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Zusammenfassung

Der Nachfrage nach erhöhter Beweisautomatisierung für den interaktiven Theorembe-
weiser Isabelle folgend zeigt diese Arbeit, wie SMT-Löser den Stand der Technik ver-
bessern können. SMT-Löser sind automatische Theorembeweiser mit Entscheidungs-
verfahren für verschiedene Theorien wie zum Beispiel Gleichheit und lineare Arith-
metik. Unsere Hauptbeiträge sind eine korrekte Übersetzung von Isabelles höherstufi-
ger Logik in die erststufige Logik von SMT-Lösern sowie die effiziente Rekonstruktion
von Beweisen, die vom SMT-Löser Z3 gefunden wurden. Mittels einer umfangreichen
Evaluierung belegen wir, dass viele Theoreme nun automatisch und beinahe augen-
blicklich bewiesen werden können, wofür früher zeitraubendes Nachdenken seitens
des Benutzers nötig war. Das Überprüfen von Z3-Beweisen ist dank unserer aufwendi-
gen Optimierungen schnell. Weitere Beiträge sind ein neues Werkzeug und eine neue
Methode, um funktionale Korrektheit von C-Code im Zusammenspiel mit dem auto-
matischen Programmbeweiser VCC zu beweisen. Wir demonstrieren ihre Eignung für
Implementierungen aus der Praxis anhand von Baum- und Graphalgorithmen.





Abstract

Following the demand for increased proof automation in the interactive theorem prover
Isabelle, this thesis describes how satisfiability modulo theories (SMT) solvers improve
on the state of the art. SMT solvers are automatic theorem provers with decision pro-
cedures for several theories such as equality and linear arithmetic. Our main contribu-
tions are a sound translation from Isabelle’s higher-order logic to the first-order logic
of SMT solvers, and efficient checking of proofs found by the solver Z3. Based on a
large evaluation, we find that many theorems can now be proved automatically and
almost instantaneously for which time-consuming user ingenuity was previously re-
quired. Checking Z3’s proofs is fast thanks to our extensive optimizations. Further
contributions are a new tool and methodology to verify the functional correctness of
C code in conjunction with the automatic program verifier VCC. We demonstrate their
suitability on real-world implementations of tree and graph algorithms.
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1.1. Motivation

Interactive theorem provers such as Isabelle/HOL [130], HOL4 [78] and Coq [20] rely
on automatic methods to discharge simple proof steps without much user guidance.
More precisely, showing that a theorem holds with such a prover requires the user to
find a proof sketch whose intermediate steps can be established by the prover’s au-
tomatic methods. These methods, too, must be chosen and, in most cases, also con-
figured by the user. With more powerful automation at hand, proof sketches can be
more coarse-grain and hence users need to consider fewer invocations of proof meth-
ods resulting in higher productivity. Although in Isabelle, for instance, there are already
quite a few automatic methods, there is a consistent demand for even more powerful
automation.

A common approach is to pass proof obligations to external theorem provers. Sat-
isfiability modulo theories (SMT) solvers are a new class of automatic theorem provers
that combine decision procedures for diverse theories such as equality and arithmetic
with provers for propositional satisfiability (SAT). Thanks to recent improvements in
the design of SAT solvers that yielded dramatic performance gains, SMT solvers at-
tracted much attention. Current major SMT solvers are highly efficient and solve typi-
cal problems within a few seconds only. They even partly outperform saturation-based
automatic first-order provers, which have been integrated into Isabelle for years. This
makes SMT solvers promising candidates to increase the proof automation in interac-
tive theorem provers such as Isabelle.

1
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Isabelle/HOL SMT solver
(CVC3, Yices, or Z3)

conjecture φ

facts Γ
solver

Γ ∧ ¬φ
translation: HOL→ MSFOL

theorem φ

unsatΓ,¬φ ` False

proof
reconstruction

(potential)
counterexample

sat/unknown

Figure 1.1. The SMT solver integration in Isabelle/HOL

1.2. Contributions

We developed a generic interface to SMT solvers in Isabelle/HOL with the expectation
that they can efficiently prove many typical theorems in Isabelle/HOL and thus con-
tribute to better proof automation. Figure 1.1 gives an overview of our integration that
consists of a translation from Isabelle’s higher-order logic (HOL, Section 1.3.1) to the
SMT solvers’ first-order logic (MSFOL, Section 1.4.1) and the reconstruction of proofs
found by the SMT solver Z3 with inference rules of Isabelle/HOL (Section 1.3.2). The
translation from HOL to MSFOL builds on existing work, but our combination of these
techniques is genuine, especially with the support of different decision procedures that
are provided by SMT solvers (Section 1.4.2). Proof checking for Z3 has not been at-
tempted before, largely because the proof format of Z3 is vaguely specified. We provide
in-depth documentation for this format as well as an efficient implementation for its re-
construction in Isabelle/HOL. Counterexamples produced by SMT solvers are beyond
the scope of this thesis.

Developing a proof method that invokes external solvers requires to solve several
technicalities, and without empirical tests it not clear whether our cooperation with
SMT solvers works well in practice. To this end, we contribute an extensive evaluation
on a large number of test cases comprising typical applications of Isabelle on which
we also demonstrate the efficiency of proof reconstruction for Z3. We found that our
integration is fast and robust and can automatically prove many theorems beyond the
reach of methods provided by Isabelle so far.
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While developing and testing our proof reconstruction for Z3, we have found sev-
eral soundness bugs in Z3. We reported these to the developers of Z3 and they have
been corrected in current versions of the solver. This confirms the persisting suspicion,
if not fear, of bugs in automated provers, and motivates the checking of proofs.

We underpin the usefulness of our SMT solver integration in Isabelle by three ex-
amples, two of which are derived from user applications.

First example The integer recurrence relation xi+2 = |xi+1| − xi has period 9. This
property can be stated in Isabelle/HOL as follows:

x3 = |x2| − x1 ∧ x4 = |x3| − x2 ∧ x5 = |x4| − x3 ∧ x6 = |x5| − x4 ∧
x7 = |x6| − x5 ∧ x8 = |x7| − x6 ∧ x9 = |x8| − x7 ∧ x10 = |x9| − x8 ∧
x11 = |x10| − x9 −→ x1 = x10 ∧ x2 = x11

When passing this property from Isabelle/HOL through our binding to an SMT solver,
the solver almost instantaneously finds a proof, and proof reconstruction for Z3 takes
only a few seconds. In contrast, Isabelle’s arithmetic decision procedure requires sev-
eral minutes to prove the same result. Hence, our integration of SMT solvers is consid-
erably faster than existing proof automation.

Second example With our integration of SMT solvers, also higher-order theorems
(Section 1.3.1) can be proved. For example, consider the map function for lists over
arbitrarily typed elements which is characterized as follows:

∀f. map f Nil = Nil

∀f, x, xs. map f (Cons x xs) = Cons (f x) (map f xs)

With these two theorems, our integration of SMT solvers in Isabelle is able to prove the
following higher-order theorem instantaneously:

map (λxint. x + 2) (Cons y (Cons 3 Nil)) = Cons (y + 2) (Cons 5 Nil)

Hence, our work is applicable to a wide range of conjectures in Isabelle/HOL and suc-
ceeds for conjectures that are syntactically outside the variant of first-order logic which
is understood by the target SMT solvers.

Third example A user new to Isabelle defined a simple recursive datatype and an
inductive predicate over pairs of this type [129]. He failed to find a proof for a simple
property of this predicate. Tobias Nipkow provided a structured eight-line Isabelle
proof that invokes three different proof methods. This proof is straightforward, but it
required a few minutes to put all pieces together. In contrast, it takes only a few seconds
for an SMT solver to automatically find a (one-line) Isabelle proof when invoked with
our integration through sledgehammer (Section 1.3.3). Hence, our integration of SMT
solvers can find proofs where other automatic proof methods fail.
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In addition to the SMT solver interface in Isabelle/HOL, we developed a tool, HOL-
Boogie, and a methodology, abstract cooperation, for program verification of C code.
Both build on the VCC code verifier [44] and our integration of SMT solvers in Isabelle.
HOL-Boogie is intended to interactively debug and prove verification conditions for
which fully automatic attempts with VCC fail. With abstract cooperation, high-level
properties of programs can be proved for which VCC has only little support.

We demonstrate both HOL-Boogie and abstract cooperation on a case study each.
For the former, we study functional verification of binary search trees, and with the lat-
ter, we describe the verification of a checker for a graph algorithm where we uncovered
an implementation bug.

1.3. Isabelle/HOL

Isabelle/HOL [130] is an interactive theorem prover based on higher-order logic (Sec-
tion 1.3.1). It builds on an LCF-style kernel (Section 1.3.2) and has hence only a small
trusted code base and high correctness guarantees.

While most users perceive Isabelle/HOL as an interactive theorem prover, we de-
viate from this view and instead focus on the automation of proofs. To understand the
impact of our work, it is nevertheless helpful to get a glimpse on the typical interac-
tion with Isabelle. When faced with a conjecture, a user outlines a proof by breaking
the reasoning into smaller “simple” or “obvious” steps and selects proof methods pro-
vided by Isabelle/HOL to automatically discharge these steps. Such a proof outline
is then checked by Isabelle by running the specified proof methods and reporting un-
provable steps back to the user, who in turn likely modifies the proof and repeats this
cycle. Hence, the burden of proof is put on the shoulders of the user. Besides the inge-
nuity required to find a suitable proof outline, a user also needs to build up experience
in deciding which automatic method of Isabelle/HOL is appropriate for a particular
part of a proof. Consequently, the support for automated proof finding is commonly
perceived as too weak to allow a wide adoption of Isabelle. In recent years, more and
more help has been developed to assist the user in interacting with the system, and one
particular tool for automated proof finding is sledgehammer (Section 1.3.3).

1.3.1. Higher-Order Logic

The logic underlying Isabelle/HOL is higher-order logic (HOL) [3, 77] that is based on
Church’s simply-typed λ-calculus [42]. The syntax of HOL consists of the following
two entities:

• Types τ are either type variables α or applications of type constructors κn with
fixed arity n:

τ ::= α | κn τ1 . . . τn

Among the infinite set of type constructors, we identify the binary function type
constructor→2, typically written infix, and the types of Boolean values bool0, nat-
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ural numbers nat0 and integers int0. In what follows, we usually omit the super-
scripts if they are clear from the context. We refer to a type constructor with arity
n > 0 applied to n types as a compound type. A type without type variables is
called monomorphic type, and a type with type variables is called schematic type.

• Terms t are either typed variables xτ, typed constructors cτ, application or typed
λ-abstraction:

t ::= xτ | cτ | t1 t2 | λxτ. t

Special constants are the usual logical connectives and quantifiers, e.g. Falsebool

(falsehood), ¬bool→bool (negation), ∧bool→bool→bool (conjunction), −→bool→bool→bool

(implication), Ifbool→α→α→α (condition) and ∀(α→bool)→bool (universal quantifier) as
well as the polymorphic equality =α→α→bool. In what follows, we omit the type
superscripts if they are clear from the context. We refer to a term of type bool
as a proposition. A term that contains a variable or constant of schematic type is
called schematic term. Quantifying over variables is expressed as application of
a binder to an abstraction. For instance, the proposition (∀xτ. t) is syntactic sugar
for the term ∀ (λxτ. x). A sequence of quantifiers is combined into a cluster, e.g.,
instead of (∀x. (∀y. t)) we simply write (∀x, y. t). This clustering syntax applies
in the same manner to λ-abstractions. The term (If t1 t2 t3) is usually written as
(if t1 then t2 else t3). We abbreviate ¬ (t = u) by t 6= u. To save parentheses, we
apply the typical precedence rules where quantifiers extend to the right as much
as possible, where infix operators bind weaker than any other application and
where conjunction binds stronger than implication.

We refrain from presenting the semantics of HOL. See [77] instead where HOL’s se-
mantics is given in terms of set theory. We also refer to transition relations of the
λ-calculus [8], especially β-reduction and η-expansion, and to notions such as free or
bound variables of a term without specifying them here.

From now on, we assume that all terms are well-typed according to standard typing
rules. Especially, if t is of type τ′ → τ and t′ is of type τ′ then t t′ has type τ, and if t is of
type τ′ then (λxτ. t) has type τ→ τ′.

Type variables and schematic types give rise to the following notions. A type sub-
stitution σ is a finite mapping from type variables α1, . . . ,αn to types τ1, . . . τn. It can
be lifted to a mapping from types to types and to a mapping from terms to terms by
recursion over the structure of types and terms. If the substitution σ is not the identity
mapping and σ(t) differs from the term t, then we call t a (type) generalization of the term
σ(t). Now, let τ be a schematic type and let τ′ be another type. If there exists a substi-
tution σ with σ(τ) = τ′, then we say that τ′ matches τ, and we call σ the substitution
induced by τ′ w.r.t. τ. Let cτ and cτ

′
be two variants of a constant with types as before. If τ′

matches τ with substitution σ, then we say that cτ
′
matches cτ, and if τ′ is monomorphic

we call cτ
′

a monomorphic variant of c and cτ a schematic variant of c. Similar as before,
we call σ the substitution induced by cτ

′
w.r.t. cτ. We say that two substitutions σ1 and σ2

agree with each other if they map all type variables that are in the domain of both σ1
and σ2 to the same type. If σ1 and σ2 agree with each other, we define the combination
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of substitutions σ1 and σ2 as the substitution σ that maps every type variable α in the
domain of either σ1 and σ2 to either σ1(α) or σ2(α).

We fix the following further notations. A possible occurrence of the term u in t is
denoted by t[u]. Its generalization, the occurrence of a list of terms u1, . . . , un, abbre-
viated by u, in a term t is denoted by t[u]. A replacement of every occurrence of u1
with u2 in t is denoted by t[u1 7→ u2]. If the term c t1 . . . tn has type τ1 → τ2, then c is
called partially applied. Otherwise, if the type of c t1 . . . tn is not a function type, then c
is said to be fully applied. We call a HOL proposition a problem if it takes the form of an
implication from a conjunction of HOL propositions, called constituents of the problem,
to False. Since the conclusion of a problem is fixed, we typically drop it in examples.

Besides bound variables, Isabelle supports free variables that are arbitrary but fixed.
Free variables resemble constants in most cases as they cannot be instantiated, but in
contrast to constants, free variables can be quantified over under certain restrictions.1

1.3.2. LCF-Style Kernel and Proof Automation

The term LCF-style [75, 76] describes theorem provers that are based on a small infer-
ence kernel. Theorems are implemented as an abstract datatype, and the only way to
construct new theorems is through a fixed set of functions, that correspond to the un-
derlying logic’s axiom schemata and inference rules, provided by this datatype. This
design greatly reduces the trusted code base. Proof procedures based on an LCF-style
kernel cannot produce unsound theorems, as long as the implementation of the theo-
rem datatype is correct.

Isabelle, just like most LCF-style systems, implements a natural deduction calculus.
Theorems are sequents Γ ` t, where Γ is a finite set of hypotheses, and t is the sequent’s
conclusion. Instead of ∅ ` t, we simply write ` t. For its LCF-style kernel [136], Isa-
belle uses the special implication constant =⇒ and the special universal quantifier

∧
.

Some of the inference rules of this kernel are assumption (asm), implication introduction
(intro=⇒) and introduction and elimination of the universal quantifier (intro∧ and elim∧):

{t} ` t
asm

Γ ` t
Γ \ {u} ` u =⇒ t

intro=⇒
Γ ` t[x]

Γ `
∧

x. t[x]
intro∧ Γ `

∧
x. t[x]

Γ ` t[x 7→ u]
elim∧

Introduction of the universal quantifier is restricted to variables x that do not occur free
in the hypotheses Γ. The inference rule used most in Isabelle is higher-order resolution
res that is an extension of first-order resolution based on higher-order unification. We
refer to [135] for a description of this inference rule.

The special implication constant and the special universal quantifier allow to ex-
press inference rules of the logic as theorems. Symmetry of equality, for instance, is

1 Isabelle also knows of schematic term variables that are roughly comparable to outermost universally
bound variables. Throughout this thesis, we refrain from using the former in favor of the latter. Sim-
ilarly to term variables, Isabelle also distinguishes between schematic and free type variables. In this
thesis, we treat free type variables interchangable to type constructors most of the time.
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Figure 1.2. The sledgehammer architecture

typically written in textbooks as the following inference schema where t and u stand
for arbitrary terms:

Γ ` t = u
Γ ` u = t

In Isabelle, symmetry is instead expressed by the theorem
∧

x, y. x = y =⇒ y = x. We
call such theorems metatheorems to emphasize their role as inference rules. Since elimi-
nation of implication and universal quantifiers are primitive inferences of the LCF-style
kernel, reasoning with metatheorems is typically much faster than proving specific in-
stances of such theorems anew.

On top of its LCF-style kernel, Isabelle offers various automated proof methods, no-
tably a simplifier, which performs term rewriting, a decision procedure for proposi-
tional logic, tableau- and resolution-based first-order provers, and decision procedures
for arithmetic on integers and reals. Since they ultimately rely on the inference rules of
the LCF-style kernel, none of these proof methods extends the trusted code base. Any
attempt to perform an unsound inference will be caught by Isabelle’s kernel. Yet, there
is a special inference rule in the kernel to turn arbitrary propositions into theorems, but
Isabelle keeps track of the theorems whose proofs are tainted (directly or indirectly) by
such an inference. Proof methods that use this technique are called proof oracles and are
typically mistrusted for good reasons.

1.3.3. Sledgehammer

Originally developed to interface Isabelle/HOL with resolution-based automatic theo-
rem provers (ATPs) such as E, SPASS and Vampire, sledgehammer [118] has eventually
evolved into a more general prover framework [23] as depicted in Figure 1.2. It in-
tegrates several different external provers with Isabelle/HOL and delivers both auto-
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matic proofs of internal provers such as the first-order resolution prover metis [86, 139]
as well as Isar [165] proofs. The central component of sledgehammer is a relevance fil-
ter [119] that heuristically selects for a given proof goal (or conjecture) from all facts
of Isabelle/HOL a few hundred relevant facts potentially required to prove that goal.
These facts together with the goal are given in parallel to external provers. In case one
of them finds a proof sledgehammer extracts and optionally minimizes the set of facts re-
quired by the proof and passes these facts together with the goal to an internal prover
such as metis to find an LCF-style proof. Alternatively sledgehammer can construct a
structured Isar proof from the proof of one of the external provers [139].

1.4. Satisfiability Modulo Theories Solvers

Satisfiability modulo theories (SMT) solvers are automatic theorem provers for first-
order logic with a combination of theories such as equality, linear arithmetic and fixed-
size bitvectors [37, 83, 97]. The research about SMT solvers receives active interest, and
many solvers have emerged in recent years. Some major SMT solvers are CVC3 [17],
Yices [64], and Z3 [59]. We give insights into the architecture of SMT solvers (Sec-
tion 1.4.2) after introducing the logic understood by these solvers (Section 1.4.1).

1.4.1. Many-Sorted First-Order Logic

Many-sorted first-order logic (MSFOL) [111, chapter 6] is an extension of standard first-
order logic [3] with sorts. The language of MSFOL comprises the following three syn-
tactic categories:

• Sorts σ are atomic entities. The function space from sorts σ1, . . . ,σn to a sort σ
is written as (σ1, . . . ,σn) → σ. The domain of a relation over sorts σ1, . . . ,σm is
denoted as (σ1, . . . ,σm). Both function space and domain of a relation (for m > 1)
are themselves no sorts.

• Terms t are either sorted variables xσ or functions f (σ1,...,σn)→σ applied to terms:

t ::= xσ | f (σ1,...,σn)→σ (t1, . . . , tn)

• Formulas ϕ are composed of logical constants (e.g., falsehood ⊥), logical connec-
tives (e.g., negation ¬ and conjunction ∧), quantifiers (e.g., the universal quan-
tifier ∀), polymorphic equality = on terms and predicates P(σ1,...,σn) applied to
terms:

ϕ ::= ⊥ | ¬ϕ | ϕ1 ∧ ϕ2 | ∀xσ. ϕ | t1 = t2 | P(σ1,...,σn) (t1, . . . , tn)

Moreover, we allow the logical constant > (truth), the logical connectives ∨ (dis-
junction), −→ (implication), ←→ (equivalence) and the existential quantifier ∃.
Formulas that are either equalities between two terms or predicates applied to
terms are called atoms. Similarly to HOL, we abbreviate ¬ (t1 = t2) by t1 6= t2, and
we group quantifiers in clusters, i.e., we write (∀x, y. ϕ) instead of (∀x. (∀y. ϕ)).
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In addition, we allow if-then-else-expressions in terms and formulas. More precisely, if
t1 and t2 are terms and ϕ, ψ1 and ψ2 are formulas then (if ϕ then t1 else t2) is a term and
(if ϕ then ψ1 else ψ2) is a formula.

The semantics of MSFOL is given in [111] as an extension of the semantics of stan-
dard first-order logic. Note that MSFOL can be reduced to unsorted first-order logic.

Similarly to HOL (Section 1.3.1), we assume that all terms and formulas are well-
sorted. Especially if all ti are of sort σi, then f (σ1,...,σn)→σ (t1, . . . , tn) has sort σ and
P(σ1,...,σn) (t1, . . . , tn) is well-sorted. Moreover, if t1 and t2 are both of sort σ, then t1 = t2
is well-sorted, i.e., any two terms of the same sort can be compared for equality. Subse-
quently, we omit superscripts where the sorts are clear from the context.

For presentation purposes, we use l to denote a formula for which negation never
creates a doubly-negated formula, and we call such a formula a literal. That is, if l stands
for the formula ¬ϕ, then ¬l denotes ϕ, and if l stands for an unnegated formula ψ, than
¬l denotes ¬ψ. A disjunction of literals is henceforth called clause.

A language element commonly supported by SMT solvers is the polyadic distinct
predicate, which abbreviates a quadratic number of inequations. For example, the for-
mula distinct(t1, t2, t3) is short for t1 6= t2 ∧ t1 6= t3 ∧ t2 6= t3. Note that distinct(t) for any
term t is equivalent to >.

Two MSFOL formulas are equisatisfiable, denoted by ∼, if the first formula is sat-
isfiable whenever the second one is, i.e., each formula has a model or none has one.
Since both formulas can have different models, equisatisfiability is a generalization of
equivalence. Yet in some cases, the existential closures of two equisatisfiable formulas
can result in equivalent formulas, e.g., (P(x)∨⊥) is equisatisfiable to P(y) and their ex-
istential closures (∃x. P(x) ∨ ⊥) and (∃y. P(y)) are equivalent. There are also cases for
which the existential closures of two equisatisfiable formulas do not yield equivalent
formulas. For instance, the existential closure for Q is Q, and likewise the existential
closure for Q ∨ R is Q ∨ R. The two formulas Q and Q ∨ R are equisatisfiable but not
equivalent.

Finally, we fix the following notations. The symbol  is a placeholder for either
implication (−→), equivalence (←→) or equisatisfiability (∼). The symbols ' and ≈
stand for either equality (=) between two terms or equivalence (←→) or equisatisfiabil-
ity (∼) between two formulas unless the resulting formulas would not be well-sorted.
Moreover, we use Q to denote one of the quantifiers ∀ or ∃.

1.4.2. SMT Solver Architecture

An SMT solver consists of many “little engines of proof” [147]. Among them, a decision
procedure for propositional logic, typically an efficient SAT solver [168], and a decision
procedure for the ground theory of equality, typically based on congruence closure [7,
63,126], are the driving forces. Figure 1.3 gives an overview of the common architecture
of SMT solvers. We briefly highlight the depicted components and their interplay.

Preprocessing Any input to an SMT solver is preprocessed first. This includes sim-
plifications of terms and formulas, but also equivalence-preserving transformations
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DPLL(T )

Theory combinationpreprocessing

SAT solver equality

linear arithmetic

further theories

quantifier instantiation

Figure 1.3. High-level SMT solver architecture

that establish certain canonical forms which are expected by the other components,
notably the decision procedures.

SAT solver SAT solvers decide satisfiability of a propositional formula in conjunctive
normal form (CNF), i.e., a conjunction of clauses, by trying to find a model for the for-
mula. Underlying most modern solvers is the classical DPLL solver scheme [54, 55]
(named after its inventors Davis, Putnam, Logemann and Loveland) that performs a
search based on propagating implications of single-literal clauses and case splitting on
literals. Despite the fact that deciding satisfiability of CNF formulas is NP-complete,
SAT solvers developed over the last decade perform astonishingly well in practice
thanks to several optimizations [123, 149] that are subsumed under the name conflict-
driven clause learning (CDCL). Solving formulas with up to tens of thousands of vari-
ables and millions of clauses is still feasible in certain cases.

DPLL(T ) The DPLL(T) framework [72, 127] handles the integration of a decision pro-
cedure for a ground first-order theory with the search performed by a DPLL-based SAT
solver. To this end, each formula is abstracted into a propositional skeleton where atoms
over functions and predicates interpreted by the theory are replaced by propositional
variables. Whenever the SAT solver is unable to refine a partial model for the propo-
sitional skeleton by implications and before it would perform costly case splits, the
theory decision procedure is invoked. If that finds the current (partial) model contra-
dictory, it produces a clause, called theory lemma, that is conjoined to the propositional
skeleton, and the SAT solver continues its search.

Theories Several first-order theories have decision procedures for conjunctions of
theory atoms. Among those are equality, decided by congruence closure [7, 63, 126],
linear arithmetic over integers, decided by the Omega test [140], and linear arithmetic
over reals, decided by the Fourier–Motzkin [52] or the Simplex algorithm [43]. Conjunc-
tions of bitvector atoms where all involved bitvectors are of fixed size can be flattened
to propositional formulas, called bitblasting [97], and hence be decided by a SAT solver.
Algebraic datatypes have a (potentially infinite) first-order axiomatization using equal-
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ity [133]. They are typically handled by a special hard-coded setup of the quantifier
instantiation heuristics.

Theory combination Most SMT solvers implement a theory combination suggested
by Nelson and Oppen [125]. Given decision procedures for two theories that share
only equality as interpreted symbol, the combined decision procedure works as fol-
lows. Any conjunction of theory atoms is first purified by introducing equalities be-
tween fresh variables and subterms such that each atom of the resulting conjunction
contains only interpreted functions and predicates of a single theory. The theory de-
cision procedures are invoked on their respective atoms and communicate with each
other by exchanging implied equalities (over variables) only.

Quantifier instantiation Except for preprocessing, all SMT solver components de-
scribed so far operate only on unquantified formulas. Instead of taking decision proce-
dures for quantified formulas, e.g., linear arithmetic admits quantifier elimination [49],
SMT solvers rely mostly on heuristics to instantiate quantifiers [57, 61, 122]. These
heuristics are based on patterns. A pattern for a quantified formula ∀x. ϕ is a set of
terms {t1, . . . , tn} where each term ti is typically a subterm of ϕ. Every bound variable
in the list x must occur in at least one of the terms t1, . . . , tn, yet none of these terms
must be syntactically equal to one the bound variables. The SMT solver will regu-
larly, mostly before case splitting in the SAT solver, check if a substitution σ exists such
that σ(t1), . . . ,σ(tn) have an interpretation in the currently considered partial ground
model. If so, the solver conjoins the instance σ(ϕ), that is implied by the quantified
formula ∀x. ϕ, to the logical context and continues its search. Substitutions are found
by matching patterns against the graph data structure produced by the congruence
closure algorithm. Hence, a pattern’s terms may involve uninterpreted functions only.
Functions and predicates interpreted by other theories are excluded from pattern-based
quantifier instantiations, because matching patterns against interpreted terms would
require theory-specific reasoning which is typically too expensive.

There are cases in which specifying more than one pattern is convenient. We call a
set of patterns for a quantified formula a trigger. The SMT solvers relevant to this thesis
have automatic trigger inference algorithms, but users may override these algorithms,
except for that in Yices, by providing hand-selected triggers. This gives users the abil-
ity to directly control how the solvers perform quantifier instantiations. In addition, Z3
supports user-configurable quantifier weights that influence at which stage of the search
a quantified formula is participating. The larger the weight, the later a formula is con-
sidered for instantiation. Inappropriate triggers or too large weights may inhibit the
corresponding formulas to participate in the solver’s search and consequently render a
problem unprovable for the SMT solver.

