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Abstract

We study in this work the phenomenology of heterotic orbifold compactifications. Exact
and approximate R symmetries of the superpotential in the context of supersymmetric
field theories are discussed. We further study symmetries, phenomenological implications
and Yukawa couplings from superpotential contributions in extra dimensional theories.
We apply the developed methods to models, which base on heterotic orbifolds.

Zusammenfassung

Wir studieren in dieser Arbeit die Phänomenologie von heterotischen Orbifoldkompak-
tifizierungen. Exakte und approximative R Symmetrien des Superpotentials im Kontext
von supersymmetrischen Feldtheorien werden diskutiert. Weiterhin studieren wir Sym-
metrien, phänomenologische Konsequenzen und Yukawakopplungen von Superpotential-
beiträgen in Extradimensionen. Wir wenden die entwickelten Methoden auf Modelle, die
auf heterotischen Orbifolds basieren an.
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1 Introduction

Supersymmetry is probably the most common prejudice in particle physics today. It is
the most discussed scenario for physics beyond the standard model (SM). The simplest
version, the minimal supersymmetric standard model (MSSM) was used for exhaustive
studies in the field of particle physics.
There have been two cornerstones of particle physics model building in the last decades:

supersymmetry and Grand Unified Theories (GUTs). Apart from the mathematical
beauty of both approaches [1], together they offer the possibility that gauge couplings
unify at a higher unification scale without the need of introducing further particles [2,3].
In the past, one of the unsolved problems has been the compelling breaking of the GUT
gauge group down to the SM gauge group below the GUT scale.
A decade ago, an elegant mechanism to break the GUT gauge group in field theory has

been proposed [4]. This proposal is based on the projection conditions from additional
discrete symmetries in extra dimensions. The extra dimensional space is compactified
on an orbifold, which is a quotient space of a torus and a discrete symmetry. This
discrete symmetry breaks the GUT gauge group to the SM gauge group at low energies.
The same idea has been already known for some time in string theory [5]. It has been
shown that such an approach can be realized in concrete models in heterotic string
theory [6]. This offers a natural motivation for heterotic string theory from the need
of a GUT breaking mechanism. On the other hand, the requirement for extending
the SM is due to the experimental need to include for example neutrino masses, dark
matter and a mechanism for baryogenesis. Several attempts to address these issues
have been studied in extra dimensional theories. Neutrino masses can be explained by
the seesaw mechanism [7]. In this scheme, leptogenesis can serve as a mechanism for
baryogenesis. It has been shown that matter parity can be obtained in heterotic orbifold
compactifications, which will lead to a stable supersymmetric particle as promising dark
matter candidate [8]. Furthermore it was realized that flavor symmetries arise naturally
in this class of models [9].
One of the major advantages of a string theory induced approach is that it provides

a rigid and constrained framework. Even more, string theory offers the possibility to
calculate free parameters of the MSSM or at least reduce the number of free parameters.
Let us briefly review the history and successes of heterotic string theory. It has been

realized in 1974 that string theory includes a quantized version of gravity [10]. It was
discovered ten years later that a supersymmetric string theory based on a SO(32) or
E8 ×E8 gauge group is anomaly free in ten dimensions [11]. Based on this work, the so-
called heterotic string theory which incorporates the E8×E8 gauge group was constructed
[12, 13]. Shortly after that, it was shown that the heterotic string can consistently be
compactified on orbifolds [14, 15]. This offered the possibility to build four dimensional

7



1 Introduction

models with the MSSM as low energy theory in a consistent theory which included
all fundamental forces. In contrast to compactifications on Calabi-Yau manifolds [16],
compactifications on orbifolds are simpler. This offers the possibility to calculate low
energy observables directly from string theory.

One of the biggest problems in string model building so far is that string theory offers
too many compactification possibilities and usually a too large particle content. Only
quite recently, there have been found several models with exact MSSM spectra at low
energy and only heavy exotics, which means no unobserved particles at the electroweak
scale [6]. As outlined, these models have several appealing features regarding low energy
phenomenology. This work will use these models as playground.

We will introduce mathematical techniques to handle the structure of these models
in section 2. This is necessary, because of the typically large particle content of the
discussed models. It will be possible to determine basic building blocks which fix the
structure of the perturbative superpotential to all orders in perturbation theory.

In section 3 we will study approximate R symmetries which are naturally present
in this kind of models. We will show how they can result in a suppressed vacuum
expectation value of the superpotential. After that, we comment on the implications for
moduli stabilization and the possibility to generate a µ term of the right scale. Moduli
stabilization is an important topic in string theory, because the scale and the shape of
the extra dimensions, as well as the size of the gauge coupling should be fixed within a
dynamical process. At present, only models in type II string theory without the SM as
low energy theory have been stabilized completely. Therefore, progress in this field is
highly welcome and we will show that approximate R symmetries can serve as a fertile
ingredient.

In section 4 and section 5 we try to constrain these models with phenomenological
requirements in the quark sector. We will review how a large top Yukawa coupling can
be obtained in extra dimensional theories through the origin of the Higgs field in the
gauge multiplet. In contrast to type II string theory this mechanism can be embedded in
heterotic string theory. In addition, we will discuss corrections through localized Fayet-
Iliopoulos D-terms and the phenomenological implications. The detailed analysis of the
quark mass hierarchies in a heterotic orbifold model will be given. We will show how
constraints from low energy data as well as the rigid framework of string theory will
allow it to disfavor this model.

Additional work which covers the explanation of dark matter and its experimental
detection will only slightly be covered in this thesis.

Part of this work has been published in:

[17] The Hilbert basis method for D-flat directions and the superpotential.
Rolf Kappl, Michael Ratz, Christian Staudt. TUM-HEP-814-11, MPP-2011-99,
CERN-PH-TH-2011-193, Aug 2011.
e-Print: arXiv:1108.2154 [hep-th]

[18] New Limits on Dark Matter from Super-Kamiokande.
Rolf Kappl, Martin Wolfgang Winkler. TUM-HEP-804-11, MPP-2011-37, Apr
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2011.
Published in Nucl.Phys.B850:505-521,2011. e-Print: arXiv:1104.0679 [hep-
ph]

[19] String-derived MSSM vacua with residual R symmetries.
Rolf Kappl, Bjoern Petersen, Stuart Raby, Michael Ratz, Roland Schieren, Patrick
K.S. Vaudrevange. TUM-HEP-787-10, MPP-2010-169, NSF-KITP-10-160, LMU-
ASC-106-10, OHSTPY-HEP-T-10-006, Dec 2010.
Published in Nucl.Phys.B847:325-349,2011. e-Print: arXiv:1012.4574 [hep-
th]

[20] Quark mass hierarchies in heterotic orbifold GUTs.
Rolf Kappl. TUM-HEP-786-10, MPP-2010-170, Dec 2010.
Published in JHEP 1104:019,2011. e-Print: arXiv:1012.4368 [hep-ph]

[21] Light dark matter in the singlet-extended MSSM.
Rolf Kappl, Michael Ratz, Martin Wolfgang Winkler. TUM-HEP-772-10, MPP-
2010-130, Oct 2010.
Published in Phys.Lett.B695:169-173,2011. e-Print: arXiv:1010.0553 [hep-
ph]

[22] Approximate R-symmetries and the mu term.
Felix Brummer, Rolf Kappl, Michael Ratz, Kai Schmidt-Hoberg. DCPT-10-36,
IPPP-10-18, TUM-HEP-752-10, MPP-2010-25, Mar 2010.
Published in JHEP 1004:006,2010. e-Print: arXiv:1003.0084 [hep-th]

[23] Gauge-top unification.
Pierre Hosteins, Rolf Kappl, Michael Ratz, Kai Schmidt-Hoberg. TUM-HEP-722-
09, May 2009.
Published in JHEP 0907:029,2009. e-Print: arXiv:0905.3323 [hep-ph]

[24] Large hierarchies from approximate R symmetries.
Rolf Kappl, Hans Peter Nilles, Saul Ramos-Sanchez, Michael Ratz, Kai Schmidt-
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2 Superpotential to all orders

One of the fundamental tasks to start with phenomenology in a given model is, to write
down all possible interactions allowed by given symmetries. In this section we will show
how this is efficiently possible even if the theory has many symmetries, gauge as well as
discrete R and non-R symmetries and many particles.

2.1 The superpotential

We start with an U(1) gauge symmetry to find out to which mathematical problem we
can reduce the physical task. In supersymmetric field theories the superpotential char-
acterizes possible interactions of the theory. A field φ charged under a U(1) symmetry
transforms like

φ→ eiqαφ (2.1.1)

with charge q and α taking the transformation under the U(1) symmetry into account.
A term in the superpotential is gauge invariant if

W ⊃ φ1φ2φ3 ⇔ q1 + q2 + q3 = 0. (2.1.2)

qi label the charges of the fields φi for the given U(1) symmetry. In a theory with m
different U(1) gauge groups and M fields we define a charge matrix

Q =



q
(1)
1 . . . q

(1)
M

...
...

q
(m)
1 . . . q

(m)
M


 . (2.1.3)

A combination of fields is gauge invariant if

Q · n = 0, n ∈ NM . (2.1.4)

With the vector n we denote the exponents of the fields φi for an allowed superpotential
term

W ⊃ φn1
1 . . . φnM

M , n = (n1, . . . , nM)T . (2.1.5)

The limitation n ∈ NM is a consequence of the fact that fields cannot arise in the
superpotential with a negative power. In other words, the superpotential has to be
holomorphic.
Equation 2.1.4 is a homogeneous linear system of Diophantine equations. Such a

system of equations can in general only be solved algorithmically. We describe the
mathematical methods and various examples in the next section.
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2 Superpotential to all orders

2.2 The Hilbert basis

2.2.1 A mathematical survey

To derive a basis of solutions for the matrix equation

Q · n = 0, n ∈ NM (2.2.1)

is non-trivial, because the natural numbers N only form a monoid and not a field. There
is no analytical solution possible, but the problem is well known in the field of integer
programming [25].

Definition 1 The convex hull Conv(Q) of a matrix Q = (q1, . . . , qM) ∈ Zm×M is given
by

Conv(Q) =

{
λ1q1 + . . .+ λMqM

∣∣∣∣∣∀ i : λi ≥ 0,

M∑

j=1

λj = 1

}
. (2.2.2)

We will review a theorem from [26].

Theorem 1 If Q ∈ Zm×M the equation system Q·x = 0, x ∈ NM has a nonzero solution
if and only if 0 ∈ Conv(Q).

We illustrate this with an example from [26]. We have

0 /∈ Conv(Q), Q =

(
4 −1 5 2 −2
−3 5 2 −1 3

)
. (2.2.3)

This can be graphically obtained from the visualization in figure 2.1. With this theorem

q1

q2

q3

q4

q5

Figure 2.1: Visualization of equation 2.2.3.

it is possible to check if a given symmetry allows for given particles with well defined
charges an interaction at all.
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2 Superpotential to all orders

Definition 2 A lattice Λ(Q) ⊆ ZM with Q = (q1, . . . , qM) ∈ Zm×M is defined by

Λ(Q) = {λ1q1 + . . .+ λMqM |∀ i : λi ∈ Z} . (2.2.4)

For example Λ = kerZ(Q) with
kerZ(Q) = {x ∣∣Q · x = 0, Q ∈ Zm×M , x ∈ ZM} (2.2.5)

is a lattice.

Definition 3 A rational polyhedral cone Cone(Q) is given by

Cone(Q) =
{
λ1q1 + . . .+ λMqM

∣∣∀ i : λi ∈ R+, qi ∈ Q ⊆ ZM} . (2.2.6)

We will now define the so-called Hilbert basis.

Definition 4 Let Cone(Q) ⊆ RM be a rational polyhedral cone and let Λ ⊆ ZM be a
lattice. We call the finite set

H (Q) = {h1, . . . , hN} ⊆ Λ ∩ Cone(Q) (2.2.7)

a Hilbert basis if for every x ∈ Λ ∩ Cone(Q)

x =

N∑

i=1

λihi, λi ∈ N. (2.2.8)

This is close to the definition in [27]. The number of basis elements N cannot be
determined analytically. For the special case Λ = kerZ(Q) we find

Λ ∩ Cone(Q) = kerZ(Q) ∩ Cone(Q) = kerN(Q) (2.2.9)

which means that the Hilbert basis H (Q) in this case is the basis of all solutions to
equation 2.2.1. The fact that such a basis exists is non-trivial. For our purposes it is
sufficient how to compute it even for large matrices in reasonable time. We refer to
computer packages like [28, 29] for this task.

2.2.2 Examples

A simple example

An example with two U(1) factors and four fields is given in [30]. The charge matrix is
given by

Q =

(
2 −2 1 −1
0 1 −1 0

)
. (2.2.10)

The corresponding Hilbert basis H (Q) consists of the three elements

h1 =




1
0
0
2


 , h2 =




1
2
2
0


 , h3 =




1
1
1
1


 . (2.2.11)
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2 Superpotential to all orders

These solutions correspond to the gauge invariant monomials

M1 = φ1φ
2
4, M2 = φ1φ

2
2φ

2
3, M3 = φ1φ2φ3φ4. (2.2.12)

The complete superpotential is given by

W = c1φ1φ
2
4 + c2φ1φ

2
2φ

2
3 + c3φ1φ2φ3φ4 + . . . (2.2.13)

where all higher order terms are combinations of the monomials M1, M2 and M3. That
means, we know the superpotential to all orders. The ci are undetermined coupling
coefficients independent of the fields φi.

An example with more fields

In this section we will discuss an example from [31]. We consider the example with the
field content S2 = {X0, X̄

c
0, U2, U4, S2, S5, X

c
1, X̄1, Y

c
2 , Ȳ2, U

c
1 , U3, S6, S7}. There are six

U(1) factors and the charge matrix rescaled to integers is given by

Q =




0 0 1 −2 1 −1 0 1 0 1 −1 2 −1 0
−2 2 3 −6 −4 2 2 1 −4 −5 −3 −6 2 −1
2 2 −6 0 −1 −1 2 0 −4 −2 −6 0 −1 −1
2 −2 0 0 1 1 1 −1 1 −1 0 0 1 −2
0 0 0 0 0 0 1 −1 −1 1 0 0 0 1
10 10 0 0 −5 −5 −10 −10 0 0 0 0 −5 5



.

(2.2.14)
In [31] the Hilbert basis was not known and the solution space was only restricted to
kerZ(Q). They found eight independent basis monomials Ω′

i. This is in agreement with
the expectation because dim kerZ(Q) = 8. If we use our method instead and focus on
kerN(Q) we find 13 monomials

M1 = Ω′
1 = X̄c

0S2S6 (2.2.15)

M2 = Ω′
2 = X̄c

0X
c
1Y

c
2 (2.2.16)

M3 = Ω′
3 = X̄c

0(S5)
2U3 (2.2.17)

M4 = Ω′
4 = X0X̄1S5S7 (2.2.18)

M5 = Ω′
5 = X0X̄

c
0X

c
1X̄1U

c
1 (2.2.19)

M6 = Ω′
6 = X0X̄

c
0X̄1Ȳ2(S5)

2 (2.2.20)

M7 = Ω′
7 = X0X̄

c
0(S6)

2 (2.2.21)

M8 = Ω′
8 = X0X̄

c
0U2U4 (2.2.22)

M9 = X̄c
0S2S6 (2.2.23)

M10 = X̄c
0S5S6U3 (2.2.24)

M11 = X̄c
0(S6)

2U3 (2.2.25)

M12 = X0X̄1S6S7 (2.2.26)

M13 = X0X̄
c
0X̄1Ȳ2S5S6 (2.2.27)

13



2 Superpotential to all orders

We can now see the power of our approach. The fields S5 and S6 in this example have
the same charges. If we restrict ourselves only to kerZ(Q) a potential superpotential
term is given for example by

W ⊃ Ω′
3Ω

′
7

Ω′
6

= M11. (2.2.28)

We see that the appearance of negative powers in the framework dealing with the mono-
mials Ω′

i makes the structure of the superpotential less transparent. If we deal with the
Hilbert basis instead, we see that the superpotential is given by

W = c1M1 + c2M2 + c3M3 + c4M4 + c5M5 + c6M6 + c7M7 + c8M8

+ c9M9 + c10M10 + c11M11 + c12M12 + c13M13 + . . . .
(2.2.29)

This is the superpotential structure to all orders and shows the progress compared to [31]
due to the Hilbert basis. The only drawback is that the number of monomials is usually
larger than dim kerZ(Q).
2.3 Extension to R symmetries

In the case of a continuous U(1)R symmetry or a discrete ZRN symmetry we have to
extend our method [17]. In contrast to equation 2.2.1, for R symmetries this equation
will become inhomogeneous. Let us assume that the superpotential transforms with R
charge -2 under an U(1)R symmetry. If the fields φi have R charges qi, we find that

∑

i

qini = −2 (2.3.1)

has to be satisfied for allowed superpotential terms. ni labels the number of fields φi
present in the monomial. We introduce the dummy variable y and find

∑

i

qini + 2y = (q1, . . . , qM , 2) ·




n1
...
nM
y


 = 0. (2.3.2)

The extension to several U(1)R symmetries results in the matrix equation



q
(1)
1 . . . q

(1)
M 2

...
...

