
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Theoretische Informationstechnik

Robust Coding Strategies and Physical Layer Service
Integration for Bidirectional Relaying

Rafael Felix Wyrembelski

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. sc. techn. Gerhard Kramer
Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. Dr. rer. nat. Holger Boche
2. Prof. Dr. Vincent Poor (Princeton University, USA)

Die Dissertation wurde am 06.10.2011 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 22.03.2012 angenom-
men.





Zusammenfassung

Aktuelle Forschungsergebnisse zeigen, dass Relaiskonzepte die Leistungsfähigkeit und Ab-
deckung drahtloser Kommunikationssysteme deutlich erhöhen können. In dieser Disserta-
tion betrachten wir bidirektionale Relais-Kommunikation in einem Netzwerk mit drei Statio-
nen, in dem zwei Stationen mit Hilfe einer Relaisstation kommunizieren.

Im ersten Teil der Dissertation analysieren wir die Auswirkungen ungenauer Kanalkennt-
nis an Sender und Empfängern und betrachten den dazugehörigen diskreten gedächtnis-
losen bidirektionalen Compound Broadcastkanal. Wir leiten die Kapazitätsregion her und
analysieren die Szenarien, in denen zusätzlich entweder der Sender oder die Empfänger per-
fekte Kanalkenntnis besitzen. Hierbei zeigt sich, dass Kanalkenntnis an den Empfängern
keinen Einfluss auf die Kapazitätsregion hat, während Kanalkenntnis am Sender diese ver-
größern kann.

Anschließend betrachten wir bidirektionale Relais-Kommunikation in unkoordinierten
drahtlosen Netzwerken. In solchen Netzwerken wird die Kommunikation durch unbekannte,
sich beliebig ändernde Interferenz gestört. Wir betrachten den diskreten gedächtnislosen
bidirektionalen beliebig variierenden Broadcastkanal und leiten die Kapazitätsregion für
deterministische und randomisierte Kodierungsstrategien her. Weiterhin analysieren wir
Empfänger mit Listen-Dekodierern und charakterisieren die zugehörige Kapazitätsregion in
Abhängigkeit der erlaubten Listengrößen und der Symmetrisierung des Kanals.

Im letzten Teil der Dissertation betrachten wir die effiziente Implementierung verschiedener
Dienste auf der physikalischen Schicht für bidirektionale Relais-Netzwerke mit diskreten
gedächtnislosen Kanälen sowie für Netzwerke mit mehreren Antennen. Wir betrachten
die Implementierung von Multicast Diensten und analysieren den bidirektionalen Broad-
castkanal mit gemeinsamen Nachrichten. Wir leiten die entsprechende Kapazitätsregion her.
Dabei zeigt sich, dass die kapazitätserreichenden Strategien für die bidirektionalen Broad-
castkanäle mit und ohne gemeinsamen Nachrichten eng miteinander verbunden sind. An-
schließend betrachten wir die Implementierung von zusätzlichen vertraulichen Nachrichten.
Wir nutzen das Kriterium der informationstheoretischen Sicherheit, um die zugehörigen
Sicherheitskapazitätsregionen herzuleiten.

Im abschließenden Fazit geben wir einen Ausblick auf offene Probleme und zukünftige
Forschungsrichtungen.
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Abstract

Recent research developments show that the concept of bidirectional relaying significantly
improves the performance and coverage in wireless networks. In this thesis we consider
bidirectional relaying in a three-node network, where a relay establishes a bidirectional com-
munication between two other nodes using a decode-and-forward protocol.

In the first part we consider the problem of imperfect channel state information and study
the discrete memoryless compound bidirectional broadcast channel. We derive the capacity
region and further discuss the cases where either the transmitter or the receivers have perfect
channel state information. It shows that channel knowledge on the receiver side has no
influence on the achievable rates while on the transmitter side it increases the capacity.

In the next part we consider bidirectional relaying in uncoordinated wireless networks, where
the communication is disturbed by unknown varying interference from other transmitters
outside the bidirectional relay network. Accordingly, we study the discrete memoryless
arbitrarily varying bidirectional broadcast channel and derive the corresponding capacity
regions for deterministic and random coding strategies. We further study the influence of list
decoding and characterize the list capacity region in terms of the list sizes at the receivers
and of the symmetrizability of the channel. Then we impose constraints on the permissible
codewords and sequences of channel states and finally analyze the case of unknown varying
additive interference.

In the last part we address the problem of physical layer service integration in discrete memo-
ryless and multi-antenna Gaussian bidirectional relay networks. First, we consider multicast
services and, accordingly, study the bidirectional broadcast channel with common messages.
We derive the capacity region and thereby establish a strong connection with the correspond-
ing scenario without common messages. Then, we take into account that there are also ser-
vices with certain secrecy constraints. We use the concept of information theoretic security
to model this requirement and study the additional integration of confidential messages. We
derive the capacity-equivocation and secrecy capacity regions.

Finally, we end with a conclusion and give an outlook on open problems and future research
directions.
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Notation

In this work we denote scalars, vectors, matrices, and sets by lower case letters, bold lower
case letters, bold capital letters, and script letters, e.g., x, x,X , and X . Further, we use:

N set of positive integers, i.e., {1, 2, 3, ...}
R+ set of non-negative real numbers
C set of complex numbers
∞ infinity
∅ empty set
X c complement of set X
|X | cardinality of set X
co(X ) convex hull of set X
int(X ) interior of set X
lhs := rhs value of right hand side (rhs) is assigned to left hand side (lhs)
lhs =: rhs value of left hand side (lhs) is assigned to right hand side (rhs)
∃ there exists
∀ for all
b·c floor function maps a real number to largest previous integer
d·e ceiling function maps a real number to smallest following integer
| · |+ abbreviation for max{0, ·}
log logarithm to base two
ln natural logarithm
exp exponential function
xT ,XT transpose of vector x resp. matrixX
xH ,XH Hermitian transpose of vector x resp. matrixX
X−1 inverse of matrixX
det(X) determinant of matrixX
tr(X) trace of matrixX
rank(X) rank of matrixX
X � 0 matrixX is positive semidefinite
IN identity matrix of dimension N ×N
〈x,y〉 inner product between vectors x and y
‖x‖ Euclidean norm of vector x
o(g(x)) f(x) is little-o of g(x) if limx→∞

g(x)
f(x) = 0

x



Notation

We denote random variables by non-italic capital letters and their realizations and ranges by
lower case italic letters and script letters, e.g., X, x, and X , respectively. The notation Xn

stands for the sequence X1,X2, ...,Xn of length n.

Let P(X ) be the set of all probability distributions on X . We denote (arbitrary) probability
distributions by lower case letters, e.g., pX ∈ P(X ) is the probability distribution associated
with the random variable X, while capital letters are devoted to types, e.g., PX ∈ P0(n,X )
where P0(n,X ) is the set of all types on X of length n. We refer to Appendix B for further
details.

Let pX ∈ P(X ) be a probability distribution and W : X → P(Y) be a stochastic ma-
trix. Then, we denote the entropy of the random variable X by H(X). To emphasize
the dependency of the entropy on the probability distribution pX ∈ P(X ), we also write
H(X) = H(pX) interchangeably. This extends to joint entropy H(X,Y) = H(pXY) and
conditional entropy H(Y|X) = H(W |pX) in a natural way. We denote the mutual infor-
mation between the random variables X and Y by I(X; Y). Accordingly, we also write
I(X; Y) = I(pX,W ) to emphasize the dependency on the input distribution pX ∈ P(X )
and the channel W : X → P(Y). For further details we refer to standard text books on
(multi-user) information theory as for example by Gallager [Gal68], Wolfowitz [Wol78],
Csiszár and Körner [CK81], Cover and Thomas [CT06], Kramer [Kra08], or El Gamal and
Kim [EK11].

Further, we use the following notation:

W⊗n n-th memoryless extension of the stochastic matrix W
X−Y − Z random variables X, Y, and Z form a Markov chain in this order
P(X ) set of all probability distributions on X
P0(n,X ) set of all types on X of length n
H(X) = H(pX) traditional entropy of discrete random variable X
h(X) differential entropy of continuous random variable X
H2(·) binary entropy function
I(X; Y) = I(p,W ) mutual information between X and Y
D(pX‖pY) (Kullback-Leibler) information divergence between pX and pY

X ∼ N (m,σ2) X is Gaussian distributed with mean m and variance σ2

X ∼ CN (m,σ2) X is complex Gaussian distributed with mean m and variance σ2

var[X] variance of X
EX[·] expectation with respect to X
P{·} probability
T (n)

X set of sequences of type PX

T (n)
pX,ε set of (strongly) ε-typical sequences with respect to pX

A(n)
ε (X) set of (weakly) ε-typical sequences with respect to pX
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Notation

Abbreviations

3GPP 3rd Generation Partnership Project
arg argument
AVBBC arbitrarily varying bidirectional broadcast channel
AVC arbitrarily varying channel
AVGBC arbitrarily varying general broadcast channel
AVMAC arbitrarily varying multiple access channel
BBC bidirectional broadcast channel
BC broadcast channel
CC compound channel
CSI channel state information
CSIT channel state information at the transmitter
CSIR channel state information at the receiver
det deterministic
DMC discrete memoryless channel
iid independent and identical distributed
inf infimum
KKT Karush-Kuhn-Tucker
lim limes
limsup limes superior
liminf limes inferior
LTE Long-Term Evolution
MAC multiple access channel
max maximum
min minimum
MIMO multiple-input multiple-output
MISO multiple-input single-output
OFDM orthogonal frequency division multiplex
ran random
SIMO single-input multiple-output
SVD singular value decomposition
sup supremum
TDMA time division multiple access
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1 Introduction

1.1 Motivation

Almost all technological advances would not be possible without the immense progress in
integrated circuit design. In 1965 Moore observed that the number of transistors on an in-
tegrated circuit or chip doubles approximately every two years while the production costs
remain constant [Moo65]. This is widely known as Moore’s law. Although this prediction
was proposed almost 50 years ago, it is astonishing that it is still valid and it seems to con-
tinue for the next years. However, sooner or later this growth will come to an end due to
limits of miniaturization at atomic levels. By then at the latest we have to find other concepts
to keep the technological progress alive.

With the rapid development of integrated circuits the capabilities of electronic devices, such
as processing speed or memory capacity, increase exponentially. This made the develop-
ment of wireless communication systems possible which are nowadays omnipresent. It
started with cellular networks for voice communication only and continued to high speed
data services such as mobile Internet or video streaming. However, the available network
bandwidth is the most defining bottleneck for wireless communication systems, since favor-
able frequency bands are scarce. The ongoing technological development will extend the
usable frequencies to higher regions but with an increasing frequency the radio propagation
conditions will be more and more susceptible. Thus, the problem of coverage in wireless
systems will be even more intricate especially when the direct link does not have the desired
quality due to distance or shadowing. At a first glance, an increase in transmit power seems
to be an obvious option but this will result in higher interference for other users and a higher
energy consumption. Clearly, operators and especially manufacturers of mobile devices are
interested in a low energy consumption since this results in longer operating times of the
devices. Furthermore, current cellular systems are usually interference limited so that a sim-
ple increase in transmit power is no option. A possible solution for conventional network
structures would be to increase the number of base stations, but this would lead to significant
higher costs in infrastructure.

Besides networks with wired infrastructure such as conventional cellular networks, there
are also networks without any fixed infrastructure which are called ad-hoc networks. Such
networks are becoming more and more attractive since they exploit the broadcast nature
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1 Introduction

of the wireless medium so that in principle each node is connected to each other node in
the network. In practice, due to radio propagation conditions each node can only transmit
reliably to nodes in a certain neighborhood. Therefore, information in such networks is
usually not exchanged directly but by multi-hop communication. This means that a source-
destination pair usually cooperates with other nodes so that the information is relayed by
one or more intermediate nodes. A survey about cooperative communication can be found
for example in [KMY06]. Because of this relaying feature, ad-hoc networks have further
favorable properties. For example each additional node that comes into the network will
increase the overall connectivity in the network. Further, the routing tasks of a certain node
can be taken over by other nodes if this node should disappear from the network due to bad
channel conditions or low battery capacity. Ad-hoc networks do not need a wired backbone
which makes them easy to deploy. It is clear that for certain applications such as sensor
networks or car-to-car communication, a flexible network topology is more favorable than a
fixed cellular topology.

The advantages of multi-hop communication make it worth to integrate relaying techniques
also in conventional cellular networks to improve the performance and especially the cov-
erage and connectivity. Not surprisingly, this is intensively discussed at the moment by the
Third Generation Partnership Project’s Long Term Evolution-Advanced (LTE-Advanced)
group, cf. for example [PPTH09]. Instead of a direct connection between the base station
and a mobile device, relays can be used to support the exchange of information between
them. These relays can be other mobile terminals or can be fixed and placed over the cells.
Since relays are less complex and do not require a connection to the wired backbone, the
coverage and connectivity of cellular networks can be improved with lower infrastructure
costs compared to installing additional base stations. Moreover, the use of relays splits
up the distance between the base station and the mobile device so that the transmission is
performed in several steps. Since the received signal power falls off super-linear with the
distance [Rap02], the power that is needed for the transmission can be further reduced.

The discussion shows that wireless networks benefit from multi-hop and relay communica-
tion. If a relay is used within a cellular network for range extension, the information flow
is usually bidirectional due to the underlying communication scenario. Therefore, it is not
surprisingly that the first multi-user communication problem considered in the literature is
Shannon’s two-way channel [Sha61]. Here, two users simultaneously want to exchange in-
formation as effectively as possible. In [Sha61] Shannon derived the capacity region for the
restricted two-way channel, which means that feedback between the encoders is not allowed.
Until now, the general case is still unsolved.

Another important basis for multi-hop communication is the relay channel. It was introduced
by van der Meulen in [van71] and considers a three-node scenario where a relay supports the
communication from a source to a destination. In [CE79] Cover and El Gamal established the
capacities for the degraded relay channel, the reversely degraded relay channel, and the relay

2



1.1 Motivation

channel with feedback from both receivers to the source and relay. More recently, Kramer,
Gastpar, and Gupta discussed several relay scenarios under wireless communication aspects
in [KGG05]. But unfortunately, similarly to the two-way channel the capacity of the general
relay channel remains unknown.

If relays are used within wireless networks, further implementational difficulties appear.
Since it is technically almost impossible to sufficiently isolate a received signal from a trans-
mitted signal within the same frequency band, a relay has to allocate orthogonal resources for
transmission and reception. Therefore, relays usually operate in half-duplex modus which
leads to an inherent loss in spectral efficiency. The consequence is that the use of half-
duplex relays is only beneficial if we find techniques which compensate the loss in spectral
efficiency. Recent research developments have shown that it is promising to exploit the
bidirectional property of the communication to compensate the loss in spectral efficiency
[RW07, LJS05, WCK05, Kno06].

All this makes the concept of bidirectional relaying attractive. It applies to three-node net-
works, where a half-duplex relay node establishes a bidirectional communication between
two other nodes. There exist several strategies for bidirectional relaying which are classified
by the processing at the relay node. First works mostly consider amplify-and-forward strate-
gies [RW07, ZLCC09, RH10, NQS09, LSPL10, CHK09] or decode-and-forward strategies
[RW07, OSBB08, KMT08, LK09, LTXW09]. Other schemes are compress-and-forward
[SOS07, GTN08] or compute-and-forward [WNPS10, NCL10, BC07, NG11, OKJ10] ap-
proaches, where the relay decodes a certain function of both individual messages.

In this thesis we consider a decode-and-forward protocol, where the relay decodes both
messages it received in the initial multiple access phase. It then re-encodes and transmits
both messages in such a way that both receiving nodes can decode their intended mes-
sage using their own message from the previous phase as side information. It is shown
in [OSBB08, KMT08, Xie07, KS07] that capacity is achieved by a single data stream that
combines both messages based on the network coding idea [ACLY00, YLCZ05, FS07]. This
concept breaks with the common model to regard information flows as "fluids" [ACLY00]
and constitutes a paradigm shift.

Currently, there are many ongoing research activities on bidirectional relaying and its ex-
tensions. For example, [PKA09] provides a survey of different processing strategies. The
efficient integration of bidirectional relaying in a cellular downlink is presented in [ODS10].
Bidirectional relaying for multiple pairs of nodes is analyzed in [CY09, YZGK10, SAKH11].
Bidirectional relaying with an additional private message for the relay in the MAC phase
is addressed in [HGS09]. Beamforming strategies for multi-antenna bidirectional relaying
with analog network coding is presented in [ZLCC09]. A deterministic approach that char-
acterizes the capacity of the full-duplex bidirectional relay channel within a constant gap
is given in [AST10]. A four-node network with bidirectional communication is discussed
in [SWS09], while [ILH10] addresses the problem of joint network and channel coding for

3



1 Introduction

multi-way relaying. A source coding counterpart, i.e., source coding with complementary
side information, is studied in [TGK11].

1.2 Contribution and Outline of the Thesis

In Chapter 2 we introduce the concept of bidirectional relaying in a three-node network.
We briefly review the multiple access (MAC) and bidirectional broadcast (BBC) phase of
the decode-and-forward protocol and summarize the corresponding capacity regions for dis-
crete memoryless and MIMO Gaussian channels. Then we briefly discuss the bidirectional
achievable rate region that results if fixed or optimal time division between both phases is
applied. Throughout this chapter we assume perfect channel state information at all nodes.
Parts of the overview are published in [WOB08b].

In Chapter 3 we analyze bidirectional relaying under channel uncertainty. We use the con-
cept of compound channels to model the imperfect channel state information at the nodes.
We briefly review the compound multiple access channel and then establish the capacity re-
gion of the compound bidirectional broadcast channel without any CSI at all nodes and for
partial CSI where either the transmitter or the receivers have perfect CSI. Finally, we give a
numerical example and a game-theoretic interpretation. Parts of the results are published in
[WBOB09, WBOB10].

In Chapter 4 we extensively examine bidirectional relaying in uncoordinated wireless net-
works. We use the concept of arbitrarily varying channels to model the unknown inter-
ference from other transmitting nodes outside the bidirectional relay network. We briefly
review the arbitrarily varying multiple access channel and then analyze the arbitrarily vary-
ing bidirectional broadcast channel (AVBBC) in detail.

• In Section 4.3 we consider the case where the transmitter and the receivers have access
to a common randomness so that they can coordinate their choice of encoder and
decoders. We establish the corresponding random code capacity region of the AVBBC
using results from the compound BBC, cf. Chapter 3, and Ahlswede’s robustification
technique [Ahl80b, Ahl86]. Parts of the results are published in [WBB09a] and should
be published in [WBB11].

• In Section 4.4 we assume that common randomness is not available so that transmitter
and receivers have to use a deterministic coding strategy. We derive the deterministic
code capacity region of the AVBBC using Ahlswede’s elimination technique [Ahl78]
and establish a dichotomy behavior of the deterministic code capacity region. Parts of
the results are published in [WBB09a, WBB09b].
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1.2 Contribution and Outline of the Thesis

• In Section 4.5 we consider list decoding at the receivers and characterize the list ca-
pacity region of the AVBBC using the concept of symmetrizability based on [Hug97].
Parts of the results are published in [WBB10b] and should be published in [WBB11].

• In Section 4.6 we impose constraints on the input and state sequences. We establish
the random code and deterministic code capacity region of the AVBBC under input
and state constraints. Parts of the results are published in [WBB10c] and should be
published in [WBB12].

• In Section 4.7 we analyze the AVBBC with unknown varying additive interference.
We discuss the impact of coordination and establish the corresponding random code
and deterministic code capacity regions. Parts of the results are published [WBB10a].

In Chapter 5 we analyze physical layer service integration in bidirectional relay networks.
Here, the relay establishes not only a bidirectional communication between the two other
nodes, but also integrates additional common and confidential services.

• In Section 5.2 we discuss the scenario where the relay transmits an additional common
message in the bidirectional broadcast phase and derive the corresponding capacity re-
gions for discrete memoryless and MIMO Gaussian channels. We further analyze the
transmit covariance optimization problem and therewith establish a strong connection
between the BBC with and without common messages. Parts of the results are pub-
lished in [WOB10, WOB11].

• In Section 5.3 we analyze the case where the relay transmits an additional confiden-
tial message that is intended for one node and should be kept secret from the other,
non-legitimate node. We establish the capacity-equivocation and secrecy capacity re-
gions of the BBC with confidential messages using similar techniques as in [CK78]
for the classical broadcast channel with common and confidential messages. Parts of
the results are published in [WB11b] and will be published in [WB12a].

• In Section 5.4 the relay transmits additional common and confidential messages. We
present the corresponding capacity-equivocation and secrecy capacity regions that
unify the previous results. Parts of the results are published in [WB11a] and should be
published in [WB11c].

• In Section 5.5 we derive similar results for MIMO Gaussian bidirectional relay
networks. We establish the secrecy capacity region of the MIMO Gaussian BBC
with common and confidential messages using channel enhancement arguments as in
[LLL10] for the classical MIMO Gaussian broadcast channel with common and con-
fidential messages. Parts of the results are published in [WB11d, WB11e] and should
be published in [WB11c].

Finally, in Chapter 6 we conclude the thesis and give an outlook on future research directions
and open problems.
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1 Introduction

Further Results which are not Part of this Thesis

During my time at the Technische Universität Berlin and the Technische Universität Mün-
chen we obtained further interesting results which are not part of this thesis.

• In coauthored works with Tobias Oechtering and Eduard Jorswieck we study op-
timal transmit strategies for the multi-antenna bidirectional broadcast channel. In
[OWB08b, OWB09a] we analyze the MISO Gaussian BBC and show that it is always
optimal to transmit into the subspace spanned by the channels. Further, there exists
always an optimal single-beam transmit strategy whose transmit covariance matrix is
of rank one. This reflects the single stream processing based on the network coding
idea. In [OWB09b, OJWB09] we study optimal transmit strategies for the MIMO
Gaussian BBC and show that in general there exist different equivalent transmit strate-
gies with different ranks. But for the special case where the ranks of the channels are
equal to the number of antennas at the relay node and a full-rank transmission is opti-
mal, the optimal transmit covariance matrix can be obtained. The same is true for the
case of parallel channels which is in particular a relevant scenario since it immediately
provides also solutions for the power allocation problem of a single-antenna OFDM
system.

• In a coauthored work with Tobias Oechtering [OWB08a] we study the optimal time-
division for bidirectional relaying where the relay is equipped with multiple antennas
while the other two nodes are equipped with a single antenna only. We characterize
the bidirectional achievable rate region for this scenario.

• In a work with Aydin Sezgin [WSB11] we study the bidirectional broadcast wiretap
channel where the bidirectional communication itself has to be secure from possi-
ble eavesdroppers outside the bidirectional relay network. We derive inner and outer
bounds on the capacity region of the bidirectional broadcast wiretap channel. This
model differs from the BBC with confidential messages which addresses the problem
of realizing confidential communication within such a network, cf. Section 5.3.

A complete list of all publications can be found in the appendix.

Copyright Information

Parts of this thesis have already been published as journal articles and in conference and
workshop proceedings as listed in the publication list in the appendix. These parts, which
are, up to minor modifications, identical with the corresponding scientific publication, are
©2008-2012 IEEE.
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2 Decode-and-Forward Bidirectional
Relaying

In this work we consider a three-node network where a relay node establishes a bidirec-
tional communication between two other nodes. Since it is difficult for the nodes to isolate
simultaneously transmitted and received wireless signals within the same frequency band,
we assume half-duplex nodes and therefore allocate orthogonal resources in time for or-
thogonal transmission and reception. Accordingly, the whole transmission is separated into
two phases which causes an inherent loss in spectral efficiency for unidirectional proto-
cols. The loss in spectral efficiency can be significantly reduced by the concept of bidirec-
tional relaying which advantageously exploits the property of bidirectional communication
[RW07, LJS05, WCK05, Kno06]. This is also known as two-way relaying.

In the first phase of a decode-and-forward protocol the two nodes transmit their messages to
the relay node. Since the relay is assumed to decode both messages, the first phase corre-
sponds to the classical multiple access channel (MAC). In the succeeding phase it remains for
the relay to re-encode and broadcast the messages in such a way that both receiving nodes
can decode their intended messages. Since both nodes can use their own messages from
the previous phase as side information for decoding, this channel differs from the classical
broadcast channel is therefore called bidirectional broadcast channel (BBC).

We do not allow any feedback in the decode-and-forward protocol or any other cooperation
between the encoders. Thus, both phases decouple and this setup is known as a restricted
bidirectional relay channel. Throughout this chapter we assume perfect channel state infor-
mation (CSI) at all nodes.

R 21

m1 m2

R2 R1

(a) MAC phase

R 21

m1 m2

R1 R2
m2 m1

(b) BBC phase

Figure 2.1: Decode-and-Forward bidirectional relaying in a three-node network.
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2 Decode-and-Forward Bidirectional Relaying

2.1 Multiple Access Phase

In the initial MAC phase nodes 1 and 2 transmit their messages m1 and m2 with rates R2

and R1 to the relay node. Since the relay has to decode both messages, this is the classical
multiple access channel.

Discrete Memoryless Multiple Access Channel

Here, we briefly restate the capacity region of the discrete memoryless multiple access chan-
nel which was independently established by Ahlswede [Ahl71] and Liao [Lia72]. Nowadays
it is part of any standard book on (multi-user) information theory [Wol78, CK81, CT06,
Kra08, EK11].

For the multiple access phase let Xi, i = 1, 2, and Y be finite input and output sets.
Then, for input and output sequences xni ∈ X ni , i = 1, 2, and yn ∈ Yn of length n, let
V ⊗n(yn|xn1 , xn2 ) :=

∏n
k=1 V (yk|x1,k, x2,k).

Definition 2.1. The discrete memoryless multiple access channel is defined by{
V ⊗n : X n1 ×X n2 → P(Yn)

}
n∈N

which we simply denote by V with a slight abuse of notation.

Theorem 2.2 ([Ahl71, Lia72]). The capacity regionR(V ) of the multiple access channel V
is the set of all rate pairs (R2, R1) ∈ R2

+ that satisfy1

R2 ≤ I(X1; Y|X2,U)

R1 ≤ I(X2; Y|X1,U)

R2 +R1 ≤ I(X1,X2; Y|U)

for random variables U − (X1,X2) − Y with joint probability distribution
pU(u)pX1|U(x1|u)pX2|U(x2|u)V (y|x1, x2). Thereby, U is an auxiliary random vari-
able and describes a possible time-sharing operation. The cardinality of the range of U can
be bounded by |U| ≤ 2.

1Recall that the MAC is considered within the two-phase decode-and-forward protocol. Therefore, the individ-
ual rates look "swapped". Here, R2 and R1 denote the rates from node 1 to the relay node and from node 2
to the relay node, respectively, cf. also Figure 2.1.
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2.2 Bidirectional Broadcast Phase

MIMO Gaussian Multiple Access Channel

Next, we briefly restate the capacity region of the MIMO Gaussian multiple access channel.
In principle, the capacity region for MIMO Gaussian channels follows from the correspond-
ing region for discrete memoryless channels, cf. [Ahl71, Lia72] and Theorem 2.2. For
further details we refer for example to [VG97, GJJV03, BCC+07] and references therein.

For the multiple access phase we assume NR antennas at the relay node and Ni antennas
at node i, i = 1, 2. Then, the discrete-time complex-valued input-output relation between
nodes 1 and 2 and the relay node is given by

y = H1x1 +H2x2 + n

where y ∈ CNR×1 denotes the output at the relay node, H i ∈ CNR×Ni the multiplicative
channel matrix, xi ∈ CNi×1 the input of node i, and n ∈ CNR×1 the independent additive
noise according to a circular symmetric complex Gaussian distribution CN (0, σ2INR). We
assume an average transmit power constraint tr(Qi) ≤ Pi with Qi = E{xixHi } at node i,
i = 1, 2.

For the capacity region of the MIMO Gaussian MAC we need the following region. For given
covariance matrices Q1 and Q2 let R(Q1,Q2) be the set of all rate tuples (R2, R1) ∈ R2

+

that satisfy

R2 ≤ log det
(
INR + 1

σ2H1Q1H
H
1

)
R1 ≤ log det

(
INR + 1

σ2H2Q2H
H
2

)
R2 +R1 ≤ log det

(
INR + 1

σ2H1Q1H
H
1 + 1

σ2H2Q2H
H
2

)
.

Theorem 2.3. The capacity region R(H1,H2|P1, P2) of the MIMO Gaussian MAC under
average power constraints P1 and P2 is given by

R(H1,H2|P1, P2) = co

 ⋃
tr(Qi)≤Pi, Qi�0,i=1,2

R(Q1,Q2)

 .

2.2 Bidirectional Broadcast Phase

It is reasonable to assume that the relay has successfully decoded the messages both nodes
have sent in the previous MAC phase, if the rates are chosen within the corresponding MAC
capacity region. Therefore, we assume that the relay has perfect knowledge about messages
m1 and m2. Now, the relay re-encodes and broadcasts both messages in such a way that
nodes 1 and 2 can decode m2 and m1 respectively using their own messages m1 and m2 as
side information.
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2 Decode-and-Forward Bidirectional Relaying

Discrete Memoryless Bidirectional Broadcast Channel

Here, we briefly restate the capacity region of the discrete memoryless bidirectional broad-
cast channel. Capacity-achieving strategies can be found, for instance, in [OSBB08,
KMT08, KS07, Xie07] and can be further deduced from [Tun06].

For the bidirectional broadcast phase let X and Yi, i = 1, 2, be finite input and output sets.
Then, for input and output sequences xn ∈ X n and yni ∈ Yni , i = 1, 2, of length n, let
W⊗n(yn1 , y

n
2 |xn) :=

∏n
k=1W

⊗n(y1,k, y2,k|xk).

Definition 2.4. The discrete memoryless broadcast channel is defined by{
W⊗n : X n → P(Yn1 × Yn2 )

}
n∈N

which we simply denote by W with a slight abuse of notation.

Since we do not allow any cooperation between the receiving nodes, it is sufficient to con-
sider the marginal transition probabilities W⊗ni (yni |xn) =

∏n
k=1W (yi,k|xk), i = 1, 2,

only.

Interestingly, the optimal coding strategy for the BBC is based on the idea of network coding
[ACLY00, YLCZ05, FS07]. The philosophy of network coding is to convey as much infor-
mation to the receiving nodes which allows them to conclude on the intended message using
their own (side) information. This concept breaks with the common model which regards
information flows as "fluids" [ACLY00] and constititutes a paradigm shift.

Theorem 2.5 ([OSBB08, KMT08, KS07, Xie07]). The capacity regionR(W ) of the discrete
memoryless bidirectional broadcast channel W is the set of all rate pairs (R1, R2) ∈ R2

+

that satisfy

R1 ≤ I(X; Y1|U) (2.1a)

R2 ≤ I(X; Y2|U) (2.1b)

for random variables U − X − (Y1,Y2) with joint probability distribution
pU(u)pX|U(x|u)W (y1, y2|x). Thereby, U is an auxiliary random variable and de-
scribes a possible time-sharing operation. The cardinality of the range of U can be bounded
by |U| ≤ 2.

Remark 2.6. Following [KS07, Theorem 1] it is further possible to get rid of the time-
sharing random variable U in (2.1) so that we end up with Ri ≤ I(X; Yi), i = 1, 2.

10



2.2 Bidirectional Broadcast Phase

MIMO Gaussian Bidirectional Broadcast Channel

Next, we briefly restate the capacity region of the MIMO Gaussian bidirectional broadcast
channel which was established in [WOB+08a] by extending the corresponding result for
discrete memoryless channels to MIMO Gaussian channels.

For the bidirectional broadcast phase we assume NR antennas at the relay node and Ni

antennas at node i, i = 1, 2. Then, the discrete-time complex-valued input-output relation
between the relay node and node i, i = 1, 2, is given by

yi = H ix+ ni

where yi ∈ CNi×1 denotes the output at node i, H i ∈ CNi×NR the multiplicative channel
matrix, x ∈ CNR×1 the input of the relay node, and ni ∈ CNi×1 the independent additive
noise according to a circular symmetric complex Gaussian distribution CN (0, σ2INi). We
assume an average transmit power constraint tr(Q) ≤ P with Q = E{xxH} at the relay
node.

For the capacity region of the MIMO Gaussian bidirectional broadcast channel we need the
following region. For a given covariance matrix Q let R(Q) be the set of all rate tuples
(R1, R2) ∈ R2

+ that satisfy

R1 ≤ log det
(
IN1 + 1

σ2H1QH
H
1

)
R2 ≤ log det

(
IN2 + 1

σ2H2QH
H
2

)
.

Theorem 2.7 ([WOB+08a]). The capacity region R(H1,H2|P ) of the MIMO Gaussian
BBC under average power constraint P is given by

R(H1,H2|P ) =
⋃

tr(Q)≤P, Q�0

R(Q).

Similar to the discrete case, cf. Theorem 2.5, it is optimal to transmit only one data stream
that carries all the information based on the network coding idea. Theorem 2.7 shows that it
is further optimal to let the input x be Gaussian distributed, but it does not specify the optimal
covariance matrix Q. This is analyzed in detail in [OWB09a, OJWB09] and, interestingly,
it shows that the philosophy of network coding carries over to the signal processing part as
well. For example, in [OWB09a] it is shown that for the MISO Gaussian BBC there exists
always an optimal single-beam transmit strategy which reflects the single stream processing
based on the network coding idea. This manifests the paradigm shift to consider information
flows not as "fluids" [ACLY00].
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2 Decode-and-Forward Bidirectional Relaying

2.3 Bidirectional Achievable Rate Region

It is clear that for a successful bidirectional exchange of both messages, i.e., the transmission
of message m1 from node 1 to node 2 with rate R1 and message m2 from node 2 to node 1
with rate R2, the rate pair (R1, R2) has to be achievable in the MAC phase as well as in the
BBC phase. This underlines the intensive studies of both phases each for its own, since they
constitute the basis for the following analysis of the bidirectional achievable rate region.

In the following we exemplarily discuss the analysis for discrete memoryless channels, but
of course the same argumentation also holds for MIMO Gaussian channels.

Fixed Time Division

For the time division we define the parameter α ∈ [0, 1] so that we have in the MAC phase
the scaled rate region αR(V ) and in the BBC phase (1 − α)R(W ). Since the rate pair has
to be achievable in both phases, the bidirectional achievable rate region for given fixed time
division parameter α is given by the intersection of the scaled versions of the MAC and BBC
rate regions, i.e.,

RBR(α) := αR(V ) ∩ (1− α)R(W ).

A detailed discussion about the bidirectional achievable rate region with fixed time division
can be found in [OB06].

Optimal Time Division

A fixed time division between the two phases can be suboptimal especially if one scaled rate
region of a phase is much smaller than the other scaled rate region. Consequently, the next
step is to optimize the time division between the two phases. Obviously, the bidirectional
achievable rate region is given by the union over all possible time division parameters α as
follows

RBRopt :=
⋃

α∈[0,1]

RBR(α) =
⋃

α∈[0,1]

(
αR(V ) ∩ (1− α)R(W )

)
.

The rate region for optimal time division contains the achievable rate regions for all time
division parameters α so that each rate pair on the boundary can be achieved by a certain time
division parameter α. The bidirectional achievable rate region with optimal time division
using superposition encoding in the BBC phase with an average power constraint can be
found in [OB08c] and with an average energy constraint in [OB08a]. The optimal division
for multi-antenna bidirectional relaying can be found in [ZKWB08, OWB08a].
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3 Bidirectional Relaying Under Channel
Uncertainty

To date, bidirectional relaying has been analyzed under the assumption of perfect channel
state information (CSI) at all nodes. However, due to the nature of the wireless channel,
uncertainty in the channel state information is a ubiquitous phenomenon. It is clear that this
should be taken into account for the design of practical systems to make them robust against
such impairments. A bidirectional relay network with channel uncertainty at all nodes is
visualized in Figure 3.1.

The traditional and most popular approach to mitigate the channel uncertainty is based on
channel estimation. But this is only one specific approach, and it is natural to address the
problem of reliable communication under channel uncertainty from a more general point of
view in order to gain insights to the best possible approach for this setting. A well accepted
model for channel uncertainty is to assume that the exact channel realization is not known
to the nodes; rather, it is assumed that all nodes only know that the realization belongs to
a pre-specified set of channels. If this channel remains fixed during the whole transmission
of a codeword, this corresponds to the concept of the compound channel which was inde-
pendently introduced and analyzed by Blackwell, Breiman, and Thomasian [BBT59] and
Wolfowitz [Wol60, Wol78].

It seems worthwhile to study the compound channel as a model of channel uncertainty
from an optimal coding perspective to gain an understanding of how robust coding strate-
gies should be designed. This is especially important to know for wireless systems, which
make strict demands on the quality of service. As an example, one can think of wireless
control applications where certain rates have to be guaranteed regardless of the current chan-
nel realization. For such applications most performance measures, for example the ergodic
capacity, are not appropriate, since they characterize rates which are only achievable on aver-
age. Rather, a performance measure is needed which characterizes the guaranteed rates. The
concept of the compound channel is an attractive model which allows treating such problems
from a general point of view and obtaining bounds on maximal achievable rates. Moreover,
this concept allows us to assess the resulting gain based on an improvement in the channel
state information. This makes it possible to consider the trade-off between the contribution
of CSI and the effort which would be needed to improve it, e.g., by using better or longer
training sequences.
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3 Bidirectional Relaying Under Channel Uncertainty

21 ? ?R

Figure 3.1: Bidirectional relaying under channel uncertainty.

The discrete memoryless compound channel was first analyzed in [BBT59, Wol60, Wol78]
and later extended to Gaussian channels in [RV68]. Recently, the concept of the compound
channel has gained a lot of attention. For example the compound channel where the transmit-
ter has certain non-causal side information is studied in [MDT06], while [SP09] discusses the
case with feedback. The single-user MIMO Gaussian compound channel is analyzed under
several aspects in [PCL03, WES05, WES07, LC08]. There are further extensions to multi-
user settings. The compound MAC was first introduced in [Ahl74] and further analyzed
in [Han98, Han03] using the information-spectrum approach. The case where the encoders
and decoders can (partially) cooperate is considered in [MYK05, WBBJ11] and [SGP+09],
respectively. The compound broadcast channel is discussed in [WSK07, WLS+09], while
[SEP08, RPV09] addresses the compound interference channel. There is further some work
related to physical layer secrecy, cf. also Section 5.3. The compound wiretap is analyzed
in [LPV08, PDT09, LKPS09, EU10b, BBS11a]. Interference alignment for the compound
wiretap channel is discussed in [XU10, Khi11].

In this chapter we analyze bidirectional relaying for compound channels. Therefore, we
briefly summarize in Section 3.1 the well understood compound multiple access channel for
the first phase of the decode-and-forward protocol. To capture the second phase, we intro-
duce the compound bidirectional broadcast channel in Section 3.2 and present a universal
coding strategy that overcomes the absent channel state information at all nodes. This es-
tablishes the capacity region for the compound BBC with no CSI. Then, in Section 3.4 we
discuss the cases where either the receivers or the transmitter have perfect CSI. Interestingly,
we show that CSIR does not influence the capacity region, while CSIT can advantageously
be exploited to enlarge the capacity region. Section 3.5 presents a numerical example and a
game-theoretic interpretation using the game against nature framework. Finally, a conclud-
ing discussion is given in Section 3.6.

The analysis of bidirectional relaying for compound channels is not only relevant in itself,
since it yields results for bidirectional relaying in common communication scenarios such
as flat fading channels, but also since these results constitute the basis for further analysis
of more complex uncertainty models such as arbitrarily varying channels. Here the chan-
nel may vary during the transmission from symbol to symbol in an unknown and arbitrary
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3.1 Compound Multiple Access Channel

manner, as occurs for example, in fast fading channels. Bidirectional relaying is extended to
this model of uncertainty in Chapter 4. Research in this area is also the basis for the analy-
sis of multi-user settings in uncoordinated wireless networks where the receiving nodes are
confronted with unknown varying interference.

3.1 Compound Multiple Access Channel

In this section we briefly restate the capacity region of the compound multiple access channel
which models the first phase of the decode-and-forward bidirectional relaying protocol under
channel uncertainty. The compound MAC was first analyzed by Ahlswede [Ahl74].

Let Xi, i = 1, 2, and Y be finite input and output sets. Then, for a fixed channel real-
ization s ∈ S and for input and output sequences xni ∈ X ni , i = 1, 2, and yn ∈ Yn of
length n, the discrete memoryless multiple access channel is given by V ⊗ns (yn|xn1 , xn2 ) :=∏n
k=1 Vs(yk|x1,k, x2,k).

Definition 3.1. The discrete memoryless compound multiple access channel V is defined by
a family

V :=
{
V ⊗ns : X n1 ×X n2 → P(Yn)

}
n∈N,s∈S .

Theorem 3.2 ([Ahl74]). The capacity regionR(V) of the compound multiple access channel
V is the set of all rate pairs (R2, R1) ∈ R2

+ that satisfy1

R2 ≤ inf
s∈S

I(X1; Ys|X2,U)

R1 ≤ inf
s∈S

I(X2; Ys|X1,U)

R2 +R1 ≤ inf
s∈S

I(X1,X2; Ys|U)

for random variables2 U − (X1,X2) − Ys with joint probability distributions
{pU(u)pX1|U(x1|u)pX2|U(x2|u)Vs(y|x1, x2)}s∈S . Thereby, U is an auxiliary random vari-
able and describes a possible time-sharing operation. The cardinality of the range of U can
be bounded by |U| ≤ 2.

1Recall that the compound MAC is considered within the two-phase decode-and-forward protocol. Therefore,
the individual rates look "swapped", cf. Chapter 2 and especially Figure 2.1.

2With a slight abuse of notation we write Ys to indicate that the output depends on the specific channel real-
ization s ∈ S.
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3 Bidirectional Relaying Under Channel Uncertainty

3.2 Compound Bidirectional Broadcast Channel

Here we turn to the bidirectional broadcast phase of the decode-and-forward bidirectional
relaying protocol. Again we assume that the transmission takes place over a channel which
is unknown to the transmitter and the receivers. It is only known to the nodes that the
realization is from a pre-specified set of channels S and that it remains fixed during the
whole transmission of a codeword. No restrictions are imposed on the set S. Since S can
be arbitrary, it includes, in particular, the case of infinitely many channels. Accordingly, this
constitutes an appropriate model for common communication scenarios such as flat fading
channels.

Let X and Yi, i = 1, 2, be finite input and output sets. Then for a fixed s ∈ S and for input
and output sequences xn ∈ X n and yni ∈ Yni , i = 1, 2, of length n, the discrete memoryless
broadcast channel is given by W⊗ns (yn1 , y

n
2 |xn) :=

∏n
k=1Ws(y1,k, y2,k|xk).

Definition 3.3. The discrete memoryless compound broadcast channel W is defined by a
family

W :=
{
W⊗ns : X n → P(Yn1 × Yn2 )

}
n∈N,s∈S .

Since we do not allow any cooperation between the receiving nodes, it is sufficient to con-
sider the marginal transition probabilities W⊗ni,s (yni |xn) =

∏n
k=1Wi,s(yi,k|xk), i = 1, 2,

only. Thereby, Wi,s denotes the channel between the relay and node i for channel realization
s ∈ S.

We consider the standard model with a block code of arbitrary but fixed length n. LetMi :=

{1, 2, ...,M (n)
i } be the message set of node i, i = 1, 2, which is also known at the relay node.

Further, we use the abbreviationM :=M1 ×M2.

Definition 3.4. A deterministic3 (n,M
(n)
1 ,M

(n)
2 )-code Cdet(W) for the compound BBC W

consists of universal codewords
xnm ∈ X n,

one for each message m = (m1,m2) ∈ M, and mutually disjoint decoding sets at nodes 1
and 2

D(1)
m2|m1

⊆ Yn1 and D(2)
m1|m2

⊆ Yn2

for all m1 ∈M1 and m2 ∈M2.

3For the compound BBC we will only consider deterministic codes so that we will often suppress the word
deterministic in the following. This is in contrast to the arbitrarily varying bidirectional broadcast channel,
where we have to carefully distinguish between random and deterministic codes, cf. Chapter 4.
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3.2 Compound Bidirectional Broadcast Channel

We require disjoint decoding sets in the sense that for given fixed m1 ∈ M1 at node 1
the decoding sets have to be disjoint, i.e., D(1)

m2|m1
∩ D(1)

m̂2|m1
= ∅ for m̂2 6= m2. Clearly,

for different m1, m̂1 ∈ M1, m1 6= m̂1, at node 1, the decoding sets need not be disjoint.
Accordingly for node 2, for given fixed m2 ∈ M2 at node 2 the decoding sets have to be
disjoint, i.e., D(2)

m1|m2
∩ D(2)

m̂1|m2
= ∅ for m̂1 6= m1.

Note that neither the codewords at the transmitter nor the decoding sets at the receivers
depend on the actual channel realization. This reflects the fact that all nodes do not know
the exact channel realization and therefore have to chose their codewords and decoding sets
universally such that they work for the whole set of channels.

When channel realization s ∈ S governs the transmission and the relay node has sent the
codeword xnm ∈ X n for message m = (m1,m2) according to codebook Cdet(W), and nodes
1 and 2 have received yn1 ∈ Yn1 and yn2 ∈ Yn2 , the decoder at node 1 is in error if yn1 is not in
D(1)
m2|m1

. Accordingly, the decoder at node 2 is in error if yn2 is not in D(2)
m1|m2

. This allows
us to define the probabilities of error for given message m = (m1,m2) and given channel
realization s ∈ S as

e1(m, s|Cdet(W)) := W⊗n1,s

(
(D(1)

m2|m1
)c|xnm

)
=

∑
yn1 /∈D

(1)
m2|m1

W⊗n1,s (yn1 |xnm)

e2(m, s|Cdet(W)) := W⊗n2,s

(
(D(2)

m1|m2
)c|xnm

)
=

∑
yn2 /∈D

(2)
m1|m2

W⊗n2,s (yn2 |xnm).

Thus, the average probability of error for channel realization s ∈ S at node i, i = 1, 2, is4

ēi(s) =
1

|M|
∑
m∈M

ei(m, s).

Finally, we define the supremum of all average probabilities of error as µ(n)
i := sups∈S ēi(s),

i = 1, 2.

Definition 3.5. A rate pair (R1, R2) ∈ R2
+ is said to be achievable for the compound BBC

W if for any δ > 0 there is an n(δ) ∈ N and a sequence {C(n)
det (W)}n∈N of (n,M

(n)
1 ,M

(n)
2 )-

codes such that for all n ≥ n(δ) we have

1

n
logM

(n)
2 ≥ R1 − δ and

1

n
logM

(n)
1 ≥ R2 − δ

4We will suppress the dependency on the used codebook in the definition of the probability of error if it is clear
from the context which codebook is used. Since for the compound BBC we always consider deterministic
codes, we simply write ei(m, s) instead of ei(m, s|Cdet(W)) for notational convenience, i = 1, 2.
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3 Bidirectional Relaying Under Channel Uncertainty

while
µ

(n)
i = sup

s∈S
ēi(s)→ 0,

i = 1, 2, as n→∞. The set of all achievable rate pairs is the (deterministic code) capacity
region of the compound BBC W and is denoted byRdet(W).

Remark 3.6. The definitions require that we have to find codes such that µ(n)
1 , µ

(n)
2 → 0 as

n → ∞ for all channels in the set S simultaneously. This means the codes are universal
with respect to the channel realization.

3.3 Universal Strategy and Capacity Region

Now we are in a position to present the universal strategy for the BBC phase of the decode-
and-forward protocol which overcomes the channel uncertainty at the transmitter and the
receivers. But first, we prove an outer bound of the capacity region which gives us an intu-
ition of what is at best possible for the compound BBC.

Lemma 3.7. Any given sequence {C(n)
det (W)}n∈N of (n,M

(n)
1 ,M

(n)
2 )-codes for the com-

pound BBC W with µ(n)
1 , µ

(n)
2 → 0 must satisfy

1

n
logM

(n)
2 ≤ inf

s∈S
I(X; Y1,s|U) + o(n0) (3.1a)

1

n
logM

(n)
1 ≤ inf

s∈S
I(X; Y2,s|U) + o(n0) (3.1b)

for random variables U − X − (Y1,s,Y2,s) with joint probability distributions
{pU(u)pX|U(x|u)Ws(y1, y2|x)}s∈S .

Proof. From [OSBB08] we know that for a specific channel realization s ∈ S the rates are
bounded from above by 1

nH(M2) ≤ I(X; Y1,s|U)+ε
(n)
1 and 1

nH(M1) ≤ I(X; Y2,s|U)+ε
(n)
2

where ε(n)
1 , ε

(n)
2 → 0 as n → ∞. Since the rates have to be achievable for all s ∈ S

simultaneously, it follows immediately that for the compound BBC with channel uncertainty
at the transmitter and the receivers the rates are bounded from above by the infimum of the
mutual information terms as stated in (3.1). This proves the lemma.

Next, we start with the case where the compound channel has finitely many elements and
derive the corresponding capacity region. With this result we then are able to solve the gen-
eral case of an arbitrary, not necessarily finite, set of channels, which, of course, is the more
relevant case since it covers communication scenarios as for example flat fading channels.
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3.3 Universal Strategy and Capacity Region

3.3.1 Finite Compound Channel

In this subsection we restrict the set of channels S to be finite and present a universal strategy
which actually achieves the rates under this condition as stated in Lemma 3.7, cf. (3.1).
For this we need the following lemma which shows the existence of such a strategy whose
probability of error is arbitrarily small.

Lemma 3.8. Let the finite compound BBC W be given by a finite index set S = {1, ..., S}.
For any block length n ∈ N, input distribution p ∈ P(X ), and5

R1 ≤ min
i=1,...,S

I(p,W1,i)−
τ

2
and R2 ≤ min

i=1,...,S
I(p,W2,i)−

τ

2
,

τ > 0, there is a (n,M
(n)
1 ,M

(n)
2 )-code Cdet(W) where the probability of error µ(n)

i at node
i, i = 1, 2, averaged over all codebooks is bounded from above by

EXn [µ
(n)
i ] ≤S(n+ 1)|X ||Yi|2−ncε

2
+ S2 (n+ 1)|X ||Yi|

1− (n+ 1)|X |2−ncε2
2−n

τ
4 (3.2)

with c = 1
2 ln 2 .

Proof. For given distribution p⊗n(xn) and ε > 0 let T (n)
p,ε denote the set of (strongly) typical

sequences on X n, cf. also Appendix B.2.1. We restrict the possible inputs to this subset and
define the new input distribution

p′(xn) :=


p⊗n(xn)

p⊗n(T (n)
p,ε )

if xn ∈ T (n)
p,ε

0 else.
(3.3)

Let τ > 0 and set the rates R1 := mini=1,...,S I(p,W1,i) − τ
2 and R2 :=

mini=1,...,S I(p,W2,i) − τ
2 . Then we generate |M| = |M1||M2| independent codewords

Xn
m, one for each message m = (m1,m2) ∈ M1 ×M2, of length n with |M1| := b2nR2c

and |M2| := b2nR1c according to p′. This implies that all generated random codewords
Xn
m ∈ T

(n)
p,ε almost surely.

Next, we specify the decoding sets of nodes 1 and 2 in detail. They are given by

D(1)
m2|m1

(Xn) :=
( S⋃
i=1

T (n)
W1,i,ε

(
Xn
m

))
∩
( ⋃
m̂2∈M2
m̂2 6=m2

S⋃
i=1

T (n)
W1,i,ε

(
Xn
m1m̂2

))c
(3.4a)

D(2)
m1|m2

(Xn) :=
( S⋃
i=1

T (n)
W2,i,ε

(
Xn
m

))
∩
( ⋃
m̂1∈M1
m̂1 6=m1

S⋃
i=1

T (n)
W2,i,ε

(
Xn
m̂1m2

))c
(3.4b)

5Without loss of generality we can assume that Ri > 0, i = 1, 2, since the rate Ri = 0 is always achievable.
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3 Bidirectional Relaying Under Channel Uncertainty

where Xn := {Xn
m1m2

}m1∈M1,m2∈M2 so that the decoding sets depend on all randomly
generated codewords. The definition of the decoding sets is motivated as follows. The first
part in (3.4a) ensures that for given m = (m1,m2) the decoding sets for node 1 are mostly
defined by all output sequences that are W1,s-typical under the input Xn

m1m2
for all channel

realizations s ∈ S. The second part excludes all such output sequences that are furtherW1,s-
typical to another input Xn

m1m̂2
with m̂2 6= m2 so that the decoding sets are unambiguously

defined and therewith mutually disjoint. Clearly, the decoding sets in (3.4b) are motivated
accordingly.