1.5. Structure of This Thesis

The largest part of this thesis is devoted to a sound and efficient integration of SMT
solvers with Isabelle/HOL, as depicted in Figure 1.1. We describe how to translate con-
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jectures formulated in higher-order logic to the variant of first-order logic understood
by SMT solvers, in a way that the translated formula implies the original conjecture,
and evaluate this integration on a representative set of examples (Chapter 2). We then
present how to certify this integration, or, more specifically, how to efficiently recon-
struct proofs produced by the SMT solver Z3 (Chapter 3).

Among the many applications of SMT solvers, program verification is one the most
prominent and challenging driving forces [84]. We devote the second part of this thesis
to this subject (Chapter 4). We describe the new tool HOL-Boogie that is intended to
debug and prove verification conditions for which the automatic C code verifier VCC
fails. HOL-Boogie relies on our integration of SMT solvers in Isabelle for doing most of
its work. We apply HOL-Boogie to the verification of binary search trees. Moreover, we
describe a new methodology called abstract cooperation to prove high-level properties
of C programs and demonstrate it on the verification of a C implementation of a checker
for a graph algorithm.

Finally, we conclude and give an outlook for future directions (Chapter 5).
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Integrating SMT Solvers as Oracles
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2.1. Introduction

Our integration of SMT solvers as proof oracles in Isabelle/HOL essentially consists
of a translation (Section 2.2) from higher-order logic (HOL) to many-sorted first-order
logic (MSFOL), where we deliberately ignore technical intricacies involved in combin-
ing heterogeneous applications. Our translation is generic and sound, but not complete.
Generality comes from targeting the standardized exchange format SMT-LIB [141] un-
derstood by all major SMT solvers. With soundness, we mean that if a translated prob-
lem is valid, so is the original problem, whereas completeness means that a translated
problem is valid if the original one is. Our translation encodes every HOL proposition
into MSFOL formulas as a shallow embedding, i.e., by faithfully representing quan-
tifiers, connectives and other symbols of HOL with respective entities of MSFOL. We
use the overloaded translation function 〈〈·〉〉 that maps HOL types to MSFOL sorts and
HOL terms t to MSFOL terms or MSFOL formulas depending on the type of t. In a
less formal way, we complement our description of the translation from HOL to MS-
FOL by detailing how we make use of the decision procedures available in SMT solvers
(Section 2.3) and how to guide the search strategy of SMT solvers (Section 2.4).

An integration of SMT solvers with Isabelle/HOL such as the one described in
this chapter will necessarily stay prototypically unless validated on a large benchmark
set. We do so by providing results of extensive experiments and thus demonstrating
the usefulness of SMT solvers for typical proofs in Isabelle/HOL (Section 2.5). Our
evaluation also confirms our initial expectation about the increased proof automation
gained from SMT solvers.

13
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Sorts: 〈〈κ0〉〉 ∼= σ

Terms: 〈〈xτ〉〉 ∼= x〈〈τ〉〉

〈〈cτ1→...→τn→τ t1 . . . tn〉〉 ∼= c(〈〈τ1〉〉,...,〈〈τn〉〉)→〈〈τ〉〉 (〈〈t1〉〉, . . . , 〈〈tn〉〉)
Formulas: 〈〈False〉〉 ∼= ⊥ 〈〈t = u〉〉 ∼= (〈〈t〉〉 = 〈〈u〉〉)

〈〈¬t〉〉 ∼= ¬〈〈t〉〉 〈〈∀xτ. t〉〉 ∼=
(
∀x〈〈τ〉〉. 〈〈t〉〉

)
〈〈t∧ u〉〉 ∼= 〈〈t1〉〉 ∧ 〈〈u〉〉
〈〈cτ1→...→τn→bool t1 . . . tn〉〉 ∼= c(〈〈τ1〉〉,...,〈〈τn〉〉) (〈〈t1〉〉, . . . , 〈〈tn〉〉)

Figure 2.1. Translation of essentially first-order HOL entities to MSFOL
equivalents following the description of MSFOL (Section 1.4.1)

Translations from HOL to (variants of) first-order logic have previously been stud-
ied. In fact, most of the work presented (Section 2.2) is not new, yet has not been com-
bined in the presented way and accompanied with extensive tests so far. We conclude
this chapter by reviewing related work and highlighting differences to our solutions
(Section 2.6).

2.2. Translation

We can represent any MSFOL formula directly as a semantically equivalent proposition
in HOL, and we call the latter essentially first-order to distinguish it from HOL propo-
sitions for which no direct MSFOL representations exist. To clarify their correspon-
dence, Figure 2.1 shows a mapping from essentially first-order HOL entities to MSFOL
equivalents. Clearly, most HOL propositions are not essentially first-order, especially if
they contain type variables or λ-abstractions (except at quantifier constants). For those
propositions, we describe a set of syntax-directed translation steps that map them into
essentially first-order form. With the correspondence of essentially first-order proposi-
tions and MSFOL formulas, this results in a sound translation from HOL to MSFOL.

Which translations are necessary to convert an arbitrary HOL proposition into a
corresponding essentially first-order one? We approach an answer to this question by
studying the syntactical entities of HOL that have no counterpart in MSFOL.

• The type system of MSFOL lacks both type variables and compound types. For
example, the HOL type κ α has no direct representation as a sort in MSFOL.

• MSFOL lacks λ-abstractions, and hence a HOL term such as (λx. t) cannot be di-
rectly represented in MSFOL.

• The single incarnation of application in HOL contrasts with several different in-
carnations of application in MSFOL, i.e., applications of function symbols or pred-
icate symbols (including equality) to terms and applications of logical connectives
to formulas. To highlight this issue, let us consider the possible cases of term t in
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(
∀fα→β, xα, xslist α. apphd f (Cons x xs) = f x

)
∧

apphd
(
λxbool. if x then a else b

)
(Cons True Nil) 6= aκ

Figure 2.2. A contrived HOL problem as a running example for our trans-
lations. All symbols not bound by a quantifier are constants.

a (β-reduced) HOL application t t1 . . . tn with n ≥ 1, where t is neither an appli-
cation nor an abstraction:

– If t is a variable, it must be be of some function type. Clearly, this is not
directly expressible in MSFOL where variables are of atomic sort.

– If t is a constant, then it might either be partially applied or fully applied.
The former case has no direct representation in MSFOL, where logical con-
nectives, predicates and functions are always applied to as many arguments
as their arity demands. The latter case is possibly directly expressible in MS-
FOL, but certain restrictions might apply.

MSFOL further imposes a strict distinction between formulas and terms: Variables and
functions may only occur in terms; logical connectives, quantifiers and predicates may
only occur in formulas; quantifying over propositions (i.e., Boolean variables) is not
possible; and especially function and predicate symbols are distinct entities, even if
they share the same name—contrast this with HOL constants, whose semantics is inde-
pendent from their position in a term. Similarly, MSFOL’s equality and equivalence are
both subsumed by HOL’s equality.

The remainder of this section presents our translation steps to convert a HOL prob-
lem into essentially first-order form and into MSFOL. Each step concentrates on one of
the mentioned points and establishes a specific normal form by erasing some HOL con-
cepts or enforcing some MSFOL restrictions, and these normal forms are maintained by
later translations. Showing that the presented translations are sufficient is omitted. We
illustrate all translation steps on an (admittedly contrived) example (Figure 2.2).

2.2.1. Monomorphization

Two major approaches are known for translating problems with schematic constituents
into problems without type variables. The first approach is to encode the type system
into an untyped logic. The second approach, commonly known as monomorphization,
is to heuristically instantiate the schematic constituents with monomorphic types and
thereby keeping problems typed. Since we intend to benefit from the support of sorts
in SMT solvers, we chose the second approach for our translation.

Monomorphization is the repetition of a step that generates all instances of a set of
schematic terms based on a set of monomorphic terms until a fixed point is reached.
Instances are generated by matching monomorphic constants with schematic constants
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Original HOL problem:(
∀fα→β, xα, xslist α. apphd f (Cons x xs) = f x

)
∧

apphd
(
λxbool. if x then a else b

)
(Cons True Nil) 6= a

After monomorphization:(
∀f bool → κ , x bool , xslist bool . apphd f (Cons x xs) = f x

)
∧

apphd
(
λxbool. if x then a else b

)
(Cons True Nil) 6= a

Figure 2.3. The running example after monomorphization

and applying the resulting substitutions to the schematic terms. The set of instances
generated by one step may contain new monomorphic terms that induce further in-
stances in the next step. Formally, monomorphization can be defined as follows. Let
cτ
′

be a constant with monomorphic type τ′ and let t be a schematic term. If t contains
the constant cτ with schematic type τ such that τ′ matches τ, then we call σ(t) an in-
stance of t w.r.t. cτ

′
where σ is the substitution induced by cτ. Furthermore, if t′ is a

monomorphic term, then σ(t) is an instance of t w.r.t. t′ if the combination σ of all sub-
stitutions induced by the monomorphic constants in t′ is defined. Note that such an
instance can still be schematic. Given a set of schematic terms S and a set of monomor-
phic terms M, we define the instances of S w.r.t. M as the set I of terms such that each
term in I is an instance of some term from S w.r.t. to some term from M. With (Im, Is)
being the partition of I into monomorphic and schematic terms, a monomorphization step
for S w.r.t. M maps the pair (M, S) to the pair (M∪ Im, S∪ Is). Only taking these unions
makes every monomorphization step monotonic, because both M and S might contain
terms that are missing in Im and Is. For observe that every term that is an instance of a
schematic term has strictly less type variables than that schematic term. Hence, there
might be terms in S that cannot be obtained as an instance from S w.r.t. M. Observe
further that M might contain monomorphic terms for which there is no generalization
in S. That is, there might be terms in M that are different from any instance in Im. The
(complete) monomorphization of a set S of schematic terms w.r.t. a set M of monomor-
phic terms is the computation of a least fixed point of monomorphization steps of S
w.r.t. M. For a problem t, let (M, S) be the partition of its constituents into monomor-
phic and schematic terms. If monomorphization of S w.r.t. M yields the pair (M′, S′),
then we call the conjunction of all terms in M′ the monomorphized problem of t. Figure 2.3
illustrates the effect of monomorphization on the running example.

Monomorphization can yield a pair whose first component, the set of monomor-
phic terms, is infinite. Hence, computing that set by repeated monomorphization steps
can be nonterminating. For example, consider the sets S = {cα ∧ cκ α} and M = {cκ0}.
The first monomorphization step yields the monomorphic term cκ0 ∧ cκ κ0 that triggers
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another step resulting in the new monomorphic term cκ κ0 ∧ cκ κ κ0 , and every further
step yields a new monomorphic term with a further application of κ to the types of c.
We frequently observed similar situations for more realistic problems occurring in Isa-
belle/HOL. Another example where monomorphization results in an infinite set of
monomorphic terms is given in [51, page 265].

Clearly, most elements of the computed set of monomorphic terms are irrelevant if
a proof for the monomorphized problem exists, because every proof is finite and can
hence refer only to a finite number of monomorphic terms. Finding the finite subset
of necessary monomorphic terms is undecidable [27], but we can devise heuristics to
obtain an overapproximation of that set, and, in our experience, giving a few hundred
unnecessary facts to an SMT solver has little impact on the solver’s performance. Our
solution is to perform a fixed number of monomorphization steps, because monomor-
phic terms that contribute to proofs are typically those generated by the first few steps.
Since each step can lead to exponentially many new instances, we also limit the total
number of computed monomorphic terms. Both numbers are user-configurable. By
default, our implementation performs 5 steps and generates up to 300 new monomor-
phic terms. For efficiency reasons, we operate only on substitutions and postpone their
application until after their computation stops. In our implementation, each monomor-
phization step is a refinement of substitutions starting from the singleton set containing
only the empty substitution, by matching monomorphic constants against polymor-
phic constants. As long as new monomorphic constants emerge, our implementation
collects them and performs another step.

2.2.2. Lambda-Lifting

We remove λ-abstractions by λ-lifting [92], a technique which introduces new con-
stants for λ-abstractions and adds definitions to relate these new constants to the λ-
abstractions they are replacing. More formally, we perform the following translation
where c is a fresh constant:

〈〈t [λxτ. u]〉〉 ∼= (t [(λxτ. u) 7→ c] ∧ (∀xτ. c x = u))

Figure 2.4 exemplifies this translation. If the λ-abstraction contains free variables, they
are turned into arguments to c.

We apply λ-lifting from inside out, i.e., first replacing inner λ-abstractions before
replacing outer ones. For keeping the number of quantified formulas low, which re-
duces the overhead in the target SMT solver, it is important to minimize the number
of freshly introduced constants and corresponding definitions. To this end, we treat a
cluster of λ-abstractions such as (λx, y. t) at once, i.e., by introducing just one constant
instead of two in this case. Moreover, we replace repeated occurrences of the same
λ-abstraction by the same constant instead of inventing fresh constants for every oc-
currence again. The number of λ-liftings is reduced further by applying β-reduction to
HOL terms before this step.
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Result of the previous translation step:(
∀f bool→κ, xbool, xslist bool. apphd f (Cons x xs) = f x

)
∧

apphd
(
λxbool. if x then a else b

)
(Cons True Nil) 6= a

After λ-lifting:(
∀f bool→κ, xbool, xslist bool. apphd f (Cons x xs) = f x

)
∧

apphd c (Cons True Nil) 6= a ∧
(
∀xbool. c x = if x then a else b

)
Figure 2.4. The running example after λ-lifting

2.2.3. Explicit Applications

For constants occurring with a varying number of arguments, e.g., both partially- and
fully-applied, we treat the minimal number of arguments as proper arguments and
make application to additional arguments explicit. We achieve this with the help of the
constant app(α1→α2)→α1→α2 that has the following defining equation:

app t1 t2 = t1 t2

Making applications explicit works as follows, where c is a constant that occurs at least
with n arguments and where all ti with 1 ≤ i ≤ n as well as all u j with 1 ≤ j ≤ m are
HOL terms:

〈〈c t1 . . . tn u1 . . . um〉〉 ∼= app (. . . (app (t t1 . . . tn) u1) . . .) um

The same technique is also applied to higher-order bound variables whose minimal
number of arguments is by default taken to be zero. Decorating HOL terms with app
by rewriting with the definition of app from right to left is equivalence-preserving. Fig-
ure 2.5 demonstrates this translation on our running example.

Constants that are interpreted in MSFOL, e.g., logical connectives, may also oc-
cur partially applied in HOL, although this typically happens infrequently. Decorating
these constants with app would result in terms which are not well-typed in MSFOL.
Instead, we η-expand them before λ-lifting such that the partially applied occurrence is
turned into a fresh constant.

Due to our policy of choosing the minimal number of arguments as the arity of con-
stants, introducing explicit applications may result in different representations of HOL
problems when only one further constituent is added. In the worst case, an unsolvable
problem can turn into a solvable problem, although the added constituent does not di-
rectly participate in the proof. This situation is best illustrated by an example. Consider
the following HOL problem, where zeroN, oneN and succN→N are constants:

succ zero = one ∧ ¬ (∃f. f zero = one)
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Result of the previous translation step:(
∀f bool→κ, xbool, xslist bool. apphd f (Cons x xs) = f x

)
∧

apphd c (Cons True Nil) 6= a ∧
(
∀xbool. c x = if x then a else b

)
After introducing explicit applications:(

∀f bool→κ, xbool, xslist bool. apphd f (Cons x xs) = app f x
)
∧

apphd c (Cons True Nil) 6= a ∧
(
∀xbool. app c x = if x then a else b

)
Figure 2.5. The running example after introducing of explicit applications

This problem is clearly provable in HOL as succ is a witness for f. Following our de-
scription above, we make the application of the higher-order variable f explicit and thus
obtain this corresponding problem, which is refutable:

succ zero = one ∧ ¬ (∃f. app f zero = one)

By adding the constituent P succ, which does not contribute to the proof since noth-
ing is known about P, we force succ to be treated as nullary constant according to our
translation policy:

P succ ∧ app succ zero = one ∧ ¬ (∃f. app f zero = one)

This problem is again provable—especially by SMT solvers. To avoid such weaknesses
as exposed by this example, we adapted our approach to detecting minimal arities of
constants in the following way (thanks to a suggestion by Jasmin Christian Blanchette).
If a variable xτ occurs in a problem, then all constants of type τ1 → . . . τn → τ are con-
sidered to have at most arity n unless constrained otherwise as they might be possible
witnesses (if x is existentially quantified) or instances (if x is universally quantified).

2.2.4. Erasure of Compound Types

Observe that a HOL type constructor κn with n > 0 applied to n monomorphic HOL
types τi has a set interpretation constructed recursively from the set interpretations of
the types τi. Hence, we can consider κn τ1 . . . τn as a HOL type κn

0 with the same set
interpretation. This observation allows us to translate compound types to fresh nullary
type constructors, which in turn correspond directly to MSFOL sorts:

〈〈κn τ1 . . . τn〉〉 ∼= κn
0

Note that due to monomorphization we can assume that all types of a problem are
monomorphic at this step. Further note that this translation also applies to monomor-
phic function types. Figure 2.6 demonstrates on the running example how compound
types are erased.
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Result of the previous translation step:(
∀f bool→κ, xbool, xslist bool. apphd f (Cons x xs) = app f x

)
∧

apphd c (Cons True Nil) 6= a ∧
(
∀xbool. app c x = if x then a else b

)
After erasing compound types:(

∀f κ1 , xbool, xs κ2 . apphd f (Cons x xs) = app f x
)
∧

apphd c (Cons True Nil) 6= a ∧
(
∀xbool. app c x = if x then a else b

)
Figure 2.6. The running example after erasing compound types

2.2.5. Separation of Formulas from Terms

The distinction between the syntactic entity of formulas and that of terms as required by
MSFOL is obtained in HOL by inserting vacuous symbols to mark the border between
the two categories. To this end, we define the constants TTtbool and FFtbool equivalent
to True and False, where tbool is a new type isomorphic to bool, and use them as fol-
lows. A HOL term t of type bool can either be a formula or a term in the MSFOL sense
depending on its syntactic structure and its occurrence in a proposition. If t is struc-
turally a term, but its occurrence requires a formula, then t is equated with TT. If t is
structurally a formula, but its occurrence requires a term, it is wrapped in a condition
(if t then TT else FF). Hence, we treat all HOL constants as MSFOL function symbols
and never produce any MSFOL predicate symbols. Figure 2.7 makes this informal de-
scription more precise by means of three mutually-recursive translation functions that
follow the exposition of MSFOL (Section 1.4.1) extended with if-then-else-expressions.
Within HOL, these decorations are equivalence-preserving. The application of this
translation to the running example is given in Figure 2.8.

Besides inserting marker symbols into the problem, we conjoin only (TT 6= FF) to
further specify the two new constants. To make the translation complete, we could add
the exhaustion rule (∀ttbool. t = TT∨ t = FF), but this rule is likely to be ignored by SMT
solvers since they fail in finding a trigger for the quantifier (Section 1.4.2).

2.2.6. Translation into MSFOL

After the previous translation steps, a problem is now in essentially first-order form.
HOL propositions in essentially first-order form directly correspond to MSFOL formu-
las. Translation from HOL to MSFOL proceeds by mapping quantifiers, logical con-
nectives, if-then-else-expressions and equality to their MSFOL counterparts (Figure 2.1).
The remaining HOL constants are treated as uninterpreted in MSFOL. We highlight
this by renaming them, a process which also avoids any potential name confusion in
the target SMT solver. In fact, assigning new names to every constant is a cheap imple-
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Types: 〈〈bool〉〉 ∼= tbool 〈〈κ0〉〉 ∼= κ0

Terms: 〈〈xτ〉〉T ∼= x〈〈τ〉〉 〈〈cτ t1 . . . tn〉〉T ∼= c〈〈τ〉〉 〈〈t1〉〉T . . . 〈〈tn〉〉T
〈〈if t then u1 else u2〉〉T ∼= (if 〈〈t〉〉F then 〈〈u1〉〉T else 〈〈u2〉〉T)
〈〈t〉〉T ∼= (if 〈〈t〉〉F then TT else FF) (1)
〈〈t = u〉〉T ∼= (if (〈〈t〉〉X = 〈〈u〉〉X) then TT else FF) (2)

Formulas: 〈〈xτ〉〉F ∼=
(

x〈〈τ〉〉 = TT
)

〈〈cτ t1 . . . tn〉〉F ∼=
(

c〈〈τ〉〉 〈〈t1〉〉T . . . 〈〈tn〉〉T = TT
)

〈〈if t then u1 else u2〉〉F ∼= (if 〈〈t〉〉F then 〈〈u1〉〉F else 〈〈u2〉〉F)
〈〈False〉〉F ∼= False 〈〈¬t〉〉F ∼= ¬〈〈t〉〉F 〈〈t∧ u〉〉F ∼= 〈〈t〉〉F ∧ 〈〈u〉〉F
〈〈∀xτ. t〉〉F ∼=

(
∀x〈〈τ〉〉. 〈〈t〉〉F

)
〈〈t = u〉〉F ∼= (〈〈t〉〉X = 〈〈u〉〉X) (2)

Figure 2.7. Translation rules for separating formulas and terms loosely fol-
lowing the description of MSFOL (Section 1.4.1) and extended with if-then-
else-expressions. Additional side conditions apply: (1) A term t is trans-
lated as a formula wrapped into a condition if t is of the form False, ¬t′,
t1 ∧ t2, or ∀x. t′. (2) The variable X in 〈〈t〉〉X stands for F if t is of type bool and
for T otherwise.

Result of the previous translation step:(
∀f κ1 , xbool, xsκ2 . apphd f (Cons x xs) = app f x

)
∧

apphd c (Cons True Nil) 6= a ∧
(
∀xbool. app c x = if x then a else b

)
After separating formulas and terms:(

∀f κ1 , x tbool , xsκ2 . apphd f (Cons x xs) = app f x
)
∧

apphd c
(

Cons (if True then TT else FF) Nil
)
6= a ∧(

∀x tbool . app c x = if (x = TT) then a else b
)
∧ TT 6= FF

Figure 2.8. The running example after separating formulas and terms
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Result of the previous translation step:(
∀f κ1 , xtbool, xsκ2 . apphd f (Cons x xs) = app f x

)
∧

apphd c (Cons (if True then TT else FF) Nil) 6= a ∧(
∀xtbool. app c x = if (x = TT) then a else b

)
∧ TT 6= FF

After translation into MSFOL:(
∀x

σ1

1 , x
σ2

2 , x
σ3

3 . f1 x1

(
f2 x2 x3

)
= f3 x1 x2

)
∧

f1 f4
(

f2
(

if > then f5 else f6
)

f7
)
6= f8 ∧(

∀x σ2 . f3 f4 x = if
(

x = f5
)

then f8 else f9
)
∧ f5 6= f6

Figure 2.9. The running example after translation into MSFOL

mentation trick to avoid namespace handling, and it does not harm as in general the
output has to be understood only by automatic tools. Renaming also gives some flex-
ibility, as we can freely choose which further constants are to be treated as interpreted
or uninterpreted. Figure 2.9 illustrates this translation on the running example.

2.3. Theories and Interpreted Constants

Besides equality, most current SMT solvers also decide other quantifier-free first-order
theories, notably linear arithmetic over integers and reals, but also bitvectors and even
algebraic datatypes. This opens the door to use the SMT solver’s built-in interpreta-
tion for those constants from Isabelle/HOL that share the same semantics—instead of
leaving them uninterpreted. In addition, we η-expand partially applied occurrences
of built-in constants first, in the same way as we deal with partially applied logical
connectives (Section 2.2.3).

Integer and real arithmetic Numerals, addition, negation, subtraction and linear
multiplication (i.e., numerals multiplied with arbitrary terms) as well as comparisons
for integers and reals have direct counterparts in SMT solvers (Section 1.4.2). Nonlinear
multiplication is generally treated as uninterpreted, because SMT solvers usually lack
suitable decision procedures for it, and the specification of the SMT-LIB format under-
lying our communication with the target SMT solvers restricts multiplication to linear
cases only. The solver Yices, for instances, blindly rejects nonlinear problems, although
support for nonlinear multiplication is typically not required to solve them. We found it
sufficient that users manually select extra facts providing enough information for SMT
solvers to handle uninterpreted nonlinear arithmetic.
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For Z3, we are more liberal and interpret more arithmetic constants. In particular,
our translation maps nonlinear multiplication as well as division over reals to the corre-
sponding Z3 functions. Moreover, we exploit Z3’s division and modulo over integers.
Since their semantics does unfortunately not conform to that of Isabelle/HOL, we re-
late Isabelle/HOL’s integer division and modulo with those of Z3 by means of complex
case distinctions and add these formalizations to the problem given to Z3.

The maximum and minimum of two integers or reals as well as the absolute value
of an integer or real have no built-in interpretation in SMT solvers. We unfold their
HOL definitions, which make use of interpreted constants, before translating proposi-
tions. Alternatively, we could have decided to conjoin their definitions to a problem,
but this would add further quantifiers and might impair the SMT solver’s performance
unnecessarily.

Natural numbers Natural numbers are typically not supported by SMT solvers. Since
natural numbers are exactly the nonnegative integers, we treat the former as an abstract
type isomorphic to the latter. To this end, we introduce the two coercions nat and int,
characterized by the following three rules:

∀nnat. nat (int n) = n

∀iint. 0 ≤ i −→ int (nat i) = i

∀iint. i < 0 −→ int (nat i) = 0

With those two helper functions, we can coerce terms of type nat into terms of integer
type, apply interpreted functions on integers and coerce the result back to the uninter-
preted natural numbers. Functions on natural numbers that have integer representa-
tions are the numerals, the successor function Suc and the usual arithmetic operations
addition, subtraction and multiplication. The minimum and maximum of two natural
numbers are unfolded similar to their integer counterparts. In addition, the arguments
to the natural number comparison predicates < and ≤ are coerced to integers to make
use of interpreted integer comparison. We restrict the introduction of coercions to these
cases. In particular, we keep bound natural number variables unchanged despite the
possibility that an SMT solver could exploit its quantifier elimination on integers. More-
over, a term t of type nat is kept undecorated, i.e., we avoid to wrap it into coercions
nat (int t) to not spoil the search in the target SMT solver.

Figure 2.10 depicts the translation function 〈〈·〉〉N and the additional translation
function 〈〈·〉〉I that together translate the mentioned natural number operations com-
pletely into integer ones. More precisely, they replace every non-negative numeral
Mnat by a coerced integer number nat Mint. Built-in operations on natural numbers are
lifted to integer operations. Uninterpreted functions and bound variables are kept un-
changed except for the decoration with necessary coercions. For example, the term
f (3nat + n + m) < m− 2nat · n is translated into:

int
(

f
(
nat

(
3int + int n + int m

)))
< int

(
nat

(
int m− 2int · int n

))
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〈〈n1 = n2〉〉N ∼= 〈〈n1〉〉I = 〈〈n2〉〉I
〈〈n1 < n2〉〉N ∼= 〈〈n1〉〉I < 〈〈n2〉〉I
〈〈n1 ≤ n2〉〉N ∼= 〈〈n1〉〉I ≤ 〈〈n2〉〉I
〈〈Mnat〉〉N ∼= nat Mint 〈〈Mint〉〉I ∼= Mint

〈〈Suc n〉〉N ∼= nat
(
〈〈n〉〉I + 1int) 〈〈Suc n〉〉I ∼= 〈〈n〉〉I + 1int

〈〈n1 + n2〉〉N ∼= nat (〈〈n1〉〉I + 〈〈n2〉〉I) 〈〈n1 + n2〉〉I ∼= 〈〈n1〉〉I + 〈〈n2〉〉I
〈〈n1 − n2〉〉N ∼= nat (〈〈n1〉〉I − 〈〈n2〉〉I) 〈〈n1 − n2〉〉I ∼= int (nat (〈〈n1〉〉I − 〈〈n2〉〉I))
〈〈n1 · n2〉〉N ∼= nat (〈〈n1〉〉I · 〈〈n2〉〉I) 〈〈n1 · n2〉〉I ∼= 〈〈n1〉〉I · 〈〈n2〉〉I

〈〈x〉〉N ∼= x 〈〈x〉〉I ∼= int x
〈〈c t1 . . . tk〉〉N ∼= c 〈〈t1〉〉N . . . 〈〈tk〉〉N 〈〈c t1 . . . tk〉〉I ∼= int (c 〈〈t1〉〉N . . . 〈〈tk〉〉N)

Figure 2.10. Translation operations on natural number to integers, where
M stands for a nonnegative numeral and n, n1 as well as n2 are short for
terms of type nat. The translation functions are shown only for atoms and
subterms thereof. The extension to full HOL terms is straightforward.