...

q
(m)
1 . . . q

(m)
M 2




︸ ︷︷ ︸
=Q̃

·




n1
...
nM
y


 = 0 (2.3.3)

in the case of m different U(1)R symmetries. All elements of the Hilbert basis H(Q̃)
with the last element y = 1 which we denote by Hinhom(Q̃) ⊆ H(Q̃) give rise to allowed
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2 Superpotential to all orders

superpotential terms. In addition we have homogeneous solutions with y = 0 which
are elements of Hhom(Q̃) ⊆ H(Q̃). The exponents of every superpotential term can be
written as

z = zinhom +
∑

i

λiz
(i)
hom, zinhom ∈ Hinhom(Q̃), ∀ i : z(i)hom ∈ Hhom(Q̃), λi ∈ N.

(2.3.4)
To obtain monomials the last entry of z which is just a dummy number has to be skipped.
We will illustrate our approach with a small example. Let us consider two fields φ and

ψ with R charges qφ = 0 and qψ = −1. We find

Q̃ =
(
0 −1 2

)
(2.3.5)

and the solutions

zinhom =



0
2
1


 , z

(1)
hom =



1
0
0


 . (2.3.6)

These elements give rise to the monomials

Minhom = ψ2, Mhom = φ (2.3.7)

which results in a superpotential of the form

W = Minhom(c1Mhom + c2(Mhom)
2 + . . .) = ψ2(c1φ+ c2φ

2 + . . .). (2.3.8)

In [19] such a structure of the superpotential has been used to determine a fertile struc-
ture of minima of the scalar potential.
We can extend our approach further to discrete symmetries. For discrete ZRN symme-

tries we find ∑

i

qini = −2 mod N (2.3.9)

with the same notation as before. Without loss of generality we can assume that all qi
are non-positive. That enables us to introduce two dummy variables y and w with

∑

i

qini + 2y +Nw = 0. (2.3.10)

We can now proceed as before with the additional requirement that we skip the last
two entries of every solution. The same strategy can also be used for discrete non-R
symmetries ZN . For the inclusion of non-Abelian symmetries and further details we
refer to [17].

2.3.1 A complex example in heterotic orbifold compactifications

We base our example on the Z2 × Z2 orbifold example discussed in [19]. We consider
the ZR4 vacuum discussed there and construct the superpotential for the standard model

15



2 Superpotential to all orders

singlets with R charges zero and two. The symmetries of this model and their origin
from the heterotic string are discussed in [32]. At the orbifold point we find

Gsymmetries = U(1)8 × (Z2)
6 ×

(ZR4 )3 . (2.3.11)

The non-Abelian symmetries have been eliminated by using techniques outlined in [17].
In [19] a ZR4 symmetry forbids the superpotential at the perturbative level. This sym-
metry which is able to forbid all relevant proton decay operators is discussed in detail
in [33, 34]. We break this symmetry in our example by giving the standard model sin-
glet φ̄1 a VEV. This is just an example to show how our method works and has no
phenomenological relevance. The fields

φ̄1, φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12, φ13, φ14,

x1, x2, x3, x4, x5, x̄1, x̄3, x̄4, x̄5, y3, y4, y5, y6
(2.3.12)

in the model from [19] will now obtain a VEV. The Hilbert basis for these 28 fields
contains 15408 elements. We have used the program rays from the package [28] in
combination with the program normaliz [29] to compute this basis. The superpotential
starts at lowest order with four Hilbert basis monomials

W = (x4x̄4 + x5x̄5 + φ9φ13 + φ10φ14)φ̄1 + . . . . (2.3.13)

We further considered the appearance of the proton decay operator QQQL. The lowest
order QQQL operator including first family quark and leptons occurs at order 11 in
standard model singlets. An explicit example is given by

W ⊃ Q1Q2Q2L1φ̄1x1x2x3x4x̄3φ2φ4φ9φ
2
12. (2.3.14)

These examples show that with the help of the Hilbert basis complex examples with
many fields can be handled. The method is powerful enough to solve computational
problems which have been occurred in the past (see for example [35]).
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3 Approximate R symmetries

In this section we study exact and approximate R symmetries of the superpotential. We
will see that these symmetries are able to influence the superpotential VEV in a given
minima of the scalar potential.

3.1 An exact U(1)R symmetry

3.1.1 Global supersymmetry

We start with a superpotential of the form

W =
∑

cn1...nM
φn1
1 . . . φnM

M (3.1.1)

with M different fields φi and different coefficients cni
∈ C. Assume that the superpo-

tential W transforms under an exact U(1)R symmetry with U(1)R charge 2

W → e2iαW. (3.1.2)

The fields φi transform like
φi → φ′

i = eiriαφi (3.1.3)

with charge ri. The charges for each monomial in W have to sum up to 2. Let 〈φi〉
denote a vacuum expectation value (VEV). If 〈φi〉 is a solution to the F -term equations
we have

Fi =
∂W
∂φi

= 0 for φj = 〈φj〉 ∀ i, j. (3.1.4)

An infinitesimal U(1)R transformation results in

W(φi) → W(φ′
i) = W(φi) +

∑

j

∂W
∂φj

∆φj (3.1.5)

after a Taylor expansion. If the F -term equations are satisfied we have φi = 〈φi〉 which
means that the second term in equation 3.1.5 vanishes and we get

W(〈φi〉) → W(〈φi〉) (3.1.6)

which is consistent with equation 3.1.2 only if W(〈φi〉) = 〈W〉 = 0.
We will now present an algebraic way to obtain the same result. The U(1)R symmetry

implies ∑

i

niri = 2 (3.1.7)
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3 Approximate R symmetries

if the superpotential W transforms with U(1)R charge 2. We can write the F -term
equations as

Fi =
∂W
∂φi

=
∑

niφ
−1
i cn1 . . . cnM

φn1
1 . . . φnM

M . (3.1.8)

Let us consider the sum over the F -term equations with arbitrary polynomials hi(φi) in
the variables φi. This ansatz is inspired by algebraic geometry. We get

∑

i

hiFi =
∑

i

∑
hiniφ

−1
i cn1 . . . cnM

φn1
1 . . . φnM

M (3.1.9)

=
∑

i

∑
niricn1 . . . cnM

φn1
1 . . . φnM

M (3.1.10)

= W (3.1.11)

if we specify hi =
1
2
φiri and use the U(1)R symmetry. We thus get

W =
∑

i

hiFi (3.1.12)

and therefore W = 0 whenever Fi = 0 ∀ i. This holds only when the superpotential
exhibits an exact U(1)R symmetry. In the language of algebraic geometry: the superpo-
tential W is element of the ideal generated by the F -term equations when W exhibits
an exact U(1)R symmetry. We conclude that if the superpotential transforms under an
U(1)R symmetry it vanishes if the F -term equations are satisfied. This is especially true
in a global supersymmetric minimum of the theory.
If the U(1)R symmetry is spontaneously broken for φi = 〈φi〉 there is a massless

Goldstone mode, called R axion.

3.1.2 Local supersymmetry

In local supersymmetry, also called supergravity Fi = ∂iW = 0 and W = 0 imply

DiW = 0, Di = ∂i + (∂iK) (3.1.13)

with the Kähler potential K. Not all local supersymmetric minima have W = 0. The
F -term equations are not the same as in global supersymmetry but

DiW = ∂iW + (∂iK)W = 0 (3.1.14)

which can satisfied also by ∂iW = −(∂iK)W. With the help of equation 3.1.12 we obtain

W =
1

2

∑

i

φiri∂iW = −1

2

∑

i

φiri(∂iK)W. (3.1.15)

There are two solutions

W = 0 or − 1

2

∑

i

φiri(∂iK) = 1. (3.1.16)
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3 Approximate R symmetries

to fulfill the local F -term condition DiW = 0. We conclude that in a local supersym-
metric minima a U(1)R symmetry not necessarily implies W = 0 in the minima as in
the case of global supersymmetry.
In settings with a U(1)R symmetry the existence of supersymmetric but spontaneously

R-breaking vacua is non-trivial (see for example [36]) and will be discussed in the next
section.

3.1.3 The relation to the Nelson-Seiberg theorem

For global supersymmetric models of chiral superfields with generic superpotential the
claim is [36]

1. if the model admits a supersymmetry-breaking global minima, then it possesses an
exact U(1)R symmetry (which may be broken or unbroken in the vacuum);

2. if the model possesses an exact U(1)R symmetry and a global minima in which it is
spontaneously broken, then the vacuum also breaks supersymmetry spontaneously.

The question arises if we can in our setup break the U(1)R symmetry spontaneously and
get a global supersymmetric minima which is in contradiction to the second statement.
Let us review the Nelson-Seiberg argument and explain the possible loophole. Assume
there are M chiral superfields φi with U(1)R charges ri. The superpotential W carries
U(1)R charge 2. Let φM break the U(1)R symmetry, 〈φM〉 6= 0 and rM 6= 0. With a
general function f we can write

W = φ
2

rM

M f
(
φ̃1, . . . , φ̃M−1

)
. (3.1.17)

The chiral superfields φ̃i are defined as

φ̃i = φiφ
−

ri
rM

M . (3.1.18)

The global F -term equations are

∂W
∂φi

= φ
2

rM

M

M−1∑

k=1

∂f

∂φ̃k

∂φ̃k
∂φi

= φ
2−ri
rM

M

∂f

∂φ̃j
, ∀ i = 1, . . .M − 1, (3.1.19)

∂W
∂φM

=
2

rM
φ

2
rM

−1

M f + φ
2

rM

M

M−1∑

k=1

∂f

∂φ̃k
φk

(
− rk
rM

)
φ
−

rk
rM

−1

M . (3.1.20)

To satisfy Fi = 0, we get the two conditions

f = 0,
∂f

∂φ̃i
= 0. (3.1.21)

If f is a generic function these conditions have in general no solution because there are
M equations for M − 1 variables φ̃M . If there is no accidental solution this implies that
supersymmetry is spontaneously broken or there is is no minimum.
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3 Approximate R symmetries

The loophole is that f is not necessarily generic even if W is. If rM is not an integer
fraction of 2, a constant in f is not allowed. A constant term would be compatible with
all symmetries but represent a non-polynomial piece in the superpotential. It is sufficient
that f is quadratic in the fields φ̃i. Then the F -term equations are always satisfied for
φ̃i = 0. Such a function f can be obtained in an effective theory where all massive modes
are integrated out and the superpotential W starts with cubic terms.
A simple example consists of three chiral superfields X , Y and Z with U(1)R charges

rX = 3, rY = 1 and rZ = −2. The superpotential computable with this symmetry is

W = Y 2 +XY Z +X2Z2 + Y 4Z + . . . . (3.1.22)

The coefficients in front of the monomials have been set to one for simplicity. The F -term
equations up to higher order corrections are

Fx = Y Z + 2XZ2 !
= 0 (3.1.23)

FY = 2Y +XZ + 4Y 3Z
!
= 0 (3.1.24)

FZ = XY + 2X2Z + Y 4 !
= 0 (3.1.25)

There are two different solutions. Y = Z = 0 or X = Y = 0. We will focus on the first
one. For the first solution X is arbitrary, which means it is a flat direction. Along this
flat direction, at any value X 6= 0 we find the U(1)R symmetry spontaneously broken but
supersymmetry is preserved as the F -term equations are satisfied. Because the potential
must accommodate for a Goldstone boson and its complex partner whenever the U(1)R
symmetry is spontaneously broken there remains a supersymmetric flat direction.
Higher order corrections do not influence our argument because they are at least

quadratic in Z, which for Z = 0 results in satisfied F -term equations.
We can rewrite the superpotential as

W = X
2
3

(
Ỹ 2 + Ỹ Z̃ + Z̃2 + Ỹ 4Z̃

)

︸ ︷︷ ︸
=f

(3.1.26)

with
Ỹ = Y X− 1

3 , Z̃ = ZX
2
3 . (3.1.27)

We notice that the function f in this example is not generic because a constant term is
missing. The reason is that a term like X

2
3 would occur in the superpotential which is

non-polynomial.

3.2 An approximate U(1)R symmetry

3.2.1 Global supersymmetry

If the U(1)R symmetry is broken by higher order terms in the superpotential we can
write it like

W(φi) = W0(φi) +
∑

j

Wj(φi). (3.2.1)

20



3 Approximate R symmetries

HereW0(φi) consists of monomials up to order N−1 which preserve the U(1)R symmetry.
This means that for all monomials in the superpotential with

∑

i

ni ≤ N − 1 (3.2.2)

the U(1)R symmetry is exact. The terms Wj(φi) are of higher order ≥ N and do not
respect the U(1)R symmetry. The transformation of the superpotential is

W(φi) → e2iαW0(φi) +
∑

j

eiRjαWj(φi) (3.2.3)

≈ W(φi) + iα

(
2W0(φi) +

∑

j

RjWj(φi)

)
(3.2.4)

with Rj 6= 2. A transformation of the fields φi results in

W(φi) → W
(
eiriαφi

)
≈ W(φi) + iα

∑

j

∂W
∂φj

rjφj. (3.2.5)

Combing these expressions at order α in the Taylor expansion gives

2W0(φi) +
∑

j

RjWj(φi) =
∑

j

∂W
∂φj

rjφj . (3.2.6)

If also the F -term equations are satisfied

W(〈φi〉) = −1

2

∑

j

(Rj − 2)Wj(〈φi〉). (3.2.7)

In contrast to the case of an exact U(1)R symmetry the superpotential no longer vanishes
in the global supersymmetric vacuum. In the case of an approximate U(1)R symmetry
there can be a suppressed VEV of the superpotential of the order Wj(〈φi〉). Because Wj

consists only of higher order terms ≥ N the VEV of W is also induced by higher order
terms

W(〈φi〉) = 〈W〉 ∼ 〈φi〉N . (3.2.8)

Let us assume a mild hierarchy between the fundamental scale of the theory and a
typical field VEV φi < Mcutoff. The suppression of the superpotential VEV 〈W〉 is then
enhanced by the Nth power of the field VEV suppression, similar to the Froggatt-Nielsen
picture [37].
In contrast to the case of an exact U(1)R symmetry, for an approximate symmetry the

R axion η will get a mass term of the order

mη ∼ 〈φi〉N−2 (3.2.9)

where the two in the exponent results from the second derivative.
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3.2.2 Local supersymmetry

We want to outline that 〈W〉 6= 0 does not necessarily imply a anti-de Sitter (ADS)
minimum. The scalar potential is given by

V = eK(DiWD̄W̄Kī − 3|W|2). (3.2.10)

Consider a Kähler potential of the form [38, 39]

K = −3 ln(T + T̄ − h(Cα, C̄β̄)) + K̃(Sn, S̄m̄) (3.2.11)

where T is the Kähler modulus and Cα and Sn are chiral superfields. The resulting scalar
potential is

V =
eK̃

(T + T̄ − h)3

(
∂αW∂ β̄W̄hαβ̄

(
T + T̄ − h

3

)
+DnWDm̄W̄K̃nm̄

)
(3.2.12)

where hαβ̄ labels the inverse of ∂α∂ β̄h. Stationary points for V are

∂αW = DnW = 0. (3.2.13)

These points can be supersymmetry breaking minima with V = 0 and W 6= 0.

3.2.3 Examples

A simple example

Let us introduce two fields X and Y with U(1)R charges rX = 2 and rY = 0. The
superpotential is given by

W = Xf(Y ) (3.2.14)

where f is an arbitrary function. Let us assume

W = X

(
λY 2 +

1

M
Y 3 + . . .

)
(3.2.15)

with the coupling λ and the mass scale M . A solution to the F -term equations is

〈X〉 = 0, 〈Y 〉 = −λM. (3.2.16)

Expanding around 〈Y 〉 with Y → 〈Y 〉+ δY leads to

W = mXδY + . . . (3.2.17)

with m = −2λ2M . m is now related to the fundamental scale and not to the scale of
the supersymmetry breakdown. If we add a U(1)R violating term we receive

W = X

(
λY 2 +

1

M
Y 3 + . . .

)
+ κY N . (3.2.18)

The above minimum undergoes a small shift. If κ is small enough it will remain a
minimum. The VEV of the superpotential is then of the order

〈W〉 ∼ κ(λM)N . (3.2.19)

The gravitino mass is m3/2 ∼ 〈W〉 and the mass scale m can be much larger. If 〈Y 〉 is
slightly suppressed and N is large, 〈W〉 and m3/2 can be very small without tuning.
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3 Approximate R symmetries

An example with moduli

Consider three matter fields X , Y and Z with charges rX = rY = 2 and rZ = 0. The
superpotential is assumed to be

W = X
(
λ1(T )Z

2 +
a1
M
Z3 + . . .