When xnm with m = (m1,m2) has been sent, and yn1 and yn2 have been received at nodes 1
and 2, the decoder at node 1 is in error if either yn1 is not in

⋃S
i=1 T

(n)
W1,i,ε

(xnm) or if yn1 is in⋃S
i=1 T

(n)
W1,i,ε

(xnm1m̂2
) for some m̂2 6= m2, cf. (3.4a). The error events at node 2 are defined

in an analogous way.

In the following we present the analysis of the probability of error for node 1, the analysis
for node 2 follows accordingly using the same arguments. For a given channel realization
s ∈ S the union bound6 yields for average probability of error ē1(s) ≤ E1(s) + E2(s) with

E1(s) :=
1

|M|
∑
m∈M

W⊗n1,s

(( S⋃
i=1

T (n)
W1,i,ε

(
Xn
m

))c∣∣Xn
m

)
(3.5a)

E2(s) :=
1

|M|
∑
m∈M

W⊗n1,s

( ⋃
m̂2∈M2
m̂2 6=m2

S⋃
i=1

T (n)
W1,i,ε

(
Xn
m1m̂2

)∣∣Xn
m1m2

)
. (3.5b)

Next, we average over all codebooks and show that EXn [ē1(s)] ≤ EXn [E1(s) + E2(s)] can
be bounded uniformly in s from above by a term which decreases exponentially fast for
increasing block length n. For fixed s ∈ S we get for the first error event (3.5a)

EXn [E1(s)] =
1

|M|
∑
m∈M

EXn

[
W⊗n1,s

(( S⋃
i=1

T (n)
W1,i,ε

(
Xn
m

))c∣∣Xn
m

)]

=
1

|M|
∑
m∈M

EXn

[
W⊗n1,s

( S⋂
i=1

(
T (n)
W1,i,ε

(
Xn
m

))c∣∣Xn
m

)]
≤ 1

|M|
∑
m∈M

EXn

[
W⊗n1,s

((
T (n)
W1,s,ε

(
Xn
m

))c∣∣Xn
m

)]
≤ (n+ 1)|X ||Y1|2−ncε

2
(3.6)

6The probability of the union of two events E1 and E2 is bounded from above by P{E1 ∪ E2} ≤ P{E1} +
P{E2}, which is known as union bound, cf. for example [Pro00, Sec. 5.2].
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3.3 Universal Strategy and Capacity Region

with c = 1
2 ln 2 where the first inequality follows from the monotonicity of the probability

and the last one from Lemma B.11, cf. (B.6) in Appendix B.2.1. For the second error event
(3.5b) we have

EXn [E2(s)] =
1

|M|
∑
m∈M

EXn

[
W⊗n1,s

( ⋃
m̂2∈M2
m̂2 6=m2

S⋃
i=1

T (n)
W1,i,ε

(
Xn
m1m̂2

)∣∣Xn
m1m2

)]

≤ 1

|M|
∑
m∈M

∑
m̂2∈M2
m̂2 6=m2

S∑
i=1

EXn

[
W⊗n1,s

(
T (n)
W1,i,ε

(
Xn
m1m̂2

)
|Xn

m1m2

)]

=
1

|M|
∑
m∈M

∑
m̂2∈M2
m̂2 6=m2

S∑
i=1

EXnm1m̂2
EXnm1m2

[
W⊗n1,s

(
T (n)
W1,i,ε

(
Xn
m1m̂2

)
|Xn

m1m2

)]
(3.7)

where the last equality follows from the fact that Xn is an iid sequence. Next, we compute
the expectations. For the inner expectation we get

EXnm1m2

[
W⊗n1,s

(
T (n)
W1,i,ε

(
Xn
m1m̂2

)
|Xn

m1m2

)]
=

∑
xn∈Xn

p′(xn)W⊗n1,s

(
T (n)
W1,i,ε

(
Xn
m1m̂2

)
|xn
)

=
∑

xn∈T (n)
p,ε

p⊗n(xn)

p⊗n(T (n)
p,ε )

W⊗n1,s

(
T (n)
W1,i,ε

(
Xn
m1m̂2

)
|xn
)

≤
∑

xn∈Xn

p⊗n(xn)

p⊗n(T (n)
p,ε )

W⊗n1,s

(
T (n)
W1,i,ε

(
Xn
m1m̂2

)
|xn
)

=
1

p⊗n(T (n)
p,ε )

q⊗n1,s

(
T (n)
W1,i,ε

(
Xn
m1m̂2

))
≤ 1

1− (n+ 1)|X |2−ncε2
q⊗n1,s

(
T (n)
W1,i,ε

(
Xn
m1m̂2

))
(3.8)

where c = 1
2 ln 2 and q1,s ∈ P(Y1) denotes the output distribution generated by p and W1,s.

The second equality follows from (3.3) and the last inequality follows from Lemma B.10,
cf. (B.5). Since Xn

m1m̂2
∈ T (n)

p,ε almost surely, we can apply Lemma B.12 more precisely
(B.10b) and obtain for the second expectation

EXnm1m̂2

[
q⊗n1,s

(
T (n)
W1,i,ε

(
Xn
m1m̂2

))]
≤ (n+ 1)|X ||Y1|2−n(I(p,W1,i)−ϕ(ε)−ψ(ε)) (3.9)

for ε ∈ (0, 1
4|X ||Y1|). From (3.7)–(3.9) we get

EXn [E2(s)] ≤ (|M2| − 1)

S∑
i=1

(n+ 1)|X ||Y1|

1− (n+ 1)|X |2−ncε2
2−n(I(p,W1,i)−ϕ(ε)−ψ(ε)).
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3 Bidirectional Relaying Under Channel Uncertainty

Since |M2| = b2nR1c and R1 = mini=1,...,S I(p,W1,i) − τ
2 we have τ

2 ≤ I(p,W1,i) − R1

for all i = 1, ..., S so that we obtain

EXn [E2(s)] ≤ S (n+ 1)|X ||Y1|

1− (n+ 1)|X |2−ncε2
2−n( τ

2
−ϕ(ε)−ψ(ε)).

Next, we set ε ∈ (0, 1
4|X ||Y1|) small enough to ensure that τ4 ≤

τ
2 − ϕ(ε)− ψ(ε) so that with

(3.6) we get

EXn [ē1(s)] ≤ EXn [E1(s) + E2(s)]

≤ (n+ 1)|X ||Y1|2−ncε
2

+ S
(n+ 1)|X ||Y1|

1− (n+ 1)|X |2−ncε2
2−n

τ
4

with c = 1
2 ln 2 . This gives us a bound on the average probability of error ē1(s) for one

specific channel realization s ∈ S . To obtain an upper bound for µ(n)
1 , i.e., the maximum of

all channel realizations, we need the average BBC

W 1 :=
1

S

∑
s∈S

W1,s.

From the definition it is clear that W 1 ≥ 1
SW1,s holds for all s ∈ S which implies that

µ
(n)
1 = max

s∈S
ē1(s) ≤ Sē1(W 1)

where ē1(W 1) is the average probability of error with respect to the average BBC W 1.
Therefore, we have EXn [ē1(W 1)] = 1

S

∑
s∈S EXn [ē1(s)] due to the linearity of the expecta-

tion. Finally, we obtain for the average probability of error at node 1

EXn [µ
(n)
1 ] ≤ SEXn [ē1(W 1)]

≤ S(n+ 1)|X ||Y1|2−ncε
2

+ S2 (n+ 1)|X ||Y1|

1− (n+ 1)|X |2−ncε2
2−n

τ
4

with c = 1
2 ln 2 as stated in (3.2). Similar reasoning leads for the probability of error at

node 2 to EXn [µ
(n)
2 ] ≤ S(n + 1)|X ||Y2|2−ncε

2
+ S2 (n+1)|X||Y2|

1−(n+1)|X|2−ncε2
2−n

τ
4 which proves the

lemma.

The crucial point of this lemma is that the concept of typical sequences from Csiszár and
Körner [CK81] allows us to establish bounds on the probability of error that decrease expo-
nentially fast for increasing block length. This property will be important for the extension
to the general case of an arbitrary set of channels S . However, this lemma together with the
outer bound in Lemma 3.7 immediately yields the capacity region of the finite compound
BBC W, which is stated in the following corollary.
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3.3 Universal Strategy and Capacity Region

Corollary 3.9. The capacity region Rdet(W) of the finite compound BBC W given by the
finite index set S = {1, ..., S} is the set of all rate pairs (R1, R2) ∈ R2

+ that satisfy

R1 ≤ min
i=1,..,S

I(X; Y1,i|U) (3.10a)

R2 ≤ min
i=1,..,S

I(X; Y2,i|U) (3.10b)

for random variables U − X − (Y1,i,Y2,i) with joint probability distributions
{pU(u)pX|U(x|u)Wi(y1, y2|x)}i=1,...,S . Thereby, U is an auxiliary random variable and de-
scribes a possible time-sharing operation. The cardinality of the range of U can be bounded
by |U| ≤ 2.

Proof. The achievability follows immediately from Lemma 3.8 which states that all rate
pairs (R1, R2) ∈ R2

+ satisfying R1 ≤ mini=1,..,S I(p,W1,i) = mini=1,..,S I(X; Y1,i) and
R2 ≤ mini=1,..,S I(p,W2,i) = mini=1,..,S I(X; Y2,i) are achievable with µ(n)

1 , µ
(n)
2 → 0 as

n→∞. The desired region is determined by establishing the convex hull by first introducing
an auxiliary random variable U and applying standard arguments. Similarly to [OSBB08]
it follows from Fenchel-Bunt’s extension of Carathéodory’s theorem [HUL01] that any rate
pair is achievable by time-sharing between two rate pairs, i.e., |U| = 2 is enough.

The weak converse follows from Lemma 3.7. Since the strategy from Lemma 3.8 already
achieves these rate pairs, the capacity region of the finite compound BBC W is determined
by the corollary.

Remark 3.10. Similarly as in [KS07, Theorem 1] it is further possible to get rid of the time-
sharing random variable U in (3.10) so that we end up with R1 ≤ mini=1,...,S I(X; Y1,i)
and R2 ≤ mini=1,...,S I(X; Y2,i).

3.3.2 Arbitrary Compound Channel

With the previous result we are able to establish the capacity region for the compound BBC
W with an arbitrary, possibly infinite, set of channels S. Therefore we need the following
two lemmas which are slightly adapted from [BBT59] to our scenario.

Lemma 3.11. Let X , Yi, i = 1, 2, be given. For every integer N ≥ 2|Y1|2|Y2|2 there is
a compound broadcast channel W̃ where the index set SN has at most (N + 1)|X ||Y1||Y2|

elements such that for any Ws from S there is a channel W̃s from SN such that

(a)
∣∣Ws(y1, y2|x)− W̃s(y1, y2|x)

∣∣ ≤ |Y1||Y2|N for all x, y1, y2

(b) Ws(y1, y2|x) ≤ 2
2|Y1|

2|Y2|
2

N W̃s(y1, y2|x) for all x, y1, y2
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3 Bidirectional Relaying Under Channel Uncertainty

(c) For any p ∈ P(X ) it holds |I(p,Wi,s)− I(p, W̃i,s)| ≤ 2|Y1||Y2|( |Y1||Y2|N )
1
2 , i = 1, 2.

Proof. The proof is almost identical to [BBT59, Lemma 4] and is therefore omitted.

This lemma shows that we can approximate any given set of channels S by a finite set of
channels SN such that any channel s ∈ S is close in several senses to one of the new
constructed channels in SN . Further, from the next lemma we see that if there is a "good"
code for a channel, the same code can be used for all channels in a certain neighborhood of
this channel.

Lemma 3.12. Let Ws and W̃s be two channels and A ∈ R+ a non-negative number such
that Ws(y1, y2|x) ≤ 2AW̃s(y1, y2|x) for all x, y1, y2. Then any (n,M

(n)
1 ,M

(n)
2 )-code for

W̃s is also a (n,M
(n)
1 ,M

(n)
2 )-code for Ws with µ(n)

i ≤ 2nAµ̃
(n)
i , i = 1, 2.

Proof. The proof is almost identical to [BBT59, Lemma 5] and is therefore omitted.

With these two lemmas and the result for the finite compound BBC, we are able to prove
our main result which is the capacity region of the compound BBC with an arbitrary set of
channels.

Theorem 3.13. The capacity regionRdet(W) of the compound BBC W, where the index set
S can be arbitrary, is the set of all rate pairs (R1, R2) ∈ R2

+ that satisfy

R1 ≤ inf
s∈S

I(X; Y1,s|U) (3.11a)

R2 ≤ inf
s∈S

I(X; Y2,s|U) (3.11b)

for random variables U − X − (Y1,s,Y2,s) with joint probability distributions
{pU(u)pX|U(x|u)Ws(y1, y2|x)}s∈S . Thereby, U is an auxiliary random variable and de-
scribes a possible time-sharing operation. The cardinality of the range of U can be bounded
by |U| ≤ 2.

Proof. We start with an approximation of the arbitrary set of channels. Therefore we choose
N ≥ max{ |Y1|

2|Y2|2
ε2

, 8|Y1|2|Y2|2
τ } and large enough to ensure that τ2 > 2|Y1||Y2|( |Y1||Y2|N )

1
2 .

For each Ws from S we select a W̃s according to Lemma 3.11 and denote the set of
approximated channels by SN . Since SN has at most (N + 1)|X ||Y1||Y2| elements, we
know from Lemma 3.8 that if we choose R1 ≤ mini∈SN I(p, W̃1,i) − τ

2 and R2 ≤
mini∈SN I(p, W̃2,i) − τ

2 , τ > 0, then there exists a (n,M
(n)
1 ,M

(n)
2 )-code with |M1| =

b2nR2c and |M2| = b2nR1c for SN with probability of error for node i, i = 1, 2

µ̃
(n)
i ≤ SN (n+ 1)|X ||Yi|2−ncε

2
+ S2

N

(n+ 1)|X ||Yi|

1− (n+ 1)|X |2−ncε2
2−n

τ
4
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3.4 Partial Channel State Information at Transmitter or Receivers

with SN = (N + 1)|X ||Y1||Y2| and c = 1
2 ln 2 . For each Ws from S there exists a W̃s from SN

such that Ws(y1, y2|x) ≤ 2
2|Y1|

2|Y2|
2

N W̃s(y1, y2|x) for all x, y1, y2 so that from Lemma 3.12
the code for SN is also a code for S with

µ
(n)
i ≤ SN (n+ 1)|X ||Yk|2−n(cε2− 2|Y1|

2|Y2|
2

N
)

+ S2
N

(n+ 1)|X ||Yi|

1− (n+ 1)|X |2−ncε2
2−n( τ

4
− 2|Y1|

2|Y2|
2

N
).

(3.12)

Since N ≥ max{ |Y1|
2|Y2|2
ε2

, 8|Y1|2|Y2|2
τ }, we have µ(n)

1 , µ
(n)
2 → 0 as n → ∞. This means

that the code constructed for the approximated channel is also a good code for the original
channel. It remains to show that the code achieves rates arbitrarily close to the desired rates.
From Lemma 3.11 we know that |I(p,Wi,s) − I(p, W̃i,s)| ≤ 2|Y1||Y2|( |Y1||Y2|N )

1
2 ≤ τ

2 ,
i = 1, 2 so that

inf
s∈S

I(p,Wi,s)− τ ≤ min
s∈SN

I(p, W̃i,s)−
τ

2

which proves the achievability of the rates given in (3.11). The optimality of the strategy
follows similarly to Corollary 3.9 from Lemma 3.7 which finally proves the theorem.

Remark 3.14. Similarly as in [KS07, Theorem 1] it is further possible to get rid of the time-
sharing random variable U in (3.11) so that we end up with R1 ≤ infs∈S I(X; Y1,s) and
R2 ≤ infs∈S I(X; Y2,s).

3.4 Partial Channel State Information at Transmitter or
Receivers

In this section we discuss the scenarios where either the receivers or the transmitter have
perfect channel state information while the other part still has no channel knowledge and
only knows the set of channels.

3.4.1 CSI at the Receivers

We start with the scenario where the receivers have perfect CSI so that they can adapt their
decoders to the specific channel realization. Consequently, we now have a whole family of
decoders at nodes 1 and 2, one for each channel realization s ∈ S . Note that we still only
have one universal encoder at the relay due to the channel uncertainty at the transmitter. The
definition of a code slightly changes as follows.
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3 Bidirectional Relaying Under Channel Uncertainty

Definition 3.15. A deterministic (n,M
(n)
1 ,M

(n)
2 )-code CCSIR

det (W) for the compound BBC
W with CSIR consists of universal codewords

xnm ∈ X n,

one for each message m = (m1,m2) ∈ M, and families of mutually disjoint decoding sets
at nodes 1 and 2

D(1)
s,m2|m1

⊆ Yn1 and D(2)
s,m1|m2

⊆ Yn2
for all m1 ∈M1 and m2 ∈M2, one family for each channel realization s ∈ S.

The following theorem shows that CSIR does not lead to an improved capacity region as
long as the transmitter merely knows the set of channels.

Theorem 3.16. The capacity regionRCSIR
det (W) of the compound BBC W with CSIR is equal

to the capacity region of the compound BBC W with channel uncertainty at all nodes, i.e.,

RCSIR
det (W) = Rdet(W).

Proof. If we apply the coding strategy for channel uncertainty at all nodes, cf. Theorem
3.13, it is clear that we can achieve the same rate pairs as if we have perfect CSI at the
receivers. Consequently, it remains to show that this strategy is already optimal which means
that, even with CSIR, no higher rates are achievable. The reasoning is as follows. In our
communication scenario we have the following Markov chains (M1,M2)−X−Y1,s − M̂2

and (M1,M2)− X− Y2,s − M̂1 for node 1 and 2, respectively, where M̂i, i = 1, 2 denotes
the decoded message. From the data processing inequality [CK81, Lemma 3.11] follows
immediately that I(M1,M2; M̂1) ≤ I(X; Y2,s) and I(M1,M2; M̂2) ≤ I(X; Y1,s) which
shows that the decoder does not effect the achievable rate. This permits the proof of the
optimality of the universal strategy similarly to the case of channel uncertainty at all nodes,
cf. Theorem 3.13.

Remark 3.17. An intuitive explanation of why CSIR does not lead to an improved capacity
region is already indicated in [Wol78]. Even if the channel used for the transmission is not
known to the receivers, it can be estimated with arbitrary accuracy by the receivers. For
sufficiently large block length n the part "wasted" for the estimation is a negligible part of
n, and goes to zero as n→∞.

3.4.2 CSI at the Transmitter

Here, the transmitter has perfect CSI so that it can adapt its encoder to the specific channel
realization. Consequently, we now have a whole family of encoders at the relay node, one
for each channel realization, while we still have universal decoding sets.
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3.4 Partial Channel State Information at Transmitter or Receivers

Definition 3.18. A deterministic (n,M
(n)
1 ,M

(n)
2 )-code CCSIT

det (W) for the compound BBC
W with CSIT consists of families of codewords

xns,m ∈ X n

for all m = (m1,m2) ∈ M, one family for each channel realizations s ∈ S, and mutually
disjoint decoding sets at nodes 1 and 2

D(1)
m2|m1

⊆ Yn1 and D(2)
m1|m2

⊆ Yn2

for all m1 ∈M1 and m2 ∈M2.

In the following we show that CSIT leads to an improved capacity region of the compound
BBC, which is in contrast to the previous discussed case of CSIR. The introduced concept of
types and typical sequences from Csiszár and Körner [CK81] permits a proof of the capacity
region which is quite similar to the case of channel uncertainty at all nodes. Thus, we con-
centrate on the crucial points where the reasoning differs from the derivation in Section 3.3.
Similarly, we start with an outer bound on the capacity region to get an intuition what is at
best possible with CSIT.

Lemma 3.19. Any given sequence of (n,M
(n)
1 ,M

(n)
2 )-codes with µ(n)

1 , µ
(n)
2 → 0 must sat-

isfy

1

n
logM

(n)
2 ≤ inf

s∈S
I(Xs; Y1,s|U) + o(n0)

1

n
logM

(n)
1 ≤ inf

s∈S
I(Xs; Y2,s|U) + o(n0)

for random variables U − Xs − (Y1,s,Y2,s) with joint probability distributions
{pU(u)pXs|U(x|u)Ws(y1, y2|x)}s∈S .

Proof. The proof is similar to the proof of Lemma 3.7 and therefore omitted for brevity.

Next, we present a universal strategy which actually achieves the rates stated in the previous
lemma. The crucial point is to establish an upper bound on the probability of error for the
case of a finite set S similar to the one given in Lemma 3.8. Then the rest of the proof of the
capacity region follows accordingly.

Lemma 3.20. Let the index set S = {1, ..., S} denote a finite compound BBC W
with CSIT. For any block length n ∈ N, input distributions pi, i = 1, ..., S, and
R1 ≤ mini=1,..,S I(pi,W1,i) − τ

2 , R2 ≤ mini=1,..,S I(pi,W2,i) − τ
2 , τ > 0, there is a
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3 Bidirectional Relaying Under Channel Uncertainty

(n,M
(n)
1 ,M

(n)
2 )-code CCSIT

det (W) where the probability of error µ(n)
i at node i, i = 1, 2,

averaged over all codebooks is bounded from above by

EXn [µ
(n)
i ] ≤ S(n+ 1)|X ||Yi|2−ncε

2
+ S2 (n+ 1)|X ||Yi|

1− (n+ 1)|X |2−ncε2
2−n

τ
4 (3.13)

with c = 1
2 ln 2 .

Proof. Since the transmitter can adapt its encoder to the specific channel realization, we have
a family of input distributions pi, one for each channel realization i ∈ {1, ..., S}. For each
distribution p⊗ni (xn), i = 1, ..., S, and ε > 0 let T (n)

pi,ε denote the corresponding set of typical
sequences on X n. We restrict the possible inputs to these subsets and define the new input
distributions

p′i(x
n) :=


p⊗ni (xn)

p⊗ni (T (n)
pi,ε

)
if xn ∈ T (n)

pi,ε

0 else.

Let τ > 0 and set the rates R1 := mini=1,...,S I(pi,W1,i) − τ
2 and R2 :=

mini=1,...,S I(pi,W2,i) − τ
2 . For each i ∈ {1, ..., S} we generate |M| = |M1||M2| in-

dependent codewords Xn
i,m, one for each m = (m1,m2), of length n with |M1| := b2nR2c

and |M2| := b2nR1c according to p′i. This implies that all generated random codewords
Xn
i,m ∈ T

(n)
pi,ε almost surely, i = 1, ..., S.

Since for each channel realization s ∈ S , the used random codewords differ, the definitions
of the decoding sets of nodes 1 and 2 slightly change as follows

D(1)
m2|m1

(Xn) :=
( S⋃
i=1

T (n)
W1,i,ε

(
Xn
i,m

))
∩
( ⋃
m̂2∈M2
m̂2 6=m2

S⋃
i=1

T (n)
W1,i,ε

(
Xn
i,m1m̂2

))c

D(2)
m1|m2

(Xn) :=
( S⋃
i=1

T (n)
W2,i,ε

(
Xn
i,m

))
∩
( ⋃
m̂1∈M1
m̂1 6=m1

S⋃
i=1

T (n)
W2,i,ε

(
Xn
i,m̂1m2

))c
where Xn := {Xn

i,m1m2
}i∈S,m1∈M1,m2∈M2 so that the decoding sets depend on all generated

codewords for all channel realizations. Consequently, the corresponding error events E1(s)
and E2(s) at node 1 are now given by

E1(s) :=
1

|M|
∑
m∈M

W⊗n1,s

(( S⋃
i=1

T (n)
W1,i,ε

(
Xn
i,m

))c∣∣Xn
s,m

)

E2(s) :=
1

|M|
∑
m∈M

W⊗n1,s

( ⋃
m̂2∈M2
m̂2 6=m2

S⋃
i=1

T (n)
W1,i,ε

(
Xn
i,m1m̂2

)∣∣Xn
s,m1m2

)
.
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3.4 Partial Channel State Information at Transmitter or Receivers

We continue with the analysis of the probability of error for node 1. Again the analysis for
node 2 follows accordingly using the same arguments. As in Lemma 3.8 we average over all
codebooks and show that EXn [ē1(s)] ≤ EXn [E1(s) +E2(s)] can be bounded uniformly in s
from above by a term which decreases exponentially fast for increasing block length n. The
derivation for EXn [E1(s)] proceeds exactly as in Lemma 3.8 and leads to the same upper
bound

EXn [E1(s)] =
1

|M|
∑
m∈M

EXn

[
W⊗n1,s

(( S⋃
i=1

T (n)
W1,i,ε

(
Xn
i,m

))c∣∣Xn
s,m

)]
≤ (n+ 1)|X ||Y1|2−ncε

2

with c = 1
2 ln 2 , cf. also (3.6). The first steps of the derivation for EXn [E2(s)] are similar to

Lemma 3.8 up to

EXn [E2(s)] ≤ 1

|M|
∑
m∈M

∑
m̂2∈M2
m̂2 6=m2

S∑
i=1

EXni,m1m̂2

[
q⊗n1,s

(
T (n)
W1,i,ε

(
Xn
i,m1m̂2

))]
1− (n+ 1)|X |2−ncε2

where q1,s ∈ P(Y1) denotes the output distribution generated by ps and W1,s, cf. also (3.8).
The crucial point is that since for each i ∈ {1, ..., S} we have a different input distribution
pi, the input distribution and channel may not "coincide" with the output distribution. But
nevertheless we can apply Lemma B.12 since Xn

i,m1m̂2
∈ T (n)

pi,ε almost surely. Further this
lemma is also applicable if the distributions do not match, cf. (B.11) in Appendix B.2.1. We
obtain similarly to Lemma 3.8

EXni,m1m̂2

[
q⊗n1,s

(
T (n)
W1,i,ε

(
Xn
i,m1m̂2

))]
≤ (n+ 1)|X ||Y1|2−n(I(pi,W1,i)−ϕ(ε)−ψ(ε))

for ε ∈ (0, 1
4|X ||Y1|). The rest of the proof proceeds exactly as in Lemma 3.8 so that we end

up with the following upper bound for the average probability of error at node i, i = 1, 2,

EXn [µ
(n)
i ] ≤ S(n+ 1)|X ||Yi|2−ncε

2
+ S2 (n+ 1)|X ||Yi|

1− (n+ 1)|X |2−ncε2
2−n

τ
4

with c = 1
2 ln 2 as stated in (3.13) which finally proves the lemma.

With the previous Lemmas 3.19 and 3.20 we are now able to establish the capacity region
of the compound BBC W with CSIT for finite and arbitrary sets of channels. The proofs
proceed exactly as in Section 3.3 so that we omit them for brevity.
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3 Bidirectional Relaying Under Channel Uncertainty

Corollary 3.21. The capacity region RCSIT
det (W) of the finite compound BBC W with CSIT

is the set of all rate pairs (R1, R2) ∈ R2
+ that satisfy

R1 ≤ min
i=1,..,S

I(Xi; Y1,i|U) (3.14a)

R2 ≤ min
i=1,..,S

I(Xi,Y2,i|U) (3.14b)

for random variables U − Xi − (Y1,i,Y2,i) with joint probability distributions
{pU(u)pXi|U(x|u)Wi(y1, y2|x)}i=1,...,S . The cardinality U can be bounded by |U| ≤ 2.

Theorem 3.22. The capacity region RCSIT
det (W) of the compound BBC W, where the set of

channels S can be arbitrary, is the set of all rate pairs (R1, R2) ∈ R2
+ that satisfy

R1 ≤ inf
s∈S

I(Xs,Y1,s|U) (3.15a)

R2 ≤ inf
s∈S

I(Xs,Y2,s|U) (3.15b)

for random variables U − Xs − (Y1,s,Y2,s) with joint probability distributions
{pU(u)pXs|U(x|u)Ws(y1, y2|x)}s∈S . The cardinality U can be bounded by |U| ≤ 2.

Remark 3.23. Similarly as in [KS07, Theorem 1] it is further possible to get rid of the time-
sharing random variable U in (3.14) and (3.15) so that we end up with the corresponding
expressions without U.

3.5 Numerical Example and Game-Theoretic Interpretation

In this section we give a numerical example which illustrates how CSIT improves the ca-
pacity region of the compound BBC. Therefore, let |X | = |Y1| = |Y2| = 3 and consider
a particular set of channels S = {s1, s2} with two possible states. Then the compound
BBC W is specified by marginal channels that are given by the following transition proba-
bility matrices

W1,s1 :=

0.5 0.2 0.3
0 0.7 0.3

0.1 0.3 0.6

 W2,s1 :=

0.8 0.1 0.1
0.3 0.5 0.2
0.1 0.1 0.8


W1,s2 :=

0.5 0.3 0.2
0 1 0

0.1 0.8 0.1

 W2,s2 :=

0.8 0.1 0.1
0.3 0.4 0.3
0.2 0.1 0.7


Figure 3.2 depicts the capacity regionsRdet(W) andRCSIT

det (W) of this particular compound
BBC W for channel uncertainty at all nodes and CSIT, respectively. How CSIT affects the
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(a) Capacity region Rdet(W) of the compound
BBC W with channel uncertainty at all nodes.
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Figure 3.2: Capacity regions of the compound BBC W with channel uncertainty at all nodes
and CSIT, respectively. The shaded area in Fig. 3.2(b) illustrates the gain in the
capacity region based on the available CSIT.

maximal achievable rates is shown in Figure 3.2(b), where the shaded area illustrates the gain
in the capacity region due to the available CSIT. The rate regions for channel realizations s1

(dashed line) and s2 (dashed-dotted line) are included for convenience.

Similar to the single-user compound channel it is possible to analyze the compound BBC
from a game-theoretic perspective. Therefore, we assume that the nodes and nature play
a two-player zero-sum game [AH94, BO98] with the mutual information I as the payoff
function as depicted in Figure 3.3. This is called a game against nature [Mil51].

In this game, the set of channels S corresponds to nature’s action space. Nature’s aim is to
establish the worst communication condition by selecting s ∈ S such that the mutual infor-
mation is minimized. The set of input distributions P(X ) corresponds to the action space of
the player. Clearly, the player wants to maximize the mutual information and therefore tries
to choose the best input distribution p ∈ P(X ). Then for given p ∈ P(X ) and s ∈ S the
outcome of the game is given by the following achievable rate region

R(p, s) =
{

(R1, R2) ∈ R2
+ : R1 ≤ I(p,W1,s),

R2 ≤ I(p,W2,s)
}
.

(3.16)

Within this game against nature framework the game can be played in two different ways.
First, the player and nature moves simultaneously without knowing the other’s choice. And
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3 Bidirectional Relaying Under Channel Uncertainty

Player chooses p

set of distributions P(X )

I(p,W1,s), I(p,W2,s)

Compound BBC W

Nature chooses s

set of channels S

Figure 3.3: Transmission over the compound BBC W as a game against nature.

second, nature moves first so that the player is aware of nature’s choice. In the single-user
scenario, these two types of the game lead to well-known max min and min max formula-
tions for the outcome of the game, cf. for example [PCL03]. Since we have a multi-user
scenario that deals with rate regions, cf. (3.16), we have a vector-valued problem and the
max and min expressions extend to the union and intersection. The outcomes of the game
are then

Rdet(W) = co
( ⋃
p∈P(X )

⋂
s∈S
R(p, s)

)
(3.17)

and
RCSIT

det (W) = co
( ⋂
s∈S

⋃
p∈P(X )

R(p, s)
)
. (3.18)

We see that (3.17) and (3.18) are equivalent to the capacity regions given in Theorems 3.13
and 3.22. Accordingly, they correspond to the cases of channel uncertainty at all nodes
and CSIT, respectively. Note that in the theorems the convex hull is established by the time-
sharing variable U. Moreover, it follows immediately from (3.17) and (3.18) thatRdet(W) ⊆
RCSIT

det (W) which agrees with the intuition and the previous results that CSIT improves the
capacity region.

3.6 Discussion

In practical wireless communication systems channel uncertainty is a ubiquitous phe-
nomenon. The question must be asked if it is advantageous to improve the available channel
state information at the nodes or if the nodes should be left with the uncertainty. The concept
of the compound channel allows us to derive robust coding strategies that are appropriate
for wireless applications where certain rates have to be guaranteed even in the case of chan-
nel uncertainty. Further, the analysis shows the best possible rates that are achievable under
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3.6 Discussion

channel uncertainty. This allows us to assess if it is worthwhile to improve the channel state
information at the nodes, e.g., by using longer training sequences or feedback. In particular,
this is important to know for the design of wireless networks.

In this chapter we addressed the bidirectional broadcast channel and presented robust coding
strategies which guarantee certain rates regardless of the current channel realization. These
immediately lead to a characterization of the capacity region of the compound BBC which
is an useful result since it constitutes the basis for further analysis of multi-user settings
under more complex models of channel uncertainty and in uncoordinated wireless networks.
In particular, our results provide valuable insights since for the general broadcast channel
with discrete channels and finite alphabets the capacity region for compound channels is not
known and, consequently, similar results are not available. To date, only some special cases
are treated as for example the case with degraded MIMO Gaussian channels [WLS+09]
which is a quite different setting to the one we considered here.

Furthermore, the analysis shows that CSIR does not improve the capacity region if the trans-
mitter merely knows the set of channels, which is at first counter-intuitive. But at second
glance this becomes clear if one realizes that transmitted symbols "wasted" for channel es-
timation are negligible for large block lengths. Further, we show that CSIT can advanta-
geously be used to improve the capacity region since the transmitter can adapt its encoder
to the specific channel realization. Adaptive bidirectional relaying with quantized CSIT is
analyzed in [KP11]. The game-theoretic interpretation of the compound BBC reveals inter-
esting generalizations, which keep the characteristics of the single-user compound channel
but includes now multi-user effects. This is a nice property of the compound BBC, which is
not self-evident for multi-user scenarios.

33



4 Bidirectional Relaying in
Uncoordinated Networks

The ongoing research progress reveals a paradigm shift from coordinated to uncoordinated
wireless systems. While most current systems such as conventional cellular systems are
usually coordinated in a centralized way, several future systems will act in an uncoordinated
and self-organizing way, e.g., ad-hoc or sensor networks. The main issue that comes along
with this development is that interference becomes an ubiquitous phenomenon and will be
one of the main impairments in future wireless networks. Since the resulting interference
cannot be longer coordinated in a centralized way, new concepts are needed especially for
the frequency usage.

In the previous chapter we studied an isolated bidirectional relay network under channel
uncertainty. The next step is to consider bidirectional relaying within an (uncoordinated)
wireless network. Although uncertainty in the channel state information is ubiquitous and
should not be disregarded, the most defining impairment now is the fact that the communi-
cation is disturbed by interference from other transmitting nodes as illustrated in Figure 4.1.
If there is no a priori knowledge about applied transmit strategies such as coding or mod-
ulation schemes of all other transmitting nodes, there is no knowledge about the induced
interference. Thus, a reasonable model is to assume that the channel may vary from symbol
to symbol in an unknown and arbitrary manner. This is the concept of arbitrarily varying
channels (AVC).

The point-to-point AVC was first introduced by Blackwell, Breiman, and Thomasian
[BBT60] who established its random code capacity. Interestingly, for this channel the ran-
dom code and deterministic code capacity need not be equal. In more detail, Ahlswede
showed in his famous work [Ahl78] that the AVC displays a dichotomy behavior: the deter-
ministic code capacity either equals the random code capacity or else is zero. Unfortunately,
he missed a characterization for the deterministic code capacity to be non-zero. Finally,
Ericson [Eri85] and Csiszár and Narayan [CN88b] established non-symmetrizability as a
necessary and sufficient condition for the AVC to have a non-zero deterministic code capac-
ity. Roughly speaking, a symmetrizable AVC leads to a zero deterministic code capacity,
since such a channel can emulate a valid input which makes it impossible for the decoder to
decide on the correct codeword.
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Figure 4.1: Bidirectional relaying in (uncoordinated) wireless networks.

While decoding rules of deterministic codes decide on exactly one transmitted codeword or
message, the concept of list decoding allows the decoder to narrow the transmitted code-
word to a list of certain alternatives. List decoding was first considered by Elias [Eli57]
and Wozencraft [Woz58] but it is shown that it does not change the capacity of ordinary
channels. The situation changes for AVCs where it might help to dissolve the ambiguity of
codewords caused by symmetrizable channels. The corresponding list code capacity was es-
tablished and analyzed in detail independently by Blinovsky, Narayan, and Pinsker [BNP95]
and Hughes [Hug97].

Further effects occur, if constraints on the permissible codewords and sequences of channel
states are imposed. This assumption is motivated by the fact that in real communication
systems the transmitter as well as possible interferers are usually limited in their transmit
power. The single-user AVC under input and state constraints was analyzed in detail by
Csiszár and Narayan [CN88a, CN88b]. There, it is shown that due to the imposed constraints
the deterministic code capacity may be positive even for symmetrizable channels, but may
be less than its random code capacity.

Besides the point-to-point case there are important extensions to multi-user settings as well.
The arbitrarily varying multiple access channel (AVMAC) is analyzed in [Jah81, Gub90,
AC99, Nit10], where the random code and deterministic code capacity regions are estab-
lished. It is shown that the latter may have an empty interior which is completely character-
ized and analyzed in terms of an appropriate concept of symmetrizability [Gub90, AC99].
The AVMAC with constraints on input and states is considered in [Gub91, GH95], where it
is shown that the random code capacity region is non-convex in general [GH95].

While the AVMAC is well understood, there are only partial results known until now for the
arbitrarily varying general broadcast channel (AVGBC). An achievable deterministic code
rate region for the AVGBC is established in [Jah81] but it is not further analyzed when its
interior is non-empty. On the other hand, [HB06] analyzes an achievable deterministic code
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4 Bidirectional Relaying in Uncoordinated Networks

rate region of the AVGBC in terms of symmetrizability but imposes further the assumption of
degraded message sets. Further, in [Jah81, HB06] only achievable rate regions are presented
but no converse results or outer bounds on the capacity regions are given.

In this chapter we analyze bidirectional relaying for arbitrarily varying channels. There-
fore, we briefly summarize in Section 4.1 the well understood AVMAC for the first phase of
the decode-and-forward protocol. To capture the second phase, we introduce the arbitrarily
varying bidirectional broadcast channel (AVBBC) in Section 4.2. As a first step, in Sec-
tion 4.3 we establish the random code capacity region presenting the proof of achievability
and the weak converse. Similar to Ahlswede’s dichotomy result for the point-to-point AVC,
we show in Section 4.4 that the deterministic list capacity region of the AVBBC either equals
its random code capacity region or else has an empty interior. Then, in Section 4.5 we use
an appropriate concept of symmetrizability to establish non-symmetrizability as a necessary
and sufficient condition for the list capacity region to have a non-empty interior. Further-
more, we present a weak converse that completely establishes the list capacity region. Then,
Section 4.6 discusses the case where constraints are imposed on input and state sequences.
The corresponding random code and deterministic code capacity regions are given. In Sec-
tion 4.7 we briefly address the scenario where the transmission is disturbed by unknown
varying additive interference and end with a discussion in Section 4.8.

4.1 Arbitrarily Varying Multiple Access Channel

In this section we briefly restate the arbitrarily varying multiple access channel (AVMAC)
which models the first phase of the decode-and-forward bidirectional relaying protocol.

We introduce a finite state set S. Further, let Xi, i = 1, 2, and Y be finite input and output
sets. Then, for fixed state sequence sn ∈ Sn of length n and input and output sequences
xni ∈ X ni , i = 1, 2, and yn ∈ Yn, the discrete memoryless multiple access channel is given
by V ⊗n(yn|xn1 , xn2 , sn) :=

∏n
k=1 V (yk|x1,k, x2,k, sk).

Definition 4.1. The discrete memoryless arbitrarily varying multiple access channel Vn is
the family

Vn :=
{
V ⊗n : X n1 ×X n2 × Sn → P(Yn)

}
n∈N,sn∈Sn .

Further, for any probability distribution q ∈ P(S) we denote the averaged multiple access
channel by

V q(y|x1, x2) =
∑
s∈S

V (y|x1, x2, s)q(s).
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Random Code Capacity Region

In contrast to the compound MAC there is a difference for the AVMAC if random or deter-
ministic codes are used. The random code capacity was characterized by Jahn [Jah81].

Theorem 4.2 ([Jah81]). The random code capacity region Rran(Vn) of the AVMAC Vn is
the set of all rate pairs (R2, R1) ∈ R2

+ that satisfy1

R2 ≤ inf
q∈P(S)

I(X1; Yq|X2,U)

R1 ≤ inf
q∈P(S)

I(X2; Yq|X1,U)

R2 +R1 ≤ inf
q∈P(S)

I(X1,X2; Yq|U)

for random variables U − (X1,X2) − Yq and joint probability distributions
{pU(u)pX1|U(x1|u)pX2|U(x2|u)V q(y|x1, x2)}q∈P(S). Thereby, U is an auxiliary random
variable and describes a possible time-sharing operation.

Deterministic Code Capacity Region

The first step of the derivation of Rdet(V
n) was done by Jahn [Jah81]. He showed that the

deterministic code capacity region of the AVMAC Vn displays the following behavior

Rdet(V
n) = Rran(Vn) if int(Rdet(V

n)) 6= ∅ (4.1)

by extending Ahlswede’s robustification technique [Ahl80b] and elimination technique
[Ahl78] for the single-user channel to the multiple access channel. Unfortunately, in [Jah81]
he missed a characterization when the interior ofRdet(V

n) is non-empty.

To characterize when int(Rdet(V
n)) 6= ∅, Gubner introduced in [Gub90] a natural extension

of symmetrizability for the AVMAC:

Definition 4.3. i) An AVMAC Vn is (X1,X2)-symmetrizable if for some channel U : X1 ×
X2 → P(S) the following∑

s∈S
V (y|x1, x2, s)U(s|x′1, x′2) =

∑
s∈S

V (y|x′1, x′2, s)U(s|x1, x2)

holds for every x1, x
′
1 ∈ X1, x2, x

′
2 ∈ X2, and y ∈ Y .

1Recall that the compound MAC is considered within the two-phase decode-and-forward protocol. Therefore,
the individual rates look "swapped", cf. Chapter 2 and especially Figure 2.1.
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4 Bidirectional Relaying in Uncoordinated Networks

ii) An AVMAC Vn is X1-symmetrizable if for some channel U1 : X1 → P(S) the following∑
s∈S

V (y|x1, x2, s)U1(s|x′1) =
∑
s∈S

V (y|x′1, x2, s)U1(s|x1)

holds for every x1, x
′
1 ∈ X1, x2 ∈ X2, and y ∈ Y .

iii) An AVMAC Vn is X2-symmetrizable if for some channel U2 : X2 → P(S) the following∑
s∈S

V (y|x1, x2, s)U2(s|x′2) =
∑
s∈S

V (y|x1, x
′
2, s)U2(s|x2)

holds for every x1 ∈ X1, x2, x
′
2 ∈ X2, and y ∈ Y .

Using this definition of symmetrizability Ahlswede and Cai [AC99] were able to show that
the AVMAC has a capacity region whose interior is non-empty if and only if the AVMAC is
non-(X1,X2)-symmetrizable, non-X1-symmetrizable, and non-X2-symmetrizable. Together
with the result of Jahn [Jah81] this finally establishes the deterministic code capacity region
Rdet(V

n) of the AVMAC.

Theorem 4.4 ([Jah81, AC99]). For a non-(X1,X2)-symmetrizable, non-X1-symmetrizable,
and non-X2-symmetrizable AVMAC Vn the deterministic code capacity region Rdet(V

n)
under the average error criterion is

Rdet(V
n) = Rran(Vn).

We have interior(Rdet(V
n)) = ∅, if and only if the AVMAC Vn is (X1,X2)-symmetrizable,

X1-symmetrizable, or X2-symmetrizable.

List Decoding

Recently, it was Nitinawarat [Nit10] who extended the idea of list decoding for the single-
user AVC [BNP95, Hug97] to the AVMAC. This is based on a concept of symmetrizability
which distinguishes among different degrees of symmetry:

Definition 4.5. For a positive integer t, an AVMAC Vn is t-symmetrizable if either of the
following holds.

i) There exists a conditional distribution U(s|x′1, x′′1, ..., x′t, x′′t ), s ∈ S,
(x′1, x

′′
1), ..., (x′t, x

′′
t ) ∈ X1 × X2 such that for any x′0, x

′
1, ..., x

′
t ∈ X1, x′′0, x

′′
1, ..., x

′′
t ∈ X2,

y ∈ Y and any permutation π on {0, ..., t}∑
s∈S

V (y|x′0x′′0, s)U(s|x′1, x′′1, ..., x′t, x′′t )

=
∑
s∈S

V (y|x′π(0), x
′′
π(0), s)U(s|x′π(1), x

′′
π(1), ..., x

′
π(t), x

′′
π(t)).
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4.1 Arbitrarily Varying Multiple Access Channel

ii) There exists a conditional distribution U(s|x′1, ..., x′a, x′′1, ..., x′′b ), s ∈ S, x′1, ..., x
′
a ∈ X1,

x′′1, ..., x
′′
b ∈ X2 for some a, b satisfying (a+ 1)(b+ 1) ≥ t+ 1 such that for any x′0, ..., x

′
a ∈

X1, x′′0, ..., x
′′
b ∈ X2, s ∈ S, y ∈ Y , and any permutations π on (0, ..., a) and σ on (0, ..., b),∑

s∈S
V (y|x′0, x′′0, s)U(s|x′1, ..., x′a, x′′1, ..., x′′b )

=
∑
s∈S

V (y|x′π(0), x
′′
σ(0), s)U(s|x′π(1), ..., x

′
π(a), x

′′
σ(1), ..., x

′′
σ(b)).

The symmetrizability of the AVMAC Vn is given by the largest integer T such that the AVMAC
Vn is T -symmetrizable.

Using this definition of symmetrizability for the case that the decoder maps the received
signal into a list of size L, the list capacity regionRlist(V

n|L) of the AVMAC Vn is charac-
terized by the following results [Nit10].

Theorem 4.6 ([Nit10]). For an AVMAC Vn with symmetrizability T , the list capacity region
Rlist(V

n|L) has an empty interior for every list size L ≤ T .

Theorem 4.7 ([Nit10]). For an AVMAC Vn with symmetrizability T , the list capacity region
is given by

Rlist(V
n|L) = Rran(Vn) if L ≥ (T + 1)2(T + 2)− 1.

Constraints on Input and States

The AVMAC is further analyzed for the case where constraints are imposed on the inputs
and states. Therefore, cost functions gi(xi) on Xi, i = 1, 2, for the inputs and l(s) on S for
the states are defined as

gi(x
n
i ) :=

1

n

n∑
k=1

gi(xi,k), i = 1, 2

l(sn) :=
1

n

n∑
k=1

l(sk).

As in [GH95] we define for given auxiliary distribution pU ∈ P(U) the set of all input
probability distributions that satisfy the input constraint Γi, i = 1, 2, as

P(Xi,Γi|pU) :=
{
pXi|U ∈ P(Xi|U) : EpXi|U [gi(pXi|U)] ≤ Γi

}
.

Further note that
Eq[l(q)] =

∑
u∈U

pU(u)
∑
s∈S

q(s|u)l(s)

39



4 Bidirectional Relaying in Uncoordinated Networks

depends only on pU and q. Therefore we define the set of all probability distributions q ∈
P(S|pU) that satisfy Eq[l(q)] ≤ Λ by

P(S,Λ|pU) :=
{
q : q ∈ P(S|pU),Eq[l(q)] ≤ Λ

}
.

The random code capacity region of the AVMAC was determined by Gubner and Hughes
[GH95].

Theorem 4.8 ([GH95]). The random code capacity region Rran(Vn|Γ1,Γ2,Λ) of the AV-
MAC Vn under input constraints Γi, i = 1, 2, and state constraint Λ is

Rran(Vn|Γ1,Γ2,Λ) :=
⋃

pU∈P(U),|U|≤∞
pXi|U∈P(Xi,Γi|pU),i=1,2

R(pU, pX1|U, pX2|U)

with

R(pU, pX1|U, pX2|U) :=
{

(R2, R1) ∈ R2
+ :R2 ≤ inf

q∈P(S,Λ|pU)
I(X1; Y|X2,U)

R1 ≤ inf
q∈P(S,Λ|pU)

I(X2; Y|X1,U)

R1 +R2 ≤ inf
q∈P(S,Λ|pU)

I(X1,X2; Y|U)
}

for {pU(u)pX1|U(x1|u)pX2|U(x2|u)q(s|u)V (y|x1, x2, s)}q∈P(S,Λ|pU).

Unfortunately, due to the state constraint the random code capacity region is not convex in
general. This is in contrast to the case without any state constraints where the corresponding
region is indeed convex [Jah81].

For the deterministic code capacity region of the AVMAC with constraints on input and states
there are only partial results available [Gub91, Gub92] and it remains unsolved in general.

4.2 Arbitrarily Varying Bidirectional Broadcast Channel

The transmission is affected by arbitrarily varying channels, which is modeled with the help
of a finite state set S. Further, let X and Yi, i = 1, 2, be finite input and output sets.
Then, for a fixed state sequence sn ∈ Sn of length n and input and output sequences
xn ∈ X n and yni ∈ Yni , i = 1, 2, the discrete memoryless broadcast channel is given by
W⊗n(yn1 , y

n
2 |xn, sn) :=

∏n
k=1W (y1,k, y2,k|xk, sk).
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4.2 Arbitrarily Varying Bidirectional Broadcast Channel

Definition 4.9. The discrete memoryless arbitrarily varying broadcast channel Wn is defined
by a family

Wn :=
{
W⊗n : X n × Sn → P(Yn1 × Yn2 )

}
n∈N,sn∈Sn .

Since we do not allow any cooperation between the receiving nodes, it is sufficient to con-
sider only the marginal transition probabilities W⊗ni (yni |xn, sn), i = 1, 2. Further, for any
probability distribution q ∈ P(S) we denote the averaged broadcast channel by

W q(y1, y2|x) :=
∑
s∈S

W (y1, y2|x, s)q(s) (4.2)

and the corresponding averaged marginal channels by W 1,q(y1|x) and W 2,q(y2|x).

For the following analysis we need a concept of symmetrizability which distinguishes among
different degrees of symmetry. In more detail, we say a channel W̃i(yi|x1, ..., xt) with input
alphabet X t and output alphabet Yi is symmetric in x1, ..., xt if the channel is invariant
under all permutations of the inputs x1, ..., xt for all yi, x1, ..., xt. This leads to the following
definition.

Definition 4.10. For any ti ≥ 1, i = 1, 2, an arbitrarily varying broadcast channel is
(Yi, ti)-symmetrizable if there is a channel Ui : X ti → P(S) such that

W̃i(yi|x0, x1, ..., xti) :=
∑
s∈S

Wi(yi|x0, s)Ui(s|x1, ..., xti) (4.3)

is symmetric in x0, x1, ..., xti for all x0, x1, ..., xti ∈ X and yi ∈ Yi. For convenience, we
take all arbitrarily varying broadcast channels to be (Yi, 0)-symmetrizable, i = 1, 2.

Intuitively, a (Yi, ti)-symmetrizable channel can be interpreted as a channel where the state
sequence can emulate ti replicas of the channel input. Further, from the definition it is
clear that if an arbitrarily varying broadcast channel is (Yi, ti)-symmetrizable, then it is also
(Yi, t′i)-symmetrizable for all 0 ≤ t′i ≤ ti, i = 1, 2.