After the application of 〈〈·〉〉N and 〈〈·〉〉I to a problem, every occurrence of one of the
natural number operation that has an interpretation on the integers in SMT solvers is
translated to the corresponding integer operation. As a side effect, the two transla-
tion functions introduce as less coercions as possible by pushing the coercions as much
down in terms as possible. Together with the characterization of the coercion functions
above, this translation from natural numbers to integers is equivalence-preserving.

Bitvectors The formalization of machine words in Isabelle/HOL [56] and the fixed-
size bitvector functions and predicates provided by SMT solvers [97] share the same
semantics. Jointly with Thomas Sewell, we modified the SMT integration in Isabelle/
HOL to make use of this automation. We directly map most relevant HOL constants to
their built-in counterparts in SMT solvers. HOL functions that map words to integers
and vice versa are treated as uninterpreted, since SMT solvers typically do not support
cooperation between these two theories (Section 1.4.2).

Datatypes, records and type definitions Definitional principles to introduce new
types in Isabelle/HOL comprise algebraic datatypes, record types, i.e., tuples with
named selection and update functions for each component, and type definitions [130].
Since they, especially algebraic datatypes, are pervasive in Isabelle/HOL formaliza-
tions, we decided to support them directly. Although several SMT solvers provide suit-
able decision procedures, we only exploit that of Z3 as it is the only one that is accessible
with our target exchange format SMT-LIB. Other SMT solvers expose their support for
datatypes only via special input formats, and we chose to not sacrifice generosity of our
SMT binding in exchange for extra decision procedures.
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When translating datatypes, records and type definitions, we map each of them di-
rectly to Z3’s notion of algebraic datatypes whose declarations are based on construc-
tors and selectors [133]. For instance, the type of integer lists is declared as follows in
Z3 using SMT-LIB syntax:

datatype ((IntList Nil (Cons (head Int) (tail IntList))))

Nil is the empty list and Cons is the constructor that adds one integer to the front of a
list, and head and tail are partial selectors, i.e., applicable only to nonempty lists.

Internally, Z3 treats such datatypes as uninterpreted sorts associated with unin-
terpreted constructors and uninterpreted selectors, but with special hard-coded axiom
schemata that express injectivity of selectors and acyclicity of constructors. Instantiat-
ing these quantified axioms is hard-wired in Z3 and hence circumvents the expensive
quantifier instantiation. Note that acyclicity has no finite first-order axiomatization, and
hence recursive datatypes benefit from the built-in support in Z3. In contrast, reason-
ing about nonrecursive datatypes, for example those to which we map Isabelle/HOL
records and type definitions, gains only little. In fact, when Z3 is invoked as external
prover of sledgehammer (Figure 1.2), there is no need for a special treatment of records
and type definitions by Z3 since sledgehammer will in most cases automatically select
the relevant facts.

Further interpreted constants SMT solvers provide further constructs also avail-
able in HOL, and translating them to MSFOL representations can help applications,
e.g., HOL-Boogie (Section 4.3). Our translation supports let-expressions to share com-
mon subterms and distinct applied to concrete lists, abbreviating a quadratic number of
inequations between the list elements.

2.4. Extra-Logical Information

Many SMT solvers provide means to control their reasoning algorithms. Especially
the intricate and typically incomplete quantifier instantiation can be influenced. Ap-
plications that rely heavily on quantifiers such as, for example, in program verification
(Chapter 4), can benefit substantially by decorating quantifiers with extra-logical infor-
mation in the form of triggers and weights (Section 1.4.1) that control the instantiation
heuristics.

We support such decorations by providing specific constants that are added to HOL
terms while preserving their semantics. We keep these decorations in place through-
out the translation steps described earlier (Section 2.2). Some examples of HOL terms
decorated with triggers and weights are shown in Figure 2.11.

Triggers Triggers are lists of patterns associated with a quantifier cluster, where each
pattern is itself a list of terms marked as either positive (with marker pat, enabling
instantiations) or negative (with marker nopat, inhibiting instantiations). A trigger dec-
oration for HOL terms is defined as a binary projection function trigger that ignores its
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∀fα1→α2 , xα1 , xslist α1 . trigger [[pat (map f (Cons x xs))]]
(map f (Cons x xs) = Cons (f x) (map f xs))

∀nint, mint. trigger [[pat (even n), pat (even m)]] (even n∧ even m −→ even (n + m))

∀xreal, yreal. trigger [[pat (times x y)]] (weight 2 (times x y = times y x))

Figure 2.11. HOL terms decorated with triggers and weights. The second
term has two marked terms—corresponding to the two premises—as pat-
tern. The third term is decorated both with a trigger and a weight.

first argument, which carries the list of patterns. Hence, the exact definitions for the
marker functions pat and nopat are irrelevant. We let them map to some arbitrary value.
Although the trigger constant may occur anywhere in terms, we only handle it specially
during translation to MSFOL when directly enclosed by a quantifier cluster.

Weights Weights are nonnegative integers associated with a quantifier cluster. We
encode them in much the same way as triggers by defining a binary projection function
weight to its second argument. Its first argument is an integer specifying the weight.
The weight constant may occur anywhere in a term, but we only handle it specially
when enclosed by a quantifier cluster or a trigger.

Decorating terms automatically Triggers and weights are powerful tools to guide
and control the target SMT solvers, but finding the “right” triggers and weights is an
art [122]. Choosing the “wrong” values might render a solvable problem unsolvable,
i.e., the solver returns with an inconclusive answer, simply because it fails to find the
necessary quantifier instances (Section 1.4.2). To slightly relieve users from this burden,
we implemented a basic trigger inference algorithm that enforces facts which express
equalities or equivalences to be applied as rewrite rules (from left to right) by choosing
the left-hand side as trigger. For weights, we do not provide any automated inference.
Instead, we leave it to other tools, e.g., the relevance filter of sledgehammer (Section 1.3.3),
to find suitable weight values.

2.5. Evaluation

We integrated our binding to SMT solvers as the smt method in Isabelle, and it got
first publicly available with Isabelle2009 in December 2009. Shortly thereafter, Geoff
Sutcliffe tried out this integration as part of IsabelleP1 on a collection of higher-order

1 IsabelleP is Geoff Sutcliffe’s private setup that lets Isabelle act as an automatic theorem prover by com-
bining most of the automatic proof methods available.
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problems of the TPTP [151, 152]. In a private conversation (from December 17, 2009),
he showed his surprise about the efficiency of the smt method:

Wow, the new SMT tactic has really improved the automatic IsabelleP. I put it last
in the list of tactics tried . . .

simp, blast, auto, metis, fast, fastsimp, best, force, meson, smt

. . . and it solved 161 of the total 1590 solved, i.e., the preceding nine tactics failed to
solve those 161 problems. Of course SMT is surely able to solve many of the 1429
problems solved by one of the earlier tactics. That’s great progress for automated
higher-order ATP!

In the beginning of 2011, Yuan Gao conducted similar experiments with the higher-
order problems from the TPTP collection and found that, out of then 2826 problems,
the above list of methods could prove 1693 when each method is given a timeout of 60
seconds. The smt method alone solved 1292 problems, nearly 30% more than the next
best method, and thus contributed 178 genuinely proved problems, i.e., about 10% of
all proved problems. Its median runtime was 109 milliseconds, slightly longer than the
median runtimes of the other nine Isabelle methods due to the overhead of invoking an
external SMT solver.

Since these figures give only a rough, although promising estimate about the capa-
bilities of SMT solvers and our integration of them with Isabelle/HOL, we conducted
more experiments to validate our high expectations. Jointly with Jasmin Christian
Blanchette, we measured the success rates of different SMT solvers and compared them
with ATPs, i.e., resolution-based automated theorem provers (Section 2.5.2) on a rep-
resentative set of developments in Isabelle/HOL (Section 2.5.1). We also evaluated to
which extent particular decision procedures and extra-logical information contribute to
the performance of SMT solvers in the context of Isabelle/HOL (Section 2.5.3).

2.5.1. Experimental Setup

Instead of considering problems from the TPTP collection, which come from various
sources and exploit only a subset of Isabelle’s language features, we chose examples
representative for Isabelle/HOL and directly reflecting the benefits for users of the sys-
tem, albeit with a slight bias towards arithmetic. To this end, we selected nine Isabelle
theories (listed below) with altogether 1591 proof goals. Seven of these theories have
already been considered in an earlier evaluation of sledgehammer with ATPs only [32],
and the remaining two theories were chosen due to their extensive use of arithmetic
on which we intend to measure the SMT solvers’ abilities. The last two columns in the
overview below give the percentage of the goals that come from each Isabelle theory
and the features it contains, where A means arithmetic, I means induction and recur-
sion, L means λ-abstractions, and S means sets.
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Arrow Arrow’s impossibility theorem L S 6.3%
FFT Fast Fourier transform A L 9.1%
FTA Fundamental theorem of algebra A 26.6%
Hoare Completeness of Hoare logic with procedures A I L 12.8%
Jinja Type soundness of a subset of Java I L 11.4%
NS Needham–Schroeder shared-key protocol I 6.2%
QE DNF-based quantifier elimination A L S 12.0%
S2S Sum of two squares A 8.1%
SN Strong normalization of the typed λ-calculus A I 7.2%

At every individual proof goal of these nine theories, we applied the smt method with
the solvers CVC3 (version 2.2), Yices (version 1.0.28) and Z3 (version 2.15), wrapped
in sledgehammer calls to select relevant facts (Section 1.3.3). We fed those facts, typi-
cally a few hundred, together with the corresponding proof goal to the SMT solvers
for deciding validity within a time limit of 30 seconds. In case of success, we reduced
the number of relevant facts to those necessary for the proof, typically less than ten, in
two ways. For Z3 we directly extracted the necessary facts from the proof certificates
produced, i.e., we distilled these certificates into the corresponding unsatisfiable cores
(Section 3.2). For CVC3 and Yices, due to the lack of proof certificates, we allotted fur-
ther 30 seconds for iterative narrowing of the originally selected facts. With the thus
reduced set of facts, we conducted a final checking round in which we applied first
metis with a timeout of one second and then Z3 to find a valid proof in the sense of
Isabelle/HOL (Section 3.3). Only if that final round succeeded, we considered a proof
goal successfully proved.

It is worth noting that this setup measures more than just success rates of oracles
based on external SMT solvers. We also evaluate and check the applied translations for
their soundness, and we check reconstructability of Z3 proofs in Isabelle.

All experiments were conducted on one core of a dual core Xeon processor machine
running with 3 GHz and 2 GB RAM.

2.5.2. Benefits from SMT Solvers

In a previous extensive study using a subset of the Isabelle/HOL theories above [32],
sledgehammer based on ATPs has been found to be of great help. In fact, nearly half of all
goals could be proved automatically. An obvious question is whether SMT solvers can
further improve upon this proof automation. To this end, we conducted our evaluation
as a comparison between the aforementioned SMT solvers and the ATPs E (version 1.2),
SPASS (version 3.7), Vampire (version 1.0), and SInE (version 0.4), all of them working
as backends to sledgehammer in much the same way as the SMT solvers. Similarly as for
the SMT solvers, we chose 30 seconds as time limit for the ATPs, which is the default
with sledgehammer and reflects the typical amount of time users of Isabelle will wait (at
most) when asking external tools for proofs.

Table 2.1 shows the success rates of the SMT solvers and the cumulative results of
all ATPs for the selected Isabelle/HOL theory. We see that SMT solvers perform re-
markably well. More than half of all goals can be solved automatically by SMT solvers,
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Arrow FFT FTA Hoare Jinja NS QE S2S SN All Uniq.
CVC3 36% 18% 53% 51% 37% 29% 21% 57% 55% 41.8% 1.3%
Yices 29% 18% 51% 51% 37% 31% 22% 59% 59% 41.7% .9%
Z3 48% 18% 62% 54% 47% 42% 25% 58% 62% 48.5% 5.8%
SMT 50% 23% 66% 65% 48% 42% 27% 66% 63% 52.4% 8.8%
ATPs 40% 21% 68% 55% 37% 46% 31% 55% 70% 49.9% 6.3%
All 55% 28% 73% 66% 48% 50% 41% 73% 72% 58.7% –

Table 2.1. Success rates on all goals

Arrow FFT FTA Hoare Jinja NS QE S2S SN All Uniq.
CVC3 23% 14% 28% 36% 31% 18% 7% 25% 27% 24.3% 2.1%
Yices 11% 14% 30% 40% 33% 20% 7% 26% 44% 25.4% 1.5%
Z3 36% 13% 41% 46% 46% 34% 7% 28% 46% 33.0% 9.7%
SMT 37% 18% 43% 54% 46% 34% 8% 33% 48% 35.8% 8.9%
ATPs 32% 18% 42% 42% 33% 38% 19% 26% 59% 33.8% 6.9%
All 41% 23% 50% 57% 46% 44% 23% 42% 61% 42.7% –

Table 2.2. Success rates on “nontrivial” goals only

especially by Z3. CVC3 and Yices are comparable, but Z3 outperforms them in many
cases, which is also indicated by the number of goals uniquely proved by Z3—5.8%
of all goals solved by Z3 are neither proved by CVC3 nor Yices. We found that, in
many cases, SMT solvers solve more goals than ATPs, and for some theories the best
SMT solver Z3 alone solves more goals than the combination of four ATPs. Concluding
that SMT solvers are in general better suited to problems stemming from Isabelle/HOL
is, however, premature as sledgehammer invokes the ATPs with a different amount and
choice of facts due to a different configuration of the selection heuristics—an aspect we
ignore to evaluate here—and uses an entirely different encoding into first-order logic
for them than what we described earlier (Section 2.2). When looking at the five theories
that involve λ-abstractions, we notice, however, that SMT solvers seem to be better on
higher-order problems because they outperform ATPs on three relevant theories by 10
percentage points and are about as good as or only slightly worse than ATPs on the
remaining two theories. This seems to indicate that λ-lifting is more suitable for SMT
solvers than combinators are for ATPs [118]. Nevertheless, due to their differences and
differences of the applied translations, both classes, ATPs and SMT solvers, comple-
ment each other: SMT solvers fail to prove 6.3% of all goals, for which ATPs found a
proof, but SMT solvers also contribute 8.8% proved goals not found by any ATP. This
demonstrates the usefulness for SMT solvers as additional automatic proof support for
Isabelle/HOL.

When trying to prove a goal, Isabelle users typically apply a handful of methods
(e.g., auto and simp) without arguments. Goals where this approach is successful are
considered “trivial”, and about one third of the proof goals from the chosen nine Isa-
belle/HOL theories fall into this category. Although being “trivial” for users of Isabelle,
it is worth noting that such goals can still pose challenges for automated reasoners, but
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this will be of no concern to us here. Only if a goal is “nontrivial”, more ingenuity is
required from a user. Either additional arguments have to be passed to the tried meth-
ods or entirely different methods come into play. This is where our SMT integration as
automatic prover behind sledgehammer (Figure 1.2) may show its full potential, as users
tend to query existing proof automation before attempting to find the proof themselves.
Table 2.2 gives corresponding figures. Finding proofs for “nontrivial” goals turns out
to be harder, as expected, but SMT solvers still succeed in more than a third of all cases,
again mostly due to Z3, which alone contributes 9.7% unique proofs among the SMT
solvers. Moreover, SMT solvers find more proofs than ATPs on average. And again,
the combination of ATPs and SMT solvers gives more results than one class of provers
alone—SMT solvers add 8.9% proved goals to those found by ATPs.

We distill the following key findings from our evaluation:

• SMT solvers prove more than 50% of all goals, although success rates for individ-
ual theories vary between 23% and 66%.

• The combination of all SMT solvers prove more than a third of all “nontrivial”
goals.

• SMT solvers find 8.8% unique proofs, i.e., proofs for goals on which all ATPs fail.
Hence, SMT solvers increase proof automation.

• Z3 alone can prove about as many goals as all ATPs together, and this also holds
for the “nontrivial” goals.

• CVC3 and Yices add only little to what Z3 can prove. Z3 is already sufficient.

Thus, we see our expectations confirmed. The integration of SMT solvers with Isabelle/
HOL improves upon existing proof automation and complements what is already pro-
vided by ATPs. Moreover, we deduce from this evaluation that our work has resulted
in a mature tool that is applicable to a wide range of problems in Isabelle/HOL.

2.5.3. Benefits from Decision Procedures and Extra-Logical Information

In contrast with ATPs, SMT solvers can throw in their combination of different decision
procedures to increase their success rates. Naturally, we are interested in how much
we gain from these extra features, or how much we would lose if SMT solvers were
only able to solve first-order logic with equality like ATPs. We investigate here the
effects of integer/real arithmetic and fixed-size bitvector decision procedures, of direct
support for datatypes and records in Z3 and of extra-logical information. We carried
out these evaluations on the aforementioned nine theories (Section 2.5.1). Since they
lack bitvector problems, we hand-selected a separate set of problems for evaluating our
bitvector support.
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Arrow FFT FTA Hoare Jinja NS QE S2S SN All
metis 80% 24% 89% 77% 80% 92% 60% 29% 100% 75.9%

Table 2.3. Success rates of proof reconstruction with metis of proofs found
by Z3

Arrow FFT FTA Hoare Jinja NS QE S2S SN All
CVC3 0% +2% −1% +3% +2% +1% −9% +12% +4% +.8%
Yices 0% +3% +2% +4% +1% 0% −6% +11% +1% +1.5%
Z3 −1% −3% +2% −2% +1% 0% −13% +8% +2% −.8%
SMT −1% +1% +3% +2% +1% 0% −12% +12% +3% +.9%

Table 2.4. Absolute success rate gains for SMT solver runs with arithmetic
reasoning over runs without arithmetic reasoning on all goals

Arithmetic over integers and reals In case of the nine chosen Isabelle/HOL theo-
ries only arithmetic decision procedures are required over first-order logic with equal-
ity. Hence, to what extent do these decision procedures contribute to the overall re-
sult? As a first approximation, Table 2.3 shows how many goals, for which Z3 found
a proof, could be reconstructed by the arithmetic-agnostic metis method within 30 sec-
onds. Taking into account that metis follows a different strategy to find a proof than Z3
and typically fails when given too many facts, the overall number of 75.9% successfully
reconstructed proofs indicates that arithmetic plays a minor role. Only the theories FFT,
QE and S2S suffer considerably from the lack of arithmetic support by metis. Table 2.4
shows that disabling usage of arithmetic decision procedures, by treating arithmetic
types and constants as uninterpreted (Section 2.2.6), but at the same time supplying
appropriate facts (thereby changing the problem), has mixed effect on SMT solvers. Es-
pecially those Isabelle/HOL theories, where metis fails miserably, give an inconclusive
picture. Arithmetic support gives clear benefits for the arithmetic-intense S2S theory,
degrades SMT performance on QE by about the same amount (due to the dominance
of nonlinear arithmetic that slows down the SMT solver), and does not change much on
the results obtained for FFT (which, by the way, is also challenging for ATPs). Hence,
arithmetic decision procedures partly contribute to the success of SMT solvers, but not
to an overwhelming extent.

Looking at the number of unique proofs, we found that SMT solvers align more
with each other when arithmetic support is disabled. Especially Z3 finds only 2.7%
unique proofs in contrast to 5.8% with arithmetic (Table 2.1). This might indicate the
effects of certain implementation tricks in the solvers’ decision procedures. Yet, we
also found that the combination of all SMT solvers still contribute 7.3% unique proofs
over the ATPs which mirrors the inherent differences in solving strategies of these two
classes of provers.

We also measured the effects of disabling our encoding for integer division and
modulo with Z3 (Section 2.3), but found little differences (Table 2.5). In fact, this encod-
ing only plays a role when computations involving these two operations on numerals



32 Chapter 2. Integrating SMT Solvers as Oracles

Arrow FFT FTA Hoare Jinja NS QE S2S SN All
Z3 +2% −3% −3% +1% −2% 0% −1% +5% +1% −.7%

Table 2.5. Absolute success rate gains for Z3 runs with support for division
and modulo over runs without on all goals

Arrow FFT FTA Hoare Jinja NS QE S2S SN All
Z3 0% 0% −1% −1% −1% −2% 0% 0% −3% −.9%

Table 2.6. Absolute success rate gains for SMT solver runs without datatype
support over runs with such datatype support on all goals

are performed. Since most applications of division and modulo in Isabelle/HOL are
symbolic, treating them as uninterpreted and adding relevant facts should amount to
the same, if not better, results. Hence, we currently see little use of direct support of
these two operations, but future applications might benefit from it.

Datatypes and records Our encoding of datatypes, records and type definitions into
features provided by Z3 (Section 2.3) is only sparsely tested. Nevertheless, we eval-
uated what can currently be gained from this encoding, yet our measurement results
(Table 2.6) should be taken with a grain of salt. Clearly, no theory benefits, but we
also see no dramatic losses. Hence, building on direct Z3 support for datatypes and
records in its current state is both not harmful and not essential for typical applications
in Isabelle/HOL.

Extra-logical information Enriching problems with extra-logical information, in our
case with triggers inferred by a simple algorithm (Section 2.4) and with weights de-
duced from fact relevance [23], does not improve success rates (Table 2.7). Except
for Yices, which does not support extra-logical annotations, results even deteriorate
slightly. This indicates that our annotations are unsuitable or too limited or that the
quantifier heuristics of the tested SMT solvers are already strong enough for our prob-
lems. This is in contrast with SMT folklore that (well-chosen) triggers almost inevitably
lead to performance jumps of SMT solvers [30, 122].

Fixed-size bitvectors We tested the bitvector support on a collection of examples
of the Isabelle/HOL Word library [56]. Out of 43 fixed-size bitvector goals, the SMT
solvers can prove 28 which corresponds to a success rate of 65%. We admit that these
figures allow no conclusion for the general case, because all goals, except for one, are
“trivial” (Section 2.5.2), and those examples are meant to only showcase some functions
of the Word library instead of posing a challenge to proof methods.

Gerwin Klein provided us with eight complicated theorems from the seL4 verifi-
cation project [95] that are given below. We use the following notations. The symbols
� and� denote shifting to the left and shifting to the right by a natural number. The
term ucast x stands for extending the bitvector x by padding zeros to its front. The term
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Arrow FFT FTA Hoare Jinja NS QE S2S SN All
CVC3 0% −2% −3% −2% 0% +3% −2% −1% +1% −1.4%
Yices 0% 0% 0% 0% 0% 0% 0% 0% 0% .0%
Z3 −1% −1% −1% −2% −1% 0% −8% +5% −1% −1.5%
SMT −1% −3% −1% +1% −1% −2% −6% +1% 0% −1.3%

Table 2.7. Absolute success rate gains for SMT solver runs with triggers
and weights over runs without on all goals

mask n is defined as (1� n)− 1 for natural numbers n. Selecting bit n from a bitvector
x and interpreting it as a Boolean value is denoted by xn. Finally, the symbols &, | and !
denote bitwise conjunction, disjunction and negation. All other symbols have the obvi-
ous semantics. We fix that u is a bitvector of size 12, that v and w are bitvectors of size
32, and that x and y are bitvectors that have arbitrary but equal size.

u 6= 0 −→ (1� 20)− 1 < (ucast u� 20)32 word (2.1)
(if w = 0 then v ≤ 0 else v ≤ w− 1) −→ v 6= −1 (2.2)

n < 32 −→ 132 word ≤ (1� n) (2.3)
v & mask 14 = 0 −→ v + (w� 20� 2) & (! (mask 14)) = v (2.4)

v & mask n = 0∧ (∀n′. n ≤ n′ ∧ n′ < 32 −→ ¬wn′) −→ v + w & (! (mask n)) = v (2.5)
0 < y ∧ y ≤ x −→ (x− y) div y = (x div y)− 1 (2.6)

(x & y) + (x | y) = x + y (2.7)
x & y = 0 −→ x + y = x | y (2.8)

Since SMT solvers can only tackle bitvector problems with fixed bitvector sizes, we
tested several sizes up to to 400 for the last three theorems.

Our results are as follows. The three SMT solvers agree with their results on all
problems except for the last one where CVC3 takes longer than 30 seconds for bitvector
sizes that are greater than 20. Theorems (2.1), (2.2) and (2.4) can be solved instanta-
neously by our SMT integration. Theorem (2.3) fails because the SMT solvers provide
bit shifting only as a binary function of two bitvectors whereas in Isabelle the second
argument is a natural number. Our translation maps natural numerals that are given
as second argument to corresponding bitvector numbers, but this approach must nec-
essarily fail for arbitrary terms. Theorem (2.5) also fails. Here the problem is related
to selecting individual bits from a bitvector for which the SMT solvers provide no cor-
responding function, and hence our translation maps bit selection to an uninterpreted
function without giving additional facts to the SMT solver. Theorem (2.6) is challeng-
ing for SMT solvers when the size of x and y exceeds a certain value. We found that Z3
takes less than 5 seconds for size 11, but already 15 seconds for size 12. With size 13 it
takes longer than a minute to prove this theorem. The runtimes of the other two SMT
solvers are even worse. Theorems (2.7) and (2.8) can be proved easily by both Z3 and
Yices, and even with bitvector sizes of 400 they take less than three seconds.

It is hard to draw a general conclusion from testing a few hand-picked problems.
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We note, though, that our SMT integration is applicable to different fixed-size bitvector
problems unless they use functions uninterpreted by SMT solvers. Theorems referring
to functions such as bit selection or casting of bitvectors to natural numbers and back
fall outside the range of what is provable with our SMT integration.

Key findings From evaluating decision procedures and extra-logical control provided
by SMT solvers we distill the following key findings:

• Arithmetic support of SMT solvers is in general not essential for typical goals in
Isabelle/HOL, but certain goals can benefit from it.

• Direct support for datatypes, records and type definition by Z3 gives no clear
benefits.

• Proving problems of fixed-size bitvectors works well unless functions that are
unsupported by SMT solvers are used.

• Extra-logical information that is automatically inferred by our current simple al-
gorithm slightly deteriorates the success rates of SMT solvers.

We found that SMT solvers are a good complement to ATPs, even if they would not
provide specific decision procedures or extra-logical control information.

2.6. Related Work

The general idea behind our work, i.e., applying an automatic theorem prover (with
a first-order logic) within an interactive theorem prover (of, for example, higher-order
logic), has seen several previous attempts and successes. Consequently, many of our
translations described earlier (Section 2.2) appear in similar form in earlier work, al-
though some translations are also taken from entirely different fields of research. We
detail related work in separate groups.

Integration of automatic provers Applying automatic first-order provers as back-
ends in interactive theorem provers has a long tradition [1,22,35,85,115,148,157]. Along
these lines, the integration of ATPs with Isabelle/HOL, sledgehammer, by Paulson et
al. [118, 138] is most notable for its success. It originally connected a class of automatic
first-order resolution provers with Isabelle/HOL, building on previous work by Hurd
to integrate the first-order prover Metis with HOL4 [86], but has since evolved into
a more general framework for external provers [23]. As part of our evaluation (Sec-
tion 2.5) we made use of this framework and found SMT solvers a suitable complement
to ATPs.

Only vaguely related to our work and far less powerful than SMT solvers, there are
integrations of SAT solvers with interactive theorem provers, e.g., with Isabelle/HOL
and HOL4 [159,163], with ACL2 [142] and recently with Coq [5]. Similar work has been
done for integrating solvers for quantified Boolean formulas (QBF) in HOL4 [98, 162]
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and HOL Light [100]. To the best of our knowledge, there are no extensive studies
demonstrating the usefulness and applicability of these integrations in proof develop-
ments of interactive theorem provers. It is hence unclear whether SAT or QBF solvers
can in general give further proof automation over our work.

