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1 Introduction

The Jahn-Teller (JT) effect is intimately connected to the concept of potential-
energy (PE) surfaces, which has its origin in the Born-Oppenheimer approxima-
tion [1, 2]. In 1937, based on the concept PE surfaces, H.A. Jahn and E.Teller
formulated the Jahn-Teller theorem [3, 4]:

“A configuration of a polyatomic molecule for an electronic state hav-
ing an orbital degeneracy cannot be stable with respect to all displace-
ments of the nuclei unless in the original configuration the nuclei all lie
on a straight line.”

As is well known, this theorem and its consequences play an eminently important
role in molecular and solid-state physics [5]. The JT effect is an essential concept in
coordination chemistry, for example, to explain static distortions in transition metal
complexes. The modern interpretation of the JT effect summarizes all symmetry-
related vibronic coupling phenomena in molecules, molecular complexes and solids
under the terms JT and pseudo-JT effect. Despite its venerable history of more than
70 years [3, 6], the JT effect continues to be an active area of research in chemistry
and solid-state physics [5–9].
In the context of vibronic coupling theory, the Jahn-Teller effect can be considered

as a special case of conical intersections (CIs) which are induced by the high spatial
symmetry of a molecule [3]. Some of the key dynamical processes in photochemistry
and photobiology are related to CIs. Radiationless energy conversions in polyatomic
molecules generally proceed through CIs [10]. Since the construction of complete
multi-dimensional PE surfaces including CIs in large molecules is often infeasible
due to the complexity of the electronic-structure problem, theoretical descriptions
usually resort to vibronic coupling and JT models [11], which are based on low-
order Taylor expansions of the potentials at a reference geometry of high symmetry.
According to standard JT theory [5], the JT Hamiltonians arise from a polynomial
expansion of the PE surface in symmetry-adapted coordinates up to second order.

1



1 Introduction

Because of the simple mathematical structure of the JT Hamiltonians, they are
often employed for the simulation of non-adiabatic quantum dynamics in molecular
spectroscopy and photochemistry [9]. For example, standard JT theory has been
successfully applied in the analysis of a vast number of molecular photoelectron
spectra. Important developments during recent decades have been the computation
of linear and quadratic JT coupling constants from first principles [11–15] and the
systematic treatment of multi-mode JT couplings [11, 16, 17].

The description of very pronounced JT distortions and large-amplitude motions
requires PE surfaces with a large range of validity. The best investigated example is
the E×e JT effect in molecules with three identical atoms in an equilateral triangular
arrangement. In this case, the degeneracy of a doubly degenerate electronic state
of E symmetry is lifted by a nuclear coordinate of the same symmetry. The first
systematic treatment of the E × e JT problem with explicit consideration of large-
amplitude motions was developed by Viel and Eisfeld [18] for the ammonia cation.
It was shown that a systematic expansion of the electronic potentials to higher order
can significantly improve the quality of JT PE surfaces [18]. This approach is limited
to dihedral point groups and cannot be applied to JT systems of tetrahedral and
cubic symmetry, which exhibit a particularly rich variety of JT phenomena.

The methane cation in its T2 electronic ground state, for example, exhibits a
very strong T2 × (e + t2 + t2) JT effect [19–21]. He I photoelectron spectra of CH4

have been reported by Rabalais et al. [22] and Potts and Price [23]. Although both
groups published almost identical spectra, there are remarkable differences in the
assignments. Recent experiments using pulsed-field-ionization zero-kinetic-energy
spectroscopy revealed an extremely high spectral line density and indicated that
the hydrogen atoms exchange by tunneling on a picosecond timescale [24, 25]. A
theoretical analysis of the photoelectron spectrum of methane thus requires a PE
surface including at least the eight JT active degrees of freedom. Additionally,
it is particularly important for quantum dynamical simulations to take symmetry
constraints into account, that is, the PE surface must be invariant under exchange
of the hydrogen atoms. It is a goal of the present work to devise a method for the
systematic construction of multi-sheeted JT PE surfaces, taking into account the
invariance under permutation of identical nuclei.

In solid-state physics, the JT effect in cubic symmetry is of utmost importance.
Contrary to molecular systems, large-amplitude motions are often of minor impor-
tance, since distortions and vibrational amplitudes of the atomic centers in crys-
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tals are usually small. On the other hand, cooperative effects such as spin phase-
transitions and magnetism arise from the periodic structure of solids. The micro-
scopic origin of the electron-phonon coupling in doped rare earth perovskites, which
exhibit colossal magnetoresistance, is considered to be a consequence of the JT ef-
fect [26, 27]. Another example of technological importance which may involve the
JT effect is the high-temperature superconductivity in cuprates and alkali-metal
doped fullerides [5, 28]. A currently evolving research field, which combines molec-
ular electronics and spintronics, are molecular magnets [29]. Molecular magnets are
typically composed of one or a cluster of metal atoms, embedded in an organic shell.
The goal is to control the alignment of the electronic spin for the construction of
molecular devices [29, 30]. Besides the JT effect, the electronic spin plays a crucial
role in all these examples and it is an open question, how the vibronic coupling
effects interfere with the electronic spin.

Recently, JT Hamiltonians including spin-orbit (SO) coupling beyond the zeroth
order in the vibrational normal mode expansion have been developed for tetrahedral
and cubic systems [31–33]. Based on these model Hamiltonians, the influence of SO
coupling on vibronic spectra can be addressed beyond the zeroth-order approxima-
tion for the first time. A well-suited series of tetrahedral systems with increasing SO
coupling are the X4

+ (X = P, As, Sb, Bi) cluster cations of the fifth main group. It
has been found that the ionized clusters exhibit very strong JT effects, involving the
e and t2 modes in the 2E ground state and the 2T2 first excited state of the radical
cations. Depending on the electronic state, there exist E × t2, E × t2, T2 × e and
T2× t2 JT effects in these systems exhibiting PE surfaces of considerable topograph-
ical complexity. In addition, effects of (zero-order) SO splittings were identified in
the spectra of As+4 and Sb+

4 [34–38].

The material in the following chapters of this thesis is organized as follows: The
purpose of the second chapter is to introduce the most important concepts for the
construction of symmetry-invariant polynomials and Hamiltonians, the description
of relativistic SO coupling in JT systems and the treatment of nuclear dynamics
for the simulation of photoelectron spectra. The third chapter is devoted to the
development of high-order expansions of JT PE surfaces in tetrahedral systems using
the algebraic methods from Chapter 2. A prototypical example of a tetrahedral JT
system is the methane cation discussed in Chapter 4. The work encompasses all steps
of the ab initio construction of a symmetry-adapted PE surface for the methane
cation in its triply degenerate ground state. In Chapter 5, a systematic study
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1 Introduction

of relativistic SO coupling effects in X4
+ (X = P, As, Sb, Bi) clusters is presented.

Effects of vibronic coupling and SO coupling in photoelectron spectra are analyzed
on the basis of ab initio calculations.
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2 Theoretical background and
methods

In this chapter, the fundamental problem of analytic representations of potential-
energy (PE) surfaces is addressed. Accurate PE surfaces are an essential requirement
for a quantum dynamical description of the nuclear motion in molecules. Modeling
multi-sheeted PE surfaces in more than three dimensions of nuclear motion still rep-
resents a major challenge in theoretical chemistry. In all stages of the development
of PE surfaces and their applications, the choice of the coordinates to represent
the molecular geometry is of outstanding importance. The present theoretical ap-
proach focuses, apart from the inevitable discussion of appropriate coordinates, on
the treatment of symmetry, using concepts from group theory and the theory of
invariant polynomials. The theory of spin-orbit coupling in Jahn-Teller systems and
an efficient wave-packet propagation scheme, which has been used for the simulation
of photoelectron spectra, are described in the last two sections.

2.1 The Born-Oppenheimer approximation

Potential-energy surfaces arise from the Born-Oppenheimer (BO) approximation in
the mathematical formulation of quantum mechanics. The BO approximation is the
most important approximation in computational electronic-structure theory [1, 2].
The fundamental idea of the BO approximation and its variants is the separation
of the motions of nuclei and electrons. This is motivated by the large difference of
masses between electrons and nuclei and is generally interpreted as instantaneous
relaxation of the electronic structure under displacements of the nuclei. Though
widely attributed to the initial work of Born and Oppenheimer [1], modern for-
mulations of the BO approximation usually follow the derivation Born and Huang
published more than 30 years later [2]. According to the BO approximation, PE
surfaces can be understood as functions of the nuclear coordinates corresponding to
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2 Theoretical background and methods

the total energy of the system in one particular electronic state. The nuclei of a
given molecule may be considered to move on one (or several) of these surfaces.

The molecular Schrödinger equation can be written as the eigenvalue problem

HΨj(r,R) = EjΨj(r,R) j = 1, 2 . . . (2.1)

where j enumerates the electronic/vibrational/rotational eigenstates and r and R

denote the electronic and nuclear coordinates, respectively. On the nonrelativistic
level of theory, the Hamiltonian operator H is the sum of five operators,

H = T nu + T el + V nn + V ee + V ne, (2.2)

where T nu and T el are the kinetic-energy operators acting on the nuclear and elec-
tronic coordinates, respectively. The symbols V nn, V ee and V ne denote the (Coulomb)
electron-electron, nucleus-nucleus and nucleus-electron interaction operators. It is
the term V ne, which prevents the exact separation of H into an electronic (Hel) and
a nuclear (Hnu) Hamiltonian and thus solutions of the form Ψ(r,R) = χ(R)ψ(r) do
not exist.

Instead of solving Eq. (2.1), virtually all electronic-structure algorithms compute
approximate solutions of the electronic Schrödinger equation

Helψi(r,R) = Wi(R)ψi(r,R), (2.3)

Hel = T el + V nn + V ee + V ne,

for a fixed nuclear geometry. The ψi(r,R) are called the electronic WFs and rep-
resent the solutions of the electronic Schrödinger equation. The eigenfunctions
ψi(r,R) depend only parametrically on the nuclear positions and there exists an
independent eigenvalue equation for every value of R. The eigenvalues in ascending
order, which are functions of the nuclear coordinates, represent the adiabatic PE
surfaces. This is the only unambiguously defined representation of multi-sheeted PE
surfaces.

Solutions of the Schrödinger equation (2.1) can be expressed in terms of the
electronic WFs ψj(r,R):

Ψ(r,R) ≈
N∑
i=1

χi(R)ψi(r,R) = 〈χ | ψ〉 . (2.4)
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2.1 The Born-Oppenheimer approximation

The expansion coefficients χi(R) depend on the nuclear coordinates and are also
referred to as nuclear WFs [39]. This is the key step of the BO approximation
and in the limit of a complete set of eigenstates (N → ∞), Eq. (2.4) is exact.
For practical applications of vibronic coupling theory, N is usually restricted to a
small number of strongly coupled electronic states, neglecting the influence of other
electronic states. In the basis defined by (2.4), the following expression is obtained
for the nuclear Schrödinger equation.

[T nu +Hel]
N∑
i=1

χi(R)ψi(r,R) = E
N∑
i=1

χi(R)ψi(r,R) (2.5a)

[T nuI + W −Λ]χ = Eχ. (2.5b)

Here, I denotes the N × N identity matrix and E is the (diagonal) matrix of
adiabatic energies of the electronic Schrödinger equation (2.1). The matrix Λ arises
from the action of the nuclear kinetic-energy operator on the electronic WFs and is
defined as the nonadiabatic coupling term (NACT).

The latter conventionally is split into a sum of two contributions

Λij =
1

2M
(2Fij∇+Gij) (2.6)

where M is the mass in atomic units, Fij = 〈ψi |∇|ψj〉 is the derivative coupling
vector and Gij = 〈ψi |∇2|ψj〉 is called the scalar coupling matrix. In the adiabatic
BO approximation, all NACTs are neglected. It is well known that in the vicinity
of CIs, NACTs become important in the nuclear Schrödinger equation. Namely,
the derivative coupling vector, originating from the nuclear kinetic-energy opera-
tor, contributes significantly to the molecular energy, invalidating the adiabatic BO
approximation.

The form of the nuclear Schrödinger equation given above, i. e. an expansion in
the eigenfunctions of the electronic Schrödinger equation, is defined as the adiabatic
representation. There exist, however, a number of common approximations and
variations of the nuclear Schrödinger equation (2.5). For Λ = 0, Eq. (2.5) simplifies
to the adiabatic approximation. If only the diagonal elements Gii are retained in
the expression of Λij, Eq. (2.5) is called the Born-Huang approximation [2]. A
particularly convenient form is obtained when Eq. (2.5) is transformed into a basis
in which Λ is zero or negligibly small. The underlying principle is the invariance of
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2 Theoretical background and methods

the expanded WF Ψ(r,R) in Eq. (2.4) under affine transformations

N∑
i=1

χi(R)ψi(r,R) = 〈Uχ | Uψ〉 = 〈c | φ〉 . (2.7)

In order to keep the electronic WFs orthonormal, we assume the transformation
U to be unitary. The transformed electronic (φi) and nuclear (ci) basis functions
are the WFs of a diabatic representation. With a suitable choice of U, the nuclear
Schrödinger equation can be recast into

[T nuI + V] c = Ec (2.8)

V = UWU†.

Loosely speaking, in an adiabatic representation of the nuclear Schrödinger equation,
the PE surfaces are coupled by the nuclear kinetic-energy operator, whereas in the
diabatic picture, the PE operator couples different electronic states. A set of diabatic
PE surfaces is then described as a matrix with eigenvalues corresponding to the
adiabatic electronic energies of the considered electronic states.
Although it was shown by Truhlar and coworkers [40, 41] that strictly diabatic PE

surfaces, where all NACTs are exactly zero, do not exist in polyatomic molecules, the
diabatic representation offers many advantages over an adiabatic treatment. Most
importantly, the diabatic PE matrix can be chosen to be a continuously differentiable
function of the nuclear coordinates, even in the vicinity of conical intersections.
Moreover, in the diabatic representation the nuclear WFs do not carry a geometric
phase [42, 43] which is a substantial simplification for propagations of the nuclear
WF. In vibronic coupling theory, diabatic potentials are often constructed from the
adiabatic PE energies which are fitted to an analytic model potential.

2.2 Symmetry and invariant theory

The most powerful theory to exploit symmetry in quantum mechanics is provided by
group theory. Traditionally, molecular systems are described by 32 molecular point
groups which were discussed exhaustively in the literature (see [44] and references
therein). Many of the molecular point groups are isomorphic with one of the abstract
groups. From the algebraic point of view, there exist only 17 different molecular
symmetry groups. Considering the matrix groups of irreducible representations, the
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2.2 Symmetry and invariant theory

number of different groups further reduces to 14 [45, 46]. Since the treatment of
molecular symmetry can always be based on matrix representations with respect to
a vector space of electronic or nuclear basis functions, the development of symmetry-
adapted approximations to PE surfaces based on abstract group theory is a general
and versatile approach.

The electronic energy of an isolated molecule depends on its geometry—the shape
of the molecule. The first task in the construction of any PE surface is thus to select
a suitable basis for the representation of the nuclear geometry, which is closed under
the symmetry group and allows an unambiguous (possibly non-linear) mapping of
the molecular shape to the value of a function. Due to symmetry, identical molecular
shapes must result in the same function value. In the language of algebra, the PE
surface is invariant with respect to the Euclidean group of isometries E(3), the semi-
direct product group of the translation and orthogonal group in the three spatial
dimensions T (3) oO(3) (o denotes the semi-direct product of two groups). 1

Additionally, polyatomic systems that include identical atoms are subject to per-
mutation symmetry of like nuclei. The symmetry properties of n identical nuclei are
described by the symmetric group Sn. In case of several sets of identical nuclei, the
resulting group is the direct product group of the symmetric groups of the different
sets (the permutations of like nuclei within different sets commute) [47]. The full
symmetry group of a molecular system is thus given by

G = T (3) oO(3)× Sn1 × Sn2 × . . . = E(3)× Sn1 × Sn2 × . . . (2.9)

The construction of an analytic PE surface is closely related to finding a set of
invariant functions which are suitable to reproduce the function of interest. Ideally,
these functions provide an approximation space that is complete (for the type of
functions used), efficiently evaluated and can be improved systematically. In the
present work, the theory of invariant polynomials was employed to achieve these
goals. The construction of arbitrary invariant functions based on invariant polyno-
mials is straightforward and invariant polynomials may thus be considered as the
fundamental building blocks of any construction of symmetry-adapted functions.

1The orthogonal group O(3) exhibits a direct product structure of the special orthogonal group
SO(3) of proper rotations and the group of order 2 which is sometimes denoted as inversion
group in the chemical literature [47].
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2 Theoretical background and methods

A polynomial p is invariant with respect to a group G if the equation

σ ◦ p = p (2.10)

holds for all σ ∈ G. The action of a group G on a polynomial p is defined by the
inverse action on the function arguments v

σ ◦ p(v) ≡ p(σ−1v) σ ∈ G. (2.11)

Evaluating the group action on a polynomial thus requires the definition of a ba-
sis and the corresponding representation of the group elements as matrices. Due to
the very different properties of the translation and rotation group (both are infinite
continuous groups) and the finite permutation groups, it is helpful to separate the
problem of permutational invariance from the rotation-translation symmetry. In
fact, the E(3) symmetry can be easily included into permutation-invariant func-
tions by choosing suitable primitive basis functions for the representation of the
permutation group. Changing the basis, however, does not change the invariant
polynomials. As the permutation symmetry can be treated independently of the
rotation and translation symmetry, the following discussion is entirely devoted to
the permutation problem. In some cases it is even advantageous to work with a basis
that is not rotationally invariant, e. g. to simplify the expression for the quantum
mechanical kinetic-energy operator of a molecule. The objective of constructing a
symmetry-adapted analytic PE surface model is thus converted into the algebraic
problem of finding a set of functions that is invariant under the permutation of
identical nuclei.

Invariant polynomials under the action of a discrete linear group G ⊂ GL(n) are
most easily computed by means of the Reynolds operator [48]

R(p) =
1

| G |
∑
σ∈G

σ ◦ p (2.12)

where p is an arbitrary monomial. The Reynolds operator, by definition, acts lin-
early on the coordinates of the monomial p and averages its images over the entire
group orbit. Due to its idempotent property, the Reynolds operator is also known as
projection operator in the chemical literature [44]. In principle, an arbitrary number
of (homogeneous) invariant polynomials can be obtained by successive application of
the Reynolds operator to a series of monomials. However the success and efficiency
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2.2 Symmetry and invariant theory

strongly depends on the choice of the coordinates and monomials. In general, all
monomials up to the desired degree must be considered to ensure that all invariant
polynomials are found. Such a calculation in most cases yields many linearly depen-
dent (i. e. redundant) invariants which have to be eliminated subsequently. From the
definition (2.12) it is obvious that the procedure is limited to groups of rather low
order. The computational cost for the symmetric group Sn scales with the factorial
of the number of identical nuclei n and the number of monomials that have to be
included for an expansion of degree d in m coordinates is given by the rising factorial(

d+m

d

)
=

1

d!
(m+ 1)d−1 (2.13)

and indicates additional exponential scaling in the degree of the expansion.

For invariants of high degree, the construction of permutationally invariant poly-
nomials in the E(3) invariant functions can be substantially simplified by a well-
known theorem of classical invariant theory due to Noether, which states that the
G-invariant subalgebra R[V Γ]G over a vector space V Γ is finitely generated by poly-
nomials of maximum degree |G| [49, 50]. Here, Γ indicates the particular group
representation associated with the coordinates of the underlying vector space and
|G| is the number of elements in the matrix group Γ. Many groups which are rele-
vant in physics and chemistry, however, have considerably lower degree bounds and
the term “generating” or “fundamental” set of polynomials refers to a complete set
of polynomials that generates all invariant polynomials.

According to a theorem of Hochster and Roberts, it is known that any lin-
early reductive group G over the field of real numbers is Cohen-Macaulay and
R[V Γ]G is generated as a module over a set of invariant and homogeneous poly-
nomials R[f1, . . . , fn] [48].

R[V Γ]G =
m⊕
k=1

R[f1, . . . , fn]gk (2.14)

This is often called the Hironaka decomposition and the polynomials fi are known
as the primary invariant and the gk as secondary invariants. The invariant algebra
R[V Γ]G may thus be considered as a vector space (a module) over the secondary in-
variants with coefficients from the polynomial ring R[f1, . . . , fn] or, roughly speaking,
the secondary invariants can appear at most once in each term, whereas arbitrary
products of primary invariants may appear as coefficients.
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2 Theoretical background and methods

The number and degree of the gk are given by the Hilbert (or Poincare) series
which can be determined by Molien’s formula (I is the identity element) [51]

H(R[V Γ]G, t) =
1

|G|
∑
σ∈G

1

det(I − σt)

=

∑
jmjt

sj

(1 + tp1)n1(1 + tp2)n2 . . . (1 + tpi)ni
.

(2.15)

The numbers and degrees of the primary invariants are given by ni and pi, the
numbers and degrees of the gk by mj and sj, respectively. Note that there is no
unique definition of primary or secondary invariants. They can be chosen in dif-
ferent ways and generally the result depends on the used algorithm. However, not
every generating set that satisfies Eq. (2.15) is necessarily optimal in the sense
of simplicity and computational efficiency. Also there appear different names for
primary and secondary invariants in the chemical literature, for instance free and
transient [52], basic and auxiliary [53] or denominator and numerator [54] invariants,
respectively. Recent applications of invariant theory to PE surfaces typically rely on
the computation of Molien’s series, mainly as a consistency check for the polynomial
basis [55–57].

A particularly simple situation arises if the considered representation is generated
by reflections (known as Chevalley-Shephard-Todd theorem in the mathematical
literature [58]). Specifically in JT problems, the relevant irreducible representations
correspond to matrix groups that are reflection groups and the expansion given by
Eq. (2.14) simplifies to a polynomial ring, i. e., there are no secondary invariants
gk. In practice, computer algebra systems are well-suited for the computation of
a generating set of polynomials and the open-source software packages GAP and
Singular have been used throughout this work [59–61].

2.3 Symmetry-adapted coordinates

Symmetry-adapted coordinates are coordinates which are associated with a set of
symmetry-adapted basis functions. Symmetry properties of molecules are usually
defined for the basis functions, while PE surfaces are constructed in the set of
corresponding coordinates. To clarify the distinction between coordinates and basis
functions, the transformation properties of linear forms are briefly explained. More
rigorous and comprehensive treatments can be found in the literature [62].