)
+ Y

(
λ2(T )Z

2 +
a2
M
Z3 + . . .

)
. (3.2.20)

The couplings λi(T ) depend on an additional free field modulus T . The field content of
the model consists of the matter fields X , Y and Z and the modulus T . The F -term
equations are

FX = λ1(T )Z
2 +

a1
M
Z3 (3.2.21)

FY = λ2(T )Z
2 +

a2
M
Z3 (3.2.22)

FZ = X
(
2λ1(T )Z + 3

a1
M
Z2
)
+ Y

(
2λ2(T )Z + 3

a2
M
Z2
)

(3.2.23)

FT = Xλ′1(T )Z
2 + Y λ′2(T )Z

2. (3.2.24)

There are two solutions, namely

〈Z〉 = 0 or 〈X〉 = 0, 〈Y 〉 = 0, 〈Z〉 = M

a1
λ1(〈T 〉),

λ1(〈T 〉)
λ2(〈T 〉)

=
a1
a2
. (3.2.25)

We will focus on the second solution. In this example we will also derive the supersym-
metric mass matrix

M =

(
∂2W
∂φi∂φj

)
(3.2.26)

with the notation φ = (X, Y, Z, T ). We get for our example

M =




0 0 2λ1Z + 3a1Z
2

M
λ′1(T )Z

2

0 0 2λ2Z + 3a2Z
2)

M
λ′2(T )Z

2

2λ1Z + 3a1Z
2

M
2λ2Z + 3a2Z

2

M
X

(
2λ1 + 6a1Z

M

)
+ Y

(
2λ2 + 6a2Z

M

)
2Xλ′1(T )Z + 2Y λ′2(T )Z

λ′1(T )Z
2 λ′2(T )Z

2 2Xλ′1(T )Z + 2Y λ′2(T )Z Xλ′′1 (T )Z
2 + Y λ′′2 (T )Z

2


 .

(3.2.27)
This matrix has full rank, even when the F -term equations are solved. Thus all fields
including the modulus T are fixed in a supersymmetric minimum with 〈W〉 = 0. This
gives a mechanism to stabilize free moduli via matter fields if the F -term equations of
the matter fields have the right structure.

For λi(T ) = e−biT we find

〈T 〉 = 1

b2 − b1
ln
a1
a2
. (3.2.28)

The masses of the fields are not far below the fundamental scale of the model. Higher
order terms have again the chance to break the U(1)R symmetry and induce a VEV for
the superpotential. We will come back to this example in section 3.2.5.
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A generic example

Three fields X , Y and Z are charged under a Z9 × Z4 symmetry in this model. The
charges under these symmetries are given by qX = (1, 0), qY = (5, 3) and qZ = (8, 3).
The first entry is the Z9 charge and the second entry is the Z4 charge. The superpotential
induced by these symmetries is given by

W = λ5XY
2Z2 + λ8X

4Y 3Z3 + κ8X
4Z4 + λ9X

9 + . . . (3.2.29)

up to higher order couplings. There is an approximate U(1)R symmetry for this super-
potential up to order 8. The last term λ9X

9 breaks this symmetry. The charges under
the approximate symmetry are 0 for X and 1

2
for Y and Z. A solution to the F -term

equations is

〈X〉 = −(−2)
2
9

3
1
3

(
λ35
λ28κ8

) 1
9

, (3.2.30)

〈Y 〉 = −(−2)
11
18

3
5
12

λ
5
12
5 λ

1
4
9

λ
11
18
8 κ

1
18
8

, (3.2.31)

〈Z〉 = (−2)
5
18

3
5
12

λ
5
12
5 λ

1
4
9

λ
5
18
8 κ

7
18
8

. (3.2.32)

The superpotential VEV is given by

〈W〉 = − 4

27

λ35λ9
λ28κ8

. (3.2.33)

Also in this example all masses for the fields in the supersymmetric minimum are non-
vanishing. In the limit λ9 → 0 the U(1)R symmetry is restored. In this case 〈X〉 remains
finite but 〈Y 〉 and 〈Z〉 go to zero. As it should be, the VEV of the superpotential 〈W〉
vanishes in this limit term by term. In addition the fields Y and Z will become massless.

An example in heterotic orbifold compactifications

A more complex example is given by a heterotic orbifold compactification. The model
is one of the models described in [8, 40]. It is based on a Z6−II orbifold geometry and
described by the gauge shift V and the Wilson lines W1 and W2

V =

(
1

3
,−1

2
,−1

2
, 0, 0, 0, 0, 0

)(
1

2
,−1

6
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,
1

2

)
, (3.2.34)

W1 =

(
1

4
,−1

4
,−1

4
,−1

4
,−1

4
,
1

4
,
1

4
,
1

4

)(
1,−1,−1,−1,−1,−1

2
,−1

2
, 2

)
, (3.2.35)

W2 =

(
−1

2
,−1

2
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

)(
1

3
, 0, 0,

2

3
,
5

3
,−2, 2, 2

)
. (3.2.36)
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The E8 × E8 gauge group of the heterotic string is broken by the orbifold boundary
conditions. The gauge group up to U(1) factors of the model is

(SU(3)× SU(2))︸ ︷︷ ︸
⊂E8

× (SU(3)× SU(2)× SU(2)× SU(2)× SU(2))︸ ︷︷ ︸
⊂E8

. (3.2.37)

We will only consider the fields

φ = (s1, s6, s7, s10, s13, s14, s17, s22, s24, s33). (3.2.38)

The superpotential is not only determined by the gauge symmetry but also by various
other symmetries [40, 41]. There are 56 terms with 28 independent coefficients at order
11

W =
1

288
λ1s1s

3
22s

4
33

(
s210 + s217

)
+

1

96
λ2s1s

2
22s24s

4
33

(
s210 + s217

)

+
1

96
λ3s1s22s

2
24s

4
33

(
s210 + s217

)
+

1

288
λ4s1s

3
24s

4
33

(
s210 + s217

)

+
1

2
λ5s1s22s

2
33(s10s6 + s13s17) +

1

2
λ6s1s24s

2
33(s10s6 + s13s17)

+
1

144
λ7s

3
22s

4
33(s10s7 + s14s17) +

1

48
λ8s

2
22s24s

4
33(s10s7 + s14s17)

+
1

48
λ9s22s

2
24s

4
33(s10s7 + s14s17) +

1

144
λ10s

3
24s

4
33(s10s7 + s14s17)

+
1

96
λ11s10s14s17s22s

4
33s7(s10s7 + s14s17) +

1

96
λ12s10s14s17s24s

4
33s7(s10s7 + s14s17)

+
1

288
λ13s14s22s

4
33s7

(
s313s7 + s14s

3
6

)
+

1

288
λ14s14s24s

4
33s7

(
s313s7 + s14s

3
6

)

+
1

288
λ15s14s22s

4
33s7

(
s310s14 + s317s7

)
+

1

288
λ16s14s24s

4
33s7

(
s310s14 + s317s7

)

+
1

2
λ17s22s

2
33(s13s14 + s6s7) +

1

2
λ18s24s

2
33(s13s14 + s6s7)

+
1

96
λ19s13s14s22s

4
33s6s7(s13s14 + s6s7) +

1

96
λ20s13s14s24s

4
33s6s7(s13s14 + s6s7)

+
1

864
λ21s22s

4
33

(
s310s

3
7 + s314s

3
17

)
+

1

864
λ22s24s

4
33

(
s310s

3
7 + s314s

3
17

)

+
1

288
λ23s13s22s

4
33s6

(
s13s

3
7 + s314s6

)
+

1

288
λ24s13s24s

4
33s6

(
s13s

3
7 + s314s6

)

+
1

288
λ25s10s17s22s

4
33

(
s10s

3
14 + s17s

3
7

)
+

1

288
λ26s10s17s24s

4
33

(
s10s

3
14 + s17s

3
7

)

+
1

864
λ27s22s

4
33

(
s313s

3
14 + s36s

3
7

)
+

1

864
λ28s24s

4
33

(
s313s

3
14 + s36s

3
7

)
.

(3.2.39)
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Only 28 coefficients are independent because of a D4 symmetry [9]. A solution of the
F -term and D-term equations for this superpotential is given for example by

〈s1〉 = − 1

10
, 〈s6〉 =

1

10
, 〈s7〉 =

1

10
, 〈s10〉 =

1

10
, 〈s13〉 =

1

10

〈s14〉 =
1

10
, 〈s17〉 =

1

10
, 〈s22〉 =

1

10
, 〈s24〉 =

1

10
, 〈s33〉 = −

√
1401

20
√
70

(3.2.40)

with

λ1 ≈ 0.482, λ5 ≈ −0.01, λ8 = 0.001, λ9 = 0.001

λ13 ≈ −0.29, λ14 ≈ −0.22, λ17 ≈ −0.001, λ18 = 0.001

λi = 0.01, ∀ i /∈ {1, 5, 8, 9, 13, 14, 17, 18}.
(3.2.41)

We have first determined the VEVs of the fields si and afterwards chosen some λi. A
solution to the F -term equations was then found numerically. The VEV of s33 was chosen
to cancel a Fayet-Iliopoulos D-term [42–44] of an anomoulos U(1) which is present in
this model.
This model exhibits an approximate U(1)R symmetry up to order 10 in the superpo-

tential. The VEV of the superpotential for the given solution is

〈W〉 ≈ 1.1 · 10−12 ∼ 〈φi〉N (3.2.42)

as expected. The order of the U(1)R symmetry breaking is N = 11 and the field VEVs
are of the order O(0.1). The supersymmetric masses are

m ≈
(
1 · 10−5, 1 · 10−5, 1.4 · 10−9, 5.1 · 10−10, 2.7 · 10−10,

2.2 · 10−10, 1 · 10−10, 3 · 10−11, 0, 0
)
.

(3.2.43)

The two massless fields will obtain masses from the D-term potential and the absorption
of the Goldstone modes.

3.2.4 A link to computational algebraic geometry

In the last section we have discussed several examples with many fields. The task to
solve polynomial, in general non-linear equations is a topic in computational algebraic
geometry. It is possible to make some general statements of the solution structure in
concrete examples with these techniques.

Definition 5 The set of all polynomials in φ1, . . . , φM with coefficients in C is denotedC[φ1, . . . , φM ]. C[φ1, . . . , φM ] is called a polynomial ring.

Definition 6 Let Fi with i ∈ {1, . . . ,M} be polynomials in C[φ1, . . . , φM ]. We call

I = 〈F1, . . . , FM〉 =
{

M∑

i=1

hiFi

∣∣∣∣∣ hi ∈ C[φ1, . . . , φM ]

}
(3.2.44)

the ideal I generated by Fi.
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3 Approximate R symmetries

Every ideal I is finitely generated by a given number of Fi. This is known as the Hilbert
basis theorem [45].

Definition 7 Let I be an ideal and F a polynomial. The radical of I is defined as√
I = {F | Fm ∈ I for some integer m ≥ 1} . (3.2.45)

If W ∈
√
I where W is the superpotential we have Wm ∈ I for some m and can write

Wm =

M∑

i=1

hiFi (3.2.46)

if I is the ideal generated by the F -term equations. That would mean that at a common
zero of Fi, which is a solution to the F -term equations we find W = 0. If we want to have
W 6= 0 as in the case of an approximate U(1)R symmetry we should thus find W /∈

√
I.

We further have to show that W /∈
√
I implies automatically W 6= 0 for some common

zeros of Fi.

Definition 8 The variety V of an ideal I ⊂ C[φ1, . . . , φM ] is defined as

V (I) =
{
φ ∈ CM

∣∣ F (φ) = 0 ∀ F ∈ I
}
. (3.2.47)

That means the solution space of the F -term equations is a variety. On the other hand
we can also define the ideal of a variety.

Definition 9 The ideal I(V ) of a variety V is defined by

I(V ) = {F ∈ C[φ1, . . . , φM ] | F (φ) = 0 ∀ φ ∈ V } . (3.2.48)

Theorem 2 The strong Nullstellensatz: if I is an ideal in C[φ1, . . . , φM ] we have

I(V (I)) =
√
I. (3.2.49)

V (I) is the solution space of the F -term equations that means all common zeros of all
Fi. The ideal I(V (I)) is the ideal spanned by all polynomials which also vanish at all
common zeros of all Fi. The strong Nullstellensatz states that this ideal is given by the
radical

√
I. That means that if W /∈

√
I there have to be solutions where the Fi are

all zero, but W is not, because otherwise it would be in I(V (I)). To test if W ∈
√
I is

known as the ideal membership problem and can be solved for a given polynomial and
a given ideal algorithmically.
We have explicitly checked with the computer algebra system Singular [46] that for

W given in section 3.2.3 W /∈
√
I if I is the ideal spanned by the F -term equations

I = 〈F1, . . . FM〉. That confirms our earlier numerical result that W 6= 0 for broken
U(1)R symmetries exists with an algebraic method. It is furthermore possible to show
that W ∈ I as expected if the U(1)R symmetry is valid.
It is also possible to use methods based on Gröbner bases to compute exact solutions

to the F -term equations with Singular. These techniques have been used to minimize
the Higgs potential in [47] and more recently also in the string theory context [48]. It
is possible to use Gröbner bases to compute the Hilbert basis of a given problem (see
for example [49][p. 392]) which relates the mathematical topic of this section with the
mathematical survey in section 2.2.1.
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3.2.5 Moduli stabilization

One of the open questions in string theory, especially in heterotic string theory is moduli
stabilization. How is it possible to determine and stabilize dynamically the value for the
scale of the extra dimensions, the gauge coupling and additional degrees of freedom. This
topic is often connected to supersymmetry breaking. In many attempts supersymmetry
is broken by dimensional transmutation [50] for example with the help of a gaugino
condensate [51]. This mechanism can only work if the gauge coupling which is in these
settings given by the VEV of the dilaton is fixed. There have been several attempts
for dilaton stabilization, namely race-track models [52], Kähler stabilization [53,54] and
an adaption of the KKLT scheme [55] from type II string theories. We will focus our
attention on the KKLT idea. The original KKLT setup was used to stabilize the Kähler
modulus T in type II string theories with a small constant c and a superpotential of the
form

W = c+ Ae−bT . (3.2.50)

The origin of the small constant based on fluxes [56] and its scale is not fixed but can be
small by accident. In heterotic string theory we have no fluxes at hand, but can use the
small VEV of the perturbative superpotential 〈Wperturbative〉 and a gaugino condensate
for the non-perturbative part. In heterotic orbifold compactifications we can have a
superpotential of the form

W = 〈Wperturbative〉+ Ae−aS︸ ︷︷ ︸
Wnon-perturbative

. (3.2.51)

The exponential is determined by a hidden gauge group, S labels the dilaton and
〈Wperturbative〉 is the VEV of the perturbative superpotential. This mechanism works
if the VEVs of all singlet fields giving rise to 〈Wperturbative〉 are already stabilized. We
will assume that this is the case. As outlined in this study, we find a hierarchically
small 〈Wperturbative〉 due to an approximate U(1)R symmetry. The minimum of the scalar
potential for S is given by

|aSA · e−aS| ∼ | 〈Wperturbative〉 |. (3.2.52)

The small value for the superpotential VEV gives us a Dilaton VEV 〈S〉 of the right
scale in this setup. This has been studied in a toy model in [57]. It is an interesting
task for future work to study the outlined setup for Dilaton stabilization in a complete
model. It would be possible to proceed as follows:
A superpotential like the one in equation 3.2.20 gives rise to F -term equations which

lead to fixed values for the singlet VEVs 〈φi〉 as well as the Kähler moduli T . A hidden
sector will induce a gaugino condensate which breaks supersymmetry and will offer the
possibility to further stabilize the Dilaton S. All moduli except the complex structure
moduli U are fixed and supersymmetry is broken in such a setup. The complex structure
moduli can maybe fixed by a mechanism like the one proposed in [58]. If it is possible
to find such a setup in a realistic orbifold compactification is beyond the scope of this
work.
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3.3 Approximate U(1)R symmetries and the µ term

The Higgsino mass term µ in the MSSM is related to the Z boson mass

|µ|2 = 1

cos 2β
(m2

hu sin
2 β −m2

hd
cos2 β)− 1

2
M2

Z . (3.3.1)

mhu and mhd are the soft masses, tan β = 〈hu〉 / 〈hd〉 is the relation between the Higgs
VEVs andMZ is the Z boson mass. µ = 0 is experimentally excluded because no Higgsi-
nos have been found at colliders so far. On the other hand, equation 3.3.1 relates the µ
term to the supersymmetry breaking soft masses. The µ term arises in the superpoten-
tial at the supersymmetric level and there is a priori no relation to the supersymmetry
breaking scale. The issue of this section is to create a link between the µ term and the
supersymmetry breaking scale with approximate U(1)R symmetries.

