate the behavior of the

Alfvén QPOs of the core in this regime further.

QPO structure at 4× 1014 G

In this subsection we will analyze the results of two simulations with a resolution of

100× 40 zones and computational domain [0, rs]× [0, π/2]. We perform one simulation

with l = 2 initial data and antisymmetry with respect to the equatorial plane, and

another symmetric one with l = 3 initial data. Both runs were evolved up to t ≈ 5 s.

For the model APR+DH 1.4 with a magnetic field strength of B = 4× 1014 G we find

three different families of QPOs. Following Cerdá-Durán et al. (2009) we label the lower

QPOs as L
(±)
n and the upper QPOs as U

(±)
n . A new family of QPOs appears, which

we call edge QPOs and label them as E
(±)
n . To avoid confusion with the previous work

of Cerdá-Durán et al. (2009), and because the fundamental upper symmetric QPO has

special properties as we will show below, it will be labeled as U
(+)
∗ at low magnetic field

strength. The plus and minus sign in the description of the QPOs indicate symmetry

(+) or antisymmetry (-) of the QPO with respect to the equatorial plane.

In Fig. 3.12 we plot the local maxima of the Fourier amplitude inside the star. Similar

to the case without crust lower QPOs (panels a and b) are attached to field lines which

close inside the core, upper QPOs are located closer towards the magnetic poles at open

field lines (panels c, d-f), and edge QPOs are connected to the open field line inside the

core of the neutron star which just fails to close inside (panels g-i). The two QPOs U
(+)
1

and E
(+)
4 have very similar frequencies. Due to limited evolution time and hence limited

resolution for the Fourier transform both QPOs contribute significantly to the Fourier

signal as can be seen in panel i. Similarly the figure for E
(+)
3 contains some contribution

of U
(+)
0 along the field lines crossing the equator between a radius of 1 and 4 km. In

both panels the edge QPO is concentrated on the field lines around 5 km.

In Fig. 3.12 we plot the distribution of the Fourier amplitude inside the star. Lower

QPOs, as shown in panels a and b, are attached to field lines which close inside the core.

In contrast, upper QPOs are located closer towards the magnetic poles at open field

lines (panels c, d-f). A third family, the edge QPOs, are connected to the open field line

inside the core of the neutron star which just fails to close inside (last open field line).

These QPOs can be seen in panels g-i of Fig. 3.12. The two QPOs U
(+)
1 and E

(+)
4 have

very similar frequencies. Due to limited evolution time and hence limited resolution for

the Fourier transform both QPOs contribute significantly to the Fourier signal at the

corresponding frequency as can be seen in panel i. Similarly, the figure for E
(+)
3 contains

some contribution of U
(+)
0 along the field lines crossing the equator between a radius of 1

and 4 km. In both panels the edge QPOs are concentrated on the field lines which cross
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Figure 3.12: The Fourier amplitude inside the neutron star for the model APR+DH 1.4
at B = 4 × 1014 G. Shown are the first two lower QPOs L

(±)
0 and L

(±)
1 ,

the first four upper QPOs U
(+)
∗ , U

(−)
0 , U

(+)
0 , and U

(−)
1 and some selected

edge QPOs E
(+)
1 , E

(+)
3 , and E

(+)
4 . (The figure for E

(+)
2 was not very clear

due to contamination with other QPOs.) The plus and minus sign indicate
symmetry (+) and antisymmetry (-) with respect to the equatorial plane.
Magenta lines indicate magnetic field lines, and black, dashed lines the
location of the crust. The color scale ranges from white-blue (minimum) to
red-black (maximum).

the equatorial plane at around 5 km. The naming of the edge QPOs becomes clearer

in Fig. 3.13, where we plot the Fourier amplitude of the velocity, averaged per field line

in the frequency-radius plane. The maxima indicate the position of the QPOs. The

red and green lines are the continuum of frequencies obtained with the semi-analytic

model introduced in Cerdá-Durán et al. (2009) and adopted here to the problem in the

presence of the crust.

The different families of QPOs mentioned above and shown in Fig. 3.12 can also be

identified in Fig. 3.13. The lower QPOs are attached to the closed field lines which
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1.4 M� and B = 4× 1014 G. Red and green lines give the Alfvén continuum
obtained with the semi-analytic model. The locations of the QPOs are
indicated by black dots. Left panel: antisymmetric simulation; right panel:
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cross the equatorial plane near 6.5 km. Since they are connected to the closed field lines

these QPOs do not have a preferred symmetry, and hence are present in symmetric

and antisymmetric simulations. The continuum of frequencies derived with the semi-

analytic model (green lines in Fig. 3.13) has a minimum at the point where we find the

lower QPOs. We thus interpret the L
(±)
n as turning point QPOs (see Levin, 2007). With

the exception of the fundamental U
(+)
∗ , which is located almost at the turning point of

the semi-analytic model, the upper QPOs are localized in the continuum of the open

field lines (red lines in Fig. 3.13) that cross the equatorial plane at 2− 4 km.

The members of the new family of QPOs, also obtained in Colaiuda et al. (2009), are

called edge QPOs because of their position in Fig. 3.13. These QPOs are related to those

parts of the continuum, obtained with the semi-analytic model (red lines), which do not

connect to the continuum of the closed field lines (green lines) (see also the sketch in

Fig. 3.4). For more details on the interpretation of the QPO structure without crust we

refer to Cerdá-Durán et al. (2009) and with crust to Gabler et al. (2010).
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Differences caused by the presence of the crust

The lower QPOs attached to the closed field lines are reproduced qualitatively similar

as in the case without crust. The only difference is that they are limited to the field

lines which close inside the core and do not extend into the crust.

However, the upper QPOs which are located near the pole in models without crust

(Sotani et al., 2007; Cerdá-Durán et al., 2009; Colaiuda et al., 2009), can now be found

at substantial distance from the poles, i.e. at lower latitudes (see also figure 4 in Gabler

et al., 2011). In simulations without crust the oscillations were associated with the max-

imum at the turning point of the continuum at the pole, while if the crust is included, we

obtain the maximal amplitudes away from the pole and inside the continuum predicted

by the semi-analytic model in the absence of a crust. One possible interpretation of this

new feature is that the shear modulus in the crust alters the propagation of magneto-

elastic oscillations in the region near the pole in such a way that standing waves cannot

form at all along individual field lines or, if they form, they go quickly out of phase with

nearby field lines in this region.

At this point it is helpful to recall the problem of the reflection of plane-parallel

waves, where the reflection coefficient depends on the jump in the propagation velocity

or equivalently on the index of refraction. The stronger the jump in the index is, the

larger is the fraction of the incident wave which becomes reflected. Using this analogy

we would expect that the smaller the difference in propagation velocity at the crust-core

interface is, the more refraction into the crust should occur and less reflection back into

the core should be produced. If significant refraction into the crust occurs, no stable

standing waves can be maintained during the evolution. When following the crust-core

interface from the pole towards the equator the coupling between crust and core becomes

weaker, see Eq. (2.101) where the θ dependence of the coupling factor is realized in br.

The magnetic field in the radial direction, and hence the Alfvén velocity, decreases

with increasing θ. Therefore, the jump in the propagation velocity increases, and thus

the fraction of the wave which is reflected will also increase along this trajectory. For

sufficiently low magnetic fields there should always be a region near the equator were

almost perfect reflection occurs. However, when following the crust-core interface from

the equator towards the pole, one will reach a characteristic magnetic field strength

where insufficient reflection occurs to maintain stable standing waves along a certain

field line. At this point we find the maximum amplitude of the QPO in the presence of

a crust. We will investigate the reason for this behavior further in Sec. 3.4.2.

The new position of the maximum amplitude of the QPOs is thus determined by two

effects. Near the pole the magnetic field lines get out of phase due to the interaction

through the extended crust, because a significant fraction of the oscillation is refracted.

The magnetic field lines can be seen like strings which are not attached to a rigid

but rather “moving” boundary, i.e. the crust which responds to the oscillations. The

resulting effect is a strong coupling of different magnetic field lines and, consequently, an

energy transfer between the lines due to the scalar shear modulus. In this region and for

magnetic field strengths studied here, each field line seems to act as a damped oscillator.
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Figure 3.14: Evolution of the magnetic plus kinetic energy per field line divided by the
sum of the energy over all field lines. The field lines are labeled by their
crossing point with the equator. Note that as the total energy decreases with
time the apparent increase of the energy of the lower QPOs is due to color
rescaling at every time step. Their amplitude actually decreases, but more
slowly than that of the upper QPOs. The left panel shows antisymmetric
and the right panel symmetric simulations. The color scale ranges from
white-blue (minimum) to orange-red (maximum).

Near the equator the magnetic field lines get out of phase due to phase mixing like in

the case without extended crust. The additional damping close to the pole makes the

corresponding upper QPOs to be shorter lived than in the case without crust. This effect

can be observed in the right panel of Fig. 3.14, where we show the magnetic plus the

kinetic energy per field line divided by the total magnetic plus kinetic energy at the given

time as a function of time for different field lines. The initially excited QPOs attached to

the field lines between 4.5 and 5 km disappear rapidly after about 0.5 s. In contrast, the

lower QPOs and the fundamental symmetric QPO near the pole persist during the whole

evolution. Fig. 3.14 may suggest that the lower QPO gain energy with time. However,

this apparent energy increase is not a physical effect, because the total energy decreases

with time due to numerical dissipation. Hence, the relative amplitudes of the energy

of the lower QPOs increase, while their absolute amplitude decrease slightly because of

numerical dissipation.

Compared to simulations without crust (Cerdá-Durán et al., 2009) we find a new

fundamental upper QPO U
(+)
∗ . This QPO appears because the boundary condition

at the crust-core interface causes a reflection which results in a node at this surface.
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Figure 3.15: Structure of upper QPOs at different magnetic field strengths for the model
APR+DH 1.4. The panels show the fundamental symmetric U

(+)
∗ (upper

panels), the symmetric U
(+)
0 (middle panels) and antisymmetric U

(−)
1 QPOs

(lower panels). The frequencies of the QPOs shown here are given in Ta-
ble 3.6. The color scale ranges from white-blue (minimum) to red-black
(maximum).

Without crust the boundary condition at the surface of the star implies a maximum

there and the fundamental oscillation has the node at the equator in this case. Therefore,

the symmetric QPO U
(+)
0 must have an additional node inside the core (see panel e in

Fig. 3.12 or the second row of Fig. 3.15). U
(+)
∗ situated between 1 and 2 km (Fig. 3.14,

the right panel) decays less rapid than the other upper QPOs, U
(−)
0 , U

(+)
n≥0, and U

(−)
n>0.

This may be related to the fact, that at B = 4 × 1015 G, U
(+)
∗ is located close to the

maximum of the continuum (see Fig. 3.13). There, the gradient of the continuum is less

steep, and neighboring field lines get out of phase less rapidly. This behavior is similar

to a turning point QPO, which persists for longer time than edge QPOs (Levin, 2007).

Changing QPO position with increasing magnetic field

For magnetic field strengths between 1014 and 1015 G the simulations reveal that the

location of the upper QPO, U
(±)
n changes within the neutron star. This was not observed
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in the case of pure Alfvén oscillations in Cerdá-Durán et al. (2009) or Sotani et al.

(2008b), where the upper QPOs were always observed close to the pole. Fig. 3.15 (first

three columns) shows the new effect, where we plot the spatial structure of the Fourier

amplitude of the QPOs. When increasing the magnetic field from 2× 1014 to 1015 G the

upper QPOs U
(±)
n move from a location near the pole towards the equator. The change

in position of the U
(±)
n is shown in Fig. 3.15 only for U

(+)
0 and U

(−)
1 , but holds for all

higher overtones as well and does not depend on the symmetry. For the fundamental

U
(+)
∗ the dislocation is less (upper row in Fig. 3.15). One can understand this behavior

at least partially with the help of the semi-analytic model. Fig. 3.13 shows that the

frequencies and the symmetry of the QPOs are correctly predicted, if we assume that

the Alfvén wave is reflected at the crust-core boundary. However, the semi-analytic

model cannot explain where within the continuum the QPOs are situated.

Remembering the analogy with the reflection of plane-parallel waves in the preceding

subsection and bearing in mind that with increasing magnetic field br the relative jump

in the propagation velocity on both sides of the crust-core interface at a given position

θ decreases, more parts of an incident wave get refracted into the crust. This means

that the point where stable standing waves can be maintained should move towards the

equator. This is exactly confirmed in Fig. 3.15, where for magnetic fields . 1015 G the

QPOs move from close to the pole towards the equator, as the magnetic field strength

increases.

Reflection of pulses and spread in crust

In the absence of an elastic crust, Alfvén wave packets are supposed to travel approxi-

mately along magnetic field lines, as the characteristic direction of propagation of any

magnetic perturbation coincides with the direction of the magnetic field. However, when

a crust is added this picture changes. The direction of propagation of magneto-elastic

waves no longer coincides with the magnetic field direction (compare the different eigen-

values in this case given in Eq. (2.90)). One would therefore expect a perturbation,

traveling along magnetic field lines from the center of the star towards the surface to

spread out past the crust-core interface. Such a spread is strong for low magnetic field

strengths, when the isotropic shear modulus dominates in the crust region and weak

for high magnetic field strengths, when the opposite is true. This behavior is shown in

Fig. 3.16, where we display the renormalized sum of the kinetic and magnetic energy

per field line for simulations at 5 × 1014 G. The initial perturbation is restricted to a

limited region of the star about 4 km above the equator. The left panels show the ex-

pected behavior for a pulse which travels along a field line with no crust present. Two

initial perturbations differing only by the location of the star get reflected at the surface

and travel back towards the center. Any deviations from traveling perfectly along the

initially excited field lines is caused by a numerical coupling of different field lines and

the very weak coupling through the boundary condition at the surface of the star. Tak-

ing a crust into account but imposing the same initial perturbations the wave packets

are spread whenever entering the crust, which happens at around 70 ms for the first
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Figure 3.16: Evolution of the magnetic plus kinetic energy per field line divided by the
sum of the energy of all field lines for the model APR+DH 1.4. The field
lines are labeled by their crossing point with the equator. The pulse reaches
the surface at around 70 ms for the first time and the crossing time is about
130 ms. Left panels: simulation without crust, right panels: simulation
including crust. The upper and low panels differ by the location of the
initial perturbation. Color scale ranges from white (minimum) to red-black
(maximum).

time, and subsequently after about every 130 ms (right panels). For initial data located

at field lines crossing the equator around 2 to 3 km (lower right panel), the spread is

more drastic. After some reflections there are phases (around 700 and 850 ms), when no

significant perturbation amplitudes can be found around the field lines which initially

carried the perturbation.

However, the scenario of an initially localized wave packet considered here cannot rule

out the existence of standing waves along individual field lines. Nevertheless, it suggests

that additional effects may be introduced by the spreading of wave packets in the crust

which probably change the Alfvén continuum of our semi-analytic model, where one

assumes standing waves which get reflected at the crust-core interface (or at the surface

for stronger magnetic fields).
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Figure 3.17: Variation of the total angular momentum of the star Jtot/M
2 during the

evolution for three different grid resolutions:120×60, 160×80 and 200×100
zones, respectively. The model used in the simulation is APR+DH 1.4.

Conservation of angular momentum

Analyzing the convergence properties of our numerical simulations in the intermediate

magnetic field case is more complicated because the contributions to the stress-energy

tensor from the magnetic field and the shear are of the same order of magnitude. The

two extreme regimes have been tested above (purely shear oscillations) or in Cerdá-

Durán et al. (2009) (purely Alfvén oscillations). In the present approach, the total

angular momentum Jtot ≡
∫
SϕdV is the only globally conserved quantity, with dV =

√
γdrdθdφ. We do not expect conservation of the energy of the perturbation in our

simulations, because neglecting the coupling to poloidal oscillations and assuming purely

poloidal magnetic fields, renders the deviations of the total energy from the energy of

the unperturbed background configuration to be of second order in the perturbations,

while our approach is accurate to first order.

The total angular momentum Jtot should be conserved inside the computational vol-

ume, but the boundary condition we have chosen (see Sec. 2.5) allows for non-vanishing

flux through the surface. As we chose initial perturbations with the angular dependence

of the vector spherical harmonics the angular momenta in both hemispheres cancel by

construction and the total angular momentum of the star is zero. For antisymmetric per-

turbations the losses/gains through the surface cancel respectively, while for symmetric

perturbations there remains a non-zero contribution.

Fig. 3.17 shows the variation of the total angular momentum during the evolution

for an symmetric simulation with l = 3 initial data at three different grid resolutions.
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When analyzing the differences between the curves (see Section 3.2) we obtain the or-

der of convergence of 1.95, which is near the expected second-order convergence. To

estimate the absolute magnitude of the resulting angular momentum error we compare

our perturbation to a rigidly rotating sphere with the same total angular momentum.

Taking the typical total angular momentum during the simulation, and comparing it to

that of a rigidly rotating sphere J = 2/5MR2Ω = 2/5MRvrot, where Ω = vrot/R is the

rotation frequency, we obtain a maximal velocity which is only a fraction of the pertur-

bation used in the simulations vrot/vpert ∼ 10−10. Thus, the total angular momentum

introduced by our perturbation is very small. Moreover, the total angular momentum

variations converge to zero, i.e. compared to the numerical errors the losses of angular

momentum through the surface is a small effect not affecting our simulations.

3.4.3 Strong magnetic fields B > 1015 G

For strong magnetic fields we are interested in the structure of magneto-elastic QPOs,

but not in the damping of crustal modes, as the latter are damped already at much

lower field strengths (see Sec. 3.4.1). Therefore, we can reduce the grid resolution, i.e.

the computational costs. In the strong field case we thus use a uniform radial grid with

100 zones and an angular grid with 80 zones in the interval [0, π].

For very strong magnetic fields, B & 5× 1015 G, the maxima of the Fourier transform

align towards the polar axis. With increasing magnetic field the influence of the shear

inside the crust becomes negligible, and the QPO pattern approaches that expected for

the purely magnetic limit (see figure 3 in Cerdá-Durán et al., 2009), in agreement with

the semi-analytic model. Another effect caused by the anisotropy of the shear modulus

is a more wide-spread spatial structure of the QPOs compared to the case without crust.

This can be inferred from the last two columns of Fig. 3.15, where QPOs are still quite

extended inside the crust (B = 8× 1015 G), and in the model without crust.

Between the two extremes, the QPOs are confined in the core (B . 1015 G). For strong

magnetic fields (B & 1015 G) there is a transition from the QPO structure observed in

Section 3.4.2 to the purely magnetic case (see Fig. 3.15 from the 3 - 6 column). Between

1015 and 2× 1015 G the QPOs begin to have significant amplitudes in large parts of the

crust.

This transition becomes clearer in Fig. 3.18, where we plot the Fourier amplitude for

individual field lines averaged over the length of the line and labeled by their crossing

point with the equatorial plane. The solid lines represent the continuum as obtained

by the semi-analytic model, where we assume reflection at the crust-core interface in

the upper row and reflection at the surface of the star in the lower row. The obtained

frequencies are very similar in both cases, because the travel time of the waves is domi-

nated by the time spent in the core. We note a change of the structure of the QPOs with

the different boundary conditions. We have already noted in Fig. 3.15 that in the case

of weak magnetic fields the QPOs move from being near the pole towards the equator,

for increasing magnetic field strength below 1015 G. The same can be observed in the

first two panels of Fig. 3.18 for U
(−)
0 , U

(−)
1 , and U

(+)
1 . Between 1015 and 2 × 1015 G a
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Figure 3.18: The averaged Fourier amplitude along different field lines labeled by the
radius where they cross the equatorial plane for different magnetic field
strengths. In the last panel we show the expected behavior for a model with-
out crust. The y-axis represents the frequency rescaled to the fundamental
QPO frequency predicted by the semi-analytical model (see Table 3.6). The
color scale ranges from white-blue (minimum) to orange-red (maximum).
Black and green lines represent the continuum when taking the crust into
account. Dashed, red lines indicate regions where the semi-analytic model
is not supposed to work. We do not know where the waves get reflected
and thus cannot identify whether to consider the lines as open or closed.

transition occurs from reflection at the crust-core interface (for weaker magnetic fields)

and reflection at the surface of the star (for stronger fields). Therefore, we do not expect

any of the two approximations to agree with the semi-analytic model. Neither can we

assume that the oscillations get reflected only at the crust-core boundary nor only at

the stellar surface. When increasing the magnetic field beyond 2× 1015 G the maximum

amplitude of the QPO aligns again towards the polar axis, and the numerically obtained

pattern approaches the expected structure, which is similar to the case without the

crust. The main differences are the presence of the fundamental U
(+)
∗ at finite frequency

and a broader maximum because of the anisotropic shear contribution. The QPOs are

moving from the pole towards the equator according to the frequency predicted by the

semi-analytic model for reflection at the crust-core interface, but when the effects of the
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Bpole f(U0) U
(+)
∗ /U0 U

(−)
0 /U0 U

(+)
0 /U0 U

(−)
1 /U0 U

(+)
1 /U0 U

(−)
2 /U0 δU

(±)
n /U0

[G] [Hz]
2× 1014 1.0 1.0 1.9 2.9 3.6 5.0 5.7 ±0.24
4× 1014 2.0 1.0 1.8 2.8 3.5 4.9 5.5 ±0.20
6× 1014 3.0 1.0 1.8 2.8 3.1 4.7 5.0 ±0.10
8× 1014 4.0 1.0 1.8 2.5 3.5 4.3 5.1 ±0.20

1015 5.0 0.9 1.3 2.4 3.3 4.2 5.3 ±0.10
1.5× 1015 7.4 0.8 1.1 2.2 3.2 4.1 5.1 ±0.10
2× 1015 9.8 0.7 1.0 2.0 3.0 4.0 5.1 ±0.10
3× 1015 14.7 0.5 0.9 2.0 3.0 4.0 5.1 ±0.10
5× 1015 24.4 0.5 1.0 2.0 3.0 4.0 5.1 ±0.10
8× 1015 39.1 0.3 0.9 2.0 3.0 4.1 5.1 ±0.10

Table 3.6: The relation of the frequencies of the lowest QPOs for the model APR+DH
1.4, obtained by analyzing the local maxima of the Fourier amplitudes, to the
fundamental frequency U0, obtained by the semi-analytic method. Note that
the fundamental of the semi-analytic model changes symmetry at a magnetic
field of about 1015 G, such that U0 ' U

(+)
∗ for B ≤ 1015 G and U0 ' U

(−)
0 for

B > 1015 G. The last column shows the uncertainty in the separation of two
successive frequencies in the Fourier spectrum. It gives an estimate of the
error caused by choosing the position of the local maxima, but it does not
include other numerical errors.

magnetic field become comparable to those of the shear modulus in the crust, the QPOs

reach the end of the continuum and jump from the symmetric (antisymmetric) branch

to the antisymmetric (symmetric) branch of the next part of the continuum.

What happens to U
(+)
∗ , which has no possibility to jump to? For strong magnetic

fields, B & 2 × 1015 G U
(+)
∗ has different features. First, there is no node along the

field lines, due to the change of the boundary conditions, which require a maximum

at the surface. Second, as can be seen in the last few columns of the upper row of

Fig. 3.15, there are nodes perpendicular to the field lines at a given frequency, and we

even find two different contributions to the U
(+)
∗ at slightly different frequencies. Between

2 × 1015 G and 5 × 1015 G there is one node perpendicular to the field lines, while for

B ≥ 6 × 1015 G the QPO has predominantly two nodes in that direction. Note that

both features are always present for B & 2 × 1015 G. This splitting can also be seen

in the leftmost three panels of the lower row in Fig. 3.18. The corresponding features

are located at frequencies below the fundamental, U
(−)
0 . The same panels also show,

that with increasing magnetic field strength, the relative Fourier amplitudes and the

frequencies of those features decrease with respect to the fundamental frequency.