12



2.3 Symmetry-adapted coordinates

Coordinates in general are linear functions in a given basis. An arbitrary point in
the vector space spanned by the basis functions can be defined as the inner product
of the coordinate and basis vector. In an analogous manner to a point in Cartesian
coordinates, x, defined as a linear form w. r. t. the standard basis e1, e2, e3,

L(x, e) = 〈x | e〉 = xTe =
3∑
i

xiei, (2.16)

a point in curvilinear coordinates in a basis Si, i = 1, 2, · · · is defined by

L(s,S) = 〈s | S〉 =
N∑
i

siSi. (2.17)

From the algebraic point of view, the two equations (2.16) and (2.17) are just linear
forms. Another important example of a linear form is the expansion of the WF in
the BO approximation (cf. (2.4)). Here, the coefficients χi or ci (the nuclear WFs)
serve as the coordinates of a vector space spanned by the electronic WFs.

A (bijective) linear map A : S 7→ S′ changes the basis functions Si to an equiv-
alent set S′i. The same transformation is achieved by transforming the coordinates
(or coefficients) with the inverse matrix A−1 and the vector space spanned by the
coordinates is denoted the vector space V ∗ which is dual to the vector space V of
the basis. This is summarized by the relations

L(s′,S′) = sTA−1AS =
〈
A−Ts

∣∣ AS
〉

= L(s,S). (2.18)

Therefore it is important to distinguish between “coordinates” or the synonym “co-
efficients” and “basis functions” in order to apply the correct linear transformation.
The adiabatic-to-diabatic transformation in Eq. (2.7) is based in the same idea.

Somewhat arbitrarily, two different approaches to develop analytic expansions of
PE surfaces can be distinguished: Either basis functions are employed that depend
on a space-fixed reference geometry, or functions which only depend on the relative
positions of the nuclei can be used. Expansions based on the 3N−6 Cartesian nuclear
displacements (in non-linear molecules) or symmetry-adapted linear combinations
(SALCs) that are defined as displacements from a reference geometry are well-known
examples for the first type. They are translation invariant, but not rotation-inversion
invariant. Rotational invariance, on the other hand, requires non-linear functions of
the Cartesian coordinates. Internuclear distances (or functions thereof) are examples
of the second kind.

13



2 Theoretical background and methods

In a molecule that contains three (or less) identical nuclei, the internuclear dis-
tances determine the molecular shape unambiguously and provide the obvious choice
for the computation and construction of PE surfaces. For molecules with four identi-
cal atoms, like tetrahedral molecules, the situation is more complicated. As discussed
in the literature by several authors [57, 63, 64], the internuclear distances do not
uniquely determine the shape of a molecule with four (or more) indistinguishable
atoms. The computation of solutions to the electronic Schrödinger equation, how-
ever, requires a unique specification of the molecular geometry and hence a set of
coordinates with an injective map to Cartesian coordinates.

Figure 2.1: Two different geometries of four identical nuclei with the same distance distri-
bution. Inserting additional atoms at the dashed line still results in identical
distances (reproduced from [64]).

Figure 2.1 illustrates the problem for an instructive example [64]. Clearly, a lin-
ear function of the internuclear distances cannot resolve the differences between
the two nuclear alignments. Although the generating set of invariant polynomials
distinguishes molecular shapes unambiguously, the polynomials do not qualify as
coordinates for ab initio calculations, since they are non-linear and there is no ana-
lytic transformation to Cartesian coordinates. As a consequence, ab initio electronic
energies cannot be computed in rotationally invariant coordinates that exploit the
permutation symmetry of more than three identical atoms. Moreover, it is im-
possible to derive a kinetic-energy operator w. r. t. internuclear distances in such
cases—an important aspect for quantum dynamics [63].
Taking into account the shortcomings and deficiencies of the different coordi-

nate sets discussed herein, clearly the most general method is to use both: nuclear
displacement coordinates based on a fixed reference geometry which exploit the
permutation symmetry of identical atoms in the ab initio calculations, and inter-
nuclear distances or their SALCs to construct the PE surface. Nevertheless, for
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2.4 Multi-dimensional Jahn-Teller potential-energy surfaces

certain problems space-fixed basis functions provide the easiest route to a solution
of acceptable accuracy. Cartesian normal modes for small-amplitude motions in
molecular vibrations are the most important example.

2.4 Multi-dimensional Jahn-Teller potential-energy

surfaces

The approximation of multi-sheeted PE surfaces represents a generalization of the
previously described invariant expansion of a scalar function (Sec. 2.2). A single
PE surface is defined as 〈φ |Hel|φ〉, where the electronic WF φ is invariant under
symmetry operations. For a single electronic state, there is no distinction between
the adiabatic and a diabatic representation. Clearly, the Hamiltonian Hel, which
typically is expanded in invariant polynomials, must be a totally symmetric function
of the nuclear coordinates. Multi-sheeted adiabatic PE surfaces of N electronic
states, on the other hand, are described by the eigenvalues of an N ×N PE matrix.
In a diabatic representation, the electronic wave function can be approximated

as the superposition of a number of basis functions φi, corresponding to the chosen
subspace of electronic states (cf. Eqs. (2.7) and (2.18))

Ψ = 〈c | φ〉 =
N∑
i=1

ciφi. (2.19)

Again, the expectation value of an operator corresponding to an observable (now a
superposition of contributions from the different electronic states) must be invariant
under symmetry operations. In what follows, a real-valued set of basis functions is
assumed.
The electronic Hamiltonian Hel and its matrix representation in a finite basis

depend on the nuclear coordinates and the corresponding basis functions. Diago-
nalization of the Hamiltonian matrix yields an equivalent canonical form in terms
of the adiabatic energies (eigenvalues). In terms of equations, this reads

σ ◦ 〈Ψ |Hel|Ψ〉 = 〈Ψ |Hel|Ψ〉 ∀ σ ∈ G (2.20)

〈Ψ |Hel|Ψ〉 =
n∑

i,j=1

Vijcicj =
n∑
i=1

Eiχ
2
i i = 1, 2 . . . (2.21)

Vij = 〈φi |Hel|φj〉 .
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2 Theoretical background and methods

Both Hel and |Ψ〉 depend parametrically on the nuclear coordinates. Also, the
expressions “electronic energy” and “potential energy” are used synonymously unless
further specified.

The energies Ei are the adiabatic energies and are usually obtained from ab initio
calculations for each state. Both the Hamiltonian matrix elements Vij in the diabatic
representation and the adiabatic energies Ei depend on the molecular geometry, but
are subject to different symmetry constraints. While the adiabatic energies Ei are
uniquely defined as the eigenvalues of the PE matrix and are invariant under all
symmetry operations, the matrix elements Vij are defined up to unitary transforma-
tions. Although the Ei can in principle be fitted with a set of invariant polynomials
as demonstrated by Braams and Bowman [56], the smooth polynomial approxima-
tions cannot reproduce cusps that appear at intersections of PE surfaces. If conical
intersections are present, it is therefore mandatory to determine an approximation
to the PE matrix V in a diabatic basis where the elements Vij are smooth functions
of the nuclear coordinates. Apart from the advantages for a polynomial approxima-
tion, the diabatic representation of the Hamiltonian takes into account the geometric
phase of the electronic wave functions, which is essential for applications to quantum
dynamics. The crucial step for the approximation of multi-sheeted PE surfaces is
thus the mapping from invariant polynomials to the diabatic PE matrix V. A fun-
damental assumption of this method is that the total electronic wave function can
be described by a finite (in practice, small) set of electronic basis functions (2.19) at
all molecular geometries of interest. This assumption is fulfilled for electronic states
that are separated by a large energy gap from all other electronic states.

We can expand the matrix elements Vij in a suitable basis of nuclear displacements
under the symmetry constraint that the expectation value is preserved.

σ ◦ 〈c |V(r)| c〉 =
〈
σ−1c

∣∣V(σ−1r)
∣∣σ−1c

〉
= 〈c |V(r)| c〉 (2.22)

The first step in the construction of multi-sheeted PE surfaces is the definition of
a group representation Γel : G → GL(N) for the chosen electronic space. The only
restriction is that the vector space spanned by the electronic coordinates c1, . . . , cN

must be closed under the action of the matrix representation Γel. Conventionally,
the action of a molecular symmetry operation is defined w. r. t. the basis functions, in
this case the electronic states φi, . . . , φN . Since the basis functions are by definition
fixed and normalized, all practical calculations are carried out with a representation
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2.4 Multi-dimensional Jahn-Teller potential-energy surfaces

in the basis of coordinates c1, . . . , cN which form the dual vector space to the elec-
tronic basis. The representation matrices for the dual space are easily obtained by
transposition of the original representation (2.3) and in what follows, it is assumed
that all group representations act in the electronic coordinate space. For the nu-
clear coordinates, the same procedure defines a group representation over a closed
set of nuclear coordinates. An obvious choice for the nuclear basis are all n(n−1)/2

internuclear distances. Despite of the deficiencies discussed in the previous section,
which become relevant in practical applications, the set of internuclear distances is
very useful for the formal derivation of the PE expansion. Furthermore, it is possible
at any stage of the calculation to substitute the basis functions and coordinates with
better suited functions that transform identically under the group actions.

Eq. (2.4) shows that the expectation value is essentially a 2-form in the electronic
coordinates, with coefficients Vij depending on the nuclear coordinates. The objec-
tive is therefore to determine the Vij as polynomials in the nuclear coordinates that
combine with binary products of the electronic coordinates to polynomials which
are invariant under the action of the group on both, the electronic and nuclear co-
ordinates. Since the coefficients Vij are the matrix elements of the PE matrix in a
diabatic representation, all invariant polynomials which are exactly of degree two in
the electronic coordinates have to be found. Finding the symmetry-adapted matrices
for the expansion of the PE operator is thus closely related to the algebraic problem
of finding the invariant polynomials of the group representation in the vector space
V el⊕V nu, that is, the direct sum of the vector spaces spanned by the electronic and
nuclear coordinates.

From the generating set of polynomials (R[V el ⊕ V nu]Γ
el⊕Γnu

= R[f1, f2, . . . ]), it
is straightforward to select all polynomials of degree two in the electronic space
and thus to determine the corresponding matrix elements. Higher-order terms are
easily obtained by multiplying the matrices resulting from the generating set of
polynomials with an element of R[V nu]Γ

nu , the ring of invariant polynomials in the
nuclear coordinates only. The generators of this ring are a subset of the invariant
ring R[V el ⊕ V nu]Γ

el⊕Γnu and thus are already known from the previous calculation.
This provides the most general matrix expansion of a quantum-mechanical operator
under consideration of the full molecular symmetry. Due to the exponential scaling of
the cost of the computation of the generating set of invariant polynomials, however,
the approach is limited to rather small systems.

A particularly simple situation arises if the electronic and nuclear basis functions
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2 Theoretical background and methods

exhibit the same symmetry properties. For this purpose, the nuclear and electronic
coordinates are expressed as SALCs of the same irreducible representation. This
allows, for example, to consider specific subproblems of a full-dimensional JT PE
surface in a reduced number of nuclear degrees of freedom. The specific structure of
the resulting Hamiltonian matrices are the origin of the well-known JT Hamiltonians
in such highly symmetric systems [5–9]. This applies to all JT PE surfaces (the
JT theorem essentially is a qualitative statement about the consequences of this
situation).
The construction of a symmetry-invariant expansion of multi-sheeted JT PE sur-

faces is tremendously simplified when it is taken into account that the electronic and
nuclear coordinates form identical vector spaces. The computationally most expen-
sive step in the derivation of expansion terms for the PE surface is the computation
of the set of generating polynomials. In such JT systems, the matrix representa-
tions of the molecular symmetry group are identical in the electronic and nuclear
coordinate space (Γel = Γnu). By means of polarization [45, 46, 50], all generating
polynomials of the invariant ring of an arbitrary number of identical vector spaces
can be determined from the generators of the invariant ring of a single copy of these
vector spaces (see also Appendix 2). Weyl’s polarization theorem [50] is particularly
useful for the E × e and T2 × t2 JT effects. In fact, it can be shown [20] that the
matrices can be constructed as the Hessian matrices of the invariant polynomial
expansion. Additionally, the product structure of the ring of invariant polynomials
can be exploited systematically and permits complete arbitrary-order expansions
using simple combinatorial rules. In Chapter 3, explicit examples are provided for
the T2 × (t2 + t2) and T2 × e JT problems.

2.5 Spin-orbit coupling in Jahn-Teller systems

The relativistic theory of one- and two-electron atoms was initially developed by
Heisenberg and Pauli [65, 66]. Breit later has added the retardation correction, re-
sulting in the well-known Breit-Pauli (BP) spin-orbit (SO) operator [67, 68] which
can be derived from the four-component Dirac-Coulomb Hamiltonian by a Foldy-
Wouthuysen transformation [69, 70]. Accordingly, Hamiltonians employed in electronic-
structure calculations evolved from empirical expressions based on atomic con-
stants [71] to the BP form [72]. Among the relativistic effects in electronic structure,
the main contribution is the spin-orbit part of the BP operator [68]. In a molecular
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system or crystal with a single electron, there exist two possible alignments of the
spin—parallel or anti-parallel to the orbital angular momentum. Depending on the
molecular symmetry, additional symmetry properties originate from the two possi-
ble orientations of the electronic spin, leading to splittings of the electronic energy
levels due to SO coupling.

The well-known JT selection rules [3] and the JT Hamiltonians [5] have origi-
nally been derived for the nonrelativistic (spin-less) Hamiltonian. Beginning with
a paper by Jahn [4], the effect of SO coupling on the JT effect has been discussed
by many authors. When the SO coupling effects are comparatively weak (which
usually is the case for first- and second-row atoms), it is sufficient to include the
zero-order contribution (in the normal-mode Taylor expansion) of the SO-coupling
operator. Since the SO coupling increases strongly with the nuclear charge Z, a
more systematic treatment of the SO interaction may be necessary for JT systems
containing heavy elements. For the axial symmetry groups (Cnv, Dnv) the situation
is simplified: since the SALCs of coordinates, electronic basis functions and angular
momentum operators form bases of the same irreducible vector space, the SO op-
erator is of the same symmetry as the electrostatic Hamiltonian [31, 73, 74]. Thus,
the following discussion of SO coupling in JT systems is limited to tetrahedral and
cubic systems. The Hamiltonian matrix, as usual, is expressed in a direct product
basis of electronic states and spin functions. A well-known result from group theory
is the decomposition of the Hamiltonian matrix into a block structure according
to the Clebsch-Gordan decomposition of the direct-product basis into irreducible
representations. At a tetrahedral reference geometry, the block structure of the
Hamiltonian is preserved, compared to an isolated atom in an electronic state of the
same symmetry. For JT active 2E and 2T2 electronic states in tetrahedral systems,
the four- and six-dimensional space of electronic basis functions, respectively, split
as [33]

E ⊗ E1/2 = E1/2 ⊕ E3/2 (2.23a)

T2 ⊗ E1/2 = G3/2 ⊕ E5/2, (2.23b)

where the energetic splitting between the different irreducible spaces is known as
zero-order splitting and occurs, for instance, also in atoms with an unpaired electron
in a p−orbital.
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The BP SO operator for a single unpaired electron in the field of four identical
nuclei reads [68]

HSO = −igeβ2
eqS ·

4∑
k=1

1

rk
(rk ×∇) = geβ

2
eqS · L (2.24a)

with

S =
1

2
(iσx + jσy + kσz) (2.24b)

L = −i
4∑

k=1

1

rk
(rk ×∇) . (2.24c)

Here ge = 2.0023 is the g-factor of the electron, βe = e~/(2mec) is the Bohr
magneton, q is the effective charge of the equivalent atoms, σx, σy, σz are the Pauli
spin-matrices, i, j,k are the Cartesian unit vectors and rk = |r − Rk|, where r is
the radius vector of the single unpaired electron and Rk, k = 1 . . . 4, are the radius
vectors to the four corners of the tetrahedron. In Eq. (2.24), the curl operator
represents an angular momentum vector operator, which is mapped from a Cartesian
basis into the vector space of traceless Pauli spin-matrices by means of the dot
product S · L. The complete BP SO operator is given as a 2 × 2 matrix over the
field of complex numbers where the components of the angular momentum operator
can be considered as the parameters of the vector space defined by the Pauli spin-
matrices (see Eq. (2.25) below).

The simple one-electron Hamiltonian (2.24) has been used for the analysis of
the symmetry properties of the SO coupling operator which remains unchanged in
the presence of a central atom (i. e. the same symmetry considerations apply to
molecules of X4 and YX4 type). Clearly, the BP operator for an atom must be
invariant under rotations. In the presence of ligands, however, the symmetry is
reduced to invariance under permutations of like nuclei (rk). With a description of
symmetry based on a molecular point group, the components of the curl operator
L transform according to the irreducible representation of rotations, indicated as
Rx, Ry and Rz in the character tables of the chemical literature [44]. The sum in
Eq. (2.24) forms a basis of the T1 irreducible representation of the molecular point
group Td which is generated by proper rotations.

In order to evaluate the group action on the BP SO operator, the homomorphism
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2.5 Spin-orbit coupling in Jahn-Teller systems

φ : SO(3) 7→ SU(2) between the special orthogonal group of 3 × 3 and the special
unitary group of 2 × 2 matrices can be used. As shown by Wigner [75], the action
of a proper rotation in a three dimensional vector space under the homomorphism
φ is given by conjugation with the image of φ:

±φ(C) [xσx + yσy + zσz]
(
±φ(C)†

)
= S

x
′

y′

z′

 = SC

xy
z

 C ∈ SO(3) (2.25)

The undefined sign of the mapped matrices indicates that φ is a (injective) 2-to-1
mapping. Consequently, there must be twice as many valid symmetry operations in
the SU(2) image than in the SO(3) group. Even more important, there exist pairs
of eigenfunctions with identical eigenvalues arising from the (+) and (−) transfor-
mations. The resulting two-fold degeneracy of the PE surfaces is known as Kramers’
theorem [76].

Molecular point groups with representations in terms of proper rotations (i. e. sub-
groups of SO(3)) can be mapped to a subgroup of SU(2) in exactly the same manner.
This naturally leads to the concept of double groups which describe the symmetry
of electronic states of systems with an odd number of electrons. The matrix group
of the T1 irreducible representation can be obtained, for example, from the three
matrices

g1 =

0 0 1

1 0 0

0 1 0

 g2 =

1 0 0

0 −1 0

0 0 −1

 g3 =

 0 −1 0

−1 0 0

0 0 −1

 . (2.26)

It is straight forward to obtain a set of corresponding matrices in the SU(2) matrix
group under the map φ (up to the sign).

g′1 =
1

2

(
−1− i −1 + i

1 + i −1 + i

)
g′2 =

(
0 i

i 0

)
g′3 =

1√
2

(
0 −1− i

1− i 0

)
(2.27)

Taking the closure over the group elements, the entire double group can be ob-
tained and equivalent sets of generating matrices have been published by several
authors [33, 77]. The resulting double group for tetrahedral systems contains the
group Td as a subgroup including all of its irreducible representations. Faithful ir-
reducible representations of the T ′d double group, however, comprise only proper
rotation matrices (det(gi) = 1).
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Following Domcke and Poluyanov [33], the Hamiltonian can be expanded in a
polynomial series around a reference point of the highest (typically the minimum-
energy geometry of a non-degenerate reference state):

HSO =
N∑
i=0

λiHSO
(i) (2.28)

where (i) defines the degree of the homogeneous polynomials in the expansion. The
expanded Hamiltonian must have the same symmetry as the BP SO operator and,
therefore, must be invariant under the action of the molecular point group. With
respect to the homomorphism φ in Eq. (2.25) and the matrix representation defined
by (2.27), the symmetry of the Hamiltonian operator can be expressed as

g′iHSO(g′i)
† = HSO = S ◦

(
(x y z)g†i

)
∀ g′i ∈ T ′d ∧ gi ∈ Td. (2.29)

Based on these relations, the Reynolds operator (see Eq. (2.12)) can be used to
determine a set of invariant polynomials which is an easy task with modern computer
algebra systems. To obtain the final model Hamiltonian, two additional mappings
are required: First, the Hamiltonian has to be expressed in a set of coordinates that
span a vector space of the T1 irreducible representation (cf. the dihedral point groups,
where rotation vectors transform as the degenerate symmetry-adapted coordinates).
It is convenient to express the T1 basis functions in terms of the nuclear displacements
of T2 symmetry for consistency with the conventional nonrelativistic JT theory.
The second required mapping transforms the invariant 2 × 2 Hamiltonian matrix
in spin space into a representation of spin-polarized molecular orbitals. Results of
such calculations up to first order have been given by Poluyanov and Domcke for a
number of different groups in a series of articles [32, 33, 73, 78]. Explicit expressions
for the relevant SO Hamiltonians of tetrahedral molecules are provided in Chapter 5
with an application to photoelectron spectroscopy.

2.6 Quantum dynamics: The Chebyshev

wave-packet propagation method

The simulation of vibrational spectra in molecules can be performed by two methodi-
cally different, but effectively equivalent approaches: Either by the time-independent
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method where the vibronic matrix is explicitly diagonalized (e. g. the multi-mode
approach [11]) or by the time-dependent wave-packet propagation of an initial wave
function [79]. Both approaches rely on a representation of the nuclear wave func-
tion in a finite basis. Algorithms which compute the elements of the Hamiltonian
matrix analytically are used in spectral methods. Pseudo-spectral or interpolating
approaches interpolate the wave-packet on discrete grid points and determine the
integrals over the interpolating functions [80]. Although in principle independent,
there are serious drawbacks for certain combinations of the wave-packet represen-
tation (spectral or pseudo-spectral) and the algorithm (time-dependent or time-
independent) for the solution of the Schrödinger equation. A particularly efficient
and numerically stable algorithm on the basis of a grid representation of the nuclear
wave-packet is the Chebyshev propagator [81, 82], which was used in the present
work. The motivation for the use of a pseudo-spectral method mainly comes from
the high-order expansion of the PE surface, which tremendously increases the num-
ber of non-vanishing matrix elements in the vibronic basis set (actually, this affects
all spectral methods), but does not introduce additional difficulties in a pseudo-
spectral time-dependent approach, where the PE values are evaluated on a discrete
grid.