3.3.1 An effective µ term

There are several mechanism known to provide a µ term of the supersymmetry breaking
scale [59, 60]. Consider a superpotential and a Kähler potential of the form

W = W0(φi) + µ̂(φi)huhd + . . . (3.3.2)

K = K(φi) + Yu(φi)|hu|2 + Yd(φi)|hd|2 + (Z(φi)hudd + h.c.) + . . . . (3.3.3)

We ignore MSSM matter fields for the moment and focus on additional superfields φi
which extend the MSSM. These fields are SM singlets. If 〈W0〉 is real we find an effective
µ term [61]

µ =
1√YdYu

(
e

1
2
KW0Z + e

1
2
KKjiDjW

∂Z
∂φ̄i

+ e
1
2
Kµ̂

)
. (3.3.4)

The first term is proportional to the gravitino mass m3/2 which sets the supersymmetry
breaking scale. The prefactor is generically

Z 1√YdYu
= O(1). (3.3.5)

The second term is proportional to the F -term and therefore of the order of the super-
symmetry breaking scale [60]. The last term µ̂ is unrelated and can in principle give a
too large contribution to the effective µ term.
We can see that Kähler-Weyl transformations cannot cure the problem. Using a

Kähler-Weyl transformation, it is always possible to absorb the µ̂ term into the Kähler
potential. We define the invariant function

G = K + ln |W|2. (3.3.6)

Instead of using W and K we can work with

W̃ = We−f , K̃ = K + f + f̄ , f =
µ̂

W0
huhd. (3.3.7)
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Expanding K̃ results in

K̃ = K + Yu|hu|2 + Yd|hd|2 +
((

Z +
µ̂

W0

)
hudd + h.c.

)
+ . . . . (3.3.8)

As expected this does not relate µ̂ to the supersymmetry breaking scale. The problem
is just hidden in the Kähler potential.
Let us consider a superpotential where the combination huhd is a complete singlet

under all symmetries

W =
∑

a

caMa(φi) + huhd
∑

a

c′aMa(φi) + . . . . (3.3.9)

We identify

W0 =
∑

a

caMa(φi), µ̂ =
∑

a

c′aMa(φi). (3.3.10)

The Ma(φi) are monomials in the additional fields φi. The monomials are singlets
under all symmetries except possible discrete or continuous R symmetries. ca and c′a
label numerical coupling coefficients.
If c′a = λca, we find [62]

µ̂ = λW0. (3.3.11)

The VEV 〈W0〉 sets the gravitino mass and has to be of the correct size. We have shown
in this work that this can be realized with an approximate U(1)R symmetry. If we can
explain that λ is O(1), approximate U(1)R symmetries can explain the correct size of
the µ term.

3.3.2 A µ term in an orbifold GUT

Let us assume a six dimensional theory on a T2/Z2 orbifold. The Kähler potential is

K = − ln((T + T̄ )(U + Ū)− (hu + h̄d)(hd + h̄u)). (3.3.12)

This form is induced by higher dimensional gauge invariance [63, 64] or by direct calcu-
lation in heterotic orbifold compactifications [65–68]. T is the Kähler modulus and U
the complex structure modulus. hu and hd arise as extra components of six dimensional
gauge fields. Gauge transformations mix hu and h̄d and enforce the structure of the
Kähler potential in equation 3.3.12. An expansion of the Kähler potential gives

K = − ln((T + T̄ )(Z + Z̄)− (hu + h̄d)(hd + h̄u))

≈ − ln((T + T̄ )(U + ū)) +
1

(T + T̄ )(U + Ū)
(|hu|2 + |hd|2 + (huhd + h.c.))

= − ln((T + T̄ )(U + Ū)) +
(
|ĥu|2 + |ĥd|2 + (ĥuĥd + h.c.)

)
.

(3.3.13)

We introduced canonically normalized fields ĥu and ĥd. Higher dimensional gauge in-
variance enforces the superpotential to be independent of ĥuĥd

W + ĥuĥd. (3.3.14)
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This means that there are no monomials ĥuĥd in W. In leading order in ĥuĥd this setting
is equivalent to

W̃ = eĥuĥdW (3.3.15)

K̃ = − ln((T + T̄ )(U + Ū)) +
(
|ĥu|2 + |ĥd|2

)
. (3.3.16)

Expanding the superpotential shows that

λ = 1, c′a = ca (3.3.17)

which generates a µ term of the supersymmetry breaking scale. There have been two
ingredients for this behavior. An approximate U(1)R symmetry can induce a small
superpotential VEV and thus a gravitino mass in the TeV range. Further the special
form of the Kähler potential induced by the T2/Z2 orbifold connects this scale with the
µ term.
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4 Gauge-top unification

We discuss in this section the top quark coupling in higher dimensional supersymmetric
theories. We will review that orbifold theories can give rise to a top quark coupling
which originates from higher dimensional gauge interactions [69]. We further discuss
corrections and discuss the phenomenological consequences. In a final step we are able
to relate low energy observables to the size of the extra dimensions.

4.1 Gauge-top unification at tree level

Assume a six dimensional orbifold GUT with SU(6) gauge group. The geometry of the
model is T2/Z2 (see figure 4.1). The fixed points in the extra dimensions are labeled by

 !"  !"

 !" !"

SU(6)

 !"

SU(5)×U(1)χ

(0, 0)

 !"

SU(5)×U(1)χ

(0, 1)

SU(4)× SU(2)L ×U(1)′

(1, 0)

SU(4)× SU(2)L ×U(1)′

(1, 1)

π R5

π R6

Figure 4.1: Sketch of the six dimensional GUT model.

two quantum numbers n2 and n′
2. The distance between the fixed points are πR5 and

πR6. The torus exhibits a rectangular lattice. The SU(6) gauge group gets broken by
the orbifolding to SU(5)× U(1)χ for n2 = 0 and to SU(4)× SU(2)L × U(1)′ for n2 = 1.
The gauge group in four dimensions is given by

SU(3)C × SU(2)L ×U(1)Y︸ ︷︷ ︸
=GSM

×U(1). (4.1.1)

With GSM we denote the standard model gauge group. This model is inspired by [69,70].
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4 Gauge-top unification

The bulk supersymmetry corresponds to N = 2 supersymmetry from a four dimen-
sional viewpoint. The six dimensional gauge multiplet (V,Φ) contains a four dimensional
vector multiplet V and a chiral multiplet Φ. The orbifold boundary conditions

Pn2=0 = diag(1, 1, 1, 1, 1,−1), Pn2=1 = diag(1, 1, 1,−1,−1, 1) (4.1.2)

imply

Φ = ΦaTa

=




Φ
(−−)
(8,1)0

− 1
√

15
Φ

(−−)
Y + 1

2
√

15
Φ

(−−)
χ

1
√

2
Φ

(−+)
(3,2)

−

5

6

1
√

2
Φ

(+−)
(3,1)

−

1

3

1
√

2
Φ
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(3̄,2) 5

6

1
√

15
Φ

(−−)
(1,3)0

+ 3
2
√

15
Φ

(−−)
Y + 1

2
√

15
Φ

(−−)
χ

1
√

2
Φ

(++)
(1,2) 1

2

1
√

2
Φ

(+−)

(3̄,1) 1

3

1
√

2
Φ

(++)
(1,2)

−

1

2

− 5
2
√

15
Φ

(−−)
(1,1)0




(4.1.3)

where the SU(6) generators are decomposed. The + and − signs label the orbifold parity
in the two extra dimensions. We find two fields which can be identified as the MSSM
Higgs doublets

hu = Φ
(++)
(1,2) 1

2

, hd = Φ
(++)
(1,2)

−
1
2

. (4.1.4)

The normalization is chosen to be compatible with

tr(TaTb) =
1

2
δab. (4.1.5)

All fields are canonically normalized. There is also a hypermultiplet H that transforms
as a 20-plet under the SU(6) gauge group. In N = 1 supersymmetry we have

H = (ϕ, ϕc). (4.1.6)

Here ϕ transforms as 20-plet and ϕc as 2̄0-plet under SU(6). After orbifold projection
the third generation quark doublet q3 comes from ϕ. The up type quark ū3 and the
lepton singlet ē3 originate from ϕc.
The two-component spinors in ϕ and ϕc are labeled with ξ and η. The scalar compo-

nent of the chiral superfield Φ is given by

φ =
1√
2
(A5 + iA6). (4.1.7)

The top Yukawa coupling in the four dimensional Lagrangian is

ytū3q3hu ⊂ L4D. (4.1.8)

We will see that the origin of this coupling is the six dimensional gauge interaction. We
have

η(∂̄ +
√
2g6φ)ξ ⊂ L6D (4.1.9)
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with the six dimensional gauge coupling g6. The partial derivative is ∂̄ = ∂5 + i∂6 (see
for example [71]). With indices we find

1

3!
ηi1i2i3

(
δi1j1δ

i2
j2
δi3j3∂̄ +

√
2g6
(
φi1j1δ

i2
j2
δi3j3 + δi1j1φ

i2
j2
δi3j3 + δi1j1δ

i2
j2
φi3j3
))
ξj1j2j3

=
1

3!
ηi1i2i3

(
δi3j3∂̄ + 3

√
2g6φ

i3
j3

)
ξi1i2i3 .

(4.1.10)

q3 is in the SU(5) 10-plet of the SU(6) 20-plet ξ

ξij6 = 10ij . (4.1.11)

For ū3 out of the 10-plet, which originates from the 2̄0-plet η we find

ηijk =
1

2
ǫijklm(10

c)lm. (4.1.12)

The fields q3 and ū3 come from different SU(5) multiplets. The final reduction gives

1

2

√
2g6ηijkφ

k
6ξ
ij6 =

1

4

√
2g6ǫijklm(10

c)ij10klφm6

⊃ 1

2
g6ǫabcǫαβǫ

abd(ū3)d(q3)
cα(hu)

β

= g6ū3q3hu.

(4.1.13)

The latin indices are SU(3)C indices and the greek indices are SU(2)L indices. We have
seen that the top quark Yukawa coupling in our four dimensional theory originates from
the six dimensional gauge multiplet. The Yukawa coupling is given by

yt = g (4.1.14)

at tree level. g is the four dimensional gauge coupling. The geometrical reduction has
to be taken into account to relate g6 and g.

4.2 Corrections

We will discuss several corrections to the tree level result in this section. The influence
of localized Fayet-Iliopoulos D-terms will give the strongest corrections.

4.2.1 Localized states

The β-function in six dimensions is given by two contributions

β = b6µ
2R5R6 + b4. (4.2.1)

The dominant power-law contribution is universal for gauge and top coupling. In our
setup only the third generation of quarks and leptons is located in the extra dimensions.
This results in

bt6 = bi6 = −4, ∀ i = 1, 2, 3. (4.2.2)
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The subdominant logarithmic contribution is influenced by localized states sitting at
the fixed points. b4 is therefore not universal for the gauge and the top coupling. We
estimate the effect as wave function renormalization

|∆yt −∆gi|ln ≈ |∆gi −∆gj |ln ≈
∣∣∣∣∆b4 ln

Λ

MGUT

∣∣∣∣ . (4.2.3)

Λ is the cut-off scale and ∆b4 is the difference between the β-functions. The corrections
are of the order of MSSM threshold corrections. They originate from squarks and sleptons
having mass splittings of the order O(1) to O(10).

4.2.2 Diagonalization effects

The up type Yukawa couplings are given by

Yu =



0 0 0
0 0 0
0 0 O(g)


+



y11 y12 y13
y21 y22 y23
y31 y32 y33


 . (4.2.4)

The entries yij in the second matrix are non-renormalizable couplings and couplings from
localized states. The top Yukawa coupling after diagonalization is

yt = O(g) +O(yij). (4.2.5)

In our setup y33 is solely a non-renormalizable coupling and thus suppressed. To get a
realistic Yukawa matrix the other couplings yij should also be suppressed which means
that O(g) is the dominant contribution for yt.

4.2.3 Influence of the Fayet-Iliopoulos D-term

Localized Fayet-Iliopoulos D-terms influence the coupling strengths in extra dimensional
theories [72–74]. For a U(1) symmetry there can be

tr(qI) 6= 0, I = (n2, n
′
2) (4.2.6)

even if the corresponding trace vanishes in the effective four dimensional theory which
means the U(1) symmetry is non-anomalous in four dimensions. We follow in this section
[74] and choose ∑

I

ξI = 0 (4.2.7)

where ξI is the Fayet-Iliopoulos D-term. A generalization can be found in section 4.5.
tr(qI) 6= 0 induces localized Fayet-Iliopoulos D-terms. The zero mode wave function

of a field charged under such an U(1) is in a six dimensional theory given by [74]

ϕ ≈ N
∏

I

∣∣∣∣ϑ1
(
z − zI
2π

∣∣∣∣ τ
)∣∣∣∣

1
2π
g6qϕξI

exp

(
− 1

8π2τ2
g6qϕξI(Im(z − zI))

2

)
. (4.2.8)
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This profile is the same for bosons and fermions and a subleading logarithmic contribu-
tion was neglected. N is a normalization constant. The coordinate system is defined
by

z =
1

R5
x5 +

τ

R6
x6. (4.2.9)

τ is the modular parameter of the torus and in the rectangular case given by τ = iτ2 =
iR6/R5. The ϑ-function is given by [75]

ϑ1(z|τ) =
∑

n∈Z eiπτ(n+ 1
2)

2
+2πi(n+ 1

2)(z+
1
2) (4.2.10)

and

ξI =
1

16π2
g6Λ

2

(
1

4
tr(q) + tr(qI)

)
(4.2.11)

is the localized Fayet-Iliopoulos D-term. q are the charges of the bulk fields under the
U(1) and qI the charges of the fields at the corresponding fixed point. Λ is the cut-off of
the theory. We assume

Λ2 =
MP√
V56

, MP = 2.43 · 1018 GeV, V56 = 2π2R5R6, g6 =
√
V56g. (4.2.12)

The normalization condition on the orbifold is

πR5∫

0

dx5

2πR6∫

0

dx6|ψ|2 = 1. (4.2.13)

The localization of the distorted wave function is visualized in figure 4.2. If q3 and ū3

Figure 4.2: Localization of two wave function with opposite U(1) charges in the extra
dimensions.

are charged under an U(1) with tr(qI) 6= 0, their wave function profiles are determined
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by equation 4.2.8. Different wave functions lead to different effective couplings (see for
example [69]). The implication is a difference between yt and g. The profiles for q3 and
ū3 are inverse to each other because they come from ϕ and ϕc and have opposite U(1)
charges.
For the gauge field A and the Higgs field hu we find flat profiles and ū†3 has the same

profile than ū3 because the wave function in equation 4.2.8 is real.
The top Yukawa coupling scales like the integral over ū3q3hu and the gauge coupling

like ū†3ū3A. We conclude that the top Yukawa coupling is suppressed. The strength
of the suppression is depicted in figure 4.3. The suppression depends mainly on two

+
+

-
-

R5

R6

Èqj tr qI È=1

10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

R5�R6

y t
�g

Figure 4.3: Suppression of the top Yukawa coupling yt relative to the gauge coupling g.

different factors:

• The anisotropy R5/R6.

• The charges qϕ tr qI .

The charges qϕ tr qI are model dependent and depend on the U(1) charges of the field
qϕ and the strength of the localized Fayet-Iliopoulos D-term tr qI . We have chosen
tr q(0,0) = tr q(0,1) > 0 and tr q(1,0) = tr q(1,1) < 0 as indicated by the inlay in figure 4.3.
The gauge structure given in figure 4.1 restricts us to two possible sign pattern for tr qI .
The anisotropy R5/R6 can be linked to the GUT scale. The lightest Kaluza-Klein

masses are given by M = 1/(2R5) or M = 1/R6 respectively. We assume R5 > R6 as
sketched in the inlay of figure 4.3. We identify the GUT scale with

MGUT =
1

2R5

, R5 ≈ 50. (4.2.14)

The value for R5 is fixed if we want to achieve MGUT ≈ 2 · 1016 GeV which seems to be
the value where gauge couplings unify. Fixing the anisotropy R5/R6 is thus equivalent
to fixing the radius R6.
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4 Gauge-top unification

We conclude that in a concrete model where all charges are fixed, R6 alone sets the
suppression of yt.