Directly in the line of our work are several integrations of SMT solvers with interac-
tive theorem provers. Since many years already, the SMT solver Yices and its predeces-
sor ICS have been tightly connected with PVS [69, 145], and this setup has doubtlessly
helped in formalizations. Yet, we know of no extensive study giving evidence of its
general usefulness beyond typical applications of SMT solvers such as program verifi-
cation. An integration of UCLID [101] with the interactive theorem prover ACL2 [110]
has demonstrated that SMT solvers can be valuable for discharging certain classes of
problems in ACL2. There are early attempts to integrate haRVey as well as ICS and
CVC Lite with Isabelle/HOL [18,71], but they are less more than an ad-hoc experimen-
tal study without extensive tests. Furthermore, they do not exploit the full power of
SMT solvers as the authors concentrate on problems directly representable in the tar-
get solver’s logic. Later work [87] extends the integration of haRVey with Isabelle/
HOL from supporting only quantifier-free first-order logic with equality to quantified
formulas. In much the same way, the connection between CVC Lite, later succeeded
by its successor CVC3, and HOL Light [73, 116] concentrates on essentially first-order
propositions, failing on all higher-order propositions, but supports arithmetic. There
exists also an integration of SMT solvers including Simplify, CVC Lite and haRVey in
Coq [6] based on Why [67] to automate the translation from polymorphic first-order
logic with inductive datatypes to MSFOL or untyped FOL, but abstracting higher-order
features. Later work [48] also integrates the Ergo theorem prover that has direct sup-
port for polymorphic first-order logic with equality and linear arithmetic. Erkök and
Matthews describe a similar interface between Yices and Isabelle/HOL [66] that in ad-
dition to datatypes also supports records and higher-order features all of which are
directly accepted as input of Yices, but they do not underpin their description with con-
crete figures drawn from applications or evaluations. Parallel to our work and in much
the same way, Weber implemented a generic interface to SMT solvers for HOL4 [161].
In contrast with our work, he concentrates only on essentially first-order propositions
and abstracts away all terms that cannot directly be represented in MSFOL, partly ex-
cept for Yices that has built-in support for λ-abstractions. Recently, work on integrating
the SMT solver veriT in Coq [94] has begun. In the light of related work, we consider
our integration of SMT solvers with Isabelle/HOL superior in that it is not focused on
a single SMT solver, targets most if not all supported theories of current SMT solvers
and, instead of using coarse-grained abstractions, aims to encode any HOL term into
MSFOL which can lead to higher success rates.

Type variables Our monomorphization approach is rooted in research on compilers
for functional languages [155]. Since monomorphization leads to exponential blow-up
due to duplications, it has been regarded as unsuitable in the past, except for [66]. In-
stead, types and hence also type variables have been encoded as terms [51, 109, 118],
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thereby increasing the problem size only by a small constant factor. These techniques,
however, come at a price: They tend to be harder to implement, they require a careful
treatment of the order-sorted type system of Isabelle/HOL [164] by means of additional
predicates along the lines of sledgehammer [120], which might cause extra load on the
target SMT solver, and they complicate proof reconstruction. Moreover, representing
types as terms results in a nearly untyped encoding, potentially destroying all bene-
fits SMT solvers may draw from sort information. Having built-in support for type
variables in SMT solvers, as suggested by Conchon et al. [26], might be a solution.

Lambda-abstraction Translating λ-abstractions into first-order representations were
first studied in the context of compilers for functional languages. Lambda-lifting [92],
applied by Kanig [93] and us, is closely related to defunctionalization [143]. Replac-
ing abstractions by a small set of combinators, as done by Metis [86] and sledgeham-
mer [118], has even older roots [8]. The combinator approach may have its value for
untyped encodings, but we found combinators to be unsuitable for SMT solvers, possi-
bly because they require too many quantifier instantiations that easily spoil the solvers’
search space.

Partial application Introducing explicit application symbols to handle partial appli-
cation is a well-known practice, going back to at least Reynolds [143]. For instance,
sledgehammer applies this technique [118], and so does Kanig [93]. Interestingly, explicit
application symbols are also introduced within SMT solvers to simplify and speed-up
congruence closure algorithms [72].

Separation of formulas and terms Our approach to separate formulas from terms
is largely inspired by Jackson et al. [89]. They introduce an additional Boolean type
and proxy constants for True and False, and they also describe the wrapping of terms in
equations (a technique also applied in other program verifiers such as ESC/Java [61],
there called quasi-relations) as well as the lifting of formulas inside terms via if-then-else-
expressions. In addition, they also suggest to provide proxies for logical connectives
and predicates, which we consider unnecessary. Instead of equating terms with the
proxy truth TT, Kanig [93] wraps terms into a special uninterpreted predicate, which
should amount to similar results.

Evaluation Not surprisingly, evaluating the integration of automated provers with
interactive theorem provers attracted much fewer attention than the actual integration,
because evaluations tend to be hard and less rewarding work. In most cases, only
few case studies were performed instead of extensive measurements on a large body
of examples, or nothing about the practical usefulness of these integrations has been
reported. Notable difference is our work with the sledgehammer tool [23, 32], but also
the work by Urban [157] concentrating on ATPs. We thus claim that our evaluation
(Section 2.5) is the first to reliably demonstrate the general usefulness of SMT solvers
for interactive theorem provers.
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3.1. Introduction

Oracles are typically mistrusted in Isabelle/HOL and this applies equally to our in-
tegration of SMT solvers. There are two reasons. First, our translation from HOL
to MSFOL (Chapter 2), although conceptually sound, contained several bugs in ear-
lier versions, and we are uncertain whether our extensive evaluation (Section 2.5) left
some bugs undiscovered. Second, it is well known that virtually all SMT solvers have
bugs [39]. In fact, while developing and testing the work described in this chapter, we
have found several soundness bugs in Z3 that have been resolved in more recent ver-
sions after we informed the developers. Thus, by blindly trusting an SMT solver and
our translation we risk to consider invalid conjectures as valid ones.

In principal, there are at least two approaches to overcome this issue and yield
high confidence. The first one is to formally verify the SMT solver, which is an im-
mense amount of work [94]. Already verifying a modern SAT solver, one of the core
components of an SMT solver, is highly involved [113]. The second approach is check-
ing the correctness of each output, which is the approach that we will follow in this
chapter for the SMT solver Z3. We concentrate on reconstructing proofs step-by-step
for MSFOL with the theories of equality and linear arithmetic, i.e., a combination of
theories that already gave good improvement over existing proof automation in Isa-
belle/HOL (Section 2.5.2), and leave the theories of bitvectors and datatypes as future
work.

We begin by describing the proof format of Z3 (Section 3.2). Then, we detail ef-
ficient reconstruction of Z3 proofs in Isabelle/HOL (Section 3.3), focusing on specific
optimizations to obtain high performance, before giving evidence of the approach’s ef-
ficiency with a detailed evaluation (Section 3.4). Much of the optimization work has

37
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been done jointly with Tjark Weber [33], although he concentrated on HOL4 instead
of Isabelle/HOL where he found partly different solutions. We conclude by reviewing
related work (Section 3.5).

3.2. Z3 Proof Format

The language underlying Z3’s proofs is many-sorted first-order logic (MSFOL, Sec-
tion 1.4.1) with one notable difference: Conjunctions and disjunctions are polyadic—
a straightforward extension of the standard binary case. For example, the polyadic
conjunction ϕ1 ∧ ϕ2 ∧ ϕ3 should be understood as exactly one application of ∧ to three
formulas ϕ1, ϕ2 and ϕ3 instead of a nested application of binary conjunctions such as
(ϕ1 ∧ ϕ2) ∧ ϕ3. For this entire section, we will consider conjunctions and disjunctions
polyadic.

Z3’s proof system is a natural deduction calculus. It uses 38 axiom schemata and
inference rules (collectively referred to as proof rules) ranging from simple proposi-
tional to complex theory reasoning. We present Z3’s proof system with sequents Γ ` ϕ
where Γ is a set of MSFOL formulas (hypotheses) and ϕ is an MSFOL formula (proposi-
tion). When the set of hypotheses is empty, we simply write ` ϕ. Inferences in natural
deduction are tree-shaped where each leaf is an instance of an axiom schemata of the
calculus and each inner node is a deduction from a set of sequents (premises) to a new
sequent (conclusion) via an inference rule of the calculus. We use the notation 〈Si〉i∈I to
denote a set of premises or preconditions Si, indexed by a finite set I.

The textual representation of proofs as emitted by Z3 is slightly different. Instead
of the typical tree structure, Z3’s proofs exploit sharing and are thus directed acyclic
graphs. Each node represents a single deduction step, labeled by the name of a proof
rule and the proposition to conclude. The edges of a proof graph connect premises
with conclusions. Hypotheses of sequents are not given explicitly. Since every Z3 proof
deduces unsatisfiability of a set of formulas, the root node of the proof concludes ⊥. It
thus corresponds to the sequent Π′ ` ⊥where Π′ is a subset of the assertions Π initially
given to Z3 to be shown unsatisfiable. The set Π′ is thus called an unsatisfiable core of Π.

The proof rules of Z3 fall into three categories. First, several proof rules are simple
enough to be presented without further ado (Figure 3.1). Second, some proof rules
deserve more explanation, and we will spend most of the remainder of this section
on them. Since existing documentation of Z3’s proof rules is sparse, our description
of some of them is vague, depending on how much information was revealed by the
developers of Z3 and our tested proof examples. Third, a small fraction of proof rules
reflect deductions performed only rarely or when particular Z3 options are enabled.
Since we never apply these options in interactions with Z3 and also rarely exercised
these proof rules in any proof, we refrain from describing them in detail and give only
short explanations at the end of this section. Our presentation uses slightly different,
shorter names for the proof rules than Z3 (see Appendix A for the correspondence).
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` >
true

ϕ ∈ Π
{ϕ} ` ϕ

asserted
Γ1 ` ϕ1 Γ2 ` ϕ1  ϕ2

Γ1 ∪ Γ2 ` ϕ2
mp 

{ϕ} ` ϕ
hypothesis

Γ ∪ {l1, . . . , ln} ` ⊥
Γ \ {l1, . . . , ln} ` ¬l1 ∨ . . .∨ ¬ln

lemma

Γ ` ϕ
Γ ` ϕ←→ >

iff>
Γ ` ¬ϕ

Γ ` ϕ←→ ⊥
iff⊥

Γ ` ϕ1 ←→ ϕ2

Γ ` ϕ1 ∼ ϕ2
iff∼ ` t ' t

refl'

Γ ` l1 ∧ . . .∧ ln
Γ ` li

elim∧
Γ ` ¬ (l1 ∨ . . .∨ ln)

Γ ` ¬li
elim¬∨

Γ ` t1 ' t2

Γ ` t2 ' t1
symm'

Γ1 ` t1 ' t2 Γ2 ` t2 ' t3

Γ1 ∪ Γ2 ` t1 ' t3
trans'

Γ ` (t1 ≈ t2) '
(
t′1 ≈ t′2

)
Γ ` (t2 ≈ t1) '

(
t′2 ≈ t′1

) comm',≈

Figure 3.1. Simple Z3 proof rules

Unit resolution Unit resolution is the single inference performed by Z3’s proposi-
tional reasoning engine following the DPLL design (Section 1.4.2). A unit resolution
step expresses strengthening of a disjunction by removing literals which have been dis-
proved. The unit-resolution rule reflects this inference step in Z3’s proofs. We use I as a
shorthand for the set {1, . . . , n} and J ⊆ I for a nonempty subset of I.

Γ `
∨

i∈I li 〈Γ j ` ¬l j〉 j∈J

Γ ∪
⋃

j∈J Γ j `
∨

i∈I\J li
unit-resolution

Tseitin-like axioms Tseitin [156] proposed a conversion of propositional formulas
into equisatisfiable formulas in conjunctive normal form (CNF) with polynomial com-
plexity, and Z3 uses a variant thereof. To understand the approach of Z3, we first review
Tseitin’s original transformation on the example ϕ −→ ψ where ϕ and ψ are arbitrary
formulas that we treat atomically here. The basic idea of the transformation is to intro-
duce auxiliary propositional variables and to define them to be equivalent to formulas
not already in CNF. In our example, we replace the implication by the fresh propo-
sitional variable p1 and conjoin the definition expressing that p1 is equivalent to the
implication. Thus, we obtain the following formula equisatisfiable to ϕ −→ ψ:

p1 ∧ (p1 ←→ (ϕ −→ ψ))

With ϕ and ψ we can proceed similarly using fresh propositional variables p2 and p3
resulting in the following equisatisfiable formula:

p1 ∧ (p1 ←→ (p2 −→ p3)) ∧ (p2 ←→ ϕ) ∧ (p3 ←→ ψ) (3.1)
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To the second conjunct, we can apply equivalence-preserving transformations to obtain
a formula in CNF:

(¬p1 ∨ ¬p2 ∨ p3) ∧ (p1 ∨ p2) ∧ (p1 ∨ ¬p3) (3.2)

In the same way, we can find equivalent formulas for the last two conjuncts of (3.1) and
finally obtain a formula φ in CNF that is equisatisfiable to ϕ −→ ψ and whose size is
only polynomially greater than that of the initial implication.

Z3 optimizes this transformation in two ways. First, Z3 applies it in a lazy man-
ner as in Simplify [61] during the satisfiability search. That is, instead of transforming
the entire input at once, it does so gradually. For note that if p1 together with a set of
clauses C is already unsatisfiable, so is φ and C. Otherwise, i.e., if p1 conjoined to C is
satisfiable, Z3 will additionally conjoin the clauses (3.2) and continue the search, fol-
lowed by unfolding and conjoining further definitions of auxiliary propositional vari-
ables on satisfiability. Second, Z3 applies Tseitin’s transformation without introducing
fresh propositional variables—the subformulas themselves are used instead [58]. Re-
calling our above example, Z3 uses ϕ −→ ψ, ϕ and ψ instead of p1, p2 and p3 every-
where. For example, the formula (3.2) is represented in Z3 as follows where boxed
formulas are treated atomically by Z3:(

¬ ϕ −→ ψ ∨ ¬ ϕ ∨ ψ
)
∧
(
ϕ −→ ψ ∨ ϕ

)
∧
(
ϕ −→ ψ ∨ ¬ ψ

)
Note that each of these clauses is a propositional tautology when ignoring the boxes. Z3
introduces such clauses with unboxed formulas as definitional axioms via the def-axiom
rule into proofs. For example, these would be the def-axiom steps corresponding to the
above clauses:

` ¬ (ϕ −→ ψ) ∨ ¬ϕ∨ ψ ` (ϕ −→ ψ) ∨ ϕ ` (ϕ −→ ψ) ∨ ¬ψ

Figure 3.2 lists the schemata that are documented for def-axiom. This list is not exhaus-
tive for several reasons. Conjunction and disjunction are polyadic, i.e., for definitional
axioms about binary conjunctions or disjunctions there exist also variants with more
than two subformulas. For some of the listed schemata we have seen variants that are
isomorphic under associativity and commutativity of disjunction. There are also def-
initional axioms for if-then-else-expressions on MSFOL terms where the branches are
terms instead of formulas. Finally, we observed undocumented schemata for a ternary
exclusive disjunction operator.

Local definitions Z3 can locally abbreviate terms and formulas by fresh names. The
rule intro-def binds a fresh name n to a term t or formula ϕ in such a way that the propo-
sition of the rule is in CNF, whereas apply-def re-establishes the defining equation by
purely logical rewriting.

The schemata of intro-def depend on the structure of t or ϕ. If t is syntactically equiv-
alent to (if ψ then t1 else t2) or ϕ is syntactically equivalent to (if ψ then φ1 else φ2), then
these are the corresponding schemata of intro-def:
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` ¬¬ϕ∨ ¬ϕ ` ¬ϕ∨ ϕ

` ¬ (ϕ∧ ψ) ∨ ϕ ` ¬ (ϕ∧ ψ) ∨ ψ ` (ϕ∧ ψ) ∨ ¬ϕ∨ ¬ψ

` ¬ (ϕ∨ ψ) ∨ ϕ∨ ψ ` (ϕ∨ ψ) ∨ ¬ϕ ` (ϕ∨ ψ) ∨ ¬ψ

` ¬ (ϕ←→ ψ) ∨ ¬ϕ∨ ψ ` ¬ (ϕ←→ ψ) ∨ ϕ∨ ¬ψ

` (ϕ←→ ψ) ∨ ¬ϕ∨ ¬ψ ` (ϕ←→ ψ) ∨ ϕ∨ ψ

` ¬ (if ϕ then ψ else φ) ∨ ¬ϕ∨ ψ ` ¬ (if ϕ then ψ else φ) ∨ ϕ∨ φ

` (if ϕ then ψ else φ) ∨ ¬ϕ∨ ¬ψ ` (if ϕ then ψ else φ) ∨ ϕ∨ ¬φ

Figure 3.2. Schemata for the def-axiom rule from the documentation of Z3

` (¬ψ∨ n = t1) ∧ (ψ∨ n = t2) ` (¬ψ∨ (n←→ ϕ1)) ∧ (ψ∨ (n←→ ϕ2))

Otherwise the schemata for intro-def are as follows:

` n = t ` (¬n∨ ϕ) ∧ (n∨ ¬ϕ)

For every schema of intro-def there is a corresponding schema of apply-def:

Γ ` (¬ψ∨ n = t1) ∧ (ψ∨ n = t2)

Γ ` (if ψ then t1 else t2) = n

Γ ` (¬ψ∨ (n←→ ϕ1)) ∧ (ψ∨ (n←→ ϕ2))

Γ ` (if ψ then ϕ1 else ϕ2)←→ n

Γ ` n = t
Γ ` t = n

Γ ` (¬n∨ ϕ) ∧ (n∨ ¬ϕ)
Γ ` ϕ←→ n

The intro-def schemata are designed to integrate well with the propositional reasoning of
Z3 which is the reason for the conclusion being in CNF, whereas apply-def establishes a
form suitable for equality reasoning. The symmetric nature of apply-def is an optimiza-
tion to avoid a further application of the symm' rule (Figure 3.1).

Congruence Equality (=), equivalence (←→) and equisatisfiability (∼) are congru-
ence relations. We use the placeholder ' to stand for one of these relations. Let
I = {1, . . . , n}, let J ⊆ I be a nonempty subset of I, and let ≡ denote syntactic equality
of terms. The congruence rule for a function symbol f is as follows:〈

Γ j ` t j ' t′j
〉

j∈J

〈
ti ≡ t′i

〉
i∈I\J⋃

j∈J Γ j ` f (t1, . . . , tn) ' f
(
t′1, . . . , t′n

) cong'
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Congruence for predicate symbols is similar. The cong' rule deviates from the standard
congruence rule (see, e.g., [83, chapter 4]) in that reflexive premises are omitted to
shorten proofs as indicated by the precondition in the above schematic rule.

Quantifiers Z3’s quantifier proof rules are tailored to its propositional and equality
reasoning and thus deviate from the standard introduction and elimination rules of
natural deduction. Before presenting these rules, we fix some notations.

We use Q to denote a quantifier, i.e., either ∀ or ∃, and x and y for lists of (bound)
variables x1, . . . xm and y1, . . . yn as well as t for a list of terms t1, . . . tk. Moreover, the
notations ϕ[x], ϕ[y, x] and ϕ[y, t] stand for formulas possibly containing variables x and
y and terms t, the formula ϕ[x 7→ t] is short for replacing in ϕ each xi of x by the corre-
sponding ti from t, and f(y) abbreviates a list of fresh function symbols each applied to
variables y.

Given two equisatisfiable formulas ϕ1[x] and ϕ2[x] depending on variables x that
are not occurring in a set of formulas Γ, a Z3 proof can introduce a quantifier Q as
follows:

Γ ` ϕ1[x] ∼ ϕ2[x]
Γ ` (Qx. ϕ1[x]) ∼ (Qx. ϕ2[x])

introQ

Instantiating a universally quantified formula (∀x. ϕ[x]) with terms t is expressed by
the following axiom schema whose proposition is an implication transformed to CNF:

` ¬ (∀x. ϕ[x]) ∨ ϕ[x 7→ t]
inst∀

Existential quantifiers are eliminated by Skolem constants as witnesses using one of the
following two axiom schemata:

` (∃x. ϕ[y, x]) ∼ ϕ[y, f(y)]
sk∃ ` (¬ (∀x. ϕ[y, x])) ∼ (¬ϕ[y, f(y)])

sk∀

Finally, if a formula ϕ[x] depends only on the variables x, Z3 can eliminate redundantly
bound variables y that are not occurring in ϕ[x] with the following axiomatic proof rule:

` (Qx y. ϕ[x])←→ (Qx. ϕ[x])
elimQ

Negation normal form Every MSFOL formula can be transformed into an equisatis-
fiable (and even equivalent) formula in negation normal form (NNF) in linear time. For
this transformation, Z3 provides two rules, nnf-pos and nnf-neg, depending on the polar-
ity of the subformula transformed. Both rules express inferences that perform one step
of the NNF transformation, i.e., either a step that changes the “top-level” connective
or quantifiers or a step that performs the NNF transformation under some quantifiers.
There appear to be schemata of nnf-pos and nnf-neg for all quantifiers and logical con-
nectives, but we have no exhaustive list of these schemata and thus present only typical
ones including those found in the documentation of Z3.



3.2. Z3 Proof Format 43

Assume that prior proof steps have performed NNF transformations or other equi-
satisfiability-preserving steps to formulas ϕ1 and ϕ2 as well as to the corresponding
negated formulas. A schema for nnf-pos that subsequently changes the “top-level”
equivalence in the formula ϕ1 ←→ ϕ2 is as follows:

Γ1 ` ¬ϕ1 ∼ ϕ′1 Γ2 ` ¬ϕ2 ∼ ϕ′2 Γ3 ` ϕ1 ∼ ϕ′′1 Γ4 ` ϕ2 ∼ ϕ′′2
Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ` (ϕ1 ←→ ϕ2) ∼

((
ϕ′1 ∨ ϕ′′2

)
∧
(
ϕ′′1 ∨ ϕ′2

))
An nnf-pos schema that expresses an NNF transformation under some quantifiers is as
follows where none of the variables in x occurs in Γ and y is a sublist of x:

Γ ` ϕ1[x] ∼ ϕ2[y]

Γ ` (Qx. ϕ1[x]) ∼ (Qy. ϕ2[y])

Note the subtle difference between the introQ rule and this schema. Here, the premise
may be the result of a step that eliminated some variables. Thus, the right-hand side of
the conclusion possibly quantifies over less variables than the left-hand side in contrast
to the introQ rule.

Each nnf-neg schema expresses one of the standard NNF transformation steps. Here
are schemata for conjunction, disjunction and equivalence:

Γ1 ` ¬ϕ1 ∼ ϕ′1 · · · Γn ` ¬ϕn ∼ ϕ′n
Γ1 ∪ . . . ∪ Γn ` ¬ (ϕ1 ∧ . . .∧ ϕn) ∼

(
ϕ′1 ∨ . . .∨ ϕ′n

)
Γ1 ` ¬ϕ1 ∼ ϕ′1 · · · Γn ` ¬ϕn ∼ ϕ′n

Γ1 ∪ . . . ∪ Γn ` ¬ (ϕ1 ∨ . . .∨ ϕn) ∼
(
ϕ′1 ∧ . . .∧ ϕ′n

)
Γ1 ` ¬ϕ1 ∼ ϕ′1 Γ2 ` ¬ϕ2 ∼ ϕ′2 Γ3 ` ϕ1 ∼ ϕ′′1 Γ4 ` ϕ2 ∼ ϕ′′2

Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ` ¬ (ϕ1 ←→ ϕ2) ∼
((
ϕ′1 ∨ ϕ′2

)
∧
(
ϕ′′1 ∨ ϕ′′2

))
The nnf-neg schemata for quantifiers are similar to those of nnf-pos except that here the
“top-level” quantifiers get changed:

Γ ` ¬ϕ1[x] ∼ ϕ2[y]

Γ ` ¬ (∀x. ϕ1[x]) ∼ (∃y. ϕ2[y])

Γ ` ¬ϕ1[x] ∼ ϕ2[y]

Γ ` ¬ (∃x. ϕ1[x]) ∼ (∀y. ϕ2[y])

Theory reasoning Explanations from Z3’s theory solvers (Section 1.4) are captured
by the th-lemma rule. Such inferences conclude disjunctions of theory literals from
premises that are literals of the same theory. Each such step is either a lemma learned
from the theory solver or a lemma expressing unsatisfiability of a set of literals within
a particular theory. Each instance of the th-lemma rule carries a tag of the corresponding
theory and, in case of linear arithmetic, provides an additional tag specifying the exact
decision step behind the inference as well as coefficients for the participating arith-
metic (in-)equalities. There is no comprehensive list of theory tags, yet we know that
arith specifies the theory of arithmetic, and the tags farkas (for a refutation according
to Farkas’ lemma), triangle-eq (a split of an equality into two inequalities) and gcd-test
(unsatisfiability of integer inequations due to divisibility arguments) are tags for linear
arithmetic.



44 Chapter 3. Reconstructing Z3 Proofs

Rewriting Any preprocessing (Section 1.4), be it simplification or canonicalization, of
the initially given assertions or parts thereof is reflected by a single proof rule called
rewrite. Many different kinds of inferences can be declared as rewriting, e.g., simple
propositional or much more complicated theory-specific reasoning (including quanti-
fier elimination), but unlike the th-lemma rule they are not distinguished by any tags. A
rewriting step takes the form of an axiom, and its conclusion is either an equivalence or
an equation expressing exactly one simplification or canonicalization step. Beyond this
schematic form, the variations of the rewrite rule are not a priori restricted.

Other proof rules There are further Z3 proof rules, which we discuss only briefly. The
distributivity rule distributes disjunctions over conjunctions in case Z3 is configured to
perform eager conversion of formulas to conjunctive normal form. The rules pull-quant
and push-quant move quantifiers in a formula, especially for finding better triggers (Sec-
tion 1.4.2). The der rule performs destructive equality resolution [74]. Z3 knows of five
further rules to shorten proofs, i.e., each of them represents an inference that, when
Z3 is instructed not to compress proofs, is equivalently composed of some of the other
rules described so far.

3.3. Proof Reconstruction

Replaying Z3’s proofs in Isabelle/HOL requires to map the underlying language to
HOL. This is straightforward as there is a natural representation of MSFOL in HOL
(Section 2.2), and we apply it to represent formulas in Z3 proofs as terms in Isabelle/
HOL. Z3’s extensions to MSFOL, i.e., polyadic conjunctions and disjunctions, are rep-
resented as trees of binary conjunctions and disjunctions, balanced for better efficiency.

Equisatisfiability is not readily formalized in Isabelle/HOL, yet such a formaliza-
tion is unnecessary: We can soundly replace equisatisfiability by equivalence every-
where with the skQ rules being the only exception. To prove this claim we argue in-
ductively over the structure of Z3 proofs and restrict ourselves to those proof rules
where equisatisfiability occurs explicitly. It suffices to consider the following two cases.
First, the rules refl' and iff∼ introduce equisatisfiability, but only between two equiva-
lent formulas, i.e., their conclusion is unnecessarily general. Second, the rules symm',
trans', comm',≈, cong', nnf-pos, nnf-neg and introQ deduce equisatisfiability of two for-
mulas from equisatisfiability premises. From our induction hypothesis we derive that
the conclusions of those rules can be specialized to equivalences. For note that their
premises are themselves conclusions of certain proof rules in which equisatisfiability
can soundly be replaced by equivalence. Hence, only the skQ rules need to be treated
specially. We replay them in such a way that their conclusions are equivalences (Sec-
tion 3.3.2). Whenever a fresh constant, such as a Skolem constant, occurs in a Z3 proof,
we represent it in Isabelle/HOL by a free variable.

Z3 proofs are reconstructed in a bottom-up traversal of the proof graph, or more
precisely in depth-first postorder starting from the root node. Proof nodes, which con-
tain the information given by Z3, i.e., rule name, references to premises, and proposi-
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tion, are represented as an algebraic data type. Each node is associated with a unique
identifier that Z3 has already assigned to inferences and that is present in the Z3 proof.
We store the nodes of the proof graph in a balanced tree with efficient lookup (in
O(log n)) using those node identifiers as keys. Replayed proof nodes are replaced by
Isabelle/HOL theorems encapsulating the conclusion (both hypotheses and proposi-
tion). Hence, proof nodes are replayed at most once, even if referenced several times
in the proof, and proof steps that do not contribute to the proof are never replayed.
After every step we compare the inferred theorem’s proposition with the proposition
stored in the proof node to detect bugs in either our reconstruction methods or in the
Z3 proof. Hypotheses in a Z3 proof can be introduced either by asserted or hypothesis.
Local assumptions from the latter rule are discharged by the lemma rule later. After
having replayed the root node, we check that only hypotheses from asserted rules, i.e.,
the propositions in the unsat core Π′ (Section 3.2), remain.