The picture of the transition from one asymptotic behavior (reflection at the crust-

core interface) to the other (reflection at the surface) gets supported by the frequencies

obtained for the different QPOs shown in Table 3.6. There we compare the frequencies

corresponding to the maxima of the Fourier amplitude with those of the fundamental
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oscillation obtained with the semi-analytic model. Thus, we use the version with reflec-

tion at the crust-core interface up to 1015 G, while we set the boundary at the surface

of the star for stronger fields. For magnetic fields up to B . 8 × 1014 G, U
(+)
∗ has

a similar frequency as the fundamental obtained with the semi-analytic model. The

frequencies of the other QPOs approximately behave as 1 (U
(+)
∗ ) : 3 (U

(+)
0 ) : 5 (U

(+)
1 )

and 2 (U
(−)
0 ) : 4 (U

(−)
1 ) : 6 (U

(−)
2 ). For stronger magnetic fields B & 3 × 1015 G the

frequencies ratios approach 1 (U
(−)
0 ) : 3 (U

(−)
1 ) : 5 (U

(−)
2 ) and 2 (U

(+)
0 ) : 4 (U

(+)
1 ). The

two asymptotic integer relations between successive overtones and their order is what is

expected from the semi-analytic model in the two regimes. In the intermediate regime

8 × 1014 . B . 3 × 1015 G the frequencies change smoothly from one relation to the

other.

Deviations from exact integer ratios may have different reasons. First, the time of

numerical integration is limited. Therefore, the spectral resolution of the Fourier analysis

is limited, too. Second, for the lowest magnetic field shown here, B ≈ 2×1014 G, not all

upper QPOs have reached their position near the polar axis, i.e. their frequencies still

lie in the continuum, resulting in lower frequencies. Third, in particular in the transition

regime it is sometimes difficult to identify where the maximum of a QPO is located. The

interesting QPO may be excited only very weakly by our initial data, and/or some other

QPO may be excited more strongly at a similar frequency. This occurs more frequently

for higher overtones, because there the different continua overlap (see Fig. 3.13 or 3.18).

3.4.4 Crustal modes in the gaps of the Alfvén continuum?

van Hoven and Levin (2011) and Colaiuda and Kokkotas (2011) have pointed out the

possibility of crustal modes, which may have frequencies outside of the continuum of

the core. These modes would be only very weakly coupled to core oscillations, because

no Alfvén wave of any field line could match the necessary frequency. In the models we

have studied here, we find gaps in the continuum only between the lowest overtones of

Alfvén oscillations (see Fig. 3.13), e.g. for model APR+DH 1.4 already the continua of

U
(−)
1 and U

(+)
1 overlap and there are only gaps between U

(−)
1 and U

(+)
0 , U

(+)
0 and U

(−)
0

and below U
(−)
0 . For the other models shown in the Table 3.2 the number of gaps is

limited to a maximum of about three for models with the crust EoS NV and to two for

models with the DH EoS. Note that we only consider the continua of the open field lines

indicated by the black lines in Fig. 3.13, because they are decoupled from the continua

related to the closed field lines (green lines). To have the fundamental n = 0, l = 2

oscillation of the crust in one of the gaps, very strong magnetic fields B > 1015 G are

required

As an example we choose the EoS L+DH 1.4, because the corresponding model has

broader gaps than the APR+DH EoS. Furthermore, models with lower mass have shorter

Alfvén crossing times, and therefore weaker magnetic fields are necessary to have the

shear mode in the gap between the lowest overtones of the continua (see Table 3.8). The

spectral structure of this model is displayed in Fig. 3.19, where we show the edges of

the continua of the open field lines as a function of the magnetic field strength. The
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Figure 3.19: Frequency continua of model L+DH 1.4 at magnetic fields between B =
1015 G and B = 4 × 1015 G. Black, solid lines indicate the edges of the
continua of the open field lines as indicated by the names E
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The horizontal red line gives the frequency of the l = 2 crustal shear mode
and the dashed red lines gives the frequency obtained by simulations with a
free slipping crust (see text). The green shaded areas show continua having
the same symmetry with respect to the equator as the l = 2 shear mode.
The gray area shows the continuum with opposite symmetry. Blue dashed
lines show the range of magnetic field strength where we the frequency of
the n = 0, l = 2 crustal mode lies in the gap between allowed Alfvén
continua.

shaded areas between two edges represent the corresponding continuum, where crustal

modes can be absorbed resonantly. The red line indicates the frequency 21.6 Hz of the

purely shear, n = 0, l = 2 mode of the crust. Using model L+DH 1.4, we performed

simulations with initial data with the crustal n = 0, l = 2 mode, allowing only for

antisymmetry with respect to the equatorial plane. The oscillations of the continuum

associated with symmetric QPOs, as for example U
(+)
0 , are thus not allowed and cannot

be excited. These forbidden oscillations are indicated by the gray shaded region in

Fig. 3.19. We also confirmed that without imposing equatorial symmetry only Alfvén

QPOs having the same symmetry as the corresponding crustal mode can be excited

with significant amplitude during the evolution. Therefore, the antisymmetric n = 0,

l = 2 shear mode of the crust lies in the gap between U
(−)
0 and E

(−)
1 for magnetic

fields between 1.74 and 3.7 × 1015 G (Fig. 3.19). Following previous works by van

Hoven and Levin (2011) or Colaiuda and Kokkotas (2011) the crustal mode in the

gap should not be damped significantly, because there is no oscillation at the resonant

frequency available in the continuum.
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Figure 3.20: Evolution of the overlap integral of the n = 0, l = 2 mode of the crust at
different magnetic field strengths: B ={1.0, 2.0, 2.5, 3.0, 3.5, 4.0}×1015 G.
The dashed magenta line shows the expected oscillation of the purely shear
l = 2 mode of the crust. All other lines show strong damping of the excited
l = 2 mode at early times (t < 20 ms). Contributions to the overlap integral
at later times t > 20 ms originate from magneto-elastic oscillations.

However, we still find very strong damping of this crustal mode in our simulations,

as indicated by the overlap integral of the n = 0, l = 2 shear mode in Fig. 3.20.

Clearly the mode is damped after a few msec for all considered magnetic field strengths.

Later contributions originate from coupled magneto-elastic pulses traveling through the

whole star. Therefore, the time when they contribute to the overlap integrals depends

inversely on the magnetic field strength, a behavior which is completely different from

that of discrete oscillations for purely crustal shear modes. These observations indicate

that we do not have a weakly coupled system of two sub-systems (the crust and the core)

but we are dealing with coupled, global magneto-elastic oscillations. To compare with

what one would expect for an undamped purely crustal mode, we plotted the magenta,

dashed line in Fig. 3.20.

We checked the influence of the magnetic field on the frequency of the purely shear

mode by performing a series of simulations, where we apply an artificial boundary con-

dition at the crust-core interface, i.e. we use the same condition ξϕ
,r = 0 that would apply

in the absence of the magnetic field (see also Sotani et al., 2007). This allows the crust to

slip freely on top of the core, and the oscillations inside the crust cannot be damped into

the core. The frequency of the some n = 0 crustal modes are displayed in Fig. 3.21 (see

also Fig. 3.20). This is expected, because global, poloidal magnetic fields of the order



3.4. Magneto-elastic oscillations of a liquid core coupled to a solid crust 85

0 1 2 3 4

magnetic field in [10
15

G]

0

20

40

60

80

fr
eq

ue
nc

y 
in

 [
H

z]
f
l=2

f
l=4

f
l=6

a
4
=0.0030

a
6
=0.0018

Figure 3.21: Frequencies of some n = 0 crustal modes as a function of magnetic field
strength. In the simulations a free slipping crust is assumed. The frequency
of the l = 2 mode decreases, while the frequencies of the overtones increase
with the magnetic field strength. The fitting functions of l = 4 and l = 6
mode are given by fB/f0 =

√
1 + alB4

15, where B15 = B/1015 G.

of B ∼ 1015 G and stronger begin to have measurable effects (Duncan, 1998; Messios

et al., 2001; Sotani et al., 2007, 2008a; Shaisultanov and Eichler, 2009). Intuitively, one

would expect the shear mode frequencies to increase with the magnetic field strength,

because the magnetic tension could be interpreted as effectively augmenting the shear

modulus (Messios et al., 2001; Sotani et al., 2007). In contrast to Sotani et al. (2007)

we find a decrease of the l = 2 mode frequency with increasing dipolar magnetic field

strength (see Fig. 3.19). In their work Sotani et al. (2007) neglected couplings between

l- and l ± 2-modes due to the magnetic field, which led to discrete modes. However, by

analyzing the evolution of the corresponding overlap integrals we observe strong excita-

tion of the l = 4 mode by the l = 2 mode in our simulations. This strong coupling may

explain the opposite change of frequency than expected from the study by Sotani et al.

(2007). For a different magnetic field configuration also Messios et al. (2001) and Sotani

et al. (2007) find that the frequency of the fundamental l = 2 crustal mode decreases

with increasing magnetic field strength.

If the frequency of the l = 2 crustal mode changes according to our simulations

with the free slipping crust, the magnetic field strengths for which the mode lies in the

continuum gap is limited to 1.4× 1015 to 2.2× 1015 G. In this regime we have performed

four simulations at 1.5 × 1015, 1.7 × 1015, 2.0 × 1015, and 2.2 × 1015 G (triangles in

Fig. 3.19). In all of them we find the strong damping of the crustal mode. We further

note that we find a different scaling with the magnetic field strength of the frequencies

of the other crustal modes. According to Sotani et al. (2007) they increase with B, but
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the best fits for the l = 4 and l = 6 mode are given by

f(B15)

f(B = 0)
=
√

1 + alB4
15 , (3.10)

where B15 = B/1015 G. The fitted values for al are: a4 = 0.003 and a6 = 0.0018.

A second problem of matching of crustal frequencies into the gaps of the Alfvén con-

tinuum emerges at the field strengths (& 1015 G) at which we find the crustal frequencies

in the continuum gaps, as there is no clear way of how to compute the Alfvén frequen-

cies. In this transition regime, reflection neither occurs predominantly at the crust-core

interface nor at the surface, therefore, we do not claim that the continuum shown in Fig.

3.19 is perfectly valid at all magnetic field strengths (compare the panels for 1.5×1015 G

to those of 3× 1015 G in Fig. 3.18). However, by performing simulations for 10 different

magnetic field strengths between 1015 and 4× 1015 G for the current model L+DH 1.4,

we can ensure that the l = 2 crustal frequency lies in the gap between the Alfvén con-

tinua at least for one of the models. In none of the above simulations we find a different

behavior than the one reported, i.e. we do not observe any of the crustal shear modes.

In the example shown above, we may have just missed to match the frequency of the

crustal mode to a gap of the continuum, as the frequency may have been changed due

to the presence of the strong magnetic field, and because the continuum is probably

not reliably predicted by the semi-analytic model. To this end we performed a large

number (> 50) of simulations at different magnetic field strengths > 1015 G and different

equilibrium models but we never found any crustal shear mode at such strong magnetic

fields.

Generalizing the dipolar magnetic field configuration, which is our main model simpli-

fication in the current context, would probably increase the complexity of the continuum,

making it even harder to find gaps. However, there might arise new effects due to an en-

tanglement of the magnetic field (see van Hoven and Levin, 2011). Crustal modes in the

gaps of the Alfvén continua of the core have been reported by Colaiuda and Kokkotas

(2011), but our results do not confirm their existence.

3.4.5 Threshold for the outbreak of the QPOs through the crust

In Section 3.4.3 we noticed that for weak magnetic fields, B . 1015 G, the QPOs are

largely confined to the fluid core, and that there exists a threshold magnetic field strength

beyond which QPOs can be observed with significant amplitudes at the surface of the

star. To quantify when magneto-elastic QPOs have a significant amplitude in the crust

of the neutron star, we studied their maximum amplitude at the surface.

In Fig. 3.22 we plot the amplitude of the Fourier transform at the surface for different

magnetic field strengths as a function of the polar angle θ and the frequency. The color

scaling is rescaled in each panel to enhance the main contributions at each magnetic

field strength. We consider APR+DH 1.4 as our reference model. First we note, that

for very strong fields (> 5 × 1015 G), the frequencies approach those predicted by the
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Figure 3.22: Normalized amplitude of the Fourier transform at the surface of the star
(between pole and equator) as a function of the frequency for the stellar
model APR+DH with 1.4 solar masses. The horizontal lines indicate the
frequency for the upper QPOs predicted by the semi-analytic model. The
color scale ranges from white-blue (minimum) to orange-red (maximum).

semi-analytic model, because the influence of the crust should decrease for increasing

magnetic field strength. There is some low frequency oscillation which corresponds to

U
(+)
∗ (compare with Fig. 3.18), and there are some additional, strong Fourier modes near

to π/2 resulting from the edge modes, which are stronger than in the case without crust.

However, when decreasing the strength of the magnetic field from 5 × 1015 G to 2 ×
1015 G, the Fourier amplitude of the QPOs at the surface decreases, e.g. the maximum

decreases from 1.0 to 0.37 in units normalized to the maximum amplitude at B =

5× 1015 G. As we have already seen in Fig. 3.15, this is expected, because for decreasing

field strength the crust will shield the QPOs. We further see that the additional structure

in the Fourier amplitude at about the fundamental frequency of U
(−)
0 and the strong

feature just below the frequency of U
(−)
1 close to the equator are increasing in amplitude

relative to the upper QPOs. We note here that in the transition region of magnetic field
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Model FFT(1015 G)
FFT (no crust)

Model FFT (1015 G)
FFT (no crust)

APR+DH 1.4 0.07 APR+NV 1.4 0.06
APR+DH 1.8 0.11 APR+NV 1.8 0.005
APR+DH 2.2 0.33 APR+NV 2.2 0.04

L+DH 1.4 0.16 L+NV 1.4 0.016
L+DH 1.8 0.36 L+NV 1.8 0.03
L+DH 2.2 0.15 L+NV 2.2 0.009

Table 3.7: The maximal magnitude of the Fourier transform at the surface of the star
for a dipole magnetic field strength of 1015 G. Simulations for different EoS,
and with and without crust are considered and compared.

strengths the correspondence between the frequencies of the semi-analytic model and

the simulated QPOs should be taken with caution and we do not expect a simple QPO

structure as in the two limiting cases.

When decreasing the magnetic field strength towards 8 × 1014 G a dominant feature

originates from U
(+)
0 . In a sequence of similar plots for different magnetic fields not

shown here, one can follow the slight change in frequency until reaching approximately

the value predicted by the semi-analytic model for reflection at the crust-core interface.

Comparing with Fig. 3.15 the corresponding spatial structure of the mode has still some

amplitude inside the crust, i.e. our interpretation in terms of the U
(+)
0 QPO makes

sense. The general trend is that the magneto-elastic upper QPOs exhibit a decreasing

amplitude near the surface for decreasing magnetic field strength.

For the weakest magnetic field (4 × 1014 G), the upper QPOs have no strong ampli-

tudes, because they are confined to the fluid core. The dominant contribution at the

surface results from the edge modes in this case (see Fig. 3.12). The QPO with the

largest amplitude inside the crust is the edge QPO E
(+)
2 (see Fig. 3.22) with a frequency

slightly above U
(+)
0 (see also the right panel of Fig. 3.13). Other contributions to the

Fourier signal at the surface stem from the two edge QPOs E
(+)
1 and E

(+)
3 at frequencies

just below U
(−)
0 and close to U

(+)
1 , respectively. However, the edge QPOs are damped

much faster than turning-point QPOs, and the amplitude in the Fourier analysis for the

same initial data is about two orders of magnitude smaller than for a reference model

without crust. Therefore we doubt that edge QPOs are the explanation for the observed

frequencies in SGR for magnetic fields B . 5× 1014 G.

In Table 3.7 we give the maximum of the Fourier amplitude at the surface for a

simulation with crust at 1015 G with respect to the corresponding simulation without

crust. The closer this value is to 1.0 the stronger is the amplitude of the QPO at the

surface. For very low values the crust shields the QPOs efficiently, i.e. they are confined

to the core of the neutron star. For the DH crustal EoS there is already a considerable

amount of oscillations penetrating the crust and reaching the surface. We therefore

argue that magneto-elastic oscillations break through the crust around 1015 G. However,

for the NV EoS the amplitudes for models with crust never reach 10% of the values for
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Model B30Hz[1015 G] B28Hz[1015 G]
APR+DH 1.4 6.2 5.8
APR+DH 1.8 8.9 8.3
APR+DH 2.2 13.8 12.9

L+DH 1.4 5.1 4.8
L+DH 1.8 6.9 6.4
L+DH 2.2 9.0 8.4

APR+NV 1.4 6.4 6.0
APR+NV 1.8 9.2 8.6
APR+NV 2.2 14.2 13.2

L+NV 1.4 5.8 5.5
L+NV 1.8 7.7 7.2
L+NV 2.2 10.1 9.5

Table 3.8: Magnetic field strength required to match the frequency of the fundamental
Alfvén QPO to 30 Hz observed in SGR 1806-20 and 28 Hz of SGR 1900+14.

models without crust, as the crust is more extended in this case, and QPOs can break

through the crust only for even stronger magnetic fields. Nevertheless, the threshold of

B ∼ 1015 G should be a good approximation for all models. Interestingly, this result is

comparable with estimates of the magnetic field strengths for SGRs showing giant flares.

3.5 Magnetic fields confined to the crust

In the preceding sections we focused on dipolar magnetic fields which penetrate the

whole neutron star. However, it is not guaranteed that such configurations exist in

nature. In this section we study magnetic fields which are still purely poloidal, but

which are confined to the region of the crust. This scenario may be realized when the

protons in the core of the neutron star form a type-I superconductor, and hence expel the

magnetic field from the core due to the Meissner-Ochsenfeld effect. As in the preceding

sections the model of reference is calculated with the APR + DH EoS and has a mass

of 1.4 solar masses.

3.5.1 Magnetic field configuration

The details of how to construct the magnetic fields confined to the crust are given

in AppendixE. We study different configurations which are, in particular, magnetic

fields matched to an exterior dipole, quadrupole, or octupole field. The amplitudes

of the magnetic field at the surface of the such configurations have different angular

dependence. Therefore, to compare the results, we label the different configurations

with their averaged magnetic field strength at the surface of the star and use this value

as reference magnetic field strength.
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Figure 3.23: Upper panels: Magnetic field configurations for models matched to an ex-
terior dipole (left panel), quadrupole (middle panel), and octupole (right
panel), respectively. Lower panels: Alfvén spectra of the magnetic field
configurations given in the corresponding upper panel obtained with the
semi-analytic model for an averaged surface magnetic field of B = 1014 G.
The field lines are labeled by integer numbers increasing with angle θ. The
θ range for the labeling of the red lines in the middle (right) panel is [0◦, 50◦]
([0◦, 40◦]), and for the blue lines [50◦, 60◦] ([40◦, 45◦]). The labels for the
green lines in the right panel start at θ = 65◦. The color denotes the field
lines which define the corresponding spectrum.

The field topology of the configurations and the corresponding spectra of the purely

Alfvén oscillations at B = 1014 G are given in Fig. 3.23. The parts of the Alfvén spectrum

associated with a particular family of field lines are indicated by using the same color in

the graphs showing the spectrum and the magnetic field configuration. If the magnetic

field is confined to the crust the maximum field strength is found at the crust-core

interface. The maximum strength for the dipolar (quadrupolar, octupolar) configuration

is about 5 (12, 5.3) times the average value at the surface. This is a factor of a few

stronger than the central value of the interior field of configurations penetrating the

core. Consequently, the structure of the magnetic field varies on smaller scales. There

are field lines which close inside the crust, e.g. near the equator for the dipole (red lines

in Fig. 3.23) and octupole (green lines) configurations, or at θ ∼ 60◦ for quadrupole and

octupole configurations (see blue lines in Fig. 3.23). Because of stronger magnetic fields

on smaller spatial scales, we require higher numerical grid resolution and expect higher
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frequencies of the Alfvén oscillations.

Let us discuss the spectra obtained with the semi-analytic model of Appendix B as

given in the lower panels of Fig. 3.23. First, we note that for configurations matched

to an exterior dipole and octupole, there are no turning points present. Therefore, one

would expect QPOs only at the edges of the different branches of the continua. Second,

the frequencies of the fundamental oscillation of the short closed field lines are higher

than the frequencies we observe in the case of magnetic fields penetrating the core (a few

Hz at 1014 G). The same holds for the frequencies of the field lines located around the

closed lines (corresponding to the upper end of the red colored part of the spectrum) and

the short lines near the equator for the octupole configuration. The frequencies of the

field lines near the pole for the current magnetic field configurations are similar to the

ones of the magnetic field configuration penetrating the core. Third, in the spectrum for

the configuration matched to an exterior quadrupole we find two turning points at the

field lines between 80 and 100. However, the frequencies of the neighboring field lines

increase (for higher field line number) or decrease (for decreasing field line number). We

thus expect that there is a significant phase mixing due to numerical coupling, because

near to the crust-core interface the field lines are packed very densely. In the following we

will refer to magnetic field configurations matched to an exterior dipole as configuration

D, to an exterior quadrupole as Q, and to an octupole as O.

3.5.2 Alfvén oscillations

The spectra of magnetic fields confined to the crust are very steep near the edges com-

pared to the spectra of magnetic fields penetrating the core (see Section 3.3) and we only

find turning points in configuration Q. Moreover, the field lines near this turning points

are packed very densely and thus couple numerically to each other leading to enhanced

phase mixing. Therefore, we expect more difficulties to observe QPOs with significant

amplitudes in the simulations. Additionally, the requirements on the grid resolution are

more stringent than before, because of the finer spatial structure of the magnetic field.

We performed simulations of three different magnetic field configurations at B = 1014 G.

The grid resolution was 30× 80 (r× θ) for [rcc, rs]× [0, π], and the models were evolved

up to 5 s.

The Fourier analysis shows less significant amplitudes of the QPOs than in the case

of global magnetic field configurations. This does not come as a surprise, because of

the steep gradients in the spectra which are expected to cause faster phase mixing.

However, we were able to identify some QPOs as local maxima of the Fourier amplitude

(see Fig. 3.24).

The QPOs for the dipole configuration (upper left panel) have their maximum am-

plitudes near the pole. This is expected, because the edge of the continuum is located

there. With the numerical resolution used we were not able to see the other edge of

the continuum at much higher frequencies, because the associated field lines near the

equator have a very small spatial extension.

The quadrupole magnetic field has closed field lines near θ ∼ 60◦ (see Fig. 3.23).



92 3. MAGNETO-ELASTIC OSCILLATIONS OF MAGNETARS

x [km]

y
[k

m
]

x [km]
8

x [km]
8

1.4 Hz 4.0 Hz 20.0 Hz

86420
-10
-8
-6
-4
-2
0
2
4
6
8
10

6420 106420
x [km]

y
[k

m
]

x [km]
8

x [km]
8

1.0 Hz 4.3 Hz 13.1 Hz

86420
-10
-8
-6
-4
-2
0
2
4
6
8
10

6420 106420

x [km]

y
[k

m
]

x [km]
8

x [km]
8

0.9 Hz 3.1 Hz 3.9 Hz

86420
-10
-8
-6
-4
-2
0
2
4
6
8
10

6420 106420

Figure 3.24: Spatial structure of the low-frequency QPOs obtained by a Fourier analysis
for different magnetic field configurations. Upper left panel: configuration
D; Upper right panel: configuration Q: Lower panel: configuration O. The
corresponding frequencies are given, too. The color scale ranges from white
(minimum) to red-black (maximum).

The corresponding frequencies of the continuum are ∼ 100 Hz. Unfortunately, the grid

resolution was too low to analyze potential QPOs for these field lines, i.e. we find QPOs

only for the continuum of the open field lines. These are best seen in the plot for 4.3 Hz

in the upper right panel of Fig. 3.24. Only open field lines oscillate at the given frequency

and have large Fourier amplitudes near the pole and equator. Closed field lines do not

participate in the oscillations, as is clearly visible in Fig. 3.24

When the magnetic field is matched to an exterior octupole, we find oscillations of

the open field lines (best visible for f = 3.9 Hz in the lower panel of Fig. 3.24). The

red colored field lines in the right panel of Fig. 3.23 do not extend until the equator

and the corresponding QPO has a large amplitude around θ & 60◦. At 0.9 Hz we find

oscillations with significant amplitudes also for the field lines near the equator. At almost

all frequencies there is a non-vanishing Fourier amplitude at the closed field lines around

θ ∼ 50◦, which is probably caused by the too low grid resolution.

In none of the cases it is possible to clearly associate the observed QPOs with parts of

the spectrum. The most reliable interpretation is that some QPOs associated with the

open field lines near the pole have frequencies comparable to those the corresponding
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to edges of the continuum. The closed field lines are expected to oscillate at frequencies

above 100 Hz which we cannot confirm because of lack of spatial resolution. Further-

more, we are mainly interested in the frequency range below 100 Hz and models where

the elastic properties of the crust are included (see Section 3.5.3). Additionally, as a con-

sequence of the finer spatial structure of the magnetic field confined to the crust, there

is a much stronger numerical coupling of different field lines, which leads to an enhanced

phase mixing, and hence weaker QPOs. We expect this defect to be less important in

the coupled scenario, because for sufficiently low magnetic fields, the oscillations will be

dominated by the shear in the crust. The corresponding modes are sufficiently resolved

with the numerical resolution applied here.