4.3 Phenomenological implications

It is possible to determine tan β with the soft masses and the top Yukawa coupling yt at
the GUT scale. The top quark mass is given by [76]

mt = 173.1± 1.3 GeV. (4.3.1)

The main influence on tanβ is yt. We plot yt at the GUT scale versus tanβ in figure
4.4. Because there is still a large uncertainty in the top quark mass we plot also the one
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Figure 4.4: tan β as a function of the top Yukawa coupling yt(MGUT) which is given at
the GUT scale.

and two sigma deviation bounds for the top quark mass. For the boundary conditions
at the GUT scale we choose the mSUGRA scenario with

m0 = m1/2 = −A0 = 1 TeV. (4.3.2)

The numerical analysis was performed with [77]. The influence of different boundary
conditions at the GUT scale MGUT is only a minor effect. The value of the unified gauge
coupling g depends only mildly on the soft terms and is given by g ≈ 0.7. The tree level
relation yt = g would result in yt ≈ 0.7 at the GUT scale which would imply tan β ≈ 2
(see figure 4.4).
Searches for light Higgs bosons constrain the small tanβ parameter space substantially

[78]. The LEP bound on the SM Higgs mass is mh ≥ 114.4 GeV and can compared with
the theoretical upper bound on the lightest Higgs mass. The maximal tree level SM
Higgs mass is given by

m2
h ≈M2

Z cos2 2β (4.3.3)
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4 Gauge-top unification

which vanishes for tan β = 1. Radiative corrections will influence this result, but the
lightest possible Higgs will remain for tanβ ≈ 1 in the MSSM. For small tanβ the LEP
SM model Higgs bound is also applicable to the MSSM because the lightest CP-even
Higgs boson couples to the Z boson with SM strength [79]. The ”mmax

h scenario” in [79]
which is designed to maximize the lightest Higgs boson mass for given parameters sets
a lower bound of tanβ > 2. This shows that the naive tree level relation yt = g is
already in mild conflict with experimental data. Taking the mSUGRA scenario and the
top quark mass at the upper two sigma bound we obtain tan β > 3.3 to be not in conflict
with the LEP bound on the Higgs mass. We use this value to constrain the top Yukawa
coupling at the GUT scale to be in the range of

0.48 < yt < 0.6, 0.69 <
yt
g
< 0.86. (4.3.4)

This shows that corrections to yt = g are welcome to avoid tension with the current
experimental data in the MSSM. The second main conclusion is that given a value for
tanβ and a pattern of soft masses the anisotropy of the extra dimensions R5/R6 can be
determined.
In figure 4.5 the ratio yt/g in dependence of the charges and the anisotropy is shown.
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Figure 4.5: The anisotropy R5/R6 vs. the charges qϕ tr qI for a realistic value of
yt/g = 0.75 is shown.

4.4 Examples

4.4.1 An example from heterotic orbifold compactifactions

The so-called benchmark model 1A of [8] possesses a six dimensional orbifold GUT. To
be in the framework of [74] we consider only U(1) factors which are orthogonal to the
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4 Gauge-top unification

U(1) generated by tanom. It is possible to choose an U(1) generator which contains then
all local Fayet-Iliopoulos D-terms. The generator is given by

t =
1√
105

(
−3

2
, 0, 0, 0, 0, 0, 0, 0

)(
−11

4
,
21

4
, 0,

11

4
, 0,

11

4
, 0, 0

)
. (4.4.1)

The normalization is chosen to be

|tanom|2 =
1

2
. (4.4.2)

The charges of ϕ and ϕc are

qϕ = −qϕc =
1√
105

3

4
. (4.4.3)

We find localized Fayet-Iliopoulos D-terms because

tr q(0,0) = tr q(0,1) =
32√
105

, tr q(1,0) = tr q(1,1) = − 32√
105

. (4.4.4)

The resulting suppression of the top Yukawa coupling can be seen in figure 4.6. The

+
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Figure 4.6: Suppression of the top Yukawa coupling yt relative to the gauge coupling g
in the so-called benchmark model 1A.

dashed line in the figure shows the influence of an increased cut-off Λ. The solid line
is the six dimensional Planck scale as before, whereas the dashed line is given by an
increased cut-off

Λ2 = 4
MP√
V56

(4.4.5)

which is inspired by [80]. This shows another uncertainty of our approach. We want
to remark that the suppression of the top Yukawa coupling in this model is only valid
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4 Gauge-top unification

in the GUT limit with R5 > R6 and not in the limit R6 > R5 because of the sign of
the localized tr qI . This consequence can also be seen in the gauge structure depicted in
figure 4.1.
The comparison with the experimental Higgs boson search and the conclusion in equa-

tion 4.3.4 shows that without choosing

R5

R6

> 50 (4.4.6)

this model is in strong tension with the experimental situation. For a larger cut-off the
situation rapidly changes and a slight anisotropy is favored.

4.4.2 A scan over several heterotic orbifold compactifications

A large subclass of 52 models from [8, 40] exhibit a six dimensional orbifold GUT and
localized Fayet-Iliopoulos D-terms. The family structure is the same in every model and
agrees also with the so-called benchmark model 1A discussed in section 4.4.1.

• The first and second SM family are located at the two fixed points with n2 = 0.

• The first and second family originate from complete 16-plets.

• The third family and the Higgs fields hu and hd are free to propagate everywhere
in the six dimensional orbifold GUT.

The statistic of the different values for qϕ tr qI can be found in figure 4.7. The values
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Figure 4.7: Statistic of qϕ tr qI for 52 models of [40].

are distributed only in a very small range qϕ tr qI < 2. As outlined in section 4.4.1, a
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small value for qϕ tr qI is in tension with the experimental data. The suppression for yt
for the mean value qϕ tr qI = 0.75 is shown in figure 4.8. We find a suitable value for yt
consistent with the current experimental situation for a light anisotropy R5/R6 ≈ 15.
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Figure 4.8: Suppression of yt for the mean value qϕ tr qI = 0.75 of the 52 models under
consideration.

4.5 A generalization

In this section we generalize [23] to the case

∑

I

ξI 6= 0. (4.5.1)

We find the relevant condition for unbroken supersymmetry to be [74]

〈D3〉 = 〈F56〉 =
∑

I

(
ξI + gqI | 〈φI〉 |2

) 4

R2
5

δ2(z − zI) (4.5.2)

if we neglect again the logarithmic divergent piece of the Fayet-Iliopoulos D-term and
assume that the bulk fields do not break the U(1) symmetry. Repeating the analysis
of [74] we find the disturbed wave function

ϕ ≈ N
∏

I

∣∣∣∣ϑ1
(
z − zI
2π

∣∣∣∣ τ
)∣∣∣∣

1
2π
g6qϕℵI

exp

(
− 1

8π2τ2
g6qϕℵI(Im(z − zI))

2

)
(4.5.3)

with
ℵI =

(
ξI + gqI | 〈φI〉 |2

)
. (4.5.4)
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The difference to the result in equation 4.2.8 depends on the values for the VEVs 〈φI〉.
These VEVs are given by the corresponding F -term equations and are therefore model
dependent. Adopting the result for the improved ϕ to the phenomenological discussion
and the results on the anisotropy R5/R6 in section 4.4 will affect the drawn conclusions.
A more detailed study is therefore desirable, but beyond the scope of this work.
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5 Yukawa couplings

Yukawa couplings in the MSSM are free parameters. They are a priori undetermined
and the theory is lacking of an explanation of the coupling structure. There have been
many attempts to explain the structure of coupling coefficients as well as their precise
values with the localization of particles in extra dimensions (see for example [81]). This
approach exhibits the beauty that the four visible dimensions determine the interaction of
gravity, whereas the extra dimensions would determine the particle physics interactions.
We will focus in this section on heterotic orbifold compactifications. The advantage

in contrast to approaches like [81] is that there are well defined rules how to compute
the coupling strengths between particles localized in the extra dimensions. On the other
hand, we are also able to focus on concrete models where the localization of the particles
is determined by consistency constraints which lowers the number of free parameters.

5.1 Yukawa couplings in heterotic orbifold

compactifications

Yukawa couplings in heterotic orbifold compactifications can be the consequence of the
interaction between so-called twisted and untwisted strings. We will introduce the dif-
ference between twisted and untwisted strings first. After that, we discuss interactions
of untwisted strings in heterotic string theory. We show how the top Yukawa coupling
is calculated in heterotic string theory as a simple example. Finally we focus on the in-
teractions between twisted strings which are the most relevant ones for phenomenology.

5.1.1 Twisted and untwisted strings

We have to distinguish between two different kinds of strings in heterotic string theory,
twisted and untwisted strings. In field theories on orbifolds there are four dimensional
sectors at the fixed points, sometimes called branes (these have nothing to do with D-
branes in type II string theories) and a higher dimensional sector, called bulk [82]. How
to couple these different sectors consistently in field theory, especially in supergravity is
under discussion [83].
In heterotic orbifold compactifications this is well understood [84, 85]. States at the

fixed points originate from twisted strings and states in the bulk from untwisted strings.
Both live in different Hilbert spaces and the coupling between each other is well defined.
Their origin is illustrated in figure 5.1. In heterotic string theory there exist only so-
called closed strings. Every string has to form a loop as the solid black string in figure
5.1. Different points on an orbifold are identified with each other through a discrete
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Figure 5.1: Two strings in a SO(4) torus. The solid string is a closed string on the
torus and can give rise to a bulk state. The dashed string is only a closed string on the

orbifold and is not allowed to move away from the fixed point.

symmetry. This makes it possible that also strings like the dashed one in figure 5.1 are
closed strings on the orbifold. The discrete symmetry identifies the start point with
the end point of the string. The string is not closed on the torus, but closed on the
orbifold. As a consequence, the string is no longer allowed to move freely in the bulk.
It is attached to the fixed point. Strings with this behavior are called twisted strings
and result in the low energy theory in particles at the corresponding fixed point. There
are also strings which are only closed on the torus, but not on the plane. These are
so-called winding modes and have no analog in field theory. They are important for the
interaction of twisted strings as we will see later.
We can rephrase the above statements in a mathematical way. A two dimensional

torus T2 can be parameterized with two real coordinates x5 and x6. We find

x5 = x5 + 2πR5, x6 = x6 + 2πR6 (5.1.1)

in the case of an rectangular torus with two periodicities 2πR5 and 2πR6. It is possible to
extend this also to non-rectangular tori. Let us further introduce a discrete Z2 symmetry.
Its generator θ acts as

θ(x5, x6) = (−x5,−x6). (5.1.2)

We can calculate the fixed points of this geometry and obtain as solution to the fixed
point equations

x5 = −x5 + 2πR5n, x6 = −x6 + 2πR6m, n,m ∈ Z (5.1.3)

the four solutions

ζ1 = (0, 0), ζ2 = (0, πR6), ζ3 = (πR5, 0), ζ4 = (πR5, πR6). (5.1.4)

This is a description of the geometry in real coordinates. The same geometry has been
discussed in complex coordinates in section 4. We want to define strings on this back-
ground. Let us define a bosonic string by X(σ, τ). σ parameterizes the position on the
string, which is not a point particle but an extended object. Like a point particle, the
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τ0 τ1 τ2

Figure 5.2: A closed string at three different times τ0, τ1 and τ2. In the coordinate
system (σ, τ), a freely moving closed string is forming a tube.

string is also moving in time (as depicted in figure 5.2), which makes it necessary to in-
troduce another coordinate τ . The condition that the string is closed can be formulated
as

X(σ + 2π, τ) = X(σ, τ). (5.1.5)

The string is 2π periodic. A freely moving closed string is forming a tube in the (σ, τ)
coordinate system (see also figure 5.2). This tube can be mathematically described as
a Riemann surface and is called string world sheet in analogy to the world line of a
point particle. The world sheet is most efficiently described via one complex coordinate
z instead of the two real coordinates (σ, τ), because of the powerful mathematics of
complex geometry. For that reason, we also use the notation X(z) instead of X(σ, τ).
Let us return to the orbifold. The closed string condition for two real bosons X5 and

X6 on the torus is given by

X5(σ + 2π, τ) = X5(σ, τ) + 2πR5n, X6(σ + 2π, τ) = X6(σ, τ) + 2πR6m, n,m ∈ Z.
(5.1.6)

We see that it is natural to combine two real bosons X5 and X6 to a complex boson.
Strings satisfying this condition are untwisted strings if n = m = 0 and otherwise
winding modes. If the string is only closed on the orbifold we find

X5(σ+2π, τ) = −X5(σ, τ)+2πR5n, X6(σ+2π, τ) = −X6(σ, τ)+2πR6m, n,m ∈ Z.
(5.1.7)

We want to comment that these strings are necessary, because otherwise modular in-
variance of the theory is broken [14, 15]. Modular invariance guarantees the absence of
ultraviolet divergences, which makes it an essential symmetry of the theory.
We also see that twisted strings which are only closed on the orbifold are not able to

move freely in the extra dimensional space but are attracted to the fixed point.

5.1.2 Interactions of untwisted strings

The interaction strength of untwisted strings can be obtained from a world sheet calcu-
lation in heterotic orbifold compactifications. We start with bulk states, which originate
from untwisted strings. There is a vertex operator VΦi

for every bulk state Φi on the
world sheet. This results from the so-called state-operator correspondence in conformal
field theory (CFT) [86]. The interaction of several states Φi can be calculated on the
world sheet using CFT. We illustrate the situation first graphically in various figures.
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ψ

ψ

φ

Figure 5.3: Yukawa coupling of two fermions ψ and a boson φ.

In figure 5.3 we depicted the usual interaction term in the effective theory. By match-
ing, this term is related to the scattering of three strings of the fundamental theory in
figure 5.4. We see in this figure that two strings on the left hand side are joining to one

Figure 5.4: Interaction of three closed strings.

string on the right side if we interpret the timeline as in figure 5.2. We can interpret
the three strings as external states. These external states are described by the vertex
operators VΦi

which exist on the world sheet (see figure 5.5). For tree level amplitudes

Figure 5.5: Every state is described by a cross × representing a vertex operator VΦi
on

the world sheet.

the world sheet is always represented by a sphere. The two world sheets in figure 5.4
and figure 5.5 are topologically equivalent. The crosses in figure 5.5 represent punctures
of the sphere. A one loop amplitude for example is always topologically equivalent to
a torus. Higher genus amplitudes are described for example in [85]. The scattering
amplitude of three strings can be written as

A = 〈VΦ1VΦ2VΦ3〉 (5.1.8)

where the brackets denote a CFT calculation. This calculation involves in principle world
sheet integrals over the positions of the vertex operators VΦi

. Every vertex operator has
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a position zi on the world sheet. This position is not fixed, because all positions are
topologically equivalent. Conformal symmetry which manifests itself as a PSL(2,C)
invariance of the world sheet allows to fix three vertex operator positions z1, z2 and z3.
This feature simplifies the case of three point interactions, because in this case all vertex
operator positions on the world sheet are fixed and no integration is necessary. For the
determination of N -point couplings there remain N − 3 world sheet integrations. We
can also give the general formula in that case

A =

∫
d2z4 . . .

∫
d2zN 〈VΦ1 · · ·VΦN

〉 . (5.1.9)

In nearly all cases of interest it is not possible to solve the integrations over the world
sheet analytically. We will see an example of an approximation in appendix A.1. We
will further give an example for the simpler calculation of three untwisted strings in the
next section.