The well-known time-dependent Schrödinger equation is given by (~ = 1)

i
∂

∂t
Ψ(x, t) = HΨ(x, t). (2.30)

For time-independent Hamiltonians, the time-evolution of the wave function Ψ(x, t)

is determined by the analytic solution

Ψ(x, t) = e−iHtΨ(x, 0) (2.31)

which represents an initial value problem. Numerical approaches to solve Eq. (2.30)
by propagating an initial wave function according to Eq. (2.31) rely on a suitable
discretization of the time-evolution operator (U(t) 7→ U(n∆t)). Repeated appli-
cation of the discretized time-evolution operator U(∆t) allows the stepwise com-
putation of a time-ordered series of wave function vectors in a finite basis. Time-
independent observables, however, are completely determined by the solutions of
the time-independent Schrödinger equation

Hψi(x) = Eiψi(x) i = 1, 2, . . . (2.32)
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and thus by the stationary states ψi(x) with corresponding eigenvalues Ei. The
stationary states ψi(x) of Eq. (2.32) are also solutions of the generalized eigenvalue
problem

f(H)ψi(x) = f(Ei)ψi(x) (2.33)

where f(x) is an arbitrary invertible function. This leads to a modified time-
dependent Schrödinger equation

i
∂

∂t
Ψf (x, t) = f(H)Ψf (x, t) (2.34a)

Ψf (x, t) = e−if(H)tΨf (x, 0) (2.34b)

which contains the same information as Eq. (2.30), since the stationary states and
thus observables are the same. With a suitable mapping f , the computational
efficiency of the wave-packet propagation can be optimized.

The target function of a wave-packet calculation of electronic spectra is the auto-
correlation function. The Fourier transformed autocorrelation function defines the
spectrum in the energy domain. It is defined as

C(t) = 〈Ψ(x, T ) | Ψ(x, t+ T )〉 = C(−t) T ∈ R (2.35)

and obeys translational and Hermitian symmetry. Accordingly, starting from a
real wave function (T = 0) and taking into account the Hermitian symmetry, the
entire propagation can be performed over the field of real numbers (given that the
Hamiltonian is real and symmetric):

C(t) =
1

2
(〈Ψ(x, 0) | Ψ(x, t)〉+ 〈Ψ(x, 0) | Ψ(x,−t)〉)

=
1

2

(〈
Ψ(x, 0)

∣∣ (e−iHt + eiHt
)∣∣Ψ(x, 0)

〉)
= 〈Ψ(x, 0) | cos(Ht)|Ψ(x, 0)〉 .

(2.36)

Simultaneous forward and backward propagation in time, therefore, is identical to
the action of the cosine operator on an initial wave function. The autocorrelation
function is preserved up to a scaling factor of two. Since the cosine operator is just
the real part of the exponential time-evolution operator and permits the propagation
of an initially real wave-packet using only real arithmetic, the propagation scheme
is known as the real wave-packet method [83, 84].
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Under the map

f(H) = − 1

∆t
arccos(H) (2.37)

the discretized cosine operator cos(Hk∆t), t 7→ k∆t, is equivalent to the definition
of the series of Chebyshev polynomials

Tk(x) = cos(k arccos(x)) (2.38)

and Eq. (2.34b) simplifies to

Ψk = Tk(H)Ψ0 k = 0, 1, . . . (2.39)

In Eq. (2.39), the integer k denotes the degree of the respective Chebyshev polyno-
mial. The mapping f in Eq. (2.37), however, requires the evaluation of the arctan

function of the Hamiltonian operator, which is defined only in an interval between
-1 and 1. In order to evaluate the Chebyshev polynomials in Eq. (2.39), the spectral
range of the Hamiltonian must be scaled and shifted to a scaled Hamiltonian Hsc

with eigenvalues in the range [-1:1]. If the function f is uniquely invertible, the re-
sulting energy levels in the spectrum can be easily transformed back to their actual
values.

The Hamiltonian employed in all propagations was defined in terms of mass-
weighted Cartesian coordinates

H = T + V = −1

2

n∑
i=1

∂2

∂q2
i

+ V(q1, . . . , qn) (2.40)

where the sum over the nuclear degrees of freedom is typically limited to approxi-
mately n ≤ 5. The matrix V(q1, . . . , qn) is a function of the n nuclear coordinates
and represents the (Hermitian) PE operator.

The Hamiltonian matrix was constructed on a discrete variable representation
(DVR) grid [85]. As interpolating primitive basis functions we used Whittaker’s
cardinal (sinc(x)) functions [86] on an equidistant grid. The grid was constructed
as a tensor grid of all considered degrees of freedom. In this representation, the
kinetic-energy operator has a particularly simple and sparse structure [80]. For each
degree of freedom, a m×m matrix is obtained where m denotes the number of grid
points along the respective coordinate qi in the interval ∆qi. The matrix elements
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are given as

T
(i)
j,j+k =

−1
6

(
π

∆qi

)2

k = 0

− (−1)k

(k∆qi)2 k 6= 0
. (2.41)

The grid has been optimized by the Harris, Engerholm and Gwinn (HEG) method-
ology [87, 88] along each dimension. This contraction scheme is based on the diago-
nalization of a one-dimensional Hamiltonian (for each T(i)) along a path on the PE
surface. For each dimension a subset of the resulting collocation points has been
selected from which the final tensor grid was created. We reduced the grid rep-
resentation to either a given number of eigenfunctions (beginning with the lowest
eigenvalue) of all eigenfunctions of the one-dimensional Hamiltonians or all eigen-
functions within a certain energy domain, determined by the energy range of the
simulated spectrum.

The full kinetic-energy operator of dimension (
∏n

i=1mi)× (
∏n

i=1mi) is given by

T =
n∑
i=1

Im1 ⊗ · · · ⊗ Imi−1
⊗T(i) ⊗ Imi+1

⊗ · · · ⊗ Imn (2.42)

where Imi
is the identity matrix of dimension mi (the number of grid points of

the contracted grid) and ⊗ refers to the Kronecker product. Due to its special
structure, the matrix T is constructed on the fly during the Chebyshev iteration,
referencing only the non-zero elements. The PE operator was constructed as an
(
∏n

i=1mi)×N (N + 1) matrix using the standard LAPACK [89] packed storage for-
mat (N is the number of electronic states, i. e. the dimension of the JT Hamiltonian).

The mapping of the Hamiltonian matrix H 7→ Hsc is given as

H 7→ H− H̄

∆H

H̄ =
1

2
(λmax + λmin)I

∆H =
1

2
(λmax − λmin)

(2.43)

where I is the identity matrix of the same dimension as H and λmax/λmin denote the
largest/smallest eigenvalue of the Hamiltonian matrix, respectively. In the present
work λmax was computed numerically by

λmax = lim
k→∞

〈
Ψ0

∣∣Hk+1
∣∣Ψ0

〉
〈Ψ0 |Hk|Ψ0〉

(2.44)
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and as the smallest eigenvalue λmin the grid point with the lowest adiabatic potential
energy was chosen.

The propagation of an initial wave function follows the recursion relation of the
Chebyshev polynomials

Tk(Hsc) = 2HscTk−1(Hsc)− Tk−2(Hsc) k ∈ N|k > 1 (2.45)

which, according to Eq. (2.39), becomes

Ψk = 2HscΨk−1 −Ψk−2. (2.46)

Therefore, the iterative propagation of the wave function involves only matrix-vector
multiplications of the Hamiltonian matrix Hsc with the vector Ψk.

The method described so far was directly applied for all electrostatic (real-valued)
Hamiltonians. The computation of relativistic JT spectra requires an extension
of the wave-packet propagation code for Hamiltonians containing complex-valued
matrix elements. To achieve this extension, we use the mapping

x+ iy 7→
(
x −y
y x

)
x, y ∈ R (2.47)

between complex numbers and real 2×2 matrices. Relation (2.47) is an isomorphism.
More generally, any complex N × N matrix can be mapped to an isomorphic real
2N × 2N matrix. This remains true for functions of matrices, provided that

f(λ∗i ) = f ∗(λi) (2.48)

where the λi are the eigenvalues of the matrix [90]. Any real function of a Hermitian
operator fulfills Eq. (2.48). The Hermitian Hamiltonians in the recursive propagation
scheme of Eq. (2.46) are thus mapped to real symmetric matrices. Analogously, a
vector v ∈ CN can be mapped to a real representation v′ ∈ R2N by

vi 7→
(

Re[vi]

Im[vi]

)
. (2.49)

The mappings (2.47) and (2.49) preserve the matrix-vector product. In particular,
the 2-form 〈Ψ0 |T2k(Hsc)|Ψ0〉, which defines the autocorrelation function of a wave
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2 Theoretical background and methods

function vector Ψ is invariant under the mappings (2.47, 2.49) and the spectral distri-
bution is preserved. Since the propagation scheme (2.46) involves only matrix-vector
multiplications, the complex arithmetic required for the computation of relativistic
JT spectra can be carried out over the field of real numbers. The numerical cost for
matrix-vector multiplication scales quadratically with the dimension. The propaga-
tion of a complex-valued wave-packet with a complex-valued PE operator therefore
requires approximately four times of CPU time and twice the amount of memory of
the propagation of a real-valued wave-packet with a real-valued Hamiltonian.
In every iteration step, the autocorrelation function of the wave-packet was cal-

culated using the relations

C2k = 〈Ψ0 |T2k(Hsc)|Ψ0〉 = 〈Ψk |Ψk 〉 − C0

C2k+1 = 2 〈Ψk+1 |Ψk 〉 − C1

, (2.50)

i. e. propagating k steps yields 2k points of the Chebyshev autocorrelation function.
From the Ck, the expansion coefficients and the time-dependent autocorrelation

function are given by

C(t) = e−i
H̄
2
t

N∑
k=0

(2− δ0k)(−i)kJk
(

H̄t

2

)
Ck (2.51)

where Jk(t) is the k th Bessel function of the first kind [81]. From the time-dependent
autocorrelation function C(t) the spectrum is easily obtained by Fourier transform.
A direct and numerically favorable conversion of the Chebyshev autocorrelation
function to the spectral distribution function is given by

σ(E) ∝
N∑
k=1

(2− δ0k)
cos(kφ)

sin(φ)
Ck

φ = arccos

(
E − H̄

∆H

) (2.52)

and has been used to compute all spectra in this work.
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3 High-order expansions of
electrostatic Jahn-Teller PE
surfaces

The symmetry of four- and five-atomic molecules with four identical nuclei is de-
scribed by the tetrahedral molecular point group Td. The point group Td, however,
is isomorphic to the permutation group S4. Considering Td symmetry in the expan-
sion of the PE surface therefore accounts for the full permutation symmetry of four
identical nuclei. Open-shell systems of this symmetry are subject to T2 × t2 and
T2 × e JT effects [5–9].

In many cases, the JT couplings are fairly strong and the standard JT approxima-
tion up to second order in normal coordinates [5–9] is insufficient. This applies in par-
ticular to situations where large amplitude motions become relevant, or an exchange
of identical nuclei is feasible. Presumably the first complete set of symmetry-adapted
polynomials for four indistinguishable points was determined by Aslaksen et al. [91],
motivated by its potential application to orientation-independent shape-recognition
algorithms. Recently, Cassam-Chenai and Patras published an expansion for five-
atomic YX4 molecules comprising 151 generating polynomials [55]. Taking into
account that the number of terms in a JT matrix expansion increases considerably
compared to the scalar expansion, renders an application of their generating set of
polynomials to JT PE surfaces impracticable. In what follows it is demonstrated
that the number of generating polynomials can be reduced to 9 for X4 systems
and 31 for YX4 systems. A compact expansion based on a rather small number of
generating polynomials is developed for the PE matrix expansion, using simple com-
binatorics. Additionally, the complete set of invariant polynomials is well-suited to
identify symmetry-equivalent molecular geometries. If all generating polynomials of
two sets of molecular coordinates yield the same value, the molecular structures are
energetically degenerate. This is very useful to avoid the computation of redundant
ab initio points.
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3 High-order expansions of electrostatic Jahn-Teller PE surfaces

Regarding the permutation symmetry of identical nuclei, the number of symmetry-
equivalent points is determined by the number of points in the group orbit. The
Td group entails |Td| = 24 different symmetry operations. Any displacement which
destroys the symmetry completely has 24 equivalent images in the group orbit. This
is, however, not true for displacements that preserve a certain amount of symmetry.
In cases where the nuclear displacements do not completely destroy the symmetry,
the number of equivalent points is given by the ratio |G|/|H| of the group order of the
molecular symmetry group and a subgroup H ≤ G. Subgroups of a molecular point
group which describe the molecular symmetry under displacements of one or several
symmetry-adapted coordinates are known as epikernel groups [92]. In tetrahedral
systems, there exist the epikernel groups C2v, Cs, C3v, D2d, D2 [92]. The numbers
of equivalent points in the corresponding group orbits are 6, 12, 4, 3, 6, respectively
and define the borders of the group’s fundamental domains. It should be noted that
this refers only to the permutation symmetry. Considering also spatial inversion,
for instance, effectively doubles the group order of Td and thus the numbers of
degenerate points in the group orbit. Geometries that exhibit a specific epikernel
symmetry generally correspond to critical points on the PE surface and thus are
naturally of great importance for the nuclear motion within a molecule, including,
e. g. chemical reaction barriers or tunneling splittings in vibrational spectra.

3.1 The T2 × t2 and T2 × (t2 + t2) cases

For a discussion of the T2 × (t2 + t2) JT effect in tetrahedral YX4 systems it is
instructive to begin with the discussion of the T2 × t2 JT effect. Using Weyl’s
polarization theorem [50], it is straightforward to extend a polynomial expansion to
an arbitrary number of t2 modes. The pure T2 × t2 JT effect occurs in four-atomic
tetrahedral open-shell systems consisting of identical nuclei. Tetrahedral X4 systems
possess six internal nuclear degrees of freedom (3N − 6 = 6) which can be defined
on a basis of SALCs of symmetry a1, e and t2.
In a first approximation, the analysis of the T2 × t2 problem is based on a three-

sheeted PE surface in three coordinates of t2 symmetry, conventionally denoted as
x, y, z. It should be noted that the coordinates x, y, z are only defined by their
symmetry properties, i. e. by the action of the Td group operations on the coordi-
nate vector. The underlying primitive basis remains undefined and can be chosen
specifically adapted to the considered problem. Any nuclear geometry in the three-
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3.1 The T2 × t2 and T2 × (t2 + t2) cases

dimensional subspace of t2 coordinates is described by a superposition (a linear
form) of SALCs Sx, Sy, Sz multiplied with the associated coordinates. In a similar
manner, the electronic states are described as a superposition of three electronic
basis functions, the three components of the electronic T2 state |x〉 , |y〉 , |z〉. The
nuclear geometry and the electronic states can be defined as linear forms in a set of
coordinates w. r. t. a set of basis functions:

〈c | φ〉 = cx |x〉+ cy |y〉+ cz |z〉
〈s | S〉 = xSx + ySy + zSz.

(3.1)

Eq. (3.1) is just a special case of (2.18).

With a fixed basis of (normalized) SALCs and assuming real coefficients, the PE
in the subspace of the degenerate electronic state can be considered as a function
of the nuclear coordinates x, y, z and the coefficients cx, cy, cz of the electronic basis
functions. The general T2× t2 PE operator in the coordinates defined by Eq. (2.18)
reads

V (cx, cy, cz, x, y, z) = cTVc =

cxcy
cz


T Vxx(x, y, z) Vxy(x, y, z) Vxz(x, y, z)

Vxy(x, y, z) Vyy(x, y, z) Vyz(x, y, z)

Vxz(x, y, z) Vyz(x, y, z) Vzz(x, y, z)


cxcy
cz


(3.2a)

= cxVxx(x, y, z)cx + cyVyy(x, y, z)cy + czVzz(x, y, z)cz

+ 2 [cxVxy(x, y, z)cy + cxVxz(x, y, z)cz + cyVyz(x, y, z)cz] .
(3.2b)

The eigenvalues of the vibronic matrix V are the adiabatic PE surfaces of the JT
system.

The matrix elements Vij(x, y, z) are expanded as polynomials in the symmetry-
adapted nuclear displacement coordinates. It should be noted that the expansion
in powers of displacements from a reference geometry excludes the description of
dissociative processes. Our analysis is appropriate for large-amplitude motions in
strongly JT-coupled systems, provided the energy levels of interest are sufficiently
below the dissociation threshold of the system.

Equation (3.2) reveals that the expansion of a PE surface of coupled electronic
states is equivalent to the construction of Td-invariant polynomials in the vector
space [V t2 ⊕ V t2 ] of both electronic and nuclear coordinates, i. e., the invariants
in the coordinates of two identical vector spaces. In fact, the decomposition of
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3 High-order expansions of electrostatic Jahn-Teller PE surfaces

the quadratic form (3.2b) into as many (linearly independent) invariant terms as
possible yields the most flexible parameter space for the fitting of ab initio points
that preserves the molecular symmetry. The advantage of an orthogonal basis (i. e.,
a basis in which the T2 representation matrices are orthogonal) is evident: The
invariants in the dual space of nuclear coordinates are just the invariants of T2,
since they are invariants with respect to the transposed T2 representation of Td.
Knowing the mapping of the Hamiltonian matrix to invariant polynomials, we can
employ computer-algebra systems to find the complete set of invariant polynomials
up to high order in the expansion.

The invariant ring of the T2 representation in Td is generated by three polynomials
of degree 2, 3 and 4. This follows from the fact that the T2 representation is just
the complement of the totally-symmetric irreducible A1 representation of the per-
mutation representation of the symmetric group of four elements (S4). In practice,
these calculations are well-suited for computer algebra systems and many results in
this work have been obtained or verified with the Singular software [60, 61]. The
generating set in the coordinates x, y, z is given by

f1 = x2 + y2 + z2

f2 = xyz

f3 = x4 + y4 + z4.

(3.3)

Any polynomial of the invariant ring R[x, y, z]Td can be expressed in terms of these
generators:

R[x, y, z]Td = R[f1, f2, f3]. (3.4)

A subset of the elements of R[f1, f2, f3] forms a vector space and the adiabatic PE
surface may be approximated by restricting the expansion to all possible linearly
independent terms up to a certain order. It turns out that an expansion up to 8 th
order in the three coordinates x, y, z, for instance, consists of 14 terms compared
to
∑8

d=1

(
3+d−1
d

)
= 164 terms without invoking symmetry. If the expansion involves

several t2 coordinate sets, the benefit is even larger.

In order to determine the expansion of the potential V (cx, cy, cz, x, y, z) we make
use of Weyl’s polarization method [46, 50]. Polarization according to Weyl is a formal
procedure of substituting variables of a vector space V in invariant polynomials by
another set of variables from another copy of an identical vector space. Weyl’s
theorem states that if some polynomials {p1, . . . , pn} are a generating set for an
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3.1 The T2 × t2 and T2 × (t2 + t2) cases

Sn-invariant ring R[V ]Sn , then their polarized forms generate the ring R[V + V ]Sn ,
where Sn denotes the symmetric group of n elements. According to Eq. (3.2), the
potential energy (assuming that the Vij(x, y, z) are expanded as polynomials) is
given by a doubly polarized invariant polynomial in the combined vector spaces
of nuclear coordinates s and coefficients c, since both transform identical under
the group Td ' S4. The potential matrix is obtained from the decomposition of the
polynomial into vectors cT, c and the symmetric matrix V. The invariant polynomial
is recovered by the usual tensor contraction.
Once all doubly polarized generating invariants have been determined, it is easy

to set up the symmetry-adapted expansion of the JT matrix by rearrangement of
Eq. (3.2). From the definition of the polarization process and Eq. (3.2) it follows
that any term in the expansion of the Hamiltonian matrix is just the Hessian of an
invariant polynomial of the ring R [x, y, z]Td , up to multiplication with a constant
factor. As an example, the T2 × t2 JT matrices of first and second order [5] follow
immediately from the generators of degree three and four in Eq. (3.3)

V(1) = κ(1)

0 z y

z 0 x

y x 0

 , V(2) = κ(2)

x
2 0 0

0 y2 0

0 0 z2

 , κ(1), κ(2) ∈ R. (3.5)

Moreover, it can be shown that all JT matrices (i. e., all Hessians of the elements of
R [f1, f2, f3]Td) are also finitely generated (see Appendix 2).
Using the procedure described above, we determined the generating polynomials

for the T2 × t2 JT Hamiltonian. The invariants can be reduced to only three sets
which generate the complete expansion up to arbitrary degree under element-wise
multiplication:

tn ∈

xy
z


n

,

yzxz
xy


n

, al =

y
2

x2

x2


l

+

z
2

z2

y2


l

, n, l = 1, 2, . . . (3.6)

The letters t and a indicate the symmetry of the respective generator (actually t2
and a1). The terms of the polynomial expansion are determined from the elements
ti, ai (i = 1, 2, 3) up to multiplication with a constant factor by the following rules:

1. Diagonal elements Vii of the potential-energy matrix are products of titi
and ai.
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3 High-order expansions of electrostatic Jahn-Teller PE surfaces

2. Off-diagonal matrix elements Vij = Vji are given by the symmetric product
tit
′
j + tjt

′
i or tk, i, j, k = 1, 2, 3, where i 6= j 6= k.

3. Products of Vij with diagonal matrix elements (ak or tktk) preserve the position.

4. Even powers of off-diagonal elements are symmetric, since Vij transforms as tk
and t2k is a diagonal element.

The general elements of the potential matrix may thus be written as

V11 = t2n1 (t2t3)2m al1

V22 = t2n2 (t1t3)2m al2

V33 = t2n3 (t1t2)2m al3, l,m, n ∈ 0, 1, 2, . . .

V12 = t2n
′

3 (t1t2)2m′+1 al
′

3 , or V12 = t2m
′+1

3 (t1t2)2n′ al
′

3

V13 = t2n
′

2 (t1t3)2m′+1 al
′

2 , or V13 = t2m
′+1

2 (t1t3)2n′ al
′

2

V23 = t2n
′

1 (t2t3)2m′+1 al
′

1 , or V23 = t2m
′+1

1 (t2t3)2n′ al
′

1 , l′,m′, n′ ∈ 0, 1, 2, . . .