3.5.3 Coupled magneto-elastic oscillations

We investigate the behavior of coupled magneto-elastic oscillations of the crust for the

magnetic field configurations introduced in Section 3.5.1. Therefore, a number of simula-

tions are performed with initial data consisting of a general perturbation with an angular

dependence l = 2 and l = 3 at different magnetic field strengths. The grid resolution is

the same as in the preceding section, namely 30× 80 (r× θ) for [rcc, rs]× [0, π], and the

integration time is t ∼ 2 s at B = 1014 G. For stronger fields, the integration time scales

inversely with the magnetic field strength.

The results of the Fourier analysis of these simulations are given in Figs. 3.25 and 3.26,

where the Fourier amplitude of the first four crustal shear modes, and their magneto-

elastic generalization are shown for different magnetic field strengths and different field

configurations (dipolar, quadrupolar, and octupolar). The averaged surface magnetic

field strengths are

Bdip = 3.75× 1014 G , (3.11)

Bquad = 2.35× 1014 G , (3.12)

Boctu = 2.23× 1014 G . (3.13)

When making general statements holding for all three magnetic field configurations we

use the label Bx.

At B = Bx the structure of the magneto-elastic QPOs is very similar to that of the

purely crustal shear modes (see Section 3.2) for all three field configurations, and for all

shear modes. The corresponding plots in Figs. 3.25 and 3.26 show how the unchanged

purely crustal shear modes approximately look like.

The assumed magnetic field configuration changes the structure of the former shear

modes in a different way. For example, the l = 2 QPO gets compressed towards field lines

entering the star near the pole in the presence of a dipolar surface field. The stronger the

field is, the closer to the pole the maximum can be found. This resembles the behavior

of the QPOs of purely Alfvén oscillations for this configuration (see Fig. 3.24). The QPO

structure of quadrupolar surface fields behaves completely opposite, i.e. the maximum

amplitude gets shifted towards the equator with increasing magnetic field strength. For
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Figure 3.25: Fourier amplitude of l = 2 and l = 3 crustal shear modes and their magneto-
elastic generalization for different magnetic field configurations and different
field strengths. The color scale ranges from white (minimum) to red-black
(maximum).
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Figure 3.26: Fourier amplitude of l = 4 and l = 5 crustal shear modes and their magneto-
elastic generalization for different magnetic field configurations and different
field strengths. The color scale ranges from white (minimum) to red-black
(maximum). A completely white panel indicates that no QPOs were ob-
served in the respective simulations.
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an octupole configuration the maximum remains at approximately its original position,

but it becomes narrower with increasing magnetic field strength.

For the change of the former l > 2 crustal shear modes we observe a similar behavior

depending on the particular field configuration. Additionally, there appear some pecu-

liarities. For the configuration matched to an exterior dipole, the observed structures of

the QPO align with the magnetic field lines. For low magnetic field strength the struc-

ture is oriented parallel to the crust-core interface, but with increasing magnetic field

strength it becomes clearly distorted and begins to look similar to that of purely Alfvén

QPOs. The amplitude of the maxima near the pole is always strongest. For symmetric

QPOs the node at the equator becomes more spatially extended compared to the case

of lower magnetic field strengths. This may be explained by the presence of closed field

lines, which decouple from their neighboring open field lines, and thus do not oscillate

in phase with them. For configuration Q, which has closed field lines at θ ∼ 60◦, we see

that the maxima near these lines have lower amplitudes compared to the maxima at the

pole or the equator (best visible in the right panel of Fig. 3.26). This structure agrees

with the one of the field lines. The open field lines surround the closed ones and reach

the surface near the pole and the equator. The behavior of the QPOs of configuration O

can be explained similarly. Here, we see an extended node at the equator for symmetric

QPOs as we found for configuration D. In the left panel of Fig. 3.26, configuration O

and B = 10× Boctu, one can even guess the extension of the region of closed field lines

near the equator by looking at the structure of the QPOs. Similarly, the closed field

lines around θ . 45◦ are reflected in the structure of the l = 5 QPO at B = 10× Boctu

(see right panel of Fig. 3.26).

A common feature of all configurations is that with increasing magnetic field strength

the identification of QPOs gets harder, because their amplitudes decrease. That is why

some QPOs are not present at all field strengths. We have not succeeded in identifying

the following QPOs: l = 4 at B = 10 × Bquad and B = 20 × Bquad, and l = 5 at

B = 20×Boctu. For even stronger magnetic fields B = 50×Bx it is almost impossible to

identify the magneto-elastic generalizations of the crustal shear modes, as the evolution

is completely dominated by the magnetic field.

How do the frequencies of the former purely shear modes change in the presence of the

magnetic field? To answer this question we display the frequencies of the QPOs shown

in Figs. 3.25 and 3.26 as a function of the averaged surface magnetic field strength in the

left panel of Fig. 3.27. Different colors indicate different QPOs associated to the zero

magnetic field shear modes (black: l = 2; red: l = 3; magenta: l = 4; blue: l = 5) and the

line style indicates the magnetic field configuration (solid: dipole; dashed: quadrupole;

dotted: octupole). At a surface magnetic field strength of about a few×1014 G the

frequencies of the QPOs begin to deviate significantly from those of purely shear crustal

modes, which are labeled along the y-axis. For the l = {2, 3, 4, 5} modes the zero

magnetic field frequencies are 24.6, 38.9, 52.2, and 65.1 Hz, respectively.

Sotani et al. (2008a) studied similar magnetic field configurations and found an in-

crease of the frequency of the QPOs with increasing magnetic field. Sotani et al. (2007)
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mode l field Bcrit bl
[1014 G]

2
dipole 4.8 1.656

quadrupole 11.1 1.072
octupole 9.0 0.999

3
dipole 6.0 1.569

quadrupole 6.8 1.706
octupole 13.9 1.202

mode l field Bcrit bl
[1014 G]

4
dipole 6.6 1.503

quadrupole 8.3 1.604
octupole 6.6 1.493

5
dipole 6.0 1.359

quadrupole 10.6 1.794
octupole 9.2 1.767

Table 3.9: Parameters Bcrit and bl of Eq. (3.15) for different magnetic field configurations
and strengths, respectively.

give an approximate formula of the dependence of the frequency on the magnetic field

fl(B)

f 0
l

=

√
1 + al

(
B

Bµ

)2

, (3.14)

where f 0
l is the frequency of the purely shear eigenmode, and Bµ = 4× 1015 G. We tried

to match the frequencies obtained in our simulations with this formula, but it turned

out that this approximation is not very accurate. Therefore, we generalized Eq. (3.14)

to

fl(B)

f 0
l

=

√
1 +

(
B

Bcrit

)bl

, (3.15)

where Bcrit, is the magnetic field at which the influence of magnetic field becomes im-

portant. The parameters Bcrit and bl are given in Table 3.9, and the corresponding fits

are displayed in the left panel of Fig. 3.27. The observed exponents deviate significantly

from bl = 2, the majority being close to bl ∼ 5/3. For very strong magnetic fields one

would expect a transition to Alfvén oscillations, where the frequency depends linearly

on B, i.e. bl → 2. However, in the presence of such strong fields, shear oscillations no

longer exist. In the regime studied here we expect a significant influence of the shear

modulus such that the asymptotic regime of bl = 2 is not reached yet, which may explain

the deviation from bl = 2.

There are three cases where the exponent bl is significantly lower than 5/3, namely

for l = 2 with configuration Q and O, and for l = 3 with configuration O. We assume

that this deviation is caused by the smaller spatial scales of the respective magnetic field

configuration compared to the scale of the shear modes. The proper oscillations of a

small-scale magnetic field predominantly couple to shear oscillations of the same spatial

size. If large parts of the crust oscillate without having strong spatial gradients like in

the case of low l modes, small scale magnetic field lines may not be excited, and thus

do not have a large influence on the oscillation.

We are able to extrapolate our results given by Eq. (3.15) to different values of the
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Figure 3.27: Left panel: Dependence of the frequencies of the n = 0, l = {2, 3, 4, 5}
QPOs on the magnetic field strength for different magnetic field configu-
rations which are confined to the crust. The purely crustal shear mode
frequencies are given in the axis label as 24.6, 38.9, 52.2, and 65.1 Hz. The
lines correspond to the fits according to Eq. (3.15) and the parameters are
given in Table 3.9. Right panel: Extrapolation of the QPO frequencies for
different values of the shear modulus µs in the presence of a dipolar magnetic
field for the QPO with l = 2. The red lines indicate the lowest observed
frequencies of the QPOs for the range of magnetic field strengths estimated
for the three magnetars showing giant flares (B = 6 . . . 21× 1014 G).

shear modulus, i.e. we can test if a different magnitude of the shear modulus can explain

the lowest observed frequencies of 18, 26, and 30 Hz (Steiner and Watts, 2009). If the

shear modulus µs in Eq. (2.86) is divided by any factor F , the equation conserves its

form if we rescale the background magnetic field Bk by the square root of this factor

and simultaneously multiply the time with
√
F :

∂
√
γSϕ

∂t̃
=
∂
√
−g(bϕB̃k + 2µ̃ss̃

k
ϕ)

∂xk
, (3.16)

∂
√
γBϕ

∂t̃
=
∂
√
−gvϕB̃k

∂xk
, (3.17)

2gkkg
ϕϕ
∂s̃k

ϕ

∂t̃
=
∂ξ̃ϕ

,k

∂t̃
=
∂vϕα

∂xk
, (3.18)

where

t̃ = t
√
F , s̃k

ϕ = sk
ϕ

√
F , B̃k =

Bk

√
F
, µ̃s =

µs

F
. (3.19)

This rescaling of the time leads to a inverse rescaling of the frequency and we obtain

the expected result that in the absence of a magnetic field, a decrease of the shear
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modulus of a factor F leads to a corresponding decrease of the QPO frequency by
√
F .

Consequently, the critical magnetic field for an equilibrium model with a rescaled shear

modulus (divided by F ) has to be divided by
√
F . KnowingBcrit and bl for an equilibrium

model we can compute the frequency of the QPOs for different shear moduli by

fl(B) =
f 0

l√
F

√
1 +

(
B

Bcrit/
√
F

)bl

. (3.20)

The corresponding curves for the dipolar background configuration, the lowest QPO

with l = 2, and F = {2, 4, 8, 16} are given in the right panel of Fig. 3.27. Clearly, the

decrease of the shear modulus leads to a decrease of Bcrit, i.e. the magnetic field begins

to be dynamically dominating at lower magnetic field strength than for large µs. With

the dipolar configuration we are not able to get oscillations at frequencies of 18 Hz at any

value of the shear modulus up to 1/16 of its tabulated value. To match the frequencies

of the QPOs at 26 or 30 Hz we need to rescale the shear modulus by a factor F ∼ 8 and

are only able to reach the frequencies in the lower end of the magnetic field estimates

for the magnetars showing giant flares B ∼ 6× 1014 G.

To summarize the findings of this section, we see a significant increase in the frequency

of the magneto-elastic generalization of the crustal shear modes with increasing mag-

netic field strength. The details of this increase, like the dependence on the magnetic

field strength or the spatial structure of the resulting QPOs, depend on the particu-

lar magnetic field configuration. At realistic magnetar field strengths at the surface of

B ∼ 1015 G the frequencies of the former crustal shear modes are shifted to such high

values that it is hard to explain the lowest frequencies of the QPOs observed in SGRs.
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4 Force-free magnetic field

configurations of the magnetosphere

In the preceding chapter we have discussed a model of magneto-elastic QPOs created in

the interior of a neutron star. To complete this model developed for an understanding

of the QPOs observed in giant flares of SGRs, we require a connection between the

oscillations inside the neutron star, and the emission from the latter. In our model this is

provided by the coupling through the magnetic field. In this chapter we thus investigate

how the interior oscillations may change the magnetic field in the magnetosphere of a

neutron star. A discussion of how the corresponding evolution of the magnetic field may

change the emission is given in Chapter 5.

We first introduce the force-free approximation in the Newtonian framework and dis-

cuss its validity for neutron star magnetospheres. A further simplification in form of

allowing only for self-similar solutions, leads to analytic expressions for the structure of

the magnetic field. The application of these self-similar solutions is very limited (see Sec-

tion 4.1.1), i.e. we have to apply more advanced techniques to construct magnetic fields

which can be matched to the fields obtained by our simulations of the neutron star inte-

rior. For this purpose we present the magneto-frictional method in Section 4.1.3, which

we adopt to the Schwarzschild spacetime. For simplicity and to speed up the calculation

of the magnetospheric fields, we linearize the problem in the magnetic field perturba-

tions. Consequently, the magnetic field configuration can be obtained analytically. We

show that for certain configurations the magnetic field in the whole magnetosphere can

be derived explicitly, which allows for a test of our methods. Finally, we present the

computed magnetic field configurations in the magnetosphere, where the magnetic field

obtained from the interior simulations serves as a boundary condition.

4.1 Theoretical methods and numerical tools

The Alfvén crossing time for a typical neutron star model with B ∼ 1015 G is of the

order of ∼ 0.1 s (see Table 3.8), and most of the observed QPOs have frequencies around

50 Hz (see Table 1.3). In the magnetosphere the Alfvén speed is almost equal to the

speed of light. The dynamical time scale of the near magnetosphere r . 1000 km is

therefore r/c . 1/300 s, which is one order of magnitude less than the time scale on

which the oscillations occur. We expect the important activities in the magnetosphere

to happen at radii smaller than 500 km (see Chapter 5). Therefore, we can assume

that any reconfiguration of the magnetosphere happens much faster than the interior
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evolution, i.e. the magnetosphere reaches almost instantaneously an equilibrium state

corresponding to the boundary conditions in terms of the magnetic field evolution of

the interior. Consequently, we are interested in static equilibrium configurations of the

magnetosphere.

In Newtonian physics we have the momentum equation of magneto-hydrodynamics

ρ
∂v

∂t
+ ρv∇v = J×B−∇p+ ρg , (4.1)

where g is the gravitational acceleration. We neglected rotation which has a minor

influence in the case of magnetars. In magneto-statics Eq. (4.1) reduces to

0 = J×B−∇p+ ρg . (4.2)

In the force-free approximation we further neglect all inertia and pressure contributions

from charge carriers ({ρ, p} << B2), but allow the current to change the magnetic field

structure. Therefore, the momentum equation reduces to

J×B = 0 . (4.3)

We will refer to this equation as the force-free condition. It states that the currents

flow along magnetic field lines, and consequently there is no Lorentz force acting on the

charge carriers.

Such a configuration can be maintained only under the assumption of ideal MHD,

in particular, this means that there have to be sufficient charge carriers to make the

medium perfectly conducting. The charge carriers, in the quiescent state of SGRs are

provided by the strong and twisted magnetic field, whose Bϕ component creates a large

electric potential difference between the foot-points of the field lines anchored in the

crust. This potential is sufficiently strong to accelerate electrons and light ions from the

atmosphere of the neutron star, which is formed by thermally excited particles, along

the magnetic field lines (Thompson et al., 2000). The number of these charge carriers

is by far not sufficient to create the required currents. However, any particle which gets

accelerated along the magnetic field lines creates e+-e− pairs when reaching the energetic

threshold for this process, which is easily fulfilled in the case of magnetars. The pairs in

turn get accelerated in direction of opposite potential and can create further pairs when

having acquired sufficient kinetic energy. Finally, these pair avalanches fill the magne-

tosphere with sufficient plasma to conduct the current (Beloborodov and Thompson,

2007). How this scenario is changed in the case of a giant flare is not clear and needs

further investigation.

Any static twist of the magnetic field will dissipate on the time-scale of years (Be-

loborodov and Thompson, 2007; Beloborodov, 2009). This is orders of magnitudes longer

than the time scale of interest for giant flares (∼ 400 s) and their QPOs (∼ 1 min), i.e.

we can safely neglect any dissipation in the magnetosphere, and the assumption of ideal

MHD holds.
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4.1.1 Self-similar solution

To fulfill Eq. (4.3) it suffices to impose that the induced current J is flowing along

magnetic field lines

J = ∇×B = P(Γ)B . (4.4)

Here P is a proportionality factor, and we introduced a flux parameter Γ which is

constant along magnetic field lines Bpoloidal·∇Γ = 0. Γ can be related to the ϕ-component

of the magnetic vector potential A:

Γ(r, θ) = r sin θAϕ(r, θ) . (4.5)

It thus defines the poloidal magnetic field Bpoloidal according to

Bpoloidal =
∇Γ× ϕ̂

r sin θ
, (4.6)

where ϕ̂ is the unit vector in the ϕ-direction.

In the self-similar model (Wolfson, 1995; Thompson et al., 2002) a particular ansatz

is chosen for Γ

Γ = Γ0

(
r

rS

)−p

F (cos θ) , (4.7)

where Γ0 = 1/2Bpoler
2
S. From Eq. (4.4) one may then deduce the following dependence

of P on Γ

P =
C1/2

rS

(
p+ 1

p

)1/2( |Γ|
Γ0

)1/p

. (4.8)

The parameter C is related to the strength of the current which creates the toroidal mag-

netic field. With the poloidal magnetic field given by Eq. (4.6), the r- and θ-components

of Eq. (4.4) give each independently

Bϕ =
p

p+ 1

ΓP(Γ)

r sin θ
. (4.9)

Plugging this in the ϕ-component of Eq. (4.4) results in the following equation

(1− x2)F ′′(x) + p(p+ 1)F (x) = −CF (x)|F (x)|2/p . (4.10)

Here x = cos θ and a prime denotes the derivative with respect to x. Eq. (4.10) is

the self-similar form of the Grad-Schlüter-Shafranov equation. This equation states an

eigenvalue problem for the eigenvalue p. With C given, there exists an infinite number

of eigenvalues p each characterizing a different family of multipoles (see Pavan et al.,

2009). For C = 0 the solutions of Eq. (4.10) give the usual multipolar expansion of the
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poloidal components of B in vector spherical harmonics.

Eq. (4.10) has to be solved numerically for p. The required boundary conditions are

F (1) = F (−1) = 0 (only radial field at the axis), F ′(0) = 0 (no Br at equator) and

F ′(1) = −2 (normalization). The components of the magnetic field can be expressed

explicitly in terms of the function F (x)

Br = −Bpole

2

(rs
r

)p+2 ∂

∂x
F (x) (4.11)

Bθ =
Bpole

2

(rs
r

)p+2 pF (x)

sin θ
(4.12)

Bϕ =

√
Cp

p+ 1

Bpole

2

(rs
r

)p+2 F (x)|F (x)|1/p

sin θ
(4.13)

Instead of C we can also characterize the self-similar magnetic fields by the angle ∆Φ,

which measures the twist between the foot-points of a field line which is anchored at

polar angle θ:

∆Φ = 2

∫ π/2

θ

Bϕ(θ)

Bθ(θ)

dθ

sin θ
. (4.14)

The corresponding parameter labeling the different configurations is the net twist of field

lines anchored close to the magnetic pole ∆ΦN−S := ∆Φ(θ → 0).

In the self-similar model the choice of the form of Γ and the parameter ∆ΦN−S (or C)

completely define the current distribution. However, only global twists can be prescribed,

and the magnetic field at the surface of the neutron star has to have a particular form

to provide the correct twist. Therefore, it is not possible to construct the self-similar

magnetospheric field from its values at the surface given by the evolution of the interior

of the neutron star. Nevertheless these configurations can serve as viable test cases for

more general approaches as will be discussed below.

4.1.2 Force-free magnetic fields in the Schwarzschild spacetime

Near to the neutron star surface, its mass causes a significant curvature of the spacetime,

and hence also effects the structure of the magnetic field of up to the level of several

percent. To describe the field consistently, we thus consider a non-Euclidean metric.

In the exterior we can assume the metric of a spherically symmetric body, i.e. the

Schwarzschild metric

ds2 = −α2dt2 + α−2dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (4.15)

with α being the lapse α := (1− 2M/r)1/2.

We follow Uzdensky (2004) and use an orthonormal basis ẽk = g
−1/2
kk ∂k = γ

−1/2
kk ∂k,

with k = {r, θ, ϕ} and γ being the 3-metric. The corresponding expression for the 3-

dimensional vector operators gradient ∇̃f , divergence ∇̃ ·B, and curl ∇̃ ×B are given
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in AppendixF. We use the tilde to indicate vector operations and vector components

which are given in the orthonormal basis, where the components of co- and contra-

variant vectors are equal γ
−1/2
kk Vk = V k̃ = Vk̃ = γ

1/2
kk V

k. In the following we will use the

representation with lower indices exclusively.

In this chapter we consider only the spatial components of the vectors. The relevant

Maxwell equations take the following form in the 3+1 split of the Schwarzschild geometry

(MacDonald and Thorne, 1982; Uzdensky, 2004)

∇̃ ·B = 0 (4.16)

∇̃ × (αB) = αJ . (4.17)

4.1.3 Magneto-frictional Method

A numerical method to construct force-free equilibrium magnetic field configurations is

the magneto-frictional method (Roumeliotis et al., 1994; Yang et al., 1986). The starting

point of this method is an initial guess for the configuration which does not fulfill the

force-free condition (4.3). The corresponding Lorentz force is balanced by a fictitious

friction term

J×B− µvfrict = 0 . (4.18)

This defines a fictitious velocity

vfrict =
J×B

µ
, (4.19)

where µ is the proportionality factor. In the original version Roumeliotis et al. (1994)

use a decomposition of the magnetic field into Clebsch variables α̂ and β̂

B = ∇̃α̂× ∇̃β̂ . (4.20)

This ansatz automatically ensures the solenoidal condition ∇̃ ·B = 0 and gives

B · ∇̃α̂ = 0 ; B · ∇̃β̂ = 0 , (4.21)

i.e. α̂ and β̂ are constant along field lines. The induction equation (Eq. (2.53))

∂B

∂t
= ∇̃ × (vfrict ×B) (4.22)

provides two equations for the evolution of the Clebsch variables,

∂α̂

∂t
+ vfrict · ∇̃α̂ = 0 , (4.23)

∂β̂

∂t
+ vfrict · ∇̃β̂ = 0 . (4.24)
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With the velocity defined in Eq. (4.19) these equations take the following form

∂α̂

∂t
= −J×B

µ
∇̃α̂ , (4.25)

∂β̂

∂t
= −J×B

µ
∇̃β̂ . (4.26)

If the Clebsch variables α̂ and β̂ are provided at the boundaries of the numerical in-

tegration domain, it is straightforward to solve these equations with a method of lines

combined with a Runge-Kutta explicit time-stepping. We have implemented a corre-

sponding scheme and recovered the configurations of Roumeliotis et al. (1994). However,

the magneto-frictional method in the way presented here has some serious drawbacks.

First, it is quite slow for strong twists ∆ΦN−S & 0.5π. Second, we are not able to

achieve stable evolutions if we provide the boundary condition at the neutron star sur-

face in terms of the magnetic field, as the numerical inversion of Eq. (4.20) at the neutron

star surface leads to unstable evolutions.

Therefore, we (and Viganò et al., 2011) are using a more direct way of evolving the

magnetic field to a force-free equilibrium configuration by integrating Eq. (4.22) (see also

Valori et al., 2005). Using the induction equation (2.53) and the condition of perfect

conductivity E = −vfrict ×B we get

∂B

∂t
= ∇̃ × (vfrict ×B)

= ∇̃ ×
(

(J×B)

µ
×B

)
=

1

ν
∇̃ ×

(
J×B

B2
×B

)
=

1

ν
∇̃ ×

(
α−1[∇̃ × (αB)]×B

B2
×B

)
, (4.27)

where we have introduced ν = µ/B2 in order to accelerate the relaxation towards an

equilibrium in regions of weak magnetic field. This choice also makes the dimension

of ν independent of the magnetic field [ν] = [∆t]/[(∆x)]2. As before we evolve this

equation by a method of lines combined with a Runge-Kutta method for the time advance

algorithm.

In this approach we need to provide boundary conditions for the computations at

the outer boundary of the numerical domain in radial direction. Here we match the

configuration to purely potential fields. However, the particular choice may have a non-

negligible influence on the results and/or on the accuracy of the numerical solution near

the outer boundary.