5.1.3 Another look at the top Yukawa coupling

We showed in section 4 that in a six dimensional orbifold GUT the tree level relation
yt = g can hold if the Higgs field is part of the higher dimensional gauge multiplet. We
will recover this result in this section in heterotic orbifold compactifications. We will
proceed along the lines of [87–89] and refer to [90, 91] for an introduction in the used
techniques. We have to calculate

A33
u =

〈
Vq3Vū3Vφ̄1

〉
(5.1.10)

where we assume that all fields are bulk fields as in section 4. q3 and ū3 are the up
quarks and φ̄1 labels the up type Higgs field. The notation is the same as in [8]. This is
an interaction of three untwisted strings as depicted in figure 5.4. The vertex operators
are given by

Vq3(z) = c(z)c̄(z̄)e−
φ(z)
2 · uαSα(z) · eiqq3 ·H(z) · eiPq3 ·Z(z̄) (5.1.11)

Vū3 = c(z)c̄(z̄)e−
φ(z)
2 · uβSβ(z) · eiqū3 ·H(z) · eiPū3 ·Z(z̄) (5.1.12)

and
Vφ̄1(z) = c(z)c̄(z̄)e−φ(z) · 1 · eiqφ̄1 ·H(z) · eiPφ̄1

·Z(z̄) (5.1.13)

for the Higgs field vertex operator. We have separated each individual part by ·. The
different parts are all referring to a separate CFT on the world sheet.
Let us briefly review the ingredients of the heterotic string. We have a ten dimensional

supersymmetric sector consisting of five complex bosons and fermions

Xµ(z, z̄), ψµ(z), µ = 1, . . . , 5. (5.1.14)

The five complex fermions ψµ(z) will be bosonized toHµ(z). In addition there is a sixteen
dimensional gauge sector, described by eight complex bosons ZI(z̄), I = 1, . . . , 8. These
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bosons have to live on a sixteen dimensional, even, self-dual lattice. For example the
E8 × E8 root lattice. Without this restriction, the theory would no longer be modular
invariant and thus ultraviolet divergences would occur [92, p. 165].
We have in total a 26 dimensional anti-holomorphic sector consisting of Xµ(z̄) and

ZI(z̄) forming a 26 dimensional bosonic string theory. There is also a ten dimensional
superstring theory consisting of Xµ(z) and ψµ(z). The six dimensional internal part of
this theory is forming a superconformal CFT by its own [93]. The splitting of Xµ(z, z̄)
into an holomorphic and an anti-holomorphic part is always possible for tree level am-
plitudes [87].
There are two additional ghost systems in the usual covariant quantization. The so-

called bc ghosts and the superconformal βγ ghosts [91]. If one prefers the modern BRST
approach, these ghosts are automatically part of the theory.
The first part of the vertex operators reflects the ghost contribution. The supercon-

formal ghost system βγ has been bosonized as usual (see for example [94] or [91, p.
17]). That means, we have introduced the free boson φ(z) on the world sheet to include
this part of the theory. From the bc system we only have to deal with the c ghosts
in the case of tree level amplitudes. A more detailed analysis of these systems can be
found in [90, 91]. The second part, uαS

α(z) reflects the fermionic structure and is the
four dimensional part of the ten dimensional fermionic CFT of the full theory. In other
words, it is the part coming from two complex fermions ψ1(z) and ψ2(z). The scalar
vertex operator of the Higgs field behaves as identity in this CFT. The internal part of
the fermionic contribution was already bosonized to

eiqi·H(z) (5.1.15)

where H(z) is a bosonic field and qi is a three dimensional vector reflecting the six
dimensional internal part of the so-called H-momentum (for details see for example
[41,95]). To be more concrete, we find for every complex fermion ψ3(z), ψ4(z) and ψ5(z)
of the internal dimensions a complex bosonic partner Hµ(z) with µ = 3, 4, 5.
The gauge degrees of freedom are encoded in ZI(z̄), which are eight complex bosonic

fields on the sixteen dimensional E8 × E8 root lattice. The spacetime bosonic part of
the vertex operator, depending on Xµ(z, z̄) was neglected because we only will deal with
contact interactions where the spacetime momentum can be set to zero.
As already outlined, the string theory amplitude 5.1.10 splits up into several pieces.

Each part is reflecting an independent CFT. In every CFT we have to calculate the cor-
responding correlation functions. We will not show how to calculate all these correlators,
but review all necessary correlation functions. For the c ghost correlators we find [90, p.
176]

〈c(z1)c̄(z̄1)c(z2)c̄(z̄2)c(z3)c̄(z̄3)〉 = |z12|2|z13|2|z23|2 (5.1.16)

with the shortcut zij = zi − zj. The βγ system gives after bosonization [94, 96]
〈
e−

φ(z1)
2 e−

φ(z2)
2 e−φ(z3)

〉
= z

−1/4
12 z

−1/2
13 z

−1/2
23 . (5.1.17)

For the two spinors Sα(z) the amplitude results in [87, 93]
〈
Sα(z1)S

β(z2)
〉
= Cαβz

−1/2
12 (5.1.18)

49



5 Yukawa couplings

where Cαβ is a four dimensional charge conjugation matrix. This result is achieved by
bosonization [93, 97]

Sα(z) = eiα·H(z), S β̇(z) = eiβ̇·H(z), α =

(
±1

2
,±1

2

)
, β̇ =

(
±1

2
,∓1

2

)
.

(5.1.19)
We only have to consider the first two entries of H(z), namely H1(z) and H2(z). For
two spinors of opposite chirality we find with the same technique [93]

〈
Sα(z1)S

β̇(z2)
〉
= 0. (5.1.20)

The internal part of the fermionic sector gives [87]

〈
eiqq3 ·H(z1)eiqū3 ·H(z1)eiqφ̄1 ·H(z1)

〉
= z

−1/4
12 z

−1/2
13 z

−1/2
23 . (5.1.21)

This results from the masslessness of the involved particles [87] or can be obtained in
a concrete example. Let us focus for the moment on the model 1A of the so-called
minilandscape [8]. The R charges of the involved particles q3, ū3 and φ̄1 are with Ri =
(R1, R2, R3)

T

Rq3 =



−1
0
0


 , Rū3 =




0
−1
0


 , Rφ̄1 =




0
0
−1


 . (5.1.22)

The internal H-momentum for the fermions is shifted by (1/2, 1/2, 1/2)T [41] and the
H-momentum for the scalar φ̄1 is just the R-charge which means

qq3 =



−1

2
1
2
1
2


 , qū3 =




1
2

−1
2

1
2


 , qφ̄1 =




0
0
−1


 . (5.1.23)

This confirms the result in equation 5.1.21 in a concrete example. We can also consider
the gauge degrees of freedom ZI(z̄) and find [87, 88]

〈
eiPq3 ·Z(z̄1)eiPū3 ·Z(z̄2)eiPφ̄1

·Z(z̄3)
〉
= z̄−1

12 z̄
−1
13 z̄

−1
23 . (5.1.24)

The momentum vectors in this case are the sixteen dimensional E8 × E8 root lattice
vectors. This relation can also be computed in a concrete example with the gauge
vectors Pi from [8]. We are ready to put all correlators together

A33
u =

〈
Vq3Vū3Vφ̄1

〉
= uαuβC

αβ . (5.1.25)

As expected, all zij dependent pieces exactly cancel each other. That shows that it is due
to the PSL(2,C) invariance completely irrelevant which values we choose for z1, z2 and
z3. The overall normalization can be obtained with two different methods. It is possible
to determine it by matching with the usual low energy Lagrangian of the MSSM or by
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use of the unitarity of the four point gauge boson amplitude. As outlined in [98], we can
relate the string coupling gs to the four dimensional gauge coupling

g =
√
2gs. (5.1.26)

The effective three point amplitude has to be proportional to
√
2gs [98] which shows

that our string theory result is in agreement with the field theory reduction from section
4 (see also [87] for a more careful analysis). We have briefly reviewed how couplings in
the low energy theory arise from the interaction of strings. The interaction of twisted
strings is much more involved, because the CFT of twisted strings is more difficult to
handle and correlation functions are not as easy to deduce as the ones in this section.

5.1.4 Interactions of twisted strings

Interactions between twisted strings in heterotic orbifold compactifications have been
determined first in [84, 85]. These calculations have been extended in [99–105] to more
complex examples. Several attempts [106, 107] tried to relate these calculations to phe-
nomenology. We will follow this path and determine the phenomenology resulting from
the Yukawa couplings in models on Z6−II orbifolds [8].
We want to briefly discuss how interactions between twisted strings are calculable first.

Before we discuss the CFT of twisted strings and the corresponding vertex operators we
start with a small illustration. How can strings from different twisted sectors interact at
all with each other? We have depicted an example from [84] in figure 5.6. There are two

➀
➁

➂

Figure 5.6: The interaction of three strings. The two twisted strings (➀ dashed and ➁

dotted) can interact via the exchange of a winding mode (➂ solid).

twisted strings ➀ and ➁ at two different fixed points. They interact with each other via
the exchange of a winding mode ➂, a string which is only closed on the torus. To use
CFT techniques, the vertex operators for twisted strings should be different. We get

VΦi
= VΦi

· 1 (untwisted state) (5.1.27)

for an untwisted state and

V
(f)
Φi

= VΦi
· σf (twisted state at fixed point f) (5.1.28)
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for a twisted state at the fixed point labeled by f . The operator σf acts in the CFT of
the bosons Xµ. In our examples so far, there have not been a contribution from the Xµ

CFT, which means that the σf form their own CFT.
Let us give some technical details. Oscillator states of the theory are not covered with

this simplified approach. They correspond to excited twist operators and are given by

V
(f)
Φi

= VΦi
· τf (twisted oscillator state at fixed point f). (5.1.29)

The excited twist operators τf include a bosonic part [85]

∂X(z1)σf (z2) ∼ z
−1/2
12 τf(z2) + . . . (5.1.30)

where the dots denote a non-singular part and with ∼ we label the operator product
expansion (OPE) [86]. We will not further consider such correlators which are difficult
to compute (see for example [108]).
The scattering amplitude for three twisted states without excited twist operators is

given by

A =
〈
V

(f1)
Φ1

V
(f2)
Φ2

V
(f3)
Φ3

〉
= 〈VΦ1VΦ2VΦ3〉 · 〈σf1σf2σf3〉 . (5.1.31)

The only location dependent piece of this correlators is covered in the 〈σf1σf2σf3〉 term.
This term alone is responsible for the influence of the location of the states. We will focus
on such correlators later in concrete examples and in appendix A.1 and A.2. Detailed
discussions of such correlators can be found in [84, 85].

5.2 Yukawa couplings in the minilandscape model 1A

In this section we will discuss the Yukawa couplings of a complete string theory model in
detail. We focus on model 1A from [8]. We start with a brief discussion of the geometry,
focus afterwards on the up quark and down quark mass hierarchies and discuss the
influence of radiative effects.

5.2.1 Geometry of the minilandscape models

The concrete values of the Yukawa couplings in heterotic orbifold compactifications de-
pend strongly on the internal, extra dimensional geometry. The minilandscape models
base on a Z6−II orbifold. The six extra dimensions factorize in three two dimensional
tori T6 = T2

G2
×T2

SU(3) ×T2
SO(4). (5.2.1)

Each torus is described by a root lattice and an orbifold point group. There is a Z2

orbifold twist in the SO(4) torus, a Z3 twist in the SU(3) torus and a Z6 twist in the G2

torus. Each torus can be treated separately. A sketch of the extra dimensions is displayed
in figure 5.7, 5.8 and 5.9. The SO(4) torus is depicted with the gauge structure in figure
4.1. For a more detailed description of the geometry we refer to [41].
We want to remind that the six dimensional orbifold GUT used in section 4, is the six
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(0, 0)

(0, 1) (1, 1)

(1, 0)

Figure 5.7: Sketch of the SO(4) torus. The
labels of the fixed point correspond to

(n2, n
′
2).

(0)

(1)

(2)

Figure 5.8: Sketch of the SU(3) torus. The
fixed points are labeled with (n3).

({1, 2, 3, 4, 5}, 0) ({2, 4}, {1/2, 1})

(3, {±1/3, 1})

Figure 5.9: Sketch of the G2 torus. The labels are (k, qγ). A complete description of the
complex G2 geometry can be found in [41].

dimensional intermediate theory of this construction [70]. The ten dimensional space
G10 needed for a consistent description in the framework of the heterotic string is

G10 = M4 ×T2
SO(4)︸ ︷︷ ︸

intermediate six dimensional GUT

×T2
G2

×T2
SU(3). (5.2.2)

To obtain the right GUT scale, the compactification of the six extra dimensions has to be
anisotropic [70, 80]. The SO(4) torus has to be larger than the other extra dimensions.
Effects in the SO(4) torus are thus more relevant for the physical interactions at the
electroweak scale.
There are several fixed points in each torus where twisted states are located. There

are also various states which live in the bulk of one torus and at the fixed point in
another torus. These states are also twisted states, but are twisted for example only in
one two dimensional torus. The localization in the six dimensional internal space can be
represented by five quantum numbers (k, n3, n2, n

′
2, qγ) [41]. An alternative description

can be found in [109]. k and qγ display the localization in the G2 torus, n3 labels the
localization in the SU(3) torus and n2 and n′

2 mark the localization in the SO(4) torus.
A star (∗) denotes no localization in the corresponding torus and thus refers to a bulk
state in this torus. For example n3 = ∗ means that the state is not localized in the SU(3)
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torus. Nevertheless it can be a twisted state in one of the other tori. An untwisted state
is a state which is a complete bulk state and has the quantum number k = 0. There
exist no twisted states which are not localized in the G2 torus. Every state which is not
localized in the G2 torus is an untwisted state.

The factorization in three two dimensional tori has also consequences for the twist
operators. We can factorize

σ(k,n3,n2,n′

2,qγ)
= σ(k,qγ)︸ ︷︷ ︸T2

G2

× σ(n3)︸︷︷︸T2
SU(3)

×σ(n2,n′

2)︸ ︷︷ ︸T2
SO(4)

. (5.2.3)

We further find

σ(n3=∗) = 1, σ(n2=∗,n′

2=∗) = 1. (5.2.4)

5.2.2 The up quark sector

In this section we will discuss the up quark sector of model 1A from [8] in detail. In [8]
the up quark matrix of the minilandscape model 1A was given by

Yu =



s̃5 s̃5 s̃5

s̃5 s̃5 s̃6

s̃6 s̃6 1


 . (5.2.5)

The top Yukawa coupling was already discussed in detail in section 4 and 5.1.3. All other
couplings are induced by SM singlets s̃, where s̃ stand for several different singlets and
the exponent labels the order in SM singlets at which the first couplings occur. In [8]
it was shown that the matrix has full rank, but there was no detailed treatment of the
different couplings. This is the topic of this section.

We start with the first generation up quark coupling. At order 5 in SM singlets we
find 6 different couplings. The scattering amplitude is given by

A11
u =

∫
d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1

V
(1,0,0,1,0)
ū1 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,0,0)

s05
V

(4,0,∗,∗,0)

s026(
V

(2,0,∗,∗,1/2)
h1

V
(2,0,∗,∗,1/2)
h2

+ V
(2,0,∗,∗,1/2)

s017
V

(2,0,∗,∗,1/2)

s018
+ V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,0)

s022

+V
(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,0)

s022
+ V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,1)

s023
+ V

(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,1)

s023

)〉
.

(5.2.6)

The lower index labels the name of the particle according to the convention in [8]. The
upper index displays the location of the particle in the extra dimensions with the help
of the five introduced quantum numbers (k, n3, n2, n

′
2, qγ). To be more concrete, the
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induced Yukawa coupling Y 11
u is given after VEV assignment

Y 11
u =

〈
s04
〉 〈
s05
〉 〈
s026
〉
(
〈h1〉 〈h2〉

∫
d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1

V
(1,0,0,1,0)
ū1 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,0,0)

s05
V

(4,0,∗,∗,0)

s026
V

(2,0,∗,∗,1/2)
h1

V
(2,0,∗,∗,1/2)
h2

〉

+
〈
s017
〉 〈
s018
〉 ∫

d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1

V
(1,0,0,1,0)
ū1 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,0,0)

s05
V

(4,0,∗,∗,0)

s026
V

(2,0,∗,∗,1/2)

s017
V

(2,0,∗,∗,1/2)

s018

〉

+
〈
s020
〉 〈
s022
〉 ∫

d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1 V

(1,0,0,1,0)
ū1 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,0,0)

s05
V

(4,0,∗,∗,0)

s026
V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,0)

s022

〉

+
〈
s021
〉 〈
s022
〉 ∫

d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1 V

(1,0,0,1,0)
ū1 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,0,0)

s05
V

(4,0,∗,∗,0)

s026
V

(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,0)

s022

〉

+
〈
s020
〉 〈
s023
〉 ∫

d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1 V

(1,0,0,1,0)
ū1 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,0,0)

s05
V

(4,0,∗,∗,0)

s026
V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,1)

s023

〉

+
〈
s021
〉 〈
s023
〉 ∫

d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1 V

(1,0,0,1,0)
ū1 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,0,0)

s05
V

(4,0,∗,∗,0)

s026
V

(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,1)

s023

〉)
.

(5.2.7)

We want to clarify the notation. Whenever we mean the VEV of a field Φi, we write
〈Φi〉. The CFT correlators 〈VΦ1 · · ·VΦN

〉 is given by the same brackets, but operates on
vertex operators VΦi

. We will see that it is not necessary to compute all correlators in
detail. Instead, we will relate them to other entries of the Yukawa matrix Yu.

Let us introduce the coupling between first and second generation up quarks. We find

A12
u =

∫
d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1 V

(1,0,0,0,0)
ū2 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,1,0)

s011
V

(4,0,∗,∗,0)

s026(
V

(2,0,∗,∗,1/2)
h1

V
(2,0,∗,∗,1/2)
h2

+ V
(2,0,∗,∗,1/2)

s017
V

(2,0,∗,∗,1/2)

s018
+ V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,0)

s022

+V
(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,0)

s022
+ V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,1)

s023
+ V

(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,1)

s023

)〉
.