(3.7)

This expansion is already optimized in the sense that the overlap of the polynomials
is minimized. This reduces the interdependence of the expansion parameters and
improves the convergence in a non-linear parameter-optimization procedure. The
determination of the expansion up to arbitrary order is now reduced to a simple
combinatorial problem. Matrix elements up to 8 th order are given explicitly in
Eq. (3.9) to illustrate the application of the multiplication rules. In general, we find
a potential-energy matrix with a highly symmetric structure

V(x, y, z) =

W (x, y, z) Z(z, x, y) Z(y, x, z)

Z(z, x, y) W (y, x, z) Z(x, y, z)

Z(y, x, z) Z(x, y, z) W (z, x, y)

 (3.8)

whereW and Z are sums of the respective diagonal (off-diagonal) elementsW (n) (Z(n))

of order n in Eq. (3.9) and Z(z, x, y) = Z(z, y, x), W (z, x, y) = W (z, y, x).
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3.1 The T2 × t2 and T2 × (t2 + t2) cases

The a(n)
i , b

(n)
i are fitting parameters:

W (1)(x, y, z) = 0

W (2)(x, y, z) = a
(2)
1 x2 + a

(2)
2 (z2 + y2)

W (3)(x, y, z) = a
(3)
1 xyz

W (4)(x, y, z) = a
(4)
1 x4 + a

(4)
2 (y4 + z4) + a

(4)
3 x2(y2 + z2) + a

(4)
3 y2z2

W (5)(x, y, z) = a
(5)
1 x3yz + a

(5)
2 xyz(y2 + z2)

W (6)(x, y, z) = a
(6)
1 (y6 + z6) + a

(6)
2 x6 + a

(6)
3 x4(y2 + z2) + a

(6)
4 x2(y4 + z4) + a

(6)
5 (yz)2(y2 + z2)

+ a
(6)
6 x2y2z2

W (7)(x, y, z) = a
(7)
1 xyz(y4 + z4) + a

(7)
2 x3yz(y2 + z2) + a

(7)
3 xy3z3 + a

(7)
4 x5yz

W (8)(x, y, z) = a
(8)
1 (y8 + z8) + a

(8)
2 x8 + a

(8)
3 (yz)4 + a

(8)
4 (yz)2(y4 + z4) + a

(8)
5 x6(y2 + z2)

+ a
(8)
6 x4(y4 + z4) + b

(8)
7 x2(y6 + z6) + a

(8)
8 x4y2z2 + a

(8)
9 x2y2z2(y2 + z2)

Z(1)(x, y, z) = b
(1)
1 x

Z(2)(x, y, z) = b
(2)
1 yz

Z(3)(x, y, z) = b
(3)
1 x3 + b

(3)
2 x(y2 + z2)

Z(4)(x, y, z) = b
(4)
1 x2yz + b

(4)
2 yz(y2 + z2)

Z(5)(x, y, z) = b
(5)
1 x5 + b

(5)
2 (y2 + z2)x3 + b

(5)
3 x(y4 + z4) + b

(5)
4 xy2z2

Z(6)(x, y, z) = b
(6)
1 (yz)3 + b

(6)
2 yz(y2 + z2) + b

(6)
3 x4yz + b

(6)
4 x2yz(y2 + z2)

Z(7)(x, y, z) = b
(7)
1 x7 + b

(7)
2 x5(y2 + z2) + b

(7)
3 x3(y4 + z4) + b

(7)
4 x(y6 + z6) + b

(7)
5 x3y2z2

+ b
(7)
6 xy2z2(y2 + z2)

Z(8)(x, y, z) = b
(8)
1 yz(y6 + z6) + b

(8)
2 (yz)3(y2 + z2) + b

(8)
3 x2yz(y2 + z2) + b

(8)
4 x4yz(y2 + z2)

+ b
(8)
5 x6yz + b

(8)
6 x2y3z3.

(3.9)

The expansion terms up to 12 th order in powers of generators are tabulated in
Appendix 5. Thus the JT matrix elements consist of two different kinds of functions
whose position (and symmetry) in the matrix is determined by the first argument.
Expressing the matrix elements as sums of products of the generating polynomials
and taking into account the symmetry of V (i. e. the symmetry of W (x, y, z) and
Z(x, y, z) under permutation of the arguments) allows an efficient and transparent
implementation via a programming language.
Molecules such as YX4 systems include additional nuclear degrees of freedom

which transform as t2. For these molecules, one t2 coordinate vector corresponds
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3 High-order expansions of electrostatic Jahn-Teller PE surfaces

to bond stretching and a second set of t2 coordinates to bending displacements. In
order to distinguish the two t2 coordinate tuples we use the identifiers x1, y1, z1 and
x2, y2, z2. Again, the first step is the determination of the generating set of totally-
symmetric invariant polynomials in the six-dimensional nuclear coordinate space.
If the generating set of one t2 mode is already known, Weyl’s polarization method
provides a convenient scheme to obtain the generators for several t2 coordinate
vectors. Obviously, the generators of Eq. (3.3) apply for any t2 coordinate vector
and the displacements along a second t2 coordinate are given by the same expansion
with different parameters. In addition, there are a number of mixed generators,
which can be obtained by partial polarization. There are 12 generators in total:

f1 = x2
1 + y2

1 + z2
1

f2 = x1y1z1

f3 = x4
1 + y4

1 + z4
1

f4 = x2
2 + y2

2 + z2
2

f5 = x2y2z2

f6 = x4
2 + y4

2 + z4
2

f7 = x1x2 + y1y2 + z1z2

f8 = z1x2y2 + y1x2z2 + x1y2z2

f9 = y1z1x2 + x1z1y2 + x1y1z2

f10 = x1x
3
2 + y1y

3
2 + z1z

3
2

f11 = x2
1x

2
2 + y2

1y
2
2 + z2

1z
2
2

f12 = x3
1x2 + y3

1y2 + z3
1z2

(3.10)

The same result can be obtained by the application of the Reynolds operator in
Eq. (2.12), using the six-dimensional direct sum-representation σ ∈ T2 ⊕ T2. Re-
cently, an equivalent generating set of polynomials has been obtained by Cassam-
Chenai et al. using a Hironaka-decomposition [55]. For the purpose of a compact
Jahn-Teller expansion, however, the generators in Eq. (3.10) are better suited.

In principle, the generating set for the T2 × (t2 + t2) matrix expansion can be
determined by the same procedure as for the T2× t2 matrix (i. e., by mapping polar-
ized invariants to the potential matrix). Alternatively, we can apply the polarization
operators to the polynomials in Eq. (3.6). After eliminating redundant terms, we
directly obtain the generating elements for the T2 × (t2 + t2) JT-matrix and the
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3.1 The T2 × t2 and T2 × (t2 + t2) cases

resulting terms comply with the multiplication rules given for the T2× t2 expansion
before. The expansion up to fourth order is

W (1)(x1, x2, y1, y2, z1, z2) = 0

W (2)(x1, x2, y1, y2, z1, z2) = c
(2)
1 x1x2 + c

(2)
2 (z1z2 + y1y2)

W (3)(x1, x2, y1, y2, z1, z2) = c
(3)
1 x1y2z2 + c

(3)
2 x2y1z1 + c

(3)
3 x1(y1z2 + y2z1) + c

(3)
4 x2(y1z2 + y2z1)

W (4)(x1, x2, y1, y2, z1, z2) = c
(4)
1 x3

1x2 + c
(4)
2 x2

1x
2
2 + c

(4)
3 x1x

3
2 + c

(4)
4 x2

1(y2
2 + z2

2)

+ c
(4)
5 x2

2(y2
1 + z2

1) + c
(4)
6 x2

1(y1y2 + z1z2) + c
(4)
7 x2

2(y1y2 + z1z2)

+ c
(4)
8 x1x2(y2

2 + z2
2) + c

(4)
9 x1x2(y2

1 + z2
1) + c

(4)
10 x1x2(y1y2 + z1z2)

+ c
(4)
11 y1y2z1z2 + c

(4)
12 y1z1(y1z2 + y2z1) + c

(4)
13 y2z2(y1z2 + y2z1)

+ c
(4)
14 (y2

1y
2
2 + z2

1z
2
2) + c

(4)
15 (y2

1z
2
2 + y2

2z
2
1) + c

(4)
16 (y3

1y2 + z3
1z2)

+ c
(4)
17 (y3

2y1 + z3
2z1)

Z(1)(x1, x2, y1, y2, z1, z2) = 0

Z(2)(x1, x2, y1, y2, z1, z2) = d
(2)
1 (y1z2 + y2z1)

Z(3)(x1, x2, y1, y2, z1, z2) = d
(3)
1 x2

1x2 + d
(3)
2 x2

2x1 + d
(3)
3 x1(y2

2 + z2
2) + d

(3)
4 x2(y2

1 + z2
1)

+ d
(3)
5 x1(y1z2 + y2z1) + d

(3)
6 x2(y1z2 + y2z1)

Z(4)(x1, x2, y1, y2, z1, z2) = d
(4)
1 x2

1y2z2 + d
(4)
2 x2

2y1z1 + d
(4)
3 x1x2y1z1 + d

(4)
4 x1x2y2z2

+ d
(4)
5 x2

1(y1z2 + y2z1) + d
(4)
6 x2

2(y1z2 + y2z1) + d
(4)
7 x1x2(y1z2 + y2z1)

+ d
(4)
8 y1z1(y2

2 + z2
2) + d

(4)
9 y2z2(y2

1 + z2
1) + d

(4)
10 y1z1(y1y2 + z1z2)

+ d
(4)
11 y2z2(y1y2 + z1z2) + d

(4)
12 (y3

1z2 + z3
1y2) + d

(4)
13 (y3

2z1 + z3
2y1).

(3.11)

For brevity, the expansion is given for one diagonal element (W (x1, x2, y1, y2, z1, z2))

and one off-diagonal element (Z(x1, x2, y1, y2, z1, z2)). According to Eq. (3.8), the
other matrix elements are obtained by permuting variables. The second diago-
nal element W (y1, y2, x1, x2, z1, z2), for instance, is obtained by permuting (x1, x2)

with (y1, y2) in the expansion (3.11). For displacements (x1, x2, 0, 0, 0, 0), the sys-
tem has C2v symmetry; for displacements (x1, x2, y1, y2, 0, 0), it has Cs symmetry.
Equal displacements along all six coordinates result in C3v structures with a doubly-
degenerate (E) electronic state.
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3 High-order expansions of electrostatic Jahn-Teller PE surfaces

3.2 The T2 × e case

The T2× e JT PE surface describes the three-sheeted electronic PE surface of an T2

electronic state in a two-dimensional subspace of nuclear coordinates of e symme-
try. Nuclear coordinates of e symmetry are present in all molecules of tetrahedral
symmetry. The E irreducible representation forms a matrix group which is isomor-
phic to the symmetric group of three identical elements S3, a subgroup of S4 and
Td. Accordingly, there are six different representation matrices in a basis of SALCs
of nuclear coordinates and displacements along coordinates of E symmetry cannot
completely destroy the molecular symmetry. The nuclear geometry and molecular
electronic state are defined as superpositions of SALCs:

〈c | φ〉 = cx |x〉+ cy |y〉+ cz |z〉
〈s | S〉 = aSa + bSb

(3.12)

The curvilinear displacements along a and b are illustrated in Fig. 1 in Appendix 4.2.
In order to construct the T2 × e diabatic PE matrix, the five-dimensional E ⊕
T2 representation must be considered, coupling the electronic WF and the nuclear
displacements.

Using SALCs as defined in section 2.3, the E ⊕ T2 representation is generated by
the direct sum of the generating matrices of the E and T2 representations where

Gi = Ei ⊕Ti i = 1, 2 (3.13)

E1 =

(
0 1

−1 −1

)
, E2 =

(
0 1

1 0

)
, T1 =

 0 −1 0

0 0 1

−1 0 0

 , T2 =

0 0 1

0 1 0

1 0 0

 .

(3.14)

The representation matrices are defined by the symmetry properties of the SALCs
and in the present T2 × e JT problem, the T2 representation matrices act on the
electronic basis functions, whereas the E representation matrices act on the space of
nuclear SALCs. The coordinates (or coefficients) associated with the SALCs trans-
form as the transposed representations in Eq. (3.14) according to the transformation
properties of linear forms. In what follows, the electronic coefficients of T2 symmetry
are denoted as x, y, z instead of cx, cy, cz in Eq. (3.12). On the one hand, this keeps
the notation of invariant polynomials consistent among the different parts of this
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3.2 The T2 × e case

work. On the other hand, this emphasizes the generality of the formulation: the
invariant expansion is only determined by the transformation properties of the basis
function under the group action and is independent of the physical meaning, i. e.
whether the group acts on the electronic or the nuclear vector space. The vibrational
modes are represented by the displacement coordinates a, b which transform as e in
Td.

In contrast to the standard definition, we have chosen a basis in which the C3 oper-
ators of the E representation are not orthogonal. The matrices E1,E2 are related to
the conventional orthogonal rotations and reflections by a similarity transformation.
As will become apparent later, the JT Hamiltonian has a more compact expansion
in this basis (in particular, there appear no square roots in the elements of the JT
PE matrix). Nuclear displacements parameterized by the coordinate vectors (u, 0),
(0, u) or (−u,−u) (u ∈ R) with respect to a SALC basis correspond to identical dis-
tortions in different spatial directions or, equivalently, act on different nuclei. These
displacements distort the tetrahedral system along the three principal axes of the
reference geometry.

The derivation of the T2×e Hamiltonian up to high orders is based on the formal-
ism described in Chapter 2. The expansion of the T2×e JT PE matrix is determined
by the first and second derivatives of the totally symmetric invariant polynomials
with respect to the coordinates that transform as the coefficients of the electronic T2

state. In a first step, a generating set of polynomials was determined which generates
all invariant polynomials with respect to the five-dimensional E⊕T2 representation.
Since the coordinates transform covariantly with respect to the basis functions of
the representation defined by the Gi in Eq. (3.14), the invariant polynomials in
these coordinates are determined by the transposed representation generated by GT

1

and GT
2 . Again, we used the software package Singular [60, 61] to find a minimal

generating set of the invariant algebra in the symmetry coordinates. The set of

39



3 High-order expansions of electrostatic Jahn-Teller PE surfaces

polynomials generating the invariant ring R[a, b, x, y, z]E⊕T2 is given by

f1 = x2 + y2 + z2

f2 = xyz

f3 = x4 + y4 + z4

f13 = a2 − ab+ b2

f14 = a3 − 3

2

(
a2b+ ab2

)
+ b3

f15 = (a− 2b)x2 + (a+ b) y2 + (b− 2a) z2

f16 = a2x2 + (a− b)2 y2 + b2z2

f17 = (a− 2b)x4 + (a+ b) y4 + (b− 2a) z4

. (3.15)

and represents, together with the totally symmetric breathing coordinate, a complete
generating set of polynomials for X4 molecules. The polynomials in Eq. (3.15) may
be used to derive any X × Y, (X, Y ∈ T2, E) JT expansion up to arbitrary order,
following the same procedure. The polynomials f13 and f14, which are required for
the E × e JT problem, are just the totally symmetric second and third order terms
of Viel and Eisfeld [18] in a non-orthogonal basis. The polynomials f1, f2, f3 are the
well known generating invariants of the T2 representation and define the expansion
of the T2 × t2 JT matrix. The T2 × e JT matrix expansion is determined by the
polynomials f15, f16 and f17 which couple coordinates of E and T2 symmetry.

We obtained the two non-redundant generating matrices

A =

a− 2b 0 0

0 a+ b 0

0 0 b− 2a

 B =

a
2 0 0

0 (a− b)2 0

0 0 b2

 (3.16)

for the T2×e potential matrix from the Hessian matrix of the generating polynomials
f15 and f16 in Eq. (3.15) with respect to the coordinates of T2 symmetry. Since we
consider here only the T2×e problem, all x, y or z were put to zero after the matrices
have been constructed and all first derivatives vanish. It turns out that the structure
of the JT expansion can be simplified if a third (redundant) generating matrix is
defined:

C =
1

4

(
A2 −B

)
=

b
2 − ab 0 0

0 ab 0

0 0 a2 − ab

 . (3.17)
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3.2 The T2 × e case

It is clear from the definition of C that all powers of A higher than one can be
omitted since

A2 = 4C−B. (3.18)

Furthermore, the totally symmetric polynomials f13 and f14 are already included by

f13I = B + C

f14I = A(B− 1

2
C),

(3.19)

where I is the unit matrix of dimension 3.
From these matrices follows an expansion which is similar to a binomial expansion

in B and C. All terms of an even order (2n) are given by the terms in the expansion
of (B + C)n:

V(2n)(a, b) =
n∑
k=0

λ
(2n)
k Bn−kCk, (3.20)

where the λk are arbitrary fitting parameters. Terms of odd degree (2n + 1) are
obtained by multiplication of the term of order 2n with A:

V(2n+1)(a, b) =
n∑
k=0

λ
(2n+1)
k ABn−kCk. (3.21)

In Table (3.1) the powers of B and C are explicitly listed which have been used in
the expansion of the T2× e JT matrix up to tenth order in the nuclear coordinates.
The expansion problem is thus reduced to elementary combinatorics of binomials in
the matrices of B and C. The resulting T2 × e potential is a diagonal matrix (since
A,B,C are diagonal) which is the sum of the expressions in Eqs. (3.20) and (3.21)

V(a, b) =
N∑
n=1

Vn(a, b). (3.22)

tot. deg. 2 4 6 8 10
B 1 0 2 1 0 3 2 1 0 4 3 2 1 0 5 4 3 2 1 0
C 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5

Table 3.1: Even-order generating polynomials defined by Eq. (3.15) and (3.17) in the
T2×e expansion up to 10 th order. The first and second order terms are A, B
and C. The odd-order terms of degree 2n+1 are obtained by multiplying the
2n-order term with A and thus have been omitted.
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3 High-order expansions of electrostatic Jahn-Teller PE surfaces

The expansion can be divided into two partitions. The first partition consists of all
terms AkBl and AkCl, k = 0, 1, l ∈ N. Any other term of the T2 × e expansion
vanishes if either a or b is zero. Inspection of the expansion terms shows that 19
terms contribute to the potential in this one-dimensional subspace. Moreover, for
displacements along one coordinate the terms arising from the products AkBl and
AkCl, (k = 0, 1), l ∈ N can be assigned to a non-degenerate electronic state of A
and a degenerate electronic state of E symmetry, respectively. The first-order matrix
in the Jahn-Teller expansion is an exception of the (otherwise complete) separation
of E and A electronic states in a one-dimensional cut and determines the gradients
of the diabatic states at the reference geometry, which are related by

−2
∂V E(a, b)

∂a

∣∣∣
a,b=0

=
∂V A(a, b)

∂a

∣∣∣
a,b=0

. (3.23)

The remaining terms of the type AkBlCm, m ∈ N, describe the coupling between
the two coordinates of E symmetry. Depending on the choice of SALCs for the
nuclear coordinates there is a considerable benefit of this rearrangement which be-
comes obvious during the fitting of ab initio data, where the parameters of the
first partition can be fitted as a one-dimensional function to the ab initio electronic
energies for displacements of a single coordinate.

3.3 Full-dimensional expansion in internuclear

distances

The PE surfaces developed so far are very efficient if the coordinates allow the
separate treatment of the individual degrees of freedom. Unfortunately, there are
disadvantages with regard to practical applications. One aspect is related to the
coordinates: Only if the symmetry coordinates can be mapped to a unique molec-
ular shape, it is possible to compute ab initio data along a defined pathway on the
PE surface. Thus the method is limited to SALCs that are based on a space-fixed
reference geometry and the development of rotation-invariant PE surfaces is impos-
sible in general. Another important point related to the inverse transformation,
from Cartesian (or any other equivalent coordinate system) to symmetry coordi-
nates. Since displacements in one or a few other coordinates naturally correspond
to displacements in possibly all degrees of freedom in the SALC-coordinates, a full-
dimensional PE surface is mandatory in order to use the PE surface with existing
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3.3 Full-dimensional expansion in internuclear distances

simulation software. In rotation-invariant SALCs based on internuclear distances
(and in the remainder of this section only such SALCs and coordinates are consid-
ered) the sum of all X −X distances (s0) forms an invariant polynomial of degree
one, which is essential for a unique correspondence between function values (of the
polynomial expansion) and energetically non-degenerate geometries. With two gen-
erating invariants of degree one, the number of terms in a high-order expansion
tremendously increases and a manual analysis of the expansion terms (there are
already 500 totally symmetric terms up to sixth order) is not feasible. Therefore, a
different approach is applied which separates the expansion into totally symmetric
and JT splitting terms. Any N ×N matrix can be written as the sum of a multiple
of the identity matrix and a traceless matrix:

V =
1

N
Tr(V)I + VJT

Tr(VJT) = 0.
(3.24)

The trace of a matrix is an invariant under similarity transformation, i. e.

Tr(V) = Tr(AVA−1) =
∑
i

λi ∀ A ∈ GL(N), (3.25)

where λi are the eigenvalues of the matrix V. Clearly, the trace of the PE opera-
tor must be an invariant polynomial since the adiabatic PE surfaces λi are totally
symmetric. A similar relation applies to the determinant (it is the product of the
eigenvalues and thus invariant as well) but the trace has the important property of
being additive.

Tr(V1 + V2) = Tr(V1) + Tr(V2). (3.26)

The approximation of the trace of a PE surface is rather simple: the sum of all
relevant electronic energies can be added and fitted to a scalar expansion in invariant
polynomials. Due to the additivity of the traces of individual terms, the problem
is simplified to a linear least-squares problem. Note that the PE surface along all
totally symmetric coordinates is also included into the fitted trace function and, in
a good approximation, the splitting terms VJT can be limited to polynomials in the
JT active coordinates.

The remaining traceless terms VJT which lead to the Jahn-Teller splitting of the
PE surfaces are—as in the expansions before—determined by the first and second
partial derivatives of the generating polynomials. The restriction to traceless ma-
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3 High-order expansions of electrostatic Jahn-Teller PE surfaces

trices, however, reduces the number of terms with non-zero diagonal. A complete
list of the traceless generating matrices (gi) is provided in Appendix 3. These were
initially determined for one t2 mode and the e mode and subsequently extended by
polarization for the t2 × t2 coordinate space. Again, each traceless matrix appears
only once in the final expansion and is just multiplied with an invariant polynomial
(the trace remains zero). The matrix expansion, in terms of the generators gi and
fi is given by

V = I ◦ R[f1, . . . , fn] +
n⊕
i=1

gi ◦ R[f1, . . . , fn]. (3.27)

If both s0 and s1 are set to zero, the expansion in (3.27) is equivalent (though not
identical) to the previous T2 × (t2 + t2) and T2 × e expansion of Sections 3.1 and
3.2. Most conveniently, high-order expansion are generated by computer programs,
avoiding the cumbersome implementation of an expansion of several hundreds of
terms and error-prone manual implementations. For this purpose, a program was
implemented in the Python programming language to create all expansion terms in
Eq. (3.27) up to a given order as a Fortran subroutine.
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4 Application to CH+
4

The methane cation is presumably the most fundamental cation in organic chemistry.
In its triply degenerate ground state of T2 symmetry, it is subject to a variety of
JT effects, including strong T2 × t2 and T2 × e JT effects. Two normal modes
of the same (t2) symmetry and one normal mode of E symmetry are JT active,
resulting in the T2 × (t2 + t2 + e) JT effect. Displacements of the nuclei from the
highly symmetric reference geometry, which lower the symmetry, lift the degeneracy
of the electronic energy level, resulting in adiabatic potential-energy (PE) surfaces
exhibiting considerable topographical complexity [93–95].