Proof reconstruction for Z3 is sound by construction, because we rely on Isabelle/
HOL’s LCF-style kernel (Section 1.3.2), but proof reconstruction is likely incomplete
due to the sparse documentation of some of Z3’s proof rules (Section 3.2). Despite
extensive tests, proof reconstruction may still fail for a small fraction of Z3 proofs. Such
failures are not always caused by our incomplete replay implementation, but may also
be provoked by soundness bugs in Z3, particularly in its proof generation, of which we
found about ten and that have subsequently been resolved by Z3’s developers.

We use four techniques to reconstruct individual inference steps, each for a dif-
ferent set of Z3 proof rules. Table 3.1 summarizes these techniques and partitions the
proof rules correspondingly. They vary in implementation effort (highest for the sec-
ond and fourth technique) and performance (decreases from first to fourth technique).
Specifically, applying primitive inferences or metatheorems (Section 1.3.2) is the most
efficient technique in an LCF-style system. Its drawback is limited applicability: The
set of primitive inferences is fixed, and metatheorems can only be applied to terms
of a fixed structure. For instance, deriving t from a conjunction t ∧ u is within the
realm of possibility, but a derivation of some ti from an arbitrarily nested conjunction
t1 ∧ . . . ∧ tn already requires a combination of primitive inferences and metatheorem
instantiations. In contrast, automated proof procedures work well for complex prob-
lems and require little programming effort, but their performance is hard to control.
By replacing them with methods that apply specific combinations of metatheorems, we
achieved speedups of up to four orders of magnitude. Designing such methods tai-
lored for Z3 proof reconstruction was only possible because about half of Z3’s proof
rules merely require propositional or simple first-order reasoning. We fall back to au-
tomated proof procedures for complex theory reasoning. We also use automated proof
procedures for rules that we never exercised in any example of our extensive evaluation
(Section 3.4) and of which we only have a vague idea (Section 3.2). This part of proof
reconstruction is largely untested and is likely to fail for complex problems.

Our translation steps from HOL to MSFOL (Section 2.2) have a specific impact on
proof reconstruction. For efficiency reasons, λ-lifting (Section 2.2.2), introduction of
explicit application (Section 2.2.3) and separation of formulas and terms (Section 2.2.5)
are performed without accompanying proofs, and hence proof replay needs to deliver
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Reconstruction technique Proof rules
Primitive inference or
metatheorem

apply-def, asserted, comm',≈, hypothesis, iff⊥,
iff>, iff∼, mp , refl', skQ, symm', trans', true

Combination of primitive
inferences and metatheorems

cong', def-axiom, elim∧, elim¬∨, elimQ, inst∀,
introQ, intro-def, lemma, nnf-neg, nnf-pos,
unit-resolution

Automatic proof methods der, distributivity, pull-quant, push-quant

Combination of the above rewrite, th-lemma

Table 3.1. Reconstruction techniques for Z3 proof rules

these omitted proofs to turn our oracle-based integration of Z3 into a fully trusted proof
component of Isabelle. To minimize the impact and to avoid modifying the Z3 proof
structure, we embed this reasoning into the overall reconstruction procedure as much
as possible.

Recall that λ-lifting introduces fresh constants as replacements for λ-abstractions
and adds definitions to correlate the constants with the λ-abstractions. This is concep-
tually similar to local definitions in Z3 proofs, and in fact, we handle both features in
much the same way (Section 3.3.1) by hiding the definitions in hypotheses.

Introduction of explicit application operators as well as separation of formulas from
terms merely add constants to a problem, but do not change its logical structure. In-
stead of completely removing these additional constants from the Z3 proof which pos-
sibly requires to modify also uninvolved steps of the proof such as cong' steps, we keep
these constants in all propositions of the proof. It suffices to adjust replaying of asserted
steps as follows. Assume that t is a constituent of a problem. Before given to Z3, trans-
lation of t results in a decorated proposition t′ where applications are made explicit and
terms and formulas are separated. Now let us assume that Z3 finds a proof that uses t′,
i.e., some asserted rule introduces t′ into the following shortened Z3 proof:

{
t′
}
` t′

asserted

...
Γ ∪

{
t′
}
` ⊥

Replaying the asserted step in Isabelle establishes the equivalence between t and t′ via
rewriting (rewr) with suitable rules such as for instance the definition of the application
operator (Section 2.2.3), and under the assumption that t holds we can conclude that
also t′ holds:

` t = t′
rewr

{t} ` t
asm

{t} ` t′
res (

∧
x. x = y =⇒ x =⇒ y)
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Since no Z3 inference rule ever inspects or modifies the hypotheses introduced by an
asserted rule, we are free to pass on any term as hypothesis. Here, the term t is propa-
gated to the root node of the proof instead of t′ as in the original Z3 proof above. No
further proof rules need to be adapted.

The remainder of this section describes in detail our optimized approaches to recon-
structing Z3 rules that cannot directly be replayed by a primitive inference, a metatheo-
rem or a straightforward combination thereof. We show how to reconstruct local defini-
tions (Section 3.3.1) and Skolemization (Section 3.3.2) as well as propositional reasoning
on conjunctions and disjunctions (Section 3.3.3). We also describe the reconstruction of
the vaguely specified proof rule th-lemma (Section 3.3.4) and detail how we replay rewrite
(Section 3.3.5).

3.3.1. Local Definitions

Names introduced as abbreviations for formulas and terms by intro-def are given hypo-
thetical definitions in Isabelle/HOL. A hypothetical definition for some fresh name is an
hypothesis that equates this name with some term and thus acts as a definition for this
name. Using this concept, the second example for intro-def given earlier (Section 3.2) is
replayed in Isabelle as follows, where n is represented by a free variable:

{n = t} ` n = t
asm

{n = t} ` (¬n∨ t) ∧ (n∨ ¬t)
res (

∧
x, y. x = y =⇒ (¬x∨ y) ∧ (x∨ ¬y))

Here, the hypothetical definition is n = t.
The apply-def rule, used by Z3 to recover the local definition, is faithfully replayed in

Isabelle/HOL. Especially, we do not discharge the hypothetical definition at this point.
Instead, we keep the hypothesis until after replaying the root node where we discharge
it via generalization of the free variable, which does not occur in any hypotheses, and
application of the reflexivity rule in analogy to the treatment of Skolemization in [28].
More precisely, we proceed in the following way:

Γ ∪ {n = t} ` False

Γ \ {n = t} ` n = t =⇒ False
intro=⇒

Γ \ {n = t} `
∧

n. n = t =⇒ False
intro∧

Γ \ {n = t} ` False
res (

∧
x. x = x)

The same technique is also applied to hypothetical definitions stemming from the λ-
lifting translation step (Section 2.2.2). Those definitions get assumed when replaying
the asserted rule and are discharged in the above manner after concluding the root node
of the Z3 proof.

3.3.2. Skolemization

Via Skolemization, new Skolem constants, represented as free variables in Isabelle/
HOL, are introduced in a Z3 proof. We focus here on discussing how to reconstruct the
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sk∃ rule. Handling the sk∀ rule is analog.
The naive approach of directly modeling the sk∃ rule in Isabelle/HOL requires

to construct a definition for the Skolem constants, e.g., as follows, where ε denotes
Hilbert’s choice operator:

{c = (λx. εy. P x y)} ` (∃y. P x y) = P x (c x)
asm

The hypothetical definition needs be constructed explicitly from the proposition as it is
not given in the Z3 proof. Moreover, in case several existential quantifiers are Skolem-
ized in one step, a hypothetical definition for every introduced Skolem constant has to
be constructed which can be bulky. Instead of this intricate approach, we directly as-
sume the proposition in much the same way as with the Z3 rules hypothesis and asserted,
but with the exception that additional unbound variables (except for the Skolem con-
stants) are explicitly universally quantified:

{∧
x. (∃y. P x y) = P x (c x)

}
`
∧

x. (∃y. P x y) = P x (c x)
asm

{∧
x. (∃y. P x y) = P x (c x)

}
` (∃y. P x y) = P x (c x)

elim∧

After having replayed all Z3 proof steps, i.e., after having concluded the root node, the
extra hypothesis is discharged in a way reminiscent of the treatment of local definitions
(Section 3.3.1), but here it is slightly more involved. All steps are based on the following
Skolemization rule: ∧

P, c. c = (εx. P x) =⇒ (∃x. P x) = P c (3.3)

This Skolemization rule eliminates only one existential quantifier of a premise at a time.
We perform a stepwise elimination by interleaving resolutions with this rule and res-
olutions with the transitivity rule (

∧
x, y, z. x = z =⇒ z = y =⇒ x = y). For example,

consider that the hypothesis (∃x, y. P x y) = P c d remained from a Skolemization step
at the end of reconstruction where P x y abbreviates a proposition in which x and y may
occur. After introducing it into the proposition and generalizing it, we obtain:∧

v, w. (∃x, y. P x y) = P v w =⇒ False

The steps to discharge the premise are summarized in Figure 3.3. In short, we eliminate
each existential quantifier with the rule (3.3) after resolving with the transitivity rule,
and we discharge premises by reflexivity in the reverse order in which they emerge.

Arguably, discharging a Skolemization hypothesis can be done in a simpler way.
Yet, the intricate order of resolution steps and the specific Skolemization rule lead to
small terms and thus improved efficiency. In Figure 3.3, every occurrence of x in P x y
is replaced only with the Skolem constant c or the variable v, both of which do not
increase the size of terms, but never with the much larger Skolem term (εx. ∃y. P x y).
This is especially relevant if x occurs more than once in P x y. There is also no nesting
of Skolem terms such as would be obtained by replacing c with its Skolem term in
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∧
v, w. (∃x, y. P x y) = P v w =⇒ False∧

v, w, z. (∃x, y. P x y) = z =⇒ z = P v w =⇒ False
(1)

∧
v, w, c. c = (εx. ∃y. P x y) =⇒ (∃y. P c y) = P v w =⇒ False

(2)

∧
v, w, c, z. c = (εx. ∃y. P x y) =⇒ (∃y. P c y) = z =⇒ z = P v w =⇒ False

(1)

∧
v, w, c, d. c = (εx. ∃y. P x y) =⇒ d = (εy. P c y) =⇒ P c d = P v w =⇒ False

(2)

∧
c, d. c = (εx. ∃y. P x y) =⇒ d = (εy. P c y) =⇒ False∧

c. c = (εx. ∃y. P x y) =⇒ False
(3)

False
(3)

(3)

Figure 3.3. Discharging of a premise that was assumed by a sk∃ rule. For
the sake of clarity, we omit the set of assumptions Γ in all theorems. The
inferences are as follows: (1) is a resolution with transitivity of equality, (2)
is a resolution with (3.3), and (3) is a resolution with reflexivity of equality.
Premises to which resolution is applied are highlighted.

(εy. P c d) causing an exponential blowup of the size of terms. We have seen examples
where our approach dramatically improves over simpler solutions that ignore these
aspects. In earlier experiments we found that especially avoiding the blowup reduces
the overall replay time of the “Judgement Day” suite (Section 3.4.1) by about 10%.

3.3.3. Conjunctions and Disjunctions

Most propositional reasoning in Z3 proofs can be reduced to establishing an impli-
cation between two arbitrarily parenthesized conjunctions p1 ∧ · · · ∧ pm, call it t, and
q1 ∧ · · · ∧ qn, call it u, where {qi | 1 ≤ i ≤ n} is a subset of {pi | 1 ≤ i ≤ m}. For exam-
ple, proving an implication between to disjunctions t′ and u′ falls into this scheme since
after applying contraposition we are left to prove that the conjunction ¬u′ implies the
conjunction ¬t′. Such nested conjunctions and disjunctions obviously arise from their
polyadic counterparts in Z3, but also from unfolding of the distinct predicate applied to
a fixed list of terms leads to conjoined inequations.

Establishing an implication between two conjuncts by rewriting with associativity,
commutativity and idempotence of conjunction is far too slow due to the quadratic
complexity. Instead, we perform the following, much more efficient approach:

{t} ` t
asm

{t} ` p1 · · · {t} ` pm
explode t into p1, . . . , pm

{t} ` u
join u from q1, . . . , qn

` t =⇒ u
intro=⇒
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That is, we first derive intermediate theorems {t} ` pi for each pi by assuming t and
recursively applying conjunction elimination (a step we call explosion of t). These inter-
mediate theorems are stored in a balanced tree, indexed by their conclusion and with
lookup in O(log m) when assuming a fixed maximum size of the pi. Then, we derive
{t} ` u by recursion over the structure of u, using conjunction introduction, from the
intermediate theorems (a step we call join of u), and thus conclude the implication. The
overall complexity of this approach is O(m log m).

We apply this technique in reconstructing elim∧, elim¬∨, def-axiom and lemma. Three
further rules (nnf-neg, nnf-pos, and rewrite) require to establish equivalence between con-
junctions or disjunctions instead of implication, and we proceed in the usual way by
establishing both implications to conclude equivalence. Unit resolution (Section 3.2)
deduces a disjunction from a disjunction (the major premise) and a set of disproved
literals. We transform such proof steps into implications of conjunctions by contraposi-
tion, i.e., we assume the negated conclusion and show that this together with the literals
implies the negated major premise.

There is one further optimization. The rules elim∧ and elim¬∨ deduce a literal from a
polyadic conjunction or negated polyadic disjunction. Since elim∧ (and similarly elim¬∨)
is commonly applied to the same premise t several times, deducing a different literal
each time, it is more efficient to explode t once and for all instead of repeatedly extract-
ing a single literal. The resulting balanced tree of literals is stored in the proof node that
derived t and allows for efficient lookup of individual literals.

3.3.4. Theory Reasoning

We implement reconstruction of th-lemma by sequentially trying decision procedures
for linear integer and real arithmetic available in Isabelle/HOL. When they fail, we
simplify the goal and retry the arithmetic decision procedures again. This approach
of reconstructing th-lemma is expensive as it essentially amounts to a search with more
than exponential complexity. Although this task has already been performed by Z3,
and Z3 even provides hints for replaying linear arithmetic steps in form of tags and
coefficients (Section 3.2), we currently do not exploit this information. Despite the fact
that reconstructing large proofs from big industrial benchmarks suffers considerably
from our approach, we reckon that spending more effort on improving proof replay
is unlikely to give dramatic speedups for typical Isabelle/HOL problems, especially
because linear arithmetic plays a small role for most of them (Section 2.5.3).

Isabelle’s arithmetic decision procedures will typically fail when faced with huge
terms as they dive into subterms that do not contribute to the proof. In contrast, Z3
reasons only shallowly. We mimic this behavior by abstracting terms first, i.e., re-
placing subterms outside the fragment of arithmetic with fresh variables. We espe-
cially observed that if-then-else-expressions in terms, that are treated atomically by Z3’s
arithmetic decision procedures, had a deteriorating effect on Isabelle’s arithmetic de-
cision procedures, since they led to case splitting internally causing an exponential
blowup. By abstracting away if-then-else-expressions we were able to also reconstruct
such proofs efficiently.
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3.3.5. Rewriting

Z3’s simplifications and canonicalizations that are reflected in rewrite proof steps span
the range from simple propositional reasoning to theory-specific normalizations. Re-
construction sequentially tries a list of techniques to replay such steps, and we detail
them in their order applied.

Metatheorems Matching a theorem’s conclusion against a given term and, if suc-
cessful, instantiating the theorem accordingly is typically much faster than deriving the
instance again. By studying the actual usage of rewrite in Z3’s proofs, we identified
over one hundred useful metatheorems referred to as set R. These include proposi-
tional tautologies such as (p −→ q) = (q ∨ ¬p), theorems about equality, for instance
(x = y) = (y = x), and theorems of linear integer and real arithmetic, e.g., x + 0 = x.
Together, these theorems allow a major part of all terms given to rewrite to be proved by
instantiation alone. We store all metatheorems in a term net [41, chapter 14] to speed
up the search for a match.

Motivated by failed proof reconstruction attempts, we made the set R of metathe-
orems extensible by users of Isabelle/HOL. This is also a way to overcome the incom-
pleteness of proof reconstruction for Z3 that is due to the vague documentation. A
failed replay of a rewrite step with conclusion t can be compensated for by adding to R
a specific metatheorem that is matched by t. As a consequence, subsequent reconstruc-
tion attempts of the same Z3 proof will succeed.

Since this approach turned out to be tremendously helpful, we apply the set of rules
R also to other vaguely specified proof rules (def-axiom, nnf-pos, nnf-neg and th-lemma)
before trying anything else. The penalty for matching against a large collection of
metatheorems is outweighed by the improved coverage: Users of Isabelle/HOL are
willing to wait a few more milliseconds for an automatic proof tool to finish if this
spares them from the tedious search for a possibly lengthy manual proof.

Propositional reasoning Simplification and canonicalization of propositional for-
mulas is an important prerequisite for efficient SMT solving. In rewrite, Z3 proofs ex-
press equivalences that establish (1) permutations of conjunctions and disjunctions, (2)
a generalized form of the rule of the excluded middle (l1 ∨ . . .∨ ln) = True, where there
are i and k such that li is syntactically equivalent to ¬lk, and the dual rule of contra-
diction (l1 ∧ . . . ∧ ln) = False, and (3) simplifications of propositions involving further
logical connectives such as (True −→ p) = p. We replay (1) with the explode/join
technique (Section 3.3.3) by splitting the equivalence into two implications. In case (2)
the generalized excluded middle is reduced via a variant of contraposition to the dual
form with conjunctions which in turn is proved by considering both implications, i.e.,
by instantiating the rule (

∧
x. False =⇒ x) and by reusing the conjunction explosion

(Section 3.3.3) as follows:
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{l1 ∧ . . .∧ ln} ` l1 ∧ . . .∧ ln
asm

{l1 ∧ . . .∧ ln} ` l1 · · · {l1 ∧ . . .∧ ln} ` ln
explode

{l1 ∧ . . .∧ ln} ` False
contra

` l1 ∧ . . .∧ ln =⇒ False
intro=⇒

The contra inference steps finds the contradicting literals l and ¬l from the exploded
conjunction and resolves them with the contradiction rule (

∧
x. x =⇒ ¬x =⇒ False).

For (3), we fall back to automatic proof methods of Isabelle, although this should rarely
happen since matching against the set R of metatheorems as described earlier should
already cover many cases.

Linear arithmetic Instances of rewrite that express equalities of linear arithmetic re-
late one arithmetic term to an equal term that is in some canonical or simplified form.
We sequentially try similar techniques as for replaying th-lemma steps, i.e., we abstract
the equality first by replacing subterms that are neither arithmetic expressions nor log-
ical formulas with fresh variables and then apply Isabelle’s simplifier before Isabelle’s
arithmetic decision procedures. In the few cases where this approach fails, we per-
form a second round, due to a suggestion by Jasmin Christian Blanchette, where we
abstract slightly less parts of the equality. That is, we replace smaller subterms by fresh
variables thereby leaving applications of some nonarithmetic constants to terms un-
abstracted and retry simplification followed by arithmetic decision procedures. For
example, consider the following proposition where x, y and z are integer variables:

(f (if P then g x else y)− x < z) = (if P then f (g x)− x < z else f y− x < z)

After abstracting this proposition we obtain:

(a− x < z) = (if P then b− x < z else c− x < z)

where a, b and c are fresh integer variables that abstract over nonarithmetic subterms.
Clearly, this equivalence is not valid and hence not provable by the simplifier or any
arithmetic decision procedure. The problem is that the abstraction hides f applied to the
if-then-else-expression. The more liberal abstraction applied in the second round leaves
all applications of f unabstracted:

(f (if P then a else y)− x < z) = (if P then f a− x < z else f y− x < z)

where a is a fresh integer that abstracts the subterm g x. For this equivalence, the sim-
plifier now succeeds.

Similar as with th-lemma, this entire approach is potentially costly due to the sequen-
tial application of different techniques and since the invoked arithmetic decision pro-
cedures have exponential complexity. In contrast to th-lemma, however, Z3 provides no
further hints for rewrite, and that makes it challenging to implement an efficient method
tailored to reconstruct linear arithmetic equalities (and possibly rewrite instances for
other theories as well).
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Injective functions Z3 can discover from the constituents of a problem that a function
is injective and thus there must be an inverse function for it. The hypothetical inverse
function is then used in further steps of the proof. We illustrate this abstract description
with an example. Let us assume that a problem given to Z3 contains the following
proposition which expresses that f is injective in its first argument:

∀x, y, z. f x z = f y z −→ x = y (3.4)

Z3 is then able to infer that there must be an inverse function, call it g, satisfying the
following proposition:

∀x, z. g z (f x z) = x (3.5)

This reasoning is captured in a single rewrite step that expresses the equivalence be-
tween (3.4) and (3.5) including the Skolemization that produces the fresh name g for
the inverse function.

We reconstruct this inference similar to local definitions (Section 3.3.1) or Skolem-
ization (Section 3.3.2) w.r.t. the fresh name g, albeit with a specialized procedure to
establish the two implications that together form the required equivalence. For the left-
to-right implication, we first construct a hypothetical definition for g using the Isabelle/
HOL function inv:

g = (λz. inv (λx. f x z))

and can then reduce the problem to the following metatheorem about inv:∧
f. (∀x, y. f x = f y −→ x = y) =⇒ (∀x. inv f (f x))

For the right-to-left implication, we first prove the following equational tautology using
Isabelle’s simplifier:

∀x, y, z. f x z = f y z −→ g z (f x z) = g z (f y z)

From this we conclude (3.4) by rewriting with the assumption (3.5).

3.4. Evaluation

The evaluation of our translation from higher-order to many-sorted first-order logic
(Section 2.5) already includes a partial evaluation of proof reconstruction: In case that
reconstruction with metis failed, the proofs found by one of the SMT solvers could only
be checked by a subsequent invocation of Z3 with proof reconstruction enabled. Hence,
the contribution of SMT solvers to the proof automation of Isabelle/HOL depends to a
substantial extent on the feasibility of proof replay for Z3. Yet, we have not evaluated
how efficient proof reconstruction for Z3 is. Theoretically, proof checking should be
faster than proof finding, but various reasons, some of which we indicate later, can turn
the relation around in practice. Nevertheless, we claim that reconstruction of Z3 proofs
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is efficient for typical problems in Isabelle/HOL (Section 3.4.1) and even for more in-
volved problems (Section 3.4.2). To support the first claim, we provide runtimes of
both finding and checking proofs for the “Judgement Day” problem suite (from Sec-
tion 2.5.1) as well as profiling data for proof reconstruction. For the second claim, we
chose industrial and artificial benchmarks from the annual SMT competition and study
similar figures. Further evaluations of our proof replaying code [28, 33] provide results
obtained from older versions of Z3 and compare our efficient reconstruction for Z3 with
proof replay for the SMT solver CVC3 in the interactive theorem prover HOL Light.

3.4.1. Judgment Day Benchmarks

We claimed earlier that checking Z3 proofs in Isabelle/HOL is efficient and does not
hinder interaction of users with Isabelle. More precisely, we claimed that proof recon-
struction for typical Isabelle problems takes in general only a fraction of a second and
in rare cases only few seconds. We will now give evidence to this claim.

In the previous chapter, we already used the “Judgment Day” suite (Section 2.5.1)
as a representative collection for typical problems in Isabelle/HOL, and we follow this
approach here as well. For evaluating proof reconstruction, we selected from this suite
all problems—exactly 1000—that could be proved by Z3. We kept these problems from
a run of the “Judgment Day” suite and stored them in the SMT-LIB format. This way,
our evaluation is focused on proof reconstruction instead of unnecessarily spending
time on proof search for possibly unprovable problems. As a side effect, this modi-
fied setup avoids invocations of metis that alone succeeds in reconstructing 75.9% of all
proofs found by Z3 (Table 2.3) thus reducing the number of proofs to exercise our proof
replay. Since we intend to evaluate proof reconstruction for Z3 here, we try to replay
all 1000 proofs by Z3 alone. In contrast to the code used in the previous section, we
need to compensate here for the missing context as proof replay runs separately from
the “Judgement Day” theories and the Z3 proof certificates do not reveal which types
have been introduced by monomorphization (Section 2.2.1) and which assertions rep-
resent only hypothetical definitions (Section 2.2.2). We thus map uninterpreted sorts in
the proof certificate to fresh HOL types. Discharging of hypotheses is confined to those
introduced by specific inference rules (local definitions, Skolemization, and rewriting
injective functions). Rewriting and checking of assumptions as detailed earlier (Sec-
tion 3.3) is mostly disabled. Our changes do not impair the central functionality of
proof reconstruction and should not affect the runtime much.

On the selected SMT-LIB problems, we ran Z3 to measure the CPU time required
for finding a proof. We also collected both the file size of the found proof certificate as
an approximation of the number of inference rules and the size of propositions forming
the proof. We then applied the slightly modified version of our Isabelle/HOL recon-
struction code to these proofs and measured the overall CPU time. In a second replay
run, we performed detailed profiling, i.e., we measured the cumulative CPU times for
each inference rule as well as for parsing and discharging hypotheses. We performed
our measurements on the same machine as for evaluation or SMT integration (Sec-
tion 2.5.1).
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Z3 rule r-occs r-time a-time
cong' 20.93% .93% .03
rewrite 20.14% 43.72% 1.68
trans' 11.22% .57% .04

mp 9.80% .24% .02
unit-resolution 7.63% .60% .06

introQ 7.31% 3.82% .41
refl' 5.30% .06% .01

other 18 rules 17.67% 25.01% .05
parsing 24.62% 21.06

discharging .43% .37
(a) Sorted by decreasing occurrences

Z3 rule r-time r-occs a-time
rewrite 43.72% 20.14% 1.68

th-lemma 21.03% 0.89% 18.23
introQ 3.82% 7.31% .41

asserted 1.39% .91% 1.19
inst∀ 1.00% 2.96% .26

other 20 rules 3.99% 67.79% .03
parsing 24.62% 21.06

discharging .43% .37

(b) Sorted by decreasing runtime

Table 3.2. Profiling data for Z3 proof reconstruction of the “Judgment Day”
benchmarks. The column r-occs shows the relative number of occurrences
of proof rules, the column r-time shows the relative relative runtime of re-
construction steps, and the column a-time shows the average runtime of
reconstruction steps in milliseconds or the median thereof when aggregat-
ing several proof rules.

Our results are as follows. The median runtime for proof finding by Z3 is 136 ms,
and the median proof size is 5 KB. That is, typical proof certificates can be found almost
instantly and are fairly small. Especially the former figure is important for users of
Isabelle/HOL: If Z3 is able to find a proof for a conjecture, it typically does so very
quickly without letting the user wait. Proof reconstruction for the 1000 proofs from Z3
succeeds for all but seven cases. These failures are due to the incompleteness of proof
replay for nonlinear arithmetic (in three cases) and bugs in the proof generated by Z3
(in the remaining four cases), which we reported to Z3’s developers and which have
been fixed in recent versions. Reconstruction takes 48 ms (median) for a single proof
which translates into a ratio of .26 between proof checking and proof finding. Hence,
proof checking is considerably faster than proof finding.

Profiling (Table 3.2) reveals which inferences among the 25 seen in all proofs take
the largest share on the number of occurrences and which of them contribute most to
the overall runtime. When optimizing proof reconstruction, we first focused on reduc-
ing the runtime for the rules that occur most often. Table 3.2a shows that, beside rewrite,
the most frequent rules, i.e., those with at least 5% relative occurrences, can be recon-
structed very efficiently since their relative number of occurrences is mostly at least
one order of magnitude greater than their relative runtime and their average runtime
is a small fraction of a millisecond. Hence, only little room remains to improve the
efficiency of our proof replaying code by improving reconstruction for the rules that
run longest. Table 3.2b shows the seven most costly inferences rules w.r.t. runtime, i.e.,
those taking at least 1% of the overall runtime, and compares them with their number
of occurrences relative to all other proof rules. This table is also exhaustive w.r.t. those
rules for which replaying takes longer than a millisecond on average, i.e., this table
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covers also the most costly rules in absolute numbers. We see that 89.37% of the time is
spent with parsing and reconstructing rewrite and th-lemma steps whereas replay time of
the remaining 23 proof rules is minor (10.20%). Especially rewrite and th-lemma together
take nearly two third (64.75%) of the entire time. This figure could be slightly improved
by providing more metatheorems to the set R (Section 3.3.5). A much stronger impact
could be gained if no search was necessary for replaying rewrite and th-lemma instances.
Especially for theory lemmas, we could improve the reconstruction time by taking ad-
vantage of the hints provided by Z3. For rewriting steps, we do not see possible per-
formance gains without further information from Z3 such as, for example, splitting one
rewrite step into smaller inferences with clear semantics [34].