Definition 4.11. The symmetrizability of an arbitrarily varying broadcast channel is defined
by the largest integers t1 and t2 such that the channel is (Y1, t1)-symmetrizable and (Y2, t2)-
symmetrizable. This pair of largest integers is denoted by (T1, T2).

Remark 4.12. The concept of symmetrizability for the arbitrarily varying broadcast channel
introduced above is a natural extension of the one proposed for the single-user AVC under
list decoding in [BNP95, Hug97]. Additionally, we call a (Yi, 1)-symmetrizable channel in
the sense of Definition 4.10 simply a Yi-symmetrizable channel according to the terminology
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4 Bidirectional Relaying in Uncoordinated Networks

used for the single-user AVC in [Eri85, CN88b], which does not distinguish among different
degrees of symmetry. In this case, condition (4.3) can be written as∑

s∈S
Wi(yi|x, s)Ui(s|x′) =

∑
s∈S

Wi(yi|x′, s)Ui(s|x) (4.4)

which means that the channel W̃i(yi|x, x′) is symmetric in x, x′ for all x, x′ ∈ X and yi ∈
Yi, i = 1, 2.

We consider the standard model with a block code of arbitrary but fixed length n. LetMi :=

{1, ...,M (n)
i } be the message set at node i, i = 1, 2, which is also known at the relay node.

Further, we make use of the abbreviationM :=M1 ×M2.

Definition 4.13. A deterministic (n,M
(n)
1 ,M

(n)
2 , L1, L2)-list code Clist(W

n) of length n
with list sizes (L1, L2) for the arbitrarily varying bidirectional broadcast channel (AVBBC)
Wn consists of codewords

xnm ∈ X n,

one for each message m = (m1,m2) ∈M, and list decoders at nodes 1 and 2

L(1) : Yn1 ×M1 → P̂L1(M2)

L(2) : Yn2 ×M2 → P̂L2(M1)

where P̂L1(M2) is the set of all subsets ofM2 with cardinality at most L1 and, similarly,
P̂L2(M1) is the set of all subsets ofM1 with cardinality at most L2.

When xnm with m = (m1,m2) has been sent, and yn1 and yn2 have been received at nodes 1
and 2, the list decoder at node 1 is in error if m2 is not in L(1)(yn1 ,m1). Accordingly, the
list decoder at node 2 is in error if m1 is not in L(2)(yn2 ,m2). This allows us to define the
probabilities of error for given message m = (m1,m2) and state sequence sn ∈ Sn as

e(m, sn|Clist(W
n)) :=

∑
(yn1 ,y

n
2 ):m2 /∈L(1)(yn1 ,m1)

∨m1 /∈L(2)(yn2 ,m2)

W⊗n
(
yn1 , y

n
2 |xnm, sn

)
(4.5)

and the corresponding marginal probabilities of error at nodes 1 and 2 by
e1(m, sn|Clist(W

n)) :=
∑

yn1 :m2 /∈L(1)(yn1 ,m1)W
⊗n
1

(
yn1 |xnm, sn

)
and e2(m, sn|Clist(W

n)) :=∑
yn2 :m1 /∈L(2)(yn2 ,m2)W

⊗n
2

(
yn2 |xnm, sn

)
, respectively. Thus, the average probability of error

for state sequence sn ∈ Sn is given by

ē(sn|Clist(W
n)) :=

1

|M|
∑
m∈M

e(m, sn|Clist(W
n)) (4.6)
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and the corresponding marginal average probability of error at node i by ēi(sn|Clist(W
n)) :=

1
|M|

∑
m∈M ei(m, s

n|Clist(W
n)), i = 1, 2. Clearly, we always have ē(sn|Clist(W

n)) ≤
ē1(sn|Clist(W

n)) + ē2(sn|Clist(W
n)).

For given 0 < λ(n) < 1, Clist(W
n) is called a (n,M

(n)
1 ,M

(n)
2 , L1, L2, λ

(n))-list code (with
average probability of error λ(n)) for the AVBBC Wn if

ē(sn|Clist(W
n)) ≤ λ(n) for all sn ∈ Sn.

Definition 4.14. A rate pair (R1, R2) ∈ R2
+ is said to be list achievable for the AVBBC Wn

if for any δ > 0 there exists an n(δ) ∈ N and a sequence {C(n)
list (Wn)}n∈N of deterministic

(n,M
(n)
1 ,M

(n)
2 , L1, L2, λ

(n))-list codes such that for all n ≥ n(δ) we have

1

n
log

(
M

(n)
1

L2

)
≥ R2 − δ and

1

n
log

(
M

(n)
2

L1

)
≥ R1 − δ

while
max
sn∈Sn

ē(sn|Clist(W
n)) ≤ λ(n)

with λ(n) → 0 as n → ∞. The set of all achievable rate pairs with list sizes (L1, L2) is the
list capacity region of the AVBBC Wn and is denoted byRlist(W

n|L1, L2).

Remark 4.15. The definitions above require that we have to find codes such that the average
probability of error goes to zero as the block length tends to infinity for all possible state
sequences simultaneously. This means that the codes are universal with respect to the state
sequence.

Remark 4.16. For list sizes L1 = L2 = 1 the list code Clist(W
n) as given in Definition 4.13

reduces to a usual deterministic (n,M
(n)
1 ,M

(n)
2 )-code Cdet(W

n) where each decoder maps
its received sequence into exactly one message. The definitions of a deterministically achiev-
able rate pair and the deterministic code capacity regionRdet(W

n) follow accordingly.

Now we are in the position to state the list capacity region of the AVBBC Wn. For this
purpose we define the region

R(W) :=
⋃
PX

{
(R1, R2) ∈ R2

+ : R1 ≤ inf
q∈P(S)

I(PX,W 1,q) (4.7a)

R2 ≤ inf
q∈P(S)

I(PX,W 2,q)
}

(4.7b)

for joint probability distributions {PX(x)W q(y1, y2|x)}q∈P(S).
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Theorem 4.17. The list capacity region Rlist(W
n|L1, L2) with list sizes (L1, L2) of the

AVBBC Wn with symmetrizability (T1, T2) is

Rlist(W
n|L1, L2) = R(W) if L1 > T1 and L2 > T2.

We have int(Rlist(W
n|L1, L2)) = ∅ if and only if L1 ≤ T1 or L2 ≤ T2.

The theorem shows that every AVBBC has a characteristic pair of minimum list sizes (T1 +
1, T2 + 1) that enables bidirectional communication at all rate pairs (R1, R2) ∈ R(W). On
the other hand, if L1 ≤ T1 or L2 ≤ T2, then there is no reliable communication possible, not
even at very low rates.

In addition, from Theorem 4.17 we immediately obtain the deterministic code capacity re-
gionRdet(W

n) if we restrict both list sizes to one, i.e., L1 = L2 = 1.

Corollary 4.18. For a non-Y1-symmetrizable2 and non-Y2-symmetrizable AVBBC Wn the
deterministic code capacity regionRdet(W

n) is given by

Rdet(W
n) = R(W).

We have int(Rdet(W
n)) = ∅ if and only if the AVBBC Wn is Y1-symmetrizable or Y2-

symmetrizable.

In the following we prove Theorem 4.17. Although the goal is to establish the list capacity
region, we first prove the random code capacity region, where we allow the relay and the
receivers to coordinate their choice of encoder and decoders. It will be convenient to use this
result to establish the desired list capacity region.

4.3 Random Code Construction

In this section, we restrict the list sizes at the receiving nodes to one and derive the opti-
mal random coding strategy for the AVBBC. Thereby, the word "random" refers to the fact
that the encoder and decoders are chosen according to a common random experiment whose
outcome has to be known at all nodes in advance. This leads directly to the following defini-
tion.

2Note that according to Remark 4.12, we call a (Yi, 0)-symmetrizable channel in the sense of Definition 4.10
also a non-Yi-symmetrizable channel, i = 1, 2.
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4.3 Random Code Construction

Definition 4.19. A random (n,M
(n)
1 ,M

(n)
2 ,Z)-code Cran(Wn) of length n for the AVBBC

Wn is given by a family Cran(Wn) := {C(z) : z ∈ Z} of deterministic (n,M
(n)
1 ,M

(n)
2 )-

codes
C(z) :=

{(
xnm(z),D(1)

m2|m1
(z),D(2)

m1|m2
(z)
)

: m1 ∈M1,m2 ∈M2

}
together with a random variable Z ∈ Z distributed according to pZ ∈ P(Z).

Here, it will be convenient to use the notion of decoding sets to specify the decoding rule
as also done for the compound BBC in Chapter 3, cf. Definition 3.4. This means that
the decoding sets at nodes 1 and 2 of one deterministic code C(z), z ∈ Z , are given by
D(1)
m2|m1

(z) ⊆ Yn1 and D(2)
m1|m2

(z) ⊆ Yn2 for all m1 ∈ M1 and m2 ∈ M2. Since C(z) is a
deterministic code (with list sizes one), the decoding sets must be disjoint. In more detail,
for given m1 at node 1 the decoding sets must satisfy D(1)

m2|m1
(z) ∩ D(1)

m̂2|m1
(z) = ∅ for

m̂2 6= m2, and similarly for given m2 at node 2 the decoding sets must satisfy D(2)
m1|m2

(z) ∩

D
(2)
m̂1|m2

(z) = ∅ for m̂1 6= m1.

The average probability of error of the deterministic code C(z), z ∈ Z , for state sequence
sn ∈ Sn can be written as

ē(sn|C(z)) :=
1

|M|
∑
m∈M

W⊗n
(
(D(1)

m2|m1
(z)×D(2)

m1|m2
(z))c|xnm(z), sn

)
.

Then, the average probability of error of the random code Cran(Wn) for state sequence sn ∈
Sn is given by

ē(sn|Cran(Wn)) := EZ[ē(sn|C(Z))]

and, accordingly, the corresponding marginal average probability of error at node i by
ēi(s

n|Cran(Wn)) := EZ[ēi(s
n|C(Z))], i = 1, 2. For given 0 < λ(n) < 1, Cran(Wn) is called

a (n,M
(n)
1 ,M

(n)
2 ,Z, λ(n))-code (with average probability of error λ(n)) for the AVBBC Wn

if
ē(sn|Cran(Wn)) ≤ λ(n) for all sn ∈ Sn.

Then the definitions of a randomly achievable rate pair and the random code capacity region
Rran(Wn) follow accordingly.

Theorem 4.20. The random code capacity regionRran(Wn) of the AVBBC Wn is given by

Rran(Wn) = R(W),

cf. also (4.7).
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Remark 4.21. From the definitions of the codes it is clear that the deterministic code
Cdet(W

n) is a special or degenerated case of the random code Cran(Wn). More precisely,
Cdet(W

n) can be interpreted as a random code that consists of only one deterministic code.
Consequently, the deterministic code capacity region Rdet(W

n) must be contained in the
random code capacity regionRran(Wn), i.e.,Rdet(W

n) ⊆ Rran(Wn).

In the following subsections we give the proof of the random code capacity region which is
mainly based on Ahlswede’s robustification technique [Ahl80b, Ahl86].

4.3.1 Compound Bidirectional Broadcast Channel

The first key idea is to exploit results from the compound BBC, cf. Chapter 3. Therefore, we
construct a suitable compound broadcast channel by defining the convex hull of all averaged
broadcast channels, cf. (4.2), as {

W q(y1, y2|x)
}
q∈P(S)

.

We observe that this already corresponds to a compound broadcast channel where each prob-
ability distribution q ∈ P(S) parametrizes one element of the compound channel which we
denote by W. The capacity region of this compound BBC W is known from previous stud-
ies, cf. Theorem 3.13. There, it is shown that the deterministic code capacity regionRdet(W)
of the compound BBC W is given by

Rdet(W) = R(W),

cf. also (4.7).

The achievability of the rates specified byR(W), cf. (4.7a) and (4.7b), is proved by showing
the existence of a deterministic (n,M

(n)
1 ,M

(n)
2 )-code Cdet(W) for the compound BBC W

with arbitrarily small average probability of error. In more detail, in Section 3.3 it is shown
that the average probability of error of Cdet(W) can be bounded from above by

1

|M|
∑
m∈M

W⊗nq
(
(D(1)

m2|m1
×D(2)

m1|m2
)c|xnm

)
≤ λ(n)

W
for all q ∈ P(S)

with λ(n)

W
= λ

(n)

W,1
+ λ

(n)

W,2
where λ(n)

W,i
is an upper bound on the marginal average probability

of error at node i, i = 1, 2. More precisely, for n large enough λ(n)

W,i
is given by

λ
(n)

W,i
= (n+ 1)|X ||Yi|2−n

cε2

2 +
(n+ 1)|X ||Yi|

1− (n+ 1)|X |2−ncε2
2−n

τ
8
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4.3 Random Code Construction

which decreases exponentially fast for increasing block length n. Thereby, ε, τ , and c are
positive constants, cf. also (3.12).

Together with the definition of the averaged broadcast channel (4.2) this immediately implies
that for Cdet(W) the probability of a successful transmission over the compound BBC W is
bounded from below by

1

|M|
∑
m∈M

W⊗nq
(
D(1)
m2|m1

×D(2)
m1|m2

|xnm
)
> 1− λ(n)

W

or equivalently by

1

|M|
∑
m∈M

∑
sn∈Sn

W⊗n
(
D(1)
m2|m1

×D(2)
m1|m2

|xnm, sn
)
q⊗n(sn) > 1− λ(n)

W
(4.8)

for all q⊗n =
∏n
k=1 q and q ∈ P(S).

4.3.2 Robustification

Next, we follow [Ahl80b, Ahl86] and use the deterministic code Cdet(W) for the compound
BBC W to construct a random code Cran(Wn) for the AVBBC Wn.

Let Πn be the group of permutations acting on (1, 2, ..., n). For given sequence sn =
(s1, ..., sn) ∈ Sn and permutation π ∈ Πn : Sn → Sn we denote the permuted sequence
(sπ(1), ..., sπ(n)) ∈ Sn by π(sn). Further, we denote the inverse permutation by π−1 so that
π−1(π(sn)) = sn.

Theorem 4.22 (Robustification technique [Ahl86]). Let f : Sn → [0, 1] be a function such
that for some α ∈ (0, 1) the inequality∑

sn∈Sn
f(sn)q⊗n(sn) > 1− α for all q ∈ P0(n,S) (4.9)

is satisfied. Then the inequality

1

n!

∑
π∈Πn

f
(
π(sn)

)
> 1− (n+ 1)|S|α for all sn ∈ Sn

is also satisfied.

Since (4.9) is fulfilled with α = λ
(n)

W
by (4.8), from the robustification technique and

f
(
π(sn)

)
=

1

|M|
∑
m∈M

W⊗n
(
D(1)
m2|m1

×D(2)
m1|m2

|xnm, π(sn)
)
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we immediately obtain a random (n,M
(n)
1 ,M

(n)
2 ,Πn)-code Cran(Wn) for the AVBBC Wn

given by the family

Cran(Wn) =
{

(π−1(xnm), π−1(D(1)
m2|m1

), π−1(D(2)
m1|m2

)) :

m1 ∈M1,m2 ∈M2, π ∈ Πn

} (4.10)

where the permutations π are uniformly distributed on Πn and

π−1(D(1)
m2|m1

) =
⋃

yn1 ∈D
(1)
m2|m1

π−1(yn1 ) and π−1(D(2)
m1|m2

) =
⋃

yn2 ∈D
(2)
m1|m2

π−1(yn2 ).

Since Πn is the group of permutations of size n, the cardinality of Πn is n! so that the random
code Cran(Wn) consists of n! deterministic (n,M

(n)
1 ,M

(n)
2 )-codes.

From the robustification technique follows that the average probability of error of Cran(Wn)
is bounded from above by

ē(sn|Cran(Wn)) ≤ (n+ 1)|S|λ
(n)

W
=: λ

(n)
W,ran for all sn ∈ Sn. (4.11)

The way how we constructed the random code Cran(Wn) from the deterministic code Cdet(W)
has the following consequence. All rate pairs achievable for the compound BBC W using
the deterministic code Cdet(W) are also achievable for the AVBBC Wn using the random
code Cran(Wn). Consequently, the random code Cran(Wn) actually achieves all rate pairs
satisfying (4.7a) and (4.7b) as stated in Theorem 4.20, which proves the achievability.

4.3.3 Converse

It remains to show that the presented random coding strategy actually achieves all possible
rate pairs so that no other rate pairs are achievable.

As a first step, it is easy to show that the average probability of error of the random code
Cran(Wn) for the AVBBC Wn equals the average probability of error of the random code
for the compound BBC W. Hence, it is clear that we cannot achieve higher rates as for the
constructed compound BBC W with random codes. The deterministic rates of the compound
channel are given in Theorem 3.13. As in [AW69] for the single-user compound channel,
it can easily be shown that for the compound BBC W the achievable rates for deterministic
and random codes are equal. Since the constructed random code Cran(Wn) for the AVBBC
Wn already achieves these rates, the converse is proved.

This finishes the proof of Theorem 4.20 and therewith establishes the random code capacity
regionRran(Wn) of the AVBBC Wn.
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4.4 Deterministic Code Construction

4.4 Deterministic Code Construction

A random coding strategy as constructed in the previous section requires common random-
ness between all nodes, since the encoder and decoders depend all on the same random
permutation, cf. (4.10), which has to be known to all nodes in advance. If this kind of
resource is not available, we are interested in deterministic strategies.

One way to ensure that the decoders are chosen according to the same random permutation
as the encoder, is to inform the receivers which one is used by the encoder. Consequently,
the transmitter has to communicate first the chosen permutation to the receivers and then to
transmit the message according to the randomly selected code. If the number of all possible
codes could be kept small enough, the transmission of those additional information would
not cause an essential loss in rate. Inspired by this idea we establish the following behavior
of the list capacity region which is similar to Ahlswede’s dichotomy result for the single-user
AVC [Ahl78].

Lemma 4.23. The list capacity region Rlist(W
n|L1, L2) for the AVBBC Wn displays the

following behavior:

Rlist(W
n|L1, L2) = Rran(Wn) if int(Rlist(W

n|L1, L2)) 6= ∅. (4.12)

In the following two subsections we prove the lemma using Ahlswede’s elimination tech-
nique [Ahl78]. Therefore, we start with a random code Cran(Wn) for the AVBBC Wn and
construct a list code Clist(W

n) which achieves the same rate pairs as the random code.

4.4.1 Random Code Reduction

The first step of the elimination technique [Ahl78] is the random code reduction. Here, we
construct a new random code by selecting a relatively small number of deterministic codes
from the original random code using the following lemma suitable for the BBC.

Lemma 4.24 (Random Code Reduction). As given in (4.10) let Cran(Wn) be a random code
for the AVBBC Wn and let λ(n)

Wn,ran be an upper bound on the average probability of error of
this code as specified in (4.11). For any ε and K2 that satisfy

ε > 2λ
(n)
Wn,ran and K2 >

2

ε
log(|S|n) (4.13)

there exist K2 deterministic codes Ci,j , i = 1, ...,K, j = 1, ...,K such that

1

K2

∑
i,j

ē(sn|Ci,j) < ε for all sn ∈ Sn. (4.14)
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Proof. A random code reduction for the single-user AVC was first proposed in [Ahl78].
Our proof for the AVBBC is inspired by [CK81, Lemma 6.8] where a similar result for the
single-user AVC in terms of maximal probability of error is established.

First, from the random code Cran(Wn) we select K2 independent permutations πi,j ∈ Πn,
i = 1, ...,K, j = 1, ...,K according to the uniform distribution. Each such permutation πi,j
specifies one deterministic code which is denoted by Ci,j in the following. Then, for given
state sequence sn ∈ Sn, we have

P
{ 1

K2

∑
i,j

ē(sn|Ci,j) ≥ ε
}

= P
{

exp
(∑
i,j

ē(sn|Ci,j)
)
≥ exp

(
K2ε

)}
≤ exp

(
−K2ε

)
E
[

exp
(∑
i,j

ē(sn|Ci,j)
)]

(4.15)

where the last step follows from Markov’s inequality. Since the random variables Ci,j , i =
1, ...,K, j = 1, ...,K are independent and identically distributed, we get for the expectation

E
[

exp
(∑
i,j

ē(sn|Ci,j)
)]

= E
[

exp
(
ē(sn|C1,1)

)]K2

≤
(
1 + E

[
ē(sn|C1,1)

])K2

≤
(
1 + λ

(n)
Wn,ran

)K2

where we further used the inequality exp(x) ≤ 1 + x, 0 ≤ x ≤ 1 (recall that exp is to the
basis 2). This and (4.15) yield

P
{ 1

K2

∑
i,j

ē(sn|Ci,j) ≥ ε
}
≤ exp

(
−K2ε

)(
1 + λ

(n)
Wn,ran

)K2

≤ exp
(
−K2(ε− λ(n)

Wn,ran)
)
.

Finally, with (4.13) this implies

P
{ 1

K2

∑
i,j

ē(sn|Ci,j) ≥ ε for all sn ∈ Sn
}
≤ |S|n exp

(
−K2(ε− λ(n)

Wn,ran)
)
. (4.16)

This means that there exists a collection of deterministic codes Ci,j , i = 1, ...,K, j =
1, ...,K which satisfy (4.14) proving the lemma.

Note that we split up the K2 chosen deterministic codes into two groups to be conform with
the definition of a deterministic code for the AVBBC, cf. Definition 4.13 and especially
Remark 4.16.
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4.4 Deterministic Code Construction

The random code reduction shows that for any random code there exists another "reduced"
random code which is uniformly distributed over K2 deterministic codes with an average
probability of error less than ε under the assumption that (4.13) holds.

A direct consequence of Lemma 4.24 is that for any random code Cran(Wn) which achieves
the random code capacity of the AVBBC Wn, there exists another "reduced" random code
C̃ran(Wn) which does likewise. Furthermore, from [Ahl78] we know that it is sufficient
to select no more than K2 = n2 deterministic codes to obtain C̃ran(Wn) with the desired
properties. This can easily be seen in (4.16) where the choice K2 = n2 leads to a code
whose probability of error exceeds ε with a super exponentially small probability since |S|n
grows exponentially in n only.

In more detail, for any ε > 0 and sufficiently large n there exist n2 deterministic codes

Ci,j :=
{(
π−1
i,j (xnm), π−1

i,j (D(1)
m2|m1

), π−1
i,j (D(2)

m1|m2
)
)

: m1 ∈M1,m2 ∈M2

}
∈ Cran(Wn),

i = 1, ..., n, j = 1, ..., n, such that

ē(sn|Cran(Wn)) =
1

n2

∑
i,j

ē(sn|Ci,j) < ε =: λ̃
(n)
Wn,ran for all sn ∈ Sn. (4.17)

The "reduced" random code C̃ran(Wn) with "exponentially few" elements is given by

C̃ran(Wn) :=
{
Ci,j : i = 1, ..., n; j = 1, ..., n

}
where the indices i, j are drawn according to the uniform distribution on {1, ..., n} ×
{1, ..., n}. Clearly, the "reduced" random code C̃ran(Wn) also achieves the random code
capacity of the AVBBC Wn.

4.4.2 Elimination of Randomness

Up to now we have constructed a random code with "exponentially few" elements that
achieves the random code capacity of the AVBBC Wn. The next step of the elimination
technique [Ahl78] is the elimination of randomness. This means that we convert the "re-
duced" random code into a list code by adding short prefixes to the original codewords to
inform the decoders which of the n2 deterministic codes is actually used [Ahl78, CK81].

Clearly, this is only possible, if the list capacity region Rlist(W
n|L1, L2) fulfills

int(Rlist(W
n|L1, L2)) 6= ∅, which means that transmission at positive rates is possible in

both directions. Then, there exists for sufficiently large n a sequence of list codes Cpre with
sequences

xlni,j ∈ X
ln
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of length ln and list decoders at nodes 1 and 2

L(1) : Y ln1 × {1, ..., n} → P̂L1({1, ..., n})
L(2) : Y ln2 × {1, ..., n} → P̂L2({1, ..., n})

for all i, j = 1, ..., n, cf. also Definition 4.13. Further, the average probability of error may
be

ē(sn|Cpre) =
1

n2

∑
i,j

∑
(yln1 ,yln2 ):j /∈L(1)(yln1 ,i)

∨i/∈L(2)(yln2 ,j)

W⊗ln
(
yln1 , y

ln
2 |x

ln
i,j , s

ln
)

≤ ε =: λ
(ln)
pre for all sln ∈ S ln (4.18)

where ln
n → 0 as n → ∞. This code is used to specify which code will be used in the

following.

Next, we define the final list code Clist(W
n) for the AVBBC Wn by concatenating Cpre

with C̃ran(Wn). The new code has a block length ln + n and the message set {1, ..., n} ×
{1, ..., n}×M1×M2. The transmit sequence is a juxtaposition of the prefix codeword xlni,j
and the codeword π−1

i,j (xnm) where the former determines the code Ci,j used for the following
message.

From (4.17) and (4.18) follows that the average probability of error of Clist(W
n) for given

state sequence sln+n ∈ S ln × Sn can be bounded from above as

ē(sn|Clist(W
n)) < λ

(ln)
pre + λ̃

(n)
Wn,ran = 2ε.

Moreover, the rate of the final list code Clist(W
n) from the relay to node 1 is given by

1

ln + n
log

(
nM

(n)
2

L1

)
=

1

ln + n

(
logM

(n)
2 + log

(
n

L1

))
=

1
ln
n + 1

1

n
logM

(n)
2 +

1

1 + n
ln

1

ln
log

(
n

L1

)
−→
n→∞

R1

since 1
ln
n

+1
→ 1 and 1

1+ n
ln

→ 0 as n → ∞ and 1
n logM

(n)
2 = R2. Similarly, we get

1
ln+n log(

nM
(n)
1

L2
) → R2 for the rate from the relay to node 2. This shows that the overall

rate of the final, concatenated list code is only negligibly affected by the addition of the
prefixes.

Consequently, all rate pairs achievable with the random code Cran(Wn) are also achiev-
able with the list code Clist(W

n) with arbitrarily small average probability of error if
int(Rlist(W

n|L1, L2)) 6= ∅ as stated in (4.12) which proves Lemma 4.23.
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4.5 List Decoding

Remark 4.25. Due to the concatenated structure of Clist(W
n) this code is a special case of

a list code for the AVBBC Wn, cf. Definition 4.13, and consequently, Clist(W
n) might not

achieve the maximal achievable rates. But the converse in Section 4.5.2 shows that Clist(W
n)

actually achieves all possible rate pairs so that this concatenated structure is already opti-
mal.

4.5 List Decoding

Although Lemma 4.23 characterizes the general behavior of the list capacity region of the
AVBBC, it does not specify in detail, when the list capacity region has an empty interior.
Therefore we fill this hiatus in the following.

4.5.1 Symmetrizability

Already Blackwell, Breiman, and Thomasian observed that under certain conditions the de-
terministic code capacity of the single-user AVC is zero [BBT60]. Based on an idea of Eric-
son [Eri85], Csiszár and Narayan showed that non-symmetrizability is a necessary condition
for the single-user AVC to have a non-zero capacity [CN88b]. Independently, Blinovsky,
Narayan, and Pinsker [BNP95] and Hughes [Hug97] extended this idea to the case of list
decoding.

Here, we want to establish similar results for the AVBBC. For this purpose we use the con-
cept of symmetrizability as introduced in Section 4.2 and define the maximum single-user
rates as

Ri,max := max
PX

inf
q∈P(S)

I(PX,W i,q), i = 1, 2.

The following result relates the symmetrizability and the maximum single-user rates.

Theorem 4.26. If Ri,max = 0, then the AVBBC Wn is (Yi, ti)-symmetrizable for all ti ≥ 1,
i = 1, 2. If Ri,max > 0, then any (Yi, ti)-symmetrizable AVBBC Wn satisfies

ti ≤
log(min{|Yi|, |S|})

Ri,max
. (4.19)

Proof. The proof can be found in Appendix A.1.

From Theorem 4.26 follows that for any AVBBC, whose random code capacity region has a
non-empty interior, the symmetrizability is always finite. The next lemma presents a lower
bound on the average probability of error in a similar way as in [Hug97] for the single-user
case.
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Lemma 4.27. Let (T1, T2) be the symmetrizability of an AVBBC Wn. Then any list code
Clist(W

n) of block length n with M (n)
1 M

(n)
2 messages and L1 ≤ T1 satisfies

max
sn∈Sn

ē1(sn|Clist(W
n)) ≥

(
1− L1

K1 + 1

)(
M

(n)
2 −K1

M
(n)
2

)

where K1 = min{M (n)
2 − 1, T1}. Similarly, any list code Clist(W

n) of block length n with
M

(n)
1 M

(n)
2 messages and L2 ≤ T2 satisfies

max
sn∈Sn

ē2(sn|Clist(W
n)) ≥

(
1− L2

K2 + 1

)(
M

(n)
1 −K2

M
(n)
1

)

where K2 = min{M (n)
1 − 1, T2}.

Proof. The proof can be found in Appendix A.2.

The lemma indicates when the interior of the list capacity region of the AVBBC Wn will
be empty. In more detail, if Li ≤ Ti, i = 1, 2, then maxsn∈Sn ēi(s

n|Clist(W
n)) > 0,

i = 1, 2, which results in int(Rlist(W
n|L1, L2)) = ∅. Consequently, Li > Ti, i = 1, 2

is a necessary condition for Rlist(W
n|L1, L2) = Rran(Wn). In other words, for fixed list

sizes (L1, L2), non-(Y1, L1)-symmetrizability and non-(Y2, L2)-symmetrizability is neces-
sary forRlist(W

n|L1, L2) = Rran(Wn).

4.5.2 Achieving Positive Rates

In this subsection, we present a coding strategy that achieves the desired rates as specified
in Theorem 4.17 if Li > Ti, i = 1, 2. Moreover, this immediately shows that Li > Ti,
i = 1, 2, is also a sufficient condition for int(Rlist(W

n|L1, L2)) 6= ∅. The coding strategy in
the following is based on [Hug97] where a similar strategy is presented for the single-user
case.

Coding Strategy

To achieve positive rates we need a suitable set of codewords xnm1,m2
, m1 = 1, ...,M

(n)
1 ,

m2 = 1, ...,M
(n)
2 , with properties as stated in the following lemma.
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Lemma 4.28. For any L1 ≥ 1, L2 ≥ 1, ε > 0, n ≥ max{n0(ε, L1), n0(ε, L2)}, M (n)
1 ≥

L2 exp(nε), M (n)
2 ≥ L1 exp(nε), and given type PX, there exist codewords xnm1,m2

∈ X n,

m1 = 1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 , each of type PX, such that for every xn ∈ X n,

sn ∈ Sn, and every joint type PXXL1S with XL1 = (X1,X2, ...,XL1) we have for each
m1 ∈M1∣∣{m̂2 : (xn, xnm1,m̂2

, sn) ∈ T (n)
XXkS

}∣∣ ≤ exp
(
n(|R1 − I(Xk; X,S)|+ + ε)

)
(4.20a)

1

M
(n)
2

∣∣{m2 : (xnm1,m2
, sn) ∈ T (n)

XS

}∣∣ ≤ exp
(
− n ε

2

)
if I(X; S) ≥ ε (4.20b)

1

M
(n)
2

∣∣{m2 : (xnm1,m2
, xnm1,m̂2

, sn) ∈ T (n)
XXkS for some m̂2 6= m2

}∣∣ ≤ exp
(
− n ε

2

)
if I(X; Xk, S)− |R1 − I(Xk; S)|+ ≥ ε (4.20c)

for k = 1, ..., L1. Moreover, if R1 < mink I(Xk; S), then xnm1,m2
, m1 = 1, ...,M

(n)
1 ,

m2 = 1, ...,M
(n)
2 , further satisfy∣∣{J ∈ PL1(M2) : (xn, xnm1,J , s

n) ∈ T (n)

XXL1S

}∣∣ ≤ exp(nε) (4.20d)
1

M
(n)
2

∣∣{m2 : (xnm1,m2
, xnm1,J , s

n) ∈ T (n)

XXL1S
for some

J ∈ PL1(M2\{m2})
}∣∣ ≤ exp

(
− n ε

2

)
if I(X; XL1 , S) ≥ ε (4.20e)

with J = {j1, ..., jL1} ∈ PL1(M2) and xnm1,J denotes the ordered L1-tuple
(xnm1,j1

, xnm1,j2
, ..., xnm1,jL1

) where the indices are ordered as j1 < j2 < ... < jL1 . Similarly,
for every xn ∈ X n, sn ∈ Sn, and every joint type PXXL2S we have for each m2 ∈M2∣∣{m̂1 : (xn, xnm̂1,m2

, sn) ∈ T (n)
XXkS

}∣∣ ≤ exp
(
n(|R2 − I(Xk; X, S)|+ + ε)

)
(4.20f)

1

M
(n)
1

∣∣{m1 : (xnm1,m2
, sn) ∈ T (n)

XS

}∣∣ ≤ exp
(
− n ε

2

)
if I(X; S) ≥ ε (4.20g)

1

M
(n)
1

∣∣{m1 : (xnm1,m2
, xnm̂1,m2

, sn) ∈ T (n)
XXkS for some m̂1 6= m1

}∣∣ ≤ exp
(
− n ε

2

)
if I(X; Xk, S)− |R2 − I(Xk; S)|+ ≥ ε (4.20h)

for k = 1, ..., L2. Moreover, if R2 < mink I(Xk; S), then xnm1,m2
, m1 = 1, ...,M

(n)
1 ,

m2 = 1, ...,M
(n)
2 , further satisfy∣∣{J ′ ∈ PL2(M1) : (xn, xnJ ′,m2

, sn) ∈ T (n)

XXL2S

}∣∣ ≤ exp(nε) (4.20i)
1

M
(n)
1

∣∣{m1 : (xnm1,m2
, xnJ ′,m2

, sn) ∈ T (n)

XXL2S
for some

55



4 Bidirectional Relaying in Uncoordinated Networks

J ′ ∈ PL2(M1\{m1})
}∣∣ ≤ exp

(
− n ε

2

)
if I(X; XL2 , S) ≥ ε (4.20j)

with J ′ = {j′1, ..., j′L2
} ∈ PL2(M1) and xnJ ′,m2

denotes the ordered L2-tuple
(xnj′1,m2

, xnj′2,m2
, ..., xnj′L2

,m2
) where the indices are ordered as j′1 < j′2 < ... < j′L2

.

Proof. The proof can be found in Appendix A.3.

The proof of the lemma shows that good codewords are obtained by randomly selecting
codewords from the set of sequences of a fixed type. All such codewords will possess the
desired properties with probability arbitrarily close to 1.

Decoding Strategy

A crucial part is to define suitable decoding rules at the receiving nodes 1 and 2. For the
single-user AVC with list size one Csiszár and Narayan use in [CN88b] a generalized diver-
gence typicality decoder based on an idea of Dobrushin and Stambler [DS75] which decides
on the basis of a joint typicality test together with a threshold test using empirical mutual
information quantities. Blinovsky et al. [BNP95] and Hughes [Hug97] use a generalization
of the above mentioned decoder that is modified in such a way that it also applies to greater
list sizes. We follow their approach and define for this purpose a family of joint distributions
PXSYi of random variables X, S, and Yi with values in X , S , and Yi, respectively, by

Dηi :=
{
PXSYi : D(PXSYi‖PX ⊗ PS ⊗Wi) ≤ ηi

}
, i = 1, 2,

with ηi ≥ 0 and where PX ⊗ PS ⊗ Wi denotes a joint distribution on X × S × Yi with
probability mass function PX(x)PS(s)Wi(yi|x, s). In particular, we have PXSYi ∈ D0 if
and only if

PXSYi(x, s, yi) = PX(x)PS(s)Wi(yi|x, s).

Therewith we are able to define the decoding rule at node 1 for list size L1 as follows.

Definition 4.29. For given codewords xnm1,m2
∈ T (n)

X ,m1 = 1, ...,M
(n)
1 ,m2 = 1, ...,M

(n)
2 ,

and (small) η1 > 0 the decoding rule L(1) : Yn1 ×M1 → P̂L1(M2) at node 1 is defined as
follows: we have m2 ∈ L(1)(yn1 ,m1) if and only if

i) there exists an sn ∈ Sn such that

Pxnm1,m2
,sn,yn1

∈ Dη1
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ii) for each choice of L1 other distinct codewords xnm1,j1
, ..., xnm1,jL1

, where each satisfies

Pxnm1,ji
,sni ,y

n
1
∈ Dη1 1 ≤ i ≤ L1

for some sni ∈ Sn, we have

I(X,Y1; XL1 |S) ≤ η1

where XL1 = (X1,X2, ...,XL1) and PXXL1SY1
is the joint type of

(xnm1,m2
, xnm1,j1

, ..., xnm1,jL1
, sn, yn1 ).

The decoding rule L(2) : Yn2 ×M2 → P̂L2(M1) at node 2 with list size L2 is defined
accordingly with (small) constant η2 > 0. To establish the list capacity region for Li >
Ti, i = 1, 2 (cf. Theorem 4.17), we have to ensure that the decoding rule as specified
in Definition 4.29 is well defined. This means that the decoding rule satisfies the given
constraints on the list sizes, i.e., |L(1)(yn1 ,m1)| ≤ L1 for allm1 ∈M1 and |L(2)(yn2 ,m2)| ≤
L2 for allm2 ∈M2. We show that the decoding rule already satisfies |L(i)(yni ,mi)| ≤ Ti+1
for all yni ∈ Yni and mi ∈ Mi, i = 1, 2, which is clearly sufficient. Here is where the
symmetrizability conditions come in.

Lemma 4.30. Let β > 0, then for a sufficiently small ηi, i = 1, 2, no ensemble
(XTi+2,STi+2,Yi) can simultaneously satisfy

min
x
PX(x) ≥ β

and

PXk = P, PXkSkYi ∈ Dηi
I(Xk,Yi; XTi+2

k |Sk) ≤ ηi 1 ≤ k ≤ Ti + 2
(4.21)

with XTi+2
k = (X1, ...,Xk−1,Xk+1, ...,XTi+2).

Proof. The proof can be found in Appendix A.4.

Positive Rates

So far we defined coding and decoding rules. Next, we show that this strategy is sufficient
to achieve the desired rates if the list sizes are great enough, i.e., Li > Ti, i = 1, 2. Clearly,
it suffices to show this for Lk = Tk + 1, since any rate pair achievable with these list sizes is
also achievable with greater list sizes.
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Lemma 4.31. Let Li = Ti + 1, i = 1, 2, and β > 0, δ > 0. For any type PX satisfying
minx PX(x) ≥ β, there exists a list code Clist(W

n) of block length n ≥ n2 with list sizes
(L1, L2) and codewords xnm1,m2

∈ T (n)
X , m1 = 1, ...,M

(n)
1 , m2 = 1, ...,M

(n)
2 , such that

1

n
log

(
M

(n)
2

L1

)
> inf
q∈P(S)

I(PX,W 1,q)− δ,
1

n
log

(
M

(n)
1

L2

)
> inf
q∈P(S)

I(PX,W 2,q)− δ

while
max
sn∈Sn

ēi(s
n|Clist(W

n)) < 2−nγi , i = 1, 2 (4.22)

where n2 and γi > 0 depend only on β, δ, and the AVBBC Wn.

Proof. The proof follows [Hug97, Lemma 3] where a similar result is shown for the single-
user AVC.

Let xnm1,m2
∈ T (n)

X , m1 = 1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 , be codewords with properties

as specified in Lemma 4.28 (ε will be chosen later) and R1 = 1
n log(

M
(n)
2
L1

) and R2 =

1
n log(

M
(n)
1
L2

) satisfying

inf
q∈P(S)

I(PX,W 1,q)− δ <R1 < inf
q∈P(S)

I(PX,W 1,q)−
2

3
δ (4.23a)

inf
q∈P(S)

I(PX,W 2,q)− δ <R2 < inf
q∈P(S)

I(PX,W 2,q)−
2

3
δ. (4.23b)

Let the list decoders L(1) and L(2) be as given in Definition 4.29. By Lemma 4.30 we can
choose η1 and η2 small enough to ensure that |L(i)(yni ,mi)| ≤ Ti + 1 for all yni ∈ Yni and
mi ∈Mi, i = 1, 2.

Furthermore, I(X; Yi) is uniformly continuous in PXYi and divergence dominates the vari-
ational distance [CK81, p. 58] so that we can choose ηi small enough to ensure that
PXSYi ∈ Dηi , i = 1, 2, which implies

I(X; Yi) ≥ inf
q∈P(S)

I(PX,W i,q)−
δ

3
. (4.24)

In the following we carry out the analysis for the probability of error at node 1. Then the
analysis for node 2 follows accordingly using the same arguments. We establish an exponen-
tially decreasing upper bound on the probability of error as postulated in (4.22) for node 1
for a fixed state sequence sn ∈ Sn.

For each m1 ∈ M1 we first observe from Definition 4.29 that yn1 is erroneously decoded
when message m = (m1,m2) is sent and m2 /∈ L(1)(yn1 ,m1). This means that decoding
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4.5 List Decoding

rule i) or decoding rule ii) must be violated. Consequently, we have Pxnm,sn,yn1 /∈ Dη1 or

there exists a joint type PXXL1SY1
with (xnm1,m2

, xnm1,J , s
n, yn1 ) ∈ T (n)

XXL1SY1
for some J ∈

PL1(M
(n)
2 \{m2}) such that a) PXSY1 ∈ Dη1 , b) PXkSkY1 ∈ Dη1 for some Sk, 1 ≤ k ≤ L1,

and c) I(XY1; XL1 |S) > η1. Let Eη1 denote the set of all types PXXL1SY1
that satisfy the

conditions a)–c). Consequently, we can bound the probability of error for message m =
(m1,m2) and state sequence sn ∈ Sn as follows

e1(m, sn|Clist(W
n)) =

∑
yn1 :m2 /∈L(1)(yn1 ,m1)

W⊗n1 (yn1 |xnm, sn)

≤
∑

yn1 :Pxnm,sn,yn1
/∈Dη1

W⊗n1 (yn1 |xnm, sn) +
∑

P
XXL1SY1

∈Eη1

eXXL1SY1
(m, sn|Clist(W

n))

(4.25)

with

eXXL1SY1
(m, sn|Clist(W

n)) :=
∑

yn1 :(xnm1,m2
,xnm1,J

,sn,yn1 )∈T (n)

XXL1SY1
for some J∈PL1

(M2\{m2})

W⊗n1 (yn1 |xnm1,m2
, sn).

(4.26)

Next, we define the set

Am1
:=
{
m2 : I(X; S) < ε where PXS = Pxnm1,m2

,sn
}

and use the trivial bound e1((m1,m2), sn|Clist(W
n)) ≤ 1 for all m2 ∈ (Am1)c. With this

and (4.25) we get for the average probability of error

ē1(sn|Clist(W
n)) ≤ 1

|M|
∑

m1∈M1

|(Am1)c|

+
1

|M|
∑

m1∈M1

∑
m2∈Am1

∑
yn1 :Pxnm,sn,yn1

/∈Dη1

W⊗n1 (yn1 |xnm, sn)

+
1

|M|
∑

m1∈M1

∑
m2∈Am1

∑
P
XXL1SY1

∈Eη1

eXXL1SY1
(m, sn|Clist(W

n)). (4.27)

Property (4.20b) of Lemma 4.28 and Lemma B.5, cf. Appendix B.1, imply

1

|M|
∑

m1∈M1

|(Am1)c| ≤ (n+ 1)|X ||S| exp
(
− n ε

2

)
≤ exp

(
− n ε

3

)
(4.28)

for the first term, where the last inequality holds for sufficiently large n.
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To bound the second term we observe that for any m2 ∈ Am1∑
yn1 :Pxnm,sn,yn1

/∈Dη1

W⊗n1 (yn1 |xnm, sn) ≤
∑

PXSY1
/∈Dη1

W⊗n1 (T (n)
Y1|XS(xnm, s

n)|xnm, sn)

≤
∑

PXSY1
/∈Dη1

exp
(
− nD(PXSY1‖PXS ⊗W1)

)
≤ (n+ 1)|X ||S||Y1| exp

(
− n(η1 − ε)

)
≤ exp

(
− n(η1 − 2ε)

)
(4.29)

where the second inequality follows from Lemma B.7 and the third inequality from Lemma
B.5 and

D(PXSY1‖PXS ⊗W1) = D(PXSY1‖PX ⊗ PS ⊗W1)− I(X; S)

> η1 − ε.

It remains to bound for PXXL1SY1
∈ Eη1 the term

1

|M|
∑

m1∈M1

∑
m2∈Am1

eXXL1SY1
(m, sn|Clist(W

n)). (4.30)

To this end, we consider two cases, i.e., R1 < mink I(Xk; S) and R1 ≥ mink I(Xk; S).

Case 1: R1 < mink I(Xk; S). We note that it suffices to bound eXXL1SY1
(m, sn|Clist(W

n))
for PXXL1SY1

satisfying
I(X; XL1S) < ε (4.31)

since otherwise property (4.20e) shows that (4.30) is bounded by

1

M
(n)
2

∣∣{m2 : (xnm1,m2
, xnm1,J , s

n)∈T (n)

XXL1S
for someJ ∈PL1(M2\{m2})

}∣∣<exp
(
− n ε

2

)
.

(4.32)

We see from (4.26) that we can bound

eXXL1SY1
(m, sn|Clist(W

n))

≤
∑

J∈PL1
(M2\{m2}):

(xnm1,m2
,xnm1,J

,sn)∈T (n)

XXL1S

W⊗n1 (T (n)

Y|XXL1S
(xnm1,m2

, xnm1,J , s
n)|xnm1,m2

, sn)

≤
∑

J∈PL1
(M2\{m2}):

(xnm1,m2
,xnm1,J

,sn)∈T (n)

XXL1S

exp
(
− nI(Y1; XL1 |X,S)

)

≤ exp
(
− n(I(Y1; XL1 |X,S)− ε)

)
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where the second inequality follows from Lemma B.7 and the last inequality from the prop-
erty (4.20d) of the codewords. From (4.31) we obtain

I(X; XL1 |S) ≤ I(X; XL1 ,S) < ε

and hence

I(Y1; XL1 |X,S) = I(X,Y1; XL1 |S)− I(X; XL1 |S) > η1 − ε

from which we conclude that

eXXL1SY1
(m, sn|Clist(W

n)) ≤ exp
(
− n(η1 − 2ε)

)
. (4.33)

Case 2: R1 ≥ mink I(Xk; S). For the second case choose any k such that R1 ≥ I(Xk; S).
Then, from (4.26) follows that

eXXL1SY1
(m, sn|Clist(W

n)) ≤
∑

yn1 :(xnm1,m2
,xnm1,m̂2

,sn,yn1 )∈T (n)
XXkSY1

for some m̂2 6=m2

W⊗n1 (yn1 |xnm1,m2
, sn).

(4.34)
It is sufficient to bound eXXL1SY1

(m, sn|Clist(W
n)) for PXXL1SY1

satisfying

I(X; Xk,S) < |R1 − I(Xk; S)|+ + ε (4.35)

since otherwise the property (4.20c) of the codewords and (4.34) show that (4.30) is bounded
by

1

M
(n)
2

∣∣{m2 : (xnm1,m2
, xnm1,m̂2

, sn) ∈ T (n)
XXkS for some m2 6= m̂2}

∣∣ ≤ exp
(
− n ε

2

)
.

(4.36)

Moreover, we can assume in the following that PXk = PX, since otherwise we have
eXXL1SY1

(m, sn|Clist(W
n)) = 0. Therefore, from (4.34) we can bound

eXXL1SY1
(m, sn|Clist(W

n))

≤
∑

m2 6=m̂2:

(xnm1,m2
,xnm1,m̂2

,sn)∈T (n)
XXkS

W⊗n1 (T (n)
Y1|XXkS(xnm1,m2

, xnm1,m̂2
, sn)|xnm1,m2

, sn)

≤
∑

m2 6=m̂2:

(xnm1,m2
,xnm1,m̂2

,sn)∈T (n)
XXkS

exp
(
− nI(Y1; Xk|X,S)

)

≤ exp
(
− n(I(Y1; Xk|X,S)− |R1 − I(Xk; X, S)|+ − ε)

)
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where the second inequality follows from Lemma B.7 and the last inequality from property
(4.20a) of the codewords. Since R1 ≥ I(Xk; S), we get from (4.35) that

R1 > I(X; Xk,S) + I(Xk; S)− ε
≥ I(X; Xk|S) + I(Xk; S)− ε
= I(Xk; X,S)− ε.

Thus, we get for the probability of error

eXXL1SY1
(m, sn|Clist(W

n)) ≤ exp
(
− n(I(Y1; Xk|X,S) + I(Xk; X, S)−R1 − 2ε)

)
= exp

(
− n(I(Xk; X, S,Y1)−R1 − 2ε)

)
≤ exp

(
− n(I(Xk; Y1)−R1 − 2ε)

)
.

Since PXkSkY1 ∈ Cηi for some Sk and PXk , it follows from (4.23a) and (4.24) that

I(Xk; Y1)−R1 ≥ inf
q∈P(S)

I(PX,W 1,q)−R1 −
δ

3
>
δ

3

so that

eXXL1SY1
(m, sn) ≤ exp

(
−n(

δ

3
− 2ε)

)
. (4.37)

Now, we choose ε < min{ δ6 ,
η1
2 } so that (4.28), (4.29), (4.32), (4.33), (4.36), and (4.37)

imply that the average probability of error decreases exponentially fast for sufficiently large
n. Since the derived bound holds uniformly for all sn ∈ Sn, the first part of the proof
is complete. Similarly, we can bound the probability of error at node 2 using the same
arguments.

Converse

To complete the proof of Theorem 4.17 it remains to show that the presented strategy actually
achieves all possible rate pairs so that no other rate pairs are achievable. For Li ≤ Ti the
converse part is already established by Lemma 4.27, since it shows that for Li ≤ Ti no
positive rates are achievable. Consequently, it remains to consider the case Li > Ti, i = 1, 2.
To avoid trivialities we further assume L1 ≤M (n)

2 and L2 ≤M (n)
1 in the following.

We have to show that any given sequence of (n,M
(n)
1 ,M

(n)
2 , L1, L2, λ

(n))-list codes with
list sizes Li > Ti, i = 1, 2, and λ(n) → 0 must satisfy

R2 =
1

n
log

(
M

(n)
1

L2

)
≤ inf

q∈P(S)
I(PX,W 2,q) + o(n0) (4.38a)

R1 =
1

n
log

(
M

(n)
2

L1

)
≤ inf

q∈P(S)
I(PX,W 1,q) + o(n0) (4.38b)
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4.5 List Decoding

for joint probability distributions {PX(x)W q(y1, y2|x)}q∈P(S).

As a first step it is easy to show that any list code that is a good code for an AVBBC is also
a good code for an appropriately constructed compound BBC. In more detail, let Clist(W

n)

be a (n,M
(n)
1 ,M

(n)
2 , L1, L2, λ

(n))-list code for an AVBBC Wn with average probability of
error at node i, i = 1, 2,

ēi(s
n|Clist(W

n)) ≤ λ(n) for all sn ∈ Sn. (4.39)

Since (4.39) holds for all sn ∈ Sn, it immediately follows that the same is also true for any
affine combination, i.e.,∑

sn∈Sn
ēi(s

n|Clist(W
n))q⊗n(sn) ≤ λ(n) for all q ∈ P(S). (4.40)

With the definition of the probability of error, cf. (4.5) and (4.6), for receiving node 1
Equation (4.40) reads as∑

sn∈Sn

1

|M|
∑

yn1 :m2 /∈L(1)(yn1 ,m1)

W⊗n1 (yn1 |xnm, sn)q⊗n(sn) ≤ λ(n) for all q ∈ P(S)

or equivalently with the definition of an averaged broadcast channel, cf. (4.2), as

1

|M|
∑

yn1 :m2 /∈L(1)(yn1 ,m1)

W
⊗n
1,q (yn1 |xnm) ≤ λ(n) for all q ∈ P(S). (4.41)

The same arguments yield for receiving node 2 1
|M|

∑
yn2 :m1 /∈L(2)(yn2 ,m2)W

⊗n
2,q (yn2 |xnm) ≤

λ(n) for all q ∈ P(S). Since (4.41) holds for all q ∈ P(S), the list code Clist(W
n) is

also a good code for the compound BBC W = {W q(y1, y2|x)}q∈P(S). Consequently for
the AVBBC Wn we cannot achieve higher rates as for the constructed compound BBC W.
Therefore, to establish the converse result for the AVBBC Wn, it remains to show that the
rates for the compound BBC W are already bounded from above by (4.38).