The PE surface of the methane cation has a long history in the chemical literature.
The He I photoelectron spectrum of CH4 exhibits an extended and highly irregular
vibrational structure which is the signature of very strong multi-mode JT coupling
[22, 23]. Early explorations of the lowest adiabatic PE surface revealed a very
complex topography with numerous local minima and saddle points of different
symmetries [96–98]. Several of them have been suggested as minimum geometry
[19, 96] until Meyer et al. predicted the correct C2v symmetry [99] based on ab
initio calculations. The first experimental evidence for a PE minimum geometry of
C2v symmetry was obtained by Knight et al. using electron spin resonance (ESR)
measurements [100]. The currently best resolved photoelectron spectrum of the
methane cation was determined experimentally using VUV pulsed-field ionization
zero-kinetic-energy (PFI-ZEKE) spectroscopy and is described in a series of articles
by Merkt and coworkers [24, 25, 101, 102]. The assignment of these highly complex
and dense spectra represents a challenge for theory. An accurate three-sheeted nine-
dimensional ab initio PE surface of the T2 state of CH+

4 is needed as the basis
for theoretical investigations of the nuclear dynamics and the interpretation of the
photoelectron spectrum.
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4.1 Ab initio electronic-structure calculations

In order to solve the ab initio electronic-structure problem, a set of coordinates
based on a space-fixed reference geometry was used to define a number of relevant
geometries. The three adiabatic PE surfaces of the T2 ground state of CH+

4 have been
determined by ab initio calculations at the multi-reference configuration-interaction
(MRCI) level of theory using the correlation-consistent polarized valence triple-zeta
(cc-pVTZ) basis set [103]. For each nuclear geometry, the reference wave functions
have been obtained from a state-averaged complete-active-space self-consistent-field
(CASSCF) calculation including the three components of the T2 electronic state. All
valence orbitals have been included in the active space of the CASSCF calculations.
The 1s core orbital of the C-atom was optimized in the CASSCF calculation, but
excluded from the active space. In the subsequent MRCI calculations, the core
orbital was frozen, while all other orbitals were included in the CI expansion. The
energy minimum of tetrahedral CH+

4 was found at a CH distance of 1.14Å. Data
points at several thousands of nuclear geometries were acquired, mostly along cuts
involving up to four different symmetry coordinates. Energies up to 6 eV above
the energy of the reference geometry of Td symmetry have been considered for the
PE surface of CH+

4 . In consideration of the computation of photoelectron spectra,
also the geometry of the uncharged methane molecule has been optimized. The CH
bond length at the PE minimum in a tetrahedral nuclear arrangement was found at
1.09Å with the CCSD(T) electronic structure method and the cc-pVTZ basis set.
The vertical ionization potential was determined by a RCCSD(T) calculation and
amounts to 14.35 eV, in excellent agreement with previously published experimental
results [23]. Harmonic vibrational frequencies of the methane molecule also have
been calculated at the CCSD(T)/cc-pVTZ level of theory. The calculation yields
0.376 eV, 0.195 eV, 0.391 eV and 0.167 eV for the modes of a1, e, t2 (stretch) and t2
(bend) symmetry.

4.2 Fitting strategy

Fitting multi-sheeted JT PE surface in general poses a non-linear optimization prob-
lem unless the ab initio data are explicitly obtained in a diabatic representation.
Quantum chemistry software usually provides solutions of the electronic structure
problem for a particular geometry as adiabatic energies. In order to work in the

46
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same basis, the analytic expansion of the PE matrix was diagonalized for every data
point to obtain the adiabatic eigenvalues. The eigenvalues of the 3× 3 Hamiltonian
matrix have been fitted to the adiabatic ab initio energies. Since the eigenvalues in
general do not linearly depend on the fitting parameters, we employed a Marquardt-
Levenberg algorithm for the non-linear optimization. It should be emphasized that
there is no analytical solution to the non-linear least-squares minimization problem.
In particular, there is no guarantee that the algorithm converges to the global error
minimum. Due to the large number of parameters , it is indispensable to follow
a systematic strategy to solve the non-linear optimization problem. However, the
fitting strategy strongly depends on the chosen SALCs. Symmetry-adapted coor-
dinates which are based on a space-fixed reference geometry, allow a very efficient
separation of the nine degrees of freedom. Expressing the PE expansion in a set
of SALCs that does not depend on a (space-fixed) reference geometry, on the other
hand, is hampered by the coupling of many degrees of freedom which requires the
simultaneous fitting of a large number of parameters.

In a set of coordinates based on the tetrahedral reference geometry, the diabatic
3 × 3 matrix of the T2 × (t2 + t2) JT PE surface has been expanded in invariant
polynomials up to 8 th and 12 th order in the stretching and bending coordinates,
respectively. The stretch-bend coupling terms were expanded up to fourth order.
There are 54/139 parameters in the pure stretching/bending expansions and 43 in
the stretch-bend coupling terms. The choice of symmetry-adapted coordinates and
the expansion in invariant polynomials result in important simplifications. Many
terms vanish if one or a few coordinates are equal to zero. Step-wise increase of the
number of coordinates, while the parameters of previous fits are frozen, considerably
reduces the number of parameters that have to be fitted simultaneously.

In the first step, the parameters of the individual t2 modes have been determined
by splitting the parameter space into three subspaces, corresponding to displace-
ments in either one, two or three coordinates of t2 symmetry. The parameter de-
termination for displacements in a single coordinate can be solved analytically and
the optimal parameters can be found by linear regression. For displacements in one
out of the three equivalent t2 coordinates, the molecular symmetry is reduced to
C2v, resulting in the lifting of the electronic degeneracy. Our expansions of the one-
dimensional stretching (bending) potential contain 8 (12) parameters for the first
and third JT-coupled surfaces (B1 and B2 symmetry) and 4 (6) parameters for the
potential of A1 symmetry which is only subject to quadratic JT coupling.
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In the second step, the parameters determined in the one-dimensional cuts were
fixed, and the set of 22 (51) stretching (bending) parameters describing the PE
for displacements in two t2 coordinates have been fitted to the adiabatic ab initio
energies. In this case, the symmetry is reduced to Cs, and the electronic T2 state
splits into two A′ and one A′′ state.

In the third step, the remaining parameters were fitted to ab initio energies for
displacements in all coordinates in the three dimensional t2 space, again fixing all
previously fitted parameters. The molecular symmetry group is reduced to the
kernel group of the T2 representation which is the (trivial) C1 group, except for equal
displacements of all three t2 coordinates (x = y = z). For the latter displacements,
the molecular symmetry group is C3v, and the electronic T2 state splits into states
of E and A symmetry. Since T2 × t2 JT systems typically have potential minima in
this symmetry, we explicitly considered cuts of this symmetry.

The fitting strategy for the simultaneous displacements in two t2 coordinates fol-
lowed a similar strategy as for the T2×t2 cases. All parameters of the two previously
fitted three-dimensional T2-surfaces have been frozen and the potential was expressed
as a sum of the two previous expansions and the coupling terms. The additional
43 parameters have been fitted step by step, using cuts of an increasing number of
mixed stretching and bending displacements. Since the expansion was terminated
at fourth order, only cuts involving at most four different t2 displacements have been
included.

For the expansion of the T2 electronic state up to 10 th order in the coordinates
of e symmetry, 35 parameters have be adjusted to reproduce the ab initio data
as accurately as possible. Energies up to 5 eV have been taken into account in
the parameter optimization. Intersections of components of the T2 electronic state
with states of different electronic character at energies below 5 eV were observed for
calculations along cuts across the PE surface in the two-dimensional subspace of the e
coordinates. Data points that belong to different electronic states have been removed
by assigning a weight factor of zero in the fitting procedure. Although the PE
matrix is diagonal, a linear fitting procedure would require a previous diabatization
of the ab initio data due to several intersections between the diabatic PE surfaces.
We rather employed the Marquardt-Levenberg algorithm to perform an iterative
optimization of the parameters. For the cut along a single nuclear coordinate, we
chose the coordinate s2a, which allowed us to exploit C2v symmetry in the ab initio
calculations (the molecule has D2d symmetry along this cut).
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If one of the two coordinates in the subspace of e symmetry is zero, the parameter
space in our model Hamiltonian comprises 19 parameters. Since the distortion along
one of the coordinates preserves D2d symmetry, the T2 electronic state splits into a
degenerate state of E and another state of A symmetry. Sixteen terms of the JT
expansion vanish at geometries of D2d symmetry. These have been fitted to five dif-
ferent cuts across the T2×e PE surface involving both e coordinates. The parameter
optimization benefits from the previously fitted parameters of the potential along
a single coordinate, which already provides a reasonable approximation for the PE
surface for combined displacements in a and b.

For the construction of the full-dimensional PE surface, the internuclear distances
in the SALCs have been substituted by

r 7→ e−αr (4.1)

where the parameter α has been chosen as 0.5 for the CH bond lengths and 1.0 for the
HH distances. In order to determine the fitting parameters for the full-dimensional
E(3)-invariant PE surface (see Sec. 3.3), we first fitted the sum of the adiabatic ab
initio energies to a completely invariant scalar expansion in invariant polynomials
using a standard linear least-squares procedure. Since the number of terms tremen-
dously increases with the order, the expansion was terminated at sixth order for
both the trace and the JT matrix expansion. The reason of the strongly increasing
number is the additional totally symmetric polynomial of first order (denoted s0 in
App. 4.2) which is essential for a unique mapping between molecular geometry and
the energies, but cancels for reference-geometry based expansions. The parameters
in the matrix expansion of the trace-less splitting terms were optimized employing
the mentioned Marquardt-Levenberg algorithm, excluding polynomials in the co-
ordinates of the totally symmetric SALCs, s0 and s1. For SALCs of internuclear
distances (or function thereof), the different coordinates can not be separated as de-
scribed before. The fitting of the traceless JT splitting terms was rather performed
in three steps, fitting the irreducible subspaces in the order e, t2 bend, t2 stretch.
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4.3 The potential-energy surface of the T2 ground

state of CH+
4

The accuracy of the fitted PE surfaces in important regions can be assessed from cuts
along epikernel symmetries. These cuts represent lines connecting critical points of
the PE surface which typically correspond to transition states or saddle points.

Figure 4.1: Adiabatic PE surfaces for displacements in a single stretching (s3z) and bend-
ing (s4z) coordinate, fitted with a 8 th and 12 th order expansion, respectively.
The symmetry is C2v, resulting in the splitting of the T2 state in A1, B1 and
B2 electronic states. The dots are the ab initio data; the lines represent the
fit.

Fig. (4.1) shows the fitted PE curves for displacements in one of the stretching (a)
and bending (b) coordinates of t2 symmetry. It is seen that the JT stabilization
energy of the bending mode (≈ 0.76 eV) is much larger than the JT stabilization
energy of the stretching mode (≈ 0.17 eV). The pronounced anharmonicity of the
bending PE function renders a high-order expansion indispensable. The expansion
of the stretching potentials up to 8 th order and the bending potentials up to 12 th
order results in a balanced accuracy of the fit. A significant fraction of the total JT
stabilization energy at the global minimum of C2v symmetry can be attributed to the
displacements shown in Fig. (4.1). To every point of the PE curves in Fig. 4.1 there
exist five images which are equivalent due to symmetry (there are |Td|/|C2v| = 6
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different points in the C2v group orbit). The minima of the lowest PE curves shown
in Fig. 4.1 are also referred to as orthorhombic minima [104, 105].

Figure 4.2: Diagonal cuts along two stretching (a) and two bending (b) coordinates. The
symmetry is reduced to Cs and the T2 electronic state splits into 2A′ + A′′.
The dots are the ab initio data; the lines represent the fit.

Fig. (4.2) shows the ab initio data and the fit for diagonal cuts in two components
of a t2 coordinate vector. The symmetry of the molecule along these displacements
is Cs and each molecular geometry of Cs symmetry represents one of 12 equivalent
images. The energy minima of the lowest surfaces in Fig. 4.2 correspond to saddle
points between the six equivalent minima of C2v symmetry.
In Fig. 4.3, we have plotted the PE surface for equal displacements of the three

stretching (a) and bending (b) coordinates of T2 symmetry. These preserve the
epikernel symmetry C3v and one of the surfaces is doubly degenerate. From the
order of the epikernel group (|C3v| = 6), the number of images is four. The minima
in the PE curves are the trigonal minima and show a remarkable JT stabilization
energy [104, 105].
We have determined the 43 parameters of the stretch-bend coupling terms by

fitting ab initio points along 21 parameterized curves with more than 3000 energy
points. It turns out that the single T2 × t2 expansions already give a reasonable
approximation of the six-dimensional T2 × (t2 + t2) potential. The expansion of the
stretch-bend coupling terms was therefore terminated at 4 th order. To illustrate
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Figure 4.3: PE cuts for equal displacements of three stretching (a) and bending (b) coor-
dinates. The nuclear displacements preserve C3v symmetry. The T2 electronic
state splits into A and E electronic states.

the accuracy of the analytical potential, we have plotted in Fig. 4.4 the potentials
along four different resulting cuts in the six-dimensional t2 + t2 space. The abscissa
corresponds to a parameter u and the six-dimensional coordinate vectors are chosen
as linear functions of this parameter,
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where the stretching coordinates (the first three elements of the coordinate vectors)
are given in Ångstrom.

An estimate of the accuracy of the analytical PE surface can be obtained from the
residuals of the function values with respect to the ab initio data. Figure 4.5 relates
the absolute values of the residuals to the energies of all calculated ab initio points.
The lower parts of the PE surfaces (up to ≈ 2 eV) exhibit mostly residuals less than
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0.02 eV. The critical points of the surfaces are located at epikernel symmetries which
correspond to the cuts shown in Figs (4.1–4.3) and are in very good agreement with
the ab initio data.

Figure 4.6 shows the absolute values of the residuals for the 3179 data points of the
six-dimensional T2×(t2 + t2) surface. It is obvious from Fig. 4.6 that the accuracy of
the six-dimensional surface is lower than the accuracy of the two three-dimensional
surfaces. However, in the low-energy region (which is the most important in many
applications) the approximation is still fairly accurate.

The PE surfaces in the coordinate space of e symmetry are notably more complex
compared to the topography in the t2 modes. Perhaps most importantly, the spatial
inversion of the methane cation occurs via a planar transition state involving at
least one of the e coordinates. Particularly in this region, excited doublet electronic
states of different symmetry intersect with a (doublet) T2 electronic state below 5 eV.
Additionally, there exist a vast number of intersection between the components of
the T2 electronic ground state and, mostly at energies above 5 eV, also with higher
electronic states.

Figure 4.7a displays the data points of the electronic potential along with the
fitted analytic PE surfaces for displacements of a single coordinate of e symmetry.
All molecular geometries exhibit D2d symmetry in this case and there exist three
equivalent geometries to every point shown in Fig. 4.7a. The local maximum of
the lowest graph in the center corresponds to a geometry of D4h symmetry, with
a planar quadratic arrangement of the hydrogen atoms. However, the epikernel
subgroup is still D2d (D4h is not a subgroup of Td) and it follows that there are
three such planar structures. As mentioned previously, spatial inversion through
a planar structure is not a symmetry operation of the molecular point group and
cannot be achieved by permutations of identical nuclei. Thus in our coordinates,
which depend on a space-fixed reference geometry, all coordinates that belong to
geometries beyond the inversion threshold have been mapped to values that describe
an energetically identical structure that is close to the reference orientation. The
mapping was implemented numerically as a transformation from e-type symmetry
coordinates to Cartesian coordinates, appropriate reflections in the planes defined by
the three planarD4h geometries of the molecule and subsequent back-transformation
to symmetry coordinates.

Figure 4.7b shows two cuts of the fitted PE surface. Even though they are of con-
siderable complexity, the fitted polynomial expansion (solid lines) reproduce the data
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points (circles) with high accuracy. Displacements in the e coordinates in tetrahe-
dral systems do not completely destroy the symmetry. For arbitrary displacements,
the molecule still exhibits D2 symmetry. Therefore, there exist Td/D2 = 6 identical
energy points which considerably simplifies the acquisition of the ab initio points.
The parameter optimization by the Marquardt-Levenberg algorithm was found to
be straightforward.
Despite the large JT stabilization energy of the e mode (≈ 1.3 eV) and the ex-

treme anharmonicity of the T2 × e PE surface, an accurate analytic representation
of the ab initio data points could be obtained over a wide range of the displacement
coordinates of e symmetry. The results demonstrate that high-order polynomial
expansions are very useful for accurate representations of PE surfaces in cases of
strong JT coupling.
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Figure 4.4: Ab initio (dots) and fitted (solid lines) potentials along four cuts of the
T2 × (t2 + t2) PE surfaces (see text for details).
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Figure 4.5: Residuals (absolute values) of the fitted PE surfaces. (a): stretching mode
(7651 energies). (b): bending mode (7161 energies).

Figure 4.6: Absolute values of the 3179 residuals of the T2 × (t2 + t2) surface.
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4.3 The potential-energy surface of the T2 ground state of CH+
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(a)

(b)

Figure 4.7: PE curves along symmetry coordinates of e symmetry (a, b). The circles
represent energies obtained by ab initio calculations. The solid lines are the
values of the fitted analytic potentials of the JT Hamiltonian, expanded up to
10 th order. Circles which are not connected by solid lines belong to additional
electronic states (i. e., electronic states which are not components of the triply
degenerate ground state at the reference geometry).
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4.4 Jahn-Teller spectra of CH+
4

The influence of different JT effects in the methane cation has been examined by
simulations of photoelectron spectra of methane. All simulations were based on a
full-dimensional analytic PE surface expansion up to sixth order, where couplings
between modes of different symmetry have been neglected for the JT splitting terms
(see Sec. 3.3). The analytic form of the trace of the PE matrix, however, includes
all invariant terms up to sixth order to achieve a unique mapping between different
molecular geometries and potential-energy values.

Wave-packet propagations were performed for 20000 steps using the Chebyshev
propagation method as described in Sec. 2.6, using the harmonic ground state of
the methane molecule as initial state. The nuclear wave function was represented
on a DVR grid in mass-weighted Cartesian normal coordinates q1, q2a, q2b, q3x, q3y,
q3z, q4x, q4y, q4z. The photoelectron spectra have been convoluted with a Gaus-
sian function of full-width at half-maximum (FWHM) of 0.05 eV (low-resolution) or
0.0017 eV (high-resolution). The computed vertical ionization energy of 14.35 eV has
been used for the definition of the energy scale, since the PE minima w. r. t. specific
combinations of Cartesian normal modes (and thus the zero-point energies of the
cation) are not known.

The experimental UV photoelectron spectra indicate three broad intensity max-
ima at 13.6, 14.4 and 15.0 eV which have been attributed to the three sheets of
the T2 electronic state [22, 106]. The appearance of three widely spaced maxima
clearly indicates a strong JT effect which induces various progressions within the
three maxima. The extremely high line density prevented a reliable assignment of the
progressions so far. In order to obtain more insight into the different overlapping pro-
gressions of the experimental spectrum, we consider the two- and three-dimensional
T2 × e and T2 × t2 JT problems separately.

Figure 4.8a shows the T2 × e photoelectron spectrum, simulated on a contracted
direct-product grid of 41 points in each dimension. The spectrum consists of a
superposition of three bands, arising from the JT splitting of the three sheets of
the T2 electronic state. The three progressions, which are not resolved in the low-
resolution spectrum, are illustrated in Fig. 4.8a by Gaussian functions enveloping
the progressions of the high-resolution spectrum. The average line spacing amounts
to approximately 0.16 eV which is in good agreement with the theoretical prediction
of Dixon [19]. All three progressions show identical line spacings, the typical charac-
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Figure 4.8: Left: T2 × e JT spectrum of CH+
4 . Right: Analytic PE curves along the

dimensionless normal coordinate q2a
√
ω with a constant displacement in the

second e coordinate.

teristic of harmonic potentials with very similar frequencies. Figure 4.8b shows a cut
through the analytic T2 × e PE surface along the dimensionless normal coordinate
q2a

√
ω with a small displacement in the second (dimensionless) e coordinate. It is

seen that the three diabatic electronic states exhibit a nearly harmonic shape with
very similar frequencies. Since the T2×e Hamiltonian matrix (see Sec. 3.2) is diago-
nal, the three sheets of the T2× e PE surfaces are uncoupled and three independent
progressions can be expected. In fact, no vibronic coupling is observed in the T2× e
JT spectrum in Fig. 4.8a.

The T2× t2 spectrum in the bending coordinates (q4x, q4y, q4z) has been computed
on a grid with 31 points in each dimension. A rather large basis of DVR points was
required due to the high spectral density. The spectrum is shown in Fig. 4.9a and
shows the highest line density compared to the JT spectra of the e mode and the t2
stretching mode. Fig. 4.9b shows the onset of the photoelectron band in Fig. 4.9a.
The effective vibrational spacing in the simulated spectrum was determined as ap-
proximately 0.12 eV between the centers of the first four multiplets in Fig. 4.9b.
Most interestingly, the first three members of the progression show the same pat-
tern as found in the experimental spectrum [22, 23] which was assigned, however,
to the vibrational mode of e symmetry. It should be mentioned, that for the previ-
ous assignments a D2d equilibrium structure was assumed, which corresponds to a
displacement along a coordinate of e symmetry (see Fig. 1 for an illustration of the
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Figure 4.9: Left: T2 × t2 JT spectrum of CH+
4 , taking the t2 bending normal mode into

account. Right: onset of the T2 × t2 JT spectrum shown in the left figure.

symmetry adapted displacements). The latest theoretical and experimental results
[25, 99, 100], however, indicate an equilibrium geometry of C2v symmetry which
requires a displacement along one of the t2 coordinates. These results support the
interpretation of the simulated spectra, which indicate that the t2 (bending) mode
is involved in the lowest vibrational progression of the photoelectron spectrum.

Figure 4.10: T2 × t2 JT spectrum of CH+
4 taking the CH bond-stretching coordinates of

t2 symmetry into account.

Fig. 4.10 shows the photoelectron spectrum calculated in the three-dimensional
subspace of the t2 stretching coordinate, describing the elongation and contraction
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of the CH bond lengths. 11 grid points have been included along every degree of free-
dom. The spectrum consists of a superposition of three regular progressions which
can be assigned to the three sheets of the electronic T2 PE surface. Compared
to the t2 bending mode, an entirely different pattern is observed. Most notably,
the photoelectron spectrum lacks the characteristic multiplets that originate from
the energetic splittings of different combinations of vibrational excitations (Fig. 4.9).
The highest progression, beginning at 15.75 eV, is of very low intensity. The progres-
sion associated with this adiabatic electronic state may be considered as the T2× t2
counterpart of Slonczewski resonances in the E×e JT effect. The vibrational energy
levels appear at equal distances within an electronic band and, in contrast to the
T2×e spectrum, with different spacings for different electronic transitions. The spec-
trum in Fig. 4.10 is representative of a rather weak JT effect with very low barriers
between identical minima. Each spectral line is

(
3+v−1
v

)
times degenerate (cf. 3D

harmonic oscillator), where v = vx + vy + vz is the total vibrational quantum num-
ber. The comparison of the PE surfaces of the two t2 modes in the methane cation
reveals the origin of the very different photoelectron spectra. Figure 4.11 shows
two-dimensional plots of the lowest T2 PE surface in two of the three t2 symmetry
coordinates. While the t2 bending surface exhibits well-defined minima of four-fold
symmetry, the t2 stretching PE surface is reminiscent of a Mexican hat in x, y space
(see Fig. 4.11). The orthorhombic PE minima in the t2 stretching mode (-0.17 eV)
are significantly higher in energy than the t2 bending minima (-0.76 eV). Similar
considerations apply to the trigonal minima (Fig. 4.3), explaining the “harmonic”
structure of the progression in the t2 stretching mode.