4.1. Theoretical methods and numerical tools 107

4.1.4 Linear approximation of the magneto-frictional method

Let us recall that our final aim is to find a mechanism which modulates the X-ray

emission of a giant flare. In our model the origin of these modulations are the oscillations

of the neutron star interior. If we find that this mechanism only works for very large

amplitudes of the perturbations, the proposed model does not work. Large amplitudes

would be inconsistent with our numerical approach for the stellar interior, which is based

on the assumption of linear perturbations. Moreover, large amplitude oscillations would

break the crust repeatedly causing further reorganizations of the magnetic field. In this

case long time (& minutes) coherent oscillations seem not to be a realistic scenario. It is

thus reasonable to expect that when matching the interior magnetic field to the exterior

one that the perturbations stay in the linear regime in the magnetosphere, too.

We assume a dominant dipole field B0 = Br̃ẽr + Bθ̃ẽθ plus a perturbation of the

toroidal field according to B = B0 + δBẽϕ. The background field B0 is assumed to be a

potential field, and can be determined by the potential Aϕ. The latter is related to the

Faraday tensor through

Fµν = Aµ,ν − Aν,µ . (4.28)

The poloidal magnetic field is given in orthonormal coordinates by the Faraday tensor

B θ̃ = Bθ̃ = −Fϕ̃r̃ = − αFϕr

r sin θ
, (4.29)

B r̃ = Br̃ = Fϕ̃θ̃ =
Fϕθ

r2 sin θ
. (4.30)

The currents induced by B can be calculated with Eq. (4.17). In axisymmetry all

derivatives with respect to ϕ vanish such that we get

Jr̃ =
1

r sin θ
(sin θδB),θ , (4.31a)

Jθ̃ = −1

r
(rαδB),r , (4.31b)

Jϕ̃ =
1

r

[
α (rBθ̃),r −Br̃,θ

]
= 0 , (4.31c)

where the last equality applies if the poloidal magnetic field is a potential field. Then

the cross product J×B reads

J×B =

 Jθ̃δB

−Jr̃δB

(J×B)ϕ̃

 =

 O ((δB)2)

O ((δB)2)

(J×B)ϕ̃

 = 0 , (4.32)

such that the only non-trivial equation which has to hold up to linear order in δB is the

condition for the ϕ̃-component. Plugging J × B into Eq. (4.27) shows that the r̃- and

θ̃-components of the magnetic field are constant up to linear order. The final equation
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for the evolution of δB is

∂δB

∂t
=A1δB + A2(δB),θ + A3(δB),r +

B2
θ̃

r2
(δB),θ,θ + α2B2

r̃ (δB),r,r

+ 2
Bθ̃Br̃α

r
(δB),r,θ , (4.33)

with

A1 =−
B2

θ̃

r2
+
Bθ̃Bθ̃,θ tan θ

r2
− 2

B2
θ̃
tan2 θ

r2
+
α2Br̃

r

(
Br̃,r − 2

Br̃

r

)
+ αBr̃(Br̃α,r),r

+
αBθ̃Br̃,θ

r2
+
αBr̃ tan θ

r

(
Bθ̃,r − 3

Bθ̃

r

)
+
Bθ̃Br̃,θα,r

r
− Bθ̃ tan θBr̃α,r

r
, (4.34)

A2 =
Bθ̃Bθ̃,θ

r2
− αBr̃Bθ̃

r2
+
αBr̃Bθ̃,r

r
+
Bθ̃Br̃α,r

r
, (4.35)

A3 =2αB2
r̃α,r +

αBθ̃Br̃,θ

r
+ α2Br̃Br̃,r . (4.36)

Eq. (4.33) can be evolved numerically like in the fully non-linear method using a

method of lines combined with an explicit Runge-Kutta time integration.

This method converges much faster to a force-free equilibrium than the non-linear one.

For axisymmetric fields it also automatically fulfills the divergence condition ∇B = 0.

Moreover, the accuracy of the calculation of the ϕ̃-component of the magnetic field is

much higher, because for the computation of the full 3-dimensional magnetic field vector

one has to evaluate derivatives of the poloidal field numerically, which cancel each other

analytically for potential fields. The numerical errors related to these computations

become important in regions where the poloidal field is much stronger than the toroidal

one. Therefore, the linear ansatz presented in this section is not only faster, but also

more accurate than the full method presented in the preceding section. However, its

main drawback is the limitation to small up to moderate twists which do not change the

poloidal field structure significantly. When referring to the current method in subsequent

sections we will call it the magneto-frictional method or short MF method.

4.1.5 Linear reconstruction of δB as a flux function

In the linear case we have an alternative possibility to obtain the toroidal magnetic field.

Let us have a look at the ϕ̃-component of the force-free condition (4.3).

0 = (J×B)ϕ̃

=
1

r

[
Bθ̃

sin θ
(sin θδB),θ +Br̃(rαδB),r

]
=

1

αr sin θ

(
B0 · ∇̃

)
(αr sin θδB) , (4.37)
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where we have used the explicit expression of the gradient in Eq. (F.4). Eq. (4.37) states

that αr sin θδB does not change in the direction of the background field, i.e. it is a flux

function which is constant along field lines. Moreover, the field lines coincide with the

equipotential lines of g
1/2
ϕϕ Aϕ̃ = r sin θAϕ̃ = Aϕ, i.e. Aϕ itself is also a flux function1.

We can use Aϕ to map δB from the surface into the exterior, i.e. we have to get the

value of the potential Aϕ at a given point rx and then check what is the corresponding

magnetic field δB at the surface at the same potential. Thus δB has the same value at

the location rx in the magnetosphere.

The approach based on the linear reconstruction is very fast, because it provides

directly an explicit expression of the ϕ̃-component of the magnetic field in the magne-

tosphere if the poloidal field B0 or its potential Aϕ̃ is given. For the magnetic field

configurations we study δB/B0 . 0.05, the linear approximation should be valid and

we do not expect large corrections of the poloidal magnetic field by the induced twist.

Moreover, there are two major advantages. The first is that we can construct the mag-

netospheric field from the magnetic field at the boundary, which was not possible in the

original approach of the magneto-frictional method which uses Clebsch variables. The

second advantage is that we do not need to specify any boundary conditions in the outer

part of the magnetosphere as in any version of the magneto-frictional method.

The poloidal component of the magnetic field is given by the output of the “magstar”

routine of the LORENE library in our simulations. We use the latter to construct

equilibrium models of the neutron star interior. “magstar” provides the potential Aϕ

(or Aϕ̃) corresponding to the magnetic field in the exterior, and the boundary value

of δB at the stellar surface is determined during the evolution of the interior. At the

surface we thus have an explicit relation between δB and the potential δB = δB (Aϕ̃).

To obtain the value of δB at any point in the magnetosphere, we take the potential

Aϕ̃ at the corresponding coordinates and locate the position at the surface with the

same potential. Then δB is interpolated from its neighboring grid points by a four-point

Lagrange polynomial. When referring to this method in subsequent sections we will call

it the flux-function reconstruction or short FFR.

Analytical solution

In a Newtonian framework the poloidal currents are given by Jr = (sin θδB),θ /(r sin θ)

and Jθ = − (rδB,r) /r, respectively. Assuming a dipolar poloidal field Br = 2mB cos θ/r3

and Bθ = mB sin θ/r3, where mB is the measure of the magnitude of the magnetic field,

Eq. (4.37) leads to the following expression

0 =
1

r3

[
2mB cos θ (rδB),r +

mB

r
(r sin θδB),θ

]
= 2 cos θ (rδB),r + (sin θδB),θ . (4.38)

1The ϕ̃-component of 0 = B̃ × B̃ together with the definition of B̃ in Eq. (4.29) gives B̃ · ∇̃Aϕ = 0,
i.e. the gradient of Aϕ is perpendicular to the magnetic field direction, and hence Aϕ is constant in
direction of B̃
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Separating the variables δB = f(θ)g(r) gives

2
[rg(r)],r
g(r)

= − [sin θf(θ)],sin θ

f(θ)
. (4.39)

With the ansatz g(r) = rλr and f(θ) = sinλθ θ we obtain the relation

2(λr + 1) = −(λθ + 1)

λr = −λθ + 3

2
. (4.40)

With λ = λθ we get

δB = r−
λ+3

2 sinλ θ (4.41)

This result shows that the self-similar ansatz, i.e. all magnetic field components have

to have the same fall-off behavior with the radius r, is only valid for a particular class

of surface magnetic fields. In the present example of a dipolar background field the

poloidal magnetic field components behave like B0 ∼ r−3, such that the only allowed

self-similar solution would be λ = 3.

The results of this short section can be used to test the methods presented earlier in

this chapter. These can be simplified to the Newtonian framework by setting α = 1.

4.2 Force-free configurations of neutron star

magnetospheres

Before calculating the configurations of the magnetic field in the magnetosphere of neu-

tron stars according to the evolution of the stellar interior, we perform two tests of

the applicability of the methods we have given in the preceding section. Therefore, we

check whether we can recover the analytical solution given in Eq. (4.41) and compare

our results with the self-similar solutions of Section 4.1.1. During the latter step we

also estimate up to which toroidal magnetic field strength our methods give sufficiently

accurate results.

4.2.1 Comparison with analytical solution

In Section 4.1.5 we derived an analytical solution in a Newtonian background Eq. (4.41).

We compare this solution with the results of the two different methods presented in

Sections 4.1.4 (MF) and 4.1.5 (FFR), respectively. For this purpose we plot the ratio of

the numerically obtained δB and the analytic solution (Fig. 4.1). The numerical grid is

the same in both cases, and contains 100× 80 cells for the domain [rs, 500 km]× [0, π].

The radial grid is logarithmic, and the angular one equidistant.

For both methods we recover the analytical solutions inside major parts of the domain.
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Figure 4.1: Ratio of the numerically obtained configuration and of the analytical solution
of Section 4.1.5. The five different configurations shown are characterized
by the functional behavior given in each panel. The upper panels show the
results with the magneto-frictional method (MF) and the lower ones those of
the flux-function reconstruction (FFR). Larger deviations found with the MF
method near the outer boundary are due to the imposed boundary condition
of zero δB. Near the polar axis the relative numerical error is mainly caused
by the small absolute value of the magnetic field, where δB ∼ sinλ θ.

The most prominent deviations are found near the polar axis. This is natural, because

there the absolute value of δB approaches zero. Consequently, the relative deviation from

the analytical solution which is shown in the figure increases. Moreover, the decline

of the surface field as ∼ sinλ θ near the pole gives rise to numerical problems when

computing the derivatives required in the MF method. The higher λ is, the larger is

the θ-derivative, and hence the numerical error of the derivative. Similar arguments

hold in the reconstruction of the magnetic field with the FFR method. Because of the

strong gradient and small magnitudes of δB near the axis, the relative accuracy in the

interpolation drops in this region.

The additional deviations found with the MF method near the outer boundary are

caused by the boundary conditions chosen there. In the current example, the δB com-

ponent of the magnetic field is set to zero, because we do not expect currents to extend
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up to infinite spatial distance. This causes the magnetic field obtained with the MF

method to be different from the analytic solution near the outer boundary. This differ-

ence also propagates inward through the evaluation of derivatives during the numerical

procedure. However, it is clear from Fig. 4.1 that the field near to the neutron star is

almost unaffected.

4.2.2 Comparison with self-similar models

The non-linear solution of the self-similar configuration serves as a further test of our

implementation. Moreover, we can estimate up to which toroidal magnetic field strength

our method reproduces the self-similar solutions with sufficient accuracy. In this section

we study the results obtained with the FFR method. The MF method gives very sim-

ilar configurations of the magnetic field, but is computationally much slower than the

FFR method and produces less accurate results. For example, see Fig. 4.1, where the

numerical result is influenced by the outer boundary condition.

In Fig. 4.2 we show the ratio of the toroidal and poloidal magnetic field strength of

different self-similar solutions with increasing total twist angle ∆ΦN−S = {0.1, . . . , 1.0}.
From here on we omit the subscript N − S and refer to the total twist angle simply as

∆Φ. The solid lines in the figure are equipotential lines of the poloidal current caused

by the toroidal magnetic field component, whereas dashed lines indicate equipotential

surfaces of the current for a configuration obtained with the FFR method. Same colors

represent same current magnitudes.

In the first panel of Fig. 4.2 (∆Φ = 0.1) the solid (self-similar) and dashed (FFR

method) lines are almost indistinguishable, i.e. the linear approximation and the FFR

method give approximately the same currents as the full self-similar model. The stronger

the twist gets the more the linear results differ from the self-similar ones. In the last panel

(∆Φ = 1.0) there are significant differences in the exact location of the equipotential

surfaces of the poloidal current. For example, the solid blue line crosses the equator at

around 400 km, while the corresponding dashed line crosses it at ∼ 330 km. However,

the general shape of the surfaces is still very similar in both the linear approximation and

the full solution. We note that in the linear approach the current is underestimated. This

is caused by two main effects. First, we neglect the toroidal current which in general has

to be considered for non-linear configurations. Second, the poloidal magnetic field lines

get inflated (Roumeliotis et al., 1994; Viganò et al., 2011). Consequently, the currents

extend to larger radii as can be seen in Fig. 4.2.

We consider the configuration with ∆Φ = 0.5 as the limiting case up to which the

linear FFR methods produces reliable results, because for stronger twists the deviations

from the non-linear, self-similar model start to become significant. The ratio of the

toroidal and poloidal magnetic field strength does not exceed 25% in this model. We

thus take a more conservative estimate of the maximum acceptable toroidal magnetic

field δB/Bpoloidal ≤ 0.1, which should give at most a couple of percent deviation of the

magnetic field configuration.
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Figure 4.2: Amplitude of δB/B0 in the magnetosphere around a neutron star for self-
similar magnetic field configurations (color coded). Solid lines: Equipotential
surfaces of the current of a self-similar solution. Dashed lines: Equipoten-
tial surfaces of the current of a numerical solution obtained with the FFR
method. The boundary magnetic field at the surface of the neutron star
agrees with that of the self-similar solution. The constant ∆Φ given in the
different panels is the total twist, and hence a measure of the toroidal mag-
netic field strength (see Eq. (4.14)).

4.2.3 Exclusion of antisymmetric configurations

In Section 4.1.5 we derived the equation for the FFR method (Eq. (4.37)). We found

that the magnetic field has to be constant along magnetic field lines. In particular,

this signifies that the magnetic field at the foot-points of the field lines has to be equal

on both hemispheres. Therefore, magnetic field configurations which do not have this

property are forbidden in the sense, that these configurations do not lead to force-free

magnetic fields. Fig. 4.3 demonstrates what happens in the MF method when we give

antisymmetric boundary conditions with respect to the equatorial plane.

As expected by the employed method the current starts to align with the magnetic

field in order to reduce the Lorentz force J × B. This is indicated by the displayed

field lines in Fig. 4.3. Near the pole the alignment occurs quite fast, while near the
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Figure 4.3: Integration steps of the MF method when imposing antisymmetric boundary
conditions for the surface magnetic field. (Time increases from left to the
right.) The background gives the toroidal magnetic field strength δB, and the
corresponding color scale ranges from blue (104 G) to orange-red (5×109 G).
The field lines of the current (red lines) align close to the pole with the
field lines of the poloidal magnetic field (blue lines). Near the equator the
alignment proceeds much slower, and a current sheet is produced.

equator it takes very long computational time, because to fulfill the given antisymmetric

boundary condition on the magnetic field, strong currents have to be created at the

equator. Therefore, the final configuration will have a current sheet there. However,

this current violates the force-free condition, because it is orthogonal to the poloidal

magnetic field lines.

One possible solution to this problematic behavior is that the corresponding currents

do not enter into the magnetosphere, i.e. a current sheet is created at the surface of

the neutron star. These currents have to be such that the magnetic field at the surface

is only allowed to be symmetric with respect to the equator, i.e. the formation of an

antisymmetric magnetic field at the surface is prohibited by these currents. The details

of how this might happen quantitatively is beyond the scope of the current work.

Since we did not know about the constraint on the symmetry of the surface magnetic

field when computing the interior solutions, the resulting configurations do not posses

any preferred symmetry in general. In order to apply our MF and FFR methods derived

in the preceding sections, we thus symmetrize the surface magnetic field and use only

the symmetric contribution to construct the exterior magnetic field.

4.2.4 Configurations matched to interior solutions

Finally we present the magnetic field configurations of the magnetosphere which are

determined by results of the simulations of the interior of the neutron star (see Chapter

3). We take the numerically obtained surface magnetic field, symmetrize it, and create

the magnetospheric field with the FFR method.

In Fig. 4.4 we give snapshots of the corresponding evolution of δB in the magneto-

sphere. We display the absolute value of δB in order to apply a logarithmic scale. This
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Figure 4.4: Snapshots of the evolution of the magnetic field in the exterior of a neutron
star matched to an interior evolution. The model is APR+DH 1.4 with
B = 3 × 1015 G, and the toroidal magnetic field strength is ∼ 1014 G (color
coded). Solid lines give equipotential surfaces of poloidal current magnitudes.
The inserts display a magnification of the region close to the stellar surface
as indicated in the first panel. Upper 10 panels: Beginning of the evolution.
Lower 10 panels: End of the evolution. The color scale ranges from blue
(108 G) to orange-red (1014 G).
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is necessary to visualize the change of the magnetic field over several orders of magni-

tude. The solid lines indicate the equipotential surfaces of the poloidal current caused

by the toroidal magnetic field. The inserts display a magnification of the region of the

magnetic field near to the stellar surface. The numerical grid in the magnetosphere of

100×80 (r×θ) zones covers the range [rs, 1200 km]× [0, π]. The radial grid is increasing

logarithmically, and the angular one is equidistant.

At large distances the magnetic field and the currents decrease very smoothly, and the

currents look qualitatively similar to those of the self-similar solutions given in Fig. 4.2.

Features of the current, like the closed equipotential lines near the outer boundary of the

computational zone, are caused exclusively by the boundary condition δB = 0. However,

near the surface of the star the magnetic field can be very different from that of the self-

similar solutions (see inserts in Fig. 4.4). The magnetic field may change its sign with

increasing radius or with increasing polar angle, i.e. it may have a very different angular

dependence than the simple self-similar models which have no nodes in θ-direction.

For a better understanding we plot the magnetic field at the surface at different times

in the left panel of Fig. 4.5. Additionally, we give an example of a self-similar field

(black dashed line). The magnetic field changes its structure completely having two

nodes (without a node at the pole) at t = 623 ms, no nodes at t = 637 ms, and again two

nodes at t = 647 ms. Self-similar configurations do not have nodes besides the one at

the pole, and the amplitude is always maximum at the equator. The amplitude of the

numerically obtained fields changes during the evolution (see Fig. 4.4). Note that there

is always a maximum of δB at θ = π/2, which may be explained with the linearized

induction equation (2.99): δB = (δB)ϕ = Brξϕ ,r + Bθξϕ ,θ. As a consequence of the

symmetry constraint (see Section 4.2.3) only antisymmetric velocity and displacement

ξϕ perturbations are allowed. Therefore, the θ-derivative of the displacement is expected

to be very large near to the equator, where ξϕ has a node. Moreover, at this location

the θ-component of the dipolar magnetic field has a maximum, i.e. we expect a very

strong δB near to the equator.

The latter feature influences the magnetic field only very close to the star, because the

strong (δB)ϕ component is localized at the equator, and the magnetic field lines of the

poloidal background configuration (or equipotential surfaces of the magnetic potential)

originating from this region extend only to about ∼ 1 km above the surface.

In the right panel of Fig. 4.5 we show the decrease of |δB| as a function of radius near

the equator at different times. As in the left panel the dashed line gives an exemplary

self-similar solution which decreases as ∼ r−3. All δB with the exception of the one at

637 ms decrease initially much faster than ∼ r−3, and for r & 200 km the magnetic field

strength of all our configurations decrease much slower than the self-similar solution.

The corresponding exponents of the radial dependence are given in the legend of the

right panel of Fig. 4.5, and all differ significantly from −3.

We associate the strong initial decrease of the magnetic field with increasing r to the

strong decrease of the surface magnetic field with decreasing θ. The magnetic field δB

along θ-direction at the surface can be mapped by the poloidal magnetic field lines along
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Figure 4.5: Left panel: Snapshots of the magnetic field at the surface of the neutron star.
The black dashed line corresponds to a self-similar solution with angular
dependence ∼ sin3 θ. Right panel: Decrease of (δB)ϕ near the equator as a
function of radius r for different snapshots of the evolution. The dashed line
corresponds to a self-similar solution with B ∼ r−3 for all components of the
magnetic field. The dependencies of B on r in the legend are the asymptotic
rates of the decrease for large r.

r-direction at the equator. After the strong decrease all, but the field at 637 ms (green

line), show a node at about θ & 1.3 (see left panel of Fig. 4.5). The corresponding node

in r-direction occurs only few km away from the surface, and hence can not be recognized

in the right panel. However, the next zero at θ < 0.8 for the different configurations

in the left panel is clearly visible as node in the right panel. First, the configuration

at t = 630 ms (red line) crosses zero (θ ∼ 0.8, r ∼ 15 km), then the configuration at

t = 623 ms (black line, θ ∼ 0.6, r ∼ 25 km), the one at t = 647 ms (magenta line,

θ ∼ 0.35, r ∼ 65 km), and finally the blue line for δB at 642 ms (θ . 0.05, r ∼ 150 km).

The decrease of δB at larger radii is thus determined by its fall-off behavior very close to

the pole. The steeper the latter decrease is (steep for t = 637, 623, and 630 ms, less steep

for t = 647 and 642 ms), the steeper is the decrease at large r (compare the exponent of

the fitting functions in the legend of the right panel in Fig. 4.5).

Our examples show that the self-similar approximation of the magnetosphere is not

sufficiently accurate to describe the magnetosphere of oscillating magnetars.
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5 Modulation of the X-ray emission by

magneto-elastic oscillations of the

magnetar

As a first step to explain the QPOs observed in giant flares of SGRs we computed the

magneto-elastic oscillations of the magnetar which in our model produce the observed

frequencies. In the preceding chapter we constructed the magnetic field in the magneto-

sphere corresponding to these oscillations of the stellar interior. The missing link to the

observations is provided in this chapter, where we discuss the modulation of the X-ray

signal by resonant cyclotron scattering (RCS). This process occurs when the radiation

interacts with the charge carriers of the currents caused by the twisted magnetosphere.

The possibility of significant RCS in the magnetosphere of magnetars has been dis-

cussed in Thompson et al. (2002). They showed in a simplified self-similar magnetic field

configuration with reasonable twists ∆Φ . 1.0 that the charge carriers of the currents

are sufficiently numerous to provide significant optical depth for RCS of the emitted

X-ray photons. The first quantitative analysis of RCS in magnetar magnetospheres was

performed in a 1-dimensional semi-analytic model by Lyutikov and Gavriil (2006). They

found that photons traversing a resonant surface1 of RCS are on average up-scattered

in frequency by a factor ∼ 1+ 2βT, with βT being the thermal velocity of the scattering

particles. In this thesis we calculate the photon propagation numerically using meth-

ods following Fernández and Thompson (2007), and Nobili et al. (2008a). Both groups

independently developed 3-dimensional Monte-Carlo radiation transport codes able to

compute photon propagation in a twisted magnetosphere.

The chapter is organized as follows: first, we discuss the physics of RCS in general,

and then specify to the conditions in neutron star magnetospheres. Second, we present

a numerical tool to solve the corresponding radiation transport with a Monte-Carlo

method, and test our implementation against simple self-similar configurations given in

the literature. Finally, we discuss the results of the application of our method to the

coupled core-crust-magnetosphere oscillations of magnetars.

1A region around a neutron star at which the resonance condition for RCS is fulfilled (see Eq. (5.1)).
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5.1 Resonant cyclotron scattering in neutron star

magnetospheres

The motion of charged particles in a magnetic field is characterized by Landau quantiza-

tion, i.e. the components of the momentum of the particles orthogonal to the magnetic

field direction are allowed to have discrete values only (see Landau and Lifshitz, 1981).