(5.2.8)

We already see that this amplitude differs only slightly from A11
u . We can also consider
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the VEVs of the SM singlets and obtain for the coupling

Y 12
u =

〈
s04
〉 〈
s011
〉 〈
s026
〉
(
〈h1〉 〈h2〉

∫
d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1

V
(1,0,0,0,0)
ū2 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,1,0)

s011
V

(4,0,∗,∗,0)

s026
V

(2,0,∗,∗,1/2)
h1

V
(2,0,∗,∗,1/2)
h2

〉

+
〈
s017
〉 〈
s018
〉 ∫

d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1 V

(1,0,0,0,0)
ū2 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,1,0)

s011
V

(4,0,∗,∗,0)

s026
V

(2,0,∗,∗,1/2)

s017
V

(2,0,∗,∗,1/2)

s018

〉

+
〈
s020
〉 〈
s022
〉 ∫

d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1 V

(1,0,0,0,0)
ū2 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,1,0)

s011
V

(4,0,∗,∗,0)

s026
V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,0)

s022

〉

+
〈
s021
〉 〈
s022
〉 ∫

d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1 V

(1,0,0,0,0)
ū2 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,1,0)

s011
V

(4,0,∗,∗,0)

s026
V

(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,0)

s022

〉

+
〈
s020
〉 〈
s023
〉 ∫

d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1

V
(1,0,0,0,0)
ū2 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,1,0)

s011
V

(4,0,∗,∗,0)

s026
V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,1)

s023

〉

+
〈
s021
〉 〈
s023
〉 ∫

d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1

V
(1,0,0,0,0)
ū2 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,1,0)

s011
V

(4,0,∗,∗,0)

s026
V

(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,1)

s023

〉)
.

(5.2.9)

We recognize that four fields (ū1, ū2, s
0
5 and s011) differ between Y 11

u and Y 12
u . For the

vertex operators we find

V
(1,0,0,0,0)
ū2 V

(1,0,0,1,0)

s011
= Vū2Vs011 · σ(1,0,0,0,0)σ(1,0,0,1,0) = Vū1Vs05 · σ(1,0,0,0,0)σ(1,0,0,1,0) (5.2.10)

= V
(1,0,0,1,0)
ū1 V

(1,0,0,0,0)

s05
(5.2.11)

where we used
Vū1 = Vū2 , Vs05 = Vs011 . (5.2.12)

This is indeed true, because despite their localization property which is encoded in σf
all quantum numbers of the states match [8]. For example

qū1 = qū2 , Pū1 = Pū2. (5.2.13)

The only fundamental difference between the quark flavors in these models is their dif-
ferent localization in the extra dimensions. This results in

A12
u = A11

u (5.2.14)
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and on the level of the induced Yukawa couplings we obtain

Y 12
u =

〈s011〉
〈s05〉

Y 11
u . (5.2.15)

The singlet VEVs determine the ratio between the diagonal and the off-diagonal entry of
the up quark Yukawa matrix. This is an appealing result, because it was not necessary
to calculate all involved correlators of the different CFTs in detail.

We further find

Y 21
u = Y 12

u . (5.2.16)

The reason for this symmetric behavior is a D4 symmetry [9]. For the coupling of the
second generation up quarks we get

A22
u =

∫
d2z4 . . .

∫
d2zN

〈
V (1,0,0,0,0)
q2

V
(1,0,0,0,0)
ū2 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,0,0)

s05
V

(4,0,∗,∗,0)

s026(
V

(2,0,∗,∗,1/2)
h1

V
(2,0,∗,∗,1/2)
h2

+ V
(2,0,∗,∗,1/2)

s017
V

(2,0,∗,∗,1/2)

s018
+ V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,0)

s022

+V
(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,0)

s022
+ V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,1)

s023
+ V

(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,1)

s023

)〉
.

(5.2.17)

In contrast to the first generation amplitude A11
u the location dependent part is different.

The difference is only in the SO(4) torus and we find

〈
σ(0,0)σ(0,0)σ(0,0)σ(0,0)

〉
(5.2.18)

as part of the amplitude A22
u in contrast to

〈
σ(0,1)σ(0,1)σ(0,0)σ(0,0)

〉
(5.2.19)

as part of the amplitude A11
u . As shown in appendix A.1, it is possible to find an

approximate relation between A11
u and A22

u . There is

〈
σ(0,0)σ(0,0)σ(0,0)σ(0,0)

〉
≈ 1,

〈
σ(0,1)σ(0,1)σ(0,0)σ(0,0)

〉
≈ e

−
πR2

6
4 Im(z4) (5.2.20)

where z4 is an undetermined vertex operator position on the world sheet. An integral
approximation makes it possible to obtain

A11
u = e−

πR2
6

4 A22
u (5.2.21)

where πR6 is the distance between the two fixed points labeled with n′
2 in the SO(4)

torus.

The third family of quarks is very different from the two other families in model 1A.
In contrast to the other two families it is not localized in the SO(4) torus. The up quarks
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and the Higgs fields are complete bulk fields everywhere and originate from untwisted
strings. We find

A13
u =

∫
d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1

V
(0,∗,∗,∗,0)
ū3 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,0,0)

s04
V

(1,0,0,0,0)

s06
V

(1,0,0,1,0)

s011

V
(4,0,∗,∗,0)

s026

(
V

(2,0,∗,∗,1/2)
h1

V
(2,0,∗,∗,1/2)
h2

+ V
(2,0,∗,∗,1/2)

s017
V

(2,0,∗,∗,1/2)

s018
+ V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,0)

s022

+V
(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,0)

s022
+ V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,1)

s023
+ V

(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,1)

s023

)〉

+

∫
d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1

V
(0,∗,∗,∗,0)
ū3 V

(0,∗,∗,∗,0)

φ̄1
V

(1,0,0,1,0)

s013

(
V

(1,0,0,0,0)

s04
V

(4,0,∗,∗,0)

s026

)2〉
.

(5.2.22)

This amplitude consists of two different parts. The last one is a contribution at order
five in SM singlets, containing the field s013 which is an oscillator state (see the discussion
in section 5.1.4). There is no easy way to relate this coupling to another coupling and
we leave it as an open variable. The first contribution can be related to A11

u . Compared
to A11

u the twist operator part of the singlet s06 is playing the role of s05, whereas the
location dependent part of s011 is playing the role of ū1. We obtain

Y 13
u =

〈s06〉 〈s011〉
〈s05〉

Y 11
u +B(s̃) (5.2.23)

where the factor B(s̃) is the undetermined order five contribution proportional to s013.
We further find

Y 31
u =

〈
s09
〉
Y 11
u (5.2.24)

and

Y 23
u =

〈
s06
〉
Y 22
u , Y 32

u =
〈s09〉 〈s011〉

〈s05〉
Y 11
u . (5.2.25)

We set the top Yukawa coupling to Y 33
u = yt and remind the detailed discussion in

section 4 and 5.1.3. The relations between all couplings become more obvious in the
matrix notation. Inspired by equation 5.2.21 we introduce

Y 11
u = f(R6)A(s̃), Y 22

u = A(s̃), f(R6) = e−
4R2

6
4 (5.2.26)

with the known function f(R6) and the undetermined quantity A(s̃). The complete up
quark matrix in these variables is

Yu =




f(R6)A(s̃)
〈s011〉
〈s05〉 f(R6)A(s̃)

〈s06〉〈s011〉
〈s05〉 f(R6)A(s̃) +B(s̃)

〈s011〉
〈s05〉 f(R6)A(s̃) A(s̃) 〈s06〉A(s̃)

〈s09〉 f(R6)A(s̃)
〈s09〉〈s011〉
〈s05〉 f(R6)A(s̃) yt



. (5.2.27)

58



5 Yukawa couplings

Quark Mass
up quark (ū1) 1.5− 3.3 MeV

charm quark (ū2) 1.27

(
+0.07
−0.11

)
GeV

top quark (ū3) 171.3± 1.1± 1.2 GeV

Table 5.1: Up quark masses from [110].

This matrix depends on several free variables, but is also strongly constrained. The
values for the singlet VEVs are determined by the F -term and D-term equations and
are in principal no free parameters. We do not want to give a concrete solution to the
F -term and D-term equations, it is sufficient to know that the order of the VEVs is set
by the Fayet-Iliopoulos D-term which results in

〈s̃〉 = O(0.1) (5.2.28)

in natural units [22]. We conclude that the only way to create hierarchies in Yu is
an appropriate choice of f(R6). Let us approach quantitative results. We neglect the
running of couplings, because it is beyond the accuracy of our approach [23]. The
eigenvalues of Yu should show the same hierarchy than the observed up quark masses.
The experimental data are depicted in table 5.1. The approximate hierarchies are

mu

mc

!≈ 1

500
,

mc

mt

!≈ 1

100
. (5.2.29)

After the diagonalization of Yu we find

mu

mc
≈ f(R6),

mc

mt
≈ A(s̃). (5.2.30)

B(s̃) has been neglected for simplicity and the VEVs have been set to an unique value of
0.1. There are indeed two independent variables to obtain the correct quark mass ratios.
The small value for f(R6) is natural due to the exponential character of the function
f(R6). The value for the radius is around R6 ≈ 2.8 to result in f(R6) ≈ 1/500 . If
it is possible to tune A(s̃) is an open question and will not discussed any further. We
will comment on R6. As we have seen in section 4, it is possible to relate the top quark
coupling to the anisotropy R5/R6. In the appropriate GUT limit where R5 sets the GUT
scale we have found R5 ≈ 50. Together with R6 ≈ 2.8 from the discussion of this section
we find the prediction

R5

R6
≈ 18 (5.2.31)

in tension with the value from section 4.4.1 to obtain the correct top quark Yukawa
coupling R5/R6 > 50. We see how constraint this setup is. The need to obtain the
correct quark mass hierarchies in the up quark sector is already sufficient to overconstrain
the size of two internal extra dimensions.
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Quark Mass
down quark (d̄1) 3.5− 6 MeV

strange quark (d̄2) 105

(
+25
−35

)
MeV

bottom quark (d̄3 − d̄4) 4.2

(
+0.17
−0.07

)
GeV

Table 5.2: Down quark masses from [110]. The labels for the quark masses are the
same as in [8].

5.2.3 The down quark sector

The measured down quark masses are displayed in table 5.2. The observed hierarchies
between the masses are smaller than in the up quark sector and are given by [111]

md

ms

!≈ 1

19
,

ms

mb

!≈ 1

40
. (5.2.32)

The theoretical situation in the down quark sector in model 1A is also different to the
up quark sector. The effective third generation is in fact a mixture between two split
families d̄3− d̄4. In contrast to [8], we will take even higher order couplings into account.
We will go up to order nine in SM singlets to obtain a down quark matrix with full rank.
This makes our approach more accurate. We find

Yd =



s̃9 s̃5 0
s̃5 s̃9 0
0 s̃6 s̃8


 . (5.2.33)

We start with the lowest contributions in SM singlets, the off-diagonal entries. We obtain

A12
d =

∫
d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1

V
(1,0,0,0,0)

d̄2
V

(0,∗,∗,∗,0)
φ1

V
(1,0,0,0,0)

s06
V

(1,0,0,1,0)

s09
V

(4,0,∗,∗,0)

s026(
V

(2,0,∗,∗,1/2)
h1

V
(2,0,∗,∗,1/2)
h2

+ V
(2,0,∗,∗,1/2)

s017
V

(2,0,∗,∗,1/2)

s018
+ V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,0)

s022

+V
(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,0)

s022
+ V

(2,1,∗,∗,0)

s020
V

(2,2,∗,∗,1)

s023
+ V

(2,1,∗,∗,1)

s021
V

(2,2,∗,∗,1)

s023

)〉
+O(s̃6).

(5.2.34)

We already know this coupling structure from A11
u . We find for the twist operators in

the SO(4) torus
〈
σ(0,1)σ(0,0)σ(0,0)σ(0,1)

〉
≈ e

−
πR2

6
4 Im(z4) (5.2.35)

and can use the same function f(R6) as in the up quark case to describe this behavior.
The unknown part of the amplitude will be labeled by D(s̃). We get

Y 12
d = f(R6)D(s̃) +O(s̃6) =

1

tanβ

〈s06〉 〈s09〉
〈s04〉 〈s05〉

Y 11
u +O(s̃6). (5.2.36)
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The second equality is only true after electroweak symmetry breaking. This relation
makes it in principle possible to relate the down quark mass to the up quark mass. We
further find

Y 21
d = Y 12

d (5.2.37)

where the reason for this feature as in the up quark case is a D4 symmetry [9]. This
symmetry holds to all orders in SM singlets s̃.

We will completely ignore the coupling Y 32
d = X(s̃), because the eigenvalues of the

matrix Yd which give the quark masses are independent of Y 32
d . The next contribution

at order eight in SM singlets is given by

A33
d =

∫
d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1

(
V

(4,1,∗,∗,0)

d̄3
− V

(4,1,∗,∗,1)

d̄4

)
V

(0,∗,∗,∗,0)
φ1

V
(2,0,∗,∗,1/2)

h02
V

(4,0,∗,∗,1)

h010

(
V

(1,0,0,1,0)

s013

)2
V

(4,0,∗,∗,1/2)

s030
((

V
(3,∗,0,0,−1/3)

h03

)2
+
(
V

(3,∗,0,1,−1/3)

h06

)2)(
V

(2,1,∗,∗,0)

s020
+ V

(2,1,∗,∗,1)

s021

)〉
.

(5.2.38)

This coupling is not related to other couplings and we parameterize it as U(s̃).

The two other diagonal couplings Y 11
d and Y 22

d show up at order nine in SM singlets.
The couplings are quite involved. There is

A11
d =

∫
d2z4 . . .

∫
d2zN

〈
V (1,0,0,1,0)
q1

V
(1,0,0,1,0)

d̄1
V

(0,∗,∗,∗,0)
φ1

V
(1,0,0,0,0)

s04

(
V

(1,0,0,1,0)

s013

)2

V
(4,0,∗,∗,0)

s026
V

(4,0,∗,∗,1/2)

s030

(
V (3,∗,0,0,−1/3)
χ1

V (3,∗,0,0,−1/3)
χ2

V
(2,0,∗,∗,1/2)
h2

V
(3,∗,0,0,−1/3)
h4

+ V (3,∗,0,1,−1/3)
χ3

V (3,∗,0,1,−1/3)
χ4

V
(2,0,∗,∗,1/2)

h02
V

(3,∗,0,0,−1/3)

h04

+ V (3,∗,0,0,−1/3)
χ1

V (3,∗,0,1,−1/3)
χ4

V
(2,0,∗,∗,1/2)

h02
V

(3,∗,0,1,−1/3)

h06

+ V (3,∗,0,0,−1/3)
χ2

V (3,∗,0,1,−1/3)
χ3

V
(2,0,∗,∗,1/2)

h02
V

(3,∗,0,1,−1/3)

h06

+ V
(2,0,∗,∗,1/2)
h2

V
(3,∗,0,0,−1/3)
h3

(
V

(3,∗,0,0,−1/3)

h04

)2

+ V
(2,0,∗,∗,1/2)
h2

V
(3,∗,0,0,−1/3)
h3

(
V

(3,∗,0,1,−1/3)

h06

)2

+V
(2,0,∗,∗,1/2)
h2

V
(3,∗,0,0,−1/3)
h4

V
(3,∗,0,1,−1/3)

h05
V

(3,∗,0,1,−1/3)

h06

)〉
.

(5.2.39)
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We further have

A22
d =

∫
d2z4 . . .

∫
d2zN

〈
V (1,0,0,0,0)
q2

V
(1,0,0,0,0)

d̄2
V

(0,∗,∗,∗,0)
φ1

V
(1,0,0,0,0)

s04

(
V

(1,0,0,1,0)

s013

)2

V
(4,0,∗,∗,0)

s026
V

(4,0,∗,∗,1/2)

s030

(
V (3,∗,0,0,−1/3)
χ1

V (3,∗,0,0,−1/3)
χ2

V
(2,0,∗,∗,1/2)
h2

V
(3,∗,0,0,−1/3)
h4

+ V (3,∗,0,1,−1/3)
χ3

V (3,∗,0,1,−1/3)
χ4

V
(2,0,∗,∗,1/2)

h02
V

(3,∗,0,0,−1/3)

h04

+ V (3,∗,0,0,−1/3)
χ1

V (3,∗,0,1,−1/3)
χ4

V
(2,0,∗,∗,1/2)

h02
V

(3,∗,0,1,−1/3)

h06

+ V (3,∗,0,0,−1/3)
χ2

V (3,∗,0,1,−1/3)
χ3

V
(2,0,∗,∗,1/2)

h02
V

(3,∗,0,1,−1/3)

h06

+ V
(2,0,∗,∗,1/2)
h2

V
(3,∗,0,0,−1/3)
h3

(
V

(3,∗,0,0,−1/3)

h04

)2

+ V
(2,0,∗,∗,1/2)
h2

V
(3,∗,0,0,−1/3)
h3

(
V

(3,∗,0,1,−1/3)

h06

)2

+V
(2,0,∗,∗,1/2)
h2

V
(3,∗,0,0,−1/3)
h4

V
(3,∗,0,1,−1/3)

h05
V

(3,∗,0,1,−1/3)

h06

)〉
.