Approximate T2 × (e + t2) (bending) and T2 × (e + t2 + t2) spectra have been
obtained by convolution of the single-mode spectra, but do not allow for a reliable
interpretation due to the very high line density and the neglected mode coupling.
More powerful quantum wave-packet propagation methods such as the multi-layer
multi-configuration time-dependent Hartree (ML-MCTDH) method [107, 108] are
required for an analysis of the couplings between different modes. The convoluted
spectra are illustrated in Appendix 6.

The general qualitative picture of the photoelectron spectrum of CH+
4 emerging

from the JT spectra Figs. 4.8–4.10 indicates that the extremely high line density in
the experimental spectrum is largely induced by large-amplitude vibrations in the
t2 bending mode of the hydrogen atoms. The e vibration does not show a complex
vibronic coupling pattern within our resolution, although the spectrum indicates
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Figure 4.11: Two-dimensional PE surfaces as functions of the t2 stretching (left) and t2
bending (right) symmetry coordinates.

a very strong static JT effect in accordance with the structure of the PE surface.
Unfortunately, converged simulations to compute the full-dimensional photoelectron
spectrum are not feasible with the approach applied in this work. The agreement
of the calculated multiplets of the T2 × t2 bending mode spectrum with features of
the experimental spectra, however, suggests that the vibrational line pattern in the
low energy range of the photoelectron spectrum arises from the t2 bending mode,
in disagreement with earlier assignments of the structure of the UV photoelectron
spectrum of CH+

4 [22, 23].
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5 The relativistic Jahn-Teller
effect in tetrahedral systems

Tetrahedral systems exhibit a variety of Jahn-Teller (JT) effects of electrostatic and
relativistic origin. At the electrostatic level [3], the doubly degenerate vibrational
mode (e) is JT active (in first order) in doubly degenerate states (E) of tetrahedral
systems. In triply degenerate states (T1, T2), both the e mode and the triply degen-
erate vibrational mode (t2) are JT active [3, 5, 7]. At the relativistic level, when the
spin of the electron and spin-orbit (SO) coupling are included, on the other hand,
the t2 mode is JT active (in first order) in 2E states, while both e and t2 modes are
JT active in 2T2 states [32, 33]. The relativistic JT forces are thus complementary
to the electrostatic JT forces in 2E states, whereas the electrostatic and relativistic
JT forces act additively in 2T2 states. In the latter case, the relativistic JT forces
can either enhance or weaken the electrostatic JT forces [32, 33]. While the electro-
static JT couplings are expected to be weakly dependent on the nuclear charge of
the constituting atoms, the relativistic JT couplings increase strongly with the nu-
clear charge. It should therefore be insightful to analyze the potential-energy (PE)
surfaces and the vibronic spectra of an isoelectronic series of JT-active systems with
increasing nuclear charges.

The tetramers of the atoms of the fifth main group, X4
+ (X = P, As, Sb, Bi),

represent such a series. Experimental photoelectron spectra of P4, As4 and Sb4

have been reported by several groups more than 20 years ago [34–38]. It has been
found that the ionized clusters exhibit very strong JT effects, involving the e mode
in the 2E ground state and the e and t2 modes in the 2T2 first excited state of the
radical cations. In addition, effects of (zero-order) SO splittings were identified in
the spectra of As+4 and Sb+

4 [34–38]. This series of tetrahedral radical cations is well
suited for a systematic investigation of the interplay of electrostatic and relativistic
JT couplings in electronic spectra.

Recent ab initio calculations of the matrix elements of the Breit-Pauli operator
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with nonrelativistic complete-active-space self-consistent-field (CASSCF) wave func-
tions have confirmed the existence of substantial linear relativistic JT couplings in
the heavier of the group-V tetramers [109]. In this chapter, we report a systematic
analysis of the impact of genuinely relativistic JT couplings on the photoelectron
spectra of the group-V tetramers.
An ab initio based analysis of the vibronic structure of the photoelectron spec-

trum of P4 without the inclusion of SO coupling has been reported much earlier
by Meiswinkel and Köppel [110], abbreviated as MK in the following. Beyond the
linear-plus-quadratic 2E × e and 2T2 × (t2 + e) JT effects, MK considered also the
pseudo-JT (PJT) coupling of the 2E and 2T2 states via the vibrational mode of
t2 symmetry. They found that the PJT coupling has a significant impact on the
vibronic fine structure of the photoelectron band corresponding to the upper (2T2)
electronic state, while the low-resolution band shape is marginally affected by the
PJT coupling [110]. Herein, we focus in novel phenomena arising from the SO cou-
pling operator and neglect the additional complications arising from the electrostatic
quadratic JT coupling and 2E −2 T2 PJT coupling. We ignore, furthermore, the to-
tally symmetric stretching mode which decouples from the JT active modes in first
order (that is, neglecting (a1, e) and (a1, t2) bilinear coupling terms).

5.1 Jahn-Teller Hamiltonians

The six vibrational normal modes of four-atomic tetrahedral systems transform ac-
cording to the a1, e and t2 irreducible representations of Td. The electronic ground
state of the X+

4 cations is of 2E symmetry, the first excited state of 2T2 symme-
try [34–38]. In the two-component description of relativistic electronic-structure
theory, which can be derived from the four-component Dirac-Coulomb formulation
by the elimination of the small components [68, 111], the electronic Hamiltonian is
written as

Hel = HES +HSO (5.1)

where HES is the (spin-free) Hamiltonian containing the Coulombic interactions
and HSO is the SO-coupling operator. In the applications discussed below, HES is
the generalized Fock operator of multi-configuration self-consistent-field (MCSCF)
theory and HSO is the full microscopic Breit-Pauli Hamiltonian containing one-
electron and two-electron terms [112].
The electrostatic JT Hamiltonians of E and T1, T2 electronic states in tetrahedral
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5.1 Jahn-Teller Hamiltonians

systems up to second order in normal-mode displacements are well known and can be
found in many reviews and text books [5, 113, 114]. The effect of SO coupling in the
2E and 2T1,2 states at the tetrahedral reference geometry is also well known [5, 113–
115]: The four-fold degeneracy of a 2E state is retained (that is, there is no SO
splitting of 2E states in tetrahedral symmetry). The six-fold degenerate 2T1 (2T2)

state splits into a four-fold degenerate state transforming as G3/2 in the spin double
group T ′d [116] and a two-fold degenerate state transforming as E1/2 (E5/2) in T ′d. As
a consequence of time-reversal symmetry [75], the two-fold degeneracy of the E1/2

and E5/2 levels cannot be lifted in the absence of external magnetic fields, while the
levels of the G3/2 manifold can split into two two-fold degenerate levels.

To obtain the relativistic JT Hamiltonians, the Breit-Pauli operator is expanded
in a Taylor series in normal-mode displacements up to first order

HSO = h0 + hxQx + hyQy + hzQz + haqa + hbqb. (5.2)

Here Qx, Qy, Qz are the normal coordinates transforming according to the t2 irre-
ducible representation and qa, qb are the normal coordinates of e symmetry. The
nonvanishing matrix elements of HSO in a spin-orbital basis are determined by sym-
metry selection rules in the spin double group T ′d. The details of the derivation can
be found in Refs. [32, 33]. Expansion terms of second or higher order are neglected
at the present stage of development of the theory.

For simplicity and clarity, we drop the (well-known) quadratic coupling terms
of electrostatic origin and keep only the linear coupling terms of electrostatic or
relativistic origin. The electrostatic coupling parameters are denoted by Latin sym-
bols, while Greek symbols are used to denote relativistic JT couplings. With these
simplifications, the JT Hamiltonians of a 2E state are [32]

HES(2E × e) =
1

2
ω(E)
e ρ2I4 + b


qa qb 0 0

qb −qa 0 0

0 0 −qa qb

0 0 qb qa

 (5.3)

HSO(2E × t2) =
1

2
ω

(E)
t2 R2I4 + β


0 iQz iQ− 0

−iQz 0 0 −iQ−
−iQ+ 0 0 iQz

0 iQ+ −iQz 0

 . (5.4)
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Here, I4 is the 4 × 4 unit matrix, ρ and R are the radial coordinates in qa, qb and
Qx, Qy, Qz space, respectively

ρ =
(
q2
a + q2

b

) 1
2 (5.5a)

R =
(
Q2
x +Q2

y +Q2
z

) 1
2 (5.5b)

and

Q± = Qx ± iQy. (5.5c)

ω
(E)
e and ω(E)

t2 are the harmonic vibrational frequencies of the e and t2 normal modes,
respectively, in the 2E state. b is the linear electrostatic JT coupling constant of
the e mode in the 2E state, while β is the linear relativistic JT coupling constant
of the t2 mode in the 2E state. As mentioned above, the linear JT couplings are
complementary in 2E states: while the e mode is JT active through electrostatic
forces, the t2 mode is JT active through relativistic forces [32].

In 2T1,2 states, on the other hand, the e mode as well as the t2 mode are JT active
in first order through both the electrostatic and relativistic forces [33]. The zeroth-
order SO coupling within a 2T1,2 state is described by a 6× 6 matrix which contains
a single SO matrix element ∆. The diagonalization of this matrix defines the SO-
adapted diabatic electronic basis. In this basis, the linear 2T2 × e JT Hamiltonian
takes the form [33]

HES+SO
(

2T2 × e
)

=
1

2
ω(T2)
e ρ2I6

+



−∆ + c̃1q− 0 0 c̃1q
+ −c̃2q− 0

0 −∆− c̃1q− −c̃1q
+ 0 0 c̃2q

+

0 −c̃1q
+ −∆ + c̃1q− 0 0 c̃2q−

c̃1q
+ 0 0 −∆− c̃1q− c̃2q

+ 0

−c̃2q− 0 0 c̃2q
+ 2∆ 0

0 c̃2q
+ c̃2q− 0 0 2∆


(5.6)

where

q± =
1

2

√
3qa ±

1

2
qb (5.7a)
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q± =
1

2
qa ±

1

2

√
3qb (5.7b)

and

c̃1 =
c

2
− γ (5.8a)

c̃2 = 2−
1
2 (c+ γ) . (5.8b)

Here I6 is the 6 × 6 unit matrix and the real-valued parameters c and γ are the
linear electrostatic and relativistic 2T2 × e JT coupling constants, respectively. It
is seen from Eqs. (5.6, 5.7, 5.8) that the electrostatic and relativistic JT couplings
interfere constructively or destructively, depending on the signs of c and γ.

The relativistically generalized JT Hamiltonian for the t2 mode reads [33]

HES+SO
(

2T2 × t2
)

=
1

2
ω

(T2)
t2 R2I6

+



−∆ −iã1Q+ 0 iã1Qz 0 iã2Q−

iã1Q− −∆ −iã1Qz 0 − i√
3
ã2Q−

2i√
3
ã2Qz

0 iã1Qz −∆ iã1Q− −iã2Q+ 0

−iã1Qz 0 −iã1Q+ −∆ − 2i√
3
ã2Qz − i√

3
ã2Q+

0 i√
3
ã2Q+ iã2Q−

2i√
3
ã2Qz 2∆ 0

−iã2Q+ − 2i√
3
ã2Qz 0 i√

3
ã2Q− 0 2∆


(5.9)

where Q± is defined in Eq. (5.5c) and

ã1 = 3−
1
2 (a+ 2α) (5.10a)

ã2 = 2−
1
2 (a− α) . (5.10b)

The real-valued parameters a and α are the linear electrostatic and relativistic
2T2 × t2 JT coupling constants. As for the e mode, there can be constructive or
destructive interference of the electrostatic and relativistic JT couplings, depending
on the signs of a and α.

If the zeroth-order SO splitting 3∆ (see Eqs. (5.6) and (5.9)) is sufficiently large,
the sub-block corresponding to the G3/2 representation (with diagonal elements −∆)
and the sub-block corresponding to the E5/2 representation (with diagonal elements
2∆) can approximately be decoupled. This (artificial) limit, which reduces the 6×6
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P As Sb Bi

ωa1 75.55 43.45 29.15 20.70
ωe 45.39 25.29 16.46 11.65
ωt2 57.13 32.28 21.43 15.18

r0(X4) 2.22 2.46 2.86 3.03
rT2

0 (X+
4 ) 2.28 2.54 2.93 3.09

rE0 (X+
4 ) 2.16 2.43 2.84 3.03

IP 9552.8 8786.8 7913.1 7345.3

Table 5.1: Equilibrium internuclear distances (r0) at the tetrahedral geometry for the
X4 clusters in the A1 electronic ground state and the X+

4 ions in the 2T2

electronic state (in Ångstrom). Harmonic frequencies of the neutral molecules
and vertical ionization potentials (IP) are given in meV.

JT matrix to a 4× 4 matrix, was frequently considered in the ancient literature on
the JT effect in crystals [117]. Here, we treat the nonadiabatic dynamics of the full
6× 6 2T2 × (t2 + e) JT Hamiltonian.
Finally, the nuclear kinetic-energy operator has to be added to yield the JT Hamil-

tonians

H(2E × (e+ t2)) = TNI4 + HES+SO(2E × (e+ t2)) (5.11a)

H(2T2 × (e+ t2)) = TNI6 + HES+SO(2T2 × (e+ t2)) (5.11b)

TN is written in dimensionless ground-state normal coordinates as

TN = −1

2
ωe

(
∂2

∂q2
a

+
∂2

∂q2
b

)
− 1

2
ωt2

(
∂2

∂Q2
x

+
∂2

∂Q2
y

+
∂2

∂Q2
z

)
, (5.12)

ωe and ωt2 are the harmonic vibrational frequencies of the e and t2 normal modes,
respectively, in the electronic ground state of the neutral X4 systems.

5.2 Computational methods

5.2.1 Ab initio electronic-structure calculations

In order to determine the magnitudes of the electrostatic and relativistic JT coupling
parameters, we have performed relativistic ab initio electronic-structure calculations
for the 2E ground state and the 2T2 first excited electronic state of the cluster
cations P+

4 , As
+
4 , Sb

+
4 , Bi

+
4 . The calculations were carried out in C2v symmetry along
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P+
4 As+4 Sb+

4 Bi+4
ωa1(2E) 69.22 37.90 26.00 18.48
ωe(

2E) 38.79 22.60 15.00 10.65
ωt2(2E) 44.92 26.16 17.99 12.88
∆(2T2) -5.18 -27.10 -71.45 -264.30
ωa1(2T2) 63.63 36.50 25.27 18.25
ωe(

2T2) 40.02 22.54 14.90 10.49
ωt2(2T2) 51.10 29.59 19.97 14.21

b 197.18 129.03 85.19 63.73
β 1.60 4.58 8.57 15.16
c -20.88 2.68 1.60 5.81
γ - - 3.14 5.74
a 144.26 94.55 63.86 48.45
α - -10.55 -10.94 -16.05

Table 5.2: Parameters used in the model Hamiltonians for the simulation of photoelectron
spectra. All values are given in meV.

symmetry coordinates of e and t2 symmetry. All symmetry-adapted coordinates are
defined in Appendix 4.1.

The wave function of the electrostatic Hamiltonian has been constructed in the
state-averaged CASSCF approximation, which is a full-configuration-interaction cal-
culation in a restricted space of so-called active molecular orbitals [118]. The active
space included the 12 p-orbitals of the four atoms of the cluster. The remain-
ing occupied orbitals were restricted to double occupation. Matrix elements of the
Breit-Pauli Hamiltonian have been computed with the CASSCF wave functions of
the lowest five electronic states corresponding to the manifold 2E and 2T2. By di-
agonalizing the 10 × 10 SO matrix, SO-corrected adiabatic potentials have been
computed.

The PE surfaces of P+
4 were computed using Dunning’s correlation-consistent

triple-ζ basis set [119]. For the clusters of the heavier elements, pseudo- or effective
core potentials (PPs, ECPs) developed by Metz et al. [120] were employed, which
implicitly include relativistic effects of the core electrons. The core definitions cor-
respond to [Ne], [Ar]+3d and [Kr]+4d4f for As, Sb and Bi, comprising 10, 28 and
60 electrons, respectively. Thus all (n-1) spd and n sp electrons were treated explic-
itly in the ab initio calculations, where n denotes the principal quantum number
of the respective element. As basis functions for the valence electrons, we used the
correlation-consistent polarized valence triple-ζ (cc-pVTZ-PP) basis with pseudo-
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potentials of Peterson [121]. All ab initio calculations were performed with the
MOLPRO quantum chemistry software [122].
Equilibrium geometries and harmonic frequencies have been computed for the neu-

tral X4 clusters in the electronic ground state at the coupled-cluster level including
single, double and perturbative triple excitations (CCSD(T)). Vertical ionization
potentials have been computed using an open-shell coupled-cluster (RCCSD(T))
method. The tetrahedral reference geometries of the ions were determined as the
minima of the PE curves along the totally symmetric coordinate in the lowest elec-
tronic state of T2 symmetry. Vibrational frequencies of the e and t2 modes of
the cations have been obtained from the second derivatives of the mean energy
(V1 + V2)/2 of the 2E manifold and the mean energy (V1 + V2 + V3)/3 of the 2T2

manifold, respectively (see Table 5.2). Table 5.1 gives the optimized geometries as
well as the harmonic vibrational frequencies of the neutral and cationic clusters.
Fig. 5.1 illustrates the computed PE surfaces of Sb+

4 .

5.2.2 Jahn-Teller parameters

The JT coupling parameters were determined by fitting the adiabatic PE functions
of the JT Hamiltonians to ab initio data along cuts of C2v symmetry in a suitable
range close to the conical intersection at the tetrahedral reference geometry. The
parameters of the PE matrices which have been used in the present work are summa-
rized in Table 5.2. The table includes the linear electrostatic T2×t2, T2×e and E×e
JT coupling parameters, as well as the corresponding zero-order and linear relativis-
tic parameters. Despite of the reasonable trends in the JT parameters, these should
be interpreted with some care since the nonlinear fitting procedure is very sensitive
to the selected range of ab initio data. It should be mentioned that the electrostatic
E × e and T2 × t2 JT effects in the P+

4 , As
+
4 and Sb+

4 cluster cations are among the
strongest JT effects known in nature [37, 110]. An example of a parametrized PE
surface for a JT system exhibiting rather small SO coupling effects is provided in
Fig. 5.2.
It is helpful to consider dimensionless JT parameters for a comparison of the

magnitudes of the JT effect within the series of X4 clusters. While the magnitudes
of the dimensionless electrostatic T2 × t2 (a/ωt2) and T2 × e (c/ωe) JT coupling
parameters are roughly constant throughout the series, the relativistic JT coupling
parameters increase strongly with Z. For Bi+4 , the relativistic T2 × t2 JT coupling
even exceeds the electrostatic JT coupling and represents a truly pronounced JT
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5.2 Computational methods

Figure 5.1: Ab initio PE surfaces of Sb+
4 along a symmetry coordinate of T2 symmetry

(left) and of E symmetry (right). The upper panels (a) show the results
of nonrelativistic ab initio calculations. The data displayed in the lower
panels (b) have been computed including the microscopic Breit-Pauli spin-
orbit operator.

effect (α/ωt2 ≈ −2.01). For the 2E ground state, the electrostatic E×e JT coupling
(b/ωe) is likewise roughly constant throughout the series, while the magnitude of
the relativistic 2E× t2 JT coupling (β/ωe) increases with Z. It should be noted that
the t2 mode is not JT active in the 2E state in the nonrelativistic approximation.
A more detailed discussion of the JT effects in the context of photoelectron spectra
is provided in Section 5.3.

5.2.3 Propagation of the nuclear wave function

The photoelectron spectra of P+
4 , As

+
4 , Sb

+
4 and Bi+4 were computed by the Cheby-

shev method described in Sec. 2.6. Calculations have been performed with two
(2E × e, 2T2 × e), three (2E × t2, 2T2 × t2) and five (2E × (e + t2)) vibrational de-
grees of freedom. The wave-packet and the diabatic potentials were represented on
a direct-product discrete variable representation (DVR) grid based on sinc(x) func-
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5 The relativistic Jahn-Teller effect in tetrahedral systems

(a) (b)

Figure 5.2: Electrostatic (left) and relativistic (right) PE surfaces of the electronic 2E
ground and first excited 2T2 state for As+4 (dots: ab initio data; solid lines:
fit).

tions [80]. All spectra (except the 5D 2E × (t2 + e) spectra) have been computed
several times with different grid parameters until convergence was achieved. Partic-
ularly demanding are the simulations of the relativistic 2T2 × t2 JT spectra for the
heavier clusters since the computational cost increases strongly with the spectral
range of the Hamiltonian, which increases with the zero-order SO splitting. The
grid parameters employed in the present work are listed in Tab. 5.3. All propaga-
tions involved 20000 iterations according to Eq. (2.46), starting from the harmonic
vibrational ground state of the respective neutral cluster.

The low-resolution spectra of the electronic 2E state have been obtained by con-
volution with a Gaussian of 35, 20, 15 and 10meV full width at half maximum
(FWHM) for P+

4 , As
+
4 , Sb

+
4 and Bi+4 , respectively. The spectral envelopes of the

2T2 × t2 spectra were computed with a Gaussian convolution of 40 and 20meV
FWHM for P+

4 and As+4 . For the low-resolution spectra of the lowest electronic 2T2

state of Sb+
4 and Bi+4 a FWHM of 10meV was used. For the high-resolution spectra,

the FWHM has been reduced by a factor of 1/30 with respect to the low-resolution
spectra.
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5.3 Photoelectron spectra and discussion

electrostatic relativistic
2E × e 2T2 × t2 2T2 × t2

P+
4 -500.0/500.0 (141) -300.0/300.0 (121) –

As+4 -1000.0/1000.0 (181) -1000.0/1000.0 (121) -1000.0/1000.0 (161)
Sb+

4 -1500.0/1500.0 (201) -1000.0/1000.0 (121) -1000.0/1000.0 (121)
Bi+4 -2000.0/2000.0 (201) -2000.0/2000.0 (161) -1500.0/1500.0 (161)

Table 5.3: Parameters of the direct-product grids employed in the computation of the
JT spectra. The grid range of the respective electronic state/coordinate in
mass-weighted normal coordinates is given. The numbers in parentheses are
the numbers of equidistant gridpoints per degree of freedom used in the un-
contracted grid. For zero- and first-order relativistic Hamiltonians the same
grid parameters were used.