The energy difference between two successive Landau Levels is

∆E = ~ωc := ~
|Z|eB
mc

, (5.1)

where ωc is the cyclotron frequency, and Ze and m are the particle charge and mass,

respectively. Consequently, only photons with the corresponding energies n∆E = Eω =

~ω can be absorbed by the particles (at rest). When restricting to the simplest case

n = 1, we thus have the resonance condition

ω = ωc =
|Z|eB
mc

. (5.2)

The resonant magnetic field strength Bres can be expressed as

Bres = 0.088Eω[keV]

(
m

me

)
× 1012G . (5.3)

As long as the photon energy is less than a few keV, the resonant magnetic field is

much weaker than the critical QED field (Bres << BQED = 4.4× 1013 G). Knowing the

resonant magnetic field we can find the radius at which resonant absorption by particles

at rest occurs for a dipolar magnetic field configuration:

rres(θ) := rs

(
Bpole

Bres

)1/3(
1− 3

4
sin2 θ

)1/6

. (5.4)

This angle-dependent radius determines the resonant surface at which photons with the

corresponding energy scatter resonantly.

After the excitation of a particle into a higher Landau Level it releases the gained

energy almost immediately due to synchrotron radiation. This occurs on time scales

tsyn ∼ 1/ΓL, where ΓL = 4e2ω2
c/3mc

3 is the natural width of the first cyclotron line

(Ventura, 1979). From tsyn << rres/c we get the following constraint on the minimal

photon energy at which we can neglect the time delay between emission and absorption

Eω = ~ωc >> ~

√
3c2

4rresr0
∼ 0.01 eV

√
100 km

rres

(
m

me

)1/2

, (5.5)

where r0 = e2/mc2, in the case of electrons, is the classical electron radius r0 =

2.817940 × 10−13 cm. For photon energies above that of infrared radiation we thus

can safely approximate the cyclotron absorption and synchrotron emission as a single
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scattering process.

A characteristic quantity of any scattering process in a plasma is the optical depth τ

of a photon which travels a distance l. It is defined by I/I0 = e−τ , where I (I0) is the

intensity of the unscattered photons after a path with length l (at l = 0), and hence the

negative logarithm of τ describes the fraction of unscattered photons. τ can be related

to the cross section σ and the number density of the scattering targets nZ of the medium

the radiation passes through as follows

dτ = σnZdl . (5.6)

From here on we constrain the discussion to RCS, which near the resonance pro-

vides much larger optical depths than the Thompson cross section (elastic scattering of

electromagnetic radiation off electrons). The non-resonant contributions are negligible

because of the tiny line width ΓL, and the corresponding narrow and high resonance

peak. The differential optical depth dτ(ω, k̂, r) of a photon between r and r + dlk̂ for

RCS is (Nobili et al., 2008a)

dτ(ω, k̂, r) = dl

∫
σres(ω, k̂, r)dnZ = dl

∫ 1

−1

dnZ

dβ
σres(ω, k̂, r)dβ , (5.7)

where k̂ is the propagation direction, σres the resonant cross section, and βB̂ is the

velocity of the charge carriers along the magnetic field B = BB̂. The momentum

distribution of the charge carriers fZ(Wβ, r) has the general form

fZ(Wβ, r) =
1

W 3nZ

dnZ

dβ
, (5.8)

where W = (1− β2)−1/2 is the Lorentz factor and fZ is normalized to∫ ∞

0

fZ(Wβ, r)d(Wβ) = 1 . (5.9)

The main ingredient in Eq. (5.7) is the resonant cross section σres. General expressions

for σres have been presented in Canuto et al. (1971) and Herold (1979) (see also Daugherty

and Ventura, 1978; Ventura, 1979). For particles at rest and in the non-relativistic limit

the differential cross sections are given by Nobili et al. (2008a):

dσ

dΩ′

∣∣∣∣
1−j

=
3πr0c

8
δ(ω − ωc) cos2 Θ

(
cos2 Θ′δj

1 + δj
2

)
(5.10a)

dσ

dΩ′

∣∣∣∣
2−j

=
3πr0c

8
δ(ω − ωc)

(
cos2 Θ′δj

1 + δj
2

)
, (5.10b)

where Θ is the impact angle of the photon with the scattering target before the scattering,

and the prime denotes quantities after scattering. The subscripts 1 (2) indicate the initial

polarization, and the index j = {1, 2} represents the polarization after scattering. Under
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the conditions encountered in the magnetosphere of magnetars vacuum polarization

dominates over plasma effects (Fernández and Thompson, 2007; Nobili et al., 2008a).

Hence, the two normal modes of electromagnetic radiation are linearly polarized. The

index 1 (2) represents the ordinary or O (extraordinary or E) mode whose direction is

ê1 = (B̂ × k̂) × B̂ (ê2 = B̂ × k̂). The total cross sections are obtained by integrating

over all possible outgoing photon angles:

σi−j =

∫ 2π

0

∫ π

0

dσ

dΩ′

∣∣∣∣
i−j

dΩ′ . (5.11)

Inserting the different polarizations we obtain

σ1−2 = 3σ1−1 =
3π2r0c

2
δ(ω − ωc) cos2 Θ (5.12a)

σ2−2 = 3σ2−1 =
3π2r0c

2
δ(ω − ωc) (5.12b)

The total cross section of a photon with a given polarization is thus

σ1 = σ1−1 + σ1−2 (5.13a)

σ2 = σ2−1 + σ2−2 . (5.13b)

In the numerical implementation of the Monte-Carlo method (Section 5.2.1) we require

the following integrals in order to determine the photon direction after the scattering.

These integrals give the probability for scattering into an azimuthal angle smaller than

φ′

1

σi−j

∫ φ′

0

∫ π

0

dσ

dΩ′

∣∣∣∣
i−j

dΩ′ =
1

2π
φ′ , (5.14a)

and into an polar angle smaller than Θ′

1

σ1−1

∫ 2π

0

∫ Θ′

0

dσ

dΩ′

∣∣∣∣
1−1

dΩ′ =
1

σ2−1

∫ 2π

0

∫ Θ′

0

dσ

dΩ′

∣∣∣∣
2−1

dΩ′ =
1

2
(1− cos3 Θ′) , (5.15a)

1

σ1−2

∫ 2π

0

∫ Θ′

0

dσ

dΩ′

∣∣∣∣
1−2

dΩ′ =
1

σ2−2

∫ 2π

0

∫ Θ′

0

dσ

dΩ′

∣∣∣∣
2−2

dΩ′ =
1

2
(1− cos Θ′) . (5.15b)

The previous cross sections are given in the particle rest frame. However, the charge

carriers are required to move in order to allow for the presence of the currents. This mo-

tion changes the resonance condition because of the Doppler shift. One has to exchange

ωc in Eqs. (5.12) by

ωD =
ωc

W (1− βµSF)
. (5.16)

Here, µSF := cos ΘSF is the directional cosine of the photon with respect to the magnetic
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field. We use the subscript SF to indicate quantities in the stellar frame and PRF when

referring to the particle rest frame. The relation between the angles in the SF and the

PRF is

µPRF =
µSF − β

1− βµSF

. (5.17)

Plugging this into Eq. (5.12) we arrive at the resonant cross section in the stellar frame:

σ1−2 = 3σ1−1 =
3π2r0c

2
δ(ω − ωD)

(
µSF − β

1− βµSF

)
, (5.18a)

σ2−2 = 3σ2−1 =
3π2r0c

2
δ(ω − ωD) . (5.18b)

To solve the integral over β in Eq. (5.7), Fernández and Thompson (2007) have shown

that it is possible to re-express the δ-function in σres =
∑
σij in terms of β. The

transformation is based on

δ(ω − ωD) =
∑

k

δ(β − βk)

|∂ωD/∂β|βk

, (5.19)

where βk are the two solutions k = {1, 2} which satisfy ω = ωD

β1,2(r, k̂, ω) =
1

(ωc/ω)2 + µSF

(
µSF ±

ωc

ω

√(ωc

ω

)2

+ µSF − 1

)
. (5.20)

The partial derivative of ωD with respect to β can be obtained from the definition of ωD

(5.16). Substituting the δ-function, the integral is easily solved and the resulting optical

depth is given by

dτ1 = dτ1−1 + dτ1−2 = dl × 2π2r0cnZ
1

ωc

∑
k=1,2

W 2(1− βkµSF)|µSF − βk|fZ(βk, r) ,

(5.21a)

dτ2 = dτ2−1 + dτ2−2 = dl × 2π2r0cnZ
1

ωc

∑
k=1,2

W 2 (1− βkµSF)3

|µSF − βk|
fZ(βk, r) . (5.21b)

Note that if ω2
B/ω

2 +µSF−1 < 0, there is no solution for βk in Eq. (5.20). In this case

scattering is not allowed, and the photon can propagate until leaving the magnetosphere

or entering the region of allowed scattering again. Fernández and Thompson (2007)

showed that the photon escapes if the tangent of the photon path in the (ωB/ω, µSF)-

plane at ω2
B/ω

2 = 1− µ2
SF lies not between (µSF + 1)/(ωB/ω) and (µSF − 1)/(ωB/ω).

The treatment presented above makes use of some approximations which require fur-

ther discussion. First, the photons are assumed to be linearly polarized. This is justified,

because under the conditions in major parts of the magnetosphere vacuum polarization
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effects dominate over plasma effects (see Fernández and Thompson, 2007).

The second and more limiting assumption is the use of non-relativistic cross sections

in the Thompson limit. Nobili et al. (2008a) discuss this issue and argue that for photons

with energies of ∼ 1 keV the resonant magnetic field Bres is far below the critical field

of QED (BQED = 4.4 × 1013 G). Therefore, in the regime Eω . 50 keV the recoil of

particles is not important during the absorption if the particles are mildly relativistic,

i.e. the Lorentz factor is W . 10. The recoil starts to be dynamically important if

the photon energy becomes comparable to the energy of the scattering particle at about

Eω & 50 keV∼ mc2/W . We are aware that this is a major limitation of the project in

its current stage, and the next step planned is to follow Nobili et al. (2008b) to include

a more appropriate description of the cross sections. In particular, for the giant flare

whose spectrum peaks at about 10 keV these corrections are important for a quantitative

analysis.

5.2 Monte-Carlo radiation transport

For simulating the propagation of photons through an interacting, but not opaque

medium Monte-Carlo (MC) techniques are highly appropriate. The process of a sin-

gle scattering event is probabilistic in the following sense. First, the exact location of

the scattering of a single photon can not be obtained deterministically. It is only possible

to calculate a probability for the scattering up to a certain point along the photon path.

Second, depending on the process the direction of the photon after scattering follows a

probability distribution.

To obtain significant statistics of the photons, a large number of photons propagating

through the medium of interest has to be simulated. Therefore, in particular in optically

thick media, where a large number of scattering events per photon may occur, MC

methods can be computationally expensive. Under these conditions algorithms based

on the diffusion approximation are usually preferred (Mihalas, 1978). Since we do not

expect an optically thick atmosphere for our RCS problem2, we can make use of MC

methods and their advantages: the physics of the desired scattering process is simulated

directly, it is possible to keep track of interesting physical quantities, and in principle MC

algorithms are easy to implement and easy to be extended by the inclusion of additional

scattering processes.

The MC method used to calculate the RCS of photons in magnetar magnetospheres

is illustrated in the flowchart of Fig. 5.1. At the beginning of the loop, one specifies the

properties of the photon, i.e. the location where the photon is emitted and the direction

of propagation of the photon. Additionally, the polarization and energy (or frequency) of

the photon are set. The next task is to calculate the differential optical depth Eq. (5.21)

at the given location with a chosen travel distance dl. The optical depth is assumed to be

2The major part of the scattering is supposed to occur away from the neutron star or the fireball
which are optically thick, and photons hitting the stellar surface or the fireball are assumed to be
absorbed.
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Choose seed photon

Calculate optical depth

Scatter ?

Propagate photon

Scattering 
Update photon

Escape ?

Hit stellar surface ?
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no

no

Store photon

yes

no

Ignore photon
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Figure 5.1: Schematic illustration of the implementation of the Monte-Carlo method
of RCS in neutron star magnetospheres. Rounded rectangles are operating
structures and ellipses represent decision points.
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constant along dlk̂, so that dl has to be sufficiently small for an accurate approximation.

If the accumulated optical depth along the photon trajectory (see below Eq. 5.22 for

details) reaches a given value, determined as a random number at the beginning of the

simulated propagation, the photon scatters and the state of the photon is updated. If

the photon does not reach the given optical depth, it is propagated forward without

scattering. After the photon has been propagated or scattered we check whether it hits

the stellar surface or whether it leaves the computational domain. In the former case

we ignore the photon, while in the latter case we store the photon and restart the MC

scheme with a new one. If none of the two applies, we redo the loop starting with the

calculation of the optical depth.

5.2.1 Numerical implementation

For the implementation we closely follow Nobili et al. (2008a) and Fernández and Thomp-

son (2007) with slight deviations. The MC code is based on a spherical coordinate system

with logarithmic spacing in radial direction and equidistant grids in θ and ϕ direction. It

is written in the C programming language and OpenMP parallelized. The details of the

different steps of the implementation (see previous section) are given in the following.

Properties of seed photons: The properties of the seed photons depend on the partic-

ular problem we consider. Therefore, the code is constructed such that we can specify

the location, polarization, and the propagation direction of the seed photon arbitrarily.

We are also free to specify the particular energy distribution of the seed photons, from

which we get the photon frequency by drawing a random number.

Calculation of the differential optical depth: The optical depth is calculated according

to Eq. (5.21). The required input here is the number density nZ of scatterer. This is

defined by the currents, and hence the magnetic field configuration. If the obtained

optical depth is larger than 10−4, we reduce the spatial distance dl to obtain more

accurate results, in particular, near the resonances.

Scattering event: If the accumulated optical depth reaches a previously drawn random

number

τl =

∫ l

0

dτ = − lnU , (5.22)

where U is an uniform deviate, the photon is scattered. To solve the integral numerically,

we follow Nobili et al. (2008a) and propagate the photon in small steps with length dl

(details see below). The accumulated optical depth is simply the sum of the differential

optical depths of the different steps τi =
∑

i dτi. If we reach τi ≥ τl we linearly interpolate

between the last two steps.

Specifying a scattering process requires several pieces of information. We have to

decide whether the scattering particle has the velocity β1 or β2, whether the photon

changes polarization, and we have to find the scattering angles after re-emission. The

polarization can be randomly chosen by comparing the corresponding fractions of the

cross sections and drawing a unit deviate U1. We switch polarization if U1 > σ1−1/(σ1−1+
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σ1−2 = 0.25 [U2 > σ2−2/(σ2−1 + σ2−2) = 0.75] for the mode 1 [2]. The decision in favor

of β1 or β2 depends on another random number U2. If U2 < dτ(β1)/[dτ(β1) + dτ(β2)]

the velocity of the scattering particle is β1, otherwise β2.

The new propagation direction of the photon with respect to the magnetic field after

the scattering is defined by the two angles Θ′ and φ′. For linearly polarized light φ′ is

arbitrary in the sense that the corresponding distribution is isotropic. Therefore, we

chose φ′ = 2πU3. In Eqs. (5.15), we have given the angular distribution of the scattering

cross section. We thus can chose Θ′ for the final polarization state 1 (2) according to

cos Θ′ = 2U4 − 1 (cos3 Θ′ = 2U4 − 1). Finally, φ′ and Θ′ have to be transformed to the

stellar frame.

Due to the Doppler shifts caused by different incident and emergent angles, the fre-

quency of the photon changes according to

ω′ = W 2ω(1− βkµ
incident
SF )(1 + βkµ

emergent
SF ) (5.23)

Propagation of photons: We have implemented two different methods for the numerical

integration of the photon paths between successive scatterings. The first is for a purely

Newtonian background. The photon is propagated by transforming locally to Cartesian

coordinates, integrating the three equations xi
new = xi

old + dl k̂i with i = {1, 2, 3}, and

transforming back to spherical coordinates. The second method takes into account

the curvature of the spacetime caused by the neutron star. In this case we follow the

photons along geodesic trajectories in the Schwarzschild spacetime. The corresponding

equations describing the change of position r, frequency ω, and direction k̂, which have

to be integrated numerically, are given in AppendixG.

The propagation is stopped when the photon has either reached the defined outer

boundary of the numerical domain, or if it enters the region in the (ωB/ω, µSF)-plane

where scattering is forbidden and does not re-enter in regions where scattering is allowed

again.

Storage of escaped photons: The photons are stored in a 3D array containing infor-

mation about the two directional angles θ and ϕ (in the stellar frame) and the photon

frequency. If not stated otherwise we chose the number of patches in the (θ − ϕ)-grid

to be 10 × 10 for the output of non-axisymmetric configurations. This means that the

patches reach from θ = i π/10 to θ = (i + 1) π/10 [ϕ = j π/5 to ϕ = (j + 1) π/5]

with {i, j} = {0, . . . , 9}, and are labeled by the corresponding center values in degree

θ = {9 ◦, 27 ◦, . . . , 171 ◦} [ϕ = {18 ◦, 54 ◦, . . . , 342 ◦}].

5.2.2 Specifying the physical ingredients

In the preceding section we described the numerical implementation of a MC method

to simulate the RCS. Intentionally, we did not specify all physical ingredients at this

point to have a numerical tool as general as possible. Additionally, several conditions

and physical assumptions play a major role for the calculation of RCS spectra. They

strongly depend on the model which is used and require further discussion.
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Seed photons: The properties of the seed photons depend on the problem to be inves-

tigated. For the quiescent emission from the magnetar, the photons originate from any

point at the surface. Therefore, we set the initial point by drawing two random numbers

θ0 = πU1 and ϕ0 = 2πU2. For axisymmetric problems we can chose ϕ = 0 everywhere.

For simplicity we assume radially streaming photons k̂ = {k̂r, k̂θ, k̂ϕ} = {1, 0, 0}, which

can easily be generalized. The spectral distribution is assumed to be black body with a

temperature of about ∼ 0.5 keV. It is no problem to change this set up to include hot

spots at the surface with different temperatures. These anisotropic heat sources may

arise due to particle bombardment at the surface as a consequence of magnetospheric

currents or as a consequence of the anisotropic cooling of the neutron star caused by the

magnetic field.

In the case of a giant flare, the photons originate from a fireball outside of the star.

In the simplest model we pick one point (r0 = 20 km, θ0 = π/2, ϕ0 = 0) and let the

photons start from there isotropically ({k̂r, k̂θ, k̂ϕ} = {U1, U2, U3}/
√
U2

1 + U2
2 + U2

3 ). As

before we assume a black body spectrum, but here with a temperature of about 10 keV.

The fireball is not expected to be a point source, but rather it could be like an extended

cloud oriented along the magnetic field lines. Our 3-dimensional MC code can handle

any geometry. Unfortunately, there is no reliable prediction of the realistic structure

of the fireball. However, the effects we intend to investigate, i.e. the modulation of

the X-ray signal, should not depend sensitively on the particular shape of the fireball.

The scattering is expected to occur outside of the source, such that the details of the

magnetospheric currents and hence the magnetic field are much more important than

the shape of the fireball.

We do not prescribe any particular form of the polarization. By performing two

simulations each with the seed photons in one of the two polarization states, we can

generate the results corresponding to any seed polarization by superposition.

Scattering targets: The spatial distribution of the plasma in the magnetosphere is

given by the currents caused by the twisted magnetic field. In the simplest case the

minimal charge number density required by the magnetospheric currents is given by

nZ =
J

Zec
, (5.24)

This minimal charge density is what we assume during this work as a lower estimate

for nZ . Moreover, we neglect the contributions from the ions to the plasma in the

magnetosphere and consider only electrons and positrons. We thus have Z = ±1 and

m = me in all equations of the current chapter. The neglect of the ion contribution

is reasonable, because the magnetic field at resonance is proportional to the mass (see

Eq. (5.1)), i.e. at the given photon energies much stronger fields are necessary to scatter

resonantly off the ions. Moreover, the cross section is indirectly proportional to the

mass (see Eq. (5.18), i.e. it is reduced by three orders of magnitude for ions compared

to electrons.

Momentum distribution of charge carriers: Another physical quantity related to the
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model kTbb Te βbulk B ∆Φ
SS1.0 0.5 keV 30 keV 0.3 1014 G 1.0
SSx 0.5 keV 30 keV 0.3 1014 G x

Table 5.1: Specifications of the models for radiative transfer in the magnetosphere. Tbb is
the black body temperature of the emerging radiation from the stellar surface,
Te is the thermal temperature of the electrons of the current, and βbulk is their
bulk velocity.

charge carriers is their momentum distribution. Up to date there has been no self-

consistent calculation of the currents in a twisted magnetosphere. Beloborodov (2009)

started work in this direction, but the results are not yet applicable. Therefore, a

follow-up project of the current work will be concerned with the question of how these

currents can be calculated more realistically. For the time being we consider electrons

as the only charge carriers, and we use an ad-hoc momentum distribution which is an

one-dimensional relativistic Maxwellian distribution superimposed to a bulk motion, as

given by Nobili et al. (2008a):

fe(β, r) =
exp(−WWbulk(1− ββbulk)/Θe

2K1(1/Θe)
. (5.25)

Here Wbulk and βbulk are the Lorentz factor and the velocity of the bulk motion, respec-

tively. Θe := kTe/mec
2, and K1 is the modified Bessel function of second kind of order 1.

This model distribution has two free parameters: the velocity of the bulk motion βbulk,

and the thermal temperature Te of the electrons.

5.3 Monte-Carlo radiation transport for self-similar

magnetic field configurations

We test our implementation of the RCS Monte Carlo algorithm by reproducing some

results published by Nobili et al. (2008a). Therefore, we use the self-similar configuration

given in the preceding chapter with a total twist angle of ∆Φ = 1.0. The parameters

of the model are given in Table 5.1. The photons are assumed to stream radially away

from the surface of the neutron star, and they are unpolarized, i.e. the polarization

of each photon is determined by a random number in the beginning. The photons are

emitted at an arbitrary location at the surface, and for storing the photon data we use

200 logarithmic spaced energy bins between 10 eV and 1 MeV. If not stated otherwise,

we use an ensemble of N = 107 photons, a small fraction of which is always absorbed at

the stellar surface. The number of numerical grid zones is 100× 80 (r× θ) in the range

[rs, 500 km]× [0, π]. Because of axisymmetry we are able to follow the photons on their

trajectories in ϕ-direction by evaluating the required quantities at ϕ = 0

To get an estimate of the scattering probability we first integrate along a number of
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Figure 5.2: Left panel: Integrated optical depth for model SS1.0. There is a clear asym-
metry between the two hemispheres due to the unidirectional momentum
distribution assumed for the current. The optical depth is of order unity or
larger, such that one expects a large fraction of the photons to be scattered
at least once. The black line is given by the integration of the differential
optical depth corresponding to Eq. (5.21), and the red line represents the
estimate of Eq. (5.26). Right panel: Spectrum of model SS1.0 for different
viewing angles with respect to the magnetic axis. The dashed magenta line
represents the unscattered spectrum.

sample photon paths until reaching the outer grid boundary. In the left panel of Fig. 5.2

we give the integrated optical depth of model SS1.0 as the black line. There is a clear

asymmetry between the two hemispheres which is caused by the particular choice of the

momentum distribution Eq. (5.25). For only one type of charge carriers (electrons), the

direction of the current is outgoing on one side and incoming on the other. Because of

the Doppler shift appearing in the resonance condition (5.16) and the particular form

of the momentum distribution, there are more scatter targets with the required velocity

βk available in the case of incoming current. Consequently, we expect this north-south

asymmetry to manifest itself also in the spectra calculated below. For the self-similar

configuration the optical depth can be estimated if the resonant surface is close to the

surface of the neutron star (see Viganò et al., 2011):

τ(θ) = π2J

c

(
1 +

B2
r

B2

) ∣∣∣∣dBdr
∣∣∣∣−1

. (5.26)

This estimate is represented by the red line in Fig. 5.2. It is of the same order of

magnitude as our result obtained by integrating the differential optical depth. However,

the estimate is too low, in particular, for the hemisphere where the current is directed

towards the neutron star. Generally we can say that the optical depths reached in the

model are of the order of unity or larger. Thus, we expect a large fraction of the photons

emitted at the stellar surface to get scattered at least once.
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Figure 5.3: Left panel: Spectra of models SSx with the total twist angles ∆Φ given in
the legend. The spectra are averaged over all directions. The dashed line
gives the unscattered spectrum of the seed photons in form of a Planck law
with temperature kTbb = 0.5 keV. Right panel: Comparison of the spectra
obtained in the Newtonian framework and by integrating the photon paths
along geodesics in the Schwarzschild spacetime of model SS1.0 with the same
seed photon distribution. The inclusion of the gravitational redshift of the
photons makes the spectrum peak at lower photon energy. Furthermore,
the slope at higher photon energies is slightly steeper when integrating the
photon paths along geodesics.