Furthermore, it is sufficient to show that for a specific q ∈ P(S) the rates are bounded by

R1 ≤ I(PX,W 1,q) + o(n0) and R2 ≤ I(PX,W 2,q) + o(n0). (4.42)

Since for the compound BBC W the rates have to satisfy (4.42) for all possible q ∈ P(S), the
rates are immediately bounded by the corresponding infima infq∈P(S) I(PX,W 1,q) + o(n0)

and infq∈P(S) I(PX,W 2,q) + o(n0). To prove (4.42) we need a version of Fano’s lemma
suitable for list decoding.
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4 Bidirectional Relaying in Uncoordinated Networks

Lemma 4.32. Let U be a random variable with values inM := {1, ...,M} and V a random
variable with values in P̂L(M), i.e., the set of all subsets of M that contains at most L
elements. Then

H(U|V) ≤ H2

(
P{U /∈ V}

)
+ logL+ P{U /∈ V} log

(M
L
− 1
)

with H2(·) the binary entropy.

Proof. The proof can be found in [AGK76].

Now we are in the position to prove (4.42). Therefore, let Clist(W
n) be any

(n,M
(n)
1 ,M

(n)
2 , L1, L2, λ

(n))-list code with

1

|M1|
∑

m1∈M1

1

|M2|
∑

m2∈M2

∑
yn1 :m2 /∈L(1)(yn1 ,m1)

W
⊗n
1,q (yn1 |xnm1,m2

) ≤ λ(n)
1

1

|M2|
∑

m2∈M2

1

|M1|
∑

m1∈M1

∑
yn2 :m1 /∈L(2)(yn2 ,m2)

W
⊗n
2,q (yn2 |xnm1,m2

) ≤ λ(n)
2 .

Let us consider random variables Ui, Xn, Yn
i , i = 1, 2, with values inMi, X n, Yni , i = 1, 2,

respectively, and with

P{U1 = m1,U2 = m2,X
n = xn,Yn

1 = yn1 ,Y
n
2 = yn2 }

=
1

|M1||M2|
p(xnm1,m2

|m1,m2)W
⊗n
q (yn1 , y

n
2 |xnm1,m2

)

=
1

|M1||M2|
p(xnm1,m2

|m1,m2)W
⊗n
1,q (yn1 |xnm1,m2

)W
⊗n
2,q (yn2 |xnm1,m2

)

where p(xnm1,m2
|m1,m2) = 1 if xnm1,m2

is the codeword corresponding to m = (m1,m2)

or is equal to 0 else. Further, let V1 and V2 be random variables with values in P̂L1(M2)
and P̂L2(M1), respectively, and set V1 := L(1)(Yn

1 ,U1) and V2 := L(2)(Yn
2 ,U2).
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By definition

P{U2 /∈ V1} =
∑

m2∈M2

P{U2 = m2,m2 /∈ L(1)(Yn
1 ,m1)}

=
1

|M|
∑
m∈M

∑
xnm1,m2

∈Xn

∑
yn1 :m2 /∈L(1)(yn1 ,m1)

p(xnm1,m2
|m1,m2)W

⊗n
1,q (yn1 |xnm1,m2

)

=
1

|M|
∑
m∈M

∑
yn1 :m2 /∈L(1)(yn1 ,m1)

W
⊗n
1,q (yn1 |xnm1,m2

)

=
1

|M1|
∑

m1∈M1

1

|M2|
∑

m2∈M2

∑
yn1 :m2 /∈L(1)(yn1 ,m1)

W
⊗n
1,q (yn1 |xnm1,m2

) ≤ λ(n)
1 .

By averaging separately over all m1 ∈ M1 and all m2 ∈ M2 we see that there exists for
each block length n a fixed m∗1 ∈M1 such that

1

|M2|
∑

m2∈M2

∑
yn1 :m2 /∈L(1)(yn1 ,m∗1)

W
⊗n
1,q (yn1 |xnm∗1,m2

) ≤ λ(n)
1

is fulfilled. Then U2 −Xn −Yn
1 −V1(m∗1, q) forms a Markov chain and we are in the same

position as in the single-user case with a single-user list code. We want to emphasize that
the random variable V1(m∗1, q) clearly depends on the specific m∗1 ∈M1 and q ∈ P(S) but
for the sake of brevity we write V1 for V1(m∗1, q) in the following. We get

logM
(n)
2 = H(U2) = H(U2|V1) + I(U2; V1)

≤ H(U2|V1) + I(Xn; Yn
1 )

≤ H2

(
P{U2 /∈ V1}

)
+ logL1 + P{U2 /∈ V1} log

(M (n)
2

L1

)
+ I(Xn; Yn

1 )

≤ H2

(
P{U2 /∈ V1}

)
+ logL1 + P{U2 /∈ V1} log

(M (n)
2

L1

)
+

n∑
k=1

I(Xk; Y1,k) (4.43)

where the equality and inequalities follow from the definition of mutual information, the data
processing inequality, Lemma 4.32 with L(1) : Yn1 ×M1 → P̂L1(M2), and the memoryless
property of the channel. We can rewrite the mutual information term on the right hand side
of (4.43), cf. Appendix B.1, as

logM
(n)
2 ≤ H2

(
P{U2 /∈ V1}

)
+ logL1 + P{U2 /∈ V1} log

(M (n)
2

L1

)
+

n∑
k=1

I(PXk ,W 1,q)

≤ H2

(
P{U2 /∈ V1}

)
+ logL1 + P{U2 /∈ V1} log

(M (n)
2

L1

)
+ nI(PX,W 1,q) (4.44)
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where the last inequality follows from the concavity of mutual information and PX :=
1
n

∑n
k=1 PXk . We note that due to the continuity of the mutual information and the com-

pactness of the set of probability distributions, the dependency of PX on the block length n
vanishes asymptotically.

Rearranging the terms in (4.43) and dividing by n leads to

(
1− P{U2 /∈ V1}

) 1

n
log
(M (n)

2

L1

)
≤ 1

n
H2

(
P{U2 /∈ V1}

)
+ I(PX,W 1,q)

or (
1− λ(n)

1

) 1

n
log
(M (n)

2

L1

)
≤ 1

n
H2

(
λ

(n)
1

)
+ I(PX,W 1,q). (4.45)

The same arguments yield for receiving node 2 (1 − λ
(n)
2 ) 1

n log(
M

(n)
1
L2

) ≤ 1
nH2(λ

(n)
2 ) +

I(PX,W 2,q). Finally, (4.42) and therewith the converse follows from this and (4.45).

4.6 Input and State Constraints

Next, we analyze the case where constraints on the input and state sequences are imposed.
Thereby, we consider only the case with list sizes one, i.e., we assumeL1 = L2 = 1 through-
out the rest of this section. We follow [CN88b] and define cost functions g(x) and l(s) on X
and S, respectively. For convenience, we assume that minx∈X g(x) = mins∈S l(s) = 0 and
define the maximum values as gmax := maxx∈X g(x) and lmax := maxs∈S l(s). For given
sequences xn = (x1, ..., xn) and sn = (s1, ..., sn) we set

g(xn) :=
1

n

n∑
k=1

g(xk) (4.46a)

l(sn) :=
1

n

n∑
k=1

l(sk). (4.46b)

Further, for notational convenience we define the costs caused by given probability distribu-
tions p ∈ P(X ) and q ∈ P(S) as

g(p) =
∑
x∈X

p(x)g(x) and l(q) =
∑
s∈S

q(s)l(s)

and observe that, if we consider types, these definitions immediately yield

g(xn) = g(Pxn) and l(sn) = l(Psn)

for every xn ∈ X n and every sn ∈ Sn, respectively, cf. also [CN88b].
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This allows us to define the set of all state sequences of length n that satisfy a given state
constraint Λ by

SnΛ :=
{
sn ∈ Sn :

1

n

n∑
k=1

l(sk) = EPsn [l(sn)] ≤ Λ
}
.

Furthermore, the set of all probability distributions q ∈ P(S) that satisfy Eq[l(q)] ≤ Λ is
given by

P(S,Λ) :=
{
q : q ∈ P(S),Eq[l(q)] ≤ Λ

}
.

In Corollary 4.18 we have shown that an AVBBC Wn (without state constraint) has a de-
terministic code capacity region whose interior is empty if Wn is Y1-symmetrizable or Y2-
symmetrizable. If we impose a state constraint, the situation changes significantly. Now, it
is possible that the interior of the deterministic code capacity region is non-empty even if
the Wn is Yi-symmetrizable in the sense of Definition 4.10 and Remark 4.12, respectively.
Rather, Yi-symmetrizability enters the picture via

Λi(PX) =

min
Ui∈Ui

∑
x∈X

∑
s∈S

PX(x)Ui(s|x)l(s) if Ui 6= ∅

∞ if Ui = ∅
(4.47)

i = 1, 2, which indicates whether the symmetrization violates the imposed state constraint
or not. Thereby, Ui is the set of all channels Ui : X → P(S) which satisfy (4.4). For given
type PX the quantity Λi(PX) is called symmetrizability costs and can be interpreted as the
minimum costs which are needed to symmetrize the AVBBC Wn. Clearly, if Wn is Yi-
symmetrizable, then Ui 6= ∅ and Λi(PX) is finite. Further, if Wn is non-Yi-symmetrizable,
then Ui = ∅, and we set the symmetrizability costs Λi(PX) =∞ for convenience.

A deterministic code for the AVBBC Wn under input and state constraints is defined in a
similar way as for the case without constraints, cf. Definition 4.13. The only difference is
that we additionally require all valid codewords to satisfy the input constraint Γ.

Definition 4.33. A deterministic (n,M
(n)
1 ,M

(n)
2 )-code Cdet(W

n) of length n for the AVBBC
Wn under input constraint Γ and state constraint Λ is a family

Cdet(W
n) :=

{
(xnm,D

(1)
m2|m1

,D(2)
m1|m2

) : m1∈M1,m2∈M2

}
with codewords

xnm ∈ X n with g(xnm) ≤ Γ,

one for each message m = (m1,m2), satisfying the input constraint Γ, and decoding sets at
nodes 1 and 2

D(1)
m2|m1

⊆ Yn1 and D(2)
m1|m2

⊆ Yn2
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4 Bidirectional Relaying in Uncoordinated Networks

for all m1 ∈M1 and m2 ∈M2. For given m1 at node 1 the decoding sets must be disjoint,
i.e.,D(1)

m2|m1
∩D(1)

m̂2|m1
= ∅ for m̂2 6= m2, and similarly for given m2 at node 2 the decoding

sets must satisfy D(2)
m1|m2

∩D(2)
m̂1|m2

= ∅ for m̂1 6= m1.

The definition of the probability of error follows accordingly with the restriction that we
only have to consider state sequences that satisfy the state constraint Λ. Thus, for given
0 < λ(n) < 1, the code Cdet(W

n) is called a (n,M
(n)
1 ,M

(n)
2 , λ(n))-code (with average

probability of error λ(n)) for Wn under input constraint Γ and state constraint Λ if

ē(sn|Cdet(W
n)) ≤ λ(n) for all sn ∈ SnΛ.

Definition 4.34. A rate pair (R1, R2) ∈ R2
+ is said to be deterministically achievable for

the AVBBC Wn under input constraint Γ and state constraint Λ if for any δ > 0 there exists
an n(δ) ∈ N and a sequence of deterministic (n,M

(n)
1 ,M

(n)
2 , λ(n))-codes {C(n)

det (Wn)}n∈N
with codewords xnm1,m2

, m1 = 1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 , each satisfying g(xnm1,m2

) ≤
Γ, such that for all n ≥ n(δ) we have

1

n
logM

(n)
1 ≥ R2 − δ and

1

n
logM

(n)
2 ≥ R1 − δ

while

max
sn:l(sn)≤Λ

ē(sn|Cdet(W
n)) ≤ λ(n)

with λ(n) → 0 as n→∞, k = 1, 2. The set of all achievable rate pairs is the deterministic
code capacity region of the AVBBC Wn under input constraint Γ and state constraint Λ and
is denoted byRdet(W

n|Γ,Λ).

If Γ ≥ gmax or Λ ≥ lmax, the input or state sequences are not restricted by its corresponding
constraint, respectively. Consequently, we denote the capacity region with state constraint
and no input constraint by Rdet(W

n|gmax,Λ) and the capacity region with input constraint
and no state constraint byRdet(W

n|Γ, lmax).

Finally, the definition of a random (n,M
(n)
1 ,M

(n)
2 ,Z)-code Cran(Wn) for the AVBBC Wn

under input constraint Γ and state constraint Λ follows accordingly from the one without
constraints, cf. Definition 4.19, where we simply additionally require that each deterministic
code of the random code satisfies the constraints individually. Clearly, the definitions of a
randomly achievable rate pair under input and state constraints and the random code capacity
region under input and state constraints follow accordingly.
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4.6.1 Random Code Capacity Region

Here, we derive the random code capacity region of the AVBBC Wn under input constraint
Γ and state constraint Λ. For this purpose we define for given type PX the region

R(PX|Λ) :=
{

(R1, R2) ∈ R2
+ : R1 ≤ inf

q∈P(S,Λ)
I(PX,W 1,q)

R2 ≤ inf
q∈P(S,Λ)

I(PX,W 2,q)
} (4.48)

for joint probability distributions {PX(x)W q(y1, y2|x)}q∈P(S,Λ).

Theorem 4.35. The random code capacity region Rran(Wn|Γ,Λ) of the AVBBC Wn under
input constraint Γ and state constraint Λ is

Rran(Wn|Γ,Λ) =
⋃

PX:g(PX)≤Γ

R(PX|Λ).

The proof of the random code capacity region under input and state constraints is quite
similar to the corresponding case without any constraints. To incorporate the constraints
slight adaptations are needed, primarily in the robustification technique. For completeness
we present the proof in the following.

Compound Bidirectional Broadcast Channel

As in Section 4.3.1 for the AVBBC without constraints on input and states we start with a
construction of a suitable compound BBC, where the key idea is to restrict it in an appropriate
way. Having the state constraint Λ in mind, it is reasonable to restrict our attention to all
probability distributions q ∈ P(S,Λ). Let us consider the family of averaged broadcast
channels, cf. (4.2), {

W q(y1, y2|x)
}
q∈P(S,Λ)

(4.49)

and observe that this already corresponds to a compound BBC where each permissible prob-
ability distribution q ∈ P(S,Λ) parametrizes one element of the compound channel which
we denote by W in the following. The capacity region of the compound BBC is given in
Chapter 3. It is shown that for given input distribution PX all rate pairs (R1, R2) satisfying
(R1, R2) ∈ R(PX|Λ), cf. (4.48), are deterministically achievable. In particular, this is valid
for a input distribution PX that satisfies the input constraint g(PX) ≤ Γ.

In more detail, it is shown that there exists a deterministic code Cdet(W) for the compound
BBC W such that all rate pairs (R1, R2) ∈ R(PX|Λ) are achievable for input type PX while
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4 Bidirectional Relaying in Uncoordinated Networks

the average probability of error can be bounded from above by

ē(q|Cdet(W)) :=
1

|M|
∑
m∈M

W
⊗n
q

(
(D(1)

m2|m1
×D(2)

m1|m2
)c|xnm

)
≤ λ(n)

W
for all q ∈ P(S,Λ)

with λ(n)

W
= λ

(n)

W,1
+ λ

(n)

W,2
where λ(n)

W,i
is the average probability of error at node i, i = 1, 2.

Moreover, for n large enough, we have

λ
(n)

W,i
= (n+ 1)|X ||Yi|2−n

cε2

2 +
(n+ 1)|X ||Yi|

1− (n+ 1)|X |2−ncε2
2−n

τ
8

which decreases exponentially fast for increasing block length n. Thereby, ε > 0, τ > 0,
and c > 0 are constants, cf. also (3.12).

Together with (4.2) this immediately implies that for Cdet(W) the average probability of a
successful transmission over the compound BBC W is bounded from below by

1

|M|
∑
m∈M

W
⊗n
q (D(1)

m2|m1
×D(2)

m1|m2
|xnm) > 1− λ(n)

W

or equivalently by

1

|M|
∑
m∈M

∑
sn∈Sn

W⊗n(D(1)
m2|m1

×D(2)
m1|m2

|xnm, sn)q⊗n(sn) > 1− λ(n)

W

for all q⊗n =
∏n
k=1 q and q ∈ P(S,Λ).

Robustification

As in Section 4.3.2 for the AVBBC without state constraints we use the deterministic code
Cdet(W) for the compound BBC W to construct a random code Cran(Wn) for the AVBBC
Wn under input constraint Γ and state constraint Λ. Therefore, we need a version of the
robustification technique, cf. Theorem 4.22, that incorporates the state constraint.

Theorem 4.36 (Robustification technique). Let f : Sn → [0, 1] be a function such that for
some α ∈ (0, 1) the inequality∑

sn∈Sn
f(sn)q⊗n(sn) > 1− α for all q ∈ P0(n,S,Λ) (4.50)

holds where P0(n,S,Λ) := {q ∈ P0(n,S) : Eq[l(q)] ≤ Λ}. Then it also holds

1

n!

∑
π∈Πn

f
(
π(sn)

)
> 1− (n+ 1)|S|α for all sn ∈ SnΛ.
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4.6 Input and State Constraints

Proof. The proof can be found in Appendix A.5.

With the robustification technique and

f
(
π(sn)

)
=

1

|M|
∑
m∈M

W⊗n
(
D(1)
m2|m1

×D(2)
m1|m2

|xnm, π(sn)
)

we immediately obtain a random (n,M
(n)
1 ,M

(n)
2 ,Πn)-code Cran(Wn) for the AVBBC Wn

under input constraint Γ and state constraint Λ which is given by the family

Cran(Wn) =
{

(π−1(xnm), π−1(D(1)
m2|m1

), π−1(D(2)
m1|m2

)) :

m1 ∈M1,m2 ∈M2, π ∈ Πn

} (4.51)

where the permutations π are uniformly distributed on Πn and

π−1(D(1)
m2|m1

) =
⋃

yn1 ∈D
(1)
m2|m1

π−1(yn1 ) and π−1(D(2)
m1|m2

) =
⋃

yn2 ∈D
(2)
m1|m2

π−1(yn2 ).

From the robustification technique follows that the average probability of error of Cran(Wn)
is bounded from above by

ē(sn|Cran(Wn)) ≤ (n+ 1)|S|λ
(n)

W
=: λ

(n)
W,ran for all sn ∈ SnΛ. (4.52)

Moreover, because of the construction it is clear that for given input PX, the random code
Cran(Wn) achieves for the AVBBC Wn the same rate pairs as Cdet(W) for the compound
BBC W as specified in (4.48). Finally, taking the union over all input distributions PX that
satisfy the input constraint g(PX) ≤ Γ establishes the achievability of the random code
capacityRran(Wn|Γ,Λ) as stated in Theorem 4.35.

Converse

As a first step, it is easy to show that the average probability of error for the random code
Cran(Wn) for the AVBBC Wn equals the average probability of error for the random code
for the compound BBC W. Hence, it is clear that we cannot achieve higher rates as for the
constructed compound BBC W with random codes. The deterministic rates of the compound
channel can be found in Chapter 3. Additionally, as in [AW69] for the single-user compound
channel, it can easily be shown that for the compound BBC the achievable rates for deter-
ministic and random codes are equal. Since the constructed random code for the AVBBC
Wn already achieves these rates, the converse is established.

This finishes the proof of Theorem 4.35 and therewith the random code capacity region
Rran(Wn|Γ,Λ) of the AVBBC Wn under input constraint Γ and state constraint Λ.
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4.6.2 Deterministic Code Capacity Region

A random coding strategy as constructed in the previous section requires common random-
ness between all nodes, since the encoder and the decoders depend all on the same random
permutation which has to be known at all nodes in advance. If this kind of resource is not
available, we are interested in deterministic strategies. In this section, we derive the deter-
ministic code capacity region of the AVBBC with constraints on input and states.

Theorem 4.37. If maxPX:g(PX)≤Γ Λi(PX) > Λ, i = 1, 2, the deterministic code capacity
regionRdet(W

n|Γ,Λ) of the AVBBC Wn under input constraint Γ and state constraint Λ is

Rdet(W
n|Γ,Λ) =

⋃
PX: g(PX)≤Γ

Λi(PX)>Λ, i=1,2

R(PX|Λ).

If maxPX:g(PX)≤Γ Λ1(PX) < Λ or maxPX:g(PX)≤Γ Λ2(PX) < Λ, we have
int(Rdet(W

n|Γ,Λ)) = ∅.

From Theorem 4.37 we immediately obtain the deterministic code capacity region of the
AVBBC Wn with state constraint Λ and no input constraint, i.e.,Rdet(W

n|gmax,Λ).

Corollary 4.38. If maxPX
Λi(PX) > Λ, i = 1, 2, the deterministic code capacity region

Rdet(W
n|gmax,Λ) of the AVBBC Wn with state constraint Λ and no input constraint is given

by

Rdet(W
n|gmax,Λ) =

⋃
PX: Λi(PX)>Λ,i=1,2

R(PX|Λ)

If maxPX
Λ1(PX) < Λ or maxPX

Λ2(PX) < Λ, we have int(Rdet(W
n|gmax,Λ)) = ∅.

We observe that the deterministic code capacity region Rdet(W
n|Γ,Λ) of the AVBBC Wn

under input constraint Γ and state constraint Λ displays a dichotomy behavior similarly as
in the unconstrained case: it either equals a non-empty region or else has an empty interior.
Unfortunately, this knowledge cannot be exploited to prove the corresponding determinis-
tic code capacity region, since, as already observed in [CN88b] for the single-user AVC,
Ahlswede’s elimination technique [Ahl78] does not work anymore if constraints are imposed
on the permissible codewords and sequences of states. Consequently, to prove Theorem 4.37
we need a proof idea which does not rely on this technique. In the following we present the
proof which is therefore mainly based on an extension of [CN88b].
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4.6 Input and State Constraints

Symmetrizability

The following result shows that under state constraint Λ no code with codewords of type PX

satisfying Λ1(PX) < Λ or Λ2(PX) < Λ can be good.

Lemma 4.39. For aY1-symmetrizable AVBBC Wn any deterministic code Cdet(W
n) of block

length n with codewords xnm1,m2
, m1 = 1, ...,M

(n)
1 , m2 = 1, ...,M

(n)
2 , each of type PX with

Λ1(PX) < Λ, and M (n)
2 ≥ 2 has

max
sn:l(sn)≤Λ

ē1(sn|Cdet(W
n)) ≥ M

(n)
2 − 1

2M
(n)
2

− 1

n

l2max

(Λ− Λ1(PX))2
.

Similarly, for a Y2-symmetrizable AVBBC Wn any deterministic code Cdet(W
n) of block

length n with codewords xnm1,m2
, m1 = 1, ...,M

(n)
1 , m2 = 1, ...,M

(n)
2 , each of type PX with

Λ2(PX) < Λ, and M (n)
1 ≥ 2 has

max
sn:l(sn)≤Λ

ē2(sn|Cdet(W
n)) ≥ M

(n)
1 − 1

2M
(n)
1

− 1

n

l2max

(Λ− Λ2(PX))2
.

Proof. The proof can be found in Appendix A.6.

Remark 4.40. The lemma indicates that for a successful transmission using codewords of
type PX the symmetrizability costs Λi(PX), i = 1, 2, have to exceed the permissible (or
available) costs Λ since otherwise the AVBBC Wn can be symmetrized which prohibits any
reliable or error-free communication. This already establishes the second part of Theo-
rem 4.37 and therewith characterizes when int(Rdet(W

n|Γ,Λ)) = ∅.

Achievability

Next, we present a coding strategy with codewords of type PX that achieves the desired rates
as specified in Theorem 4.37 if the symmetrizability costs exceed the permissible costs, i.e.,
Λ1(PX) > Λ and Λ2(PX) > Λ. Fortunately, we are in the same position as in the single-user
AVC [CN88b]: the coding strategy for the AVBBC without constraints must only slightly be
modified to apply also to the AVBBC with constraints.

We need codewords xnm1,m2
, m1 = 1, ...,M

(n)
1 , m2 = 1, ...,M

(n)
2 with the following prop-

erties.
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Lemma 4.41. For any ε > 0, n ≥ n0(ε), M (n)
i ≥ exp(nε), i = 1, 2, and given type

PX, there exist codewords xnm1,m2
∈ T (n)

X , m1 = 1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 such that

for every xn ∈ X n, sn ∈ SnΛ, and every joint type PXX′S, with R1 = 1
n logM

(n)
2 and

R2 = 1
n logM

(n)
1 , we have for each fixed m1 ∈M1 the following properties∣∣{m̂2 : (xn, xnm1,m̂2

, sn) ∈ T (n)
XX′S}

∣∣ ≤ exp
(
n(|R1 − I(X′; X,S)|+ + ε)

)
(4.53a)

1

M
(n)
2

∣∣{m2 : (xnm1,m2
, sn) ∈ T (n)

XS }
∣∣ ≤ exp

(
− n ε

2

)
if I(X; S) > ε (4.53b)

1

M
(n)
2

∣∣{m2 : (xnm1,m2
, xnm1,m̂2

, sn) ∈ T (n)
XX′S for some m̂2 6= m2}

∣∣ ≤ exp
(
− n ε

2

)
if I(X; X′,S)− |R1 − I(X′; S)|+ > ε (4.53c)

and further for each fixed m2 ∈M2∣∣{m̂1 : (xn, xnm̂1,m2
, sn) ∈ T (n)

XX′S}
∣∣ ≤ exp

(
n(|R2 − I(X′; X, S)|+ + ε)

)
(4.53d)

1

M
(n)
1

∣∣{m1 : (xnm1,m2
, sn) ∈ T (n)

XS }
∣∣ ≤ exp

(
− n ε

2

)
if I(X; S) > ε (4.53e)

1

M
(n)
1

∣∣{m1 : (xnm1,m2
, xnm̂1,m2

, sn) ∈ T (n)
XX′S for some m̂1 6= m1}

∣∣ ≤ exp
(
− n ε

2

)
if I(X; X′,S)− |R2 − I(X′; S)|+ > ε. (4.53f)

Proof. The properties can be deduced from the corresponding result for list decoding, cf.
Lemma 4.28, by setting the list sizes to one, i.e., L1 = L2 = 1, and taking the input
constraint into account. Therefore we omit the details for brevity.

We follow [CN88b] and define the decoding sets similarly as for the single-user AVC under
input and state constraints. Therefore, we define the set

Dηi(Λ) =
{
PXSYi : D(PXSYi‖PX ⊗ PS ⊗Wi) ≤ ηi, l(PS) ≤ Λ

}
, i = 1, 2.

Then, the decoding sets at node 1 are specified as follows.

Definition 4.42. For given codewords xnm1,m2
∈ T (n)

X ,m1 = 1, ...,M
(n)
1 ,m2 = 1, ...,M

(n)
2 ,

and η1 > 0 we have yn1 ∈ D
(1)
m2|m1

if and only if

i) there exists an sn∈SnΛ such that Pxnm1,m2
,sn,yn1

∈Dη1(Λ)

ii) for each codeword xnm1,m̂2
with m̂2 6= m2 which satisfies Pxnm1,m̂2

,s′n,yn1
∈ Dη1(Λ) for

some s′n ∈ SnΛ, we have I(X,Y1; X′|S) ≤ η1 where X,X′,S,Y1 are dummy random
variables such that PXX′SY1 equals the joint type of (xnm1,m2

, xnm1,m̂2
, sn, yn1 ).
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4.6 Input and State Constraints

The decoding sets at node 2 are defined accordingly with η2 > 0. A key part is now to
ensure that these decoding sets are unambiguously defined. This means that they are disjoint
for small enough η1 and η2 which can be shown analogously to the single-user case [CN88b].
Here is where the conditions on the symmetrizability costs, Λi(PX) > Λ, i = 1, 2, come
in.

Lemma 4.43. Let α > 0 and β > 0, then for a sufficiently small ηi, i = 1, 2, no quintuple
of random variables (X,X′,S, S′,Yi) can simultaneously satisfy PX = PX′ with

Λi(PX) ≥ Λ + α and min
x∈X

PX(x) ≥ β

and

PXSYi ∈ Dηi(Λ), PX′S′Yi ∈ Dηi(Λ), (4.54a)

I(X,Yi; X′|S) ≤ ηi, I(X′,Yi; X|S′) ≤ ηi. (4.54b)

Proof. The proof can be found in Appendix A.7.

So far we defined coding and decoding rules. Next, we show that codewords of type PX with
properties as given in Lemma 4.41 and decoding sets as given in Definition 4.42 suffices to
achieve all rate pairs as specified by the regionR(PX|Λ), cf. (4.48).

Lemma 4.44. Given Λ > 0 and arbitrarily small α > 0, β > 0, and δ > 0, for any type PX

satisfying
Λi(PX) ≥ Λ + α, i = 1, 2, min

x∈X
PX(x) ≥ β,

there exist a code Cdet(W
n) of block length n ≥ n0 with codewords xnm1,m2

∈ T (n)
X , m1 =

1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 , such that

1

n
logM

(n)
1 > inf

q∈P(S,Λ)
I(PX,W 2,q)− δ,

1

n
logM

(n)
2 > inf

q∈P(S,Λ)
I(PX,W 1,q)− δ

while
max

sn:l(sn)≤Λ
ēi(s

n|Cdet(W
n)) ≤ exp(−nγi), i = 1, 2, (4.55)

where n0 and γi > 0 depend only on α, β, δ, and the AVBBC Wn.

Proof. The proof follows [CN88b, Lemma 5] and is similar to the proof for list decoding, cf.
Lemma 4.31, if we restrict the list sizes to one, i.e., L1 = L2 = 1, and take the constraints
into account. Therefore we omit the details for brevity.
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Converse

It remains to show that there are no other rate pairs achievable than these rate pairs which
are already characterized by Theorem 4.37. If Λi(PX) < Λ, i = 1, 2, the converse is
already established by Lemma 4.39. Consequently, we only need to consider the case where
Λi(PX) > Λ, i = 1, 2, in the following.

Lemma 4.45. For any Λ > 0, δ > 0, and ε < 1, there exists n0 such that for any deter-
ministic code Cdet(W

n) of block length n ≥ n0 with M (n)
1 M

(n)
2 codewords, each of type PX,

satisfying
1

n
logM

(n)
2 ≥ inf

q∈P(S,Λ)
I(PX,W 1,q) + δ

implies
max

sn:l(sn)≤Λ
ē1(sn|Cdet(W

n)) > ε.

And similarly, if the codewords satisfy 1
n logM

(n)
1 ≥ infq∈P(S,Λ) I(PX,W 2,q) + δ, we have

maxsn:l(sn)≤Λ ē2(sn|Cdet(W
n)) > ε.

Proof. The proof follows [CN88b, Lemma 2] where a similar converse result is shown for
the single-user case. We carry out the analysis for receiving node 1, then the result for
receiving node 2 follows accordingly using the same argumentation.

Let us consider a joint probability distribution

PXSY1(x, s, y1) = PX(x)q(s)W1(y1|x, s). (4.56)

If some probability distribution q ∈ P(S,Λ) satisfies

Eq[l(q)] ≤ Λ(1− η), (4.57)

for some η > 0 which depends on δ but not on PX, we have

I(X; Y1) ≤ inf
q∈P(S,Λ)

I(PX,W 1,q) +
δ

2
. (4.58)

To prove (4.58) let q∗ ∈ P(S,Λ) be a probability distribution which achieves the infimum in
infq∈P(S,Λ) I(PX,W 1,q) so that we have I(X; Y∗1) = infq∈P(S,Λ) I(PX,W 1,q) for PXS∗Y∗1
as given in (4.56) with Eq∗ [l(q∗)] ≤ Λ. Next, we use q∗ to construct a new probability
distribution with slightly smaller costs than Λ as required in (4.57). Therefore, let s0 ∈ S
with l(s0) = 0 and define

q(s) :=

{
(1− η)q∗(s) if s 6= s0

η + (1− η)q∗(s) if s = s0.
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Clearly, q(s) satisfies (4.57), and therefore (4.58) holds for sufficiently small η, since
I(X; Y1) is a uniformly continuous in (PX, q) if PXSY1 is given as in (4.56).

Similarly as in [CN88b, Lemma 2], we now consider any deterministic code Cdet(W
n)

with codewords xnm1,m2
, m1 = 1, ...,M

(n)
1 , m2 = 1, ...,M

(n)
2 , and decoding sets D(1)

m2|m1

and D(2)
m1|m2

for all m1 ∈ M1 and m2 ∈ M2, cf. Definition 4.33. Further, let Sn =

(S1, ...,Sn) ∈ Sn be a sequence, where each element is independent and identically dis-
tributed according to q as constructed above. Then for receiving node 1 we get for each fixed
m1 ∈M1 for the probability of error

Eq[ē1(Sn|Cdet(W
n))] =

1

|M|
∑
m∈M

Eq[e1((m1,m2),Sn|Cdet(W
n))]

=
1

|M|
∑
m∈M

∑
yn1 /∈D

(1)
m2|m1

Eq[Wn
1 (yn1 |xnm1,m2

, Sn)]

=
1

|M|
∑
m∈M

∑
yn1 /∈D

(1)
m2|m1

n∏
k=1

Eq[W1(y1,k|xm1,m2,k,Sk)]. (4.59)

Next, we set
W 1,q(y1|x) = Eq[W1(y1|x, s)] (4.60)

which is, in fact, a discrete memoryless channel (DMC). For each m1 ∈ M1, (4.59) yields
that Eq[ē1(Sn|Cdet(W

n))] = ē1(W 1,q|Cdet(W
n)) where ē1(W 1,q|Cdet(W

n)) is the average
probability of error when the deterministic code Cdet(W

n) is used on the DMC W 1,q. Next,
we observe that

P
{
l(Sn) > Λ

}
= P

{
1

n

n∑
k=1

l(Sk) > Eq[l(q)] + ηΛ

}

≤
(
var[l(q)]

)2
n(ηΛ)2

≤ l2max

nη2Λ2

which follows from (4.57), (4.46b), and Chebyshev’s inequality so that we get

max
sn:l(sn)≤Λ

ē1(sn|Cdet(W
n)) ≥ Eq[ē1(Sn)]− P

{
l(Sn) > Λ

}
≥ ē1(W 1,q|Cdet(W

n))− l2max

nη2Λ2
. (4.61)
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4 Bidirectional Relaying in Uncoordinated Networks

Now, we are almost done. We observe that the definition of PXSY1 as given in (4.58) implies
that Y1 is connected with X by the channel W 1,q as defined in (4.60). For such a DMC a
strong converse in terms of maximal error can be found in [CK81] which immediately yields
also a strong converse for the DMC in terms of average probability of error as needed here.
In more detail, (4.59) implies, by the strong converse for a DMC with codewords of type PX

that if all codewords xnm1,m2
, m1 = 1, ...,M

(n)
1 , m2 = 1, ...,M

(n)
2 , each of type PX, then,

for each m1 ∈ M1, the average probability of error ē1(W 1,q|Cdet(W
n)) is arbitrarily close

to 1 if 1
n logM

(n)
2 ≥ infq∈P(S,Λ) I(PX,W 1,q) + δ and n sufficiently large enough. Finally,

this together with (4.61) completes the first part of the proof.

The result for receiving node 2 follows accordingly using the same argumentation which
completes the proof of the lemma.

Capacity Region

Summarizing the results obtained so far, we see that for given input distribution PX the
achievable rates for the AVBBC Wn under input constraint Γ and state constraint Λ are
given by R(PX|Λ) if Λi(PX) > Λ, i = 1, 2. Taking the union over all such valid inputs we
finally obtain

Rdet(W
n|Γ,Λ) =

⋃
PX: g(PX)≤Γ,

Λi(PX)>Λ,i=1,2

R(PX|Λ).

On the other hand, we have int(Rdet(W
n|Γ,Λ)) = ∅ if maxPX:g(PX)≤Γ Λ1(PX) < Λ or

maxPX:g(PX)≤Γ Λ2(PX) < Λ which follows immediately from Lemma 4.39. This, indeed,
establishes the main result of this work which is the deterministic code capacity region
Rdet(W

n|Γ,Λ) of the AVBBC Wn under input constraint Γ and state constraint Λ as stated
in Theorem 4.37.

Remark 4.46. The case where Λi(PX) = Λ, i ∈ {1, 2}, remains unsolved in a similar way
as for the single-user AVC [CN88b]. Likewise, we expect that int(R(PX|Λ)) = ∅ in that
case.

4.7 Unknown Varying Additive Interference

In this section we analyze the case where the transmission in the bidirectional broadcast
phase is corrupted by unknown varying additive interference. Therefore, we also call this
a BBC with unknown varying interference. Clearly, the interference at both receivers may
differ so that we introduce two artificial interferers or jammers, one for each receiver, to
model this scenario. Then the BBC with unknown varying interference Wn is specified by
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4.7 Unknown Varying Additive Interference

the flat fading input-output relation between the relay node and node i, i = 1, 2, which is
given by

yi = x+ ji + ni.

Here, yi ∈ R denotes the output at node i, x ∈ R the input, ji ∈ R the additive interference,
and ni ∈ R the Gaussian noise of the channel distributed according to N (0, σ2).

The transmit powers of the relay and of the artificial jammers are restricted by average power
constraints Γ and Λi, i = 1, 2, respectively. This means, all permissible input sequences
xn = (x1, x2, ..., xn) of length n must satisfy

1

n

n∑
k=1

x2
k ≤ Γ (4.62)

and all permissible jamming sequences jni = (ji,1, ji,2, ..., ji,n), i = 1, 2, of length n must
satisfy

1

n

n∑
k=1

j2
i,k ≤ Λi. (4.63)

From conditions (4.62) and (4.63) follow that all permissible codewords and interfering se-
quences lie on or within an n-dimensional sphere of radius

√
nΓ or

√
nΛi, i = 1, 2, respec-

tively.

Similarly as for the discrete memoryless AVBBC it makes a difference for the BBC with
unknown varying interference, if we consider deterministic or random coding strategies.
Hence, we want specify their different impact on the transmission in the following.

4.7.1 Traditional Interference Coordination

The traditional interference coordination is in general based on a system design which en-
sures that the interference at the receivers does not exceed a certain threshold. For example
in current cellular networks this is realized by separating cells in space which operate at the
same frequency.

Theorem 4.47. The deterministic code capacity regionRdet(W
n) of the BBC with unknown

varying interference Wn with input constraint Γ and jamming constraints Λ1 and Λ2 is the
set of all rate pairs (R1, R2) ∈ R2

+ that satisfy

Ri ≤

{
1
2 log

(
1 + Γ

Λi+σ2

)
if Γ > Λi

0 if Γ ≤ Λi
(4.64)

i = 1, 2. This means int(Rdet(W
n)) 6= ∅ if and only if Γ > Λ1 and Γ > Λ2.
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4 Bidirectional Relaying in Uncoordinated Networks

First, we consider the case when Γ ≤ Λ1 or Γ ≤ Λ2. Let xnm1,m2
∈ Rn, m1 = 1, ...,M

(n)
1 ,

m2 = 1, ...,M
(n)
2 with M (n)

1 ≥ 2 and M (n)
2 ≥ 2 be arbitrary codewords satisfying the input

constraint (4.62). For Γ ≤ Λ1 we can consider the jamming sequences jn1,m1,m2
= xnm1,m2

,

m1 = 1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 . Then for each m1 ∈ M1 at node 1 the following

holds. For each pair (k, l) ∈ M2 ×M2 with k 6= l we have for the probability of error at
node 1

E
[
e1((m1, k), jnl |Cdet(W

n))
]

+ E
[
e1((m1, l), j

n
k |Cdet(W

n))
]

= P
{
xnm1,k + jn1,m1,l + nn1 /∈ D(1)

k|m1
}+ P

{
xnm1,l + jn1,m1,k + nn1 /∈ D(1)

l|m1
}

= P
{
xnm1,k + jn1,m1,l + nn1 ∈ (D(1)

k|m1
)c}+ P

{
xnm1,k + jn1,m1,l + nn1 /∈ D(1)

l|m1
}

≥ P
{
xnm1,k + jn1,m1,l + nn1 ∈ (D(1)

k|m1
)c}+ P

{
xnm1,k + jn1,m1,l + nn1 ∈ D

(1)
k|m1
}

= P{xnm1,k + jn1,m1,l + nn1 ∈ (D(1)
k|m1

)c ∪ D(1)
k|m1
} = 1.

Hence, for a fixed m1 ∈M1 this leads for the average probability of error to

1

M
(n)
2

M
(n)
2∑

k=1

ē1(jn1,m1,k|Cdet(W
n))

=
1

M
(n)
2

1

M
(n)
1 M

(n)
2

M
(n)
2∑

k=1

M
(n)
1∑

m′1=1

M
(n)
2∑

m′2=1

e1((m′1,m
′
2), jn1,m1,k|Cdet(W

n))

≥ 1

M
(n)
1 (M

(n)
2 )2

M
(n)
1∑
m′1

M
(n)
2 (M

(n)
2 − 1)

2

=
M

(n)
1 M

(n)
2 (M

(n)
2 − 1)

2M
(n)
1 (M

(n)
2 )2

=
M

(n)
2 − 1

2M
(n)
2

≥ 1

4
.

This implies that ē1(jn1,m1,m2
|Cdet(W

n)) ≥ 1
4 for at least one (m1,m2) ∈M1 ×M2. Since

the average probability of error is bounded from below by a positive constant, a reliable
transmission from the relay to node 1 is not possible so that we end up with R1 = 0. The
case Γ ≤ Λ2 similarly leads to R2 = 0.

With the following this becomes intuitively clear. Since we have Γ ≤ Λi, it can happen that
the interfering sequence looks like another valid codeword. Node i now receives a super-
position of two codewords and cannot distinguish which of the codewords was transmitted
by the relay and which was the interfering sequence. Thus, reliable communication can no
longer be guaranteed.
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4.7 Unknown Varying Additive Interference

Remark 4.48. Interestingly, Theorem 4.47 shows that the existence of positive rates only
depends on the interference and is completely independent of the noise. Consequently, the
goal of the traditional interference coordination is to ensure that the received interference
will be small enough. Otherwise, there is no communication possible, not even at very low
rates.

Now, we turn to the case when Γ > Λ1 and Γ > Λ2. To show that the rates given in (4.64) are
actually achievable, we follow [CN91] where a similar result is proved for the corresponding
single-user scenario. The strategy is outlined in the following.

Without loss of generality we assume that Γ = 1 and further 0 < Λi < 1, i = 1, 2. Then
it suffices to show that for every small δ > 0 and sufficiently large n there exist M (n)

1 M
(n)
2

codewords xnm1,m2
(on the unit sphere) with M (n)

1 = exp(nR2) and M (n)
2 = exp(nR1)

and Ci − 2δ < Ri < Ci − δ with Ci := 1
2 log(1 + 1

Λi+σ2 ), i = 1, 2, cf. (4.64), such
that the average probability is arbitrarily small for all jni satisfying (4.63). To ensure that
the probability of error gets arbitrarily small, the codewords must possess certain properties
which are guaranteed by the following lemma. This is a straightforward extension of the
single-user case [CN91, Lemma 1] to the BBC with unknown varying interference.

Lemma 4.49. For every ε > 0, 8
√
ε < η < 1, K > 2ε, and M (n)

1 = exp(nR2), M (n)
2 =

exp(nR1) with 2ε ≤ Ri ≤ K, i = 1, 2, for n ≥ n0(ε, η,K) there exist unit vectors xnm1,m2
,

m1 = 1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 such that for every unit vector un and constants α, β

in [0, 1], we have for each m1 ∈M1∣∣∣{m2 :
〈
xnm1,m2

, un
〉
≥ α

}∣∣∣ ≤ exp
(
n(|R1 + 1

2 log(1− α2)|+ + ε)
)

and, if α ≥ η, α2 + β2 > 1 + η − exp(−2R1)

1

M
(n)
2

∣∣∣{m̂2 : |
〈
xnm1,m2

, xnm1,m̂2

〉
| ≥ α, |

〈
xnm1,m2

, un
〉
| ≥ β,

for some m2 6= m̂2

}∣∣∣ ≤ exp(−nε)

and similarly for each m2 ∈M2∣∣∣{m1 :
〈
xnm1,m2

, un
〉
≥ α

}∣∣∣ ≤ exp
(
n(|R2 + 1

2 log(1− α2)|+ + ε)
)

and, if α ≥ η, α2 + β2 > 1 + η − exp(−2R2)

1

M
(n)
1

∣∣∣{m̂1 : |
〈
xnm1,m2

, xnm̂1,m2

〉
| ≥ α, |

〈
xnm1,m2

, un
〉
| ≥ β,

for some m1 6= m̂1

}∣∣∣ ≤ exp(−nε).
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4 Bidirectional Relaying in Uncoordinated Networks

At the receiving nodes it suffices to use a minimum-distance decoder. Then for each m1 ∈
M1 the decoding sets at node 1 and for each m2 ∈M2 at node 2 are given by

D(1)
m2|m1

:= {yn1 : ‖yn1 − xnm1,m2
‖2 < ‖yn1 − xnm1,m̂2

‖2 for all m2 6= m̂2} (4.65a)

D(2)
m1|m2

:= {yn2 : ‖yn2 − xnm1,m2
‖2 < ‖yn2 − xnm̂1,m2

‖2 for all m1 6= m̂1}. (4.65b)

With the presented coding and decoding rule, the probability of error gets arbitrarily small
for increasing block length, which can be shown analogously to [CN91]. The details are
rather technical and therefore omitted for brevity.

It remains to show that the described strategy is optimal, which means that no other rate pairs
are achievable. From the previous discussions, cf. especially Remark 4.21, we already know
that the capacity region of the deterministic code capacity region is included in the capacity
region of the random code capacity region. In the next subsection, from Theorem 4.50 we
see that for Γ > Λi, i = 1, 2, the maximal achievable rates for both strategies are equal.
Since the described strategy already achieves these rates, the optimality is proved.

4.7.2 Relay-to-Receivers Coordination

Next, we study a strategy with a different degree of coordination. We assume that the relay
and the receivers are synchronized in such a manner that they can coordinate their choice of
the encoder and decoders based on an access to a common resource which is independent of
the current message.

This can be realized by using a random code. If we transmit at rates R1 and R2 with ex-
ponentially many messages, i.e., exp(nR1) and exp(nR2), we know from [Ahl78] that it
suffices to use a random code which consists of n2 pairs of encoder and decoders and a uni-
formly distributed random variable whose value indicates which of the pair all nodes have
to use. The access to the common random variable can be realized by an external source,
e.g., a satellite signal, or a preamble prior to the transmission. Clearly, for sufficiently large
block length the (polynomial) costs for the coordination are negligible. We call this relay-to-
receivers coordination. Due to the more involved coordination we expect an improvement
in the performance compared to the traditional coordination approach, especially for high
interference.

Theorem 4.50. The random code capacity regionRran(Wn) of the BBC with unknown vary-
ing interference Wn with input constraint Γ and jamming constraints Λ1 and Λ2 is the set of
all rate pairs (R1, R2) ∈ R2

+ that satisfy

Ri ≤
1

2
log

(
1 +

Γ

Λi + σ2

)
, i = 1, 2. (4.66)
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4.8 Discussion

The theorem can be proved analogously to [HN87] where a similar result is proved for the
single-user case. The random strategy which achieves the rates given in (4.66) is outlined in
the following.

The codewords xnm1,m2
are uniformly distributed on the n-sphere of radius

√
nΓ. Similar

to the traditional approach, a minimum-distance decoder as given in (4.65) at the receiving
nodes is sufficient. It remains to show that for all rate pairs satisfying (4.66) the probability
of error gets arbitrarily small for increasing block length. This can be done similarly to
[HN87].

The optimality of the presented random strategy, which means that no other rate pairs are
achievable, follows immediately from [HN87] and can be shown by standard arguments.

Remark 4.51. The capacity region Rran(Wn) is identical to the one if the interfering se-
quences would consist of iid Gaussian symbols distributed according to N (0,Λi), i = 1, 2.
This means, the arbitrary, possibly non-Gaussian, unknown interference do not affect the
achievable rates more than Gaussian noise of the same power.

4.8 Discussion

In the previous Chapter 3 it has been shown that for compound channels communication in
bidirectional relay networks is still possible, but at reduced rates compared to the case of
perfect CSI. In this chapter it has been substantiated that for arbitrarily varying channels the
impact is much more dramatic. More precisely, based on Ahlswede’s elimination technique
[Ahl78] we revealed the following dichotomy of the deterministic code capacity region of
an AVBBC: it either equals its random code capacity region or else has an empty interior.
Unfortunately, many channels of practical interest are symmetrizable which results in an
ambiguity of the codewords at the receivers. These channels prohibit any reliable communi-
cation and therewith fall in the latter category.

As in [BNP95, Hug97] for the point-to-point AVC, the concept of list decoding is an ade-
quate technique to dissolve the ambiguity caused by the symmetric channels and to enable
reliable communication in bidirectional relay networks. The key idea for the analysis was
to introduce a generalized notion of symmetrizability which distinguishes among different
degrees of symmetry. This allowed us to reveal a connection between the degree of the sym-
metry of a channel and the needed list size at the decoder. It is shown that if a list size is
greater than the symmetrizability of the channel, the decoder is able to successfully dissolve
a possible ambiguity of the codewords. Fortunately, the symmetrizability of an AVBBC is
always finite so that there are always finite list sizes at the receivers which permit reliable
communication is scenarios, where usual deterministic decoding techniques fail.
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Figure 4.2: Achievable rates for the BBC with unknown varying interference for the tradi-
tional interference coordination (deterministic code) and relay-to-receivers coor-
dination (random code) with Λ1 = 1.5, Λ2 = 2, and σ2 = 1.

Imposing constraints on the permissible sequences of channel states reveals further phenom-
ena. Now, even when the channel is symmetrizable, the deterministic code capacity region
of the AVBBC under input and state constraints may be non-empty but less than its random
code capacity region. Thereby, we observed that the constraints on the state sequences may
reduce the deterministic code capacity region so that it is in general strictly smaller than the
corresponding random code capacity region, but they preserve the general dichotomy behav-
ior of the deterministic code capacity region: it still equals either a non-empty region or else
has an empty interior. Although the deterministic code capacity region displays a dichotomy
behavior, it cannot be exploited to prove the corresponding capacity region since Ahlswede’s
elimination technique [Ahl78] does not work anymore in the presence of constraints on input
and states, cf. also [LN98]. This necessitated a proof technique which does not rely on the
dichotomy behavior and is based on an idea of Csiszár and Narayan [CN88b].

Figure 4.2 depicts the maximal achievable rates for the case where the transmission is cor-
rupted by unknown varying additive interference. If the power of the interference is greater
than the transmit power of the relay, the interference can look like other valid codewords
and the receivers cannot reliably distinguish between the intended signal and the interfer-
ence anymore. Consequently, a traditional interference coordination based on a determinis-
tic coding strategy is only reasonable if the interference can be made small enough, since it
treats the interference as some kind of additional Gaussian noise. Thus, especially in the case
of high interference, a more sophisticated coordination based on a random coding strategy
is needed for reliable communication. It is shown that a coordination of the encoder and
decoders based on a common resource is sufficient to handle the interference even if it is
stronger than the desired signal.
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5 Physical Layer Service Integration in
Bidirectional Relay Networks

Recently, significant progress has been made in improving the performance of next gener-
ation cellular networks. Proposed techniques such as multiuser MIMO, channel adaptive
scheduling, cooperative multi-point transmission, or relaying can increase the spectral effi-
ciency.