5.3 Photoelectron spectra and discussion

The emphasis of the present investigation is on the understanding of the effects of
novel relativistic JT couplings on the photoelectron spectra of the group-V tetramers,
which are known to exhibit very strong JT effects in the 2E ground state as well
as in the 2T2 first excited state [34–38, 110]. For brevity and clarity, we restrict
the present analysis to zeroth-order SO splittings and first-order electrostatic and
relativistic JT couplings. Quadratic JT couplings of electrostatic origin and 2E-2T2

PJT couplings are known to be relevant from the work on MK on P+
4 [110], but

are beyond the scope of the present work. We also ignore the totally symmetric
breathing mode which is separable from the JT dynamics in first order. Moreover,
we assume zero temperature, that is, ionization from the vibrational ground state
of the clusters.

5.3.1 The 2E state

The vibronic structures and band shapes of the photoelectron bands corresponding
to the 2E ground state of P+

4 , As
+
4 , Sb

+
4 and Bi+4 are shown in Fig. 5.3 (from top to

bottom). The vibronic dynamics in the 2E state is characterized by an exceptionally
strong electrostatic E×e JT effect, as was shown in Refs. [34–38, 110]. The t2 mode
is not JT active in first order in 2E states at the electrostatic level, but becomes
JT active (in first order) through the SO operator [32]. The relativistic 2E × t2 JT
effect is, however, too weak to compete with the very pronounced 2E × e JT effect,
except for the heaviest system, see below.
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5 The relativistic Jahn-Teller effect in tetrahedral systems

(a) P+
4 (b) As+4

(c) Sb+
4 (d) Bi+4

Figure 5.3: Electrostatic 2E × e Jahn-Teller spectra of P+
4 , As

+
4 , Sb

+
4 and Bi+4 .

The 2E×e JT spectra exhibit a very extended approximately equidistant progression
in the e mode, as discussed previously by Wang et al. [37, 38]. The narrower second
hump of the envelope represents a so-called Slonczewski resonance [123]. It is the
well-known signature of a very strong E × e JT effect [37, 124]. For P+

4 , the dimen-
sionless JT coupling parameter b

ωe
has been estimated as 5.3 by MK (ab initio, with

Koopmans’ theorem) and as 5.75 by Wang et al. (empirical fit), in good qualitative
agreement with the present ab initio result (5.1). The vibronic line density is much
higher in the 2E × e spectrum of MK, since they included quadratic JT coupling as
well as 2E −2 T2 PJT coupling [110]. The low-resolution envelope of the 2E band of
P+

4 in Fig. 5.3a is, however, in good agreement with the result of MK [110].
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5.3 Photoelectron spectra and discussion

Figure 5.4: E × (e+ t2) Jahn-Teller spectrum of Bi+4 including SO coupling.

As far as the purely relativistic 2E×t2 JT coupling is concerned, the dimensionless
coupling parameter β

ωe
is very small in P+

4 (0.04), but becomes significant in Bi+4
(1.42), see Table 5.2. The 2E photoelectron spectrum of Bi4, calculated with the
inclusion of both e and t2 modes, is shown in Fig. 5.4. The first-order relativistic
2E × t2 coupling (recall that the zeroth-order SO splitting of the 2E state is zero)
has a minor effect on the lower sub-band, but results in a significant narrowing and
irregular vibronic fine structure of the upper sub-band (compare Figs. 5.3d and 5.4).
In the case of Bi+4 , the relativistic 2E× t2 JT coupling thus has a measurable impact
on the low-resolution band shape as well as on the detailed vibronic structure.

5.3.2 The 2T2 state

In contrast to the 2E state, the 2T2 state exhibits a zero-order SO splitting 3∆,
cf. Eqs. (5.6) and (5.9). In addition, the electrostatic linear JT coupling con-
stants are additively/destructively modified by the linear relativistic JT couplings,
cf. Eqs. (5.8) and (5.10b). The calculated SO-splitting parameter ∆ is given in
Table 5.2. The SO splitting 3∆ increases from 15meV in P+

4 to 793meV in Bi+4 .
For the t2 mode, we have ã1 < a and ã2 > a (see Eq. (5.10b) and Table 5.2), that is,

the JT couplings within the G3/2 manifold are reduced, while the coupling between
the G3/2 and E5/2 manifolds is increased by the relativistic coupling parameter α.
These effects are illustrated by the adiabatic JT PE curves shown in Fig. 5.2 for As+4 ,
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5 The relativistic Jahn-Teller effect in tetrahedral systems

for example. Figure 5.2a exhibits the very strong electrostatic 2T2 × t2 JT coupling
in the 2T2 state of As+4 . Figure 5.2b illustrates the zeroth-order SO splitting of
the 2T2 state (into the G3/2 and E5/2 manifolds) and the existence of a weak, but
noticeable, relativistic linear 2E × t2 JT coupling in the 2E state.
For the e mode, the nonrelativistic 2T2 × e JT coupling is modified by the rela-

tivistic JT coupling parameter γ, see Eq. (5.8). Since c and γ are of the same sign,
c̃1 < c and c̃2 > c, that is, the JT effect within the G3/2 manifold is decreased, while
the G3/2−E5/2 coupling is enhanced by the relativistic JT coupling. Since c as well
as γ are small compared to the coupling parameters a and α of the t2 mode, these
effects are hardly visible in the vibronic spectra. Therefore, we show and discuss
the pure 2T2 × t2 spectra in what follows.
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5.3 Photoelectron spectra and discussion

(a) P+
4 (b) As+4

(c) Sb+
4 (d) Bi+4

Figure 5.5: Electrostatic 2T2 × t2 Jahn-Teller spectra of P+
4 , As

+
4 , Sb

+
4 and Bi+4 .

The nonrelativistic 2T2 × t2 JT spectra of P+
4 , As

+
4 , Sb

+
4 and Bi+4 are displayed

in Fig. 5.5. They are representatives of a very strong 2T2 × t2 JT effect. The
dimensionless JT coupling parameter a

ωt2
increases from 2.8 for P+

4 to 3.4 for Bi+4 .
While the vibronic fine structure is highly irregular, the low-resolution envelopes
exhibit a quasi-regular progression. Surprisingly, this partially resolved progression
survives even for the heaviest systems, despite the strongly reduced vibrational
frequency of the t2 mode in Sb+

4 and Bi+4 .
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5 The relativistic Jahn-Teller effect in tetrahedral systems

The 2T2×t2 JT spectra obtained with inclusion of SO splitting and linear relativis-
tic JT coupling are shown in Figs. 5.6–5.8 for As+4 , Sb

+
4 and Bi+4 (the SO coupling

effects in P+
4 are too minor to be of interest). In these three figures, the panels

(a) show the spectra obtained with inclusion of zeroth-order SO splitting 3∆, but
neglect of the linear relativistic JT coupling, determined by the parameter α

ωt2
. The

lower panels (b) show the spectra obtained with complete inclusion of SO-coupling
effects up to first order in the t2 mode.

(a) (b)

Figure 5.6: 2T2 × t2 Jahn-Teller spectra of As+4 including zeroth-order (left) and zeroth-
order plus first-order (right) spin-orbit coupling.

The comparison of the lhs frames of Figs. 5.6–5.8 with the corresponding spectra
in Fig. 5.5 reveals the effect of the SO splitting 3∆ of the 2T2 state. For Bi+4 ,
due to large SO splitting of about 0.8 eV, only the upper (G3/2) band is shown in
Fig. 5.8. Already in As+4 , the band shape exhibits a doublet structure. The apparent
splitting (≈ 0.15 eV) is significantly larger than the zeroth-order SO splitting of
0.08 eV (Table 5.2). For Sb+

4 and Bi+4 , the apparent splitting of the 2T2 photoelectron
band approaches the value 3∆. As expected, strong SO splitting quenches the
(electrostatic) JT effect, that is, the SO-separated bands become narrower and the
vibronic progressions are reduced. This phenomenon is generally known as the “Ham
effect” [125].
Of particular interest in the context of the present work is the effect of linear

relativistic JT coupling on the vibronic spectra, that is, the difference of the spectra
in the lhs and rhs panels of Figs. 5.6–5.8. In all three cases, a reduction of the
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5.3 Photoelectron spectra and discussion

(a) (b)

Figure 5.7: 2T2 × t2 Jahn-Teller spectra of Sb+
4 including zeroth-order (left) and zeroth-

order plus first-order (right) spin-orbit coupling.

vibrational pseudo-progressions in the upper (G3/2) sub-band is observed which is
concomitant with the destructive interference of electrostatic and SO-induced JT
couplings (ã1 < a). This effect is very pronounced for Bi+4 (Fig. 5.8): here the
vibronic spectrum of the upper sub-band contracts to a double-peak envelope, as
expected for a two-state JT effect (the G3/2 manifold splits into two Kramers dou-
blets). Very interesting is the relativistic JT spectrum of the 2T2 state of As+4 : here
a novel quasi-regular progression develops in the upper sub-band, see Fig. 5.6b.
Unfortunately, a comparison of these pronounced JT and SO-coupling effects with

experiment is currently not possible. The available experimental photoelectron spec-
tra of P4, As4 and Sb4 are strongly broadened due to the high temperature of the
clusters (between 450 and 1150K) [34–38]. The excitation of the totally symmetric
breathing mode is another effect which conceals the features due to the JT effect.
As a result, the existing photoelectron spectra of As4, Sb4 and Bi4 are structure-
less [34–38].
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5 The relativistic Jahn-Teller effect in tetrahedral systems

(a) (b)

Figure 5.8: 2T2 × t2 Jahn-Teller spectra of Bi+4 including zeroth-order (left) and zeroth-
order plus first-order (right) spin-orbit coupling. In both figures only the
high-energy (G3/2) band is shown.
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6 Summary

The central topic of this work is the construction of systematically generalized JT
model Hamiltonians for molecules of tetrahedral symmetry and their application in
simulations of photoelectron spectra. Recently, Braams, Bowman and coworkers de-
vised an approach to the approximation problem of single-sheeted PE surfaces based
on automated scans of ab initio data and computational invariant theory. While
their results are widely considered as a breakthrough in the construction of PE sur-
faces of closed-shell systems, the approximation problem of multi-sheeted PE sur-
faces of open-shell systems remained unsolved. The generalization of the approach
of Braams and Bowman to multi-sheeted PE surfaces of systems of high symme-
try has been developed in the present thesis. In order to construct multi-sheeted
multi-dimensional JT PE surfaces, methods of group theory and the theory of in-
variant polynomials have been combined to exploit the full symmetry of a molecule.
The major achievement of the theoretical part of this work is the development of
a new method to obtain matrix expansions of multi-sheeted PE surfaces up to ar-
bitrary order. The derivation of arbitrary-order matrix expansions of multi-sheeted
PE surfaces in a diabatic representation is solely based on the molecular symmetry
(point-group and/or permutation-inversion symmetry). The multi-sheeted expan-
sion method represents a generalization of the expansion of single adiabatic surfaces
and is particularly well-suited for JT PE surfaces.

The first application presented in this work is a high-order expansion of three-
sheeted PE surfaces of T2 symmetry in tetrahedral systems. From the irreducible
representations of the permutation group of four elements (S4), a complete set of gen-
erating polynomials has been determined comprising 31 invariant polynomials. This
provides a considerable simplified polynomial basis compared to a recently published
generating set containing more than 150 terms. From the generating polynomials,
a set of symmetry-adapted matrices has been determined which, together with the
generating polynomials, permit the expansion of the diabatic model Hamiltonian up
to arbitrary order. Analytic expansions of the PE matrix have been determined up
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to 6 th order in a basis of internuclear distances and up to 12 th order in the JT active
modes using symmetry coordinates, which are based on a space-fixed reference geom-
etry. A large data set of accurate ab initio energies has been computed for the three
lowest electronic states of T2 symmetry of the methane cation. The ab initio calcu-
lations were carried out using the multi-reference configuration-interaction method,
where all valence orbitals have been included in the active space of the CASSCF
calculation. The parameters in the PE expansion were determined by fitting the
adiabatic ab initio data to the eigenvalues of the model Hamiltonian. Although in
a few special cases the fitting procedure can be simplified to a linear least-squares
problem, fitting general JT PE surfaces poses a non-linear optimization problem. In
this work, a Marquardt-Levenberg algorithm has been implemented to perform the
non-linear least-squares optimization. A Fortran module was implemented which
evaluates the approximate electronic energies within the fitted range of coordinates.
The new nine-dimensional PE surface has been used for the simulation of Jahn-Teller
spectra of the methane cation with the Chebyshev propagation method. Compared
to all previous treatments of the JT effect in CH+

4 , which were limited to Hamiltoni-
ans expanded up to second order, the full-dimensional three-sheeted PE surface up
to 6 th order provides a substantially improved description of the vibronic coupling
effects in the methane cation. It was found that the strongest vibronic coupling
arises from the t2 bending mode. Moreover, simulations of the JT spectra indicate
that the vibrational structure near the onset of the UV photoelectron spectrum
arises from the t2 bending mode, contrary to previous speculative assignments of
the experimental data. Unfortunately, it is not yet possible to compute the photo-
electron spectrum with inclusion of all degrees of freedom of the present PE surface
with currently available quantum dynamics methods.

The second application of JT theory in this thesis addresses the problem of spin-
orbit coupling in JT systems containing heavy atoms. As is well known, many solids
containing heavy atoms with unpaired electrons exhibit the JT effect, including ma-
terials of high technological importance such as high-temperature superconductors
or materials with colossal magnetoresistance. Although relativistic methods are
well-established in electronic-structure theory, the lack of appropriately extended
theoretical models prevented the examination of SO-induced JT coupling effects in
tetrahedral systems. Based on recently developed JT Hamiltonians, the JT effect in
2E and 2T2 states of the clusters of the series of isoelectronic X4

+ (X = P, As, Sb, Bi)
clusters of the fifth main group have been investigated. Besides the electrostatic JT
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couplings in the electronic ground state of 2E symmetry and the triply degenerate
first excited state of 2T2 symmetry, relativistic JT couplings arising from the SO
operator have been evaluated for the first time. The SO-induced JT parameters,
which have been determined by relativistic ab initio calculations, indicate that for
heavier systems, such as Sb+

4 and Bi+4 , SO coupling effects can be of the same mag-
nitude as the electrostatic JT effect. Photoelectron spectra have been computed in
the electrostatic approximation and with inclusion of the zeroth-order SO splittings
as well as first-order relativistic JT couplings. An extension of the Chebyshev wave-
packet method to complex-valued Hamiltonians has been implemented to deal with
relativistic JT Hamiltonians. In the spectra of the electrostatic model the typical
signatures of a very strong JT T2× t2 effect are observed, which are preserved when
zero-order SO coupling is included. The first-order SO coupling, on the other hand,
cause a significant reduction of the electrostatic JT couplings. From the comparison
of the simulations including electrostatic and electrostatic plus SO JT couplings, a
detailed picture of the influence of SO effects on the JT spectra could be obtained,
including the first characterization of a purely relativistic 2E × t2 JT effect. The
presented results clearly indicate that SO coupling effects play an important role in
vibronic-coupling phenomena in molecules with heavy atoms.
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Appendices

1 Generating sets of invariant polynomials for YX4

systems

The complete generating set of polynomials of a YX4 molecule comprises 31 polyno-
mials. The polynomials were determined from a representation in internuclear dis-
tances with the Singular-Software and the finvar-library [60, 61]. The invariants
are expressed in coordinates adapted to irreducible representations. The complete
set of invariant polynomials in the JT active coordinates x1, y1, z1, x2, y2, z2 are

f1 = x2
1 + y2

1 + z2
1

f2 = x1y1z1

f3 = x4
1 + y4

1 + z4
1

f4 = x2
2 + y2

2 + z2
2

f5 = x2y2z2

f6 = x4
2 + y4

2 + z4
2

f7 = x1x2 + y1y2 + z1z2

f8 = z1x2y2 + y1x2z2 + x1y2z2

f9 = y1z1x2 + x1z1y2 + x1y1z2

f10 = x1x
3
2 + y1y

3
2 + z1z

3
2

f11 = x2
1x

2
2 + y2

1y
2
2 + z2

1z
2
2

f12 = x3
1x2 + y3

1y2 + z3
1z2

f13 = a2 − ab+ b2

f14 = a3 − 3

2

(
a2b+ ab2

)
+ b3

(1a)
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f15 = (a− 2b)x2
1 + (a+ b) y2

1 + (b− 2a) z2
1

f16 = a2x2
1 + (a− b)2 y2

1 + b2z2
1

f17 = (a− 2b)x4
1 + (a+ b) y4

1 + (b− 2a) z4
1

f18 = (a− 2b)x2
2 + (a+ b) y2

2 + (b− 2a) z2
2

f19 = a2x2
2 + (a− b)2 y2

2 + b2z2
2

f20 = (a− 2b)x4
2 + (a+ b) y4

2 + (b− 2a) z4
2

f21 = (a− 2b)x1x2 + (a+ b) y1y2 + (b− 2a) z1z2

f22 = a2x1x2 + (a− b)2 y1y2 + b2z1z2

f23 = (a− 2b)x1x
3
2 + (a+ b) y1y

3
2 + (b− 2a) z1z

3
2

f24 = (a− 2b)x2
1x

2
2 + (a+ b) y2

1y
2
2 + (b− 2a) z2

1z
2
2

f25 = (a− 2b)x3
1x2 + (a+ b) y3

1y2 + (b− 2a) z3
1z2

f26 = (a− 2b)x1y2z2 + (a+ b) y1x2z2 + (b− 2a) z1y2x2

f27 = (a− 2b)x2y1z1 + (a+ b) y2x1z1 + (b− 2a) z2y1x1

f28 = a2x1y2z2 + (a− b)2 y1x2z2 + b2z1y2x2

f29 = a2x2y1z1 + (a− b)2 y2x1z1 + b2z2y1x1.

(1b)

Additionally, there exist the following (not JT active) displacements (invariants of
first order in the internuclear distances)

s0 =
1√
6

(∆r21 + ∆r31 + ∆r41 + ∆r32 + ∆r42 + ∆r43)

s1 =
1

2
(∆r1 + ∆r2 + ∆r3 + ∆r4) .

(2)

2 The polarization method

The polarization process is a formal procedure of substituting a set of variables in a
polynomial by a another copy of variables with identical symmetry properties [50].
The polarization operators are defined as linear differential operators Dij(1 ≤ i, j ≤
m), acting on one of m coordinate vectors vj ∈ V m = V1⊕ . . .⊕Vm (which transform
identically under the symmetric group of n elements, Sn) of dimension n:

Dij p =
n∑
k=1

vi,k
∂p

∂vj,k
. (3)
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This is the derivative of a (invariant) polynomial p with respect to vj in the direction
of vi. Hence, the polarization process corresponds to a successive substitution of
the variables of a vector space by the variables from another copy of the same vector
space. The polarized polynomials are invariants under the group acting on the
vector space V m+1. This procedure may be repeated an arbitrary number of times.
Weyl has shown for the symmetric group Sn of n elements that if the invariant ring
R[V1]Sn is generated by a set of polynomials f1, · · · , fn, then their polarized forms
generate the ring R[V1 ⊕ V2]Sn [50]. This holds for an arbitrary number of vectors
vi.

Consider, as an example, the generating polynomial f (1)(v1) = x1y1z1 (Eq. (3.10)
with vj = (xj, yj, zj)

T) of degree 3 for the T2 representation of the Td ' S4 group.
Polarization yields

D21 f
(1)(v1) = x2y1z1 + x1y2z1 + x1y1z2 (4)

and similarly
1

2
(D21)2 f (1)(v1) = x2y2z1 + x1y2z2 + x2y1z2. (5)

In order to define the mapping between an operator containing the symmetry
of a molecular system, the expectation value (this is the actual invariant physical
quantity) can be considered as a homogeneous polynomial of degree two in the
electronic coordinates (a 2-form, cf. Eq. 2.4).

cTAc =
∑
ij

cicjAij (6)

The resulting polynomial in the coefficients ci is completely determined by the sym-
metric matrix A and, assuming the elements Aij are polynomials in some coordinates
v, must be an element of the invariant ring R[c⊕ v]G. If a subspace w ≤ v of the
coordinates on which the elements Aij depend forms a vector space that transforms
identically as c, a generating set for the invariant expansion terms in Eq. (3.2) is
easily determined by applying twice the polarization operators for c as shown in
Eq. (5). Due to the nature of the polarization operators, the elements Aij are equiv-
alent to the second derivatives w. r. t. ci and cj up to a constant factor. This is the
main advantage to work with vector spaces that transform as irreducible represen-
tations. The complete expansion is obtained from a fundamental set of invariants
which contains all distinct irreducible representations. The invariant ring is then
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easily extended by polarization and mapped to the respective operator expansion.

An interesting aspect is the structure of the operator expansion. Due to the prod-
uct structure of the polynomials in the invariant expansion, the operator expansion
has the structure of a module. Let hij(p), i, j ∈ x, y, z, be an element of the Hessian
of an invariant p(f1, · · · , fn) expressed as a product of invariants fi. It follows from
the product rule of differentiation:

hij(p) =
∂2

∂xi∂xj
f1f2 . . . fn =

n∑
k=1

∂2fk
∂xi∂xj

∏
l 6=k

fl+
∑
k 6=m

(
∂fk
∂xi

∂fm
∂xj

+
∂fk
∂xj

∂fm
∂xi

) ∏
l 6=k 6=m

fl.

(7)
Finding the generators of a polynomial matrix expansion of a diabatic potential
matrix is thus equivalent to finding the first and second partial derivatives of the
generating set of polynomials. All matrix elements can be constructed as appropriate
products of the first or second derivatives in the respective coordinates with a number
of totally-symmetric invariants. Any product of two fi results in a sum of three
matrices with elements

hij(fkfl) = a1fk
∂2fl
∂xi∂xj

+ a2fl
∂2fk
∂xi∂xj

+ a3

(
∂fl
∂xi

∂fk
∂xj

+
∂fl
∂xj

∂fk
∂xi

)
(8)

where the ai are independent parameters (to be determined by a least-squares fit to
ab initio data), since the corresponding matrices form invariant terms in the matrix
expansion. Clearly, any product of the hij with an invariant is a valid expansion
term as well, since the factors fi preserve the symmetry.

3 Matrix expansion of T2 potential-energy surfaces

As shown in App. 2, every term in the matrix expansion of the JT PE surfaces can
be constructed from the first and second derivatives of the invariant polynomials.
The general traceless (i. e. JT active) part of the PE expansion can be written as a
module over the invariants R[f1, . . . , fn] given in Appendix 1.