The right panel of Fig. 5.2 displays the spectrum obtained with our code for model SS1.0

for different viewing angles with respect to the magnetic axis. The simulation used a total

of 107 photons. The ϕ-dependence is averaged out due to axisymmetry of the problem.

The asymmetry between the two hemispheres shows up in the results as expected, i.e.

the spectra at larger viewing angles have a stronger up-scattered contribution than those

for smaller angles (compare the spectra for 9◦ and 171◦).

The influence of the twist angle, and hence of the plasma density which is related to

the magnitude of the current, on the spectrum is shown in the left panel of Fig. 5.3.

As above we use 107 photons and average over all angles ϕ, but additionally we also

average over all angles θ to obtain better statistics. The dashed line represents the

unscattered spectrum of a black body with a temperature kTbb = 0.5 keV. The up-

scattered part of the spectrum increases with increasing twist angle ∆Φ almost linearly.

This is expected, because for small twists the current density and hence the number

of the scattering targets increases linearly with the twist angle. For a more thorough

discussion of these examples, including the (small) influence of polarization effects, we

refer to Nobili et al. (2008a). Our code is able to reproduce their results qualitatively,

as shown above for selected examples. The only significant point at which our results

differ from those in Nobili et al. (2008a) is that they find a much weaker scattered

contribution to the spectrum for ∆Φ = 0.3. The almost linear dependence we observe

in Fig. 5.3 encourages us to assume that our results are correct and, because the other
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black dots are the results of numerical simulations, and the red line is a fit
as given in the legend.

results agree qualitatively, we assume that there is a simple error in the labels of Nobili

et al. (2008a).

Up to now we have presented the results of the RCS in a purely Newtonian framework.

However, the gravity near the neutron star may have an influence of the order of 20%

on various quantities. The most relevant effect here is the gravitational redshift of

the frequency of the photons according to Eq. (G.11) when they leave the gravitational

potential of the neutron star. Additionally, the photon trajectories in general are no

straight lines but geodesics, as can be seen in the left panel of Fig. 5.4. The difference

vanishes for radially streaming photons. However, for scattered photons or photons

emitted by a fireball outside the neutron star towards the surface, the geodesics can

differ significantly from straight lines (see, in particular, the blue lines in the left panel

of Fig. 5.4). This may change the spectrum, in particular, on the side of the neutron

star opposite to the fireball, where in the Newtonian framework only scattered photons

would appear.

The difference in the spectrum between purely Newtonian photon paths and curved

paths along geodesics can be seen in the right panel of Fig. 5.3. There we give the spectra

of 107 photons obtained with both methods for the same model SS1.0. The main effect

is the redshift of the maximum of the photon distribution of the GR calculation (red

line) compared to the Newtonian one (blue line). Additionally, the slope at high photon

energies is slightly steeper in the GR version.

The integration along geodesics is very time consuming. The main effect, i.e. redshift-
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ing of the photon frequencies, could be included into a Newtonian treatment to speed up

the computations. This should be sufficiently accurate for the quiescent emission, where

one can assume radially streaming seed photons. However, it is not sure at this point

how large the influence of the light bending on the spectra may be for the problem of a

giant flare. Therefore, we keep the full geodesic integration as our standard method.

Convergence

For the analysis of the convergence properties of the code we take the self-similar model

with B = 1014 G and ∆Φ = 1.0. We perform a series of simulations with different

numbers of photons: N = {4× 104, 8× 104, 1.5× 105, 3× 105, 6.25× 105, 2.5× 106, 107}.
The result for the simulation with N = Nref := 107 is used as reference solution.

For the analysis we use the standard deviation of the spectrum u(ω), which we define

as

σN =

√√√√ 1

200

∑
i={1..200}

(
ui

N

N
− ui

ref

Nref

)2

, (5.27)

where the factor 200 arises from the 200 energy bins in the energy range E = 10 . . . 106 eV,

ui
N is the number of photons in the energy bin number i for the run with N photons,

and ui
ref is the corresponding number for the reference solution with Nref = 107. We have

to renormalize these ui
N and ui

ref to the total number of photons of the corresponding

simulation to get comparable numbers for the different runs. With the results for dif-

ferent N we are able to obtain a relation between σN and N as given in the right panel

of Fig. 5.4. The fitted red line gives a proportionality σN = σN(N) ∼ N−0.47 and thus

agrees well with the expected behavior of the convergence of the Monte Carlo method

of σN ∼ N−1/2.

5.4 Modulated X-ray emission from magnetars

In this section we apply our MC code to the conditions of the quiescent state of a SGR

whose exterior magnetic field is modulated by the magneto-elastic oscillations of the star.

Therefore, we take an evolution of a particular model described in Chapter 3, construct

the quasi-statically evolution of the magnetic field in the magnetosphere according to

Chapter 4, and finally, calculate the corresponding spectrum which is changed by RCS

as given in the preceding subsections of this chapter.

For the results presented here we select the model APR+DH 1.4 with a magnetic

field strength B = 3 × 1015 G. This choice is motivated by the fact that the magneto-

elastic QPOs of the stellar interior reach the surface with significant amplitudes at

this magnetic field strength, and the QPOs at the surface can be clearly identified (see

Fig. 3.18). Moreover, a magnetic field strength of B = 3×1015 G is only slightly stronger

than current estimates of the magnetar field strengths which give B . 2× 1015 G. The
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Figure 5.5: Spectra at selected times during the early evolution corresponding to the
magnetic field configurations in Fig. 4.4. The fraction of the up-scattered
photons decreases with decreasing toroidal magnetic field during the first
4.67 ms (left panel). At later times the toroidal field increases and leads to
an enhanced scattering (right panel). The dashed line gives the unscattered
spectrum of the seed photons emitted by the stellar surface. The spectra are
angle averaged over θ and ϕ.

frequencies of the corresponding magneto-elastic QPOs reaching the surface are 13.5,

17.5, 29.4, 44.1, 58.8, and 75.0 Hz (see Table 3.6 and Fig. 3.18). However, we do not

expect to see the oscillations occurring at 29.4 and 58.8 Hz, because these oscillations

have antisymmetric magnetic field structure, and thus are excluded in our model.

Our simulations of the interior have been performed in the linear approximation for

the perturbations. Keeping all quantities linear, we are allowed to rescale our data to

any desired amplitude without changing the qualitative results. To obtain significant

twists in the magnetosphere, we rescale the toroidal magnetic field at the surface to

B ∼ 1013 G, which is one hundredth of the poloidal surface magnetic field strength.

This toroidal magnetic field corresponds to a maximum amplitude of the displacement

at the surface of ∼ 100 m. The simulation covered about 0.67 s, and the total number

of photons used in the MC calculation was 106.

In Fig. 5.5 we show the spectra obtained during the first 10 ms corresponding to the

magnetic field configurations in Fig. 4.4. The spectrum is angle averaged over θ and

ϕ to improve the statistics. The angular dependence of the X-ray signal is discussed

below. We can follow the oscillation of the neutron star which shows up as a change of

amplitude of the up-scattered part of the spectrum at high photon energies E & 10 keV.

The chosen perturbation causes strong scattering at t = 0.67 ms, which then decreases

gradually due to the decreasing magnetic field strength (compare with Fig. 4.4). The

minimum scattering occurs at t = 4.67 ms, and directly afterward the scattering increases

again (right panel of Fig. 5.5). This modulation of the X-ray signal continues as long as

the oscillations of the magnetic field last.
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Figure 5.6: Locations of the scatterings at t = 0.67 ms for model APR+DH 1.4 with
B = 3× 1015 G. Black lines indicate magnetic field lines, the green line gives
the field line entering the star at θ ∼ 15◦, and the red dots indicate the
scattering locations.

In order to check our assumption that the scattering occurs at r ≤ 1000 km we plot

exemplary the locations of about 105 scattering events in Fig. 5.6 at t = 0.67 ms. The

majority of the scattering occurs at radii < 500 km, i.e. our assumption is valid, and

this part of the magnetosphere can be evolved quasi-statically3. In the case of a giant

flare the scattering is expected to occur at even smaller radii (see Eq. (5.4) for particles

at rest), i.e. our model should work properly for this scenario, too.

The distribution of the scattering events in Fig. 5.6 concentrates around the magnetic

field lines outside the green line which enters the neutron star at θ ∼ 15◦. Therefore,

the properties of the scattering are mainly determined by the currents, and hence by the

polar toroidal surface magnetic field (0◦ ≤ θ ≤ 15◦). In the current example we have

assumed a current regarding only electrons having the momentum distribution given in

Eq. (5.25). We can see the effect of the asymmetric current, which leads to an enhanced

scattering in the southern hemisphere. In a more realistic scenario we expect electron-

3Remember that the dynamical time scale for this region of the magnetosphere is much smaller than
the time scale of the QPOs: tmagnetosphere ∼ 500 km/c ∼ 1 ms<< 50 ms= 1/fQPO = tQPO
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Figure 5.7: Light curves for model APR+DH 1.4 at B = 3 × 1015 G with a toroidal
component Bϕ ∼ 1013 G for different viewing angles θ in the energy band E=
2 . . . 80 keV. The different panels show the light curves for different viewing
angles: left panel (θ = 9◦ and θ = 171◦), middle panel (θ = 45◦ and θ =
135◦), and right panel (θ = 90◦). The right panel further contains the photon
counts angle averaged over θ (black line). The blue line gives the amplitude
of the unmodulated radiation.

positron pairs to be created (Thompson et al., 2002; Beloborodov and Thompson, 2007)

such that the current will be formed by e+ and e− streaming in opposite directions.

To produce a synthetic light curve of a SGR in a given energy band, we calculate

the spectra (106 photons) at intervals of 0.67 ms during the evolution and integrate

the photon number in the energy band 2 keV≤ E ≤ 80 keV, because the QPOs in

giant flares are observed in this band (Israel et al., 2005) or a neighboring one with

E = 4 . . . 90 keV (Strohmayer and Watts, 2006). We are aware that this approach does

not take into account the response function of the measuring instrument and that the

results cannot directly be compared with actual observations. However, at this stage

of the project other uncertainties in the model, like the momentum distribution of the

currents, outweigh the inaccuracies introduced by not considering a realistic instrument

response for the incoming signal. Additionally, our main interest is to explain an absolute

change in the amplitude of the signal in a given energy band, but not in a single energy

bin. Therefore, we believe that the modulation of the integrated signal can be calculated

even without knowing the detailed properties of the measuring instrument.

The light curves of our reference model for different viewing angles θ are given in

Fig. 5.7. We can identify the oscillation pattern of the stellar interior at all angles. The

weakest contribution of the modulation to the X-ray signal in the given energy band

occurs at angles close to the poles. This can be explained with the decreasing toroidal

magnetic field in this region. The weak magnetic field is able to maintain only weak

currents, and hence provides only few scattering targets. In the left and middle panel

the asymmetry between the northern and the southern hemisphere leads to alternating

minima and maxima for 9◦ and 171◦ (left panel), and alternating strong maxima and

weak maxima for 45◦ and 135◦. At 90◦ and for the angle-averaged signal we do not see

any asymmetry.
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The left panel shows that even a partial down-scattering of the photons can happen, if

the impact angle before scattering between the current and the photon is in the following

configuration. Near the poles the impact angle Θ is close to 0 or π, respectively, i.e the

current flows approximately parallel to the photons. If Θ is on average very small, and

thus µincident
SF is large and positive, the third factor in Eq. (5.23) is small. If additionally

µemergent
SF is not preferably large and positive too, the third factor in Eq. (5.23) is much

smaller than the fourth one. Consequently, the photon frequency is smaller than the

initial one after scattering, i.e. the photon is down-scattered in energy.

To see whether we can recover the frequencies of the magneto-elastic oscillations in a

light curve, we Fourier analyze the signal. The Fourier amplitudes for θ = {9◦, 45◦, 90◦},
and for the angle-averaged spectrum are given in the left panel of Fig. 5.8. The corre-

sponding curves for θ = 171◦ and θ = 135◦ are qualitatively similar to the ones for θ = 9◦

and θ = 45◦, respectively. A Fourier analysis of the evolution of the surface magnetic

field confirms the presence of the symmetric oscillations at 13.5, 17.5, 44.1, and 75.0 Hz,

which correspond to the two features at frequencies slightly above and below U
(−)
0 , and

the two QPOs U
(−)
1 and U

(−)
2 , respectively (see the second panel in the bottom row of

Fig. 3.18 and Table 3.6)4. At similar frequencies we find significant Fourier amplitudes

at θ = 9◦ (red line in the left panel of Fig.5.8), and θ = 45◦ (green line). However, at

θ = 90◦ and in the Fourier amplitude of the angle-averaged spectrum we cannot find

these frequencies. The Fourier analysis of the corresponding light curves gives oscilla-

tion frequencies at about 26, 35, 60, and 90 Hz, which are also present in the Fourier

amplitude of θ = 45◦. These frequencies are artefacts of the Fourier transform, and are

not related to the antisymmetric QPOs with very similar frequencies, because we have

excluded them by their symmetry.

To explain this effect, we Fourier analyze the following periodic functions

f1(x) = sinx , (5.28)

f2(x) = |sin x| , (5.29)

f3(x) = 1 + sinx . (5.30)

The Fourier amplitude of f1 (right panel of Fig. 5.8) gives the expected single frequency

1/2πHz∼ 0.16 Hz. f2 has half the period of f1, i.e. one would expect a doubling of

the frequency to 0.32 Hz, which is indeed observed. However, we also find overtones

at 0.64 Hz, 0.96 Hz, etc. , too. Evidently, the trigonometric functions are not an ap-

propriate basis to analyze this kind of signal, i.e. functions with a discontinuous first

derivative at the nodes. The function f2 can only be approximated by an infinite sum

over all overtones of the fundamental, and all the corresponding frequencies show up

in the Fourier amplitude. When analyzing a function which is always positive and has

continuous first derivative by construction, e.g. function f3, the Fourier transform works

without any problem and gives the single frequency 0.16 Hz.

4Note that a symmetric magnetic field implies antisymmetric velocity, which is analyzed in Chapter 3
and used to determine the symmetry of the modes
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Figure 5.8: Left panel: Fourier amplitude of light curves obtained at different viewing
angles θ, and for the spectrum averaged over angle θ. Black dashed lines
indicate the frequencies of antisymmetric oscillations at the neutron star
surface at 13.5, 17.5, 44.1, and 75.0 Hz, respectively (see second panel in
bottom row of Fig. 3.18, and Table 3.6). Right panel: Fourier transform of
the functions f(x) indicated in the inset. The black and the blue line lie on
top of each other.

The connection between the absolute value of the sine in f2 and our simulations of

the scattering becomes apparent when studying the angle-averaged spectrum, where

no asymmetries are present. The stronger the absolute value of the toroidal field is

in the magnetosphere, the stronger are the currents, and hence the more photons get

scattered: Nscattering events ∼ |I| ∼ |Bϕ|. For the angle-averaged spectrum it does not

matter if the current flows from the northern hemisphere to the southern one, or in

the contrary direction. In analogy to the behavior of function f2, the periodicity of the

absolute value of the current is half the period of the surface QPOs. Therefore, we see the

maxima in the Fourier amplitude at twice the frequency of the expected QPOs at 26 and

35 Hz. The same is observed for a viewing angle θ = 90◦, where the photons travel in the

direction orthogonal to the current, and hence their scattering angle does not depend on

the direction of the latter, i.e. Θ = 90◦. Like in the case of the angle-averaged spectrum,

only the absolute value of the current matters for the scattering.

The spectra computed at different angles show different features. For θ 6= 90◦ the two

phases of the oscillation lead to different currents, because the momentum distribution is

assumed to be unidirectional (see Eq. (5.25)). First, the electrons move in one direction

and then in the second phase they move in the opposite direction. Therefore, the scat-

tering angle between photons emitted at the stellar surface and the electrons changes,

depending on the direction of the current. These different angles lead to different scat-

tering properties, and hence effect the light curves at viewing angles θ 6= 90◦ (Fig. 5.7).

Near the pole the change in angle is largest. In one phase the photons propagate almost

parallel to the current Θ ∼ 0◦, in the other phase anti parallel Θ ∼ 180◦.



5.4. Modulated X-ray emission from magnetars 139

At viewing angles θ = 45◦ and θ = 135◦ the angles between photons and electrons are

not so large, and hence the difference between the two phases of the current is smaller.

However, neighboring maxima in the light curves still have significantly different ampli-

tudes, i.e. a strong maximum alternates with a weak maximum (see, in particular, at

late times t > 300 the middle panel of Fig. 5.7). The modulation is always positive in the

sense that the amplitude of the light curve is always larger than the unmodulated back-

ground amplitude. At the equator and for the angle-averaged spectrum the neighboring

maxima have comparable amplitudes. The asymmetry in the amplitude of successive

maxima allows for the detection of the underlying frequencies at 13.5 and 17.5 Hz at

θ = 45◦ and θ = 135◦. However, the time derivative of the light curve is discontinuous

when reaching the unmodulated level of photon counts (blue line in Fig. 5.7). Therefore,

the artefacts at 26 and 35 Hz, and the corresponding overtones appear in the Fourier

analysis, too. Very close to the pole at θ ∼ 9◦, these artificial features in the Fourier

amplitude disappear completely (red line in the left panel of Fig. 5.8).

The appearance of the frequencies of the overtones would cause a problem for the

interpretation of the observed frequencies of the QPOs. The latter are found by Fourier

analyzing an observed light curve and thus, if the signal is modulated in the same way

as we have described above, the same features should appear. However, there are only

weak observational indications for a frequency relation 1 : 2 : 3 : 4 : . . . (Hambaryan

et al., 2011). Statistically it is unlikely, but not impossible that the viewing angles for

both SGR 1806-20 and SGR 1900+14 are in a narrow range around θ ∼ 0◦ or θ ∼ 180◦,

where the frequencies of the overtones do not appear. However, we expect e+-e− pairs

to dominate the current. This current leads to a symmetric pattern of the scattering

with respect to the two phases of the oscillation, because the electrons and positrons are

flowing in opposite directions, but have the same scattering properties.

There is another possible solution to this problem. Let us consider once again the

Fourier amplitudes of the functions f1 and f2, but now in addition also that of f3 =

1 + sin θ. For the latter function the Fourier amplitude is almost identical to the one for

f1 (right panels of Fig. 5.8). None of the frequencies of the overtones appears, because

f3 is strictly positive and has no discontinuities in its derivatives.

To get a similar effect in our problem of the currents in the magnetosphere, we can add

a static twisted magnetic field to the one induced by the magneto-elastic oscillations.

Such a twisted field is expected and serves as a common model to explain the observa-

tional properties of SGRs after giant flares (Thompson et al., 2002). As the actual form

of this static, twisted magnetic field is unknown, we assume a self-similar model with

Bsurface
ϕ = BQPO

ϕ + A0 × sin3 θ , (5.31)

where A0 is the maximum amplitude of the toroidal magnetic field determining the static

twist. We performed simulations with different amplitudes A0 of this static twist. The

corresponding amplitudes and angle-averaged light curves are given in the left panel of

Fig. 5.9, and the corresponding Fourier amplitudes in the right panel of the same figure.

The light curve with the weakest twisted field A0 = 1013 G (black line) is qualitatively
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Figure 5.9: Left panel: Light curves for different static twists superimposed on the mag-
netic field caused by the magneto-elastic oscillations of the stellar interior
averaged over all angles. Right panel: Fourier amplitude of the light curves
given in the left panel. Black dashed lines indicate the frequencies of the an-
tisymmetric oscillations at the stellar surface at 13.5, 17.5, 44.1, and 75.0 Hz.

similar to the case without static twist (right panel of Fig. 5.7). In the corresponding

Fourier analysis we detect only frequencies at 26, 35, 60, and 90 Hz. When increasing

the amplitude of the static twist to A0 = 2 × 1013 G (red line) we see a significant

Fourier amplitude also at 13.5 and 17.5 Hz. At stronger static twisted fields (A0 =

5 × 1013 G, green line) the amplitudes at both frequencies increase, while those at the

other frequencies (26, 35, 60, and 90 Hz) decrease. Additionally, we observe an oscillation

at ∼ 44.1 Hz. For the strongest twist studied here, A0 = 1014 G, the amplitudes at 13.5,

17.5, and 44.1 Hz increase further, those at 26, 35, 60 and 90 Hz decrease, and we observe

an additional oscillation at ∼ 80 Hz which may be related to the 75 Hz magneto-elastic

QPO.

The inclusion of the static twist improves the significance of the expected signals at

13.5, 17.5, and 44.1 Hz, but very strong twists are necessary. Different functional forms

of the static twist may lead to an even better result, but there is no clear physical

reason to prefer one configuration over another. Thompson et al. (2002) expect toroidal

magnetic field strengths of the order of the poloidal field, i.e. in this case the artefacts of

the Fourier analysis probably disappear. Unfortunately, we cannot explore this regime

with our methods, which are limited to linear twists.

The light curve in Fig. 5.9 further shows that even for a toroidal magnetic field induced

by the magneto-elastic oscillations of the order of 1013 G we get a strong modulation of

the X-ray signal reaching easily 30% of the total signal strength at A0 = 1014 G5. This

finding is related to the behavior of the surface magnetic field near the pole. In Fig. 5.6

and in the corresponding discussion we have shown that the most important contribution

5This is slightly larger than the variation observed in the giant flare QPOs as given by Strohmayer
and Watts (2006), and Watts and Strohmayer (2006)
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to the scattering originates from the interaction with the currents leaving the star at

polar angles θ . 15◦. Therefore, the toroidal magnetic field in this region is more

important for the scattering process than the field closer to the equator. Near the pole

the toroidal magnetic field strength of the self-similar model decreases much more rapid

than that corresponding to our magneto-elastic oscillations (Fig. 4.5). A different static

and twisted magnetic field may have larger amplitudes near to the pole than the self-

similar configuration, but with much smaller global maximum amplitude at the surface.

Such fields could lead to significant changes in the scattered spectrum as reported by

Fernández and Thompson (2007) and Nobili et al. (2008a). Beloborodov (2009) showed

that the twist of a model having initially a self-similar configuration for the magnetic

field rapidly concentrates in the polar region due to dissipation in the magnetosphere.

This is a different process than the one we study in this thesis, but indicates that the

region close to the poles is probably more important for the magnetospheric field than

the region near the equator.

If the current in the magnetosphere is conducted by electrons and positrons, we cannot

solve the problem of observing many overtones in the Fourier analysis by restricting

the viewing angle under which we see the radiation emitted by the SGR to values

near the poles. When the current changes direction, both e− and e+ change their

propagation direction, too, and the scattering only depends on the absolute value of

the current. However, the explanation of the absence of the frequencies of the overtones

in the observations with the presence of the strong, static, and twisted magnetic field is

valid in the case of a e−-e+ pair dominated current, too.
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6 Conclusions

This thesis is concerned with the investigation of the origin of quasi-periodic oscillations

(QPOs) observed during giant flares of soft gamma-ray repeaters (SGRs). In our model

the frequencies are produced by torsional, magneto-elastic oscillations of a highly mag-

netized neutron star. The QPOs couple to the exterior through the magnetic field and

create an additional toroidal component (a twist) of the magnetic field in the magneto-

sphere. The twisted magnetosphere is penetrated by large scale currents, which provide

scattering particles (electrons and positrons) for resonant cyclotron scattering (RCS).

The evolution of the interior changes continuously the configuration of the toroidal mag-

netic field, the corresponding currents, and hence the effectiveness of the scattering. The

X-ray radiation emitted from the neutron star is, therefore, modulated by the frequencies

of the stellar oscillations.

6.1 Magneto-elastic QPOs

We have presented results obtained from 2-dimensional, general-relativistic, magneto-

hydrodynamical simulations of neutron stars with an extended solid crust, in continua-

tion of our initial results communicated as a letter (Gabler et al., 2011). Performing a

comprehensive set of simulations for several neutron star models and equation of state

(EoS), we have been able to confirm our previous findings regarding the QPO struc-

ture for three different regimes of the magnetic field strength. Our main results can be

summarized as follows:

For weak magnetic fields, B . 5× 1013 G, purely shear oscillations of the crust dom-

inate the evolution in the latter. For intermediate magnetic field strengths, 5 × 1013 .
B . 1015 G, the n = 0 crustal modes are damped very efficiently into the core of the

neutron star on timescales of a fraction (∼ 0.04) of the Alfvén crossing time of the

star. For example, a model with B = 1014 G has a damping timescale of τ < 100 ms.