An additional research area that is gaining importance is the efficient implementation of
certain services at the physical layer. For example, in current cellular systems, operators
offer not only traditional services such as (bidirectional) voice communication, but also fur-
ther multicast services or confidential services that are subject to certain secrecy constraints.
Nowadays, the integration of multiple services is realized by policies that allocate different
services on different logical channels and by applying secrecy techniques at higher levels.
In general, this is quite inefficient, and there is a trend to merge multiple coexisting ser-
vices efficiently from an information theoretic point of view so that they work on the same
wireless resources. This is referred to as physical layer service integration and has the po-
tential to significantly increase the spectral efficiency for next generation wireless networks
and, especially, 5G cellular networks. Accordingly, this is being intensively discussed at the
moment by the 3rd Generation Partnership Projects Long-Term Evolution Advanced (3GPP
LTE-Advanced) group.

Multicast services can be realized efficiently by common messages; for example the Multi-
media Broadcast Multicast Service (MBMS), as specified by the 3GPP organization, benefits
from such studies. This substantiates the concern of merging such services efficiently at the
physical layer to advantageously exploit the broadcast nature of the wireless medium.

Some work on the SISO Gaussian broadcast channel with common messages and certain side
information at the receivers can be found in [Wu07] and [KS07] where the latter assumes de-
graded message sets. The throughput region of bidirectional multi-hop fading networks with
common messages is analyzed in [IS09]. A general model for multi-user settings with corre-
lated sources is given in [GEGP09]. The general broadcast channel with common messages
is analyzed in [Tia09] in terms of latent capacity, where the author shows that the achievabil-
ity of a certain rate vector immediately implies the achievability of a whole non-trivial rate
region. However, only the case of symmetric rates for all users is discussed.
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All these services are not required to be kept secret from non-legitimate receivers so that
they are classified as public services. Accordingly, services that have this additional secrecy
requirement are classified as confidential services. Currently, secrecy techniques usually rely
on the assumption of the unproven hardness of certain problems or insufficient computational
capabilities of non-legitimate receivers. In contrast, physical layer secrecy techniques do
not rely on such assumptions and therefore provide so-called unconditional security, which
makes them more and more attractive. This becomes even more important in wireless net-
works, since, due to the broadcast nature of the wireless medium, a transmitted signal is
received by the intended user but can also be overheard by non-intended users. This neces-
sitates the design of systems that enable secure communication to certain legitimate users
while keeping non-legitimate users ignorant of the transmission.

In the seminal work [Wyn75] Wyner introduced the wiretap channel which characterizes
the secure communication problem for a point-to-point link with an additional eavesdropper.
Csiszár and Körner generalized this to the broadcast channel with confidential messages in
[CK78] and characterized the optimal integration of common and confidential services at the
physical layer. Recently, there has been growing interest in physical layer secrecy, for cur-
rent surveys we refer, for example, to [LPS09, LT10, JWG10, BB11] and references therein.
Besides the (wireless) point-to-point link [Wyn75, BBRM08, LS09, KW10b, KW10a], there
are extensions to multi-user settings as the multiple access channel with confidential mes-
sages [LP08], the multiple access wiretap channel [EU08a, TY08], the interference channel
with confidential messages [LMSY08], the multi-antenna Gaussian broadcast channel with
confidential messages [LP09, LLL10, LLPS10b], the MIMO Gaussian broadcast channel
with common and confidential messages [LLPS10a, EU10a], secure communication with
relays [EU08b, HY10b], or the two-way wiretap channel [HY10a, EKYE10]. Secrecy for
fading channels is discussed for example in [LPS08, KGLP11]. It is shown that secrecy can
be improved by cooperation [MYP11] and helping interference [Jor10, TLSP11].

In this chapter we consider physical layer service integration in bidirectional relay networks.
Here, the relay node integrates additional common and confidential services in the broad-
cast phase. More precisely, in addition to the transmission of both individual messages the
relay node has the following tasks as shown in Figure 5.1: the transmission of a common
message to both nodes and further, the transmission of a confidential message to one node,
which should be kept secret from the other, non-legitimate node. This requires the study of
the bidirectional broadcast channel (BBC) with common and confidential messages which is
introduced in Section 5.1. We start with the scenario where the relay integrates only public
services and analyze the corresponding BBC with common messages in Section 5.2. The
case where the relay integrates confidential messages and no common messages, i.e., the
BBC with confidential messages, is addressed in Section 5.3, while Section 5.4 finally con-
siders the most general scenario, i.e., the BBC with common and confidential messages.
Then, we analyze the integration of confidential services for MIMO Gaussian channels in
Section 5.5 and end a discussion in Section 5.6.
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5.1 Bidirectional Broadcast Channel with Common and Confidential Messages

R 21

Rc

m1 m2

R2 R1

(a) MAC phase

R 21

Rc
mc

m1 m2m1
m0

R1R0 R0R2
m2

mc

(b) BBC phase

Figure 5.1: Physical layer service integration in decode-and-forward bidirectional relay net-
works. In the BBC phase, the relay forwards the messages m1 and m2 and adds
a common message m0 with rate R0 to the communication and further a confi-
dential message mc for node 1 with rate Rc which should be kept secret from
node 2.

5.1 Bidirectional Broadcast Channel with Common and
Confidential Messages

Let X and Yi, i = 1, 2, be finite input and output sets. Then for input and output sequences
xn ∈ X n and yni ∈ Yni , i = 1, 2, of length n, the discrete memoryless broadcast chan-
nel is given by W⊗n(yn1 , y

n
2 |xn) :=

∏n
k=1W (y1,k, y2,k|xk). Since we do not allow any

cooperation between the receiving nodes, it is sufficient to consider the marginal transition
probabilities W⊗ni :=

∏n
k=1Wi(yi,k|xk), i = 1, 2 only.

We consider the standard model with a block code of arbitrary but fixed length n. The set
of individual messages of node i, i = 1, 2, is denoted by Mi := {1, ...,M (n)

i }, which is
also known at the relay node. Further, the sets of common and confidential messages of the
relay node are denoted byM0 := {1, ...,M (n)

0 } andMc := {1, ...,M (n)
c }, respectively. We

use the abbreviationMp :=M0 ×M1 ×M2 for the set of all public messages and further
M :=Mc ×Mp.

Definition 5.1. An (n,M
(n)
c ,M

(n)
0 ,M

(n)
1 ,M

(n)
2 )-code Cmc,m0(W ) for the BBC with com-

mon and confidential messages consists of one (stochastic) encoder at the relay node

f :Mc ×M0 ×M1 ×M2 → X n

and decoders at nodes 1 and 2

g1 : Yn1 ×M1 →Mc ×M0 ×M2 ∪ {0}
g2 : Yn2 ×M2 →M0 ×M1 ∪ {0}

where the element 0 in the definition of the decoders plays the role of an erasure symbol and
is included for convenience.
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Secure communication may benefit from randomized encoding [CK78, LPS09] so that
we allow the encoder f to be stochastic. More precisely, to transmit message m =
(mc,m0,m1,m2) ∈ M the corresponding codeword xn ∈ X n is specified by conditional
probabilities f(xn|m) with

∑
xn∈Xn f(xn|m) = 1. This means f(xn|m) is the probability

that message m ∈M is encoded as xn ∈ X n.

The quality of such a code is measured by two performance criteria. First, each receiver
should successfully decode its intended messages, i.e., the corresponding average probabili-
ties of decoding errors have to be small. In more detail, when the relay has sent the message
m = (mc,m0,m1,m2), and nodes 1 and 2 have received yn1 and yn2 , the decoder at node 1
is in error if g1(yn1 ,m1) 6= (mc,m0,m2). Accordingly, the decoder at node 2 is in error if
g2(yn2 ,m2) 6= (m0,m1). Then, the average probability of error at node i, i = 1, 2 is given
by

ēi :=
1

|M|
∑
m∈M

ei(m)

where e1(m) denotes the probability that the decoder at node 1 decodes mc, m0, and m2

incorrectly, and e2(m) the probability that the decoder at node 2 decodes m0 and m1 in-
correctly, i.e., e1(m) = P{g1(yn1 ,m1) 6= (mc,m0,m2)|m has been sent} and e2(m) =
P{g2(yn2 ,m2) 6= (m0,m1)|m has been sent}.

The second criterion is security. Similarly as for example in [Wyn75, CK78] we characterize
the secrecy level of the confidential messagemc ∈Mc by the concept of equivocation. Here,
the equivocation H(Mc|Yn

2 ,M2) describes the uncertainty of node 2 about the confidential
message Mc having the received sequence Yn

2 and its own message M2 as side informa-
tion available under the assumption that the random variables Mc and M2 are uniformly
distributed overMc andM2. Consequently, the higher the equivocation is, the higher the
secrecy level of the confidential message is.

Remark 5.2. Note that we have to deal with a non-standard encoder/decoder design. Be-
sides the classical task of establishing reliable decoding of the public services at the legit-
imate receivers, it further has to protect the confidential services from non-legitimate re-
ceivers.

Definition 5.3. A rate-equivocation tuple R = (Rc, Re, R0, R1, R2) ∈ R5
+ is said to be

achievable for the BBC with common and confidential messages if for any δ > 0 there is
an n(δ) ∈ N and a sequence {C(n)

mc,m0(W )}n∈N of (n,M
(n)
c ,M

(n)
0 ,M

(n)
1 ,M

(n)
2 )-codes such

that for all n ≥ n(δ) we have

1

n
logM (n)

c ≥ Rc − δ,
1

n
logM

(n)
0 ≥ R0 − δ,

1

n
logM

(n)
2 ≥ R1 − δ,

1

n
logM

(n)
1 ≥ R2 − δ,
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and
1
nH(Mc|Yn

2 ,M2) ≥ Re − δ (5.1)

while ē1, ē2 → 0 as n→∞. The set of all achievable rate tuples is the capacity-equivocation
region of the BBC with common and confidential messages and is denoted byRmc,m0(W ).

Remark 5.4. Definition 5.3 includes the case where the confidential rate is higher than the
equivocation rate, i.e., Rc > Re. The notion of perfect secrecy requires the equivocation
rate to be as high as the rate of the confidential message, i.e., Rc = Re. Then, condition
(5.1) becomes 1

nH(Mc|Yn
2 ,M2) ≥ Rc − δ which is often equivalently written as

1
nI(Mc; Yn

2 |M2) ≤ δ. (5.2)

The definition of the secrecy capacity region RSmc,m0
(W ) of the BBC with common and

confidential messages follows immediately.

5.2 Integration of Common Messages

We start with the scenario where the relay integrates only common messages and no con-
fidential messages. This is the bidirectional broadcast channel (BBC) with common mes-
sages.

5.2.1 Capacity Region for Discrete Memoryless Channels

The definition of an (n,M
(n)
0 ,M

(n)
1 ,M

(n)
2 )-code Cm0(W ) can be deduced from Defini-

tion 5.1. Similarly, the definitions of an achievable rate triple and the capacity region
Rm0(W ) of the BBC with common messages follow immediately from Definition 5.3.

Theorem 5.5. The capacity region Rm0(W ) of the BBC with common messages is the set
of all rate triples (R0, R1, R2) ∈ R3

+ that satisfy

R0 +Ri ≤ I(X; Yi|U), i = 1, 2 (5.3)

for random variables U − X − (Y1,Y2) with joint probability distribution
pU(u)pX|U(x|u)W (y1, y2|x). Thereby, U is an auxiliary random variable and de-
scribes a possible time-sharing operation. The cardinality of the range of U can be bounded
by |U| ≤ 3.

Remark 5.6. Clearly, the sum constraints in (5.3) immediately imply that the rate of the
common message has to fulfill R0 ≤ min{I(X; Y1|U), I(X; Y2|U)}.
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Remark 5.7. Similarly as in [KS07, Theorem 1] it is further possible to get rid of the
time-sharing random variable U in (5.3) so that the region is given by all rate triples
(R0, R1, R2) ∈ R3

+ that satisfy R0 +Ri ≤ I(X; Yi), i = 1, 2.

Remark 5.8. At a first glance, (5.3) suggests a rate splitting approach between the common
rate and the individual rates, but one has to be careful since the coding strategy has to be
designed in such a way that the common message can be decoded at both receivers. This
observation reveals some interesting connections to compound channels [BBT59, Wol60,
Wol78], cf. also Chapter 3, where the coding strategy has to ensure that the message to
transmit is decodable for a whole set of possible channels.

Theorem 5.5 is proved in the following.

Proof of Achievability

Here, we present a construction of a coding strategy that achieves all rate triples
(R0, R1, R2) ∈ R3

+ that satisfy

R0 +Ri ≤ I(X; Yi), i = 1, 2 (5.4)

for some pX(x)W (y1, y2|x). Then the desired region (5.3) is determined by establishing
the convex hull by first introducing an auxiliary random variable U and applying standard
arguments as in [OSBB08]. Similarly it follows then from Fenchel-Bunt’s extension of
Carathéodory’s theorem [HUL01] that any rate triple is achievable by time-sharing between
three rate triples, i.e., |U| ≤ 3 is enough.

The construction is mainly based on the idea of [Cov72] for the classical broadcast chan-
nel with common messages, where the whole information sent to each receiver is split into
an individual part and a common part. We use this idea to extend the proof idea for the
achievability for the BBC without common messages, cf. [OSBB08], to our scenario.

Let us recapitulate the broadcast situation that is considered here. The relay node wants to
transmit a common message m0 ∈ M0 with rate R0 and individual messages m1 ∈ M1

and m2 ∈M2 with rates R2 and R1, respectively. Node 1 knows its own message m1 that it
transmitted in the previous MAC phase and wants to recover the common message m0 and
the individual message m2. Similarly, node 2 knows m2 and wants to recover m0 and m1.
Having [Cov72] in mind the broadcast situation can also be interpreted in a slightly different
way by combining the desired individual messages and the common message. In more detail,
node 1 knows its own message m1 and is interested in the (combined) individual message
m′2 = (m0,m2) ∈M0×M2 =:M′2 with rate R′1 = R0 +R1 and, similarly, node 2 knows
m2 and is interested in m′1 = (m0,m1) ∈M0 ×M1 =:M′1 with rate R′2 = R0 +R2.
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Basically, we see that due to this reinterpretation the problem of coding for the BBC with
common messages becomes the problem of coding for the BBC without common messages.
The only difference is that while in the classical BBC without common messages each re-
ceiving node has complementary side information, i.e., it knows exactly the message the
other one is interested in, in our scenario each receiving node knows only a part of the in-
formation the other one is interested in, i.e., it has only the other individual message and not
the common message as side information available. We see that our scenario is not precisely
included in [OSBB08], but it is a straightforward extension. Therefore, we go through the
proof of achievability and sketch only the differences to [OSBB08, Sec. II-A].

Similarly as in [OSBB08, Sec. II-A] we show by random coding arguments that for given
pX(x)W (y1, y2|x) there exists a coding strategy such that all rate pairs (R′1, R

′
2) ∈ R2

+

with R′i ≤ I(X; Yi), i.e., satisfying R′i = R0 + Ri ≤ I(X; Yi), i = 1, 2, cf. also (5.4), are
achievable. Therefore, we generate |Mp| = |M0||M1||M2| independent codewords xnmp ∈
X n withmp = (m0,m1,m2) ∈M0×M1×M2 =Mp andM (n)

0 := 2nR0 ,M (n)
1 := 2nR2 ,

and M (n)
2 := 2nR1 according to pXn(xn) =

∏n
k=1 pX(xk). Each receiving node uses typical

set decoding in a similar way as in [OSBB08, Sec. II-A]. Now, it is straightforward to show
that the probability of a decoding error, averaged over all codewords and all codebooks,
at receiving node 1 gets arbitrarily small if the rate of the intended (combined) message
m′2 = (m0,m2) ∈M0 ×M2 =M′2 fulfills R′1 = R0 +R1 ≤ I(X; Y1). Clearly, the same
is also true for receiving node 2 which is able to determine m′1 = (m0,m1) ∈M0×M1 =
M′1 if R′2 = R0 + R2 ≤ I(X; Y2). With the (combined) individual messages m′1 ∈ M′1
and m′2 ∈ M′2 with rates R′2 and R′1 the receiving nodes immediately obtain the common
message m0 ∈ M0 with rate R0 and the individual messages m1 ∈ M1 and m2 ∈ M2

with rate R′2−R0 and R′1−R0, respectively. Thus, similar to [Cov72, Tia09], all rate triples
(R0, R

′
1 − R0, R

′
2 − R0) = (R0, R1, R2) with R0 + Ri ≤ I(X; Yi) are achievable for the

BBC with common messages which already proves the achievability.

Proof of Weak Converse

We have to show that for any given sequence {C(n)
m0 (W )}n∈N of (n,M

(n)
0 ,M

(n)
1 ,M

(n)
2 )-

codes with ē1, ē2 → 0 there exist random variables U−X− (Y1,Y2) such that

1
n

(
H(M0) +H(M2)

)
≤ I(X; Y1|U) + o(n0)

1
n

(
H(M0) +H(M1)

)
≤ I(X; Y2|U) + o(n0)

are satisfied. For this purpose we need a version of Fano’s lemma suitable for the BBC with
common messages.
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Lemma 5.9. For the BBC with common messages we have the following versions of Fano’s
inequality

H(M0,M2|Yn
1 ,M1) ≤ ē1 log(M

(n)
0 M

(n)
2 ) + 1 = nε

(n)
1

H(M0,M1|Yn
2 ,M2) ≤ ē2 log(M

(n)
0 M

(n)
1 ) + 1 = nε

(n)
2

with ε(n)
1 = 1

n log(M
(n)
0 M

(n)
2 )ē1 + 1

n → 0 and ε(n)
2 = 1

n log(M
(n)
0 M

(n)
1 )ē2 + 1

n → 0 for
n→∞ as ē1, ē2 → 0.

Proof. In Appendix A.8 we prove Fano’s inequality for the BBC with common and confiden-
tial messages. The case with only common messages can easily be deduced from this.

With this, we can bound H(M0) +H(M2) as follows

H(M0) +H(M2) = H(M0|M1,M2) +H(M2|M1)

= H(M0,M2|M1)

≤ I(M0,M2; Yn
1 |M1) + nε

(n)
1

≤ I(M0,M1,M2; Yn
1 ) + nε

(n)
1

≤ I(Xn; Yn
1 ) + nε

(n)
1 (5.5)

where the equalities and inequalities follow from the independence of M0, M1, and M2, the
chain rule for entropy, the definition of mutual information, Lemma 5.9, the chain rule for
mutual information, the positivity of mutual information, and the data processing inequality.
Using the definition of mutual information and dividing by n we get for the rates

1

n

(
H(M0) +H(M2)

)
≤ 1

n

(
H(Yn

1 )−H(Yn
1 |Xn)

)
+ ε

(n)
1

≤ 1

n

n∑
k=1

(
H(Y1,k|Yk−1

1 )−H(Y1,k|Yk−1
1 ,Xk)

)
+ ε

(n)
1

≤ 1

n

n∑
k=1

(
H(Y1,k)−H(Y1,k|Xk)

)
+ ε

(n)
1

=
1

n

n∑
k=1

I(Xk; Y1,k) + ε
(n)
1 (5.6)

using the chain rule for entropy, the memoryless property of the channel, and again the
definition of mutual information. Accordingly, using the same arguments we also obtain

1

n

(
H(M0) +H(M1)

)
≤ 1

n

n∑
k=1

I(Xk; Y2,k) + ε
(n)
2 . (5.7)
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21 R

m0 m1 m2

H1 H2

N1 NR N2

n1 ∼ CN (0, σ2IN1
)

m1

n2 ∼ CN (0, σ2IN2
)

m2

m̂0 m̂2 m̂0 m̂1

Figure 5.2: MIMO Gaussian BBC with common messages.

Similarly as in [OSBB08, Sec. II-B] for the BBC without common messages we introduce
an auxiliary random variable U that is independent of M0, M1, M2, Xn, Yn

1 , and Yn
2 and

uniformly distributed over {1, ..., n}. Further, let X := XU, Y1 := Y1,U, and Y2 := Y2,U.
With this, for (5.6) and (5.7) we get

1

n

n∑
k=1

I(Xk; Yi,k) =
n∑
k=1

P{U = k}I(Xk; Yi,k|U = k)

= I(XU; Yi,U|U)

= I(X; Yi|U)

which establishes the desired rates as states in (5.3). This completes the proof of the weak
converse.

5.2.2 Capacity Region for MIMO Gaussian Channels

We assume NR antennas at the relay node and Ni antennas at node i, i = 1, 2, as shown
in Figure 5.2. In the bidirectional broadcast phase, the discrete-time complex-valued input-
output relation between the relay node and node i, i = 1, 2, is given by

yi = H ix+ ni, (5.8)

where yi ∈ CNi×1 denotes the output at node i, H i ∈ CNi×NR the multiplicative channel
matrix, x ∈ CNR×1 the input of the relay node, and ni ∈ CNi×1 the independent addi-
tive noise according to a circular symmetric complex Gaussian distribution CN (0, σ2INi).
We assume perfect channel state information at all nodes and an average transmit power
constraint tr(Q) ≤ P withQ = E{xxH}.

Theorem 5.10. The capacity region Rm0(H1,H2|P ) of the MIMO Gaussian BBC
with common messages and average power constraint P is the set of all rate triples
(R0, R1, R2) ∈ R3

+ that satisfy

R0 +R1 ≤ log det(IN1 + 1
σ2H1QH

H
1 )

R0 +R2 ≤ log det(IN2 + 1
σ2H2QH

H
2 )

(5.9)
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for someQ � 0 with tr(Q) ≤ P .

Since the log det function is concave in Q [HJ99, Theorem 7.6.7], the region in (5.9) is
already convex. Hence, an auxiliary random variable that realizes an additional time-sharing
operation is not necessary since such an operation will not enlarge the region.

Proof of Achievability

To show the achievability of all rate triples (R0, R1, R2) ∈ R3
+ satisfying (5.9) for a given

covariance matrix Q, we follow the proof of achievability of its discrete counterpart, cf.
Section 5.2.1. The only difference to the discrete case is that we generate each entry of all
codewords independently according to CN (0,Q). With this, the achievability of all rate
triples satisfying (5.9) is straightforward to show. Then the desired region given in Theorem
5.10 is immediately obtained by taking the union over all covariance matrices that satisfy the
input power constraint which finishes the proof of achievability.

Proof of Weak Converse

We have to show that for any given sequence of (n,M
(n)
0 ,M

(n)
1 ,M

(n)
2 )-codes with ē1, ē2 →

0 there exists a covariance matrixQ satisfying the average power constraint tr(Q) ≤ P such
that

1
n

(
H(M0) +H(M2)

)
≤ log det(IN1 + 1

σ2H1QH
H
1 ) + o(n0)

1
n

(
H(M0) +H(M1)

)
≤ log det(IN2 + 1

σ2H2QH
H
2 ) + o(n0)

are satisfied.

Following the proof of its discrete counterpart, cf. Section 5.2.1, it is straightforward to show
that we can bound the entropies by

H(M0) +H(M2) ≤ I(Xn; Yn
1 ) + nε

(n)
1 (5.10a)

H(M0) +H(M1) ≤ I(Xn; Yn
2 ) + nε

(n)
2 (5.10b)

cf also (5.5). Note that this immediately implies that H(M0) ≤ min{I(Xn; Yn
1 ) +

nε
(n)
1 , I(Xn; Yn

2 ) + nε
(n)
2 }, cf. also Remark 5.6.

For the rest of the proof it remains to bound the term I(Xn; Yn
i ), i = 1, 2, in such a way that

we obtain the expected log det expression. With the definition of the mutual information and
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the memoryless property of the channel, we have

I(Xn; Yn
i ) = h(Yn

i )− h(Yn
i |Xn)

≤
n∑
k=1

(
h(Yi,k)− h(Yi,k|Xk)

)
=

n∑
k=1

I(Yi,k; Xk)

=

n∑
k=1

(
h(Yi,k)− h(Ni,k)

)
with Yi,k = H iXk + Ni,k, i = 1, 2. Note that the random variables Xk and Ni,k

with h(Ni,k) = log det(π eσ2INi) are independent. Then, from the entropy maximiza-
tion theorem follows that h(Yi,k) ≤ log det(π e(σ2INi + H iQkH

H
i )) with equality if

the input is Gaussian, i.e., Xk ∼ CN (0,Qk). With this, we have h(Yi,k) − h(Ni,k) ≤
log det(INi + 1

σ2H iQkH
H
i ) which immediately implies

1

n
I(Xn; Yn

i ) ≤ 1

n

n∑
k=1

log det
(
INi + 1

σ2H iQkH
H
i

)
≤ log det

(
INi + 1

σ2H i(
1

n

n∑
k=1

Qk)H
H
i

)
(5.11)

where the last inequality follows from the concavity of the log det function [HJ99, Th.
7.6.7].

Obviously, R0 +R1 = lim infn→∞
1
n(logM

(n)
0 + logM

(n)
2 ) ≤ lim supn→∞

1
n(logM

(n)
0 +

logM
(n)
2 ) and R0 + R2 = lim infn→∞

1
n(logM

(n)
0 + logM

(n)
1 ) ≤

lim supn→∞
1
n(logM

(n)
0 + logM

(n)
1 ) are always satisfied. We assume Mi to be uni-

formly distributed so that we have 1
n logM

(n)
i = 1

nH(Mi), i = 0, 1, 2, which yields together
with (5.10a), (5.10b), and (5.11)

R0 +Ri ≤ lim sup
n→∞

[
log det

(
INi + 1

σ2H i

( 1

n

n∑
k=1

Qk

)
HH

i

)
+ ε

(n)
i

]
, (5.12)

i = 1, 2. Next, let us define the compact set Q := {Q ∈ CNR×NR : tr(Q) ≤ P,Q �
0} and observe that 1

n

∑n
k=1Qk ∈ Q since 1

n

∑n
k=1Qk � 0 and 1

n

∑n
k=1 tr(Qk) =

tr( 1
n

∑n
k=1Qk) ≤ P hold. This implies that there exists a subsequence (nl)l∈N such that

1
nl

∑nl
k=1Qk → Q as nl → ∞ with Q ∈ Q. Therewith and with the continuity of the
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Figure 5.3: Capacity region of the MIMO Gaussian BBC with common messages (black)
and a comparable TDMA approach (gray) with NR = N1 = N2 = 2.

log det function we get

lim sup
nl→∞

[
log det

(
INi + 1

σ2H i

(
1
nl

nl∑
k=1

Qk

)
HH

i

)
+ ε

(nl)
i

]
= log det

(
INi + 1

σ2H iQH
H
i

)
.

(5.13)

Combining (5.12) and (5.13) we obtain R0 + R1 ≤ log det
(
IN1 + 1

σ2H1QH
H
1

)
. Using

the same subsequence (nl)l∈N and arguments we also obtain R0 + R2 ≤ log det
(
IN2 +

1
σ2H2QH

H
2

)
which finishes the proof.

Example

As an example Figure 5.3 depicts the capacity region of a MIMO Gaussian BBC with com-
mon messages and illustrates how the optimal strategy outperforms a simple TDMA ap-
proach that realizes the same routing task with three orthogonal time slots.
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5.2.3 Covariance Optimization Problem

Since the capacity region Rm0(H1,H2|P ) is convex, the rate triples on the dominant sur-
face characterize the capacity region completely. Therefore, we are is interested in finding
the optimal transmit covariance matrices that achieve the rate triples on the dominant sur-
face since they constitute the basis for further cross-layer designs such as stability-optimal
scheduling policies.

A rate triple on the dominant surface of the capacity region is a solution of a weighted rate
sum problem so that we consider the corresponding convex optimization problem

RΣ(w) = max
R0,R1,R2

2∑
i=0

wiRi (5.14a)

s.t. R0 +Ri ≤ Ci(Q), i = 1, 2 (5.14b)

Ri ≥ 0, i = 0, 1, 2 (5.14c)

tr(Q) ≤ P, Q � 0 (5.14d)

withw = (w0, w1, w2) ∈ R3
+ the weight vector and Ci(Q) = log det(INi + 1

σ2H iQH
H
i ),

i = 1, 2, in the following.

For the optimal rate triples the constraints in (5.14b) will be satisfied with equality for pos-
itive weights. Since otherwise, if R0 + Ri < Ci(Q), we can increase the rate Ri up to
the point where we have equality, i.e., R0 + Ri = Ci(Q), without affecting the other rates
and therewith increasing the weighted rate sum RΣ(w). On the other hand if some weights
are zero, there exists also an optimal solution where (5.14b) will be satisfied with equality.
Therefore, we concentrate on those rate triples that satisfy (5.14b) with equality and rewrite
the optimization problem as follows

max
Q,R0

(w0 − w1 − w2)R0 + w1C1(Q) + w2C2(Q) (5.15)

s.t. 0 ≤ R0 ≤ Ci(Q), i = 1, 2

tr(Q) ≤ P, Q � 0.

Then the Lagrangian for the corresponding minimization problem is given by

L(Q, R0,ν, ξ, µ,Ψ) = −(w0 − w1 − w2)R0 −
2∑
i=1

wiCi(Q)

+ ν1

(
R0 − C1(Q)

)
+ ν2

(
R0 − C2(Q)

)
− ξR0 + µ

(
tr(Q)− P

)
− tr(QΨ)
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with Lagrange multipliers ξ, µ ∈ R, ν = (ν1, ν2) ∈ R2, and Ψ ∈ CNR×NR , from
which we get the Karush-Kuhn-Tucker (KKT) conditions with C ′i(Q) = HH

i (σ2INi +
H iQH

H
i )−1H i, i = 1, 2, as

µINR −Ψ = (w1 + ν1)C ′1(Q) + (w2 + ν2)C ′2(Q) (5.16a)

w0 = w1 + w2 + ν1 + ν2 − ξ (5.16b)

0 ≤ R0 ≤ Ci(Q), i = 1, 2 (5.16c)

Q � 0, tr(Q) ≤ P (5.16d)

Ψ � 0, ν1, ν2, ξ, µ ≥ 0 (5.16e)

tr(QΨ) = 0, µ
(
tr(Q)− P

)
= 0 (5.16f)

ξR0 = 0, νi
(
R0 − Ci(Q)

)
= 0, i = 1, 2 (5.16g)

with primal, dual, and complementary slackness conditions (5.16c)-(5.16d), (5.16e), and
(5.16f)-(5.16g) respectively. Since the constraint functions satisfy a generalized version of
Slater’s condition [BV04, Sec. 5.9], the KKT conditions (5.16a)-(5.16g) are necessary and
sufficient and therefore characterize the optimal transmit covariance matrix for a certain
weight vector w = (w0, w1, w2).

Although the optimization problem (5.14) is a convex optimization problem and can there-
fore be efficiently solved using interior point method, further insights can be obtained by
studying its structure in more detail as done in the following.

5.2.4 Capacity Achieving Transmit Strategies

Already the proof of achievability, cf. Section 5.2.1, indicates that the BBC with common
messages is closely related to the BBC without common messages. Motivated by this ob-
servation, we analyze the optimization problem from Section 5.2.3 in detail and establish
a strong connection between these two cases in the following so that the results such as
transmit strategies obtained for one case will also be applicable for the other one.

It is reasonable to distinguish three different kinds of weight vectors based on the relation
between the weight of the common message and the weights of the individual messages. For
notational convenience we collect the corresponding weight vectors in three sets

W(<) := {(w0, w1, w2) ∈ R3
+ : w0 < w1 + w2}

W(>) := {(w0, w1, w2) ∈ R3
+ : w0 > w1 + w2}

W(=) := {(w0, w1, w2) ∈ R3
+ : w0 = w1 + w2}.
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In the following three subsections we analyze the optimization problem for each set of weight
vectors separately. This will be a reasonable division since they characterize the cases with
no common message rate, full common message rate, and the case with a trade-off between
the common rate and the individual rates.

Zero Common Message Rate

If w0 < w1 +w2, the formulation (5.15) of the optimization problem already shows that the
weighted rate sum is maximized by setting R0 = 0. Since otherwise, an increasing common
rate R0 would result in a decreasing weighted rate sum. Our intuition is confirmed by the
following results.

Proposition 5.11. Let w ∈ W(<) be a weight vector for the BBC with common messages.
Then for the weighted rate sum optimal rate triple we have R0 = 0.

Proof. Since ν1, ν2 ≥ 0, cf. (5.16e), condition (5.16b) shows that for w0 < w1 + w2 we
must have ξ > 0 which indeed implies R0 = 0 by (5.16g).

Clearly, if the rate of the common message is zero, the BBC with common messages reduces
to the BBC without common messages. Therefore, for weight vectorw′ = (0, w′1, w

′
2) ∈ R3

+

let Q′opt(w
′) be the optimal transmit covariance matrix for the BBC without common mes-

sages. Thereby, we know from [OWB09a, OJWB09] that it suffices to consider normalized
weight vectors only, i.e., w′1 +w′2 = 1, since the optimal transmit covariance matrix only de-
pends on the relation between the two individual weights and not on the exact values. Then
the optimum for the BBC with common messages is achieved by the same transmit covari-
ance matrix, i.e., Qopt(w) = Q′opt(w

′), for all weight vectors w ∈ W(<) with wi = w′i,
i = 1, 2, as long as w0 < w′1 + w′2 is satisfied. This means the BBC without common mes-
sages immediately determines the capacity achieving transmit strategies for the BBC with
common messages.

Another important issue is to characterize the optimal rate triples Ropt(w) =
(R0(w), R1(w), R2(w)) for given weight vector w = (w0, w1, w2).

Proposition 5.12. For weight vectorw ∈ W(<) letQopt(w) be the optimal transmit covari-
ance matrix for the BBC with common messages. Then the weighted rate sum optimal rate
tripleRopt(w) is

R0(w) = 0, (5.17a)

Ri(w) = Ci
(
Qopt(w)

)
, i = 1, 2. (5.17b)
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Figure 5.4: MISO Gaussian BBC with common messages with NR = 2, N1 = N2 = 1
for h1 = [1.3 1.3i]T , h2 = [1 − iei

π
3 ]T , P = 1, and σ2 = 1. For fixed

individual weightsw1 andw2, in Fig. 5.4(a) the point / characterizesRopt(w) for
allw ∈ W(<) with the fixed individual weights. The solid dashed line between /
and . corresponds to all Ropt(w) for w ∈ W(=). For all w ∈ W(>) the optimal
rate triples moves along the curved section and tends to the XOR solution in ◦.

Proof. The weighted rate sum optimal rate tripleRopt(w) follows immediately from Propo-
sition 5.11.

Remark 5.13. It shows that the weights for the common and individual messages have a
strong impact on further cross-layer designs. We see that for all weight vectors w ∈ W(<)

it is optimal to allocate no resources to the common message and to transmit solely the
individual messages which indeed influences the scheduling policy at the relay node.

Figure 5.4(a) depicts the capacity region of a MISO Gaussian BBC with common messages,
where the relay node has multiple antennas, while each receiving node is only equipped with
a single antenna. For all weight vectors w ∈ W(<) we see from (5.17) that R0(w) = 0 and
the weighted rate sum optimal rate triples Ropt(w) describe the boundary of the capacity
region on the R1/R2-plane as further studied in [OWB09a, OJWB09].
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Full Common Message Rate

Next, we turn to the more interesting case where the weight of the common message exceeds
the weights of the individual messages, i.e., w0 > w1 + w2.

Proposition 5.14. Let w ∈ W(>) be a weight vector for the BBC with common messages.
Then for the weighted rate sum optimal rate triple we have R0 > 0.

Proof. We prove the proposition by contradiction. Let us assume R0 = 0 so that ν1 = 0 and
ν2 = 0 by (5.16g). Since w0 > w1 + w2, condition (5.16b) can only be satisfied if ξ < 0
which is a contradiction to (5.16e). Therefore, if w0 > w1 + w2, we must have R0 > 0
which proves the proposition.

Intuitively we would expect that it is optimal to allocate all available resources to the common
message. But the rate of the common message is limited by a min operation, cf. Remark 5.6,
so that this might not maximize the weighted rate sum in general. Therefore, similar to the
previous case we want to know when a given transmit covariance matrix that is optimal for
the BBC without common messages is also optimal for the BBC with common messages.

Theorem 5.15. For weight vector w′ = (0, w′1, w
′
2) ∈ R3

+ let Q′opt(w
′) be the optimal

transmit covariance matrix for the BBC without common messages. For all weight vectors
w ∈ W(>) that further satisfy, if C1(Q′opt(w

′)) < C2(Q′opt(w
′)), the condition

w0 = w′1 + w′2, w1 < w′1, w2 = w′2, (5.18a)

or, if C1(Q′opt(w
′)) > C2(Q′opt(w

′)), the condition

w0 = w′1 + w′2, w1 = w′1, w2 < w′2, (5.18b)

or, if C1(Q′opt(w
′)) = C2(Q′opt(w

′)), the condition

w0 = w′1 + w′2, w1 ≤ w′1, w2 ≤ w′2, (5.18c)

the optimum for the BBC with common messages is achieved by the same transmit covariance
matrix, i.e.,Qopt(w) = Q′opt(w

′).

Proof. We start with case (5.18a) and note that we have ξ = 0 by (5.16g) sinceR0 > 0 which
follows from Proposition 5.14. If C1(Q′opt(w

′)) < C2(Q′opt(w
′)), then from (5.16c) follows

thatR0 < C2(Q′opt(w
′)) which immediately implies together with (5.16g) that ν2 = 0. With

this, (5.16a) reads as

µINR −Ψ = (w1 + ν1)C ′1
(
Q′opt(w

′)
)

+ w2C
′
2

(
Qopt(w

′)
)
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which is exactly the same structure as the MIMO Gaussian BBC without common messages
has, cf. for example [OJWB09, Eq. (2a)]. Consequently, the optimization problem of the
BBC with common messages becomes the optimization problem of the BBC without com-
mon messages but with modified individual weights w′2 = w2 and w′1 = w1 +ν1 = w0−w2

where the last equality follows from (5.16b). Hence, the optimal transmit covariance ma-
trix Q′opt(w

′) for the BBC without common messages and weight vector w′ = (0, w′1, w
′
2)

is also a solution of the corresponding problem of the BBC with common messages for all
weight vectorsw ∈ W(>) that further satisfy w0 = w′1 +w′2, w1 < w′1, and w2 = w′2 which
proves the first assertion (5.18a).

Now, the case (5.18b) follows accordingly using the same arguments. Furthermore, the third
assertion (5.18c) follows immediately from (5.16a) and (5.16b) and νi ≥ 0, i = 1, 2.

Remark 5.16. A given weight vectorw′ uniquely characterizes the optimal transmit covari-
ance matrix Q′opt(w

′) for the BBC without common messages, cf. [OWB09a, OJWB09] and
immediately determines the maximal unidirectional rates C1(Q′opt(w

′)) and C2(Q′opt(w
′))

for given Q′opt(w
′). But more important, it directly affects the common rate, since it is re-

stricted by the minimum of the two maximal unidirectional rates, cf. also Remark 5.6. This
substantiates the result that an optimal transmit covariance matrix Q′opt(w

′) for the BBC
without common messages is also optimal for the BBC with common messages for three dif-
ferent sets of weight vectors based on the relation between the maximal unidirectional rates
C1(Q′opt(w

′)) and C2(Q′opt(w
′)), respectively.

Furthermore, the results so far allow to characterize the weighted rate sum optimal rate triples
Ropt(w) for weight vectors w ∈ W(>) in detail. Similarly as in Theorem 5.15 we have to
distinguish between three cases.

Proposition 5.17. For weight vectorw ∈ W(>) letQopt(w) be the optimal transmit covari-
ance matrix for the BBC with common messages. If C1(Qopt(w)) < C2(Qopt(w)), then the
weighted rate sum optimal rate tripleRopt(w) is

R0(w) = C1

(
Qopt(w)

)
(5.19a)

R1(w) = 0 (5.19b)

R2(w) = C2

(
Qopt(w)

)
− C1

(
Qopt(w)

)
. (5.19c)

If C1(Qopt(w)) > C2(Qopt(w)), then the weighted rate sum optimal rate triple is
Ropt(w) = (C2(Qopt(w)), C1(Qopt(w))− C2(Qopt(w)), 0).

If C1(Qopt(w)) = C2(Qopt(w)), thenRopt(w) is

R0(w) = C1

(
Qopt(w)

)
(5.20a)

Ri(w) = 0, i = 1, 2. (5.20b)
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Proof. We start with the proof of the first case, then the second one follows accordingly
using the same arguments. If C1(Qopt(w)) < C2(Qopt(w)), then R0(w) < C2(Qopt(w))
so that ν2 = 0 by (5.16g). Further, from Proposition 5.14 we know that in the optimal
rate triple we have R0(w) > 0 so that ξ = 0 by (5.16g). With this, (5.16b) reads as
w0 = w1 + w2 + ν1 which implies that ν1 > 0 since w0 > w1 + w2 by assumption. From
this follows R0(w) = C1(Qopt(w)) by (5.16g) so that the weighted rate sum optimal rate
tripleRopt(w) is given by (5.19).

It remains to prove the third case C1(Qopt(w)) = C2(Qopt(w)). Since R0(w) > 0, we
have ξ = 0 so that (5.16b) becomes w0 = w1 + w2 + ν1 + ν2. Since w0 > w1 + w2

by assumption, this immediately implies that ν1 > 0 or ν2 > 0. If ν1 > 0 then
R0(w) = C1(Qopt(w)) = C2(Qopt(w)) by (5.16g). Similarly, ν2 > 0 leads to R0(w) =
C2(Qopt(w)) = C1(Qopt(w)) so that the weighted rate sum optimal rate triple Ropt(w) is
given by (5.20).

Going back to our example in Figure 5.4(a) we see that for all weight vectors w ∈ W(>)

the weighted rate sum optimal rate triples Ropt(w) describe the boundaries of the capacity
region on the R0/R1- and R0/R2-plane respectively. In more detail, all rate triplesRopt(w)
with C1(Qopt(w)) < C2(Qopt(w)) lie on the R0/R2-plane and with C1(Qopt(w)) >
C2(Qopt(w)) on the R0/R1-plane. For equality, i.e., C1(Qopt(w)) = C2(Qopt(w)), the
rate triple Ropt(w) characterizes the XOR solution on the R0-axis (denoted by point ◦ in
Figure 5.4(a)).

This substantiates the fact that an optimal transmit strategy for the BBC without common
messages for one specific weight vector is optimal for the BBC with common messages for
a whole set of weight vectors as specified in (5.18). For example consider the following. For
all w ∈ W(>) it is optimal to allocate as much rate to the common message as possible. If
C1(Qopt(w)) < C2(Qopt(w)), then R1(w) = 0 which implies thatRopt(w) is the same for
all weight vectors w ∈ W(>) with fixed w0 and w2 as long as w1 < w0 − w2. Moreover, it
follows that the boundary of the capacity region on the R0/R2-plane is solely characterized
by the relation between the weights w0 and w2.

Dominant Surface

Already in (5.15) we see that if w0 = w1 + w2, the weighted rate sum is independent of the
common rate. This indicates that we can interchange the rate of the common message and
the rates of the individual messages.

Theorem 5.18. For weight vector w′ = (0, w′1, w
′
2) ∈ R3

+ let Q′opt(w
′) be the optimal

transmit covariance matrix for the BBC without common messages. Then for all weight
vectors w ∈ W(=) with w0 = w′1 + w′2 and wi = w′i, i = 1, 2, the optimum for the BBC
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with common messages is achieved by the same transmit covariance matrix, i.e.,Qopt(w) =
Q′opt(w

′).

Proof. If R0 = 0, then ν1 = ν2 = 0 by (5.16g) which implies that (5.16a) becomes
µINR−Ψ = w1C

′
1(Q)+w2C

′
2(Q). Again, this is the BBC without common messages and

individual weights w′i = wi, i = 1, 2, so that the optimal transmit covariance matrix for the
BBC without common messages immediately determines the one for the BBC with common
messages.

If R0 > 0, then ξ = 0 by (5.16g) so that (5.16b) reads as w0 = w1 + w2 + ν1 + ν2. Since
νi ≥ 0, i = 1, 2, by (5.16e), Equation (5.16b) is only valid if ν1 = ν2 = 0. Consequently,
(5.16a) becomes µINR −Ψ = w1C

′
1(Q) + w2C

′
2(Q). The same arguments as in the first

case finish the proof.

Proposition 5.19. For weight vectorw ∈ W(=) letQopt(w) be the optimal transmit covari-
ance matrix for the BBC with common messages. Then the weighted rate sum optimal rate
triplesRopt(w) are

R0(w) ≤ min
{
C1

(
Qopt(w)

)
, C2

(
Qopt(w)

)}
,

Ri(w) = Ci
(
Qopt(w)

)
−R0(w), i = 1, 2.

Proof. Ropt(w) follows immediately from Theorem 5.18.

We see that for the weighted rate sum optimal rate triples there is a trade-off between the
common rate and the individual rates as illustrated in Figure 5.4(a). For a given weight
vector w ∈ W(=) the optimal rate triples Ropt(w) correspond to a line that begins on the
boundary on the R1/R2-plane and ends on the R0/R1- or R0/R2-plane (visualized by gray
dashed-dotted lines). Consequently, the weight vectors w ∈ W(=) characterizes the domi-
nant surface of the capacity region completely.

Interpretation

There is another interpretation. If we fix some individual weights w1 and w2, the optimal
rate triple is always on the R1/R2-plane (for example given by the point / in Figure 5.4(a)),
as long as the common weight fulfills w0 < w1 +w2. This immediately implies that the sum
rate performance is the same as for the corresponding BBC without common messages.

In the case of equality, i.e., w0 = w1 + w2, all rate triples on the connecting line between
the points / and . are optimal. If w0 > w1 + w2 the optimal rate triple is on the R0/R1-
or R0/R2-plane and with increasing common weight w0 the optimal rate triple moves along
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the corresponding boundary and tends to the XOR solution in point ◦ as w0 → ∞. Fig-
ure 5.4(b) depicts the achievable rate region that is characterized by the XOR solution. Since
the common message is transmitted to both receiving nodes, a positive common rate reduces
the maximal achievable rates for both individual messages, cf. also (5.9). Moreover, for the
XOR solution in point ◦ the common rate uses all available resources so that both individual
rates are zero.

5.2.5 Applications

In the previous section we established a strong connection between the transmit covariance
matrix optimization problems for the BBC with and without common messages. This was
done by showing that an optimal transmit covariance matrix for the BBC without common
messages is also a solution for certain optimization problems for the BBC with common
messages.

We indicate that this connection can be exploited to easily transfer results from one case
to the other one which shows that the results obtained in the previous section are not only
relevant in itself. In the following we briefly review results from [OWB09a, OJWB09] where
we assume that the reader is familiar with these references. But we want to accent that these
are only examples and that there are much more results which can be transfered in a similar
way. The aim of this section is to demonstrate the usefulness of the established connection
between the BBC with and without common messages.

First, we consider a MISO scenario, where the relay node is equipped with multiple antennas,
while the two other nodes each have a single antenna. Then we know from [OWB09a] that
beamforming into the subspace spanned by the channels is always optimal for the BBC
without common messages. This means that for all weight vectors w′ the optimal transmit
covariance matrix Q′opt(w

′) is of rank one. From the previous section we know that for
certain weights the transmit strategy Q′opt(w

′) is also optimal for the BBC with common
messages. More precisely, this means that for weight vectors w as specified by the results
from the previous section, the optimal transmit covariance matrix Qopt(w) for the BBC
with common messages is immediately determined byQopt(w) = Q′opt(w

′). Consequently,
Qopt(w) is also of rank one and beamforming into the subspace spanned by the channels is
optimal for the BBC with common messages.

Furthermore, it is shown that the normalized capacity-achieving beamforming vector for the
BBC without common messages can be expressed as a linear combination of the two channel
directions with a fixed phase difference between the coefficients. This transfers to the BBC
with common messages in a similar fashion. Interestingly, it is shown that the correlation
between the channels is advantageous.
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Moreover, this allows to characterize the transmit strategy that realizes equal sum rates.
Again, the previous section determines when the corresponding transmit strategy for the
BBC without common messages transfers to the one with common messages. In particular,
this is an interesting transmit strategy since it characterizes the rate region that is achievable
using (suboptimal) network coding strategies such as the XOR coding approach [LJS05,
HKE+07] as depicted in Figure 5.4(b).

For the MIMO scenario, the situation is much more complicated since in general there exist
different equivalent transmit strategies with different ranks. But for the special case where
the ranks of the channels is equal to the number of antennas at the relay node and a full-
rank transmission is optimal, the optimal transmit covariance matrix for the BBC without
common messages can be obtained in closed-form from [OJWB09]. Accordingly, once we
obtained the optimal covariance matrix, it immediately transfers to the BBC with common
messages under certain weight conditions. The same is true for the case of parallel channels.
In particular this is a relevant scenario since it immediately provides also solutions for the
power allocation problem of a single-antenna OFDM system.

5.3 Integration of Confidential Messages

In this section we consider the scenario where the relay integrates only confidential messages
for one receiving node which should be kept secret from the other, non-legitimate node. This
is the bidirectional broadcast channel (BBC) with confidential messages.

5.3.1 Bidirectional Broadcast Channel with Confidential Messages

The definition of an (n,M
(n)
c ,M

(n)
1 ,M

(n)
2 )-code Cmc(W ) deduces from Definition 5.1.

Similarly, the definitions of an achievable rate-equivocation tuple, capacity-equivocation re-
gionRmc(W ), and secrecy capacity regionRSmc(W ) of the BBC with confidential messages
follow immediately from Definition 5.3 and Remark 5.4.

Theorem 5.20. The capacity-equivocation region Rmc(W ) of the BBC with confidential
messages is a closed convex set of those rate-equivocation tuples (Rc, Re, R1, R2) ∈ R4

+

that satisfy

0 ≤ Re ≤ Rc
Re ≤ I(V; Y1|U)− I(V; Y2|U)

Rc +Ri ≤ I(V; Y1|U) + I(U; Yi), i = 1, 2

Ri ≤ I(U; Yi), i = 1, 2
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for random variables U − V − X − (Y1,Y2) with joint probability distribution
pU(u)pV|U(v|u)pX|V(x|v)W (y1, y2|x). Moreover, the cardinalities of the ranges of U and
V can be bounded by

|U| ≤ |X |+ 3, |V| ≤ |X |2 + 4|X |+ 3.

Remark 5.21. While for the BBC without confidential messages the auxiliary random vari-
able U only enables a time-sharing operation and carries no information, cf. Theorem 2.5
and 5.5, for the BBC with confidential messages we will see that U carries the public infor-
mation and V realizes an additional randomization.

From Theorem 5.20 follows immediately the secrecy capacity region RSmc(W ) of the BBC
with confidential messages which is the set of rate triples (Rc, R1, R2) ∈ R3

+ such that
(Rc, Rc, R1, R2) ∈ Rmc(W ).

Corollary 5.22. The secrecy capacity region RSmc(W ) of the BBC with confidential mes-
sages is the set of all rate triples (Rc, R1, R2) ∈ R3

+ that satisfy

Rc ≤ I(V; Y1|U)− I(V; Y2|U)

Ri ≤ I(U; Yi), i = 1, 2

with perfect secrecy, i.e., (5.2) is satisfied, for random variables U−V−X− (Y1,Y2) with
joint probability distribution pU(u)pV|U(v|u)pX|V(x|v)W (y1, y2|x).

The capacity-equivocation region in Theorem 5.20 describes the scenario where the confi-
dential message is transmitted with rate Rc at a certain secrecy level Re. Thereby, the equiv-
ocation rate Re can be interpreted as the amount of information of the confidential message
that can be kept secret from the non-legitimate node. Therefore, Theorem 5.20 includes the
case where the non-legitimate node has some partial knowledge about the confidential in-
formation, namely if Rc > Re. The secrecy capacity region in Corollary 5.22 characterizes
the scenario with perfect secrecy which is, from today’s point of view, the practically more
relevant case. Since Rc = Re, the confidential message can be kept completely hidden from
the non-legitimate node.