We summarize our key findings as follows:

• Z3 proof checking is faster than proof finding for typical Isabelle/HOL problems.

• Except for rewrite, Z3 proof replaying is highly optimized for the most important
inference rules.

• The rewrite rule is the most expensive inference step w.r.t. proof reconstruction.

• Efficiency of replay for th-lemma rules can be optimized further.

3.4.2. SMT-COMP Benchmarks

We have seen that reconstructing proofs for typical Isabelle/HOL problems is highly
efficient. Once found, such proofs can typically be replayed within a fraction of a sec-
ond, in rare cases within a few seconds. Nevertheless, such an evaluation does provide
little to no information about how reconstruction scales with the proof size. Especially
bigger proofs are likely to demonstrate whether our optimizations are worthwhile, i.e.,
that they lead to short replay times, and bigger proofs also help to uncover remaining
performance bottlenecks in our implementation. To this end, we consider problems
from other domains.

The SMT-LIB [15] has collected some tens of thousands of industrial and crafted
MSFOL benchmark files, which are classified into different logics. Each logic is a com-
bination of theories such as equality and uninterpreted functions (UF), linear integer
arithmetic (LIA), linear real arithmetic (LRA) and extensional arrays (A). Some log-
ics are restricted to quantifier-free (QF) benchmarks, and some logics allow triggers
to be provided for quantifiers (+p) whereas some forbid triggers (-p). The name of a
logic is formed by concatenation of these abbreviations. The annual SMT competition
(SMT-COMP) selects out of each logic about 200 benchmarks representing both sim-
ple and complicated problems. For our evaluation we use the selection from the SMT
competition of 2009 [14]. Not all of the competition logics are covered by our proof
reconstruction, for instance those involving fixed-size bitvectors. Other logics, for ex-
ample those expressing problems of difference logic, seem to be too specialized for
our purpose. After all, we want to evaluate a tool that is used as a general-purpose
prover within Isabelle/HOL. Therefore, we concentrate here on logics that involve ei-
ther quantifiers or uninterpreted functions possibly combined with linear arithmetic.
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Solved by Z3 Reconstructed in Isabelle/HOL
Logic # Time Size Success Timeout Failure Time
AUFLIA+p 192 36 5 KB 100% 0% 0% 110
AUFLIA-p 192 32 4 KB 100% 0% 0% 96
QF_AUFLIA 86 24 146 KB 84% 16% 0% 1482
QF_UF 73 844 2 MB 97% 3% 0% 5,976
QF_UFLIA 89 36 108 KB 94% 6% 0% 3,336
QF_UFLRA 100 96 700 KB 100% 0% 0% 6,220
Total 732 48 65 KB 97% 3% 0% 968
“Judgment Day” 1000 136 5 KB 99% 0% 1% 48

Table 3.3. Results for SMT-COMP benchmarks. All times are given in mil-
liseconds. All times and proof sizes are median values. The reconstruction
times only count successfully reconstructed benchmarks.

We turned benchmarks that make use of extensional arrays into benchmarks that treat
them uninterpreted by adding suitable axiomatization and replacing the interpreted
sort of arrays by an uninterpreted sort and the interpreted array functions by uninter-
preted functions.

Our experimental setup is similar as before (Section 3.4.1). We especially re-use the
modified proof reconstruction code and the same machine to run our experiments. In
addition, we put a time limit of 60 seconds and a memory limit of 512 MB on Z3, and
we also limit the runtime of each proof reconstruction attempt to five minutes.

Table 3.3 shows our results in comparison to the results of our previous “Judgment
Day” evaluation. From these median values we see that Z3 is faster on the SMT-COMP
benchmarks and produces much larger proofs for them. In fact, the largest proof we
have seen was 124 MB in size, and still it can be successfully replayed within the time
limit. Proof reconstruction does not fail for any of the considered SMT-COMP bench-
marks which indicates that our implementation has reached a good level of maturity
and is indeed applicable to larger proofs as well. Yet, proof reconstruction times out in
3% of all cases, and the time to reconstruct a proof is also considerably longer than the
time spent for finding it. One reason to this is that these proofs contain huge proposi-
tions, and we suspect that this inevitably leads to some loss of performance in Isabelle.

Some more insights into performance bottlenecks are revealed by detailed profiling
data (Figure 3.4). For each logic, we only show those rules that contribute at least 10%
to either the proof reconstruction time or the number of reconstructed inference steps
and group all other rules together (with the number of different rules in that group).
For AUFLIA+p, AUFLIA-p and QF_UFLRA, the rewrite rule dominates runtime—a result
that does not come as a surprise after the evaluation of the “Judgment Day” proofs. In
proofs of AUFLIA-p, QF_AUFLIA and QF_UFLIA, the relative reconstruction time for
the th-lemma rule exceeds its relative occurrences dramatically, which is also similar to
our results of the previous section and indicates some potential for future improve-
ments. Especially for QF_UFLIA, optimizations for replaying th-lemma steps that avoid
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Figure 3.4. Profiling data for Z3 proof reconstruction of the SMT-COMP
benchmarks. Dark bars symbolize the relative reconstruction time, and
light bars indicate the relative number of reconstructed inference steps.
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the expensive search performed by Isabelle’s arithmetic decision procedures will be
tremendously beneficial as over 80% of the time is spent on the reconstruction of these
steps. When no theory reasoning is involved as in QF_UF, we see that replaying most
inferences is highly optimized since nearly every rule takes a larger share on the num-
ber of reconstructed inferences than on the reconstruction time, and parsing time for
the proofs dominates. A similar observation about the efficiency of replaying proof
rules besides th-lemma and rewrite also applies to the other five logics. Moreover, recall
from Table 3.3 that replaying proofs from QF_UF is slightly faster than replaying proofs
of QF_UFLRA although the proofs from QF_UF are nearly three times as big as those
of QF_UFLRA. Hence we conclude that our optimizations (Section 3.3) have not been
in vain. Performance jumps can only be gained from improving the reconstruction of
theory-related inferences (th-lemma and certain instances of rewrite).

Our key findings are thus as follows:

• Reconstruction is still feasible for large proofs.

• Most proof rules can be reconstructed efficiently.

• Theory reasoning (th-lemma and rewrite) is the major bottleneck in reconstruction
performance.

3.5. Related Work

Distrusting external automatic provers, and oracles in general, is common practice in
the interactive theorem prover community. Since formally verifying an entire prover as
was announced for an SMT solver in [48] is typically not feasible, the common solution
is to request a proof certificate from the external prover which can be independently
checked in the interactive theorem prover. At least three different checking approaches
have been studied: stepwise proof reconstruction of the proof certificate in the inference
system of the interactive theorem prover [1, 85, 86, 115, 137, 139], translation of the proof
certificate into proof text of the interactive theorem prover [35,139,148], and applying a
verified checker that is a program formally verified within the interactive theorem prover
and obtained via reflection [4, 22, 40, 82]. It has been shown repeatedly [4, 5] that a ver-
ified checker typically outperforms stepwise proof reconstruction on the same bench-
marks including our work and despite our optimizations. Nevertheless, remarkable
performance has been achieved with the latter approach, too, for replaying proofs of
SAT solvers [163] and QBF solvers [98, 100, 162]. From the work of Weber and Am-
jad [163], we adopted the beneficial principle to replay every inference step at most
once, i.e., we ignore unnecessary inferences and re-use results as much as possible.

Proof checking for SMT solvers Only few current SMT solvers produce proof certifi-
cates among which are clsat [132], CVC3 [17], Fx7 [121], veriT [21,36] and Z3 [58]. Each
of them has a distinct proof format that limits portability of checker implementations—
a common proof language such as TSTP [153] has yet to emerge. The format of proof
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certificates produced by clsat and Fx7 were designed specifically for efficient checking,
unlike those of CVC3 (with hundreds of small-step inferences rules) and Z3. Conse-
quently, there are very efficient proof checkers for the former solvers, but none of them
runs in the context of an interactive theorem prover.

Several integrations of SMT solvers with interactive theorem provers already com-
prise stepwise proof reconstruction. However, checking of haRVey certificates in Isa-
belle/HOL [71,87] ignores linear arithmetic, checking of CVC-Lite and CVC3 proofs in
HOL Light [73, 116] does not cover quantifiers, and likewise replaying of Ergo proof
traces in Coq [48] is confined to the unquantified theory of equality and linear arith-
metic. Hence, in the light of applying SMT solvers as strong backend provers for in-
teractive theorem provers where especially quantifiers are encountered in almost every
problem, we consider these implementations as insufficient. In comparison with the
implementation for replaying CVC3 proofs in HOL Light, we found that our proof
reconstruction, also due to our optimizations, outperforms the former in nearly all
cases [33].

Documentation of inference systems Only few inference systems of SMT solvers
are well documented [121, 132] which unnecessarily complicates implementing proof
reconstruction [34]. In fact, most SMT proof checkers have been written by developers
of the corresponding SMT solvers themselves or in tight connection with them. This
also applies to our proof reconstruction for Z3 which required an amount of reverse
engineering and communication with the developers since only sparse documentation
has been provided [58].

Fast proof reconstruction techniques Using metatheorems to directly represent the
SMT solver’s inferences has been adopted from the proof reconstruction for CVC3 in
HOL Light [73, 116].

Efficiently replaying unit resolution steps from a SAT solver in an LCF-style the-
orem prover has been detailed in [163]. This technique exploits a particular represen-
tation of clauses such that a long chain of unit resolution steps can be checked much
faster than with our approach (Section 3.3.3). Yet, a typical Z3 proof mixes unit resolu-
tion steps with other inferences that are incompatible with the special clause represen-
tation, and translating clauses into the special form and back again outweighs potential
performance gains.

Replaying Skolemization steps can also be efficiently implemented with the first
approach that we have only briefly indicated (Section 3.3.2). This has been done in [28,
33] and builds on earlier work [73]. Yet, this approach requires to explicitly construct
definitions for Skolem constants from the proof step’s conclusion—an intricate and en-
tirely unnecessary task as we have demonstrated (Section 3.3.2). Alternatively, one
could Skolemize the assertions before giving them to SMT solver [87], but we have not
investigated such a preprocessing approach.
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4.1. Introduction

Automatic program verification was and still is one of the main driving forces behind
the development of SMT solvers. Indeed, the need for increased proof automation in
the context of program verification originally motivated our integration of SMT solvers
with Isabelle. The motivating application came from combining the C code verifier
VCC (Section 4.2) with Isabelle that resulted in a tool that we call HOL-Boogie (Sec-
tion 4.3). We describe a complex case study for HOL-Boogie that aims at formally
verifying a red-black tree implementation in C (Section 4.4). By means of this exam-
ple, we evaluate HOL-Boogie and describe problems related to proving verification
conditions from VCC. Some of these problems are overcome when letting VCC cooper-
ate abstractly with Isabelle (Section 4.5). We also evaluate this approach on a complex
case study taken from the domain of graph algorithms (Section 4.6). We conclude by
reviewing related work (Section 4.7).

4.2. VCC: An Automatic Program Verifier for C

VCC [44] is an automatic program verifier for C [88]. It follows the philosophy that
verification should be based primarily on annotations (Section 4.2.1) that are directly
inserted into the code and discharged automatically. Thus, VCC stands in the tradition
of tools such as ESC/Java [70] and Spec# [13], and shares with them the choice of many-
sorted first-order logic (MSFOL) as annotation language.

61
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VCC
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Figure 4.1. Overview of the VCC architecture. We use the typical file end-
ings to distinguish files participating in the process: .c stands for a C file,
.bpl stands for a Boogie file, and .smt stands for an SMT file.

VCC comprises the following three tools (Figure 4.1): The C frontend translates from
C annotated with specifications in MSFOL (Section 4.2.1) to the intermediate impera-
tive Boogie language [60], Boogie [10] translates from the Boogie language to MSFOL
formulas, and Z3 automatically proves the resulting formulas. The translation from
annotated C to the Boogie language makes explicit the memory model (Section 4.2.2)
and inserts additional checks for, e.g., avoiding range overflow or null-pointer deref-
erence, but keeps the control flow intact by mapping branches and loops of C to Boo-
gie counterparts. Boogie is a verification condition generator that turns an imperative
Boogie program with first-order annotations into MSFOL formulas (Section 4.2.3) for
partial program correctness. The Boogie language modularizes code into procedures
that consist of assignments, control-flow constructs and assertions in first-order logic.
Moreover, the language allows to specify a background theory by means of type and
function declarations as well as first-order axioms setting up the specification against
which Boogie programs are verified. In the case of VCC, this background axiomatiza-
tion expresses, among other things, the heap model, typed pointers and the concept
of valid pointers (Section 4.2.2). To associate errors exposed by a failed verification at-
tempt with source code positions, VCC inserts marker symbols (Section 4.2.4) that we
exploit in HOL-Boogie.

Guaranteeing soundness of VCC is difficult due to its layered architecture consist-
ing of several individual tools. Unsoundness can creep in from bugs in the translations
performed by the C frontend or Boogie, from bugs in Z3, or from inconsistencies in
the background axiomatization. This risk has to be taken into account when formally
verifying code with VCC, but we indicate later (Section 4.3) how to partly improve this
situation.

4.2.1. The VCC Annotation Language

As an assertional code verifier, VCC provides several different annotations all of which
are enclosed in _( and ). When an annotated program is compiled into executable code,
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struct S {

int i;
_(ghost bool map[\integer])
_(invariant \forall \integer j;

0 < j && j < i ==> map[j])

};

_(ghost _(pure) bool g(int i)
_(requires i > 0)
_(returns i - 1))

int f(int i _(ghost \integer x))
_(requires i == x && x > 0)
_(ensures \result == 0)

{
_(ghost \integer y)
_(assume y == x)

while (i > 0)
_(invariant i >= 0)

{

i = i - 1;
_(ghost y = y - 1)

}
_(assert i == y)

return i;

}

Figure 4.2. Contrived C code with annotations

all of these annotations are ignored. Figure 4.2 gives a contrived example of C code with
different kinds of annotations that are explained below.

The most basic annotations are to assert a formula via assert resulting in a proof
obligation, and to assume a formula via assume to be taken as an additional fact for
any subsequent proof obligations. These two annotations are complemented by loop
invariants, expressed by invariant, to prove properties of loops.

The specification of a function is given by a contract consisting of the following
annotations. Preconditions, marked as requires, restrict invocations of a function, and
postconditions, marked as ensures, express properties guaranteed to hold on return of
a function. A returns annotation is a special postcondition that gives a term which is
equal to any result of the function.

For the purpose of specification, VCC provides means for defining types and func-
tions, for adding fields to structures and parameters and local variables to functions
parameters as well as for writing special code. These so-called ghost types, ghost func-
tions, ghost fields, ghost parameters, ghost variables and ghost code sections form the basis of
the annotation language and establish a constructive, proof-oriented style [44]. Ghost
types can either be C types or logical types such as mathematical integers, written as
\integer, tuples or maps, written in the C array notation. Ghost functions such as g

(Figure 4.2) can, like C functions, be annotated with contracts and can additionally be
declared pure when they only read from memory without altering it. Ghost functions
with a body are verified just like normal C functions, and without a body they serve
only as abstract specification devices. Ghost fields such as map and ghost variables
such as y (Figure 4.2) can be used to store additional data, e.g., to maintain inductively
defined information, and ghost parameters such as x can pass additional information
from and to functions. They together form the ghost state on which ghost code such
as y = y - 1 (Figure 4.2) freely operates. VCC checks that no information flows from
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the ghost state to the ordinary C state and that all ghost code sections terminate. These
two conditions together guarantee that the ghost code and the ghost state can be erased
without affecting the behavior of the program.

4.2.2. The VCC Memory Model

C supports a very liberal way of accessing memory by pointer arithmetic. Types give
merely a hint on the size of the accessed memory chunk, but addressable chunks can
overlap arbitrarily in memory. This rules out the direct adoption of simpler memory
models such as those for Java [99] or Spec# [11]. Moreover, C pointers can address
individual fields of structures, and fields of a structure can again be of a structure type,
i.e., structures can be embedded in structures. Hence, a pointer to a structure can at
the same time refer to the first field of the structure, and, if that again is a structure, to
the first field of that structure, and so. Although this structural hierarchy contributes to
the complexity of candidate C memory models, it is the liberal pointer arithmetic that
makes designing memory models for C particularly challenging.

Yet, most C programs are written in a typesafe way where no two pointers address
overlapping chunks of memory except for data within a structure. Ignoring structures
for the moment, this observation allows to view memory as a collection of nonover-
lapping objects instead of flat, byte-wise addressable memory with arbitrary pointer
arithmetic. Note that in this setting, an address uniquely identifies an object. When
re-considering structures, one needs to extend this model since each structure is itself
addressable as an object and so are the fields of the structure. This breaks the view of
memory as a collection of nonoverlapping objects as each field overlaps with the struc-
ture. Yet, the object view can be rescued by adding the exception that fields overlap
with (a part of) a structure. Now, an address can refer to both a structure and its first
field, but an address and a type together again suffice as unique identifier for objects.
For note that fields of a structure are always of different type than the structure. VCC
is based on this typed object view of memory [30, 31, 46]. It maintains a set of all valid
pointers that adhere to this model, and it checks that memory is accessed only with
valid pointers.

VCC partitions the set of objects using an ownership model [44,45,47] that is mod-
eled after that of Spec# [11]. Each object has at most one owner, and the induced own-
ership graph is a forest. The root of each tree is a thread of execution. The set of objects
transitively owned by one object is called its ownership domain.

Also adopted from Spec# are object invariants [11], written as invariant annota-
tions, that are associated with structures and that specify conditions on their fields
(Figure 4.2). Invariants are tightly coupled to ownership, because an invariant can only
depend on objects in the ownership domain. Since the ownership domain of a struc-
ture changes during the execution of a program and fields of a structure get updated,
most structure invariants necessarily break at particular program points. VCC thus as-
sociates with each structure a special Boolean ghost field closed which expresses, when
set, that the invariants of the structure hold. Consequently, the fields of a structure can
only be altered while the structure is open. When a structure directly owned by the cur-
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rent thread of execution is closed, it is called wrapped. If it is open, it is called mutable.
Unwrapping a structure introduces its invariants as assumptions. Wrapping a structure
is preceded by assertions that check its invariants.

4.2.3. Generating Verification Conditions

VCC translates each C function into a Boogie procedure. This translation adds asser-
tions which, among other things, prevent integer overflows, check that arrays are ac-
cessed within their bounds and check that memory is accessed by valid pointers only.
Moreover, the translation makes the program state and the heap as well as memory
accesses explicit, because these have no counterparts in the Boogie language. The re-
sulting code is mapped to Boogie that provides the same language constructs as an-
notated C does. There are especially all control-flow constructs from C available. In
addition, Boogie’s specification language comprises counterparts for annotations such
as assertions, assumptions, loop invariants and function contracts as well as for defin-
ing specification types and specification functions. Hence, translating from annotated
C, which has been enriched with additional assertions and an explicit program state, to
Boogie is straightforward.

In the remainder of this section, we concentrate on the translation from Boogie
procedures to verification conditions. The first step encodes structured control-flow
constructs in a core language of Boogie. The second step applies transformations that
result in a passive program. Finally, the third step constructs a first-order formula from
a passive program. All presented code uses Boogie syntax.

First step Boogie code that uses structured control-flow constructs such as while

loops is translated into a core language of Boogie with the following grammar, where
identifiers and variables are arbitrary names and where expressions are first-order for-
mulas or terms over equality and integer arithmetic:

Procedure ::= Block+

Block ::= Identifier : Statement∗ Goto
Statement ::= Variable := Expression ;

| assert Expression ;

| assume Expression ;

| havoc Variable ;

Goto ::= goto Identifier∗ ;

Each block is labeled by an identifier and consists of a sequence of statements followed
by a set of successor blocks. Semantically, each block corresponds to a transition rela-
tion between states where a state is an assignment of values to the variables of a pro-
cedure, and a goto statement corresponds to a composition with the intersection of the
successor transition relations. Intuitively, a goto performs a nondeterministic jump to
one of the successor blocks. If there is no successor block, the program gets stuck. An
assert statement constraints the subsequent transition whereas an assume statement
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weakens it. That is, each assertion produces an obligation to be proved while an as-
sumption inserts a property to be used. Consequently, if an expression e evaluates to
>, then assert e as well as assume e have no effect. Otherwise, if e evaluates to ⊥, then
assert e is a failure, i.e., it goes wrong, and assume e is a terminal success eliminating
effectively all subsequent proof obligations [60]. An assignment updates the program
state. A havoc statement corresponds to an assignment of an arbitrary value.

When translating from structured Boogie procedures as constructed by the C fron-
tend to procedures in the core language, assertions and assumptions are kept unaltered.
Pre- and postconditions of a procedure are encoded as assumption at the beginning and
assertions at the end of a procedure. Structured control-flow constructs are encoded by
statements of the core language. For example, a while loop such as

while ( G ) invariant P { B }

where G is the loop condition, P is an invariant and B is the loop body, is encoded as
follows [10] where x stands for the only variable modified in B:

Head: assert P ; havoc x ; assume P ; goto Body, Done;

Body: assume G ; B ; assert P ; goto;

Done: assume ¬G ;

Operationally, these blocks can be understood as follows. The invariant is tested before
the first loop iteration. The subsequent havoc statement simulates a state after arbitrary
loop iterations. Then, either the loop condition does not hold and execution continues
after the loop in the block labeled Done or the condition does still hold. In that case,
the loop body is executed followed by checking that the loop invariant still holds after-
wards which simulates one arbitrary iteration of the loop.

Second step Before generating a formula for a procedure in core language, Boogie
applies three transformations [12]. First, the control-flow graph of the procedure is
made acyclic by safely cutting loops similarly as shown above for while loops. Second,
a single-assignment transformation is applied. Third, the result is turned into a pas-
sive procedure by changing assignment statements into assume statements. A machine-
checked presentation of these transformations together with the final generation of a
verification condition can be found in [158]. The result of these transformations is an
unstructured, acyclic, passive procedure that consists of blocks each of which comprises
only assume and assert statements followed by a goto. Note that such a procedure can
be regarded as a directed acyclic graph, the control-flow graph, where assume and assert

statements are nodes and where edges link statements to successor statements, and
each goto statement is a notation for several successor statements.

Third step From an unstructured, acyclic, passive procedure, Boogie’s final step gen-
erates a verification condition by means of weakest preconditions [62, 104]. For any
statement S and predicate Q on the post-state of S, the weakest precondition of S with
respect to Q, denoted by wp(S, Q), is a predicate that characterizes all pre-states of S
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whose reachable successor states satisfy Q. The weakest precondition for Boogie state-
ments is defined as follows:

wp(assert P, Q) = P∧ (P −→ Q)

wp(assume P, Q) = P −→ Q

Note that in contrast to the standard definition, Boogie’s weakest precondition for
assert is slightly extended, but still equivalent. This gives the target prover Z3 the
proposition P as a hint for proving Q independently of whether P can be shown to
hold. Lifting weakest preconditions to a sequence of statements is as follows:

wp(S1 . . . Sn, Q) = wp(S1, . . . , wp(Sn, Q))

For every Boogie block B comprising a sequence of statements S and successor blocks
B1, . . . , Bn, the weakest precondition can be defined recursively as follows:

wp(B, Q) = wp(S, wp(B1, Q) ∧ . . .∧ wp(Bn, Q))

Recall that the procedure’s control flow is acyclic and hence the above function always
terminates. The verification condition is wp(B0,>) where B0 is the first block of the
procedure.

4.2.4. Associating Errors to Source Code Locations

VCC can output source code locations of errors [106]. The underlying idea is to enrich
each asserted property P with a vacuous constant L carrying the source code position
for this assertion. This is done by a special labeling primitive label(L, P) that is logically
equivalent to P. Due to the way a verification condition is generated, this decoration, or
label, is maintained in the final formula given to Z3. The prover has special support for
labels such that, when the corresponding asserted formula cannot be proved, Z3 emits
the label in the countermodel produced. VCC can hence select the labels of all failing
assertions and recalculate the original source code positions corresponding to them.

4.3. HOL-Boogie

HOL-Boogie [29, 31] is a bridge between VCC and Isabelle and consists therefore of
two components. One component, a module of Boogie, writes verification conditions
generated by Boogie into a file. The other component, a module of Isabelle, loads the
verification conditions from this file, translates them from MSFOL to HOL and sets up
an environment to let a user debug and prove them. Figure 4.3 gives an overview of
this architecture. HOL-Boogie is a complete rewrite of an earlier prototype by Burkhart
Wolff, from which we adopted some ideas, especially the described architecture. In
contrast to that prototype, HOL-Boogie provides specific debugging tools and proof
methods (Section 4.3.2) for Boogie-generated verification conditions.
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Figure 4.3. Overview of the integration of VCC with HOL-Boogie. The file
ending .b2i is used for exchange files between Boogie and Isabelle.

There are two main incentives for a tool like HOL-Boogie. First, failing verification
attempts can be debugged interactively by inspecting the background axiomatization
as well as the exact parts of proof obligations that fail. This is in contrast to the terse er-
ror messages provided by VCC. Second, selected verification conditions can be proved
in Isabelle/HOL using especially our integration of SMT solvers (Chapter 2) with proof
reconstruction for Z3 (Chapter 3). That is, combining an automatic program verifier
such as VCC with an interactive theorem prover such as Isabelle/HOL that has a rich
specification language and a large number of proof tools can make infeasible verifica-
tions feasible. In addition, with our proof reconstruction (Section 3.3), soundness of the
backend prover Z3 is not an issue.

Another application of HOL-Boogie is to formalize and prove correct the intricate
background axiomatization of VCC consisting of about 450 axioms [29, 31]. As a con-
sequence, verification conditions can be proved in Isabelle against this formalization
instead of against VCC’s axioms, thereby eliminating further soundness concerns of
the VCC approach.

We continue by demonstrating how HOL-Boogie can be applied to debug anno-
tations and to find proofs where VCC fails (Section 4.3.1). Thereafter, we explain the
integration of HOL-Boogie with the VCC toolchain and Isabelle/HOL (Section 4.3.2).
At the end, we indicate how verification performance can be improved substantially by
changing the heap model underlying proof obligations from VCC (Section 4.3.3).
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1 unsigned maximum(unsigned arr[], unsigned len)

2 _(requires \thread_local_array(arr, len))

3 _(requires len > 0)

4 _(ensures \result < len)

5 _(ensures \forall unsigned i;

6 i < len ==> arr[i] <= arr[\result])

7 {

8 unsigned max = 0, i;

9 for (i=0; i < len; i++)

10 _(invariant max < len)

11 _(invariant \forall unsigned j;

12 j < i ==> arr[i] <= arr[max])

13 {

14 if (arr[i] > arr[max]) max = i;

15 }

16 return max;

17 }

10

11

16
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9

10
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Figure 4.4. An annotated maximum function and the corresponding control-
flow graph where assumptions are collapsed into subsequent assertions.
The labels of the graph refer to line numbers in the source code.

4.3.1. Debugging and Proving Verification Conditions

While developing algorithms and their specifications such as the example given in Fig-
ure 4.4, it commonly happens that even if the program behaves as intended, its an-
notations are incomplete or inconsistent or they specify unintended behavior. Indeed,
verifying the maximum function fails, and VCC reports the following error messages:

maximum.c(11,31): Loop body invariant ’\forall unsigned j; j < i ==>

arr[i] <= arr[max]’ did not verify.

maximum.c(16,3): Postcondition ’\forall unsigned i; i < len ==>

arr[i] <= arr[\result]’ did not verify.

maximum.c(5,27): (related information) Location of postcondition.

Without further information, it is hard to understand the reason for this error. One ap-
proach that relies on VCC only is guessing: The user gradually adds assertions with
properties that are expected to hold. This way, the reason for the error is narrowed
down, but finding the right assertions can be intricate. Essentially, this or similar ap-
proaches that involve fixing or tuning the specification such that they can finally be
proved automatically resemble interactive proofs, but an interactive theorem prover is
much more convenient.