This effectively rules out purely shear oscillations of the crust as a possible explanation

for the observed QPOs in SGRs for the poloidal magnetic field configurations stud-

ied here, since the observed QPOs survive for tens of seconds at estimated magnetic

field strengths B & 6 × 1014 G. The damping timescale depends on the magnetic field

as ∼ B−1, dominated by the ability of the Alfvén continuum to absorb the energy of

crustal modes.

In comparison to the n = 0 modes, the n > 0 modes of the crust damping have

timescales of the order of hundreds of milliseconds at 5×1014 G. The spatial structure of

the n > 1 modes becomes significantly distorted in the presence of such a strong magnetic
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field. Predictions for even stronger magnetic fields, B > 5 × 1014 G, are currently not

possible, because the grid resolution needed to couple the n > 0 shear modes to Alfvén

oscillations in the core is too high to perform such simulations in a reasonable time.

We thus cannot safely exclude the n > 0 crustal shear modes as a possible explanation

for the high frequency QPOs observed in SGR 1806-20 at 625 Hz and 1840 Hz, if the

magnetic field is a purely dipolar one.

For magnetic fields, B & 5 × 1014 G, we no discrete crustal shear modes. This is

in contrast to the results of van Hoven and Levin (2011), who proposed that weakly

damped crustal modes may survive if they lie in-between adjacent continua. In the

most promising of our models we find gaps between the first four continua. Even when

choosing the equilibrium model such that its fundamental crustal mode frequency falls

in one of the existing gaps, the mode was damped very efficiently by the coupling to the

Alfvén continuum in the core. Furthermore, we expect that the magnetic field begins

to have significant influence on the shear oscillations of the crust at dipolar magnetic

field strengths B & 1015 G, necessary to get the frequencies of crustal shear modes into

a gap (Messios et al., 2001; Sotani et al., 2008a; Shaisultanov and Eichler, 2009). Our

findings strongly support the interpretation that at high magnetic field strengths mag-

netar oscillations represent a strongly-coupled magneto-elastic system, where a division

into purely crustal modes and Alfvén oscillations is no longer valid.

In the intermediate magnetic field regime (5 × 1013 G . B . 1015 G) the QPOs are

largely confined to the core of the neutron star. We find three families of QPOs: upper,

edge and lower QPOs. Their spatial structure coincides very well with the expectations of

our semi-analytic model, if we assume that the oscillations are reflected at the crust-core

boundary. Together with the strong damping of the crustal shear modes, the reflection

of Alfvén QPOs at the crust-core interface leads to very small oscillation amplitudes

in the crust. Moreover, when changing the magnetic field strength, the position of the

maximum of the corresponding upper QPO changes significantly within the star due to

the interaction with the crust.

We have also determined the dipolar magnetic field strength at which the magneto-

elastic QPOs break through the crust and reach the surface with significant amplitudes.

This happens around B ∼ 1015 G for the DH crust EoS (Douchin and Haensel, 2001)

and at slightly stronger magnetic fields for the NV crust EoS (Negele and Vautherin,

1973). This difference can be understood, because the NV EoS leads to thicker crusts

compared to equilibrium models obtained with the stiffer DH EoS. Additionally, the

former EoS has larger shear moduli, in particular, near the crust-core interface.

Between 1015 G. B . 5 × 1015 G the QPOs change from being confined to the core

to being able to reach the surface. Their spatial structure is different from that at

much lower or much higher magnetic field strengths. Colaiuda and Kokkotas (2011)

report global, discrete Alfvén modes in gaps between continua, at magnetic fields around

4 × 1015 G. In our model, the reported oscillations are not discrete Alfvén modes, but

rather an effect of the transition between the two limiting regimes discussed above.

For dipolar magnetic field strengths B & 5 × 1015 G the magneto-elastic oscillations
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have an almost Alfvén-like character in the whole star. The role of the shear modulus

in the crust is diminished, in accordance with the results of Sotani et al. (2008b) and

Cerdá-Durán et al. (2009).

We have further investigated the effects of different magnetic field configurations,

which are confined to the crust, on the crustal shear modes. This scenario may be

realized in the case of type I superconducting protons in the core of the neutron star. For

magnetic fields confined to the region of the crust, crustal oscillations cannot be damped

into the core. However, the properties of the former purely shear modes of the crust

change significantly in the presence of sufficiently strong magnetic fields (B > 1014 G).

In agreement with Sotani et al. (2008a), we find a significant increase of the QPO

frequencies for magnetic fields B & 5× 1014 G. In addition, the spatial structure of the

QPOs is changed by the magnetic field. For very strong fields B > 1015 G, it is possible

to identify features of the magnetic field structure in the spatial distribution of the former

shear modes. The structure of the QPOs and the rate of increase of the frequencies with

the magnetic field strength depend on the considered magnetic field configuration. This

change of frequency of the former crustal shear modes in the presence of a magnetic field

confined to the crust makes it very difficult to accommodate the sequence of observed

frequencies of the QPOs in SGRs. For the dipolar background configuration it is also

very difficult to get the frequencies of the first few QPOs at 18, 26, and 30 Hz, because the

frequencies of the former shear modes increase with increasing magnetic field. Moreover,

the amplitudes of the Alfvén QPOs are less significant than in the case of magnetic fields

penetrating the core. They are thus unlikely to serve as an alternative explanation for

the observations. Therefore, magnetic field configurations confined to the crust are less

likely to explain the observed QPOs. This result does not depend sensitively on the

particular form of the magnetic field in the crust. Our results suggest that magnetic

field configurations confined to the crust are unlikely to be realized in magnetars. This

might indicate that the protons in the core are either superconducting at most in parts

of the core such that the other parts can be penetrated by the magnetic field, or they

form a superconductor of type II1 which allows for the presence of flux tubes.

The model we have presented allows for a tentative interpretation of the observed

QPOs in terms of predominantly Alfvén QPOs which reach the surface for magnetic field

configurations penetrating the whole star. For dipolar magnetic fields the family of QPOs

expected to play an important role in the explanation of the observed QPOs are the upper

(turning-point) QPOs. As first pointed out by Sotani et al. (2007), the interpretation

of the frequencies 30, 92 and 150 Hz in SGR 1806-20 in terms of the U
(−)
0 , U

(−)
1 and

U
(−)
2 QPOs is very tempting. Here we note that the 18 Hz oscillation may be interpreted

as the first edge QPO E
(−)
0 , which has a frequency of about 0.57 × f

U
(−)
0

≈ 17 Hz for

the model APR+DH (this could also correspond to the frequency at 16.9 Hz found by

Hambaryan et al., 2011). Similarly, the 36.4 Hz oscillation could be interpreted as the

E
(−)
1 QPO. However, one should be cautious with these latter identifications, since edge

QPOs are less long-lived than turning-point QPOs.

1A superconductor of type II is also theoretically favored (Baym et al., 1969)
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If we require that the fundamental upper QPO matches the observed 30 Hz QPO

in SGR 1806-20 or the 28 Hz QPO in SGR 1900+14, we obtain dipolar magnetic field

strengths of 4.8×1015 G. B . 1.4×1016 G (for the particular choices of EoS and masses)

as reported in Table 3.8. This is a rather narrow range, and it requires only somewhat

larger magnetic field strengths than derived from simple estimates for magnetic fields in

known magnetars.

We conclude by highlighting that our model provides two constraints on the magnetic

field strength. According to the first constraint the dipolar magnetic field strength has

to be larger than B ∼ 1015 G for QPOs to break out of the crust, which is a lower limit

on the magnetic field. This constraint is independent of a particular identification of

observed QPOs and only depends on the assumed purely dipolar magnetic field structure.

The second constraint comes from matching the lowest-frequency observed QPO that

appears at near-integer multiples with the fundamental U
(−)
0 QPO. It constrains the

dipolar magnetic field strength to be in the range of 4.8× 1015 G. B . 1.4× 1016 G for

the set of EoSs, and masses that we assumed here.

6.2 Magnetic field configurations in the magnetosphere

To construct the magnetic field in the magnetosphere matched to the results of our

simulations of the neutron star interior, we restrict the model to linear perturbations

in the toroidal magnetic field. We can chose between two methods: magneto-frictional

method (MF) and flux-function reconstruction method (FFR) which both give similar

results. Both approaches are compared with analytic solutions in the linear regime

and self-similar configurations which can be non-linear in δBϕ. Our results agree well

with those models, if the toroidal component of the magnetic field strength does not

exceed 10% of the poloidal magnetic field strength. Above this level we underestimate

the currents required to maintain the respective magnetic field, because we neglect the

inflation of the poloidal field lines due to the strong toroidal field component, i.e. the

poloidal field lines, and hence the current flowing along these field lines are expected to

extend to larger radii than the ones we consider. Moreover, changing the poloidal field

requires toroidal currents which we neglect, too.

When constructing the magnetic field configuration matched to our interior simula-

tions we find complicated structures varying on the time scale of the magneto-elastic

oscillations. Depending on the particular form of the surface magnetic field, we find

configurations where the toroidal magnetic field changes sign causing currents flowing

in opposite directions, and where there are nodes of the magnetic field in angular direc-

tion (close to the star). It is not possible to approximate these configurations with a

self-similar model.

A very interesting result of this part of the thesis is that force-free magnetic field config-

urations are only possible in the magnetosphere for dipolar field if the toroidal magnetic

field (the displacement) is symmetric (antisymmetric) with respect to the equatorial

plane. The antisymmetric configuration would lead to currents in the equatorial plane
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which violate the force-free condition. This result supports independently our inter-

pretation of the observed frequencies in the giant flare QPOs in terms of symmetric

magneto-elastic QPOs U
(−)
n , and possibly E

(−)
n . Note in this respect that we termed

the QPOs according to the symmetry of the displacement, which is opposite to the

symmetry of the magnetic field.

6.3 Modulation of the X-ray light curve

We showed in Chapter 5 that the resonant cyclotron scattering (RCS) provides an ef-

fective source of modulating the X-ray signal of a quiescent SGR. For toroidal fields

δBϕ = 1013 G we obtain modulations of the signal at the 30% level. This amplitude

is more than sufficient to explain the observed QPOs in SGRs (Israel et al., 2005;

Strohmayer and Watts, 2006; Watts and Strohmayer, 2006).

Moreover, we found indications that a large static twist is created at the beginning of

a giant flare. We need such a static twist in our model to avoid additional features in

the spectrum, which may arise as a consequence of the fact that the photons on average

up-scatter in energy independent of the sign of the current. In particular, for e−-e+

pair dominated currents this causes the frequencies of the magneto-elastic oscillations to

appear at twice their value in the Fourier analysis. Additionally, all overtones of these

frequencies would appear in the spectrum, a behavior not confirmed by observations. It

can be avoided by considering a static twist in addition to the toroidal magnetic field

induced by the magneto-elastic oscillations of the star.

To obtain significant scattering in the self-similar models of the magnetic field, large

amplitudes of the toroidal magnetic field component are required, i.e. the twist has to

be of the order ∆Φ ∼ 1.0 (Fernández and Thompson, 2007; Nobili et al., 2008a), because

the toroidal magnetic field strongly decreases with polar angle (δB ∼ sin3 θ) for these

configurations, and because of the strong dependence of the scattering properties on

the toroidal magnetic field near the pole. Configurations with a stronger toroidal mag-

netic field close to the pole lead to significant scattering even with much smaller global

maximum of the magnetic field strength. As there is no physical reason to prefer the

self-similar models to other configurations, the required twist, i.e. the amplitude of the

twisted magnetic field at the stellar surface, is probably overestimated in these models.

The results presented here are valid for the quiescent state of the SGRs. For the giant

flare scenario it is necessary to perform additional simulations with a much larger photon

number (in the Monte-Carlo method), because if the photon source is not spherically

symmetric, like the neutron star surface, the spectrum not only depends on the viewing

angle θ, but also on ϕ. Furthermore, additional physics has to be included to describe

the scattering of high energy photons appropriately, which is very important in the case

of the giant flare. In this scenario a fireball is produced with a black body temperature

of Tbb ∼ 10 keV.

Nevertheless, we have shown that RCS is a possible mechanism to explain the mod-

ulation of a X-ray signal for realistic, i.e. linear, amplitudes of the perturbation at the
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surface for the quiescent emission of SGRs. Thus, RCS is also a very promising mech-

anism to modulate the emission occurring during a giant flare, which however requires

further investigations.

6.4 Outlook

The constraints we found as a consequence of interpreting observed QPO as magneto-

elastic QPO of magnetars, favor somewhat stronger magnetic fields than estimated for

known magnetars. This could be a hint that the actual magnetic field structure of SGRs

deviates from a global dipole, which would not be too surprising, as it is known that

a purely dipolar or purely toroidal field is not a stable magnetic field configuration in

compact stars (see Braithwaite and Nordlund, 2006; Lasky et al., 2011; Ciolfi et al., 2011;

Kiuchi et al., 2011, and references therein). We may thus have an observational indica-

tion that the structure of the magnetic field in magnetars is in fact more complicated

than a pure dipole. Alternatively, other physical effects like superfluidity of the neutrons

and superconductivity of the protons in the core could also change the properties of the

Alfvén oscillations in the core leading to lower estimates for the magnetic field strength

required to match the magneto-elastic QPOs to the range of observed frequencies. These

two physical effects are expected to influence the Alfvén speeds and the overall dynamics

(Passamonti and Andersson, 2011).

We are planning to investigate the effects of different magnetic field configurations,

and those caused by superfluidity and superconductivity of the neutrons and protons in

the core. For the former, we need to investigate mixed poloidal-toroidal configurations,

relax the assumption of axisymmetry and include the coupling to polar oscillations. For

a description of the effects of superfluidity and superconductivity, we need to change

our code to include the interaction between the different fluids (superfluid neutrons and

superconducting protons). However, first estimates of the influence of the superconduc-

tivity can be obtained by assuming a single superconducting fluid, i.e. by neglecting

the different properties of superconducting protons and superfluid neutrons, and by

neglecting the decoupling of the neutrons from the protons due to their superfluidity.

Concerning the calculation of RCS in the magnetosphere the next step would be to

replace the non-relativistic cross sections in the Thompson limit by the expressions given

in Nobili et al. (2008b). When these more general cross sections are included, the scat-

tering in the magnetosphere can be described consistently if the current distribution is

provided. Moreover, we plan to refine our model by including a self-consistent micro-

physical calculation of the currents flowing in the magnetosphere. This is necessary, in

particular, in the case of the giant flares, where there may be feedback of the intense

X-ray radiation on the currents. To cope with the very large number of photons nec-

essary for fully three-dimensional simulations of the giant flare scenario, we plan to use

the power of graphics processing units (GPUs) and to rewrite the Monte-Carlo code in

CUDA (Compute Unified Device Architecture) language.



A Eigenvalues of the elastic GRMHD

equations for torsional oscillations

The system of equations (2.86) can be expressed as a complete conservation law cor-

responding to Eq. (2.37). In this case the definitions of the conserved variables, fluxes,

and sources take the following form

U =


Sϕ

Bϕ

αξ,r
αξ,θ

 =


(ρh+ b2)W 2vϕ − αbϕb

0

Bϕ

αξ,r
αξ,θ

 =


(ρhW 2 +BrBr +BθBθ)vϕ

Bϕ

αξ,r
αξ,θ

 , (A.1)

F k =


− bϕBk

W
− 2µSs

k
ϕ

viBk − vkBk

−vϕαδk
r

−vϕα δk
θ

 , (A.2)

S =


0

0

vϕαδi
r

1√
−g

∂gµν

∂xi

vϕαδi
θ

1√
−g

∂gµν

∂xi

 . (A.3)

Here we have applied some simplifications to the general variables introduced in Chapter

2:

b0 =
W

α
Bϕvϕ (A.4)

bϕ =
Bϕ

W
+Bϕvϕv

ϕW (A.5)

b2 =
BrBr +BθBθ

W 2
+BϕBϕ (A.6)

αbϕb
0 = gϕϕW

2BϕBϕvϕ (A.7)

These expressions are a consequence of considering exclusively torsional oscillations.

By analyzing the matrices ∂F k/∂U , k = {r, θ}, we can find the eigenvalues in the

corresponding direction k by setting the determinants of the following matrices to zero:

i



ii
A. EIGENVALUES OF THE ELASTIC GRMHD EQUATIONS FOR TORSIONAL

OSCILLATIONS

(
∂F r

∂U
− λI

)
=


−λ −Brgϕϕ −µS

α

gϕϕ

grr
0

− ∂vϕ

∂Sϕ
Br −λ− ∂vϕ

∂BϕB
r 0 0

− ∂vϕ

∂Sϕ
α − ∂vϕ

∂Bϕα −λ 0

0 0 0 −λ

 , (A.8a)

(
∂F θ

∂U
− λI

)
=


−λ −Bθgϕϕ 0 −µS

α

gϕϕ

gθθ

− ∂vϕ

∂Sϕ
Bθ −λ− ∂vϕ

∂BϕB
θ 0 0

0 0 −λ 0

− ∂vϕ

∂Sϕ
α − ∂vϕ

∂Bϕα 0 −λ

 . (A.8b)

To evaluate the determinants we require explicit expressions for ∂vϕ

∂Sϕ
and ∂vϕ

∂Bϕ . To obtain

these, we write down the variable transformation from U1 = {vϕ, B
ϕ} to U2 = {Sϕ, B

ϕ}

∂U2

∂U1

=

[
∂Sϕ

∂vϕ

∂Sϕ

∂Bϕ

0 1

]
=

[
A 0

0 1

]
, (A.9)

where A := ρhW 4(1+vϕv
ϕ)+BrBr+B

θBθ. The inverse of this matrix gives the required

derivatives for the calculation of the eigenvalues of Eqs. (A.8):

∂U1

∂U2

=

(
∂U2

∂U1

)−1

=

[
1
A

0

0 1

]
(A.10)

(A.11)

The explicit relations are thus ∂vϕ

∂Sϕ
= 1

gϕϕA
and ∂vϕ

∂Bϕ = 0. The eigenvalues in r- and

θ-direction are calculated by setting the determinants of the two matrices in Eqs. (A.8)

to zero

det

∣∣∣∣∂F k

∂U
− λI

∣∣∣∣ = 0 . (A.12)

Finally, we get the eigenvalues:

λk
1/2 =

√
(Bk)2 + µS/gkk

A
(A.13)



B Semi-analytic model for the

calculation of the Alfvén continuum

The two-dimensional simulations of the Alfvén oscillations are very time consuming. It

is therefore very useful to use a method presented by Cerdá-Durán et al. (2009) which

enables us obtain the frequencies of purely magnetic oscillations much more efficiently.

In the linear regime and in the limit of short wavelengths it is possible to calculate the

Alfvén continuum with a semi-analytic model. Here, we only sketch the method, and

for more information we refer to Cerdá-Durán et al. (2009). In the aforementioned limit

an Alfvén wave travels along magnetic field lines corresponding to

dx

dt
= va(x) , (B.1)

where va is the Alfvén velocity. Any displacement Y traveling along the magnetic field

lines can be expressed as a function of magnetic-field-line-adapted coordinates (χ, ζ)

and time, where χ labels the magnetic field line by the radius at which it crosses the

equatorial plane, and ζ = t(r, θ;χ)/ttot(χ)−1/2 is a dimensionless parameter along each

field line. Here ttot(χ) is twice the total travel time of an Alfvén wave traveling along

a magnetic field line starting from the equatorial plane and ending at the surface or at

another point in the equatorial plane. Note that ζ used in this work corresponds to ξ

in Cerdá-Durán et al. (2009), because here ξ denotes the displacement related to the

4-velocity of the fluid. For a traveling wave Y satisfies trivially the wave equation

∂2Y (χ, ζ, t)

∂t2
=

1

ttot(χ)2

∂2Y (χ, ζ, t)

∂ζ2
. (B.2)

Next we assume standing waves of the form

Y (χ, ζ, t) = a(χ) sin(κζ + φζ) cos(2πft+ φt) , (B.3)

where κ is the wave number, a(χ) the amplitude, φt the temporal phase, φζ a spatial

phase, and f is the oscillation frequency. The dispersion relation then is simply given

by

f =
κ

2πttot
. (B.4)

At this point the frequencies of the oscillations are completely determined by the mag-

netic field topology and the boundary conditions.

iii
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CONTINUUM

Cerdá-Durán et al. (2009) did not consider an extended crust, and hence the boundary

condition was set at the surface and corresponded to the continuous traction condition.

This resulted in a vanishing radial derivative of the displacement and a maximum am-

plitude of the perturbation at the surface. However, when an extended crust is present

there exist two different regimes. For low magnetic field strengths (B . 1015 G) the

standing waves show a node at the crust-core interface (Gabler et al., 2011), which may

be interpreted as a reflection of the standing wave at the crust-core interface. As we

show below, this change of the boundary condition for the semi-analytic model is nec-

essary to calculate the correct frequencies and to find the symmetry of the numerically

obtained QPOs.

For stronger magnetic fields (B > 1015 G), the oscillations reach the surface, and we

can apply the boundary condition of Cerdá-Durán et al. (2009). In order to take the crust

into account the velocity of the perturbation can be approximated by the eigenvalues

(2.90), assuming that the perturbation Y is still traveling along the magnetic field lines.

In an intermediate regime at around 1015 G we do not expect the semi-analytic model

to be valid, because in this case the shear and magnetic contributions to the evolution

in the crust are of similar order.



C Linearized wave equation in the

crust

In this appendix we derive a wave equation to describe the coupled crust-core oscilla-

tions of magnetars. To this end we expand all dynamical variables f(r, t) into a static

unperturbed part f̂(r), denoted by a caret, and a time-dependent perturbation δf(r, t):

f(r, t) = f̂(r) + δf(r, t) . (C.1)

For clarity we will omit the arguments r and t from now on.

In the subsequent subsections we derive the equation for the displacement, describe the

numerical implementation and compare the performance of this alternative method with

the standard approach using Riemann solvers on both sides of the crust-core interface.

In this appendix we generally use the notation of semi-colon to denote the co-variant

derivative: tα;µ := ∇µt
α

C.1 Linear wave equation

To derive the linearized wave equation governing the evolution of the displacement in

the crust of a magnetized neutron star, we project the conservation equation of energy-

momentum

hµ
βT

βν
;ν = 0 (C.2)

(ρh+ b2)uµ
;νu

ν = −hµν

(
P +

1

2
b2
)

;ν

+ hµ
β(bβbν − 2µSs

βν);ν , (C.3)

with hµν = gµν + uµuν and apply the following simplifications: (i) we linearize in the

perturbations δf and (ii) neglect all metric perturbations (Cowling approximation, δg =

0). Then Eq. (C.2) reads

(ρ̂ĥ+ b̂2)δuµ
;ν û

ν =−
(
δρĥ+ ρ̂δh+ 2b̂βδb

β
)
ûµ

;ν û
ν − (ρ̂ĥ+ b̂2)ûµ

;νδu
ν

+ (ûµδuβ + δuµûβ)

[
b̂β b̂ν − ĝβν

(
P̂ +

1

2
b̂2
)]

;ν

+ ĥµ
β

[
b̂βδbν + δbβ b̂ν − ĝβν(δP + b̂βδb

β)
]

;ν

− 2ĥµ
β

[
δµSŝ

βν + µ̂Sδs
βν
]
;ν
. (C.4)

v
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Next we restrict ourselves to (iii) axisymmetry (f,ϕ = 0), and (iv) axial perturbations

(δut = δur = δuθ = 0, δbr = δbθ = 0, and δµS = δh = δρ = δP = 0). Furthermore,

we consider (v) the spherical symmetric, non-rotating background described by the line

element ds2 = −α̂2dt + Φ̂4(dr2 + r2dθ2 + r2 sin(θ)2dϕ2), and (vi) purely poloidal back-

ground fields (b̂ϕ = 0). Applying all these simplifications one arrives at the following

equation for δuϕ:

(ρ̂ĥ+ b̂2)ûtδuϕ
,t =b̂rδbϕ,r + b̂θδbϕ,θ − 2µ̂Sδs

ϕν(s)
;ν

+ δbϕ

[(
2Φ̂,r

Φ̂
+

2

r
+
α̂,r

α̂

)
b̂r + 2 cot(θ)b̂θ

]
. (C.5)

Because of the dependence of Σµν on the displacement ξϕ, we express all other quantities

in terms of the latter. Recalling the definition of the corresponding velocity ξϕ
,t = δuϕ/ût,

see Eq. (2.83), the perturbed magnetic field δbϕ remains the only missing ingredient.