In the following we prove Theorem 5.20 and therewith establish the capacity-equivocation
regionRmc(W ) of the BBC with confidential messages.

5.3.2 Secrecy-Achieving Coding Strategy

In this subsection we present a coding strategy that achieves the desired rates with the re-
quired secrecy level and therewith we prove the achievability part of Theorem 5.20.

107



5 Physical Layer Service Integration in Bidirectional Relay Networks

Codebook Design

A crucial part is the construction of a suitable codebook with a specific structure consisting
of two layers: one for the public and one for the confidential communication. This is done
in the following Lemma 5.23.

The first layer corresponds to a codebook that is suitable for the relay to transmit public
(bidirectional) messages m′2 ∈ M′2 and m′1 ∈ M′1 to nodes 1 and 2 as well as a public
common message m′0 ∈ M′0 to both nodes. This corresponds to the coding problem for the
BBC with common messages, cf. Section 5.2.

Then, for each codeword there is a sub-codebook with a product structure similarly as in
[CK78] for the classical broadcast channel with confidential messages. The legitimate re-
ceiver for the confidential message, i.e., node 1, can decode each codeword regardless to
which column and row index it corresponds. But the main idea behind such a codebook
design is that the non-legitimate receiver, i.e., node 2, has to decode the column index of the
transmitted codeword with the maximum rate its channel provides, and therefore is not able
to decode the remaining row index [LPS09].

Lemma 5.23. For any δ > 0 let U−X− (Y1,Y2) be a Markov chain of random variables
and I(X; Y1|U) > I(X; Y2|U).

i) There exists a set of (public) codewords unm′ ∈ Un, m′ = (m′0,m
′
1,m

′
2) ∈ M′0 ×M′1 ×

M′2 =:M′, with

1
n

(
log |M′0|+ log |M′2|

)
≥ I(U; Y1)− δ (5.21a)

1
n

(
log |M′0|+ log |M′1|

)
≥ I(U; Y2)− δ (5.21b)

such that

1

|M′|
∑

m′∈M′
e1(m′0,m

′
2|m′1) ≤ ε(n) (5.22a)

1

|M′|
∑

m′∈M′
e2(m′0,m

′
1|m′2) ≤ ε(n) (5.22b)

and ε(n) → 0 as n → ∞. Thereby, e1(m′0,m
′
2|m′1) denotes the probability that node 1

decodes (m′0,m
′
2) ∈ M′0 ×M′2 incorrectly if m′1 ∈ M′1 is given. The probability of error

e2(m′0,m
′
1|m′2) for node 2 is defined accordingly.

ii) For each unm′ ∈ Un there exists (confidential) codewords xnjlm′ ∈ X n, j ∈ J , l ∈ L,
m′ ∈M′, with

1
n log |J | ≥ I(X; Y2|U)− δ, (5.23a)
1
n log |L| ≥ I(X; Y1|U)− I(X; Y2|U)− δ, (5.23b)
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such that

1

|J ||L||M′|
∑
j∈J

∑
l∈L

∑
m′∈M′

e1(j, l|m′) ≤ ε(n) (5.24a)

1

|J ||L||M′|
∑
j∈J

∑
l∈L

∑
m′∈M′

e2(j|l,m′) ≤ ε(n) (5.24b)

and ε(n) → 0 as n → ∞. Here, e1(j, l|m′) is the probability that node 1 decodes j ∈ J or
l ∈ L incorrectly if m′ ∈ M′ is known. Similarly, e2(j|l,m′) is the probability that node 2
decodes j ∈ J incorrectly if l ∈ L and m′ ∈M′ are given.

Proof. The proof exploits ideas from the BBC with common messages for the first part, cf.
also Section 5.2, and from the classical broadcast channel with confidential messages [CK78]
for the second part. For completeness, the details can be found in Appendix A.9.

Of course, the communication of confidential information and especially the codebook de-
sign above is only meaningful, if the channel from the relay node to the intended receiver
provides higher rates than the one to the non-legitimate node. From Lemma 5.23 we see that
I(X; Y1|U) > I(X; Y2|U) is the limiting criterion that decides if confidential communica-
tion is possible or not.

Achievable Equivocation-Rate Region

Next, we use the codebook from Lemma 5.23 to construct suitable encoder and decoders for
the BBC with confidential messages.

Lemma 5.24. Let U − X − (Y1,Y2) be a Markov chain of random variables and
I(X; Y1|U) > I(X; Y2|U). Using the codebook from Lemma 5.23 all rate-equivocation
tuples (Rc, Re, R1, R2) ∈ R4

+ that satisfy

0 ≤ Re = I(X; Y1|U)− I(X; Y2|U) ≤ Rc (5.25a)

Rc +Ri ≤ I(X; Y1|U) + I(U; Yi), i = 1, 2 (5.25b)

Ri ≤ I(U; Yi), i = 1, 2 (5.25c)

are achievable for the BBC with confidential messages.
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I(U; Y1)

I(U; Y2) I(X; Y2|U)

I(X; Y1|U)

LJM′
0M′

1M′
2

Rc ≥ I(X; Y1|U)

Figure 5.5: The two bars visualize the available resources of both links. Each one is split
up into two parts: one designated for the public communication (gray) and one
for the confidential communication (white). Since Rc ≥ I(X; Y1|U), some re-
sources of the bidirectional communication have to be spent for the confidential
message as well (realized by a common message).

Proof. For any δ > 0 and given rate-equivocation tuple (Rc, Re, R1, R2) ∈ R4
+ satisfying

(5.25a)-(5.25c) we have to construct message sets, encoder, and decoders with

1
n log |Mc| ≥ Rc − δ (5.26a)
1
n log |M2| ≥ R1 − δ (5.26b)
1
n log |M1| ≥ R2 − δ (5.26c)

and further, cf. also (5.1),

1
nH(Mc|Yn

2 ,M2) ≥ I(X; Y1|U)− I(X; Y2|U)− δ. (5.27)

The following construction is mainly based on the one for the classical broadcast channel
with confidential messages [CK78]. Thereby, we have to distinguish between two cases as
visualized in Figures 5.5 and 5.6.

If Rc ≥ I(X; Y1|U), cf. Figure 5.5, we construct the set of confidential messages as

Mc := J × L×M′0
where the sets J and L are chosen as in Lemma 5.23 andM′0 is an arbitrary set of common
messages such that (5.26a) is satisfied. The setsM1 = M′1 andM2 = M′2 are arbitrary
such that (5.26b)-(5.26c) hold. Finally, we define the deterministic encoder f that maps the
confidential message (j, l,m′0) ∈ Mc and the individual messages mi ∈ Mi, i = 1, 2, into
the codeword xnjlm′ ∈ X n with m′ = (m′0,m

′
1,m

′
2) and m′i = mi, i = 1, 2.

Remark 5.25. Since Rc ≥ I(X; Y1|U), a part of the confidential message must be trans-
mitted as a common message using resources designated for the public communication, cf.
Figure 5.5. It is not possible to simply "add" the remaining part to the individual message for
node 1, since this would require that this part of the confidential message is already available
a priori as side information at node 2.
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I(X; Y2|U)

I(X; Y1|U)

I(U; Y2)

I(U; Y1)

M′
1M′

2 LJ

Rc < I(X; Y1|U)

K

Figure 5.6: Since Rc < I(X; Y1|U), there are more resources for the confidential communi-
cation available than needed. This allows the relay to enable a stochastic coding
strategy that exploits all the available resources by introducing a mapping from
J to K.

If Rc < I(X; Y1|U), cf. Figure 5.6, we setMc := K × L where K is an arbitrary set such
that (5.26a) holds. Further, we define a mapping h : J → K that partitions J into subsets
of "nearly equal size" [CK78], which means

|h−1(k)| ≤ 2|h−1(k′)|, for all k, k′ ∈ K.

Moreover, since Rc < I(X; Y1|U), there is no need for a set of common messages so that
M′0 = ∅. The setsM1 =M′1 andM2 =M′2 are arbitrary such that (5.26b)-(5.26c) hold.
Finally, we define the stochastic encoder f that maps the confidential message (k, l) ∈ Mc

and the individual messages mi ∈ Mi, i = 1, 2, into the codeword xnjlm′ ∈ X n with
m′ = (0,m′1,m

′
2), where j is uniformly drawn from the set h−1(k) ⊂ J and m′i = mi,

i = 1, 2.

Remark 5.26. This time, set J is not needed in total for the confidential communication.
However, to force the non-legitimate receiver, i.e., node 2, to decode at its maximum rate,
we define a stochastic encoder that "spreads" the confidential messages over the whole set
J . Moreover, if Rc ≤ I(X; Y1|U) − I(X; Y2|U), the whole set J is used for additional
randomization.

Up to now we defined message sets and the encoder. In both cases the decoders are imme-
diately determined by the decoding sets given in Lemma 5.23, cf. Appendix A.9 for more
details. Hence, the achievability of the rates as specified in (5.25a)-(5.25c) follows immedi-
ately from Lemma 5.23.

To complete the proof it remains to show that this coding strategy achieves the required
secrecy level (5.27) at node 2. Proceeding as in [CK78] let Xn be the input random variable
of the channel, whose realizations are the codewords xnjlm′ ∈ X n (as specified by the encoder
above). Further, let M′ = (M′0,M

′
1,M

′
2) be the random variable that corresponds to the third

111



5 Physical Layer Service Integration in Bidirectional Relay Networks

index of the realization of Xn. With Mi = M′i, i = 1, 2, from the definition of the encoder
above, we get for the equivocation

H(Mc|Yn
2 ,M2) ≥ H(Mc|Yn

2 ,M
′)

= H(Mc,Y
n
2 |M′)−H(Yn

2 |M′)
= H(Mc,Y

n
2 ,X

n|M′)−H(Xn|Mc,M
′,Yn

2 )−H(Yn
2 |M′)

= H(Mc,X
n|M′) +H(Yn

2 |Mc,M
′,Xn)−H(Xn|Mc,M

′,Yn
2 )−H(Yn

2 |M′)
≥ H(Xn|M′) +H(Yn

2 |Xn)−H(Xn|Mc,M
′,Yn

2 )−H(Yn
2 |M′). (5.28)

In the following we bound all terms in (5.28) separately. We start with the first term and
observe that for given M′ = m′ the random variable Xn has |J ||L| possible values. Since we
assume Xn to be independently and uniformly distributed, we have H(Xn|M′) = log |J |+
log |L|. With the definition of the sets J and L, cf. (5.23) of Lemma 5.23, we obtain

1
nH(Xn|M′) −→

n→∞
I(X; Y1|U). (5.29)

For the second term in (5.28) we get from the weak law of large numbers

1
nH(Yn

2 |Xn) −→
n→∞

H(Y2|X). (5.30)

If Rc ≥ I(X; Y1|U), the third term in (5.28) vanishes, since given Mc and M′ the determin-
istic encoder already determines Xn. If Rc < I(X; Y1|U), we have a stochastic encoder and
define

ϕ(k, l,m′, yn2 ) =

{
xnklm′ if (unm′ , x

n
jlm′ , y

n
2 ) ∈ A(n)

ε (U,X,Y2), h(j) = k

arbitrary otherwise.

Then we have P{Xn 6= ϕ(Mc,M
′,Yn

2 )} ≤ ε(n) with ε(n) → 0 as n → ∞ and therefore, by
Fano’s lemma, cf. also [CK78, LPS09],

1
nH(Xn|Mc,M

′,Yn
2 ) −→

n→∞
0 (5.31)

so that the third term vanishes also in this case. For the last term in (5.28) we define

ŷn2 =

{
yn2 if (unm′ , y

n
2 ) ∈ A(n)

ε (U,Y2)

arbitrary otherwise

so that
H(Yn

2 |M′) ≤ H(Yn
2 |Ŷn

2 ) +H(Ŷn
2 |M′).
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For the first term we have P{Yn
2 6= Ŷn

2 } ≤ ε(n) with ε(n) → 0 as n→∞ by Fano’s lemma,
cf. [CK78, LPS09], so that it is negligible. Moreover, following [CK78, LPS09] for given
M′ = m′ we get for the conditional entropy

H(Ŷn
2 |M′ = m′) ≤ log |A(n)

ε (Y2|unm′)|
≤ log(2n(H(Y2|U)+2ε)) = n(H(Y2|U) + 2ε)

where the second inequality follows from the definition of the decoding sets, cf. also [CT06,
Theorem 15.2.2]. With this we obtain

1
nH(Ŷn

2 |M′) −→n→∞ H(Y2|U). (5.32)

Finally, by substituting (5.29)-(5.32) into (5.28) we obtain (5.27) which establishes the de-
sired secrecy level at node 2 and therewith proves the lemma.

Randomization and Convexity

Here, we complete the proof of achievability of Theorem 5.20 where the argumentation goes
along with the one for the classical broadcast channel with confidential messages [CK78].

To obtain the whole region as given in Theorem 5.20, we follow [CK78] and introduce an
auxiliary channel that enables an additional randomization.

Lemma 5.27. Let U − V − X − (Y1,Y2) be a Markov chain of random variables and
I(V; Y1|U) > I(V; Y2|U). Then all rate-equivocation tuples (Rc, Re, R1, R2) ∈ R4

+ that
satisfy

0 ≤ Re ≤ I(V; Y1|U)− I(V; Y2|U) ≤ Rc (5.33a)

Rc +Ri ≤ I(V; Y1|U) + I(U; Yi), i = 1, 2 (5.33b)

Ri ≤ I(U; Yi), i = 1, 2 (5.33c)

are achievable for the BBC with confidential messages. The corresponding rate region is
denoted by R̃mc(W ).

Proof. The prefixing realized by the random variable V is exactly the same as in [CK78,
Lemma 4]. Moreover, it is obvious that if the rate-equivocation tuple (Rc, Re, R1, R2) is
achievable, than each rate-equivocation tuple (Rc, R

′
e, R1, R2) with 0 ≤ R′e ≤ Re is also

achievable. Consequently, we can further replace the equality in (5.25a) by an inequality in
(5.33a). Then the desired region follows immediately from Lemma 5.24.

Lemma 5.28. The rate region R̃mc(W ) is convex.
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Proof. Exactly as in [CK78, Lemma 5] it is easy to show that any linear combination of two
rate-equivocation tuples in R̃mc(W ) is contained in R̃mc(W ).

In more detail, we follow [CK78, Lemma 5] and define rate tuples (R′c, R
′
e, R

′
1, R

′
2) and

(R′′c , R
′′
e , R

′′
1 , R

′′
2) that satisfy (5.33) with corresponding random variables U1 −V1 −X1 −

(Y1,1,Y2,1) and U2 − V2 − X2 − (Y1,2,Y2,2). Further, let J be a time-sharing random
variable that is independent of all other random variables and distributed over {1, 2} with
probabilities α and 1− α. Now, we define

U := (UJ, J), V := VJ, X := XJ, Y1 := Y1,J, Y2 := Y2,J.

Then, we have U−V −X− (Y1,Y2) and

I(V; Yi|U) = αI(V1; Yi,1|U1) + (1− α)I(V2; Yi,2|U2)

I(U; Yi) ≥ I(U; Yi|J) = αI(U1; Yi,1) + (1− α)I(U2; Yi,2),

i = 1, 2, which implies that

α(R′c, R
′
e, R

′
1, R

′
2) + (1− α)(R′′c , R

′′
e , R

′′
1 , R

′′
2) ∈ R̃mc(W )

proving the lemma.

It remains to show that R̃mc(W ) describes the same rate region as the one specified by
Theorem 5.20.

Lemma 5.29. The rate region R̃mc(W ) equals the capacity region Rmc(W ) given in The-
orem 5.20.

Proof. It is obvious that R̃mc(W ) ⊆ Rmc(W ) holds. To show the reversed inclusion, i.e.,
Rmc(W ) ⊆ R̃mc(W ), let (Rc, Re, R1, R2) ∈ Rmc(W ) be any rate-equivocation tuple. For
this, we construct as in [CK78] the maximal achievable confidential and equivocation rates
that are possible for given individual rates R1 and R2 as

R∗c := I(V; Y1|U) + min
{
I(U; Y1)−R1, I(U; Y2)−R2

}
R∗e := I(V; Y1|U)− I(V; Y2|U).

Then we have Re ≤ R∗e , R∗e ≤ Rc ≤ R∗c , and therewith also (R∗c , R
∗
e, R1, R2) ∈

R̃mc(W ). Now, from the definition of R̃mc(W ) follows that the rate-equivocation tuples
(R∗c , R

∗
e, R1, R2), (R∗c , 0, R1, R2), and (0, 0, R1, R2) belong to R̃mc(W ) as well. Finally,

from the convexity of R̃mc(W ), cf. Lemma 5.28, follows that (Rc, Re, R1, R2) ∈ R̃mc(W )
which proves the lemma.

To complete the proof of achievability it remains to bound the cardinalities of the ranges of
U and V. Since the bounds of the cardinalities depend only on the structure of the random
variables, the result follows immediately from [CK78, Appendix] where the same bounds
are established for the classical broadcast channel with confidential messages.
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5.3.3 Converse

Already the presented coding strategy indicates that, basically, the BBC with confiden-
tial messages exploits ideas of the BBC (with common messages), cf. Section 5.2 and
[OSBB08], and also of the classical broadcast channel with confidential messages [CK78].
Based on this observation it is easy to establish the weak converse by extending the con-
verse of the classical broadcast channel with confidential messages [CK78] using standard
arguments for the BBC, cf. Section 5.2 and [OSBB08].

We have to show that for any given sequence {C(n)
mc (W )}n∈N of (n,M

(n)
c ,M

(n)
1 ,M

(n)
2 )-

codes with ē1, ē2 → 0 there exist random variables U−V −X− (Y1,Y2) such that
1
nH(Mc|Yn

2 ,M2) ≤ I(V; Y1|U)− I(V; Y2|U) + o(n0)
1
nH(M2) ≤ I(U; Y1) + o(n0)
1
nH(M1) ≤ I(U; Y2) + o(n0)

1
n

(
H(Mc) +H(M2)

)
≤ I(V; Y1|U) + I(U; Y1) + o(n0)

1
n

(
H(Mc) +H(M1)

)
≤ I(V; Y1|U) + I(U; Y2) + o(n0)

are satisfied. For this purpose we need a version of Fano’s lemma suitable for the BBC with
confidential messages.

Lemma 5.30 (Fano’s inequality). For the BBC with confidential messages we have the fol-
lowing versions of Fano’s inequality

H(Mc,M2|Yn
1 ,M1) ≤ ē1 log(M (n)

c M
(n)
2 ) + 1 = nε

(n)
1 ,

H(M1|Yn
2 ,M2) ≤ ē2 logM

(n)
1 + 1 = nε

(n)
2 ,

with ε(n)
1 = 1

n log(M
(n)
c M

(n)
2 )ē1 + 1

n → 0 and ε(n)
2 = 1

n log(M
(n)
1 )ē2 + 1

n → 0 for n→∞
as ē1, ē2 → 0.

Proof. In Appendix A.8 we prove Fano’s inequality for the BBC with common and con-
fidential messages. The case with only confidential messages can easily be deduced from
this.

We start with some upper bounds on the entropy terms. Using the fact that Mc, M1, M2

are independent, the definition of mutual information, the chain rule for entropy, and Fano’s
inequality, cf. Lemma 5.30, we obtain similarly as in [CK78, Eqs. (35)-(37)]

H(Mc) ≤ I(Mc; Yn
1 |M1,M2) + nε

(n)
1 (5.34a)

H(M2) ≤ I(M1,M2; Yn
1 ) + nε

(n)
1 (5.34b)

H(M1) ≤ I(M1,M2; Yn
2 ) + nε

(n)
2 (5.34c)
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and further for the equivocation we get

H(Mc|Yn
2 ,M2) = H(Mc|Yn

2 ,M1,M2) + I(Mc; M1|Yn
2 ,M2)

= H(Mc|M1,M2)− I(Mc; Yn
2 |M1,M2) + I(Mc; M1|Yn

2 ,M2)

= I(Mc; Yn
1 |M1,M2)− I(Mc; Yn

2 |M1,M2)

+H(Mc|Yn
1 ,M1,M2) + I(Mc; M1|Yn

2 ,M2)

≤ I(Mc; Yn
1 |M1,M2)− I(Mc; Yn

2 |M1,M2) + nε
(n)
1 + nε

(n)
2 (5.35)

where the last inequality follows from Fano’s inequality, cf. Lemma 5.30, and
H(Mc|Yn

1 ,M1,M2) ≤ H(Mc,M2|Yn
1 ,M1) ≤ nε

(n)
1 and I(Mc; M1|Yn

2 ,M2) =

H(M1|Yn
2 ,M2)−H(M1|Yn

2 ,Mc,M2) ≤ H(M1|Yn
2 ,M2) ≤ nε(n)

2 .

The next step is to expand the mutual information terms in (5.34)-(5.35) by making extensive
use of the chain rule for mutual information. By replacing the common message in [CK78,
Sec. V] with our (bidirectional) individual messages, it is straightforward to show that,
similarly as in [CK78, Eqs. (38)-(41)], the mutual information terms in (5.34)-(5.35) can be
expressed as

I(Mc; Yn
1 |M1,M2) =

n∑
k=1

I(Mc; Y1,k|Yk−1
1 ,Yn

2,k+1,M1,M2) + Σ1 − Σ2 (5.36a)

I(Mc; Yn
2 |M1,M2) =

n∑
k=1

I(Mc; Y2,k|Yk−1
1 ,Yn

2,k+1,M1,M2) + Σ∗1 − Σ∗2 (5.36b)

and

I(M1,M2; Yn
1 ) ≤

n∑
k=1

I(Yk−1
1 ,Yn

2,k+1,M1,M2; Y1,k)− Σ1 (5.37a)

I(M1,M2; Yn
2 ) ≤

n∑
k=1

I(Yk−1
1 ,Yn

2,k+1,M1,M2; Y2,k)− Σ∗1 (5.37b)

where

Σ1 =

n∑
k=1

I(Yn
2,k+1; Y1,k|Yk−1

1 ,M1,M2)

Σ∗1 =

n∑
k=1

I(Yk−1
1 ; Y2,k|Yn

2,k+1,M1,M2)

and the analogous terms Σ2 and Σ∗2 with M1,M2 replaced by Mc,M1,M2.
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Lemma 5.31. We have the following identities: Σ1 = Σ∗1 and Σ2 = Σ∗2.

Proof. In [CK78, Lemma 7] a similar result for the classical broadcast channel with con-
fidential messages is given. Our result follows immediately by simply replacing the com-
mon message in [CK78, Lemma 7] by our two (bidirectional) individual messages M1 and
M2.

As in [CK78, Sec. V] we introduce an auxiliary random variable J that is independent of
Mc, M1, M2, Xn, Yn

1 , and Yn
2 and uniformly distributed over {1, ..., n}. Further, let

U := (YJ−1
1 ,Yn

2,J+1,M1,M2, J), V := (U,Mc), X := XJ, Y1 := Y1,J, Y2 := Y2,J

so that

1

n

n∑
k=1

I(Mc; Y1,k|Yk−1
1 ,Yn

2,k+1,M1,M2) = I(Mc; Y1|U) = I(V; Y1|U)

1

n

n∑
k=1

I(Mc; Y2,k|Yk−1
1 ,Yn

2,k+1,M1,M2) = I(Mc; Y2|U) = I(V; Y2|U)

and

1

n

n∑
k=1

I(Yk−1
1 ,Yn

2,k+1,M1,M2; Y1,k) = I(U; Y1|J) ≤ I(U; Y1)

1

n

n∑
k=1

I(Yk−1
1 ,Yn

2,k+1,M1,M2; Y2,k) = I(U; Y2|J) ≤ I(U; Y2).

Now, to complete the proof it remains to put all ingredients together. Therefore, we substitute
this into (5.36)-(5.37), apply Lemma 5.31, so that with (5.34)-(5.35) the weak converse is
established.

5.4 Integration of Common and Confidential Messages

Finally we are able to address the most general scenario as depicted in Figure 5.1 where
the relay integrates common and confidential messages. This is the bidirectional broadcast
channel (BBC) with common and confidential messages.
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Theorem 5.32. The capacity-equivocation region Rmc,m0(W ) of the discrete memory-
less BBC with common and confidential messages is the set of all rate-equivocation tuples
(Rc, Re, R0, R1, R2) ∈ R5

+ that satisfy

0 ≤ Re ≤ Rc (5.38a)

Re ≤ I(V; Y1|U)− I(V; Y2|U) (5.38b)

Rc +R0 +Ri ≤ I(V; Y1|U) + I(U; Yi), i = 1, 2 (5.38c)

R0 +Ri ≤ I(U; Yi), i = 1, 2 (5.38d)

for random variables U − V − X − (Y1,Y2) with joint probability distribution
pU(u)pV|U(v|u)pX|V(x|v)W (y1, y2|x). Moreover, the cardinalities of the ranges of U and
V can be bounded by

|U| ≤ |X |+ 3, |V| ≤ |X |2 + 4|X |+ 3.

From Theorem 5.32 follows immediately the secrecy capacity region RSmc,m0
(W ) of

the BBC with common and confidential messages which is the set of rate tuples
(Rc, R0, R1, R2) ∈ R4

+ such that (Rc, Rc, R0, R1, R2) ∈ Rmc,m0(W ).

Corollary 5.33. The secrecy capacity region RSmc,m0
(W ) of the discrete memoryless BBC

with common and confidential messages is the set of all rate tuples (Rc, R0, R1, R2) ∈ R4
+

that satisfy

Rc ≤ I(V; Y1|U)− I(V; Y2|U) (5.39a)

R0 +Ri ≤ I(U; Yi), i = 1, 2 (5.39b)

with perfect secrecy, i.e., (5.2) is satisfied, for random variables U−V−X− (Y1,Y2) with
joint probability distribution pU(u)pV|U(v|u)pX|V(x|v)W (y1, y2|x).

Remark 5.34. This result unifies the previous results obtained so far. It is obvious that
the BBC with confidential messages (and no common messages), cf. Corollary 5.22, is in-
cluded in (5.39). To obtain the region without confidential messages, i.e., the BBC with
common messages, cf. Theorem 5.5, we observe that there is no need for the auxiliary ran-
dom variables anymore, since there are no confidential messages to transmit. Therefore, we
set U = V = X in (5.39b) and obtain the region given by (5.3), cf. especially Remark 5.7. A
more detailed discussion for the MIMO Gaussian case is given in Section 5.5.3.

With the knowledge that we obtained for the previous (partial) scenarios where the relay
either integrates only a common message or a confidential message, we are able to address
the general scenario with common and confidential messages and therewith are able to prove
Theorem 5.32.
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I(U; Y1)

I(U; Y2) I(X; Y2|U)

I(X; Y1|U)

LJ

Rc ≥ I(X; Y1|U)

K
M′

1M′
2 M′

0

Figure 5.7: Available resources of each link are split up into two parts: one designated for
the public common and bidirectional communication (gray) and one for the con-
fidential communication (white). Since Rc ≥ I(X; Y1|U), the confidential mes-
sage needs some resources designated for the common communication.

5.4.1 Achievability

To prove the achievability part of Theorem 5.32 we especially benefit from the codebook
design given in Lemma 5.23. Although this codebook was originally designed for the BBC
with only confidential messages, it already has the properties that are needed for an additional
common message. With Lemma 5.23 we can show the following.

Lemma 5.35. Let U − X − (Y1,Y2) and I(X; Y1|U) > I(X; Y2|U). Using the codebook
from Lemma 5.23 all rate-equivocation tuples (Rc, Re, R0, R1, R2) ∈ R5

+ that satisfy

0 ≤ Re = I(X; Y1|U)− I(X; Y2|U) ≤ Rc (5.40a)

Rc +R0 +Ri ≤ I(X; Y1|U) + I(U; Yi), i = 1, 2 (5.40b)

R0 +Ri ≤ I(U; Yi), i = 1, 2 (5.40c)

are achievable for the BBC with common and confidential messages.

Proof. For given rate-equivocation tuple (Rc, Re, R0, R1, R2) ∈ R5
+ that satisfies (5.40a)-

(5.40c) we have to construct message sets, encoder, and decoders with

1
n log |Mc| ≥ Rc − δ (5.41a)
1
n log |M0| ≥ R0 − δ (5.41b)
1
n log |M1| ≥ R2 − δ (5.41c)
1
n log |M2| ≥ R1 − δ (5.41d)

and further, cf. also (5.1),

1
nH(Mc|Yn

2 ,M2) ≥ I(X; Y1|U)− I(X; Y2|U)− δ. (5.42)
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I(X; Y2|U)

I(X; Y1|U)

I(U; Y2)

I(U; Y1)

M′
0M′

1M′
2 LJ

Rc < I(X; Y1|U)

K

Figure 5.8: Since Rc < I(X; Y1|U), there are more resources for the confidential message
available than needed. This allows the relay to enable a stochastic encoding
strategy which exploits all the available resources by introducing a mapping from
J to K.

The construction is an extension of the one given in Lemma 5.24 by further integrating the
common message. Similarly, we have to distinguish between two cases as shown in Figures
5.7 and 5.8.

If Rc ≥ I(X; Y1|U), cf. Figure 5.7, the set of confidential messages is given by

Mc := J × L×K

where J and L are chosen according to Lemma 5.23 and K is an arbitrary set such that
(5.41a) holds. The setsM′1 =M1,M′2 =M2, andM′0 =M0 × K are chosen such that
(5.41b)-(5.41d) are satisfied. The deterministic encoder f maps the confidential message
(j, l, k) ∈ Mc, and the common and individual messages mi ∈ Mi, i = 0, 1, 2, into the
codeword xnjlm′ ∈ X n with m′ = (m′0,m

′
1,m

′
2) with m′0 = (m0, k) and m′i = mi, i = 1, 2.

IfRc < I(X; Y1|U), cf. Figure 5.8, the set of confidential messages is given byMc := K×L
where K is arbitrary chosen such that (5.41a) is satisfied. In addition, we define a mapping
h : J → K which partitions the set J into subsets of "nearly equal size" [CK78], i.e.,

|h−1(k)| ≤ 2|h−1(k′)|, for all k, k′ ∈ K.

The sets M′i = Mi, i = 0, 1, 2, are arbitrary such that (5.41b)-(5.41d) are satisfied.
The stochastic encoder f maps the confidential message (k, l) ∈ Mc and the common
and individual messages mi ∈ Mi, i = 0, 1, 2, into the codeword xnjlm′ ∈ X n with
m′ = (m′0,m

′
1,m

′
2) and m′i = mi, i = 0, 1, 2. The index j is uniformly drawn from

the set h−1(k) ⊂ J .

In both cases the decoders are immediately determined by the codebook design given in
Lemma 5.23. It remains to show that the equivocation rate fulfills (5.42). Since the confi-
dential message is encoded in the same way as in Lemma 5.24 for the BBC with confidential
messages (and no common message), we omit the details for brevity.
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5.4 Integration of Common and Confidential Messages

Once we have established the achievable rate-equivocation region in Lemma 5.35, it is
straightforward to show that this region equals the capacity-equivocation region stated in
Theorem 5.32. Since the argumentation follows exactly the one presented in Section 5.3.2,
we omit the details for brevity.

5.4.2 Converse

We have to show that for any given sequence {C(n)
mc,m0(W )}n∈N of

(n,M
(n)
c ,M

(n)
0 ,M

(n)
1 ,M

(n)
2 )-codes with ē1, ē2 → 0 there exist random variables

U−V −X− (Y1,Y2) such that
1
nH(Mc|Yn

2 ,M2) ≤ I(V; Y1|U)− I(V; Y2|U) + o(n0)
1
n

(
H(Mc) +H(M0) +H(M2)

)
≤ I(V; Y1|U) + I(U; Y1) + o(n0)

1
n

(
H(Mc) +H(M0) +H(M1)

)
≤ I(V; Y1|U) + I(U; Y2) + o(n0)

1
n

(
H(M0) +H(M2)

)
≤ I(U; Y1) + o(n0)

1
n

(
H(M0) +H(M1)

)
≤ I(U; Y2) + o(n0)

are satisfied. For this purpose we need a version of Fano’s lemma that is suitable for the BBC
with common and confidential messages.

Lemma 5.36 (Fano’s inequality). For the BBC with common and confidential messages we
have the following versions of Fano’s inequality

H(Mc,M0,M2|Yn
1 ,M1) ≤ ē1 log(M (n)

c M
(n)
0 M

(n)
2 ) + 1 = nε

(n)
1

H(M0,M1|Yn
2 ,M2) ≤ ē2 log(M

(n)
0 M

(n)
1 ) + 1 = nε

(n)
2

with ε(n)
1 = 1

n log(M
(n)
c M

(n)
0 M

(n)
2 )ē1 + 1

n → 0 and ε(n)
2 = 1

n log(M
(n)
0 M

(n)
1 )ē2 + 1

n → 0
for n→∞ as ē1, ē2 → 0.

Proof. The proof can be found in Appendix A.8.

For notational convenience we introduce the abbreviation Mp = (M0,M1,M2) for the public
communication. From the independence of Mc, M0, M1, M2, the chain rule for entropy, the
definition of mutual information, Fano’s inequality, cf. Lemma 5.36, and the chain rule for
mutual information we get for the entropies of the public messages

H(M0) +H(M2) = H(M0,M2|M1)

= I(M0,M2; Yn
1 |M1) +H(M0,M2|Yn

1 ,M1)

≤ I(M0,M2; Yn
1 |M1) + nε

(n)
1

≤ I(Mp; Yn
1 ) + nε

(n)
1 (5.43)
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and similarly

H(M0) +H(M1) ≤ I(Mp; Yn
2 ) + nε

(n)
2 . (5.44)

For the entropy of the confidential message we obtain

H(Mc) = H(Mc|Mp)

= I(Mc; Yn
1 |Mp) +H(Mc|Yn

1 ,Mp)

≤ I(Mc; Yn
1 |Mp) +H(Mc,M0,M2|Yn

1 ,M1)

≤ I(Mc; Yn
1 |Mp) + nε

(n)
1 (5.45)

and further for the equivocation at the non-legitimate node

H(Mc|Yn
2 ,M2) = H(Mc|Yn

2 ,Mp) + I(Mc; M0,M1|Yn
2 ,M2)

= H(Mc|Mp)− I(Mc; Yn
2 |Mp) + I(Mc; M0,M1|Yn

2 ,M2)

= I(Mc; Yn
1 |Mp)− I(Mc; Y2|Mp) +H(Mc|Yn

1 ,Mp) + I(Mc; M0,M1|Yn
2 ,M2)

≤ I(Mc; Yn
1 |Mp)− I(Mc; Yn

2 |Mp) + nε
(n)
1 + nε

(n)
2 (5.46)

where the last inequality follows from H(Mc|Yn
1 ,Mp) ≤ H(Mc,M0,M2|Yn

1 ,M1) ≤
nε

(n)
1 , I(Mc; M0,M1|Yn

2 ,M2) = H(M0,M1|Yn
2 ,M2) − H(M0,M1|Yn

2 ,Mc,M2) ≤
H(M0,M1|Yn

2 ,M2) ≤ nε(n)
2 , and Fano’s inequality, cf. Lemma 5.36.

Once we have established the bounds (5.43)-(5.46), the rest of the proof goes along with
Section 5.3.3. Starting from Equation (5.36) and introducing auxiliary random variables U
and V that satisfy the Markov chain relation U− V − X− (Y1,Y2) it is straightforward to
show that the rates are bounded by the desired conditions given in (5.38).

5.5 Confidential Messages in MIMO Gaussian
Bidirectional Relay Networks

In this section we prove the corresponding result for MIMO Gaussian channels. Therefore
we assume NR antennas at the relay node and Ni antennas at node i, i = 1, 2, as shown in
Figure 5.9. The discrete-time real-valued input-output relation between the relay and node i,
i = 1, 2, can now be modeled as

yi = H ix+ ni, (5.47)

where yi ∈ RNi×1 denotes the output at node i, H i ∈ RNi×NR the multiplicative channel
matrix, x ∈ RNR×1 the input of the relay, and ni ∈ RNi×1 the independent additive noise
according to a Gaussian distribution N (0, INi) with zero mean and identity covariance ma-
trix. We assume perfect channel state information at all nodes.
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21 R

mc m0 m1 m2
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m̂0 m̂1

mc

Figure 5.9: General MIMO Gaussian BBC with common and confidential messages.

As in [WSS06b, LS09, LLL10] we consider two different kinds of power constraints: an
average power constraint and a more general matrix power constraint. An input sequence
xn = (x1,x2, ...,xn) of length n satisfies an average power constraint P if

1

n

n∑
k=1

xTk xk ≤ P (5.48)

holds. Similarly, a sequence xn satisfies a matrix power constraint S if

1

n

n∑
k=1

xkx
T
k � S (5.49)

where S � 0 is a positive semidefinite matrix.1

In principle, the secrecy capacity region of the MIMO Gaussian BBC with common and
confidential messages is computable by evaluating the corresponding region of the discrete
case, cf. Corollary 5.33, for MIMO Gaussian channels. But a direct evaluation is almost
intractable due to the presence of the auxiliary random variables U and V so that we establish
a precise matrix characterization in the following.

Theorem 5.37. The secrecy capacity region RSmc,m0
(H1,H2|S) of the MIMO Gaussian

BBC with common and confidential messages under the matrix power constraint S is the set
of all rate tuplesR = (Rc, R0, R1, R2) ∈ R4

+ that satisfy

Rc ≤
1

2
log det

(
IN1 +H1Q

(c)HT
1

)
− 1

2
log det

(
IN2 +H2Q

(c)HT
2

)
(5.50a)

R0 +Ri ≤
1

2
log det

(
INi +H iSH

T
i

INi +H iQ
(c)HT

i

)
, i = 1, 2 (5.50b)

for some 0 � Q(c) � S.

1The notation A � B means the matrix A−B is positive semidefinite.
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Having [WSS06b, Lemma 1] in mind, we immediately obtain from the secrecy capacity
region under the matrix power constraint (5.49) the corresponding region under the average
power constraint (5.48) which usually characterizes the practically more relevant case.

Corollary 5.38. The secrecy capacity region RSmc,m0
(H1,H2|P ) of the MIMO Gaussian

BBC with common and confidential messages under the average power constraint P is the
set of all rate tuplesR ∈ R4

+ that satisfy

Rc ≤
1

2
log det

(
IN1 +H1Q

(c)HT
1

)
− 1

2
log det

(
IN2 +H2Q

(c)HT
2

)
R0 +Ri ≤

1

2
log det

(
INi +H i(Q

(c) +Q(p))HT
i

INi +H iQ
(c)HT

i

)
, i = 1, 2

for someQ(c) � 0,Q(p) � 0 with tr(Q(c) +Q(p)) ≤ P .

Theorem 5.37 is proved in the following subsections. First, we consider the special case
of square and invertible channel matrices and establish the secrecy capacity region for this
case using channel-enhancement arguments. Then, we extend this to arbitrary (possibly non-
square and non-invertible) channel matrices using standard approximation arguments as in
[WSS06b, LS09, LLL10] to finally end up with the desired result.

5.5.1 Aligned MIMO Bidirectional Broadcast Channel

In this section we consider the case where the channel matrices H1 and H2 are square and
invertible. Then, multiplying both sides (5.47) by H−1

i , an equivalent channel model is
given by

yi = x+ ni (5.51)

where yi,x,ni ∈ RNR×1 but the additive noise ni is now Gaussian distributed with zero
mean and covariance matrix

Σi = H−1
i H

−T
i ∈ RNR×NR , (5.52)

i.e., ni ∼ N (0,Σi), i = 1, 2. We adopt the notation used in [WSS06b, LLL10] and call
the channel model (5.51) the aligned MIMO Gaussian BBC and (5.47) the general MIMO
Gaussian BBC. The main result for the aligned case is summarized in the following theo-
rem.

Theorem 5.39. The secrecy capacity regionRSmc,m0
(Σ1,Σ2|S) of the aligned MIMO Gaus-

sian BBC with common and confidential messages under the matrix power constraint S is
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Figure 5.10: Aligned MIMO Gaussian BBC with common and confidential messages.

the set of all rate tuplesR ∈ R4
+ that satisfy

Rc ≤
1

2
log det

(
Q(c) + Σ1

Σ1

)
− 1

2
log det

(
Q(c) + Σ2

Σ2

)
R0 +Ri ≤

1

2
log det

(
S + Σi

Q(c) + Σi

)
, i = 1, 2

(5.53)

for some 0 � Q(c) � S.

The theorem is proved in the following subsections.

Proof of Achievability

Similarly as for the classical aligned MIMO Gaussian broadcast channel with common and
confidential messages [LLL10] the proof of achievability is a straightforward extension of its
discrete counterpart. To obtain the desired region (5.53) we follow the proof of the discrete
case with a proper choice of auxiliary and input random variables. More precisely, with
G ∼ N (0,Q(c)) and U ∼ N (0,S − Q(c)) with G and U are independent, and further
V = X = U + G, the region (5.53) follows immediately from Corollary 5.33. Therefore we
omit the details for brevity.

Remark 5.40. Interestingly, a simple superposition strategy that superimposes two signals,
one for the public messages and one for the confidential message, suffices to achieve the
secrecy capacity. Moreover, an additional randomization as in the discrete case, realized by
the auxiliary random variable V in Theorem 5.32, is no longer needed for MIMO Gaussian
channels.

Proof of Converse

To establish the converse it remains to show that no other rate tuples than characterized by
(5.53) are achievable for some 0 � Q(c) � S. Without loss of generality it suffices at this
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point to consider only matrix power constraints that satisfy S � 0.2

We prove the optimality by contradiction. Therefore, we construct a rate tuple Ro =
(Roc , R

o
0, R

o
1, R

o
2) /∈ RSmc,m0

(Σ1,Σ2|S) that lies outside the desired region (5.53) and as-
sume that this rate tuple is achievable for the aligned MIMO Gaussian BBC with common
and confidential messages.

First, we observe that achievable public ratesRo0,Ro1, andRo2 are always bounded from above
by

Ro0 +Roi ≤
1

2
log det

(
S + Σi

Σi

)
, i = 1, 2.

We note that for Roc = 0 and Q(c) = 0 in (5.53) there are public rates that actually achieve
this upper bound. Further, for given achievable public rates Ro0, Ro1, and Ro2 the maximal
achievable confidential rate Rc,opt is characterized by the following optimization problem:

max
Q(c)

1

2
log det

(
Q(c) + Σ1

Σ1

)
− 1

2
log det

(
Q(c) + Σ2

Σ2

)
(5.54)

s.t.
1

2
log det

(
S + Σi

Q(c) + Σi

)
≥ Ro0 +Roi , i = 1, 2

0 � Q(c) � S.

Finally, we set Roc = Rc,opt + δ for some δ > 0 to ensure that this rate tuple lies outside the
region (5.53) as required, i.e.,Ro /∈ RSmc,m0

(Σ1,Σ2|S).

The optimization problem (5.54) can be written as a minimization problem in standard form
as

min
Q(c)

1

2
log det

(
Q(c) + Σ2

Σ2

)
− 1

2
log det

(
Q(c) + Σ1

Σ1

)
s.t. Ro0 +Roi −

1

2
log det

(
S + Σi

Q(c) + Σi

)
≤ 0, i = 1, 2

−Q(c) � 0

Q(c) − S � 0.

2For the validity and a detailed proof of this restriction we refer to [WSS06b, Lemma 2]. The argumentation
is as follows: if we are confronted with a matrix power constraint S � 0 that is positive semidefinite with
det(S) = 0, we can define an equivalent aligned MIMO Gaussian BBC with N ′R = rank(S) < NR

transmit and receive antennas at all nodes and a modified matrix power constraint S′ � 0 that is strictly
positive definite. Thus, the case S � 0 with det(S) = 0 can be converted to the case S′ � 0 without
changing the secrecy capacity region.
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Then the Lagrangian for this minimization problem is given by

L(Q(c),µ,Ψ1,Ψ2) =
1

2
log det

(
Q(c) + Σ2

Σ2

)
− 1

2
log det

(
Q(c) + Σ1

Σ1

)
+

2∑
i=1

µi

[
Ro0 +Roi −

1

2
log det

(
S + Σi

Q(c) + Σi

)]
− tr(Q(c)Ψ1) + tr

(
(Q(c) − S)Ψ2

)
with Lagrange multipliers µ = (µ1, µ2), µi ≥ 0, and Ψi � 0, i = 1, 2. Then we know from
the Karush-Kuhn-Tucker (KKT) conditions, cf. for example [BV04], that the derivative of
the Lagrangian must vanish at an optimalQ(c)

opt which yields3

1

2

(
Q

(c)
opt + Σ1

)−1
+ Ψ1 =

µ1

2

(
Q

(c)
opt + Σ1

)−1
+
µ2 + 1

2

(
Q

(c)
opt + Σ2

)−1
+ Ψ2 (5.55)

while the optimalQ(c)
opt further has to satisfy the complementary slackness conditions

µi

[
Ro0 +Roi −

1

2
log det

(
S + Σi

Q
(c)
opt + Σi

)]
= 0, i = 1, 2 (5.56)

Q
(c)
optΨ1 = 0, (S −Q(c)

opt)Ψ2 = 0. (5.57)

By combining (5.54) and (5.56) we get for the weighted secrecy sum-capacity of the con-
structed rate tupleRo the following

Roc + µ1(Ro0 +Ro1) + µ2(Ro0 +Ro2)

= Rc,opt + δ + µ1(Ro0 +Ro1) + µ2(Ro0 +Ro2)

=
1

2
log det

(
Q

(c)
opt +Σ1

Σ1

)
− 1

2
log det

(
Q

(c)
opt +Σ2

Σ2

)
+

2∑
i=1

µi
2

log det

(
S +Σi

Q
(c)
opt +Σi

)
+δ.

(5.58)

But we show that for any achievable rate tuple R ∈ R4
+ the weighted secrecy sum-capacity

is bounded from above by

Rc + µ1(R0 +R1) + µ2(R0 +R2)

≤ 1

2
log det

(
Q

(c)
opt + Σ1

Σ1

)
− 1

2
log det

(
Q

(c)
opt + Σ2

Σ2

)
+

2∑
i=1

µi
2

log det

(
S + Σi

Q
(c)
opt + Σi

)
which establishes the desired contradiction to (5.58).

3As in [WSS06b, Appendix IV] or [LLL10] we can easily show that a set of constraint qualifications hold for the
optimization problem (5.54). This implies that the KKT conditions hold and are necessary for characterizing
the optimal transmit covariance matrix.
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Reinterpretation of Legitimate Receiver

For the following analysis it will be beneficial to reinterpret this scenario by splitting the
legitimate node 1 into two virtual receivers: one designated for the public and one for the
confidential communication. Then, an equivalent aligned MIMO Gaussian BBC can be rep-
resented by

y1a = x+ n1a (5.59a)

y1b = x+ n1b (5.59b)

y2 = x+ n2 (5.59c)

with n1a ∼ N (0,Σ1), n1b ∼ N (0,Σ1), and n2 ∼ N (0,Σ2). Each (virtual) receiver is
only interested in either the public or the confidential messages. Receiver 1a wants to know
the confidential message mc, receiver 1b the public messages m0 and m2, and receiver 2 the
public messages m0 and m1. Here, the confidential message has to be kept secret only from
receiver 2, but, of course, need not be kept secret from (virtual) receiver 1b.

Note that (virtual) receivers 1a and 1b in (5.59a) are affected by noise that has the same
covariance matrix Σ1, cf. (5.52), which is the same as of the noise at the legitimate receiver
1 in the original aligned BBC (5.51). Similarly, the noise at receiver 2 in (5.59c) is according
to the same covariance matrix Σ2, cf. (5.52), corresponding to the noise at the non-legitimate
receiver 2 in (5.51). Therefore, any strategy that achieves a certain rate tuple for (5.51) will
do likewise for (5.59), and vice versa, so that both scenarios share the same secrecy capacity
region.

Channel Enhancement

Next, with the reinterpretation (5.59) of the communication scenario as a starting point, we
enhance the channel designated for the confidential message, i.e., (virtual) receiver 1a. For
this purpose let Σ̃1 be a real symmetric matrix that satisfies

1

2
(Q

(c)
opt + Σ̃1)−1 =

1

2
(Q

(c)
opt + Σ1)−1 + Ψ1. (5.60)

Then we know from [WSS06b, Lemma 11] that

0 ≺ Σ̃1 � Σ1 (5.61)

and

det

(
Q

(c)
opt + Σ̃1

Σ̃1

)
= det

(
Q

(c)
opt + Σ1

Σ1

)
(5.62)
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hold. With (5.60), Equation (5.55) becomes

1

2
(Q

(c)
opt + Σ̃1)−1 =

µ1

2
(Q

(c)
opt + Σ1)−1 +

µ2 + 1

2
(Q

(c)
opt + Σ2)−1 + Ψ2. (5.63)

Since the matrices (Q
(c)
opt + Σ1)−1, (Q

(c)
opt + Σ2)−1, and Ψ2 on the right hand side of (5.63)

are all positive semidefinite, it follows immediately that 1
2(Q

(c)
opt +Σ̃1)−1 � 1

2(Q
(c)
opt +Σ2)−1

and consequently
Σ̃1 � Σ2. (5.64)

This allows us to construct an enhanced MIMO Gaussian BBC by replacing the noise covari-
ance matrix Σ1 at the (virtual) receiver 1a with its enhanced version Σ̃1, cf. (5.61). Then,
(5.59a) becomes

ỹ1a = x+ ñ1a (5.65)

with ñ1a ∼ N (0, Σ̃1), while the channels for receiver 1b and 2 remain the same. Figure 5.11
shows the communication scenario of the enhanced MIMO Gaussian BBC. Since Σ̃1 � Σ1,
cf. also (5.61), the covariance matrix of the noise for receiving the confidential message for
the enhanced BBC (5.65) is "smaller" than for the original BBC (5.59). Hence, its secrecy
capacity region is at least as large as for the aligned MIMO Gaussian BBC. Moreover, from
(5.61) and (5.64) we get

0 � Σ̃1 � Σi, i = 1, 2 (5.66)

which means that both received signals y1b and y2 at the public receivers are (stochastically)
degraded with respect to the received signal ỹ1a at the confidential receiver. For the discrete
memoryless counterpart of the enhanced BBC the following proposition characterizes the
corresponding secrecy capacity region.

Proposition 5.41. For a discrete memoryless BBC with common and confidential messages
and transition probability W̃ (ỹ1a, y1b, y2|x) that satisfies the Markov chain conditions X −
Ỹ1a−Y1b and X− Ỹ1a−Y2, the secrecy capacity region is given by the set of all rate tuples
R ∈ R4

+ that satisfy

Rc ≤ I(X; Ỹ1a|U)− I(X; Y2|U)

R0 +R1 ≤ I(U; Y1b)

R0 +R2 ≤ I(U; Y2)

for random variables U − X − Ỹ1a − (Y1b,Y2) with joint probability distribution
pU(u)pX|U(x|u)W̃ (ỹ1a, y1b, y2|x).
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Figure 5.11: Enhanced MIMO Gaussian BBC with common and confidential messages.
Node 1 is split up into two virtual receivers, one enhanced for the confidential
message and one for the public messages. For receiver 1a the noise covari-
ance matrix Σ1 is replaced by Σ̃1 to enhance the channel for the confidential
message.

Proof. The achievability follows immediately from the non-degraded case using the same
ideas and techniques, cf. Section 5.4.1. Similarly, the converse follows the one in Sec-
tion 5.4.2 while exploiting the degradedness as in [LLL10, Proposition 1]. Since the con-
verse part is the more relevant one in the following, the details of the proof are given in
Appendix A.10 for completeness.

Remark 5.42. In contrast to the non-degraded case, cf. Theorem 5.32, we only need one
auxiliary random variable U in the degraded scenario instead of both U and V. This makes
the evaluation of the secrecy capacity region for MIMO Gaussian channels tractable as done
in the following.