(5.2.40)

The situation is the same as for the diagonal couplings in the up quark sector. The only
difference between A11

d and A22
d is the localization of the quarks in the SO(4) torus. For

the down quarks this localization dependent part is more involved. The correlators in
the SO(4) torus are

〈
σ(0,1)σ(0,1)σ(0,0)σ(0,1)σ(0,1)

(
2σ(0,0)σ(0,0)σ(0,0) + σ(0,1)σ(0,1)σ(0,0) + 4σ(0,0)σ(0,1)σ(0,1)

)〉

(5.2.41)
for A11

d and
〈
σ(0,0)σ(0,0)σ(0,0)σ(0,1)σ(0,1)

(
2σ(0,0)σ(0,0)σ(0,0) + σ(0,1)σ(0,1)σ(0,0) + 4σ(0,0)σ(0,1)σ(0,1)

)〉

(5.2.42)
for A22

d . These correlators are discussed in more detail in appendix A.2. The result of
this discussion is that the values in leading order are both equal to the twist correlators

〈
σ(0,1)σ(0,1)σ(0,0)σ(0,0)

〉
≈ e

−
πR2

6
4 Im(z4) . (5.2.43)

We thus find
Y 11
d = f(R6)C(s̃), Y 22

d = Y 11
d = f(R6)C(s̃) (5.2.44)

with the same f(R6) as for the up quarks. In leading order the two entries are equal.
The complete down quark Yukawa matrix is given by

Yd =



f(R6)C(s̃) f(R6)D(s̃) 0
f(R6)D(s̃) f(R6)C(s̃) 0

0 X(s̃) U(s̃)


 . (5.2.45)

The three eigenvalues are given by U(s̃) and f(R6)(C(s̃)±D(s̃)). U(s̃) can be used as
free parameter to fit the bottom quark mass. We can obtain the right hierarchy between
the down and the strange quark mass if

C(s̃)
!≈ 9

10
D(s̃). (5.2.46)
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We already discussed the localization behavior in the SO(4) torus which is similar be-
tween the diagonal and the off-diagonal couplings and can thus not give rise to an effect.
The same is true for the SU(3) and the G2 torus. In fact C(s̃) occurs at order five in SM
singlets and D(s̃) results from an interaction with nine SM singlets. Even if we assume
rather large VEVs 〈s̃〉 = 0.3 [22], we find

〈s̃〉4 ≈ 1

125
, C(s̃) ≈ 1

125
D(s̃) (5.2.47)

in contrast to the experimental data. Not all VEVs have to be of similar size, but to
cure such large effects with a proper VEV assignment is rather unnatural. We find two
almost degenerate mass eigenvalues

md

ms

≈ 62

63
. (5.2.48)

We conclude that it is impossible to obtain a quark mass hierarchy as expected from ex-
perimental data in our setup. This further disfavors this model and shows how constraint
the setup obtained from heterotic orbifold compactifications in practice is.

5.2.4 Radiative mass generation

It was proposed in [112] to generate Yukawa couplings via loop effects through super-
symmetry breaking soft terms. This can be a mechanism to cure the problem of nearly
degenerate quark masses in the down quark sector. This mechanism leads naturally to
flavor changing neutral currents (FCNCs) which have to be compatible with experimen-
tal bounds (see for example [113] in the string theory context). If it is possible to fulfill
these bounds in this class of models remains an open task for future work. Maybe there
are also other mechanism which can give rise to essential corrections to the quark masses
in the right way.

5.2.5 Discussion

We have discussed in the last sections the quark mass structure of model 1A in detail.
We have used several approximations, but the need to obtain large hierarchies enabled
us to draw robust conclusions. Before supersymmetry breaking the down quark masses
are not realistic. On the other hand, the up quark masses can be realistic if the size
of the two extra dimensions in the SO(4) torus can be stabilized at the right values.
Nevertheless there is some tension between the required anisotropy in section 4 and
the up quark masses for the light generations. We conclude that model 1A exhibits
an unrealistic flavor structure. The discussion of the mixing and the lepton sector was
therefore not carried out for this model, but it is in principle possible with the outlined
techniques.
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5.3 A comment on model 1B, model 2 and a Z2 × Z2

model

Another vacuum configuration called model 1B was considered in [8]. This model has
an unbroken D4 family symmetry for the first two generations. The difference to model
1A is that the symmetry is not broken by the VEV assignment. The consequence is that
all couplings for the first two generations are equal. As we have seen in the discussion
of model 1A such a behavior is in conflict with observations. It seems to be impossible
for such configurations to have a large hierarchy between the masses as required by ex-
periment. As discussed, radiative quark mass generation after supersymmetry breaking
can maybe avoid this problem.
Another model from the minilandscape, model 2 from [8] has a richer structure because

of more Higgs fields. As a drawback there is no gauge-top unification (see section 4) and
the top Yukawa coupling is already suppressed by two singlet VEVs. The other diagonal
entries of the Yukawa matrix, as well as the first off-diagonal entries are zero which seems
to indicate an unrealistic flavor structure right from construction. Therefore we have not
considered the model in more detail. We conclude that none of the models presented
in [8] exhibits an appealing flavor structure. It is a task for future work to apply the
techniques outlined in this study to the MSSM models of [114] and the NMSSM models
of [115] based on the same minilandscape geometry.
In [19] a model based on a Z2×Z2 orbifold construction was discussed. The geometry of

the extra dimensional structure of this model differs from the minilandscape geometry
based on the Z6−II orbifold. A detailed understanding of the geometry is still under
investigation. Even without this knowledge, the quark mass pattern is rather unrealistic.
There seem to be wrong hierarchies in the up quark sector due to too many couplings at
the trilinear level. Furthermore there are SU(5) relations between the first generations
in the down quark and lepton sector.
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We have discussed three main topics in this thesis.

• How to compute the structure of the superpotential for a model with given sym-
metries.

• Implications of exact and approximate R symmetries of the superpotential.

• Yukawa couplings, especially the top Yukawa coupling in heterotic orbifold com-
pactifications.

Let us summarize the results.
We have successfully introduced the concept of Hilbert bases as a tool to determine

if a given coupling in the superpotential is forbidden or allowed by gauge symmetries
and discrete R or non-R symmetries. That was mainly a technical progress, which
enabled us to study rather complex models, which naturally arise in the context of string
theory. The Hilbert basis allowed us to construct building blocks of the perturbative
superpotential. These building blocks are the ingredients of the superpotential and
determine its structure to all orders in pertubation theory.
Exact and approximate R symmetries have been discussed in this work. We showed

that a hierarchically small VEV for the superpotential as well as a realistic µ term in
orbifold theories can be the consequence of approximate R symmetries. We discussed
the mathematical background and further applications in the field of moduli stabiliza-
tion, which is important in string theory. We gave several simple and quite complex
examples. We outlined the possibility to stabilize the size of the extra dimensions and
the value of the gauge coupling in heterotic orbifold compactifications with the help of
such approximate symmetries.
We discussed the top Yukawa coupling in orbifold field theories. We showed that

there are substantial corrections due to localized Fayet-Iliopoulos D-terms. In the usual
Gauge-Higgs unification scenario they result in an adjustment which is welcome to be
compatible with observations. We gave an example in the framework of heterotic orbifold
compactifications and extend previous work. We further outlined that this mechanism
makes it possible to relate the size of the extra dimensions to available low energy data.
The main part of this thesis was devoted to the discussion of the quark mass hierarchies

and the structure of the Yukawa couplings in heterotic orbifold compactifications. We
have been able to study several models in detail and showed how it is possible to derive
quark mass hierarchies in explicit string theory constructions. It was possible to relate
the quark mass hierarchies to the size of the extra dimensions. As outlined, the size of
the extra dimensions influence also the value of the top quark coupling in these models.
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These two effects make it possible to overconstrain these models. Another conflict with
experimental data for the down quark mass hierarchies arised in a concrete model under
investigation. We have been able to show that several models induced by heterotic string
theory are in tension with experimental constraints.
The developed techniques are universal and can be applied to new constructed models

as well. We would like to remind the reader that all results have been obtained on the
supersymmetric level. As outlined, we cannot guarantee that supersymmetry breaking
does not change the conclusions. At several points we have shown how this work can be
extended.
The Hilbert bases for models with approximate R symmetries can be discussed, which

should show an interesting behavior at the R symmetry breaking scale.
The application of approximate R symmetries to moduli stabilization, together with

modern techniques like Gröbner bases can be used to discuss a complete string theory
model.
The phenomenological consequences of the inclusion of all U(1) factors for the gauge-

top unification scenario can be discussed.
A better understanding of the Yukawa couplings, especially of the interactions between

excited twist operators is desirable. It will be interesting to compare the results for the
Yukawa couplings with target space modular invariance as an additional symmetry of
the superpotential.
It appears desirable to apply the techniques outlined in this thesis also to proton decay

operators as well as to the lepton sector and the mixing matrices in the quark and lepton
sectors.
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A N -point couplings for Z2 twists

A.1 N-point couplings for four Z2 twists

In this section we want to show how it is possible to find an approximate relation between
the two factors in the SO(4) torus

〈
σ(0,0)σ(0,0)σ(0,0)σ(0,0)

〉
and

〈
σ(0,1)σ(0,1)σ(0,0)σ(0,0)

〉
. (A.1.1)

The main problem will not be the discussion of these correlators, but the approximation
of the remaining world sheet integrations. We need to calculate a N -point coupling
with four Z2 twists. The calculation of a 4-point coupling with four Z2 twists has been
calculated in [84,85]. Let us review here the result. There are two different contributions,
one from the quantum part and one from the classical part

〈
σ(0,1)σ(0,1)σ(0,0)σ(0,0)

〉
= Zqu(z4) · Zcl(z4). (A.1.2)

The first is insensitive to the localization of the fields, whereas the last one is sensitive.
The difference between the correlators is only influenced by the classical part. The
quantum part is the same for both correlators. The result for the classical part is [85]

Zcl(z4) =
∑

e−Scl(z4) =
∑

n0,n1∈Z e− πR2
6

Im τ(z4)
|n1+n0τ(z4)+

1
2
(ǫ1+ǫ0τ(z4))|2 (A.1.3)

where we have

τ(z4) =
i 2F1

(
1
2
, 1
2
, 1, 1− z4

)

2F1

(
1
2
, 1
2
, 1, z4

) =
iK(

√
1− z4)

K(
√
z4)

(A.1.4)

and ǫi labels the fixed points of the twist fields. With K(z4) we mean the complete
elliptic integral of the first kind, which is given by

K(z4) =

1∫

0

dt
1√

(1− t2)(1− z24t
2)
. (A.1.5)

z4 is a complex variable and can be interpreted as the position of one of the vertex
operators on the world sheet. As we are dealing with a tree level amplitude, the world
sheet is a sphere. The position z4 cannot be fixed by PSL(2,C) invariance and has to
be weighted by an integral in the end. That means, we have one free complex modulus
of the Riemann surface describing the string interaction. We further have ǫi = 0 for the
fixed point (n2, n

′
2) = (0, 0) and ǫi = 1 for the fixed point (n2, n

′
2) = (0, 1).
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If all fields live at the same fixed point, which is true for

〈
σ(0,0)σ(0,0)σ(0,0)σ(0,0)

〉
(A.1.6)

we have ǫ0 = ǫ1 = 0. We get an unsuppressed amplitude, because the exponential breaks
down. If the fields are localized at different fixed points, for example ǫ0 = 0 and ǫ1 = 1 we
get a suppression going with the distance squared R2

6. This is the case for the correlators

〈
σ(0,1)σ(0,1)σ(0,0)σ(0,0)

〉
. (A.1.7)

The terms for ni 6= 0 are further suppressed and come from strings winding several
times around the torus. We can neglect their contribution, because it is subdominant
and obtain

Zcl(z4) ≈




1 all fields live at the same fixed point

e
−

πR2
6

4 Im τ(z4) fields live at different fixed points
. (A.1.8)

This is the exact classical contribution in the SO(4) torus, because all other fields are
untwisted in the SO(4) torus. We do not know the contribution in the other extra
dimensions, namely the SU(3) and the G2 torus in detail. We know that the additional
contribution is depending on z4. Because we have to integrate over z4 in the end, we
have to approximate the result.

Let us focus on the N -point coupling in more detail. We have a N -point coupling
and therefore N vertex operator positions on the world sheet. We can fix three of them
by PSL(2,C) invariance. Integration over the remaining N − 3 positions is necessary.
At least one of these vertex operators is twisted in the SO(4) torus and we called his
position z4 (in fact it is also possible that all vertex operators in the SO(4) torus are
undetermined by PSL(2,C) invariance, but we will not consider this case here). The
other vertex operators are untwisted in the SO(4) torus and we do not know their
contribution exactly, but they depend on all N − 3 variables. Their contribution is the
same, regardless of their localization in the SO(4) torus. The complete contribution
coming from this localization enters via equation (A.1.8). If we call the unknown part
from the SU(3) and G2 torus and the contributions not affected by the localization in
the SO(4) torus U(z4, . . . , zN), we get

A =

∫
d2z4 . . .

∫
d2zNZcl(z4)U(z4, . . . , zN) (A.1.9)

for the complete amplitude. We can approximate the function Zcl(z4) by setting z4 =
1
2

which is motivated by the shape of the function Scl(z4) (see figure A.1). We obtain
τ(z4) = i for this choice. We get

A〈σ(0,0)σ(0,0)σ(0,0)σ(0,0)〉 =
∫
d2z4 . . .

∫
d2zNU(z4, . . . , zN) (A.1.10)
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Figure A.1: The function Scl(z4) for the values ǫ0 = 0, ǫ1 = 1 and R6 = 2.

if all fields live at the same fixed point and the coupling is unsuppressed. In the case
where the fields are localized at different fixed points we get

A〈σ(0,1)σ(0,1)σ(0,0)σ(0,0)〉 = e−
πR2

6
4

∫
d2z4 . . .

∫
d2zNU(z4, . . . , zN). (A.1.11)

We recognize that the integrals are after the approximation the same. We conclude that
the required ratio between a suppressed and an unsuppressed coupling is

A〈σ(0,1)σ(0,1)σ(0,0)σ(0,0)〉
A〈σ(0,0)σ(0,0)σ(0,0)σ(0,0)〉

=
e−

πR2
6

4

∫
d2z4 . . .

∫
d2zNU(z4, . . . , zN)∫

d2z4 . . .
∫
d2zNU(z4, . . . , zN)

= e−
πR2

6
4 (A.1.12)

in a first approximation. The uncertainty of this approach is substantial, because the
function U(z4, . . . , zN) is unknown.

A.2 N-point couplings for eight Z2 twists

We also need to look at N -point couplings with eight Z2 twists. The computation of this
amplitude is more complicated than the one reviewed in appendix A.1. General Z2 twist
amplitudes have been considered in several papers [100, 116–120], also because they are
of interest in the context of spin operators. The beautiful mathematics of hyperelliptic
Riemann surfaces needed for these computations can be found for example in [121].
In the case of eight twist operators, at least five of them depend on unfixed moduli of

the world sheet z4, . . . , z8. We will focus on the correlator
〈
σ(0,0)σ(0,0)σ(0,0)σ(0,0)σ(0,0)σ(0,0)σ(0,1)σ(0,1)

〉
. (A.2.1)

By symmetry reasons it is equal to
〈
σ(0,1)σ(0,1)σ(0,1)σ(0,1)σ(0,1)σ(0,1)σ(0,0)σ(0,0)

〉
. (A.2.2)
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The classical part can be written as

Zcl =
∑

e−Scl(z4,...,z8). (A.2.3)

The dependence on R6 is the same as for the correlators of four twist operators [100].
We find

Zcl ≈ e−αiR
2
6 (A.2.4)

and thus again an exponential suppression. The constants αi > 0 are depending on the
period matrix of the Riemann surface. In leading order, the contribution is equal to the
contribution of four twist fields. The fact that four additional twisted strings live at
one fixed point does not change the result substantially, because no additional winding
modes are needed for the coupling to exist. We conclude that

〈
σ(0,0)σ(0,0)σ(0,0)σ(0,0)σ(0,0)σ(0,0)σ(0,1)σ(0,1)

〉
≈
〈
σ(0,0)σ(0,0)σ(0,1)σ(0,1)

〉
. (A.2.5)

There is an additional contribution where four twist fields sit at one fixed point and four
twist fields at the other fixed point

〈
σ(0,0)σ(0,0)σ(0,0)σ(0,0)σ(0,1)σ(0,q)σ(0,1)σ(0,1)

〉
. (A.2.6)

Nevertheless, this contribution is stronger suppressed [100] and thus only subleading.
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