With HOL-Boogie, the user can navigate to the cause for this error and inspect it. To
this end, we exploit the labels (Section 4.2.4), which relate assertions to specific program
points, and the ability to observe all assumptions of an assertion.
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For navigating to errors HOL-Boogie provides two approaches. With the linear
approach, HOL-Boogie sequentially applies a user-defined Isabelle method, typically
our SMT integration, to each assertion in the order in which the assertions occur in the
annotated C file. The first assertion that the method fails to prove is reported to the
user. In our example and using Z3, we get the following message from HOL-Boogie:

failed on "L_11_31b"

That is, Z3 failed to prove the loop invariant on line 11. This coincides with one of the
errors reported by VCC. Clearly, if a verification condition contains many assertions
and the failing ones are among the last in the original file, the linear approach is rather
inefficient. More efficient and also more comparable to the approach taken by VCC is
the bisecting approach: HOL-Boogie first tries to discharge the entire verification con-
dition. If that fails, HOL-Boogie splits the verification into smaller pieces and tries to
prove the parts in parallel, followed by further splitting of failed parts until reaching
individual assertions. With this approach we obtain the following result for our ex-
ample within 20 seconds and after altogether 19 invocations of Z3 through our SMT
integration:

Unsolved assertions of Boogie verification condition "maximum":

L_11_31b

L_11_31c

L_5_27b

This list contains all assertions that also VCC considers unprovable, i.e., the loop in-
variant in line 11 and the postcondition in line 5. Note that the if statement in the loop
body (Figure 4.4) gives rise to two possible successor states. Checking the loop invari-
ant in line 11 for each of them is reflected by two assertions in the verification condition.
VCC collapses the two induced error messages to one.

For inspecting the cause of failed proof attempts, HOL-Boogie provides means to
extract assertions, referenced by label names such as L_11_31b above, from a verification
condition. We focus here on the first failing assertion, which corresponds to checking
the loop invariant of line 11 (Figure 4.4) after arbitrary iterations of the loop. In this case,
Isabelle’s simplifier leads us to uncover the flaw in our specification since it rewrites the
assertion into the following proposition:

select(memory(s), idx(arr, i + 1)) = select(memory(s), idx(arr, i))

This corresponds to arr[i+1] == arr[i] in C, and that equation is unexpected. It com-
pares the array element visited last (index i) with the next and still unvisited array
element (index i+1). In contrast, the loop invariant in line 11 (Figure 4.4) is supposed
to compare only already visited elements. This extra information obtained from HOL-
Boogie leads us to re-think the invariant. Indeed, the invariant uses the wrong index
for the array, i.e., i instead of j. Unveiling annotation bugs such as in this case is one
of the strengths of HOL-Boogie. In general, HOL-Boogie enables users to draw insuf-
ficient preconditions or invariants more systematically than by blindly testing in VCC.
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That is, an interactive proof environment can be extremely helpful when debugging
specifications. After HOL-Boogie has been developed, VCC was extended to produce
counterexamples for failed proof attempts (Section 4.7) and hence also provides some
help in debugging annotations.

After we have fixed the loop invariant by replacing i with j in line 12 (Figure 4.4),
VCC succeeds in proving correct the maximum function. Alternatively, we can also prove
correct the fixed version in HOL-Boogie to obtain the confidence of an LCF-style proof.
Proofs of verification conditions in HOL-Boogie can either show an entire verification
condition or discharge parts thereof in analogy to the bisecting approach for debug-
ging verification conditions. Users of HOL-Boogie can do these proofs by applying
any of the available Isabelle methods including our integration of SMT solvers or by
writing structured proofs. It is worth noting that although Boogie-generated veri-
fication conditions are remarkably large, they can still be tackled with interactive theo-
rem provers [31].

4.3.2. Integration with VCC and Isabelle/HOL

Boogie is able to pass verification conditions to different provers such as Z3, and the
set of provers is extensible by a plugin mechanism. We use this mechanism for the first
component of HOL-Boogie. More precisely, we implemented a pseudo-prover that,
instead of proving verification conditions, writes all of them together with the entire
background axiomatization unmodified into a file. Note that, since our pseudo-prover
interfaces with Boogie, HOL-Boogie is not specific to C verification, but can in princi-
ple be used with any other program verifier that builds on Boogie, e.g., Dafny [105],
Chalice [108] or Spec# [13].

HOL-Boogie’s second component, which is a module of Isabelle/HOL, provides
a special environment that comprises commands to load the files generated by our
pseudo-prover as well as to inspect and prove the contained verification conditions.
Central to this setup is a verification condition store that keeps track of which asser-
tions have already been discharged. A verification condition is proved if every of its
assertions is discharged. HOL-Boogie checks upon closing a verification environment
that this is the case and informs the user about unfinished proof attempts. Hence, a
HOL-Boogie environment can only be closed when all loaded verification conditions
have been discharged. This is to ensure that everything that has been exported from
Boogie is proved in Isabelle.

Note that users of HOL-Boogie prove only those verification conditions that have
been imported to Isabelle. Consequently, users need to trust, in addition to VCC and
Boogie, both our Boogie plugin to write Boogie-generated verification conditions to a
file as well as the loader of such files in Isabelle, because these two components control
the set of verification conditions that are available for proof in Isabelle.

Verification conditions are stored internally in an optimized form. Recall that un-
structured, acyclic, passive Boogie procedures can be considered as directed acyclic
control-flow graphs (Section 4.2.3). For example, Figure 4.4 gives a condensed ver-
sion of the control-flow graph obtained from the maximum function. Figure 4.5 shows
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assume Q1 ;

assume P1 ;

assume Q2 ;

assume P2 ;

Q1 −→ P1 ∧ (P1 −→
Q2 −→ P2 ∧ (P2 −→
True))

(a) Boogie program and corresponding
verification condition

Q1

P1 Q2

P2 True

P2

P1

(b) Control-flow graph

Figure 4.5. A Boogie program with corresponding verification condition
and control-flow graph. Labels at assertions are omitted.

the verification condition and the complete control-flow graph for a simple Boogie pro-
gram. Due to the way Boogie generates verification conditions, each control-flow graph
(e.g., Figure 4.5b) is isomorphic to the corresponding procedure’s verification condition
(e.g., Figure 4.5a). Note that hence each graph has a designated root node correspond-
ing to the first statement of the procedure. Internally, HOL-Boogie’s Isabelle compo-
nent stores verification conditions as control-flow graphs from which different kinds
of proof obligations can easily be extracted. What we have called assertion so far is a
proof obligation that is obtained from a path of the control-flow graph which starts at
the root node and ends at a node that corresponds to a Boogie assert statement, and
from which intermediate assert nodes have been removed. Removing nodes from a
path is mirrored in the proof obligation by replacing corresponding formulas with True.
For instance, here is the assertion P1 for the Boogie program of Figure 4.5

Q1 −→ P1 ∧ (P1 −→ Q2 −→ True∧ (P2 −→ True)) (4.1)

which is equivalent to Q1 −→ P1, and this is the assertion P2 of the same program

Q1 −→ True∧ (P1 −→ Q2 −→ P2 ∧ (P2 −→ True)) (4.2)

which is equivalent to Q1 −→ P1 −→ Q2 −→ P2. We are free to keep some of the
removed assert nodes in the path and hence obtain a proof obligation composed of
several assertions. Keeping all assert nodes in a path that starts at the root node and
ends at a node without successors results in a proof obligation that we call assertion path.
For example, the verification condition in Figure 4.5a is an assertion path since there are
no branches in the corresponding Boogie program. In Figure 4.4, the path starting at
the node labeled 10 and ending at the node labeled 5 is an assertion path. Each node
labeled 10 corresponds to the invariant in line 10, and the node labeled 5 corresponds
to the postcondition in line 5.

Based on this setup, we can now detail the bisecting approach to find failing asser-
tions (Section 4.3.1). The user selects an Isabelle proof method, typically our integration
of SMT solvers, that is applied to gradually shrinking parts of a verification condition
with a short timeout. First, the entire verification condition is given to the selected proof



4.3. HOL-Boogie 73

method. If it fails, HOL-Boogie splits the verification condition into its assertion paths
and tries to prove them with the user-selected proof method.1 Each failing path is split
into two proof obligations by omitting the first or second half of the assert nodes. For
instance, (4.1) and (4.2) are the two “halves” of an assertion path. Both parts of the as-
sertion path are passed to the selected proof method. Splitting of proof obligations into
“halves” is continued until they consist of only one assert node. This is, for example,
already the case for both (4.1) and (4.2). Recall that each assertion has a label associated
to it (Section 4.2.4). HOL-Boogie emits the labels of all failing assertions.

4.3.3. A Simpler Heap Model

Instead of proving the verification conditions generated by VCC, it is sometimes easier
to prove variations of them in Isabelle/HOL as long as we can relate the proved propo-
sitions to the original verification conditions. We extended our verification condition
store (Section 4.3.2) with a user-configurable transformation to modify HOL proposi-
tions and a set of rewrite rules to undo this transformation on HOL theorems. When-
ever assertions are extracted from the store, the transformation is applied, and before a
theorem resulting from a proved assertion is merged with previously proved assertions,
it is rewritten by means of the rewrite rules. In the end, we compare the original veri-
fication condition with the final theorem. Thereby, we guarantee that what we proved
in Isabelle/HOL is the same as what we exported from VCC.

We applied this technique to modify the heap model imposed by VCC’s back-
ground axiomatization. The heap is a mapping from pointers to integer values. Pointers
can either be atomic or composed of a pointer and an offset such as an array index or the
field of a structure. Retrieving the base pointer or offset from a composed pointer de-
pends on the program state in VCC since this retrieval is only defined for valid pointers,
i.e., pointers to allocated memory, and VCC maintains a ghost mapping of valid point-
ers in the state. In a context where the set of valid pointers does not change, where only
composed pointers occur and where all possible offsets are known statically, e.g., if only
fields to structures are used as offsets, a much lighter heap model can be applied. This
light heap model provides small heaps, or heaplets, for every field of a structure and
uses the base pointer to index the stored integer values.

For example, assume that there are only two fields f and g and one heap update
p->f = v. Translating this update to Boogie and exporting it to HOL-Boogie results in
the following representation with explicit program states s and s′:

heap(s′) = store(heap(s), dot(p, f), v)

Under the assumption of heap extensionality, we are able to prove in Isabelle that this

1 To reduce the runtime on multi-core machines, the assertion paths are given to several instances of the
selected proof method in parallel.
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is equivalent to

∀q. F(s′, q) = (if q = p then v else F(s, q)) (4.3)
∀q. G(s′, q) = G(s, q) (4.4)
∀q. q 6= dot(p, f) −→ select(heap(s′), q) = select(heap(s), q) (4.5)

where F and G are heaplets with the following Isabelle definitions:

F(s, p) = select(heap(s), dot(p, f)) G(s, p) = select(heap(s), dot(p, g))

That is, updating the global heap affects only the heaplet F (4.3) whereas other heaplets
such as G stay unchanged. A subsequent heap lookup r->f for some pointer r needs to
step only through the history of updates on F that are completely separated from those
of, say, G. Compare this with a global heap where a heap lookup has to go through
potentially all heap updates. Confining heap updates to smaller entities has a dramatic
effect on overall verification time.

Our exposition of the simplified heap, i.e., essentially the properties (4.3), (4.4) and
(4.5), is itself slightly simplified. The setup of VCC contains further technicalities re-
lated to the VCC memory model that we omitted here. Moreover, we note that property
(4.5) is only required for completeness but not for reasoning about heap updates.

In HOL-Boogie, we were able to apply this technique to a larger case study (Sec-
tion 4.4). That is, we were able to provide suitable transformations and according
rewrite rules to manipulate verification conditions w.r.t. to heap accesses. From this
example, we found that the resulting proof obligations could be proved about one or-
der of magnitude faster than with VCC’s native heap model. This is especially relevant
if proving a single obligation takes more than a minute and frequent changes to related
definitions require to re-prove this obligation regularly.

Following up on this experience and jointly with Michał Moskal [30], we showed
that among different heap models the heaplets model described here also performs
best for fully automatic program verification with VCC and Z3 as backend prover.
Moreover, we found that the heap model currently underlying VCC scales particu-
larly poorly in the number of heap updates, and much better alternatives exist. One
of the more efficient alternatives models the heap as a (curried) mapping from fields
and addresses to values, i.e., as a function of type field → address → integer. Note that
such a heap fits to VCC’s methodology as VCC already requires pointers, i.e., unique
identifiers to objects, to be formed by an address and a field (Section 4.2.2). Note fur-
ther that when all relevant fields are statically known, this model is close to the above
heaplets model and thus shows similar, yet slightly worse performance. The sketched
heap model will be the default one in future versions of VCC as the result of our work.

4.4. Case Study: Binary Search Trees

A binary search tree [50, chapter 13] is a data structure based on a binary tree to store
a set of keys and associated elements in an ordered way by maintaining the following
binary-search-tree property:
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Every node of the binary search tree carries a key, and for every node x
of a binary search tree, if y is a node in the left subtree of x, then the key
associated with y is less than that of x, and if y is a node in the right subtree
of x, then the key of y is greater than that of x.

A binary search tree supports operations such as looking up minimal, maximal and
arbitrary elements as well as inserting and removing elements. The worst-case time
complexity of these operations depends on the height of the binary tree, and hence
keeping the tree “balanced” yields the optimal worst-case behavior of O(log n) for all of
them. Whereas looking up elements only traverses the binary tree without modifying
it, naively inserting or removing elements without rebalancing the tree may impair
its structure in such a way that the worst-case behavior of all search tree operations
degenerates to O(n).

Optimal performance of binary-search-tree operations can be guaranteed when ex-
tending the binary tree to a red-black tree [50, chapter 14] and maintaining the red-black
property. Lookup functions for a red-black tree are the same as those for a binary search
tree. Only the implementation of functions that modify the tree, i.e., insertion and re-
moval of elements, require changes. Compared to their counterparts for general binary
search trees those modification functions have to be extended by a follow-up step to
rebalance the tree and hence recover the red-black property.

Implementations of red-black trees are ubiquitous. Especially their occurrences in
security-sensitive applications and operating system kernels are worthwhile candidates
for formal verification. There are, for instance, implementations of red-black trees in the
kernels of Linux and OpenBSD. Also the Microsoft Hyper-V hypervisor [103, 122] uses
red-black trees internally.

As a first step towards full functional verification of a red-black tree implementa-
tion, we focus here on binary search trees and attempt to verify two typical functions:
looking up existing elements (lookup) and inserting new elements (insert). We con-
sider C code (Figure 4.6) that is similar to the one used within Hyper-V and incidentally
also to that in [50, chapter 13]. Our main interest lies in demonstrating and evaluating
HOL-Boogie, and to this end we describe two attempts in verifying the binary search
tree functions. Our first attempt separates low-level reasoning that is handled by VCC
from proving intricate properties in Isabelle (Section 4.4.2). The way in which we for-
malized these properties resulted unfortunately in overly complicated Isabelle proofs.
We hence report on a second attempt (Section 4.4.3) where we raise the level of abstrac-
tion and, to our surprise, are able to establish all properties in VCC. Both verification
attempts have an abstract specification of binary search trees in common (Section 4.4.1)
that we describe first.

4.4.1. Abstract Specification of Binary Search Trees

A binary search tree is an implementation for a partial mapping N from keys, in our
case integers, to certain elements. For simplicity, we take here the addresses of the tree’s
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struct T_Node {

int key;

P_Node left, right;

};

struct T_Tree {

Node nil;

P_Node root;

};

P_Node lookup(P_Tree t, int k) {

P_Node p = t->root;

while (p != &t->nil) {

switch (cmp(k, p->key)) {

case Equal: return p;

case Less:

p = p->left;

break;

case Greater:

p = p->right;

break;

default: return Null;

}

}

return Null;

}

int insert(P_Tree t, int k, P_Node n) {

Keymatch match = Equal;

P_Node x = tree->root;

P_Node y = &tree->nil;

while (x != &t->nil) {

y = x;

match = cmp(k, x->key);

switch (match) {

case Less:

x = x->left;

break;

case Greater:

x = x->right;

break;

case Equal:

default:

return 0;

}

}

n->key = key;

if (y == &t->nil) t->root = n;

else if (match == Less) y->left = n;

else y->right = node;

return 1;

}

Figure 4.6. Extract from a C implementation of binary search trees with the
functions lookup and insert

nodes to be these elements.2 Based on N, we formulate the following postconditions.
Looking up a node from the tree with a key k should give the same result as N applied
to k. Inserting a node n for a key k should do nothing if N maps k already to some node
and otherwise should perform an update such that a subsequent lookup with k results
in n and any other lookup is as before.

From VCC’s ownership model we get for free the set of all nodes stored in the
tree. Since every node carries its key, this set can indirectly act as the domain of the
mapping N. It is straightforward to specify that the root is owned by the tree and
that every child of an owned node is owned as well. VCC needs this information for
establishing pointer validity when verifying our functions that traverse the tree. We
guide VCC by providing loop invariants expressing that at any time all pointers under
consideration address only nodes of the tree.

The mapping N and the set of owned nodes together already suffice to prove that

2 In fact, this is a common idiom in C, where operations of a data structure never allocate memory
themselves. Instead, a user of the data structure provides pointers to the required chunks of memory.
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looking up the node for a key always returns a node owned by the tree if the key is in
the domain of N. We are also able to verify that insert either increases the set of owned
nodes by the added node or keeps it unmodified. Yet, we are interested in the much
stronger postconditions given above for which we need a specification of the binary-
search-tree property. It requires a formalization of transitive reachability to express that
one node is in the subtree of another node. This is necessary to state the sortedness of
subtrees, i.e., that the left subtree of a node contains only elements with smaller key
and that the right subtree contains only elements with greater key. Finding a suitable
specification for these two properties forms the heart of the following two sections.

4.4.2. First Attempt: Combining Automatic and Interactive Proofs

It seems reasonable to let VCC handle low-level memory-related properties and the
simple abstraction of binary search trees (Section 4.4.1) and to verify functional correct-
ness in Isabelle using HOL-Boogie. With recursive functions at hand, reachability and
sortedness are simple to define in Isabelle. Likewise, inductive proofs for properties
about these functions are straightforward. One would guess that full functional verifi-
cation of binary search trees can be accomplished easily, but the devil is in the details.

The main obstacle is that the Isabelle definitions and related theorems have to be
linked to the binary-search-tree implementation and its VCC specification. Our solution
is as follows. On the VCC side, we define a ghost predicate sub without any contract
that is meant to express the reachability between two nodes. Using this predicate, we
add special invariants to the binary-search-tree structure to maintain that all nodes are
transitively reachable from the tree’s root if and only if they are owned by the tree and
that the tree has the sortedness property. These invariants are ignored when verifying
the implementation with Z3 but are passed to HOL-Boogie.3 Similarly, we add special
assertions that imply the desired postconditions or intermediate steps. These assertions
are turned into assumptions when verifying with Z3 but are considered as proof obli-
gations for HOL-Boogie. There, we define two binary relations left and right that relate
each node with its left and right child. The reflexive transitive closure of their union is
taken as the axiomatic definition for the sub relation in Isabelle. Based on this setup, we
are able to derive facts that are required for establishing the various proof obligations
of the binary-search-tree specification.

The unfinished proof development in Isabelle spans about 1000 lines of definitions
and proof text. We succeeded in verifying the lookup function unlike for insert. There,
we failed to show that the relevant tree invariants still hold at the end of the function.
We see the following three reasons. First, our definitions in Isabelle are ultimately based
on the VCC memory model that thus clutters many of our proofs. Despite several ab-
breviations, nearly all propositions that we stated explicitly are overly complex due to
these roots in VCC. In retrospect, finding a suitably abstract representation might have
reduced this complexity. Second, proof obligations tend to be huge. Several hundred
assumptions to a single assertion are the regular case. Most proof methods of Isabelle

3 We use a C preprocessor switch to make this possible.
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are of little help. Only sledgehammer assisted in finding relevant axioms from the VCC
background axiomatization. In the end, most of our proofs use the SMT integration to
invoke Z3. Third, since we annotated the code gradually, our labels changed with every
iteration. Since fixing them is laborious, we implemented crude code to spare us from
this task. More importantly, changes to annotations also influenced our already exist-
ing and partly structured proofs. We conclude that HOL-Boogie is not apt to proving
complex verification conditions that have a low level of abstraction.

4.4.3. Second Attempt: Purely Automatic Proofs

The previous attempt failed partly due to having formalized reachability and sorted-
ness in Isabelle. To overcome this deficiency, we tried to specify these properties di-
rectly in VCC and, to our surprise, found annotations that are sufficient to verify the
binary-search-tree implementation entirely in VCC (Appendix B).

Our basic ideas are as follows. To model reflexive, transitive reachability, we added
to the binary-search-tree structure a ghost field that maps each key stored in the tree to
the set of keys in its subtree. Observe that each key is stored at most once in the tree,
and that there is a bijection between nodes and keys (Section 4.4.1). We decided to
use keys instead of nodes because this prevents VCC from adding assertions to check
for validity of pointers. Thus, proof obligations get lighter and more abstract. The
specification for the reachability ghost field, given as invariants to the tree structure,
essentially expresses that every node is in its own subtree and that every node is reach-
able from the tree’s root node. The sortedness property is specified in a way that fits
the tree traversals in lookup and insert. More precisely, for every node n2 that is in the
subtree of a node n1 and whose key is less than that of n1, it is implied that n2 must be
in the subtree of the left child of n1. The other case is analog. With this specification,
automatically verifying lookup with VCC requires only one further loop invariant in
addition to the annotations induced by our abstract specification (Section 4.4.1). In con-
trast, more annotations are necessary for insert. We were able to verify this function
with VCC under the assumption that reachability and sortedness can be re-established
after inserting a node.

We used HOL-Boogie only as debugger, in analogy to what we demonstrated ear-
lier (Section 4.3.1), whenever particular VCC proof attempts failed. In contrast to our
first attempt (Section 4.4.2) on which we spent more than a week and where we de-
veloped a supporting Isabelle theory of abbreviations and lemmas, it took us only a
day with this second attempt to reach a similar state w.r.t. the verified properties (Ap-
pendix B). Hence, choosing the right level of abstraction can make a huge difference.

4.5. Abstract Cooperation

VCC is good at discharging low-level properties w.r.t. memory, concurrency as well as
pointer and linear arithmetic and also able to deal with complex specifications (Sec-
tion 4.4.3). Yet, despite the specification mechanisms provided by VCC and despite the
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ability of its backend prover Z3 to prove complicated problems, there are properties of
C programs which are more conveniently formalized and especially more conveniently
proved in an interactive, higher-order theorem prover such as Isabelle. For instance,
properties from the domains of graph theory fall in this category as do properties for
which Isabelle already provides a well-developed theory with many theorems.

When devising a new combination approach between VCC and Isabelle, it seems
appropriate to exchange only suitably abstracted representations between VCC and
Isabelle and confine reasoning related to VCC’s methodology to VCC considering the
lessons learned from our binary-search-tree verification (Section 4.4). Our approach,
jointly developed with Eyad Alkassar, Kurt Mehlhorn and Christine Rizkallah [2], is as
follows. Assume that some C code fulfills a predicate P(x) which depends on the pro-
gram variable x, and we want to establish that also some predicate Q(x) holds. Assume
further that the concrete implication

P(x) −→ Q(x) (4.6)

that depends on the program state is hard to prove in VCC, but proving a suitably ab-
stracted version of it in Isabelle/HOL is possible. We thus define in VCC an abstraction
function abs that maps from the type of the program variable x to a logical type such as
the mathematical integers, a map or a tuple. We use x to denote elements of the logical
type. Furthermore, we define in VCC abstract predicates P(x) and Q(x) that are, since
they are defined over logical values x only, independent from the VCC memory model.
For these predicates, we prove in VCC the correspondence implications

P(x) −→ P(abs(x)) and Q(abs(x)) −→ Q(x) (4.7)

After additionally proving the abstract implication

P(x) −→ Q(x) (4.8)

for arbitrary abstract values x in Isabelle/HOL, we finally conclude (4.6). The following
commuting diagram summarizes our approach:

Isabelle/HOL

VCC
P(x) Q(x)

P(abs(x)) Q(abs(x))

P(x) Q(x)

(4.6)

(4.7)

(4.8)

(4.7)

(4.8)
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VCC

C frontend Boogie Z3.c

program

.bpl

background
axiomatization

.bpl

translated
program

.smt

verification
conditions

Isabelle/HOL
.thy

abstract
specification

.thy

additional
facts
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abstract
implication

Figure 4.7. Overview of the combination between VCC and Isabelle/HOL

Solid arrows indicate implications that we prove either in VCC or in Isabelle. Since we
prove implication (4.8) in Isabelle, it is sound to declare it as an axiom in VCC, denoted
by a dashed arrow, assuming that the translation from VCC definitions of P(x) and
Q(x) to corresponding ones in Isabelle/HOL, denoted by double lines, is equivalence-
preserving. In fact, this translation is a straightforward syntactic rewriting of VCC
notions into Isabelle ones. That is, the VCC types bool and \integer are mapped to the
HOL types bool and int, VCC map types are translated to HOL function types, and VCC
tuples are represented as Isabelle records [130]. VCC expressions, i.e., MSFOL formu-
las and terms, involving logical connectives, quantifiers, integer arithmetic operations
and specification functions are mapped to corresponding HOL constructs. Definitions
of VCC ghost functions are translated to Isabelle functions [96]. We extended the C
frontend of VCC (Figure 4.7) to generate an Isabelle theory, the abstract specification,
containing all logical declarations of an annotated C file which carry a special isabelle
attribute. In Isabelle, we then establish the abstract implication by referring to those
exported declarations and additional facts from Isabelle.

The tool support is limited to translating VCC specifications into Isabelle functions.
This is the only component that needs to be trusted with this approach besides VCC,
that is used for proving low-level program properties, and Isabelle, that is employed for
establishing the abstract implication. Finding suitable abstract predicates and abstrac-
tion functions are in the responsibility of the user, and so is formulating and proving
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1 int mult(int a, int b)

2 _(requires a >= 0 && b >= 0 && a * b < INT_MAX)

3 _(returns a * b)

4 {

5 int ret = 0;

6 int i;

7 for (i=0; i < b; i++)

8 _(invariant i >= 0 && i <= b)

9 _(invariant ret == a * i)

10 {

11 ret += a;

12 }

13 return ret;

14 }

Figure 4.8. Annotated C implementation of a multiplication function

the correspondence lemmas. It is convenient to prove these lemmas in VCC since they
relate VCC’s methodology to an abstract specification, but other approaches such as
HOL-Boogie might be applied as well.

To illustrate the cooperation between VCC and Isabelle, we consider an implemen-
tation of a multiplication function (Figure 4.8) from the VCC discussion panel [112]. For
this example, it takes VCC more than one minute to find out that the addition in line 11
might overflow. More precisely, VCC fails in proving the arithmetic implication

a · b < c ∧ a ≥ 0 ∧ i < b −→ a · i + a < c (4.9)

for arbitrary (mathematical) integers a, b, c and i. It is possible to prove this proposition
as a lemma in VCC using a special option that makes VCC introduce uninterpreted
proxy functions for addition and multiplication and that hence exploits the combina-
tion of decision procedures in Z3. We refrain from going into details here in favor of
demonstrating our approach that proceeds with the following steps:

• Define an abstraction function for machine integers:
_(ghost _(pure) \integer abs(int i) _(returns i))

• Define abstract predicates for the assumption and conclusion of the failing impli-
cation (4.9) and tag them as part of the abstract specification:
_(ghost vcc_attr("isabelle", "") _(pure)

bool abs_P(\integer x, \integer y, \integer z)
_(returns x * y < INT_MAX && x >= 0 && z < y))

_(ghost vcc_attr("isabelle", "") _(pure)

bool abs_Q(\integer x, \integer z)
_(returns x * z + x < INT_MAX))



82 Chapter 4. Verifying Imperative Programs

• Define the abstract implication, tag it to be exported as part of the abstract speci-
fication and declare it as an axiom:
_(ghost vcc_attr("isabelle", "") _(pure)

bool abstr_impl(\integer x, \integer y, \integer z)
_(returns abs_P(x, y, z) ==> abs_Q(x, z)))

_(axiom \forall \integer x, y, z; abstr_impl(x, y, z))

• Add the following assertion between line 11 and line 12 of the multiplication func-
tion to make VCC consider the abstract implication:
_(assert abstr_impl(abs(a), abs(b), abs(i)))

VCC succeeds in verifying the modified multiplication function within less than a sec-
ond. It remains to prove the correspondence lemmas and the abstract implication.