Equivalence of Weighted Secrecy Sum-Capacity

To establish the desired contradiction it remains to bound the weighted secrecy sum-capacity
of the enhanced MIMO Gaussian BBC. As in [LLL10] for the classical MIMO Gaussian
broadcast channel with common and confidential messages we use an extremal entropy in-
equality that is a special case of [WLS+09, Corollary 4].

Proposition 5.43 ([WLS+09, Corollary 4]). Let ñ1a ∼ N (0, Σ̃1), n1b ∼ N (0,Σ1), and
n2 ∼ N (0,Σ2) be given which satisfy 0 � Σ̃1 � Σi, i = 1, 2, cf. (5.66). Further, letS � 0

be given. If there exists a NR × NR real symmetric matrix Q(c)
opt such that 0 � Q(c)

opt � S
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and satisfying

1

2
(Q

(c)
opt + Σ̃1)−1 =

µλ

2
(Q

(c)
opt + Σ1)−1 +

µ(1− λ)

2
(Q

(c)
opt + Σ2)−1 + Ψ2,

(S −Q(c)
opt)Ψ2 = 0

for some Ψ2 � 0 and real scalars µ ≥ 0 and 0 ≤ λ ≤ 1, then

h(X + Ñ1a|U)− µλh(X + N1b|U)− µ(1− λ)h(X + N2|U)

≤ 1

2
log det

(
2πe(Q

(c)
opt + Ñ1)

)
− µλ

2
log det

(
2πe(Q

(c)
opt + N1)

)
− µ(1− λ)

2
log det

(
2πe(Q

(c)
opt + N2)

)
for any (U,X) independent of (Ñ1a,N1b,N2) such that E{XXT } � S.

By Proposition 5.41 we get for the weighted secrecy sum-capacity of any rate tupleR ∈ R4
+

for the enhanced BBC (5.65)

Rc + µ1(R0 +R1) + µ2(R0 +R2)

≤ I(X; Ỹ1a|U)− I(X; Y2|U) + µ1I(U; Y1b) + µ2I(U; Y2)

= h(N2)− h(Ñ1a) + µ1h(X + N1b) + µ2h(X + N2)

+
[
h(X + Ñ1a|U)− µ1h(X + N1b|U)− (µ2 + 1)h(X + N2|U)

]
≤ 1

2
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(
2πeΣ2

)
− 1

2
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(
2πeΣ̃1

)
+

2∑
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µi
2

log det
(
2πe(S + Σi)

)
+
[
h(X + Ñ1a|U)− µ1h(X + N1b|U)− (µ2 + 1)h(X + N2|U)

]
(5.67)

where the last inequality follows from h(Ñ1a) = 1
2 log det(2πeΣ̃1), h(N2) =

1
2 log det(2πeΣ2) and h(X + N1b) ≤ 1

2 log det(2πe(S + Σ1)), h(X + N2) ≤
1
2 log det(2πe(S + Σ2)).

Now with µ = µ1 + µ2 + 1 and λ = µ1
µ1+µ2+1 we get from (5.63) together with Proposi-

tion 5.43

h(X + Ñ1a|U)− µ1h(X + N1b|U)− (µ2 + 1)h(X + N2|U)

≤ 1

2
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(
2πe(Q

(c)
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)
− µ2 + 1

2
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(
2πe(Q

(c)
opt + Σ2)

)
.
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Substituting this into (5.67) we end up with

Rc + µ1(R0 +R1) + µ2(R0 +R2)

≤ 1
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)
(5.68)

where the last equality follows from (5.62), cf. [WSS06b, Lemma 11].

Since the secrecy capacity region of the aligned MIMO Gaussian BBC (5.47) is contained
in the corresponding region of the enhanced MIMO Gaussian BBC (5.65), cf. also Sec-
tion 5.5.1, it is clear that for any rate tupleR ∈ R4

+ the upper bound on the weighted secrecy
sum-capacity (5.68) – established above for the enhanced MIMO Gaussian BBC – must
hold, of course, also for the non-enhanced aligned MIMO Gaussian BBC. But since δ > 0,
this contradicts (5.58). This completes the proof of converse and therewith establishes the
secrecy capacity regionRSmc,m0

(Σ1,Σ2|S).

5.5.2 General MIMO Bidirectional Broadcast Channel

To prove the secrecy capacity region of the general MIMO Gaussian BBC with common
and confidential messages, cf. Theorem 5.37, we extend the secrecy capacity region of the
corresponding aligned MIMO Gaussian BBC (5.51), cf. Theorem 5.39, to the general case
(5.47) where the channel matricesH1 andH2 need not be necessarily square and invertible.
The proof follows the one of the classical MIMO Gaussian broadcast channel with common
and confidential messages [LLL10] which is based on [WSS06b, LS09]. Although our proof
is almost identical to [LLL10, Section IV] we present it for completeness in the following.
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Proof of Achievability

Similarly as for the aligned case, cf. Theorem 5.39, the achievability follows from the dis-
crete result in Corollary 5.33 with the same choice of auxiliary and input random variables,
i.e., G ∼ N (0,Q(c)) and U ∼ N (0,S −Q(c)) with G and U are independent, and further
V = X = U + G. We omit the details for brevity.

Proof of Converse

As argued in the previous subsection the case of square and invertible channel matrices can
easily be transformed into an aligned MIMO Gaussian BBC whose secrecy capacity region
is known from Theorem 5.39. Thus, the goal is to approximate any general MIMO Gaus-
sian BBC (with possibly non-square and non-invertible channel matrices) by an appropriate
aligned MIMO Gaussian BBC. We follow [LLL10, Section IV] where similar approximation
arguments are presented for the classical MIMO Gaussian broadcast channel with common
and confidential messages.

First, we consider the case whereH1 ∈ RN1×NR andH2 ∈ RN2×NR are not square. Using
the singular value decomposition (SVD) it can be shown that there exists equivalent square
channel matrices H̃ i ∈ RNR×NR , i = 1, 2, that yield the same secrecy capacity region. For
details we refer to [WSS06b, Section V-B].

Consequently, we can assume without loss of generality that the channel matrices are square.
It remains to check when these matrices are not invertible. We can apply the SVD to write

H i = U iΛiV
T
i

with U i, V i unitary matrices and Λi diagonal, i = 1, 2. Next, we define channel matrices
that are definitely invertible as

H i = U i(Λi + αINR)V T
i (5.69)

for (small) α > 0 and the corresponding MIMO Gaussian BBC

yi = H ix+ ni, i = 1, 2. (5.70)

Since H1 and H2 are square and invertible, we know from Theorem 5.39 that the secrecy
capacity region RSmc,m0

(H1,H2|S) is given by the set of all rate tuples R ∈ R4
+ that

satisfy

Rc ≤
1

2
log det

(
IN1 +H1Q

(c)H
T
1

)
− 1

2
log det

(
IN2 +H2Q

(c)H
T
2

)
R0 +Ri ≤

1

2
log

(
INi +H iSH

T
i

INi +H iQ
(c)H

T
i

)
, i = 1, 2
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for some 0 � Q(c) � S.

Following [LS09, LLL10] we define

Di = U iΛi(Λi + αINR)−1UT
i ,

so that H i = DiH i, i = 1, 2. Since DiD
T
i ≺ INR , we know from [WLS+09, Defini-

tion 1] thatDi defines a degradedness order. More precisely, we have the following Markov
chains

X−Yi −Yi, i = 1, 2. (5.71)

From (5.71) we see that both receivers – the legitimate node 1 and the non-legitimate node 2
– receive a stronger signal in the new BBC (5.70) than in the original BBC (5.47). Since the
channel to the non-legitimate node 2 is enhanced as well, it is by no means self-evident
that this leads to an increased secrecy capacity region. This differs from the classical
MIMO Gaussian broadcast channel [WSS06b]. However, the secrecy capacity region can
be bounded as follows.

Lemma 5.44. For the secrecy capacity regions we have the following relation

RSmc,m0
(H1,H2|S) ⊆ RSmc,m0

(H1,H2|S) + ∆(H2,H2|S)

with ∆(H2,H2|S) the set of all rate tuples (Rc, 0, 0, 0) ∈ R4
+ that satisfy

Rc ≤
1

2
log det

(
INR +H2SH

T
2

)
− 1

2
log det

(
INR +H2SH

T
2

)
.

Proof. The proof is almost identical to the corresponding result for classical MIMO Gaus-
sian broadcast channel with common and confidential message, cf. [LLL10, Section IV].
For completeness the details can be found in Appendix A.11.

The following observation concludes the proof of the secrecy capacity region of the general
MIMO Gaussian BBC with common and confidential messages. For α↘ 0 we haveH i →
H i, i = 1, 2, cf. (5.69), so that

RSmc,m0
(H1,H2|S)→ RSmc,m0

(H1,H2|S)

and
∆(H2,H2|S)→ {(0, 0, 0, 0)}.

This together with Lemma 5.44 finishes the proof of Theorem 5.37.
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5.5.3 Numerical Example and Discussion

In the previous sections we established the secrecy capacity region of the BBC with common
and confidential messages. This unifies previous results such as the BBC with confidential
messages, cf. Section 5.3, the BBC with common messages, cf. Section 5.2, or the classical
broadcast channel with common and confidential messages [CK78, LLL10]. For the case of
no common messages we get the following.

Corollary 5.45. The secrecy capacity region of the MIMO Gaussian BBC with confidential
messages under the average power constraint P is the set of all rate triples (Rc, R1, R2) ∈
R3

+ that satisfy
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1

2
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IN1 +H1Q

(c)HT
1

)
− 1

2
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)
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1

2
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INi +H i(Q

(c) +Q(p))HT
i

INi +H iQ
(c)HT

i

)
, i = 1, 2

for someQ(c) � 0,Q(p) � 0 with tr(Q(c) +Q(p)) ≤ P .

If there are no confidential services for the relay to integrate, it solely transmits public mes-
sages and the scenario reduces to the BBC with common messages.

Corollary 5.46. The capacity region of the MIMO Gaussian BBC with common messages
under the average power constraint P is the set of all rate triples (R0, R1, R2) ∈ R3

+ that
satisfy

R0 +Ri ≤
1

2
log det

(
INi +H iQ

(p)HT
i

)
, i = 1, 2

for someQ(p) � 0 with tr(Q(p)) ≤ P .

For the case of no bidirectional messages we end up with the classical broadcast channel
with common and confidential messages.

Corollary 5.47 ([LLL10]). The secrecy capacity region of the MIMO Gaussian broadcast
channel with common and confidential messages under the average power constraint P is
the set of all rate pairs (Rc, R0) ∈ R2

+ that satisfy
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2
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for someQ(c) � 0,Q(p) � 0 with tr(Q(c) +Q(p)) ≤ P .

135



5 Physical Layer Service Integration in Bidirectional Relay Networks

Remark 5.48. Clearly, the whole discussion and Corollaries 5.45-5.47 also hold for the
general matrix power constraint (5.49).

The optimal transmit covariance matrices are determined by non-convex optimization prob-
lems and so the weighted rate sum optimal rate tuples as well. Hence, obtaining the boundary
of the secrecy capacity region is in general non-trivial.

For the MISO scenario we can reformulate the optimization problem in such a way that it
becomes convex and therewith tractable. Since the relay has multiple transmit antennas but
nodes 1 and 2 have only single receive antennas, the channel matrices H i become vectors
hi, i = 1, 2, and the region of Theorem 5.37 can be written as

Rc ≤
1

2
log

(
1 +

h1Q
(c)hT1 − h2Q

(c)hT2

1 + h2Q
(c)hT2

)
(5.72a)

R0 +Ri ≤
1

2
log

(
1 +

hi(S −Q(c))hTi

1 + hiQ
(c)hTi

)
, i = 1, 2. (5.72b)

Next, we follow [WSS06a] or [LLL10, Section V] and consider a re-parametrization of the
rates as

Rc = log(1 + αγc) (5.73a)

R0 +Ri = log(1 + αγi), i = 1, 2 (5.73b)

where α is an auxiliary parameter and γc, γ1, γ2 can be interpreted as received SNR
"weights". Combining (5.72) and (5.73) we end up with

h1Q
(c)hT1 − h2Q

(c)hT2 ≥ αγc(1 + h2Q
(c)hT2 ) (5.74a)

h1(S −Q(c))hT1 ≥ αγ1(1 + h1Q
(c)hT1 ) (5.74b)

h2(S −Q(c))hT2 ≥ αγ2(1 + h2Q
(c)hT2 ) (5.74c)

S � Q(c) � 0. (5.74d)

Instead of using (5.50) to check if a rate tuple is in the capacity region, i.e., R ∈
RSmc,m0

(h1,h2|S), we can alternatively look for a positive semidefinite matrix Q(c) that
satisfies the conditions (5.74a)-(5.74d). Since all these conditions are linear in Q(c), this
belongs to the class of convex optimization problems which can be solved efficiently.

Obviously, all rates increase as the auxiliary parameter α increases. Thus we obtain
the weighted rate sum optimal rate triple on the boundary of the secrecy capacity region
RSmc,m0

(h1,h2|S) for fixed weights γc, γ1, γ2 by finding the maximum α such that (5.74a)-
(5.74d) provide at least one feasible solution, cf. also [WSS06a, LLL10]. Finally, running
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Figure 5.12: Secrecy capacity region of the MISO Gaussian BBC with confidential messages
with NR = 2 and N1 = N2 = 1.

through all weight vectors with γc + γ1 + γ2 = 1 yields all weighted rate sum optimal rate
tuples and characterizes the boundary ofRSmc,m0

(h1,h2|S).

Similarly, in the case of an average power constraint P we obtain the conditions

h1Q
(c)hT1 − h2Q

(c)hT2 ≥ αγc(1 + h2Q
(c)hT2 )

h1Q
(p)hT1 ≥ αγ1(1 + h1Q

(c)hT1 )

h2Q
(p)hT2 ≥ αγ2(1 + h2Q

(c)hT2 )

tr(Q(c) +Q(p)) ≤ P
Q(c) � 0, Q(p) � 0

which again allows to compute the boundary of the secrecy capacity region
RSmc,m0

(h1,h2|P ).

For visual feasibility we consider the case with no common messages and depict in Fig-
ure 5.12 the secrecy capacity region of the MISO Gaussian BBC with confidential messages.
For plots of the BBC with common messages and of the classical broadcast channel with
common and confidential messages we refer to Section 5.2 and [LLL10], respectively.
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5.6 Discussion

In this chapter we studied the efficient integration of public and confidential services in
bidirectional relay networks at the physical layer. This necessitated the analysis of the BBC
with common and confidential messages which completely characterizes the integration of
bidirectional, common, and confidential services at the physical layer. This solves not only
the optimal processing for bidirectional relay networks, but also gives us first insights for
larger and more complex networks so that our results are not only relevant for itself. It gives
valuable insights how services should be merged from an information-theoretic point of view.
This is beneficial since it enables a joint resource allocation policy and it is expected that this
will result in a significantly reduced complexity and an improved energy efficiency.

The optimal integration of common services in bidirectional relay networks shows that there
are strong connections between the BBC with and without common messages. The strong
connection begins with the optimal coding strategy for the BBC with common messages,
since basically, it becomes coding without common messages. The common message is
treated as a part of both individual messages and as a result, the coding idea of the case
without common messages is applicable. All messages are combined into a single data
stream based on the network coding idea which allows the receiving nodes to decode the
intended individual and common messages using their own message as side information.

In retrospect it is not surprising that the connection carries over to the transmit covariance
optimization problem. In contrast to suboptimal strategies such as superposition coding
approaches [OB08b], where the messages are associated with several transmit covariance
matrices, in the optimal strategy there is only one transmit covariance matrix that has to be
optimized. This is similar to the BBC without common messages [OWB09a, OJWB09], and
as expected, the optimal transmit strategies transfer as well.

Then we considered the optimal integration of confidential services in bidirectional relay
networks. In this scenario the relay has some public information for both receivers as well as
confidential information for one receiver that should be kept secret from the other one. The
task is to enable additional secure communication within such a network. We want to stress
the fact that this differs from the wiretap scenario where the (bidirectional) communication
itself should be secure from possible eavesdroppers outside the network. Some work on the
corresponding bidirectional broadcast wiretap channel can be found for example in [ASS10,
MS10] or [WSB11].

This scenario addresses the problem of realizing additional confidential communication
within a network that exploits principles from network coding for the public communica-
tion; hence, the optimal processing is by no means self-evident. Interestingly, it is shown
that superimposing two signals – one for the public services and one for the confidential
service – is optimal for MIMO Gaussian networks.
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The use of relays is currently becoming more and more attractive since they have the po-
tential to improve the performance and coverage of wireless networks significantly by ex-
ploiting the broadcast nature of the wireless medium. Relay communication suffers from
the fact that it needs orthogonal resources for transmission and reception. This half-duplex
constraint usually results in a loss in spectral efficiency. In this thesis we study the concept of
bidirectional relaying which has the ability to reduce the inherent loss in spectral efficiency
by exploiting the bidirectional property of the communication.

Bidirectional relaying applies to three-node networks where a half-duplex relay node estab-
lishes a bidirectional communication between two other nodes using a decode-and-forward
protocol. Due to the separation of the communication into two phases, the concept of bidi-
rectional relaying is particularly suitable to be integrated in conventional wireless networks
such as ad-hoc, sensor, and even cellular networks. For example, in [ODS10] it is dis-
cussed how bidirectional relaying can be efficiently embedded in a cellular downlink, while
[GGY11] addresses the problem of interference mitigation in femto-macro coexistence with
bidirectional relaying. Accordingly, the study of bidirectional relaying is of great interest.

Previous studies considered the case of perfect channel state information at all nodes. But in
practical wireless communication systems channel uncertainty is a ubiquitous phenomenon
due to changing channel conditions or imperfect channel estimation. The question must be
asked if it is worth to improve the available CSI at the nodes or if the nodes should be left with
the uncertainty. In Chapter 3 we answer this question by analyzing bidirectional relaying
for compound channels. This models the scenario where the exact channel realization is
not known. Rather, it is only known to the nodes that this realization remains constant
during the whole time of transmission and that it belongs to a pre-specified set of channels.
Interestingly, it is shown that an improvement in CSI at the receivers does not lead to an
increased capacity region. On the other hand, improved CSI at the transmitter can increase
the corresponding capacity region.

Reliable communication in bidirectional relay networks is still possible for compound chan-
nels, but, of course, at reduced rates compared to the case of perfect CSI. In Chapter 4 it is
shown that for arbitrarily varying channels the impact is much more dramatic. If the channel
varies from symbol to symbol in an unknown and arbitrary manner, it might happen that
no communication is possible if conventional deterministic coding strategies are applied.
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This necessitates the use of more sophisticated strategies based on a common randomness.
This additional resource allows the transmitter and the receivers to coordinate their choice
of encoder and decoders and to establish a reliable communication even in scenarios where
deterministic strategies fail. This discussion becomes especially relevant if bidirectional re-
laying is applied in uncoordinated wireless networks where the communication is disturbed
by unknown varying interference from outside the bidirectional relay network.

Another important issue is the efficient integration of multiple services at the physical layer.
Already in current cellular systems operators offer not only (bidirectional) voice communi-
cation, but also further multicast or confidential services which are subject to certain secrecy
constraints. Since bidirectional relaying is a promising candidate to increase the spectral ef-
ficiency of next generation cellular systems, it is important to study the efficient integration
of additional services in bidirectional relay networks as done in Chapter 5.

Interestingly, it is shown that optimal coding and transmit strategies for bidirectional relaying
with and without additional multicast services are strongly connected. Accordingly, existing
policies and algorithms for bidirectional relaying without multicast must only slightly be
adapted and extended by including an additional discussion for the weight of the common
message to apply also to networks with additional multicast services.

After that the efficient integration of additional confidential services in bidirectional relay
networks is discussed. Here, the relay integrates an additional confidential message for one
node which has to be kept secret from the other, non-legitimate node. Interestingly, the
optimal processing for enabling confidential services within a MIMO Gaussian bidirectional
relay network is to superimpose two signals – one for the public services and one for the
confidential service.

The results of physical layer service integration in bidirectional relay networks are not only
relevant for itself, since they solve the optimal processing for such networks, but also, since
they give us valuable insights for larger and more complex networks.

More detailed and explicit discussions of the results are given in Section 3.6 for bidirectional
relaying for compound channels, in Section 4.8 for bidirectional relaying in uncoordinated
wireless networks, and in Section 5.6 for physical layer service integration in bidirectional
relay networks.

Future Work and Open Problems

In this thesis we addressed two different important research directions. Firstly, we analyzed
the impact of channel uncertainty on bidirectional relaying and secondly, we studied the
efficient integration of different services at the physical layer. Consequently, the next natural
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step is to bring both research directions together and to study robust physical layer service
integration in bidirectional relay networks.

With the results obtained in this thesis the integration of common messages in bidirectional
relay networks for compound and arbitrarily varying channels should be straightforward.
For perfect channel state information we have seen that the optimal processing of bidirec-
tional relaying with and without additional common messages are strongly connected. We
expect that this connection carries over to the case of channel uncertainty. Nevertheless the
integration of common messages for compound and arbitrarily varying channels should be
explicitly characterized.

We expect the integration of confidential messages under channel uncertainty to be much
more involved. Even for the compound wiretap channel, which can be regarded as the sim-
plest scenario for physical layer security under channel uncertainty, the capacity is not known
in general. While the scenario with CSI at the transmitter is solved [BBS11a], the case with
channel uncertainty remains open. To the best of our knowledge only bounds on the capacity
are known [LKPS09] or a multi-letter expression is established [BBS11a].

So far we considered the integration of one confidential message for one node which has to
be kept secret from the other one. Similarly as in [LLPS10a, LLPS10b, EU10a] this scenario
can be extended by further integrating a second confidential message for the other node.
Then, each node receives a bidirectional and a confidential message where each confidential
message has to be kept secret from its non-legitimate node.

In this thesis we considered secrecy within the bidirectional relay network. But there might
also be eavesdroppers outside the bidirectional relay network, which has to be kept ignorant
of the communication. Therefore, another research direction would be to protect the bidi-
rectional communication itself from eavesdroppers outside the network. As a first step it is
reasonable to analyze both phases separately and protect them against possible eavesdrop-
pers. This necessitates the study of the multiple access wiretap channel [EU08a, TY08] and
the bidirectional broadcast wiretap channel [ASS10, MS10, WSB11] for which first results
are available. Even if an eavesdropper is not be able to intercept the communication in one
phase, he might be able to get enough information in each phase so that the composition of
them suffices to conclude on the transmitted messages. Therefore, the main goal must be to
protect both phases together.

The ignorance of the non-legitimate node about the confidential message was measured using
the criterion of weak secrecy, i.e., we require 1

nI(Mc; Yn
2 |M2) to be small, cf. (5.2). There

exists a stronger notion of secrecy where the division by n is dropped, i.e., I(Mc; Yn
2 |M2)

has to be small. This notion is not only stronger by dropping the division by n, but also has
the advantage that it has the following operational meaning. The output at the non-legitimate
node will be almost independent of the confidential message. Moreover, if this requirement
is satisfied the decoding error at the non-legitimate node will tend to 1. For further details we
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refer for example to [MW00, BBRM08, BB08, BBS11b]. Thus, it is reasonable to extend
the results for the integration of confidential messages to this stronger notion of secrecy.

Throughout the thesis we considered a restricted decode-and-forward bidirectional relay net-
work. A possible extension would be to drop some of these assumptions. For example, we
assume the relay to decode both messages in the first phase, but in the end the relay is only
interested in establishing a bidirectional communication between the two other nodes. There-
fore, the question must be asked if it is necessary or even suboptimal for the relay to decode
both messages. There are other schemes which weaken the strict assumption of decoding at
the relay node. For example there are compress-and-forward strategies [SOS07, GTN08] or
compute-and-forward schemes [WNPS10, NCL10, BC07, NG11, OKJ10] based on struc-
tured codes where the relay decodes a function of both messages. It would be interesting if
we can establish similar results for such schemes. Another extension would be to drop the
assumption of a restricted bidirectional relay network and, accordingly, allow both nodes to
cooperate and to use feedback.
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A.1 Proof of Theorem 4.26

We follow [Hug97, Theorem 1] where a similar result for the single-user AVC is
proved. We start with the trivial case where Ri,max = 0, i = 1, 2, which implies that
infq∈P(S) I(PX,W i,q) = 0 for every PX ∈ P0(n,X ). If PX(x) > 0 for all x ∈ X , this
implies the existence of a distribution PXSYi = PX⊗PS⊗Wi such that the input X and the
output Yi are independent, which means∑

s

Wi(yi|x, s)PS(s) = PYi(yi).

Now, for any ti ≥ 1 we set
Ui(s|x1, ..., xti) := PS(s)

for all s, x1, ..., xti to obtain a channel which is symmetric in x, x1, ..., xti , cf. also (4.3).
This implies immediately that the AVBBC Wn is (Yi, ti)-symmetrizable for all ti ≥ 1,
i = 1, 2.

Next, we assume that Ri,max > 0 and that the AVBBC Wn is (Yi, ti)-symmetrizable and
further infq∈P(S) I(PX,W i,q) > 0, i = 1, 2. Consequently, there is a channel Ui : X ti →
P(S) such that

W̃i(yi|x1, ..., xti+1) :=
∑
s

Wi(yi|x1, s)Ui(s|x2, ..., xti+1) (A.1)

is symmetric in x1, ..., xti+1. Let Xti+1 = (X1, ...,Xti+1) be a sequence of independent
random variables each with distribution PX. Further, denote the output of the auxiliary
channel Ui by S′ corresponding to the input X2, ...,Xti+1, and the output of the channel Wi

by Y′i for the inputs X1 and S′. As in [Hug97] for the single-user AVC we observe that
Xti+1− (X1, S

′)−Y′i forms a Markov chain, so that the Data Processing Inequality [CK81,
p. 55] gives

I(X1, S
′; Y′i) ≥ I(Xti+1; Y′i)

≥
ti+1∑
k=1

I(Xk; Y′i)

= (ti + 1)I(X1; Y′i)
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where the second inequality follows from the independence of X1, ...,Xti+1 and the non-
negativity of the (conditional) mutual information and the last equality from PXkY′i

= PX1Y′i
,

which is a consequence of the symmetry of W̃i, cf. (A.1). If we subtract I(X1; Y′i) from both
sides, having I(X1; Y′i) ≥ infq∈P(S) I(PX,W i,q) > 0 in mind, we get

ti ≤
I(S′; Y′i|X1)

I(X1; Y′i)

≤ max
PXSYi

:PXSYi
=PX⊗PS⊗Wi

for some S

I(S; Yi|X)

I(X; Yi)
.

Clearly, this holds for all PX so that we finally obtain

ti ≤ min
PX

max
PXSYi

:PXSYi
=PX⊗PS⊗Wi

for some S

I(S; Yi|X)

I(X; Yi)

≤ log(min{|S||Yi|})
Ri,max

which proves (4.19).

A.2 Proof of Lemma 4.27

The lemma follows immediately from [Hug97, Lemma 4], where a similar result for the
single-user AVC is proved. But for completeness we present the proof in the following. We
carry out the analysis for receiving node 1. The analysis for node 2 follows accordingly.

First, we observe that it suffices to consider K1 ≥ 1, since otherwise there is
nothing to prove. We consider any list code Clist(W

n) with codewords xnm1,m2
=

(xm1,m2,1, ..., xm1,m2,n) ∈ X n, m1 = 1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 , and a list decoder at

node 1 with list size L1 ≤ T1. Since K1 ≤ T1, the AVBBC Wn is (Y1,K1)-symmetrizable
so that there exists a channel U1 : XK1 → P(S) such that∑

s∈S
W1(y1|x1, s)U1(s|x2, ..., xK1+1)

is symmetric in x1, ..., xK1+1, cf. also (4.3).

Then for eachm1 ∈M1 the following holds. For any set J = {j1, ..., jK1} ∈ PK1(M2) of
K1 messages, let Snm1,J = (Sm1,J ,1, ...,Sm1,J ,n) ∈ Sn be a random state sequence with

P{Sm1,J ,k = s} = U1(s|xm1,j1,k, ..., xm1j,K1
,k).
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For any i ∈M2 and any J ∈ PK1(M2) as defined above it follows that

E[Wn
1 (yn1 |xnm1,i,S

n
m1,J )] =

n∏
k=1

E[W1(y1,k|xm1,i,k,Sm1,J ,k)]

=
n∏
k=1

∑
s∈S

W1(y1,k|xm1,i,k, s)P{Sm1,J ,k = s}

=
n∏
k=1

∑
s∈S

W1(y1,k|xm1,i,k, s)U1(s|xm1,j1,k, ..., xm1,jK1
,k)

=
∑
sn∈Sn

Wn
1 (yn1 |xnm1,i, s

n)Un1 (sn|xnm1,j1 , ..., x
n
m1,jK1

)

is symmetric in i, j1, ..., jK1 . Consequently, for any J ′ ∈ PK1+1(M2) and any fixed i0 ∈
J ′, we have

E[Wn
1 (yn1 |xnm1,i,S

n
m1,J ′\{i})] = E[Wn

1 (yn1 |xnm1,i0 ,S
n
m1,J ′\{i0})]

for all i ∈ J ′. Since the list size of the list decoder at node 1 is L1, the received yn1 can be
decoded in at most L1 ways so that it follows for the probability of error that∑

i∈J ′
E[e1((m1, i),S

n
m1,J ′\{i}|Clist(W

n))]

=
∑
i∈J ′

1−
∑

yn1 :i∈L(1)(yn1 ,m1)

E[Wn
1 (yn1 |xnm1,i,S

n
m1,J ′\{i})]


= K1 + 1−

∑
i∈J ′

∑
yn1 :i∈L(1)(yn1 ,m1)

E[Wn
1 (yn1 |xnm1,i0 , S

n
m1,J ′\{i0})]

≥ K1 + 1− L1

∑
yn1 ∈Yn1

E[Wn
1 (yn1 |xnm1,i0 , S

n
m1,J ′\{i0})]

= K1 + 1− L1.

For a fixed m1 ∈M1 this leads to

1

|PK1(M2)|
∑

J∈PK1
(M2)

E[ē1(Snm1,J |Clist(W
n))]

=
1

M
(n)
1 M

(n)
2 |PK1(M2)|

×

∑
J∈PK1

(M2)

M
(n)
1∑

m′1=1

M
(n)
2∑

m′2=1

E[e1((m′1,m
′
2),Snm1,J |Clist(W

n))]
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≥ 1

M
(n)
1 M

(n)
2

(M(n)
2
K1

)×
M

(n)
1∑

m′1=1

∑
J ′∈PK1+1(M2)

∑
m′2∈J ′

E[e1((m′1,m
′
2),Snm1,J ′\{m′2}

|Clist(W
n))]

≥ 1

M
(n)
1

M
(n)
1∑

m′1=1

(M(n)
2

K1+1

)
(K1 + 1− L1)

M
(n)
2

(M(n)
2
K1

)
=

(
1− L1

K1 + 1

)(
M

(n)
2 −K1

M
(n)
2

)
.

Thus, we obtain for the average probability of error

1

M
(n)
1 |PK1(M2)|

M
(n)
1∑

m1=1

∑
J∈PK1

(M2)

E[ē1(Snm1,J |Clist(W
n))]

=
1

M
(n)
1

M
(n)
1∑

m1=1

 1

|PK1(M2)|
∑

J∈PK1
(M2)

E[ē1(Snm1,J |Clist(W
n))]


≥ 1

M
(n)
1

M
(n)
1∑

m1=1

(
1− L1

K1 + 1

)(
M

(n)
2 −K1

M
(n)
2

)

=

(
1− L1

K1 + 1

)(
M

(n)
2 −K1

M
(n)
2

)
which implies the existence of at least one m1 ∈M2 and J ∈ PK1(M2) with

E[ē1(Snm1,J |Clist(W
n))] ≥

(
1− L1

K1 + 1

)(
M

(n)
2 −K1

M
(n)
2

)
.

Consequently, there is a realization sn of Snm1,J with ē1(sn|Clist(W
n)) ≥(

1− L1
K1+1

)(
M

(n)
2 −K1

M
(n)
2

)
which finally implies

max
sn∈Sn

ē1(sn|Clist(W
n)) ≥

(
1− L1

K1 + 1

)(
M

(n)
2 −K1

M
(n)
2

)
so that the first part of the lemma is proved. Clearly, the analysis for node 2 follows accord-
ingly using the same argumentation.
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A.3 Proof of Lemma 4.28

In the following we show that M (n)
1 M

(n)
2 with1 M

(n)
1 = exp(nR2) and M (n)

2 = exp(nR1)
randomly selected codewords will possess, with probability arbitrarily close to one, the prop-
erties (4.20a)-(4.20j) as stated in Lemma 4.28. We follow [Hug97] and extend the proof idea
of [CN88b] for list size one to arbitrary list sizes. But first, we restate two lemmas which are
essential to proof the desired properties of the codewords.

Lemma A.1. Let Zn1 , ...,Z
n
N be arbitrary random variables and let fi(Zn1 , ...,Z

n
i ) be arbi-

trary with 0 ≤ fi ≤ 1, i = 1, ..., N . Then the condition

E[fi(Z
n
1 , ...,Z

n
i )|Zn1 , ...,Zni−1] ≤ a almost surely, i = 1, ..., N, (A.2)

implies

P
{ 1

N

N∑
i=1

fi(Z
n
1 , ...,Z

n
i ) > t

}
≤ exp

(
−N(t− a log e)

)
. (A.3)

Proof. The proof can be found in [Ahl80a] or [CN88b].

Further, we will need a covering lemma for PL1(M2) and PL2(M1). Therefore, let

PL1
(M2\{i}) := {J ∈ PL1(M2\{i}) : j < i for all j ∈ J } (A.4a)

PL2
(M1\{i}) := {J ∈ PL2(M1\{i}) : j < i for all j ∈ J }. (A.4b)

Moreover, let Π
M

(n)
k

be the set of all permutations acting on (1, ...,M
(n)
k ), k = 1, 2. For any

permutation π ∈ Π
M

(n)
k

let

πPL1
(M2\{i}) := {J ∈ PL1(M2\{i}) : π(j) < π(i) for all j ∈ J } (A.5a)

πPL2
(M1\{i}) := {J ∈ PL2(M1\{i}) : π(j) < π(i) for all j ∈ J }. (A.5b)

Then, the following lemma shows that PL1(M2\{i}) and PL2(M1\{i}) can be covered by
a small number of "ordered" sets πPL1

(M2\{i}) and πPL2
(M1\{i}) respectively.

Lemma A.2. For all n ≥ log(2L1), there exist p1 ≤ n(L1 + 1)2(R1 + 1) permutations
π1, ..., πp1 ∈ Π

M
(n)
2

such that for all 1 ≤ i ≤M (n)
2

PL1(M2\{i}) =

p1⋃
k=1

πkPL1
(M2\{i}).

1In this proof we have to deal with terms which decrease double exponentially fast. For notational convenience
we will use the notation exp(·) instead of 2(·). But recall that all exponentials are still to the basis 2.
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Proof. The proof can be found in [Hug97, Lemma A2].

Clearly, a similar relation for receiving node 2 follows accordingly. Now, we turn to the
proof of Lemma 4.28. Therefore, we fix an xn ∈ X n, sn ∈ Sn, PX ∈ P0(n,X ), and
any joint types PXXL1S and PXXL2S. We assume that PXS = Pxn,sn and PXk = PX,
k = 1, ...,max{L1, L2}. Further, let Znm1,m2

, m1 = 1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 be

independent random variables, each uniformly distributed on T (n)
X .

In the following, we show that for eachm1 ∈M1 the properties (4.20a)-(4.20e) are satisfied.
Then, the second part of the properties, i.e., (4.20f)-(4.20j) for each m2 ∈ M2, follows
accordingly.

To show (4.20a)-(4.20e), we fix an arbitrary m1 ∈ M1 for the following analysis. First, we
estimate the size of the sets

{i : (xn,Znm1,i, s
n) ∈ T (n)

XXkS}, 1 ≤ k ≤ L1.

We define

fm1,i(Z
n
m1,1, ...,Z

n
m1,i) =

{
1, if Znm1,i

∈ T (n)
Xk|XS(xn, sn)

0, otherwise
(A.6)

and apply Lemma A.1. The condition (A.2) of Lemma A.1 is now fulfilled with

a = P{Znm1,i ∈ T
(n)

Xk|XS(xn, sn)}

=
|T (n)

Xk|XS(xn, sn)|

|T (n)
X |

≤
exp
(
nH(Xk|X,S)

)
(n+ 1)−|X | exp

(
nH(X)

)
= (n+ 1)|X | exp

(
− nI(Xk; X,S)

)
where the inequality follows from Lemma B.6 and the last equality from H(Xk) = H(X),

1 ≤ k ≤ L1. For R1 = 1
n log

M
(n)
2
L1

and L1 ≥ 1 we set

t =
1

M
(n)
2

exp
(
n(|R1 − I(Xk; X,S)|+ + ε)

)
so that M (n)

2 (t− a log e) ≥ 1
2 exp(nε) if n ≥ n1(ε, L1), with

n1(ε, L1) := min
{
n : L1(n+ 1)|X | log(e) ≤ 1

2
exp(nε)

}
.

148



A.3 Proof of Lemma 4.28

Then (A.3) results in

P
{∣∣{i :Znm1,i∈T

(n)
Xk|XS(xn, sn)}

∣∣>exp
(
n(|R1−I(Xk; X, S)|++ ε)

)}
< exp

(
− 1

2
exp(nε)

)
.

(A.7)

If we replace T (n)
Xk|XS(xn, sn) by T (n)

Xk|S(sn) in (A.6), the same reasoning leads similarly to

P
{∣∣{i : Znm1,i ∈ T

(n)
Xk|S(sn)}

∣∣ > exp
(
n(|R1 − I(Xk; S)|+ + ε)

)}
< exp

(
− 1

2
exp(nε)

) (A.8)

for n ≥ n1(ε, L1). Further, if we replace T (n)
Xk|S(sn) by T (n)

X|S (sn) and ε by ( ε2 + log(L1)
n ) in

(A.8) we get

P
{∣∣{i : Znm1,i ∈ T

(n)
X|S (sn)}

∣∣ > L1 exp
(
n(|R1 − I(X; S)|+ +

ε

2
)
)}

< exp
(
− L1

2
exp

(
n
ε

2

))
for all n ≥ n1( ε2 , 1). In particular, if I(X; S) ≥ ε (and recall that R1 ≥ ε since R1 =

1
n log

M
(n)
2
L1

and M (n)
2 ≥ L1 exp(nε) as assumed) then

|R1 − I(X; S)|+ = R1 −min{R1, I(X; S)} ≤ R1 − ε

so that

P
{ 1

M
(n)
2

∣∣{i : Znm1,i ∈ T
(n)

X|S (sn)}
∣∣ > exp

(
− n ε

2

)}
< exp

(
− L1

2
exp

(
n
ε

2

))
. (A.9)

The doubly exponential bounds in (A.7) and (A.9) will suffice to establish the desired prop-
erties (4.20a) and (4.20b). Now we turn to property (4.20d). To prove this we need an
elementary probability bound similarly as in [Hug97]. Therefore, let V1, ...,VL1 be nonneg-
ative random variables and v a nonnegative constant. Then

L1∏
k=1

Vk ≥ vL1

is only satisfied if Vk ≥ v for some 1 ≤ k ≤ L1. Hence

P

{( L1∏
k=1

Vk

) 1
L1 ≥ v

}
≤ P

{ L1⋃
k=1

{Vk ≥ v}
}
≤

L1∑
k=1

P{Vk ≥ v}. (A.10)
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Then for R1 < mink I(Xk; S) we get

∣∣{J ∈ PL1(M2) : (xn,Znm1,J , s
n) ∈ T (n)

XXL1S
}
∣∣ ≤ L1∏

k=1

∣∣{i : (xn,Znm1,i, s
n) ∈ T (n)

XXkS}
∣∣.

If we apply (A.10) with Vk := |{i : (xn,Znm1,i
, sn) ∈ T (n)

XXkS}| and v := exp(n ε
L1

), we
get

P
{
|{J ∈ PL1(M2) : (xn,Znm1,J , s

n) ∈ T (n)

XXL1S
}| > exp(nε)

}
≤

L1∑
k=1

P
{
|{i : (xn,Znm1,i, s

n) ∈ T (n)
XXkS}| > exp

(
n
ε

L1

)}
< L1 exp

(
− 1

2
exp
(
n
ε

L1

))
(A.11)

for all n ≥ n1( ε
L1
, L1), where the last inequality follows from (A.7) by observing that

R1 < min
k
I(Xk; S) ≤ min

k
I(Xk; X,S).

The doubly exponential bound in (A.11) will suffice to establish the desired property (4.20d).
To establish the remaining (4.20c) and (4.20e) we proceed as follows. Let PL1

(M2\{i}) be
as introduced in (A.4a) and define

Bm1,i = Bm1,i(Z
n
m1,1, ...,Z

n
m1,i−1) := {J ∈ PL1

(M2\{i}) : Znm1,J ∈ T
(n)

XL1 |S(sn)}.

Further, we set Am1,i := Bm1,i if |Bm1,i| ≤ exp(nε1) and Am1,i := ∅ otherwise, with ε1
specified later. Let

fm1,i(Z
n
m1,1, ...,Z

n
m1,i) :=

{
1, if Znm1,i

∈
⋃
J∈Am1,i

T (n)

X|XL1S
(Znm1J , s

n)

0, otherwise.
(A.12)

If ∣∣{J ∈ PL1(M2) : Znm1,J ∈ T
(n)

XL1 |S(sn)}
∣∣ ≤ exp(nε1)

then Am1,i = Bm1,i for each i and therefore∣∣{i : (Znm1,i,Z
n
m1,J , s

n) ∈ T (n)

XXL1S
for some J ∈ PL1

(M2\{i})}
∣∣

=

M
(n)
2∑
i=1

fm1,i(Z
n
m1,1, ...,Z

n
m1,i).
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Now, from (A.11) it follows that

P
{∣∣{i : (Znm1,i,Z

n
m1,J , s

n) ∈ T (n)

XXL1S

for some J ∈ PL1
(M2\{i})}

∣∣ 6= M
(n)
2∑
i=1

fm1,i(Z
n
m1,1, ...,Z

n
m1,i)

}
≤ P

{∣∣{J ∈ PL1(M2) : (Znm1,J , s
n) ∈ T (n)

XL1S
}
∣∣ > exp(nε1)

}
≤ L1 exp

(
− 1

2
exp
(
n
ε1
L1

))
(A.13)

for n ≥ n1( ε1L1
, L1). Further, we have

E[fm1,i(Z
n
m1,1, ...,Z

n
m1,i)|Z

n
m1,1, ...,Z

n
m1,i−1]

= P
{

Znm1,i ∈
⋃

J∈Am1,i

T (n)

X|XL1S
(Znm1,J , s

n)
∣∣∣Znm1,1, ...,Z

n
m1,i−1

}

≤ |Am1,i|
exp
(
nH(X|XL1 , S)

)
(n+ 1)−|X | exp

(
nH(X)

)
≤ (n+ 1)|X | exp

(
− n(I(X; XL1 , S)− ε1)

)
. (A.14)

If we assume that ε1 = ε
4 and I(X; XL1 ,S) ≥ ε then fm1,i in (A.12) satisfies (A.2) with

a := (n+ 1)|X | exp
(
− n3ε

4

)
. (A.15)

Then, (A.3) with t := exp(−n2ε
3 ) becomes

P
{ 1

M
(n)
2

M
(n)
2∑
i=1

fm1,i(Z
n
m1,1, ...,Z

n
m1,i) > exp

(
− n2ε

3

)}
≤ exp

(
− M

(n)
2

2
exp
(
− n2ε

3

))
≤ exp

(
− L1

2
exp
(
n
ε

3

))
for n ≥ n1( ε

12 , 1), where the last inequality follows from R1 ≥ ε. Together with (A.13), we
get for all n ≥ n1( ε

12L1
, 1)

P
{ 1

M
(n)
2

∣∣{i :Znm1,i∈ T
(n)

X|XL1S
(Znm1,J , s

n) for some J ∈ PL1
(M2\{i})}

∣∣> exp
(
−n2ε

3

)}
< L1 exp

(
− 1

2
exp
(
n

ε

4L1

))
+ exp

(
− L1

2
exp
(
n
ε

3

))
≤ (L1 + 1) exp

(
− 1

2
exp
(
n

ε

4L1

))
. (A.16)
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For the following analysis let π ∈ Π
M

(n)
2

be any permutation. We note that (A.16) remains

valid when we replace PL1
(M2\{i}) with πPL1

(M2\{i}), cf. (A.5a), which can be easily
shown by replacing Znm1,i

everywhere with Znm1,π(i). Further, let π1, ..., πp1 be the p1 ≤
n(L1 + 1)2(log |X |+ 1) permutations from Lemma A.2, which satisfy

PL1(M2\{i}) =

p1⋃
k=1

πkPL1
(M2\{i}).

From the union bound we get for R1 < mink I(Xk; S) and I(X; XL1 ,S) ≥ ε

P
{ 1

M
(n)
2

∣∣{i : Znm1,i ∈ T
(n)

X|XL1S
(Znm1,J , s

n)

for some J ∈ PL1(M2\{i})}
∣∣ > exp

(
− n ε

2

)}
≤ P

{ 1

M
(n)
2

p1∑
k=1

∣∣{i : Znm1,i ∈ T
(n)

X|XL1S
(Znm1,J , s

n)

for some J ∈ πkPL1
(M2\{i})}

∣∣ > exp
(
− n ε

2

)}
≤

p1∑
k=1

P
{ 1

M
(n)
2

∣∣{i : Znm1,i ∈ T
(n)

X|XL1S
(Znm1,J , s

n)

for some J ∈ πkPL1
(M2\{i})}

∣∣ > 1

p1
exp
(
− n ε

2

)}
≤ exp

(
n
ε

6

)
· P
{ 1

M
(n)
2

∣∣{i : Znm1,i ∈ T
(n)

X|XL1S
(Znm1,J , s

n)

for some J ∈ PL1
(M2\{i})}

∣∣ > exp
(
− n2ε

3

)}
≤ (L1 + 1) exp

(
n
ε

6
− 1

2
exp
(
n

ε

4L1

))
(A.17)

for all n ≥ n1( ε
12L1

, 1), log(2L1), such that

p1 ≤ n(L1 + 1)2(log |X |+ 1) ≤ exp
(
n
ε

6

)
.

The second inequality follows from an analogous version of (A.10) for the arithmetic mean,
and the last inequality follows from (A.16).

It remains to establish property (4.20c). Therefore, we observe that if we set L1 = 1 and

ε1 = |R1 − I(Xk; S)|+ +
ε

4
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and apply (A.8) with ε
4 replacing ε, the probability in (A.11) is bounded by exp

(
−

1
2 exp

(
n ε4
))

for all n > n1( ε4 , 1). Moreover, if we assume that

I(X; Xk,S)− |R1 − I(Xk; S)|+ ≥ ε

the fm1,i in (A.12) again satisfy (A.2) with the a as given in (A.15). If we proceed as in
(A.17), we finally obtain for n > n1( ε

12 , 1)

P
{ 1

M
(n)
2

∣∣{i : Znm1,i ∈ T
(n)

X|X1S(Znm1,j , s
n) for some j 6= i}

∣∣ > exp
(
− n ε

2

)}
< 2 exp

(
n
ε

6
− 1

2
exp
(
n
ε

4

))
. (A.18)

Now we are in the position to complete the proof of the properties (4.20a)-(4.20e). As the
total number of all possible combinations of sequences xn ∈ T (n)

X , states sn ∈ Sn, and joint
types PXXL1S grow only exponentially in n, the doubly exponentially probability bounds
(A.7), (A.9), (A.11), (A.17), and (A.18) ensure that with a probability close to 1 all the
inequalities (4.20a)-(4.20e) hold simultaneously if n ≥ n0(ε, L1) is sufficiently large.

The second part of the lemma, more precisely that for each m2 ∈M2 the properties (4.20f)-
(4.20j) hold for n ≥ n0(ε, L2), can be shown analogously using the same argumentation.
Hence, if n ≥ max{n0(ε, L1), n0(ε, L2)}, there exist codewords xnm1,m2

∈ T (n)
X , m1 =

1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 , that simultaneously satisfy all the properties (4.20a)-(4.20j)

for all choices of xn ∈ T (n)
X , sn ∈ Sn, and joint types PXXL1S and PXXL2S.

A.4 Proof of Lemma 4.30

The lemma is proved by contradiction. For receiving node i, i = 1, 2, suppose that the
ensemble (XTi+2, STi+2,Yi) satisfies the conditions given in (4.21). Now, consider the di-
vergences

Di,k := D(PXTi+2SkYi
‖PXk ⊗ PX

Ti+2

k Sk
⊗Wi,k), k = 1, ..., Ti + 2

where PXk ⊗ PX
Ti+2

k Sk
⊗Wi,k is the distribution on X Ti+2 × S × Yi with probability mass

function

P (xk)PX
Ti+2

k Sk
(xTi+2
k , s)Wi(yi|xk, s).
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Next, we apply (B.1) to Di,k with XkSkYi playing the role of X and obtain

Di,k = D(PXkSkYi‖PXk ⊗ PSk ⊗Wi,k) +D(P
X
Ti+2

k |XkSkYi
‖P

X
Ti+2

k |Sk
|PXkSkYi)

= D(PXkSkYi‖PXk ⊗ PSk ⊗Wi,k) + I(Xk,Yi; XTi+2
k |Sk)

where PXk ⊗ PSk ⊗Wi,k is the distribution on X × S × Yi with probability mass function
P (xk)PSk(s)Wi(yi|xk, s). Thereby, the last equality follows from (B.2). By assumption
(4.21) holds so that we have PXkSkYi ∈ Dηi and the first term on the right side is bounded
by ηi. Further, from (4.21) follows that the second term is also bounded by ηi. Thus, we
have

2ηi ≥ Di,k

= D(PXkSkYi‖PXk ⊗ PSk ⊗Wi,k) + I(Xk,Yi; XTi+2
k |Sk)

=
∑
xk,s,yi

PXkSkYi(xk, s, yi) log
PXkSkYi(xk, s, yi)

P (xk)PSk(s)Wi(yi|xk, s)

+
∑

xTi+2,s,yi

PXTi+2SkYi
(xTi+2, s, yi) log

P
X
Ti+2

k |XkSkYi
(xTi+2
k |xk, s, yi)

P
X
Ti+2

k |Sk
(xTi+2
k |s)

=
∑

xTi+2,s,yi

PXTi+2SkYi
(xTi+2, s, yi) log

PXTi+2SkYi
(xTi+2, s, yi)

P (xk)PX
Ti+2

k Sk
(xTi+2
k , s)Wi(yi|xk, s)

=
∑

xTi+2,yi

∑
s

PXTi+2SkYi
(xTi+2, s, yi)×

log
PXTi+2SkYi

(xTi+2, s, yi)

P (xk)PX
Ti+2

k

(xTi+2
k )P

Sk|X
Ti+2

k

(s|xTi+2
k )Wi(yi|xk, s)

≥
∑

xTi+2,yi

PXTi+2Yi
(xTi+2, yi)×

log
PXTi+2Yi

(xTi+2, yi)

P (xk)PX
Ti+2

k

(xTi+2
k )

∑
s PSk|X

Ti+2

k

(s|xTi+2
k )Wi(yi|xk, s)

= D(PXTi+2Yi
‖PXk ⊗ PX

Ti+2

k

⊗ Vi,k) (A.19)

with Vi,k(yi|xTi+2) =
∑

s PSk|X
Ti+2

k

(s|xTi+2
k )Wi(yi|xk, s). The last inequality follows from

the log-sum inequality.