V = R[f1, . . . , fn] +
n⊕
i=1

giR[f1, . . . , fn] (9)
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3 Matrix expansion of T2 potential-energy surfaces

. The matrices gi are

g1 =

2x2
1 − y2

1 − z2
1 0 0

0 2y2
1 − x2

1 − z2
1 0

0 0 2z2
1 − x2

1 − y2
1



g2 =

2x4
1 − y4

1 − z4
1 0 0

0 2y4
1 − x4

1 − z4
1 0

0 0 2z4
1 − x4

1 − y4
1



g3 =

2x2
2 − y2

2 − z2
2 0 0

0 2y2
2 − x2

2 − z2
2 0

0 0 2z2
2 − x2

2 − y2
2



g4 =

2x4
2 − y4

2 − z4
2 0 0

0 2y4
2 − x4

2 − z4
2 0

0 0 2z4
2 − x4

2 − y4
2



g5 =

2x1x2 − y1y2 − z1z2 0 0

0 2y1y2 − x1x2 − z1z2 0

0 0 2z1z2 − x1x2 − y1y2



g6 =

2x1x
3
2 − y1y

3
2 − z1z

3
2 0 0

0 2y1y
3
2 − x1x

3
2 − z1z

3
2 0

0 0 2z1z
3
2 − x1x

3
2 − y1y

3
2



g7 =

2x2
1x

2
2 − y2

1y
2
2 − z2

1z
2
2 0 0

0 2y2
1y

2
2 − x2

1x
2
2 − z2

1z
2
2 0

0 0 2z2
1z

2
2 − x2

1x
2
2 − y2

1y
2
2



g8 =

2x3
1x2 − y3

1y2 − z3
1z2 0 0

0 2y3
1y2 − x3

1x2 − z3
1z2 0

0 0 2z3
1z2 − x3

1x2 − y3
1y2



(10a)
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g9 =

 0 z1 y1

z1 0 x1

y1 x1 0



g10 =

 0 x1y1 x1z1

x1y1 0 y1z1

x1z1 y1z1 0



g11 =

 0 z3
1 y3

1

z3
1 0 x3

1

y3
1 x3

1 0



g12 =

 0 z2 y2

z2 0 x2

y2 x2 0



g13 =

 0 x2y2 x2z2

x2y2 0 y2z2

x2z2 y2z2 0



g14 =

 0 z3
2 y3

2

z3
2 0 x3

2

y3
2 x3

2 0



g15 =

 0 x1y2 + x2y1 x1z2 + x2z1

x1y2 + x2y1 0 y1z2 + y2z1

x1z2 + x2z1 y1z2 + y2z1 0



g16 =

 0 x1x
2
2 y1y

2
2

x1x
2
2 0 z1z

2
2

y1y
2
2 z1z

2
2 0



g17 =

 0 x2
1x2 y2

1y2

x2
1x2 0 z2

1z2

y2
1y2 z2

1z2 0



g18 =

a− 2b 0 0

0 a+ b 0

0 0 b− 2a



g19 =

a
2 + 2ab− 2b2 0 0

0 a2 − 4ab+ b2 0

0 0 b2 + 2ab− 2a2

 .

(10b)
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4 Symmetry-adapted coordinates

Symmetry-adapted coordinates are coordinates of a vector space on which a repre-
sentation of a molecular symmetry group acts. Usually, irreducible representations
are considered in JT theory. The first step in the formal derivation of symmetry-
adapted coordinates is the definition of a set SALCs in a suitable basis. SALCs
form the basis functions of the vector space associated with the symmetry-adapted
coordinates. Valid SALCs must be closed under the action of the group representa-
tion and the typical approach is to reduce a group representation w. r. t. internuclear
distances to linear combinations that form SALCs of irreducible representations. An
arbitrary point in a linear vector space is then given by the linear form (cf. Sec. 2.3)

L(s,S) = 〈s | S〉 =
n∑
i

siSi. (11)

However the shape of molecules with more than three identical nuclei is not uniquely
defined by the internuclear distances of their SALCs. Therefore, all calculations that
require a transformation of symmetry to Cartesian coordinates must be performed
with different (not rotation/reflection-invariant) basis functions. We used the usual
symmetry labels of molecular point groups, first introduced by Mulliken [126].

4.1 X4 molecules

The six internuclear distances of a homonuclear four-atomic molecules form a basis
of a six-dimensional faithful representation Γ of the molecular symmetry group Td.
The representation Γ describes the full permutation symmetry of the of four identical
nuclei and reduces to

Γ = A1 ⊕ E ⊕ T2. (12)

Transforming the internuclear distances into a set of symmetry-adapted linear com-
binations (SALCs) as a basis of the irreducible representations A1, E and T2 yields
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the coordinates:

s1 =
1√
6

(∆r12 + ∆r43 + ∆r13 + ∆r24 + ∆r14 + ∆r23)

sa =
1

2
(∆r13 + ∆r24 −∆r14 −∆r23)

sb =
1

2
√

3
(2∆r12 + 2∆r43 −∆r13 −∆r24 −∆r14 −∆r23)

sx =
1√
2

(∆r12 −∆r34)

sy =
1√
2

(∆r14 −∆r23)

sz =
1√
2

(∆r13 −∆r24)

(13)

The irreducible representations in this basis are given by orthogonal matrices and
form matrix groups of order 1, 6 and 24 for the A1, E and T2 representations, respec-
tively. All these matrix representations occur in a number of different point groups,
thus the formal aspects of the group theoretical treatment of JT problems apply to
a wide range of molecules in various symmetry groups and with different definitions
of symmetry coordinates. As an example, the matrices of the E representation are
identical with the matrices of the E representation of the point group C3v as well as
with the E ′ representation of the D3h molecular point group. In fact, the number
of different irreducible representations, which are the objects of practical interest in
JT problems, can be reduced to 14 for all 32 molecular point groups [46].

For the purpose of quantum dynamics in bound states, i. e. in the vicinity of
the molecular equilibrium geometry, a set of SALCs in Cartesian coordinates is
more appropriate. Firstly, the kinetic-energy operator has a particularly convenient
(diagonal) form in symmetry-adapted Cartesian coordinates. This is an important
simplification in consideration of an application in quantum dynamics. Additionally,
the mapping between internuclear distances and the shape of the molecule, or more
generally the geometry of four points in 3D space, is not unique [64]. Consequently,
ab initio calculations which rely on the Cartesian coordinates can not be performed
along all degrees of freedom using internuclear distances. The drawback of this choice
is clearly the dependence of the coordinate system on a given reference geometry
accompanied with the loss of invariance of the PE surface under overall rotations.

The construction of a set of SALCs in terms of Cartesian displacement vectors
is easily accomplished with regard to Eq. (13). If the impact of the SALCs on a
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4 Symmetry-adapted coordinates

single atom is examined, each symmetry-adapted displacement coordinate acts as a
linear translation described by a Cartesian vector r whose magnitude is proportional
to the respective symmetry coordinate. Let rij be the vector of unit length from
nucleus i to nucleus j at the tetrahedral reference geometry.

rij =
rj − ri
||rj − ri||

= −rji (14)

Symmetry-adapted linear combinations are now constructed by replacing the inter-
nuclear distances in Eq. (13) with the corresponding vectors and taking the sum over
all vectors that involve the considered atom. The sign of the vector is determined
by the index of the atom: If the vector points to the respective nucleus, i. e. the
atom’s index is the first, the sign must be inverted. As an example the impact of
a displacement along sb on nucleus 2 is analyzed. The terms in the definition of sb
that include the index 2 are r12, r23 and r24. Replacing those with the corresponding
vectors and inverting the sign of r23 and r24 yields the sum

1

2
√

3
(2r12 + r23 + r24) (15)

and multiplication with a value d results in the displacement vector for atom 2 for
the symmetry coordinate sb = d. It is straight forward to find the complete set
of Cartesian symmetry coordinates following these rules. Most conveniently the
transformation to SALCs is written as a matrix-vector product.

As + r(0) = r (16)

A =


− 1√

6
(r12+r13+r14) 1

2
(r14−r13) 1

2
√

3
(−2r12+r13+r14) − 1

2
r12 − 1

2
r14 − 1

2
r13

1√
6

(r12−r23−r24) 1
2

(r23−r24) 1
2
√

3
(2r12+r23+r24) 1

2
r12

1
2
r14

1
2
r13

1√
6

(r13+r23−r34) 1
2

(r13−r23) 1
2
√

3
(−2r34−r13−r23) 1

2
r34 − 1

2
r23

1
2
r13

1√
6

(r14+r24+r34) 1
2

(r24−r14) 1
2
√

3
(2r34−r14−r24) − 1

2
r34

1
2
r14 − 1

2
r24


s =

(
s1 sa sb sx sy sz

)T
r(0) = r

(0)
1 ⊕ r

(0)
2 ⊕ r

(0)
3 ⊕ r

(0)
4

r = r1 ⊕ r2 ⊕ r3 ⊕ r4

In Eq. (16) s denotes a vector of six symmetry coordinates, r(0) is the direct sum
of the Cartesian coordinate vectors at the reference geometry and r corresponds to
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the displaced Cartesian coordinates of all four nuclei, also written as a direct sum.

The columns in the 12×6 matrix A are the normalized eigenvectors of the Hessian
matrix of any homonuclear tetrahedral (X4) molecule. The pseudo-inverse of A is
the transposed matrix AT

ATA = I6 (17)

and I6 denotes the identity matrix of rank 6. Moreover, the SALCs defined by
Eq. (16) are closely related to the normal modes of the molecule. Depending on the
specific set of normal modes (mass weighted, dimensionless etc.), each normal mode
is related to the symmetry coordinate si of the same symmetry by a scaling factor.
In contrast, the transformation between Cartesian normal modes and internuclear
distances as they appear in Eq. (13) is non-linear and in general not invertible. In
regard to the discrete grid representation of a wave-packet in quantum dynamics
which is usually defined by the coordinates of the kinetic-energy operator (i. e. nor-
mal modes in our approach) it is therefore favorable to use Cartesian symmetry
coordinates according to Eq. (16).

4.2 YX4 molecules

In YX4 molecules, there are four Y-X bonds which form a standard basis of the S4

group (the bond lengths do not depend on each other and are directly related to the
permutation of X-atoms). The four Y-X bonds and the six X-X distances (or X-Y-X
angles) form the basis of a 10 dimensional reducible representation Γ of Td. In what
follows, these are labeled as ri i = 1, 2, 3, 4 for the Y-Xi and rij i, j = 1, . . . , 4; j < i

for the Xj-Xi distances. Clearly the sets ri and rij belong to separate orbits under
the transformations of the symmetric group S4 and, therefore, can be treated as
independent four- and six-dimensional vector spaces Γ4 and Γ6. The decomposition
into irreducible representations reads

Γ = 2A1 ⊕ E ⊕ 2T2 (18)

Γ4 = A1 ⊕ T2 (19)

Γ6 = A1 ⊕ E ⊕ T2. (20)

Hence, the 10-dimensional representation Γ is decomposed into five irreducible rep-
resentations. Accordingly, the basis of internuclear distances is transformed into 10
SALCs for 3N − 6 = 9 independent degrees of freedom.
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2 1

4
3

2 1

4
3

2 1

4
3

Figure 1: Symmetry-adapted displacements of E (left), T2 stretch (center) and T2 bend
(right) type in tetrahedral YX4 molecules. If the Cartesian z-axis is aligned
along the vertical quenching/stretching direction, the shown displacements cor-
respond to the SALCs S2a, S3z, S4z, respectively.

The symmetry coordinates of YX4 molecules and in particular for methane have
been discussed by several authors [44, 57, 63, 64, 127]. For the stretching coordinates
we use the well-known symmetry adapted linear combinations (SALCs). Applying
projection operators to a basis of displacements along the CH bond-lengths (CHi=ri)
yields the coordinates

φ1 = 3∆r1 −∆r2 −∆r3 −∆r4 φ2 = 3∆r2 −∆r1 −∆r3 −∆r4 (21)

φ3 = 3∆r3 −∆r1 −∆r2 −∆r4 φ4 = 3∆r4 −∆r1 −∆r2 −∆r3

which are transformed to an orthonormal basis by a unitary transformation [44].

ACH =
1

2


1 1 1 1

−1 1 −1 1

1 −1 −1 1

−1 −1 1 1

 (22)

s = ACHφ (23)

s1 =
1

2
(∆r1 + ∆r2 + ∆r3 + ∆r4)

s3x =
1

2
(−∆r1 + ∆r2 −∆r3 + ∆r4)

s3y =
1

2
(∆r1 −∆r2 −∆r3 + ∆r4)

s3z =
1

2
(−∆r1 −∆r2 + ∆r3 + ∆r4)

(24)
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The ∆ri terms are defined as

∆ri =
∣∣∣∣∣∣ri − r(0)

i

∣∣∣∣∣∣ (25)

and describe the elongation or contraction of the i th CH bond with respect to the
bond length at a reference geometry r(0)

i . The displacements are illustrated in Fig. 1.
It should be noted that the signs in the expression (24) depend on the numbering
of the hydrogen atoms.

The remaining six SALCs are obtained by the linear transformation

AHH =



1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
3
− 1

2
√

3
− 1

2
√

3
− 1

2
√

3
− 1

2
√

3
1√
3

− 1
2
√

3
1√
3
− 1

2
√

3
− 1

2
√

3
1√
3
− 1

2
√

3

0 1√
2

0 0 − 1√
2

0

0 0 − 1√
2
− 1√

2
0 0

1√
2

0 0 0 0 − 1√
2


(26)

of the six internuclear distances between the hydrogen atoms. The corresponding
coordinates, in terms of displacements from the equilibrium geometry, are

∆rij = ||ri − rj|| −
∣∣∣∣∣∣r(0)

i − r
(0)
j

∣∣∣∣∣∣
(s0, s2a, s2b, s4x, s4y, s4z)

T = AHH(∆r21,∆r31,∆r41,∆r32,∆r42,∆r43)T.
(27)

It turned out, however, that specifically the bending coordinates associated with
the six internuclear distances (or angles) of the hydrogen atoms lead to deficiencies
in the description of nuclear geometries [57, 63, 64]. Most importantly, the standard
symmetry coordinates in terms of internuclear distances or valence angles do not
uniquely determine the shape of the molecule and therefore no unique transformation
from symmetry to Cartesian coordinates exists. Since the ambiguous points are in
general not energetically degenerate we introduce an alternative set of symmetry
coordinates based on infinitesimal rotations in order to map a set of symmetry
coordinates unambiguously to a molecular geometry. This is essential for all ab initio
calculations and leads to “well-shaped” PE surfaces for polynomial approximations
in a diabatic representation. The same coordinates were also used to construct PE
surfaces for the six-dimensional T2 × t2 + t2 and T2 × e subproblems as a proof-of-
concept.
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The bending motions in a YX4 molecule are expressed with respect to SALCs of
a1, e and t2 symmetry, where “of Γ symmetry” is used synonymously to “forms a
basis of the irreducible representation Γ”. Assuming fixed values for the stretching
coordinates, the four X atoms within a centrally connected YX4 molecule can be
considered to move on the surface of a sphere. Displacements of the X atoms along
the bending coordinates are thus conveniently described as rotations of the position
vectors in three-dimensional Euclidean space.
Let vij be the normalized vector product of the position vectors X

(0)
i and X

(0)
j at

the tetrahedral reference geometry:

vij =
X

(0)
i ×X

(0)
j∥∥∥X(0)

i ×X
(0)
j

∥∥∥
2

vij = −vji (28)

Using the permutation (anti-) symmetry, the complete set for a five-atomic tetra-
hedral molecule comprises six (not linearly independent) elements. The vectors vij

are now used to define a basis of rotation vectors that act on the four X atoms and
describe symmetry adapted displacements in the infinitesimal limit.

w1 = (s4z + s2a)v21 + (s4x + s2b)v31 − s4yv41

w2 = −(s4z + s2a)v21 + s4yv32 + (s2b − s4x)v42

w3 = −s4yv32 − (s4x + s2b)v31 + (s2a − s4z)v43

w4 = (s4x − s2b)v42 + s4yv41 + (s4z − s2a)v43,

(29)

where s4x, s4y, s4z and s2a, s2b are coordinates of T2 and E symmetry, respectively
(see Fig. 1). In what follows, it is essential to distinguish between symmetry adapted
basis functions and the corresponding coordinates since it is convenient for tetrahe-
dral systems to express the coordinates of E symmetry in a non-orthogonal basis.
To clarify this we use the capital-letter S to denote SALCs of basis functions and
the lowercase-letter s for the dual space of symmetry coordinates.
The vectors wi define the displacements as sums of symmetry-adapted infinitesi-

mal rotations and completely separate overall rotations of the molecule, since∑
i

wi = 0 (30)

for arbitrary values of the symmetry coordinates. It is straightforward to verify the
symmetry properties under permutation of like nuclei.
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An explicit rotation matrix is obtained from SALCs of rotation vectors by Ro-
driguez’ formula, where the magnitude of displacement αi is given by the 2-norm of
the rotation vector (αi = ‖wi‖2).

Xi = X
(0)
i cosαi + (wi ×X

(0)
i ) sinαij + wi(wi ·X(0)

i )(1− cosαi) (31)

The actual displacements are thus accomplished by four rotation matrices which
depend on the symmetry adapted coordinates and a reference geometry. This per-
mits the calculation of cuts along specific symmetry coordinates, whereas e. g. the
stretching coordinates remain at fixed values and the bending coordinates are varied.

5 Elements of the T2 × t2 and T2 × (t2 + t2) JT PE

matrices

tot. deg. 2 3 4 5 6 7 8 9
x 2 0 1 4 2 0 0 3 1 6 4 2 2 0 0 5 3 1 1 8 6 4 4 2 2 0 0 0 7 5 3 3 1 1
yz 0 0 1 0 0 2 0 1 1 0 0 2 0 2 0 1 1 3 1 0 0 2 0 2 0 4 2 0 1 1 3 1 3 1

y2 + z2 0 1 0 0 1 0 2 0 1 0 1 0 2 1 3 0 1 0 2 0 1 0 2 1 3 0 2 4 0 1 0 2 1 3

tot. deg. 10 11 12
x 10 8 6 6 4 4 2 2 2 0 0 0 9 7 5 5 3 3 1 1 1 12 10 8 8 6 6 4 4 4 2 2 2 0 0 0 0
yz 0 0 2 0 2 0 4 2 0 4 2 0 1 1 3 1 3 1 5 3 1 0 0 2 0 2 0 4 2 0 4 2 0 6 4 2 0

y2 + z2 0 1 0 2 1 3 0 2 4 1 3 5 0 1 0 2 1 3 0 2 4 0 1 0 2 1 3 0 2 4 1 3 5 0 2 4 6

Table 1: Powers of polynomial factors in the expansion terms of the diagonal element h11

of the PE matrix up to 12 th order. The matrix elements h22 and h33 are obtained
by permuting x and y or x and z, respectively. The table header indicates the
total degree of the polynomial.
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5 Elements of the T2 × t2 and T2 × (t2 + t2) JT PE matrices

tot. deg. 1 2 3 4 5 6 7 8 9
x 1 0 3 1 2 0 5 3 1 1 4 2 0 0 7 5 3 3 1 1 6 4 2 2 0 0 9 7 5 5 3 3 1 1 1
yz 0 1 0 0 1 1 0 0 2 0 1 1 3 1 0 0 2 0 2 0 1 1 3 1 3 1 0 0 2 0 2 0 4 2 0

y2 + z2 0 0 0 1 0 1 0 1 0 2 0 1 0 2 0 1 0 2 1 3 0 1 0 2 1 3 0 1 0 2 1 3 0 2 4

tot. deg. 10 11 12
x 8 6 4 4 2 2 0 0 0 11 9 7 7 5 5 3 3 3 1 1 1 10 8 6 6 4 4 2 2 2 0 0 0
yz 1 1 3 1 3 1 5 3 1 0 0 2 0 2 0 4 2 0 4 2 0 1 1 3 1 3 1 5 3 1 5 3 1

y2 + z2 0 1 0 2 1 3 0 2 4 0 1 0 2 1 3 0 2 4 1 3 5 0 1 0 2 1 3 0 2 4 1 3 5

Table 2: Powers of polynomial factors in expansion terms of the off-diagonal element h23

of the PE matrix up to 12 th order. The matrix elements h13 and h12 are obtained
by permuting x and y or x and z, respectively.

tot. deg. 2 3 4
x1 1 0 1 1 0 0 3 2 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0
y1z1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

y2
1 + z2

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0
x2 1 0 0 0 1 1 1 2 0 0 1 3 1 1 0 0 2 0 0 2 0 0 0
y2z2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

y2
2 + z2

2 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0
y1z2 + z1y2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
y1y2 + z1z2 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 2

Table 3: Diagonal matrix element h11 as products of powers of generating polynomials
for two t2 coordinate vectors. The matrix elements h22 and h33 are obtained by
permuting (x1, x2)↔ (y1, y2) or (x1, x2)↔ (z1, z2), respectively.

tot. deg. 2 3 4
x1 0 2 1 1 1 0 0 2 2 1 1 1 0 0 0 0 0 0 0 0
y1z1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0

y2
1 + z2

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0
x2 0 1 2 0 0 1 1 0 0 1 1 1 2 0 0 0 0 2 0 0
y2z2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0

y2
2 + z2

2 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
y1z2 + z1y2 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1
y1y2 + z1z2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0

Table 4: Off-diagonal element h23 in the PE expansion as products of powers of generating
polynomials for two t2 coordinate vectors. The matrix elements h13 and h12 are
obtained by permuting (x1, x2)↔ (y1, y2) or (x1, x2)↔ (z1, z2), respectively.
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6 Convoluted Jahn-Teller spectra of CH+
4

A crude approximation of the overall multi-mode JT vibronic spectrum can be ob-
tained as a convolution of the T2 × t2 (bending), T2 × t2 (stretching) and T2 × e

vibronic spectra. This approximation is tantamount to the neglect of the commu-
tators of the partial JT Hamiltonians. While this approximation is rather crude,
the convoluted spectrum gives an indication of the expected line density and the
width of the bandshape. The single totally symmetric stretching mode of CH+

4 is
not included in this simulation. For comparison, the experimental photoelectron
spectrum of CH4 from Ref. [23] is shown in Fig. 3.

(a) (b)

Figure 2: Convoluted [T2 × e] ⊗ [T2 × t2] JT spectrum of CH+
4 in the bending normal

modes (left) and [T2 × e]⊗ [T2 × t2]⊗ [T2 × t2] spectrum (right).

Figure 3: Experimental photoelectron spectrum of CH4 (from Ref. [23]).
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