To find an expression relating δbϕ to ξϕ, we contract the Faraday equation

(uµbν − uνbµ);µ = 0 (C.6)

with uν and obtain

uνb
ν
;µu

µ = uν
;µuνb

µ − bµ;µ , (C.7)

where we have used uνu
ν = −1 and uνb

ν = 0 . From uνb
ν
;µu

µ = 0 (see Papadopoulos

and Esposito, 1982) it follows that

bµ;µ = uν
;µuνb

µ . (C.8)

When linearizing Eq. (C.6) and using (C.8) Faraday’s equation becomes:

ûµδbν;µ =− b̂ν;µδu
ν + ĥνβ(δuβ;λb̂

λ + ûβ;λδb
λ) + ûνδuβ b̂λûβ;λ − δuµ

;µb̂
ν − ûµ

;µδb
ν

+ ûν b̂β(δuβ;λû
λ + ûβ;λδu

λ) + ûβ;λû
λ(b̂βδuν + δbβûν) . (C.9)

Taking the ϕ-component of this equation, we arrive at a relation between δbϕ and the

spatial derivatives of the displacement ξϕ which reads

ûtδbϕ,t =
α̂,r

α̂
b̂rδuϕ + b̂rδuϕ

,r + b̂θδuϕ
,θ

=b̂rût

(
α̂,r

α̂
ξϕ

,t + ξϕ
,t,r

)
+ b̂θûtξϕ

,t,θ + b̂rût
,rξ

ϕ
,t , (C.10)

or

δbϕ,t =
(
b̂rξϕ

,r + b̂θξϕ
,θ

)
,t
, (C.11)
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where we have used that ût = α̂−1 . Plugging this relation into Eq. (C.5) we obtain

Â0ξ
ϕ
,tt =Â1ξ

ϕ
,r + Â2ξ

ϕ
,θ +

(
b̂θb̂θ +

µ̂S

r2Φ̂4

)
ξϕ

,θθ +
(
2b̂rb̂θ

)
ξϕ

,θr +

(
b̂rb̂r +

µ̂S

Φ̂4

)
ξϕ

,rr (C.12)

with

Â0 =
(
ρ̂ĥ+ b̂2

)
α̂−2 , (C.13)

Â1 =Â3b̂
r + b̂rb̂r,r + b̂θb̂r,θ +

(
µ̂S

Φ̂4

)
,r

+

(
α̂,r

α̂
+ 10

Φ̂,r

Φ̂
+

4

r

)
µ̂S

Φ̂4
, (C.14)

Â2 =Â3b̂
θ + b̂rb̂θ,r + b̂θb̂θ,θ +

(
µ̂S

r2Φ̂4

)
,θ

+ 3 cot(θ)
µ̂S

r2Φ̂4
, (C.15)

and

Â3 =

(
4
Φ̂,r

Φ̂
+

2

r
+
α̂,r

α̂

)
b̂r + 2 cot(θ)b̂θ . (C.16)

Eigenvalues

The solution of the coefficient determinant of the second-order derivatives of Eq. (C.12)

0 =aij|xi||xj| ∂2ξ

∂xi∂xj
= cij

∂2ξ

∂xi∂xj
(C.17)

cij =

 α̂2Â0 0 0

0 Φ̂4b̂rb̂r + µ̂S

r2 Φ̂4rb̂rb̂θ

0 Φ̂4rb̂θb̂r Φ̂4r2b̂θb̂θ + µS

 (C.18)

leads to the following eigenvalues:

λ1 =1 , (C.19)

λ2 =
µ̂S + b̂2

α̂2Â0

, (C.20)

λ3 =
µ̂S

α̂2Â0

, (C.21)

where the eigenvector corresponding to λ2 (λ3) is oriented along (orthogonal to) the

magnetic field lines, i.e. they correspond to the linearized version of Eq. (2.90). All

eigenvalues are real and distinct. Hence, Eq. (C.12) is hyperbolic.
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C.2 Numerical implementation of the linearized wave

equation in the crust

Compared to the case when using Riemann solvers on both sides of the crust-core inter-

face, the equations and the numerical scheme in the fluid core of the neutron star remain

unmodified. In order to evolve Eq. (C.12) numerically in the crust we split it into two

equations for ξϕ and Y := ξϕ
,t

ξϕ
,t = Y (C.22)

Â0Y ,t = Â1ξ
ϕ
,r + Â2ξ

ϕ
,θ +

(
b̂θb̂θ +

µ̂S

r2Φ̂4

)
ξϕ

,θθ +
(
2b̂rb̂θ

)
ξϕ

,θr +

(
b̂rb̂r +

µ̂S

Φ̂4

)
ξϕ

,rr .

(C.23)

These equations are integrated with an explicit Runge-Kutta method. Since we are now

evolving two systems with different variables in the core and in the crust, we have to

impose interface conditions. The reconstruction of the variables for the Riemann solver

in the core works analog to the standard method of Section 2.6.2. For the corresponding

procedure we require the magnetic field δbϕ and the velocity vϕ in the crust. We construct

δbϕ from the linearized induction equation (C.11), and vϕ is related to Y by Y = ξϕ
,t =

δuϕ/ut = vϕ/ut. To set the boundary conditions for the variables in the crust, there is no

need to provide a condition for the magnetic field, because the dynamical variables are

Y and ξϕ in the crust, which are reconstructed at the crust-core interface as in Section

2.6.2. With these cell-interface values one can approximate the derivatives at the cell

centers near the crust-core interface in form of one-sided radial derivatives .

At the surface the same conditions as in Section 2.5 apply. Translated to the variables

used in the linear approach these read

ξϕ
,r = 0 , (C.24)

Y,r = 0 . (C.25)

The evolutions computed with this method rapidly become unstable when increasing

the magnetic field strength. It was therefore necessary to add some artificial dissipa-

tion. We used a fourth-order Kreiss-Oliger term εDD4f , where D4f is the fourth-order

numerical derivative of any function f . The minimal coefficient found to give stable

evolutions is εD = 10−2. We checked the code to ensure that this additional term does

not influence the results of the simulations significantly.

C.3 Comparison of the two methods

To compare the results of the crustal mode damping (see Section 3.4.1) obtained with

the two numerical methods presented in Section 2.4, 2.6 and in Appendix C we plot the

evolution of the velocity at some point in the crust near the pole (Fig. C.1). Without



C.3. Comparison of the two methods ix

0 100 200 300
time  [ms]

-2e-16

-1e-16

0

1e-16

2e-16

ve
lo

ci
ty

 ξ
,t

B=0 - lin
B=0 - R
B≠0 - lin
B≠0 - R

Figure C.1: Evolution of the velocity ξ,t at some point in the crust near the pole for
B = 5 × 1013 G and without a magnetic field. The two different numerical
methods are denoted by lin for the linear method and R for the Riemann
solver approach. The linear method is less dissipative for zero magnetic
field, while the opposite holds when the magnetic field is turned on.

magnetic field, the linear method is less dissipative, which is probably related to the set-

up of the interface conditions at the crust-core interface in this particular case. While

we use the general conditions described in Section 2.6 for the Riemann solver approach,

it is possible to use a simplified expression for the linear method. Because there is no

magnetic field the expression of continuous traction at the crust-core interface leads to

ξϕ
,r = 0 as at the surface. This provides a source of dissipation for the Riemann solver

method, but none for the linear approach. In the presence of magnetic fields the picture

changes, and the evolution computed with the Riemann solver has less dissipation of

crustal modes than the linear method (see Fig. C.1). When using different coefficients

in the Kreiss-Oliger term, the curves for the linear method are indistinguishable. We

can therefore rule out that the artificial dissipation dominates the numerical damping

observed for the linear approach.

Because of its superior behavior in the more generic case we generally used the Rie-

mann solver method to obtain the numerical results. We checked that the linear ap-

proach agrees on the extracted frequencies with the Riemann solver for all regimes of

the magnetic field strength considered by us.
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D Calculations of crustal shear modes

as eigenvalue problem

Without magnetic field Eq. (C.12) simplifies to

Â0ξ
ϕ
,tt = Â1ξ

ϕ
,r + Â2ξ

ϕ
,θ +

µ̂S

r2Φ̂4
ξϕ

,θθ +
µ̂S

Φ̂4
ξϕ

,rr

= ∇ν

(
µSg

ννξϕ
,ν

)
, (D.1)

with

Â0 = ρ̂ĥα̂−2 , (D.2)

Â1 =

(
µ̂S

Φ̂4

)
,r

+ Ĉ
µ̂S

Φ̂4
, (D.3)

Â2 =

(
µ̂S

r2Φ̂4

)
,θ

+ 3 cot(θ)
µ̂S

r2Φ̂4
, (D.4)

and

Ĉ =
α̂,r

α̂
+ 10

Φ̂,r

Φ̂
+

4

r
. (D.5)

Assuming a harmonic time dependence ξϕ(r, t) = ξϕ(r)eiωt and a separation of variables

ξϕ(r, θ) = R(r)Θ(θ) leads to

−ω2Â0 =

[(
µ̂S

r2Φ̂4
Θ′(θ)

)
,θ

+ 3 cot(θ)
µ̂S

r2Φ̂4
Θ′(θ)

]
1

Θ(θ)

+

[(
µ̂S

Φ̂4
R′(r)

)
,r

+ Ĉ
µ̂S

Φ̂4
R′(r)

]
1

R(r)
, (D.6)

where a prime denotes the derivative with respect to the corresponding variable r or θ.

The angular and radial part have to fulfill this equation independently, such that:

0 = Θ′′(θ) + 3 cot θΘ′(θ) + λ2
θΘ(θ) , (D.7)

0 =
µ̂S

Φ̂4
R′′(r) +

[(
µ̂S

Φ̂4

)
,r

+ Ĉ
µ̂S

Φ̂4

]
R′(r) + λ2

rR(r) , (D.8)

xi
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where λ2
r =

(
ω2Â0 + λ2

θ

)
. Both equations are of singular Sturm-Liouville type, and

therefore their solutions Rλr and Θλθ
form a complete, orthonormal set Ξi(r, θ) =

RλrΘλθ
. The solution of the angular part consists of the angular part of the vector

spherical harmonics Ψn(θ), which is related to the Legendre polynomials Pn(θ) by

Ψn(θ) ∼ ∂Pn(θ)

∂θ
. (D.9)

The equation to obtain R(r) is solved numerically with a shooting method. Because the

eigenfunctions Ξi(r, θ) form a complete set, it is possible to expand any displacement in

terms of the former:

ξϕ(r, θ, t) =
∑

i

Ai(t) Ξi(r, θ) , (D.10)

where the eigenmode coefficients Ai(t) are given by the inner product

Ai(t) = 〈ξϕ(r, θ, t),Ξi(r, θ)〉

=

∫ rs

rcc

ξϕ(r, θ, t) Ξi(r, θ)wθwrdrdθ . (D.11)

Here rs and rcc are the radii of the surface of the star and of the crust-core interface,

respectively. The corresponding weighting functions wr and wθ are, according to the

Sturm-Liouville theory

wθ = sin(θ)3 , (D.12)

wr =
α(r)−1Φ(r)10 r4ρ(r)h(r)

α(rcc)−1Φ(rcc)10 r4
ccρ(rcc)h(rcc)

. (D.13)

We calculate the overlap integrals defined in Eq. (D.11) with a fourth-order Simpsons

rule algorithm.

The orthogonality of the different crustal modes is checked numerically in Table D.1.

The overlap integrals between different l modes increase in magnitude with increasing l,

because the finer spatial structure of higher l modes results in larger numerical errors at

a given grid resolution than that for low l modes. The strongest numerical violation of

orthogonality between different modes occurs for the same l but different n. The same

argument as above applies. The much shorter extension of the crust in radial than in θ

direction implies that at a given grid resolution the angular structure is better resolved

than the radial one.

In Fig. D.1 we show the first five radial eigenfunctions Rλr for λr = {0, 1, 2, 3, 4}.
The fundamental n = 0 is almost constant throughout the crust and should be resolved

accurately at very low grid resolution. The n > 0 modes have at least one node inside

the crust, and hence require finer numerical resolution.
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n=0
n l 2 3 4 5 6

0

2 1.0 8× 10−6 −1× 10−5 2× 10−5 −2× 10−5

3 8× 10−6 1.0 2× 10−5 −3× 10−5 3× 10−5

4 −1× 10−5 2× 10−5 1.0 4× 10−5 −5× 10−5

5 2× 10−5 −3× 10−5 4× 10−5 1.0 6× 10−5

6 −2× 10−5 3× 10−5 −5× 10−5 6× 10−5 1.0

1

2 −4× 10−2 −3× 10−7 5× 10−7 −7× 10−7 9× 10−7

3 −3× 10−7 −4× 10−2 −8× 10−7 1× 10−6 −1× 10−6

4 5× 10−7 −8× 10−7 −4× 10−2 −2× 10−6 2× 10−6

5 −7× 10−7 1× 10−6 −2× 10−6 −4× 10−2 −3× 10−6

6 9× 10−7 −1× 10−6 2× 10−6 −3× 10−6 −4× 10−2

n=1
n l 2 3 4 5 6

1

2 1.0 8× 10−6 −1× 10−5 2× 10−5 −2× 10−5

3 8× 10−6 1.0 2× 10−5 −3× 10−5 3× 10−5

4 −1× 10−5 2× 10−5 1.0 4× 10−5 −5× 10−5

5 2× 10−5 −3× 10−5 4× 10−5 1.0 6× 10−5

6 −2× 10−5 3× 10−5 −5× 10−5 6× 10−5 1.0

Table D.1: The overlap integrals of the different crustal modes of the reference model
APR+DH 1.4 obtained with a Simpsons rule algorithm. The grid resolution
was 150× 100 for [0, rs]× [0, π]. The upper (lower) table gives the values for
the overlap integrals with n = 0 (n = 1) modes.
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Figure D.1: First five radial eigenfunctions of the crustal shear modes for the model
APR+DH 1.4.
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E Magnetic field configurations

confined in the crust

We follow Aguilera et al. (2008), who give a description of different axisymmetric mag-

netic field configurations. We neglect the effects of general relativity on the magnetic

field and the influence of the magnetic field on the neutron star structure. This should

hold, in particular, for fields confined to the crust which contains only few per cent of

the total mass. Moreover, we assume that the magnetic field has relaxed to some equi-

librium before the crust crystallized. After crystallization the magnetic field is frozen

in the crust and, thus, no forces act on the particles. For simplicity we consider purely

poloidal fields only.

For axisymmetric fields it is possible to make the following ansatz

Bpoloidal = ∇× (r×∇ψ) , (E.1)

where ψ = ψ(r, θ) is a scalar whose angular part can be expanded according to

ψ(r, θ) = C
∑

l

Pl(cos θ)

r
Sl(r) , (E.2)

with C being a normalization constant. The poloidal magnetic field can thus be ex-

pressed as

Br = − B

2x2
Sl(x)

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ
Pl(cos θ)

)
, (E.3)

Bθ =
B

2x

∂

∂x
Sl(x)

∂

∂θ
Pl(cos θ) , (E.4)

where x = r/rs and B is a constant related to C. For dipolar fields C = r2
sB/2. The

ϕ-component of the force-free condition ∇×B = µB (see Chapter 4 for a discussion of

force-free fields in the magnetosphere) leads to a Riccati-Bessel equation for Sl(x) (see

Aguilera et al., 2008). µ is a parameter related to the currents maintaining the magnetic

field. For different l, we have

Sl(x) = alµrsx jl(µrsx) + blµrsxnl(µrsx) , (E.5)

where al and bl are parameters, and jl and nl are the spherical Bessel functions of first

and second kind. The parameters al and bl can be obtained by matching to an exterior

xv
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solution of the magnetic field. The spherical Bessel functions used to get the dipolar

(l = 1), quadrupolar (l = 2), and octupolar (l=3) configuration are given by

j1(X) =
sinX

X2
− cosX

X
(E.6)

j2(X) =

(
3

X3
− 1

X

)
sinX − 3 cosX

X2
(E.7)

j3(X) =

(
15

X4
− 6

X2

)
sinX −

(
15

X3
− 1

X

)
cosX (E.8)

n1(X) = −cosX

X2
− sinX

X
(E.9)

n2(X) =

(
− 3

X3
+

1

X

)
cosX −−3 sinX

X2
(E.10)

n3(X) =

(
− 15

X4
+

6

X2

)
cosX −

(
15

X3
− 1

X

)
sinX (E.11)

The function Sl in Eq. E.5 depends on the constants al and bl. For a given l both

have to be determined by the boundary conditions for Br and Bθ at the surface. For a

dipolar external field we get

a1 = cosµrs , (E.12)

b1 = sinµrs , (E.13)

while for the quadrupolar external field

a2 = 3
sinµrs
(µrs)2

− sinµrs − 2
cosµrs
(µrs)

+ 3
cosµrs
(µrs)3

, (E.14)

b2 = −3
cosµrs
(µrs)2

+ cosµrs − 2
sinµrs
(µrs)

+ 3
sinµrs
(µrs)3

. (E.15)

The octupolar field can be matched by

a3 = cosµrs − 5
sinµrs
µrs

− 15
cosµrs
(µrs)2

+ 30
sinµrs
(µrs)3

+ 30
cosµrs
(µrs)4

, (E.16)

b3 = sinµrs + 5
cosµrs
(µrs)

− 15
sinµrs
(µrs)2

− 30
cosµrs
(µrs)3

+ 30
sinµrs
(µrs)4

. (E.17)

It remains to determine the value of µ. For magnetic fields confined to the crust

Br = 0 at the crust-core interface. This translates into a condition for Sl|rcc = 0, and

hence for µ

tan [µ(rcc − rs)]− µrs = 0 , (E.18)

which has to be solved numerically. For the quadrupolar and octupolar configurations

the corresponding equations are more complicated and are not given here.



F Orthonormal basis in Schwarzschild

geometry

The components of the orthonormal basis in Schwarzschild geometry are given explicitly

as follows:

ẽr = α∂r , (F.1)

ẽθ =
1

r
∂θ , (F.2)

ẽϕ =
1

r sin θ
∂ϕ . (F.3)

The resulting 3-dimensional vector operators are the gradient

∇̃ψ =αψ,rẽr +
1

r
ψ,θẽθ +

1

r sin θ
ψ,ϕẽϕ , (F.4)

the divergence

∇̃ ·B =
1
√
γ

[(
Br̃
√
γθθγϕϕ

)
,r

+
(
Bθ̃

√
γrrγϕϕ

)
,θ

+ (Bϕ̃
√
γrrγθθ),ϕ

]
=
α

r2

(
r2Br̃

)
,r

+
1

r sin θ
(sin θBθ̃),θ +

1

r sin θ
(Bϕ̃),ϕ , (F.5)

and the curl

∇̃ ×B =
ẽr
√
γrr√
γ

[(√
γϕϕBϕ̃

)
,θ
− (

√
γθθBθ̃),ϕ

]
+

ẽθ
√
γθθ√
γ

[
(
√
γrrBr̃),ϕ −

(√
γϕϕBϕ̃

)
,r

]
+

ẽϕ
√
γϕϕ√
γ

[
(
√
γθθBθ̃),r − (

√
γrrBr̃),θ

]
=

ẽr

r sin θ

[
(sin θBϕ̃),θ − (Bθ̃),ϕ

]
+

ẽθ

r

[
sin−1 θ (Br̃),ϕ − α (rBϕ̃),r

]
+

ẽϕ

r

[
α (rBθ̃),r − (Br̃),θ

]
. (F.6)

We denote the basis vectors and the vector operators in orthonormal coordinates with

the tilde to distinguish them from those in the usual coordinate basis.
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G Integration along geodesics

Free falling particles in a curved spacetime follow geodesics. We have given the corre-

sponding geodesic equation in Eq. (2.13). For the numerical integration we begin with

the derivatives of the coordinates with respect to the affine parameter λ

dxα

dλ
=
dt

dλ

dxα

dt
, (G.1)

and consequently

d2xα

dλ2
=
d2t

dλ2

dxα

dt
+

(
dt

dλ

)2
d2xα

dt2
. (G.2)

With Eq. (2.13) this can be expressed as

d2xα

dt2
=

(
Γt

βγ

dxα

dt
− Γα

βγ

)
dxβ

dt

dxγ

dt
. (G.3)

By defining the momenta kα = dxα/dt and the energy E = dt/dλ we get

dE

dt
= −Γt

αβk
αkβE . (G.4)

Thus, Eq. (G.3) can be expressed as follows

dxα

dt
= ka , (G.5)

dkα

dt
=
(
Γt

βγk
α − Γα

βγ

)
kβkγ , (G.6)

dE

dt
= −Γt

αβk
αkβE . (G.7)

xix
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With kt = 1 these equations explicitly read

dkr

dt
= 2Γt

rtk
rkr − Γr

tt − Γr
rrk

rkr − Γr
θθk

θkθ − Γr
ϕϕk

ϕkϕ

= 3
α′

α
krkr − α′α3 + α2rkθkθ + α2r sin2 θkϕkϕ (G.8)

dkθ

dt
= 2Γt

rtk
θkrkt − 2Γθ

rθk
rkθ − Γθ

ϕϕk
ϕkϕ

= 2

(
α′

α
− 1

r

)
krkθ + sin θ cos θkϕkϕ (G.9)

dkϕ

dt
= 2Γt

rtk
ϕkrkt − 2Γϕ

rϕk
rkϕ − 2Γϕ

θϕk
θkϕ

= 2

(
α′

α
− 1

r

)
krkϕ − 2 cot θkθkϕ (G.10)

dE

dt
= −2Γt

rtk
rktE = −2

α′

α
krE (G.11)

These equations are integrated explicitly in time with a Runge-Kutta method. In the

above equations we have used the following Christoffel symbols:

Γt
tr =

α′

α
(G.12a)

Γr
tt = α′α3 (G.12b)

Γr
rr = −α

′

α
(G.12c)

Γr
θθ = −α2r (G.12d)

Γr
ϕϕ = −α2r sin2 θ (G.12e)

Γθ
rθ =

1

r
(G.12f)

Γθ
ϕϕ = − sin θ cos θ (G.12g)

Γϕ
rϕ =

1

r
(G.12h)

Γϕ
θϕ = cot θ (G.12i)
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Viganò, D., Pons, J. A., and Miralles, J. A. (2011). Force-free twisted magnetospheres

of neutron stars. ArXiv e-prints.

Wald, R. (1984). General Relativity. University of Chicago Press.

Watts, A. L. and Strohmayer, T. E. (2006). Detection with RHESSI of High-Frequency

X-Ray Oscillations in the Tailof the 2004 Hyperflare from SGR 1806-20. ApJ,

637:L117–L120.

Watts, A. L. and Strohmayer, T. E. (2007). Neutron star oscillations and QPOs during

magnetar flares. Advances in Space Research, 40:1446–1452.



Bibliography xxxi

Wilson, J. R., Mathews, G. J., and Marronetti, P. (1996). Relativistic numerical model

for close neutron-star binaries. Phys. Rev. D, 54:1317–1331.

Wolfson, R. (1995). Shear-induced opening of the coronal magnetic field. ApJ, 443:810–

817.

Wright, G. A. E. (1973). Pinch instabilities in magnetic stars. MNRAS, 162:339–+.

Xu, R. (2007). AXPs/SGRs: Magnetars or quark-stars? Advances in Space Research,

40:1453–1459.

Xu, R. X., Tao, D. J., and Yang, Y. (2006). The superflares of soft γ-ray repeaters:

giant quakes in solid quark stars? MNRAS, 373:L85–L89.

Yang, W. H., Sturrock, P. A., and Antiochos, S. K. (1986). Force-free magnetic fields -

The magneto-frictional method. ApJ, 309:383–391.

York, Jr., J. W. (1979). Kinematics and dynamics of general relativity. In Smarr, L. L.,

editor, Sources of Gravitational Radiation, pages 83–126.

Zane, S., Rea, N., Turolla, R., and Nobili, L. (2009). X-ray spectra from magnetar

candidates - III. Fitting SGR/AXP soft X-ray emission with non-relativistic Monte

Carlo models. MNRAS, 398:1403–1413.



Parts of this work have been published in scientific Journals or are in the process of

publication:
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