From [CK81, p. 58] we know that we can bound the variational distance between two prob-
ability distributions from above by the square root of their divergence times an absolute
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constant.2 Therefore it follows from (A.19) that∑
xTi+2,yi

∣∣PXTi+2Yi
(xTi+2, yi)− P (xk)PX

Ti+2

k

(xTi+2
k )Vi,k(yi|xTi+2)

∣∣
≤ c
√
D(PXTi+2Yi

‖PXk ⊗ PX
Ti+2

k

⊗ Vi,k) ≤ c
√

2ηi (A.20)

with c =
√

2 ln 2 for all i = 1, ..., Ti + 2. It follows from the triangle-inequality that

max
j 6=k

∑
xTi+2,yi

∣∣P (xk)PX
Ti+2

k

(xTi+2
k )Vi,k(yi|xk, xTi+2

k )

−P (xj)PX
Ti+2
j

(xTi+2
j )Vi,j(yi|xj , xTi+2

j )
∣∣ ≤ 2c

√
2ηi.

(A.21)

Lemma A.3. Let β > 0 and the symmetrizability Ti, i = 1, 2, of the AVBBC Wn be finite.
Then there exists a ξ > 0 such that every P ∈ P(X ) with minx P (x) ≥ β and every
collection of Ti + 2 probability distributions Ui ∈ P(X Ti+1 × S), 1 ≤ k ≤ Ti + 2, satisfy

max
j 6=k

∑
xTi+2,yi

∣∣∣∣∑
s

Wi(yi|xk, s)Uk(xTi+2
k , s)P (xk)

−
∑
s

Wi(yi|xj , s)Uj(xTi+2
j , s)P (xj)

∣∣∣∣ ≥ ξ.
(A.22)

Proof. The proof is identical to [Hug97, Lemma A4] and is therefore omitted.

In particular, for the choice of Uk = P
X
Ti+2

k Sk
, 1 ≤ k ≤ Ti + 2, we obtain from (A.21) and

(A.22)

ηi ≥
ξ2

8c2

which contradicts the assumption that ηi can be chosen arbitrarily small.

A.5 Proof of Theorem 4.36

The proof is a modification of the corresponding one in [Ahl86], where a similar result
is given without constraints on the sequences of states. First, we observe that (4.50) is
equivalent to ∑

sn∈Sn

(
1− f(sn)

)
q⊗n(sn) ≤ α for all q ∈ P0(n,S,Λ). (A.23)

2This bound with a worse constant was first given by Pinsker [Pin64] and is therefore also known as Pinsker’s
inequality.
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Since each π ∈ Πn is bijective and because q⊗n(π(sn)) = q⊗n(sn) for all sn ∈ Sn, we
obtain from (A.23)

α ≥
∑
sn∈Sn

(
1− f

(
π(sn)

))
q⊗n

(
π(sn)

)
=
∑
sn∈Sn

(
1− f

(
π(sn)

))
q⊗n(sn) for all q ∈ P0(n,S,Λ) and all π ∈ Πn. (A.24)

Therefore, averaging (A.24) over Πn yields∑
sn∈Sn

1

n!

∑
π∈Πn

(
1− f

(
π(sn)

))
q⊗n(sn) ≤ α for all q ∈ P0(n,S,Λ). (A.25)

Since 1 − 1
n!

∑
π∈Πn

f(π(sn)) ≥ 0, restricting the state sequences to T (n)
q we get from

(A.25) ∑
sn∈T (n)

q

1

n!

∑
π∈Πn

(
1− f

(
π(sn)

))
q⊗n(sn) ≤ α for all q ∈ P0(n,S,Λ)

which is equivalent to

1

n!

∑
π∈Πn

(
1− f

(
π(sn)

))
q⊗n(T (n)

q ) ≤ α for all q ∈ P0(n,S,Λ), sn ∈ T (n)
q (A.26)

because for sn ∈ T (n)
q , the term 1

n!

∑
π∈Πn

(1 − f(π(sn))) does not depend on sn. Since

T (n)
q ≥ (n+ 1)−|S|, cf. [CK81, p. 30], (A.26) implies

1

n!

∑
π∈Πn

(
1− f

(
π(sn)

))
≤ (n+ 1)|S|α for all q ∈ P0(n,S,Λ), sn ∈ T (n)

q . (A.27)

Obviously, we have SnΛ =
⋃
q∈P0(n,S,Λ) T

(n)
q so that (A.27) shows that

1

n!

∑
π∈Πn

f
(
π(sn)

)
> 1− (n+ 1)|S|α for all sn ∈ SnΛ

which completes the proof of the theorem.

A.6 Proof of Lemma 4.39

The lemma follows from Lemma 4.27, where the AVBBC with list decoding but without con-
straints on input and states is treated, and from [CN88b, Lemma 1], where the single-user
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A.6 Proof of Lemma 4.39

AVC with constraints is analyzed. Using the same ideas we are able to prove the correspond-
ing result for the AVBBC Wn under input constraint Γ and state constraint Λ. Thereby,
we carry out the analysis for the case where Λ1(PX) < Λ for given type PX, then the case
Λ2(PX) < Λ follows accordingly.

We consider any deterministic code Cdet(W
n) for the AVBBC Wn with codewords xnm1,m2

=

(xm1,m2,1, ..., xm1,m2,n) ∈ X n, m1 = 1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 , and the corresponding

decoding sets D(1)
m2|m1

⊂ Yn1 at node 1. Next, for any channel U1 ∈ U1 which symmetrizes
the AVBBC Wn, we define random variables Snm1,m2

= (Sm1,m2,1, ...,Sm1,m2,n) ∈ Sn,

m1 = 1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 with statistically independent elements and

P{Sm1,m2,k = s} = U1(s|xm1,m2,k).

In Lemma 4.27 the AVBBC with list decoding is analyzed. If we set the list sizes at the
decoders and the symmetrizability of the channel to one, i.e., Li = Ti = 1, i = 1, 2, we
immediately obtain from Lemma 4.27 that there exists at least one m1 ∈M1 and m2 ∈M2

such that

E
[
ē1(Snm1,m2

|Cdet(W
n))
]
≥ M

(n)
2 − 1

2M
(n)
2

≥ 1

4
. (A.28)

Next, we restrict to codewords of type PX, i.e., xnm1,m2
∈ T (n)

X , m1 = 1, ...,M
(n)
1 , m2 =

1, ...,M
(n)
2 , with Λ1(PX) < Λ. Further, we choose U1 ∈ U1 such that it attains the minimum

in (4.47). Then, with (4.46b) we get for the expectation

E[l(Snm1,m2
)] =

1

n

n∑
k=1

∑
s∈S

l(s)U1(s|xm1,m2,k)

=
∑
x∈X

∑
s∈S

PX(x)U1(s|x)l(s)

= Λ1(PX)

and the variance

var[l(Snm1,m2
)] ≤ l2max

n
.

From Chebyshev’s inequality we obtain

P
{
l(Snm1,m2

) > Λ
}

= P
{
l(Snm1,m2

)− E[l(Snm1,m2
)] > Λ− Λ1(PX)

}
≤ 1

n

l2max

(Λ− Λ1(PX))2
. (A.29)
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Finally, since

E[ē1(Snm1,m2
|Cdet(W

n))] ≤ max
sn:l(sn)≤Λ

ē1(sn|Cdet(W
n)) + P{l(Snm1,m2

) > Λ},

we get from (A.28) and (A.29)

max
sn:l(sn)≤Λ

ē1(sn|Cdet(W
n)) ≥ E[ē1(Snm1,m2

|Cdet(W
n))]− P{l(Snm1,m2

) > Λ}

≥ M
(n)
2 − 1

2M
(n)
2

− 1

n

l2max

(Λ− Λ1(PX))2

which proves the first part of the lemma. Clearly, the second part where Λ2(PX) < Λ for
given type PX follows accordingly using the same argumentation.

A.7 Proof of Lemma 4.43

The lemma is proved by contradiction as done in [CN88b, Lemma 4] for the single-user
AVC. For receiving node i, i = 1, 2, we suppose that the quintuple (X,X′, S,S′,Yi) satisfies
the conditions given in (4.54). Since PXSYi ∈ Dηi(Λ) and I(X,Yi; X′|S) ≤ ηi, we have

2ηi ≥ D(PXSYi‖PX ⊗ PS ⊗Wi) + I(X,Yi; X′|S)

=
∑
x,s,yi

PXSYi(x, s, yi) log
PXSYi(x, s, yi)

PX(x)PS(s)Wi(yi|x, s)

+
∑

x,x′,s,yi

PXX′SYi(x, x
′, s, yi) log

PX′|XSYi(x
′|x, s, yi)

PX′|S(x′|s)

=
∑

x,x′,s,yi

PXX′SYi(x, x
′, s, yi) log

PXX′SYi(x, x
′, s, yi)

PX(x)PX′S(x′, s)Wi(yi|x, s)

=
∑
x,x′,yi

∑
s

PXX′SYi(x, x
′, s, yi) log

PXX′SYi(x, x
′, s, yi)

PX(x)PX′(x′)PS|X′(s|x′)Wi(yi|x, s)

≥
∑
x,x′,yi

PXX′Yi(x, x
′, yi) log

PXX′Yi(x, x
′, yi)

PX(x)PX′(x′)
∑

s PS|X′(s|x′)Wi(yi|x, s)

= D(PXX′Yi‖PX ⊗ PX′ ⊗ V ′i ) (A.30)

with V ′i (yi|x, x′) =
∑

s PS|X′(s|x′)Wi(yi|x, s) and the last inequality follows from the log-
sum inequality.
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From [CK81, p. 58] we know that we can bound the variational distance between two prob-
ability distributions from above by the square root of their divergence times an absolute
constant. With this and (A.30) we get∑

x,x′,yi

∣∣PXX′Yi(x, x
′, yi)− PX(x)PX′(x

′)V ′i (yi|x, x′)
∣∣

≤ c
√
D(PXX′Yi‖PX ⊗ PX′ ⊗ V ′i ) ≤ c

√
2ηi (A.31)

with c =
√

2 ln 2. Similarly, since PX′S′Yi ∈ Dηi(Λ) and I(X′,Yi; X|S′) ≤ ηi, cf. (4.54),
we obtain ∑

x,x′,yi

∣∣PXX′Yi(x, x
′, yi)− PX′(x

′)PX(x)Vi(yi|x′, x)
∣∣ ≤ c√2ηi (A.32)

with c =
√

2 ln 2 and Vi(yi|x′, x) =
∑

s PS′|X(s|x)Wi(yi|x′, s). Next, (A.31) and (A.32)
together imply ∑

x,x′,yi

PX(x)PX′(x
′)
∣∣Vi(yi|x′, x)− V ′i (yi|x, x′)

∣∣ ≤ 2c
√

2ηi.

Since minx PX(x) ≥ β, it immediately follows that

max
x,x′,yi

∣∣Vi(yi|x′, x)− V ′i (yi|x, x′)
∣∣ ≤ 2c

√
2ηi

β2
. (A.33)

Lemma A.4. For any AVBBC Wn with state constraint Λ and any input PX with Λi(PX) ≥
Λ + α, α > 0, i = 1, 2, for which each pair U1 : X → P(S) and U2 : X → P(S) satisfies∑

x,s

PX(x)U1(s|x)l(s) ≤ Λ (A.34a)∑
x,s

PX(x)U2(s|x)l(s) ≤ Λ (A.34b)

there exists some ξ > 0 such that

max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)U1(s|x′)−
∑
s

Wi(yi|x′, s)U2(s|x)

∣∣∣∣∣ ≥ ξ i = 1, 2. (A.35)

Proof. As in [CN88b, Lemma A2] we can interchange the two sums and then x and x′

without changing the maximum in (A.35). Thus we can write for all U1, U2 : X → P(S)

max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)U1(s|x′)−
∑
s

Wi(yi|x′, s)U2(s|x)

∣∣∣∣∣
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as

max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)U2(s|x′)−
∑
s

Wi(yi|x′, s)U1(s|x)

∣∣∣∣∣
so that we get

max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)U1(s|x′)−
∑
s

Wi(yi|x′, s)U2(s|x)

∣∣∣∣∣
= max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)
U1(s|x′)

2
−
∑
s

Wi(yi|x′, s)
U2(s|x)

2

∣∣∣∣∣
+ max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)
U2(s|x′)

2
−
∑
s

Wi(yi|x′, s)
U1(s|x)

2

∣∣∣∣∣
≥ max
x,x′,yi

{∣∣∣∣∣∑
s

Wi(yi|x, s)
U1(s|x′)

2
−
∑
s

Wi(yi|x′, s)
U2(s|x)

2

∣∣∣∣∣
+

∣∣∣∣∣∑
s

Wi(yi|x, s)
U2(s|x′)

2
−
∑
s

Wi(yi|x′, s)
U1(s|x)

2

∣∣∣∣∣
}

≥ max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)
U1(s|x′) + U2(s|x′)

2
−
∑
s

Wi(yi|x′, s)
U1(s|x) + U2(s|x)

2

∣∣∣∣∣
= max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)U(s|x′)−
∑
s

Wi(yi|x′, s)U(s|x)

∣∣∣∣∣ (A.36)

with U = 1
2(U1 + U2). Further, since U1 and U2 satisfy (A.34) for some PX, then also U

satisfies ∑
x,s

PX(x)U(s|x)l(s) ≤ Λ. (A.37)

Since (A.36) can be considered as a continuous function of the pair (PX, U) on the com-
pact set of all channels U : X → P(S), it attains its minimum for some (P ∗X, U

∗),
where the minimization is taken over all channels U that satisfy (A.37). Addition-
ally, since (P ∗X, U

∗) satisfies (A.37), U∗ cannot satisfy (4.4) which in turn implies
that maxx,x′,yi |

∑
sWi(yi|x, s)U(s|x′) −

∑
sWi(yi|x′, s)U(s|x)| > 0 completing the

proof.

If we choose U1 = PS|X′ and U2 = PS′|X, we obtain from (A.35)

max
x,x′,yi

∣∣Vi(yi|x′, x)− V ′i (yi|x, x′)
∣∣ ≥ ξ. (A.38)
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A.8 Fano’s Inequality

Finally, (A.33) and (A.38) yield

ηi ≥
ξ2β4

8c2
, i = 1, 2,

which contradicts the assumption that ηi can be chosen arbitrarily small.

A.8 Fano’s Inequality

For the BBC with common and confidential messages we have the following versions of
Fano’s inequality

H(Mc,M0,M2|Yn
1 ,M1) ≤ ē1 log(M (n)

c ,M
(n)
0 ,M

(n)
2 ) + 1 = nε

(n)
1

H(M0,M1|Yn
2 ,M2) ≤ ē2 log(M

(n)
0 ,M

(n)
1 ) + 1 = nε

(n)
2

with ε(n)
1 = 1

n log(M
(n)
c M

(n)
0 M

(n)
2 )ē1 + 1

n → 0 and ε(n)
2 = 1

n log(M
(n)
0 M

(n)
1 )ē2 + 1

n → 0
for n→∞ as ē1, ē2 → 0.

Proof. We present the analysis for receiving node 1. Then, the other case follows accord-
ingly using the same arguments. From the received sequence Yn

1 and its own message M1

node 1 estimates the indices Mc, M0, and M2 from the sent codeword Xn(Mc,M0,M1,M2).
We define the event of an error at node 1 as

E1 :=

{
1, if g1(Yn

1 ,M1) 6= (Mc,M0,M2)

0, if g1(Yn
1 ,M1) = (Mc,M0,M2)

so that we have for the average probability of error ē1 = P{E1 = 1}. From the chain rule
for entropies we have

H(E1,Mc,M0,M2|Yn
1 ,M1)

= H(Mc,M0,M2|Yn
1 ,M1) +H(E1|Yn

1 ,Mc,M0,M1,M2)

= H(E1|Yn
1 ,M1) +H(Mc,M0,M2|Yn

1 ,M1,E1).

Since E1 is a function of Mc, M0, M1, M2, and Yn
1 , we have H(E1|Yn

1 ,Mc,M0,M1,M2) =
0. Further, since E1 is a binary-valued random variable, we get H(E1|Yn

1 ,M1) ≤ H(E1) ≤
1. So that finally with the next inequality

H(Mc,M0,M2|Yn
1 ,M1,E1)

= P{E1 = 0}H(Mc,M0,M2|Yn
1 ,M1,E1 = 0)+

P{E1 = 1}H(Mc,M0,M2|Yn
1 ,M1,E1 = 1)

≤ (1− ē1)0 + ē1 log((M
(n)
0 − 1)(M

(n)
2 − 1))

≤ ē1 log(M
(n)
0 M

(n)
2 )
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we get the desired version of Fano’s inequality for the BBC with common and confidential
messages.

A.9 Proof of Lemma 5.23

Here we present the proof of Lemma 5.23. As in [LPS09] we prove the existence of a
codebook with the desired properties by random coding arguments.

Random codebook generation and encoding

For the public communication we define (bidirectional) message sets M′i, i = 0, 1, 2,
such that |M′0||M′2| = b2n(I(U;Y1)−δ/2)c and |M′0||M′1| = b2n(I(U;Y2)−δ/2)c are ful-
filled. We generate |M′| = |M′0||M′1||M′2| independent codewords unm′ ∈ Un with
m′ = (m′0,m

′
1,m

′
2) according to pUn(un) =

∏n
k=1 pU(uk).

Further, for the confidential communication we choose (confidential) message sets J and
L with |J | = b2n(I(X;Y2|U)−δ/2)c and |L| = b2n(I(X;Y1|U)−I(X;Y2|U)−δ/2)c. Obviously,
these sets satisfy the conditions (5.21) and (5.23). In the following, we consider only
the case where these sets are non-empty3 and set ε := δ/8. Then, for each unm′ ∈ Un
we generate |J ||L| independent codewords xnjlm′ ∈ X n according to pXn|Un(xn|un) =∏n
k=1 pX|U(xk|uk).

Decoding

The receiving nodes use typical set decoding where each node uses its received sequence and
its side information to create the decoding sets. In more detail, if xnjlm′ ∈ X n has been sent,
node 1 uses the received sequence yn1 ∈ Yn1 and its own message m′1 ∈M′1 to create

D11(m′1, y
n
1 ) :=

{
(m′0,m

′
2) ∈M′0 ×M′2 : (unm′ , y

n
1 ) ∈ A(n)

ε (U,Y1)
}
.

If D11(m′1, y
n
1 ) is empty or contains more than one element, node 1 maps to the symbol 0,

cf. also Definition 5.1, and declares an error. Otherwise, in a second step it uses the unique
(m′0,m

′
2) ∈ D11(m′1, y

n
1 ) and its own m′1 ∈M′1 to create

D12(m′, yn1 ) :=
{

(j, l) ∈ J × L : (unm′ , x
n
jlm′ , y

n
1 ) ∈ A(n)

ε (U,X,Y1)
}
.

3We need not consider the trivial cases of zero rates since they are always achievable.
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Again, if D12(m′, yn1 ) is empty or contains more than one element, node 1 maps to 0 and
declares an error. Otherwise, if there is a unique (j, l) ∈ D12(m′, yn1 ), it declares that
(j, l,m′) ∈ J × L×M′ has been sent.

Similarly, node 2 uses yn2 ∈ Yn2 and m′2 ∈M′2 to define

D21(m′2, y
n
2 ) :=

{
(m′0,m

′
1) ∈M′0 ×M′1 : (unm′ , y

n
2 ) ∈ A(n)

ε (U,Y2)
}
.

If there is a unique (m′0,m
′
1) ∈ D21(m′2, y

n
2 ), with its own m′2 ∈ M′2 and given l ∈ L it

creates

D22(l,m′, yn2 ) :=
{
j ∈ J : (unm′ , x

n
jlm′ , y

n
2 ) ∈ A(n)

ε (U,X,Y2)
}
.

It declares that (j, l,m′) ∈ J ×L×M′ has been sent if there is a unique j ∈ D22(l,m′, yn2 ).
The events of an error are defined accordingly as for node 1.

Analysis of probability of error

For the following analysis we introduce for any (j, l,m′) ∈ J × L ×M′ the random error
events for node 1:

E11(m′0,m
′
2|m′1) :=

{
(unm′ , y

n
1 ) /∈ A(n)

ε (U,Y1)
}

E12(m′0,m
′
2|m′1) :=

{
∃ (m̂0, m̂2) 6= (m′0,m

′
2) : (unm̂0m′1m̂2

, yn1 ) ∈ A(n)
ε (U,Y1)

}
E13(j, l|m′) :=

{
(unm′ , x

n
jlm′ , y

n
1 ) /∈ A(n)

ε (U,X,Y1)
}

E14(j, l|m′) :=
{
∃ (ĵ, l̂) 6= (j, l) : (unm′ , x

n
ĵl̂m′

, yn1 ) ∈ A(n)
ε (U,X,Y1)

}
.

From the union bound we get for the probabilities of error

e1(m′0,m
′
2|m′1) ≤ P

{
E11(m′0,m

′
2|m′1)

}
+ P

{
E12(m′0,m

′
2|m′1)

}
(A.39a)

e1(j, l|m′) ≤ P
{
E13(j, l|m′)

}
+ P

{
E14(j, l|m′)

}
(A.39b)

where each one is bounded separately using standard arguments, cf. Appendix B.2.2 or
standard literature such as [CT06].

For P{E11(m′0,m
′
2|m′1)} we know from the definition of the decoding sets, cf. Lemma B.15

in Appendix B.2.2, that for increasing n we have

P
{

(unm′ , y
n
1 ) /∈ A(n)

ε (U,Y1)
}
−→
n→∞

0. (A.40)
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With m̂ = (m̂0,m
′
1, m̂2) we get for the second event

P
{
E12(m′0,m

′
2|m′1)

}
≤ |M′0||M′2|P

{
(unm̂0m′1m̂2

, yn1 ) ∈ A(n)
ε (U,Y1)

}
= |M′0||M′2|

∑
(unm̂,y

n
1 )∈A(n)

ε (U,Y1)

pYn1
(yn1 )pUn(unm̂)

≤ 2n(I(U;Y1)−δ/2)2n(H(U,Y1)+ε)2−n(H(Y1)−ε)2−n(H(U)−ε)

= 2−nε −→
n→∞

0 (A.41)

where the first inequality follows from the union bound, the second one from the definition of
the setsM′0,M′2 and |A(n)

ε (U,Y1)| ≤ 2n(H(U,Y1)+ε), cf. Lemma B.15, and the last equality
from δ = 8ε. Substituting (A.40)-(A.41) into (A.39a) we conclude that e1(m′0,m

′
2|m′1)→ 0

as n→∞.

For P{E13(j, l|m′)} follows, similarly as in the first event, from the definition of the decod-
ing sets that for increasing n

P
{

(unm′ , x
n
jlm′ , y

n
1 ) /∈ A(n)

ε (U,X,Y1)
}
−→
n→∞

0. (A.42)

It remains to bound P{E14(j, l|m′)}. Therefore, we proceed as in the second event and
obtain

P{E13(j, l|m′)}

≤ |J ||L|
∑

(un
m′ ,x

n
ĵl̂m′

,yn1 )∈A(n)
ε (U,X,Y1)

pYn1 |Un(yn1 |unm′)pXn|Un(xn
ĵl̂m′
|unm′)pUn(unm′)

≤ |J ||L|2n(H(U,X,Y1)+ε)2−n(H(Y1|U)−ε)2−n(H(X|U)−ε)2−n(H(U)−ε)

≤ 2−n4ε −→
n→∞

0 (A.43)

where the second inequality follows from |A(n)
ε (U,X,Y1)| ≤ 2n(H(U,X,Y1)+ε) and the third

from |J ||L| ≤ 2n(I(X;Y1|U)−δ) and δ = 8ε. Substituting (A.42)-(A.43) into (A.39b) we end
up with e1(j, l|m′)→ 0 as n→∞.

The analysis for the probability of error at node 2 follows accordingly with the random error
events

E21(m′0,m
′
1|m′2) :=

{
(unm′ , y

n
2 ) /∈ A(n)

ε (U,Y2)
}

E22(m′0,m
′
1|m′2) :=

{
∃(m̂0, m̂1) 6= (m′0,m

′
1) : (unm̂0m̂1m′2

, yn2 ) ∈ A(n)
ε (U,Y2)

}
E23(j|l,m′) :=

{
(unm′ , x

n
jlm′ , y

n
2 ) /∈ A(n)

ε (U,X,Y2)
}

E24(j|l,m′) :=
{
∃ĵ 6= j : (unm′ , x

n
ĵlm′

, yn2 ) ∈ A(n)
ε (U,X,Y2)

}
.
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Using the same arguments, it is straightforward to show that the probabilities of error fulfill

e2(m′0,m
′
1|m′2) ≤ P

{
E21(m′0,m

′
1|m′2)

}
+ P

{
E22(m′0,m

′
1|m′2)

}
−→
n→∞

0 (A.44)

e2(j|l,m′) ≤ P
{
E23(j|l,m′)

}
+ P

{
E24(j|l,m′)

}
−→
n→∞

0. (A.45)

From (A.40)-(A.45) we conclude that the probabilities of error, averaged over all codewords
and codebooks, get arbitrarily small. Finally, from random coding arguments follows that for
n large enough there exists a codebook with the desired rates (5.21) and (5.23) that satisfies
the conditions on the probabilities of error (5.22) and (5.24) proving the lemma.

A.10 Proof of Converse of Proposition 5.41

We have to show that any given sequence of (n,M
(n)
c ,M

(n)
0 ,M

(n)
1 ,M

(n)
2 )-codes with

ē1a, ē1b, ē2 → 0 there exist random variables U−X− Ỹ1a − (Y1b,Y2) such that

1
nH(Mc) ≤ I(X; Ỹ1a|U)− I(X; Y2|U) + o(n0)

1
n

(
H(M0) +H(M2)

)
≤ I(U; Y1b) + o(n0)

1
n

(
H(M0) +H(M1)

)
≤ I(U; Y2) + o(n0)

are satisfied. For this purpose we need an appropriate version of Fano’s lemma.

Lemma A.5 (Fano’s inequality). For the BBC with common and confidential messages that
satisfies X−Ỹ1a−Y1b and X−Ỹ1a−Y2 we have the following versions of Fano’s inequality

H(Mc|Ỹn
1a,M1) ≤ ē1a logM (n)

c + 1 = nε
(n)
1a

H(M0,M2|Yn
1b,M1) ≤ ē1b log(M

(n)
0 M

(n)
2 ) + 1 = nε

(n)
1b

H(M0,M1|Yn
2 ,M2) ≤ ē2 log(M

(n)
0 M

(n)
1 ) + 1 = nε

(n)
2

with ε(n)
1a = 1

n log(M
(n)
c )ē1a + 1

n → 0, ε(n)
1b = 1

n log(M
(n)
0 M

(n)
2 )ē1b + 1

n → 0, and ε(n)
2 =

1
n log(M

(n)
0 M

(n)
1 )ē2 + 1

n → 0 for n→∞ as ē1a, ē1b, ē2 → 0.

Proof. The proof is quite similar to the one given in Appendix A.8 and is therefore omitted
for brevity.

For notational convenience we introduce the abbreviation Mp = (M0,M1,M2) for the public
messages and define the auxiliary random variable Uk := (Mp, Ỹ

k−1
1a ) that satisfies Uk −

Xk − (Ỹ1ak,Y1bk,Y2k).
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We follow [LLL10, Proposition 1] and bound the entropies of the public messages using the
independence of M0, M1, M2, the definition of mutual information, Fano’s inequality, cf.
Lemma A.5, and the chain rule for mutual information. We get

H(M0) +H(M2) = H(M0,M2|M1)

≤ I(M0,M2; Yn
1b|M1) + nε

(n)
1b

≤ I(Mp; Yn
1b) + nε

(n)
1b

=
n∑
k=1

I(Mp; Y1bk|Yk−1
1b ) + nε

(n)
1b

≤
n∑
k=1

I(Mp, Ỹ
k−1
1a ; Y1bk|Yk−1

1b ) + nε
(n)
1b

≤
n∑
k=1

I(Mp, Ỹ
k−1
1a ,Yk−1

1b ; Y1bk) + nε
(n)
1b

≤
n∑
k=1

I(Mp, Ỹ
k−1
1a ; Y1bk) + nε

(n)
1b

≤
n∑
k=1

I(Uk; Y1bk) + nε
(n)
1b (A.46)

where the second last inequality follows from the Markov chain (Mp,Y1bk)− Ỹk−1
1a −Yk−1

1b ,
i.e., the degradedness of the channel. Using the same arguments we similarly obtain

H(M0) +H(M1) ≤
n∑
k=1

I(Uk; Y2k) + nε
(n)
2 . (A.47)

Next, we consider the confidential message and proceed exactly as in [LLL10, Proposi-
tion 1]. Since the confidential message has to be kept secret from receiver 2 but needs not be
kept secret from (virtual) receiver 1b, we have to consider the term H(Mc|Yn

2 ,M2) due to
the perfect secrecy condition (5.2). We obtain

H(Mc|Yn
2 ,M2) = H(Mc|Yn

2 ,Mp) + I(Mc; M0,M1|Yn
2 ,M2)

≤ H(Mc|Yn
2 ,Mp) + nε

(n)
2

= I(Mc; Ỹn
1a|Yn

2 ,Mp) +H(Mc|Ỹn
1a,Y

n
2 ,Mp) + nε

(n)
2

≤ I(Mc; Ỹn
1a|Yn

2 ,Mp) + nε
(n)
1a + nε

(n)
2

≤ I(Mc,X
n; Ỹn

1a|Yn
2 ,Mp) + nε

(n)
1a + nε

(n)
2

= I(Xn; Ỹn
1a|Yn

2 ,Mp) + nε
(n)
1a + nε

(n)
2
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= H(Xn|Yn
2 ,Mp)−H(Xn|Ỹn

1a,Y
n
2 ,Mp) + nε

(n)
1a + nε

(n)
2

= H(Xn|Yn
2 ,Mp)−H(Xn|Ỹn

1a,Mp) + nε
(n)
1a + nε

(n)
2

= I(Xn; Ỹn
1a|Mp)− I(Xn; Yn

2 |Mp) + nε
(n)
1a + nε

(n)
2

where we made extensively use of the definition of mutual information and Fano’s inequality,
cf. Lemma A.5. In more detail, the first inequality follows from I(Mc; M0,M1|Yn

2 ,M2) =

H(M0,M1|Yn
2 ,M2)−H(M0,M1|Yn

2 ,Mc,M2) ≤ H(M0,M1|Yn
2 ,M2) ≤ nε(n)

2 , the second
inequality fromH(Mc|Ỹn

1a,Y
n
2 ,Mp) ≤ H(Mc|Ỹn

1a,M1) ≤ nε(n)
1a , the third equality from the

Markov chain (Mc,Mp)− (Xn,Yn
2 )− Ỹn

1a, the second last equality from the degradedness
of the channel, i.e., (Xn,Mp) − Ỹn

1a − Yn
2 , and the last equality from the addition of the

"zero" term H(Xn|Mp)−H(Xn|Mp). Next, with ε(n) = ε
(n)
1a + ε

(n)
2 and using the chain rule

for mutual information we get similar to [LLL10, Proposition 1]

H(Mc|Yn
2 ,M2) ≤

n∑
k=1

[
I(Xn; Ỹ1ak|Ỹk−1

1a ,Mp)− I(Xn; Y2k|Yk−1
2 ,Mp)

]
+ nε(n)

=

n∑
k=1

[
H(Ỹ1ak|Ỹk−1

1a ,Mp)−H(Ỹ1ak|Ỹk−1
1a ,Mp,X

n)

−H(Y2k|Yk−1
2 ,Mp) +H(Y2k|Yk−1

2 ,Mp,X
n)
]

+ nε(n)

≤
n∑
k=1

[
H(Ỹ1ak|Ỹk−1

1a ,Mp)−H(Ỹ1ak|Ỹk−1
1a ,Mp,Xk)

−H(Y2k|Ỹk−1
1a ,Yk−1

2 ,Mp) +H(Y2k|Yk−1
2 ,Mp,Xk)

]
+ nε(n)

≤
n∑
k=1

[
H(Ỹ1ak|Ỹk−1

1a ,Mp)−H(Ỹ1ak|Ỹk−1
1a ,Mp,Xk)

−H(Y2k|Ỹk−1
1a ,Mp) +H(Y2k|Ỹk−1

1a ,Mp,Xk)
]

+ nε(n)

=

n∑
k=1

[
I(Xk; Ỹ1ak|Uk)− I(Xk; Y2k|Uk)

]
+ nε(n) (A.48)

where the second inequality follows from the Markov chain (Ỹk−1
1a ,Mp,X

n) − Xk −
Ỹ1ak and the third inequality from the Markov chains (Y2k,Mp) − Ỹk−1

1a − Yk−1
2 and

(Yk−1
2 , Ỹk−1

1a ,Mp)−Xk −Y2k.

To complete the proof, we introduce an auxiliary random variable J that is independent of
Mc, Mp, Xn, Ỹn

1a, Yn
1b, and Yn

2 and uniformly distributed over {1, ..., n}. Further, let

U := (UJ, J), X := XJ, Ỹ1a := Ỹ1aJ, Y1b := Y1bJ, Y2 := Y2J.

Substituting this into (A.46)-(A.48) and dividing by n yields the desired bounds.
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A.11 Proof of Lemma 5.44

Similarly as in [LLL10] for the classical MIMO Gaussian broadcast channel with common
and confidential messages let (Rc, R0, R1, R2) ∈ R4

+ be an achievable rate tuple for the
MIMO Gaussian BBC with common and confidential messages that satisfies

Rc ≤ I(V; Y1|U)− I(V; Y2|U)

R0 +Ri ≤ I(U; Yi), i = 1, 2,

with U−V −X− (Y1,Y2), cf. Corollary 5.33. Further, let (Rc, R0, R1, R2) ∈ R4
+ be an

achievable rate tuple that satisfies

Rc ≤ I(V; Y1|U)− I(V; Y2|U)

R0 +Ri ≤ I(U; Yi), i = 1, 2,

with U−V−X−(Y1,Y2) for the new MIMO Gaussian BBC with common and confidential
messages, cf. (5.70). Next, we bound the differences between the rates for both channels as
in [LLL10]. Due to the Markov chains (5.71) we have I(U; Yi) ≤ I(U; Yi), i = 1, 2, so
that we get for the difference of the (individual) bidirectional rates

Ri −Ri ≤ I(U; Yi)− I(U; Yi) ≤ 0, i = 1, 2. (A.49)

Similarly, because of (5.71) we have I(V; Yi|U) ≤ I(V; Yi|U) and I(X; Yi|U,V) ≤
I(X; Yi|U,V), i = 1, 2, so that the difference of the confidential rates is given by, cf.
also [LLL10, Section IV],

Rc −Rc ≤ I(V; Y1|U)− I(V; Y2|U)−
[
I(V; Y1|U)− I(V;Y 2|U)

]
= I(V; Y2|U)− I(V; Y2|U)−

[
I(V; Y1|U)− I(V; Y1|U)

]
≤ I(V; Y2|U)− I(V; Y2|U)

= I(U,V; Y2)− I(U,V; Y2)−
[
I(U; Y2)− I(U; Y2)

]
≤ I(U,V; Y2)− I(U,V; Y2)

= I(X; Y2)− I(X; Y2)−
[
I(X; Y2|U,V)− I(X; Y2|U,V)

]
≤ I(X; Y2)− I(X; Y2)

= I(X; Y2|Y2)

≤ max
0�Q(c)�S

[
1

2
log det

(
INR +H2Q

(c)H
T
2

)
− 1

2
log det

(
INR +H2Q

(c)HT
2

)]
=

1

2
log det

(
INR +H2SH

T
2

)
− 1

2
log det

(
INR +H2SH

T
2

)
(A.50)

where the second last equality follows from the Markov condition (5.71), the last inequality
from [Tho87, Lemma 1], and the last equality from the fact thatHT

2H2 ≺H
T
2H2. Finally,

(A.49) and (A.50) establish the desired result.
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B Types and Typical Sequences

In this work we make extensively use of the concept of types and typical sequences which
are briefly reviewed in the following. For a more comprehensive and detailed treatment we
refer to standard books such as [Wol78, CK81, CT06, Kra08].

B.1 Types

In the following we briefly review the concept of types which is based on combinatorial
properties of sequences.

Definition B.1. The type (or empirical distribution) of a sequence xn = (x1, x2, ..., xn) ∈
X n of length n is the distribution Pxn ∈ P(X ) defined by

Pxn(a) :=
N(a|xn)

n
for every a ∈ X

where N(a|xn) denotes the number of indices i such that xi = a, i = 1, ..., n. The subset
P0(n,X ) ⊂ P(X ) consists all possible types of sequences in X n and is given by

P0(n,X ) = {P ∈ P(X ) : P is type of sequences in X n}.

The notation of types extends to joint types in a natural way.

Definition B.2. The joint type of sequences xn = (x1, x2, ..., xn) ∈ X n and yn =
(y1, y2, ..., yn) ∈ Yn of length n is the distribution Pxn,yn ∈ P(X × Y) defined by

Pxn,yn(a, b) :=
N(a, b|xn, yn)

n
for every a ∈ X , b ∈ Y

whereN(a, b|xn, yn) denotes the number of indices i such that (xi, yi) = (a, b), i = 1, ..., n.

Alternatively, joint types of sequences xn ∈ X n and yn ∈ Yn are often described by the
type Pxn of the sequence xn ∈ X n and a stochastic matrix V : X → P(Y) such that

Pxn,yn(a, b) = Pxn(a)V (b|a) for every a ∈ X , b ∈ Y.
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Note that the stochastic matrix V (b|a) is uniquely determined by the joint type Pxn,yn for
all a ∈ X with Pxn(a) > 0, i.e., for all a ∈ X which do occur in the sequence xn ∈ X n, cf.
[CK81, Sec. 1.2]. This leads to the following definition of conditional types.

Definition B.3. The sequence yn ∈ Yn has conditional type V : X → P(Y) for given
xn ∈ X n if

N(a, b|xn, yn) = N(a|xn)V (b|a) for every a ∈ X , b ∈ Y.

We follow [CK81] and represent types of sequences of length n by distributions of dummy
random variables. For instance, the random variables X and Y represent a joint type, i.e.,
PXY = Pxn,yn for some xn ∈ X n and yn ∈ Yn.

The set of all sequences of type Pxn is denoted by

T (n)
X = {xn : xn ∈ X n, Pxn = PX}.

Of course, this notation extends to joint types and sections in a self-explanatory way, e.g.,

T (n)
XY = {(xn, yn) : xn ∈ X n, yn ∈ Yn, Pxn,yn = PXY}

T (n)
Y|X(xn) = {yn : (xn, yn) ∈ T (n)

XY }.

Remark B.4. For clarity of presentation it is often useful to write T (n)
X = T (n)

PX
, T (n)

XY =

T (n)
PXY

, and T (n)
Y|X(xn) = T (n)

V (xn) interchangeably to emphasize the dependency on the cor-
responding types. The last term created the name V -shell, cf. [CK81, Sec. 1.2].

Next, we state some elementary properties of types; for more details we refer for example to
[CK81, Sec. 1.2] or [Csi98].

Lemma B.5. The number of different types of sequences in X n is bounded by

|P0(n,X )| ≤ (n+ 1)|X |,

i.e., it is a polynomial in n.

Proof. See for example [CK81, Lemma 2.2].

Lemma B.6. For any sequence xn ∈ X n, type PX ∈ P0(n,X ), and stochastic matrix
V : X → P(Y) such that T (n)

Y|X(xn) 6= ∅, we have

(n+ 1)−|X |2nH(X) ≤ |T (n)
X | ≤ 2nH(X)

(n+ 1)−|X ||Y|2nH(Y|X) ≤ |T (n)
Y|X(xn)| ≤ 2nH(Y|X).
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Proof. See for example [CK81, Lemma 2.3 and 2.5].

For the next lemma we need the following properties of the mutual information and informa-
tion divergence. Therefore, let X,Y and X′,Y′ be two pairs of random variables on X × Y
with probability distributions pXY ∈ P(X ×Y) and pX′Y′ ∈ P(X ×Y), respectively. Then
we have the following relations

D(pXY‖pX′Y′) = D(pX‖pX′) +D(pY|X‖pY′|X′ |pX) (B.1)

I(X; Y) = D(pXY‖pX ⊗ pY) = D(pY|X‖pY|pX). (B.2)

Lemma B.7. For any sequence xn ∈ X n, type PX ∈ P0(n,X ), and stochastic matrix
V : X → P(Y) such that T (n)

Y|X(xn) 6= ∅, we have

V ⊗n
(
T (n)

Y|X(xn)|xn
)

=
∑

yn∈T (n)
Y|X(xn)

V ⊗n(yn|xn) ≤ 2−nD(PXY‖PX⊗V ) (B.3)

where V ⊗n(yn|xn) :=
∏n
k=1 V (yk|xk) and PX⊗ V denotes the distribution on X ×Y with

probability mass function PX(x)V (y|x).

Further for some given sn ∈ Sn,

V ⊗n(T (n)
Y|XS(xn, sn)|xn) =

∑
yn∈T (n)

Y|XS
(xn,sn)

V ⊗n(yn|xn) ≤ 2−nI(Y;S|X). (B.4)

Proof. For (B.3) confer for example [CK81, Lemma 2.6]. Relation (B.4) follows immedi-
ately from (B.1) and (B.2) by

D(PXSY‖PXS ⊗ V ) = D(PY|XS‖V |PXS)

= I(Y; S|X) +D(PY|X‖V |PX)

≥ I(Y; S|X),

cf. also [Hug97].

B.2 Typical Sequences

The notion of typical sequences was originally introduced by Shannon in his seminal work
"A Mathematical Theory of Communication" [Sha48]. But he did it in a more intuitive rather
than in a precise and technical sense.
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There are different approaches to define typicality. One definition is based on the entropy of a
random variable. Such sequences are known as weakly typical or entropy-typical sequences.
A more natural definition of typicality is based on the empirical distribution of the sequence.
Such sequences are known as strongly typical or letter-typical sequences. The latter concept
can give stronger results but has the drawback that it can only be applied to discrete random
variables, while the former also works for continuous random variables.

These two concepts are briefly reviewed in the following.

B.2.1 Strong Typicality

Definition B.8. For any distribution p ∈ P(X ) a sequence xn ∈ X n is said to be typical
(or strongly typical or p-typical) with constant ε if∣∣∣∣ 1nN(a|xn)− p(a)

∣∣∣∣ ≤ ε for every a ∈ X

and, in addition, N(a|xn) = 0 if p(a) = 0. The set of all such typical sequences is denoted
by T (n)

p,ε .

Definition B.9. For a stochastic matrix W : X → P(Y) a sequence yn ∈ Yn is called
W -typical under the condition xn ∈ X n (or W -generated by the sequence xn ∈ X n) if∣∣∣∣ 1nN(a, b|xn, yn)− 1

n
N(a|xn)W (b|a)

∣∣∣∣ ≤ ε for every b ∈ Y

and, in addition, N(a, b|xn, yn) = 0 ifW (b|a) = 0. The set of all such sequences is denoted
by T (n)

W,ε (x
n).

Moreover, we need the following lemmas which give us exponential rates of convergence for
typical sequences.

Lemma B.10. For every ε > 0 and every p ∈ P(X ) the following

p⊗n(T (n)
p,ε ) ≥ 1− (n+ 1)|X |2−ncε

2
(B.5)

with c = 1
2 ln 2 always holds for all n ∈ N.

Proof. The proof can be found in [Shi96, Lemma III.1.3] but it is given in the following for
completeness. From [CK81, Lemma 2.6] we have p⊗n(T (n)

p ) ≤ 2−nD(pxn‖p). The bad set
(T (n)
p,ε )c := {xn ∈ X n : ∃a ∈ X : |N(a|xn)

n − p(a)| > ε} can be partitioned into disjoint sets
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of the form (T (n)
p,ε )c ∩ T (n)

p . Since there are at most (n+ 1)|X | type classes, cf. Lemma B.5,
we get

p⊗n((T (n)
p,ε )c) ≤ (n+ 1)|X |2−nD∗

where D∗ = min{D(pxn‖p) : ∃a ∈ X : |N(a|xn)
n − p(a)| > ε}. From Pinsker’s inequality

[Pin64] we have D(pxn‖p) ≥ 1
2 ln 2(

∑
a |pxn(a)− p(a)|)2 so that D∗ ≥ 1

2 ln 2 |pxn(a) −
p(a)|2 = 1

2 ln 2ε
2 for all a ∈ X . From this we have

p⊗n((T (n)
p,ε )c) ≤ (n+ 1)|X |2−ncε

2

with c = 1
2 ln 2 which proves the lemma.

Lemma B.11. For every ε > 0 and every xn ∈ X n, W : X → P(Y) the following

W⊗n(T (n)
W,ε (x

n)|xn) ≥ 1− (n+ 1)|X ||Y|2−ncε
2

(B.6)

with c = 1
2 ln 2 always holds for all n ∈ N.

Proof. The proof follows [Shi96, Lemma III.1.3]. We define Vyn|xn(b|a) =
pxn,yn (a,b)

pxn (a)

for empirical distributions pxn(a) = 1
nN(a|xn) and pxn,yn(a, b) = 1

nN(a, b|xn, yn) for

all a ∈ X , b ∈ Y . Then from [CK81, Lemma 2.6] we have W⊗n(T (n)
W (xn)|xn) ≤

2−nD(Vyn|xn‖W |pxn ) with

D(Vyn|xn‖W |pxn) =
∑

(a,b)∈X×Y

pxn(a)Vyn|xn(b|a) log
Vyn|xn(b|a)

W (b|a)

=
∑

(a,b)∈X×Y

pxn,yn(a, b) log
pxn,yn(a, b)

W (b|a)pxn(a)

= D(pxn,yn‖pxnW ). (B.7)

Observe that T (n)
W (xn) has at most (n+ 1)|X ||Y| V-shells, cf. also [CK81, Sec. 1.2], so that

W⊗n((T (n)
W,ε )

c(xn)|xn) ≤ (n+ 1)|X ||Y|2−nD∗ (B.8)

with D∗ = min{D(pxn,yn‖pxnW ) : ∃ (a, b) ∈ X × Y : |pxn,yn(a, b) −
pxn(a)W (b|a)| > ε}. From [CK81] we have1 D(pxn,yn‖pxnW ) ≥

1
2 ln 2(

∑
(a,b)∈X×Y |pxn,yn(a, b)− pxn(a)W (b|a)|)2 so that D∗ ≥ 1

2 ln 2 |pxn,yn(a, b) −
pxn(a)W (b|a)|2 = ε2

2 ln 2 for all a ∈ X , b ∈ Y . From this we have

W⊗n((T (n)
W,ε )

c(xn)|xn) ≤ (n+ 1)|X ||Y|2−ncδ
2

(B.9)

with c = 1
2 ln 2 which proves the lemma.

1This bound with a worse constant was first given by Pinsker [Pin64] and is therefore also known as Pinsker’s
inequality.
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The next lemma relates typical sequences generated by different (input) distributions to the
same output distribution. It plays a crucial role especially in the proof of the optimal coding
strategy for compound channels with CSIT as done in Section 3.4.2.

Lemma B.12. Let p, p̃ ∈ P(X ) be input distributions,W, W̃ : X → P(Y), and q, q̃ ∈ P(Y)
the corresponding output distributions. Further, let ε ∈ (0, 1

4|X ||Y|). Then for every n ∈ N

and all x̃n ∈ T (n)
p̃,ε and xn ∈ T (n)

p,ε it holds

q⊗n(T (n)

W̃ ,ε
(x̃n)) ≤ (n+ 1)|X ||Y|2−n(I(p̃,W̃ )−ϕ(ε)−ψ(ε)) (B.10a)

q⊗n(T (n)
W,ε (x

n)) ≤ (n+ 1)|X ||Y|2−n(I(p,W )−ϕ(ε)−ψ(ε)) (B.10b)

with universal ϕ(ε), ψ(ε) > 0 and limε↘0 ϕ(ε) = 0 = limε↘0 ψ(ε).

Proof. Let yn ∈ T (n)

W̃ ,ε
(x̃n) where x̃n ∈ T (n)

p̃,ε . Then we know from [CK81, Lemma 2.6] that

q⊗n(yn) = 2−n(D(pyn‖q)+H(pyn )) with pyn(b) = N(b|yn)
n . Since D(pyn‖q) ≥ 0 we have

q⊗n(yn) ≤ 2−nH(pyn ). (B.11)

Since yn ∈ T (n)

W̃ ,ε
(x̃n) and x̃n ∈ T (n)

p̃,ε , it follows from [CK81, Lemma 2.10] that yn ∈ T (n)
q̃,2|X |ε

and therewith
∑

b∈Y |pyn(b)− q̃(b)| ≤ 2|X ||Y|ε < 1/2 so that [CK81, Lemma 2.7] implies

|H(pyn)−H(q̃)| ≤ −2|X ||Y|ε log
2|X ||Y|ε
|Y|

=: ϕ(ε) (B.12)

with limε↘0 ϕ(ε) = 0. If we combine (B.11) and (B.12), we obtain q⊗n(yn) ≤
2−n(H(q̃)−ϕ(ε)) and therewith

q⊗n(T (n)

W̃ ,ε
(x̃n)) ≤ |T (n)

W̃ ,ε
(x̃n)|2−n(H(q̃)−ϕ(ε)). (B.13)

Since x̃n ∈ T (n)
p̃,ε , it follows from [CK81, Lemma 2.13] that |T (n)

W̃ ,ε
(x̃n)| ≤ (n +

1)|X ||Y|2n(H(W̃ |p̃)+ψ(ε)) holds with universal ψ(ε) > 0 and limε↘0 ψ(ε) = 0. Inserting
this in (B.13) we obtain

q⊗n(T (n)

W̃ ,ε
(x̃n)) ≤ (n+ 1)|X ||Y|2−n(I(p̃,W̃ )−ϕ(ε)−ψ(ε)). (B.14)

The relation q⊗n(T (n)
W,ε (x

n)) ≤ (n + 1)|X ||Y|2−n(I(p,W )−ϕ(ε)−ψ(ε)) follows immediately for

W = W̃ and p = p̃ which proves the lemma.
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B.2.2 Weak Typicality

Definition B.13. For any distribution pX ∈ P(X ) a sequence xn ∈ X n is said to be weakly
typical (or entropy-typical) with constant ε if∣∣∣∣− 1

n
log p⊗nX (xn)−H(X)

∣∣∣∣ < ε.

The set of all such weakly typical sequences is denoted by A(n)
ε (X).

This concept extends to jointly weakly typical sequences as follows. As in [CT06, Section
15.2] let S ⊆ {X1,X2, ...,Xk} be an ordered subset of the random variables.

Definition B.14. For any distribution p⊗nXn1 Xn2 ...X
n
k
(xn1 , x

n
2 , ..., x

n
k) sequences (xn1 , x

n
2 , ..., x

n
k)

are said to be jointly weakly typical with constant ε if∣∣∣∣− 1

n
log p⊗nSn (sn)−H(S)

∣∣∣∣ < ε, ∀ S ⊆ {X1,X2, ...,Xk}.

The set of all such weakly typical sequences is denoted by A(n)
ε (X1,X2, ...,Xk).

For example the set A(n)
ε (X1,X2) is given by all sequences (xn1 , x

n
2 ) that satisfy∣∣∣∣− 1

n
log p⊗nXn1 Xn2

(xn1 , x
n
2 )−H(X1,X2)

∣∣∣∣ < ε∣∣∣∣− 1

n
log p⊗nXn1

(xn1 )−H(X1)

∣∣∣∣ < ε∣∣∣∣− 1

n
log p⊗nXn2

(xn2 )−H(X2)

∣∣∣∣ < ε.

Let S,S1,S2 ⊆ {X1,X2, ...,Xk}. Then we have the following properties for weakly typical
sequences.

Lemma B.15. For any ε > 0 and sufficiently large n we have

(a) P{sn /∈ A(n)
ε (S)} → 0 as n→∞

(b) If sn ∈ A(n)
ε (S) then p⊗nSn (sn) ≤ 2−n(H(S)−ε)

(c) |A(n)
ε (S)| ≤ 2n(H(S)+ε)

(d) If (sn1 , s
n
2 ) ∈ A(n)

ε (S1,S2) then p⊗nSn1 |Sn2
(sn1 |sn2 ) ≤ 2−n(H(S1|S2)−ε).

Proof. See for example [CT06, Theorem 15.2.1].
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