Although not strictly necessary, it is convenient to formulate the correspondence
lemmas in VCC’s specification language and to let VCC prove them automatically. We
write each lemma as a ghost function. The lemma’s assumptions are encoded as pre-
conditions, and the conclusion is expressed by a postcondition:
_(ghost _(pure) void lemma_to_abs_P(int a, int b, int i)
_(requires a * b < INT_MAX && a >= 0 && i < b)
_(ensures abs_P(abs(a), abs(b), abs(i)))

{ })

_(ghost _(pure) void lemma_from_abs_Q(int a, int i)
_(requires abs_Q(abs(a), abs(i)))
_(ensures a * i + a < INT_MAX)

{ })

VCC verifies these lemmas within a second. Alternatively but less conveniently, we
could have proved them using HOL-Boogie (Section 4.3), for instance.

Finally, we export the abstract specification to Isabelle, i.e., we let VCC translate
all ghost functions with an isabelle attribute into Isabelle functions. The proof of the
abstract implication in Isabelle is straightforward, and we only sketch the central part
of the proof here. From z < y, which is equivalent to z + 1 ≤ y, and x ≥ 0 we can
deduce x · (z+ 1) ≤ x · y by monotonicity of multiplication, and from this together with
x · y < c we conclude x · z + x < c by distributivity and transitivity.

4.6. Case Study: Maximum Cardinality Matching in Graphs

Despite recent progress, e.g., as demonstrated in the seL4 project [95], formal verifi-
cation of highly complex algorithms remains challenging. Instead of verifying such
algorithms, it is much simpler to verify that checking each of the algorithms’ results is
correct. For example, formally verifying an SMT solver such as veriT is currently out of
reach, but formally verifying a checker for proof certificates produced by veriT is realis-
tic and has been done already [4]. Indeed, it is known that several complex algorithms
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are able to produce, along with the desired result, a certificate that allows for easy and
efficient checking of the result’s correctness [25,114,150]. Since a program that performs
this checking, a checker, is much simpler than the complex algorithm, a checker is much
better suited for current formal verification technology. Yet, the obtained property w.r.t.
the complex algorithm is also much weaker: We only obtain correctness of individual
results rather than correctness of the entire algorithm.

Graph algorithms such as those in LEDA [117], the library of efficient data struc-
tures and algorithms, belong into the class of complex algorithms that can produce
certificates. Checkers for these algorithms are reasonable simple and hence meet our
above criteria. We consider here one of the more challenging algorithms, maximum car-
dinality matching (MCM) in graphs [117, section 7.7], and describe the formal verification
of the corresponding checker which is joint work with Eyad Alkassar, Kurt Mehlhorn
and Christine Rizkallah [2].

A matching M of a graph G is a subset of the edges of G such that no two edges
are incident to the same node. The cardinality |M| of a matching M is the number of
edges of M. A matching has maximum cardinality if its cardinality is at least as large as
that of any other matching. An odd-set cover of a graph G is a labeling of the nodes of G
such that every edge of G is either incident to a node labeled 1 or connects two nodes
labeled with the same number greater than 1. For a given graph G, the MCM algorithm
computes a maximum cardinality matching M and, as the certificate, an odd-set cover
osc. The following theorem provides the foundation for the MCM checker.

Theorem 4.1 (Edmonds [65]). Let M be a matching in a graph G with nodes set N and let osc
be an odd-set cover for G. For any i ≥ 0, let ni = |{n ∈ N | osc(n) = i}| be the number of
nodes labeled i. If the equality

|M| = n1 + ∑
i≥2

⌊ni

2

⌋
(4.10)

holds, then M is a maximum cardinality matching for G.

Hence, it is sufficient for the MCM checker to test that the cardinality of the match-
ing M fulfills (4.10). Then, by the above theorem, which has been proved by Christine
Rizkallah [2, 144] in Isabelle/HOL, the desired property follows.

We continue in detailing the C data structures of the MCM checker (Section 4.6.1)
and the specification for the checker (Section 4.6.2), but omit the C implementation
which is straightforward. Thereafter, we show how to relate the proof of Theorem 4.1 to
the checker specification based on the cooperation approach described in the previous
section (Section 4.6.3). Everything has been formally verified in VCC except for the
linking proofs that link Theorem 4.1 with the abstract VCC specification and that we
did in Isabelle/HOL.

Instead of showing code or annotations of the checker or proof scripts of Isabelle,
we present this case study on a high level. More details can be found in [2].
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4.6.1. Data Structures of the MCM Checker

The checker is based on the following data structures. Assume that a graph G consists of
nG nodes and mG edges. Hence, nodes and edges can be enumerated. We use numbers
from 0 to nG − 1 to identify nodes. Edges are C structures with two unsigned integer
components, one for each connected node. A graph is a C structure with an array of
mG edge structures, indexed from 0 to mG − 1, as well as two unsigned integer fields
carrying the values of nG and mG. A matching M is a graph as well and thus represented
by the same graph structure. Since the number of edges of M is typically less than that
of G and thus the edge arrays of both graphs differ, the MCM algorithm computes,
together with M, a mapping f that is represented by an array of length mM and that
relates an edge index of M to one of G. Finally, an odd-set cover osc is an array of nG
unsigned integers, i.e., the labels assigned to the node identifiers of G.

4.6.2. Specification for the MCM Checker

We specify with a structure invariant that a graph has no self-loops, i.e., no edge con-
nects a node to the same node, and that edges connect only nodes of the graph, i.e.,
node numbers are in range. The exact values of labels that are greater than 2 are irrele-
vant for (4.10), but for practical purposes these values are always less than nG. We take
this restriction as an invariant on osc.

Given a graph G and the computed matching M, both of which are required to
be wrapped, as well as the certificate consisting of the odd-set cover osc and the edge
mapping f, the checker must return true if and only if all following properties Π hold:

• M is a subgraph of G w.r.t. f, i.e., for every edge index e that refers to an edge of M
the index f(e) refers to the same edge in G irrespective of the order in which the
connected nodes are mentioned in the edges.

• M is a matching, i.e., no two edges of M have one node in common.

• osc is an odd-set cover for G, i.e., label values are less than nG and for every edge
of G either one of its connected nodes is labeled 1 or both nodes are labeled with
the same label whose value is greater than 1.

• (4.10) holds, i.e., the number of edges in M coincides with a particular sum s of
node counts ni. Such a sum is best expressed by a recursive function, but so far
VCC does not support termination proofs. Instead, we define a finite sequence,
modeled by a map type, of partial sums si such that snG equals s. To this end,
we define s0 = 0 and s1 = 0 for trivial graphs and let s2 be equal to n1, i.e., the
number of all nodes labeled 1. For every i > 1, we define si+1 as the sum si +

⌊ ni
2

⌋
.

As part of the specification, we implemented ghost code to compute these sums.
The node counts ni are defined similarly by sequences of partial sums.

Verifying the MCM checker against this specification requires heavy annotations that
increase the size of the code roughly by a factor of 3. Most of the effort goes into find-
ing suitable loop invariants. There is one assumption left, though, that postulates the
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existence of enough unallocated memory. Alternatively, we could have changed the
postcondition of the checker such that it returns false also when it fails to allocate
enough memory.

When verifying code it is always pleasant to discover a bug in the implementation.
Indeed, we revealed that the MCM checker of LEDA neglects to test whether M is a
subgraph of G.

4.6.3. Abstracting the Checker Specification and Combining the Results

The above specification only verifies that the MCM checker tests (4.10) correctly, but
what we are eventually interested in is whether the computed matching M is indeed
the maximum cardinality matching. This requires to link the above VCC specification
with the Isabelle proof of Theorem 4.1, and we do this by instantiating the cooperation
approach (Section 4.5). The relationship is as follows:

x =̂ graph G, matching M, odd-set cover osc and edge mapping f
P(x) =̂ the properties Π hold
Q(x) =̂ M is a maximum cardinality matching, i.e., the number of edges

in M is greater or equal to that of any other matching M′ for G

It thus remains for us to provide abstract representations of the MCM data structures,
corresponding abstraction functions, abstract formulations for the properties Π as well
as for the conclusion that M has maximal cardinality, and suitable correspondence
proofs between abstract and concrete properties.

We represent abstract nodes by mathematical integers, abstract edges by pairs of
abstract nodes and graphs by triples consisting of the number of nodes and edges of the
graph as well as a map from mathematical integers, that abstract the edge identifiers, to
abstract edges. The abstract representation is intentionally close to the concrete MCM
data structures to simplify the definitions of the necessary abstraction functions and
the abstract predicates and to reduce the effort for the correspondence proofs. Indeed,
obtaining the abstract counterparts of concrete definitions is little more than syntactical
rewriting. The main difference between the concrete and the abstract level comes from
extending the range of indices from unsigned integers to mathematical integers. Simple
additional guards in the definitions of the abstract predicates suffice to resolve this
issue. The correspondence proofs are straightforward and require only a few hints to
guide VCC’s backend prover Z3.

In Isabelle/HOL, Theorem 4.1 is formalized on a higher level of abstraction than
our abstract specification in VCC. In particular, nodes are arbitrary natural numbers,
edges are modeled as sets of two distinct nodes, and graphs are sets of edges. Hence,
a matching is simply a subset of a graph. An odd-set cover is a mapping from nodes
to natural numbers, and edge mappings are unnecessary. These representations are
suitably abstract to conveniently prove Theorem 4.1.

Bridging the gap between the low-level specification exported from VCC and the
high-level formalization in Isabelle requires a number of mostly straightforward linking
proofs. Relating the partial sums from VCC to recursive definitions in Isabelle is more
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involved and requires two lengthy inductive arguments. Altogether, the linking proofs
span 400 lines of Isabelle proof text. This effort is spent well in comparison to the
alternative: Proving Theorem 4.1 based on the types and functions exported from VCC
would be less direct since their specific representation complicates reasoning. From
our experience with the binary-search-tree case study (Section 4.4.2), we estimate that
without abstraction, the proof of Theorem 4.1 would require much more work than the
combination of proofs that we describe above.

In contrast to HOL-Boogie and our binary-search-tree verification attempt (Sec-
tion 4.4), we found that the abstract cooperation approach between VCC and Isabelle
worked very well for this case study, and we expect that similar verification attempts
can successfully build on this methodology.

4.7. Related Work

Our choice of VCC as verification platform is motivated by the Verisoft XT project
(http://www.verisoftxt.de) where it was successfully used to verify tens of thousands
lines of low-level C code. Other automatic program verifiers exist. C code can, for in-
stance, be verified by Frama-C [124] and VeriFast [90]. For object-oriented languages,
due to simpler language models, more code verifiers have been constructed such as
Spec# [13], Chalice [108] and Dafny [105]. Especially Java has attracted research and
thus Java programs can, for example, be verified by tools such as Jahob [99, 167], Veri-
Fast [90] and ESC/Java [70]. SPARK [9], a subset of Ada specifically designed to imple-
ment high-integrity software, also includes verification tools. In addition, Jackson [89]
integrated SMT solvers as backend provers for SPARK.

As an alternative to using an automatic program verifier, imperative programs can
also be verified directly in interactive theorem provers such as Isabelle/HOL. This re-
quires a formalization of C [131] or a fragment thereof [102] and a suitable verification
condition generator [146]. Higher-order logic allows for clear, succinct specifications,
but the low degree of automation specific to such verification tasks requires consider-
ably more proof effort in contrast to our combinations with VCC [29, 134].

Combining automatic program verifiers with interactive theorem provers HOL-
Boogie shares ideas with Why [67, 68] that is, much like Boogie, an intermediate pro-
gram verifier with several frontends such as Frama-C [124] and Ada [80] and automated
as well as interactive backend provers including Z3 and Isabelle. Verification condi-
tions for which automated provers fail can be given to interactive theorem provers. In
contrast to HOL-Boogie, though, sophisticated debugging features based on positional
labels are not provided by the Isabelle integration of Why. Close in spirit to Why but
targeting Java are Jahob [99,167] and ESC/Java [91] both of which can pass failed proof
attempts to Isabelle. Similar to Why, they give the interactive theorem prover the same
information that is made available to all other automatic backend provers and thus
overwhelm the user of an interactive theorem prover with a mass of details. This is in

http://www.verisoftxt.de
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contrast to our abstract cooperation that only exchanges suitably abstracted definitions
between VCC and Isabelle.

The main incentive for HOL-Boogie, i.e., debugging failed proof attempts, is since
recently also tackled by the Boogie Verification Debugger [79] and to some extent also
by earlier debugging facilities provided with VCC. These tools try to reflect informa-
tion obtained from Z3 such as counterexamples and partial counterexample traces and
thus partly supersede HOL-Boogie. Many of the ideas behind HOL-Boogie found their
way into HOL-SPARK [19], an environment for proving verification conditions from
SPARK [9] programs.

Formal verification of binary search trees Moskal [107] has accomplished func-
tional verification of a red-black-tree implementation w.r.t. the binary-search-tree prop-
erty and entirely within VCC using carefully chosen triggers and related techniques to
guide Z3’s quantifier heuristics (Section 1.4.2). There are also Java implementations of
binary search trees that have been verified against full functional specifications, for ex-
ample using Jahob [167] or VeriFast [90]. Full functional verification of a red-black-tree
implementation is, to the best of our knowledge, still an open problem.

Verified checkers The idea of letting algorithms produce a certificate to simplify the
checking of results goes back to at least al-Khawarizmi who describes how to partially
check the correctness of multiplication. In contrast, verified checkers appeared only re-
cently. Probably one of the first formally verified checkers is for a sorting algorithm [38]
that has been formalized in the Boyer-Moore theorem prover. Bulwahn et al. [40] de-
scribe a SAT checker, i.e., a checker for certificates of unsatisfiability produced by a SAT
solver, verified in Isabelle/HOL. Similarly, Darbari et al. [53] as well as Armand et al. [5]
formalized a SAT checker in Coq, and Armand et al. [4] have subsequently extended
their work to SMT checkers. CeTA [154], a tool for certified termination analysis, is also
based on formally verified checkers, again formalized in Isabelle/HOL.
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5.1. Proof Automation

We integrated SMT solvers with the interactive theorem prover Isabelle. Our integra-
tion consists of a sound translation from Isabelle’s higher-order logic to many-sorted
first-order logic understood by SMT solvers (Section 2.2) and efficient proof reconstruc-
tion for proofs found by Z3 (Section 3.3). With the help of extensive evaluations (Sec-
tion 2.5 and Section 3.4), we showed that SMT solvers, in particular Z3, can automat-
ically and almost instantaneously find proofs where other proof methods of Isabelle
fail. Moreover, these evaluations provide evidence that our integration is robust and
applicable to a wide range of conjectures. Our contributions to the interactive theorem
prover Isabelle are summarized as follows:

• A new proof method, called smt, that invokes one of the external SMT solvers
CVC3, Yices or Z3. When Z3 is applied, the smt method can deliver LCF-style
proofs. This new proof method is a decision procedure for unquantified first-
order logic with equality and linear arithmetic. In addition, many first-order and
also mildly higher-order problems can be proved by this method.

• An extension of sledgehammer to invoke SMT solvers for automatically finding
proofs from a large collection of Isabelle facts. SMT solvers complement further
external automatic theorem provers.

The smt method has been available in Isabelle since 2009. The integration of SMT
solvers with sledgehammer was added one year later, which was joint work with Jasmin
Christian Blanchette. Since then, SMT solvers have frequently helped in proof develop-
ments of Isabelle users. For example, a formalization of algebras [81] greatly benefited
from the proof automation provided by our integration of SMT solvers in Isabelle.
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5.2. Program Verification

We developed a tool, HOL-Boogie (Section 4.3), and a methodology, abstract coopera-
tion (Section 4.5), to prove properties about C programs when automatic tools fail. Both
approaches are based on extensions of VCC and rely on Isabelle, and in particular on
our integration of SMT solvers, for interactive proofs.

• HOL-Boogie is a tool to debug failing proof attempts. It helps users find out why
the automatic proof fails. HOL-Boogie can also be applied to proof verification
conditions in Isabelle with the confidence provided by an LCF-style proof.

• With the abstract cooperation between VCC and Isabelle, properties that are hard
to establish in VCC can be proved, on a higher level of abstraction, in Isabelle
instead. VCC is restricted to reason about low-level properties of C programs,
and it will typically be applied to show the correspondence between program
properties and their abstract representation used in Isabelle.

We demonstrated both approaches on case studies. With HOL-Boogie, we verified
functional properties of binary search trees (Section 4.4 and Appendix B). We applied
abstract cooperation to verify a checker for maximum cardinality matching in graphs
(Section 4.6), i.e., we established the relation between a graph algorithm written in C
and a theorem from graph theory formalized in Isabelle/HOL.

5.3. Future Work

We still see possibilities to further improve our integration of SMT solvers with Isabelle.
Directions for future enhancements or experiments are as follows.

Translation to MSFOL In our translation from HOL to MSFOL (Section 2.2), we made
the decisions to monomorphize problems and apply lambda-lifting. Our evaluation
gave no clear indication whether these choices in particular contribute to the success
of our SMT integration. Experiments that evaluate encodings of types into an untyped
logics and that evaluate alternatives to lambda-lifting might give more insights.

Leaving arithmetic constants that are built into SMT solvers uninterpreted occa-
sionally leads to higher success rates (Table 2.4). The combination of treating such
constants both interpreted and uninterpreted might be complementary such that even
more problems can be solved by SMT solvers. This combination might, for example, use
proxy constants with definitions that equate proxy constants to corresponding built-in
constants.

New SMT-LIB format A new format for representing SMT problems [16] is emerg-
ing, and more and more SMT solvers are gradually adopting it. Among other things,
this new format is based on a higher-order logic that identifies the syntactic entities of
formulas and terms. Changing our integration to produce problems in this format is
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essentially an engineering task. When accomplished, we might evaluate whether prov-
ing typical theorems in Isabelle can benefit from the extension of the SMT format. If
that is the case, we might also remove from our code the incomplete step that separates
formulas from terms (Section 2.2.5).

Improved proof reconstruction for Z3 Proof reconstruction for Z3 lacks support for
fixed-size bitvectors and datatypes (Section 3.1). As preliminary prototypes suggest,
both of them involve their share of special intricacies. Especially obtaining accept-
able replay times for bitvector proofs might be challenging, because Z3 maps bitvector
propositions to large propositional formulas (Section 1.4.2). The existing efficient LCF-
style integration of SAT solvers in Isabelle [159, 163] might be of help in reconstructing
such problems.

A further improvement of Z3 proof reconstruction might be obtained by exploiting
the tags that specify the theory and reasoning expressed by th-lemma steps (Section 3.2).
As a result, expensive search might potentially be reduced to more efficient specific
reconstruction methods.

We observed that some Z3 proofs consist of at least two nearly independent sub-
proofs. Parallel checking [166] of such independent branches can yield performance
improvements with current multicore computers.

Countermodels When stating conjectures, users frequently make mistakes, and such
mistakes can be unveiled by countermodel finders. Although our integration of SMT
solvers with Isabelle concentrates on proving theorems, it might be extended to also
provide countermodels for invalid conjectures as most SMT solvers are able to produce
models. Although there are already three countermodel finders in Isabelle [24,128,160],
a fourth one based on SMT solvers might complement those existing three in a similar
way as SMT solvers complement ATPs in sledgehammer. Especially the combination of
the decision procedures for integers and reals with that for equality and uninterpreted
functions might lead to countermodels that the existing countermodel finders in Isa-
belle fail to discover. Yet, as soon as quantifiers are involved, most models found by
SMT solvers are only potential ones, because the handling of quantifier instantiations
in these solvers is typically incomplete.





Appendix A.

Z3 Proof Rule Names

Short name Z3 name Short name Z3 name
apply-def apply-def intro-def intro-def

asserted asserted, goal lemma lemma

comm',≈ commutativity nnf-neg nnf-neg

cong' monotonicity nnf-pos nnf-pos

def-axiom def-axiom mp←→, mp−→ mp

der der mp∼ mp∼
distributivity distributivity pull-quant pull-quant

elim∧ and-elim push-quant push-quant

elim¬∨ not-or-elim refl' refl

elimQ elim-unused rewrite rewrite

hypothesis hypothesis skQ sk

iff⊥ iff-false symm' symm

iff> iff-true th-lemma th-lemma

iff∼ iff∼ trans' trans

inst∀ quant-inst true true-axiom

introQ quant-intro unit-resolution unit-resolution

Table A.1. Mapping of the short proof rule names as described in Chapter 3
to the names used by Z3

93





Appendix B.

A Binary Search Tree Implementation in C

#include "vcc.h"

#define Null ((void *) 0)

#define wrapped_inside(e,o) (\wrapped(o) && e \in \domain(o))

typedef unsigned int Key;

typedef enum { Equal, Less, Greater } Keymatch;

struct T_Node; typedef struct T_Node Node, *P_Node;

struct T_Tree; typedef struct T_Tree Tree, *P_Tree;

struct T_Node

{

Key key;

P_Node left, right;

// required only for initialize_node and insert:
_(ghost P_Tree tree)
_(ghost bool initialized)
_(invariant initialized ==> left == &tree->nil)
_(invariant initialized ==> right == &tree->nil)

};

_(ghost _(pure) bool not_nil(P_Tree tree, P_Node n) _(returns n != &tree->nil))
_(ghost _(pure) bool inner(P_Node n) _(returns n != Null))
_(logic bool owns(P_Tree tree, P_Node n) = (n \in tree->\owns))

#define towns(n) owns(tree, n)

#define tnnil(n) not_nil(tree, n)

#define troot (tree->root)

#define tnode(k) (tree->node[k])

#define tsub(k1,k2) (tree->sub[k1][k2])

#define tinner(k) inner(tnode(k))

_(logic bool basic(P_Tree tree) = {:split} towns(&tree->nil) && towns(troot))

_(logic bool abstraction(P_Tree tree) = {:split}

(\forall P_Node n; {towns(n), tnnil(n)}

towns(n) && tnnil(n) ==> tnode(n->key) == n) &&

(\forall P_Node n; {towns(n), tinner(n->key)}
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towns(n) && tinner(n->key) ==> tnnil(n)) &&

(!tnnil(troot) ==> \forall Key k; !tinner(k)) &&

(\forall Key k; {tnode(k)} tnnil(tnode(k))) &&

(\forall Key k; {tinner(k)} tinner(k) ==> towns(tnode(k))) &&

(\forall Key k; {tinner(k)} tinner(k) ==> tnnil(tnode(k))) &&

(\forall Key k; {tinner(k)} tinner(k) ==> tnode(k)->key == k) &&

(\forall Key k; {tinner(k)} tinner(k) ==> towns(tnode(k)->left)) &&

(\forall Key k; {tinner(k)} tinner(k) ==> towns(tnode(k)->right)) &&

(\forall Key k; {tinner(k)} tinner(k) ==> !tnode(k)->initialized))

_(logic bool subtrees(P_Tree tree) = {:split}

(\forall Key k; {tinner(k)} tinner(k) ==> tsub(tnode(k)->key, k)) &&

(tnnil(troot) ==> \forall Key k; {tinner(k)}

tinner(k) ==> tsub(troot->key, k)) &&

(\forall Key k1, k2; {tsub(k1, k2)} tsub(k1, k2) ==> tinner(k1)) &&

(\forall Key k1, k2; {tsub(k1, k2)} tsub(k1, k2) ==> tinner(k2)))

_(logic bool sorted(P_Tree tree) = {:split}

(\forall Key k1, k2; {tsub(k1, k2)}

tsub(k1, k2) && k1 > k2 ==> tsub(tnode(k1)->left->key, k2)) &&

(\forall Key k1, k2; {tsub(k1, k2)}

tsub(k1, k2) && k1 < k2 ==> tsub(tnode(k1)->right->key, k2)))

_(dynamic_owns) struct T_Tree

{

Node nil; // an empty node (representing leafs)

P_Node root; // the root of the tree
_(ghost P_Node node[Key]) // an abstraction of this tree’s proper nodes
_(ghost bool sub[Key][Key]) // subtrees
_(invariant {:split} basic(\this) && abstraction(\this))
_(invariant {:split} subtrees(\this) && sorted(\this))

};

Keymatch compare_keys (Key k1, Key k2)
_(ensures (\result == Equal) <==> (k1 == k2))
_(ensures (\result == Less) <==> (k1 < k2))
_(ensures (\result == Greater) <==> (k1 > k2))

{

if (k1 == k2) return Equal;

else if (k1 < k2) return Less;

else return Greater;

}

void initialize (P_Tree tree)
_(writes \extent(tree))
_(ensures \wrapped(tree))
_(ensures tree->node == (\lambda Key k; (P_Node) Null))
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_(ensures tree->\owns == {tree->root})

{

tree->root = &tree->nil;
_(ghost tree->nil.initialized = \false)
_(wrap tree->root)
_(ghost tree->node = (\lambda Key k; (P_Node) Null))
_(ghost tree->sub = (\lambda Key k1; \lambda Key k2; \false))
_(ghost tree->\owns = {tree->root})
_(wrap tree)

}

P_Node lookup (P_Tree tree, Key key _(ghost \object root))
_(requires wrapped_inside(tree, root))
_(ensures \result != Null ==> \result \in tree->\owns)
_(ensures \result != Null ==> \result->key == key)
_(returns tree->node[key])

{

P_Node current;

Keymatch match;

current = tree->root;

while (current != &tree->nil)
_(invariant current \in tree->\owns)
_(invariant inner(tree->node[key]) ==> not_nil(tree, current))
_(invariant inner(tree->node[key]) ==> tree->sub[current->key][key])

{
_(assert not_nil(tree, current) && inner(tree->node[current->key]))

match = compare_keys(key, current->key);

switch (match)

{

case Equal:

return current;

case Less:

current = current->left;

break;

case Greater:

current = current->right;

break;

default:

return Null; // never reached

}

}

return Null;

}

void initialize_node (P_Tree tree, P_Node node)
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// initialize a node prior to insertion
_(writes \span(node))
_(ensures \wrapped(node))
_(ensures node->tree == tree)
_(ensures node->initialized)

{

node->left = &tree->nil;

node->right = &tree->nil;
_(ghost node->tree = tree)
_(ghost node->initialized = \true)
_(wrap node)

}

int insert (P_Tree tree, Key key, P_Node node)
_(requires \wrapped(node) && !(node \in tree->\owns))
_(requires node->initialized && node->tree == tree)
_(writes tree, node)
_(maintains \wrapped(tree))
_(ensures \result ==> tree->\owns == {node} \union \old(tree->\owns))
_(ensures \result ==> node->key == key)
_(ensures \result ==>

tree->node == \lambda Key k; k == key ? node : \old(tree->node[k]))
_(ensures !\result ==> \unchanged(tree->node))
_(ensures !\result ==> \unchanged(tree->\owns))
_(ensures !\result ==> node->initialized)
_(returns \old(tree->node[key]) == Null)

{

Keymatch match;

P_Node x, y;
_(ghost P_Node old_node[Key])
_(ghost \objset old_owns)

match = Equal;

y = &tree->nil;

x = tree->root;
_(ghost old_node = tree->node)
_(ghost old_owns = tree->\owns)

while (x != &tree->nil)
_(invariant \wrapped(node) && \wrapped(tree))
_(invariant node->initialized && node->tree == tree)
_(invariant node->left == &tree->nil && node->right == &tree->nil)
_(invariant tree->\owns == old_owns && tree->node == old_node)
_(invariant tree \in \domain(tree))
_(invariant x \in tree->\owns && y \in tree->\owns)
_(invariant not_nil(tree, y) <==> x != tree->root)
_(invariant not_nil(tree, y) <==> match == Less || match == Greater)
_(invariant inner(tree->node[key]) ==> not_nil(tree, x))
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_(invariant inner(tree->node[key]) ==> tree->sub[x->key][key])

{
_(assert not_nil(tree, x) && inner(tree->node[x->key]))

y = x;

match = compare_keys(key, x->key);

switch (match)

{

case Less:

x = x->left;

break;

case Greater:

x = x->right;

break;

case Equal: // fall through to default case

default:

return 0;

}
_(assume x != tree->root)

}
_(assert not_nil(tree, y) ==> inner(tree->node[y->key]))

_(unwrapping node)

{

node->key = key;
_(ghost node->initialized = \false;)

}

_(unwrapping tree)

{
_(ghost tree->\owns += node);
_(ghost tree->node[key] = node)

if (y == &tree->nil) tree->root = node;

else if (match == Less) { _(unwrapping y) { y->left = node; } }

else { _(unwrapping y) { y->right = node; } }

_(assume subtrees(tree))
_(assume sorted(tree))

}

return 1;

}
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