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We address the peak-to-average power ratio (PAPR) of transmission signals in OFDM and consider the performance of tone
reservation for reduction of the PAPR. Tone reservation is unique among methods for reducing PAPR, because it does not affect
information bearing coefficients and involves no additional coordination of transmitter and receiver. It is shown that if the OFDM
system always satisÞes a given peak-to-average power ratio constraint, then the efficiency of the system, deÞned as the ratio of the
number of tones used for information to the entire number of tones used, must converge to zero as the total number of tones
increases. More generally, we investigate and provide insight into a tradeoff between optimal signal and information properties for
OFDM systems and show that it is necessary to use very small subsets of the available signals to achieve PAPR reduction using tone
reservation.

1. Introduction

OFDM is one of todayÕs most widely used and promising
information transmission schemes. One of the main disad-
vantages of OFDM, however, is the large peak-to-average
power ratio (PAPR) of the transmit signals. Reducing the
PAPR, which we will call the PAPR reduction problem, has
been an area of extensive research over the last ten years,
and various techniques have been proposed. These include,
among others, clipping and Þltering, selected mapping,
active constellation extension, and tone reservation. See [1]
for an overview.

High PAPR is a problem because most ampliÞers perform
poorly at higher amplitudes. Reduction techniques are most
commonly investigated for their effects on bit-error rates,
capacity or power consumption, and in these contexts,
a probabilistic approach is appropriate. However, when a
signalÕs peak is cut off, out-of-band radiation is caused, and
this is an interference for devices operating in neighboring
spectra. If the peak threshold is violated with a certain
probability, then other devices will be subjected to this
interference the corresponding percent of the time. In many
instances, it may be inadmissible to cause such interference
to other devices. We explain that when peak cutoff occurs,
only a strict PAPR criterion prevents out-of-band radiation.

As such, our approach may be viewed as either addressing a
strict PAPR criterion or a strict criterion of no out-of-band
radiation. Such an approach is necessarily nonprobabilistic.

The probabilistic model is currently the accepted model
among communications engineers working with classical
wireless communications systems, such as cellular networks
or WLAN. In these areas, one is primarily concerned with
the effects that PAPR has for communication within the
frequency band that one is working. Developments related to
the digital dividend (i.e., the reallocation of frequencies made
available by converting radio and television communication
from analog to digital) have shown, however, that statistical
models are insufficient for various user-oriented commu-
nications applications and that there is strong resistance
in in these communities to redistribute frequency bands.
In particular, there is concern that new communications
networks will be introduced in neighboring frequency bands
or that frequency sharing will be introduced, as both of
these present the possibility for interference. Examples of
such applications where these issues are most important are
those where safety plays an important role, such as in wireless
automation or car-to-car communication. A further example
is wireless microphones, which are particularly important
in the entertainment industry. Statistical models can be
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permitted in these areas only in very restricted cases. What
distinguishes these applications from classical networks is the
type of error that may be tolerated. In particular, a certain
probability that communication fails is inadmissible.

The starting point for the PAPR reduction schemes
mentioned above is a set of coefficients to be transmitted
to the receiver. In order to reduce the signal peak, one may
adjust these coefficients in some way or add new coefficients
on frequencies that have not been used. If coefficients are
manipulated, then the receiver must convert the received
coefficients back to the original coefficients; however, if
coefficients are added on frequencies that do not carry
information, the received information bearing coefficients
do not have to be converted. Tone reservation, which was
introduced in [2], and is one of the popular techniques to
mitigate against high PAPR, takes the latter approach.

In tone reservation, the set of available tones is divided
into two subsets. One set is used to carry information, while
the other is used to reduce the peak value. We will call these
two sets theinformation setand thecompensation set. Given
a set of coefficients for the tones in the information set,
coefficients are chosen for tones in the compensation set, so
that the peak value of the combined signal is reduced. The
location of these two sets remains Þxed for all codewords and
over all uses of the channel.

Of the handful of methods to reduce PAPR, tone reser-
vation is particularly robust and canonical. This is because
the only information that the receiver requires is the location
of the information set. The receiver may simply ignore
whatever arrives on the entries of the compensation set.
With other schemes, such as active constellation extension
[3] or selected mapping [4, 5], not only does the receiver
have to be informed of the modiÞcations made to each
possible set of coefficients, but the receiver also has to convert
the received coefficients back to their original values. Thus,
there is additional overhead involved in setting up and then
performing the information transmission. Both of these are
avoided in tone reservation.

However, tone reservation exhibits a tradeoff between
the best attainable PAPR and the number of tones in the
information set. The main result presented here is that if
the OFDM system satisÞes a strict bound on the peak-
to-average ratio, then as the number of total tones used
increases, at some point the proportion of tones used to
carry information must decrease and eventually converge
to zero. Equivalently, we Þnd a scaling law: if the size of
the information set and the total set increase proportionally,
signals with larger peaks can be constructed that cannot be
compensated for by any compensation signal.

The result presented here certainly does not state that
tone reservation does not deliver strong improvements in
PAPR. An efficient algorithm for computing compensation
coefficients is given in [6], and the reductions it delivers in
PAPR are signiÞcant. Much experimentation has been done,
in particular in searching for subsets with good performance,
but the structure of good sets is still not understood. There
has also been little theoretical work on the performance
bounds of tone reservation. The authors are unaware, for
example, of any work that addresses the behavior of tone

reservation as the number of tones increases. This paper
provides insight to this scheme as the number of tones
involved becomes large.

This paper provides an initial investigation into the rela-
tionship between the relative size of a subset of transmission
signals and several signal processing properties of the subset.
In Section 2, we prove our main result on tone reservation
for OFDM systems with a Þnite set of tones. InSection 3,
we prove the same type of result for systems with an inÞnite
number of tones. The discrete Fourier case is addressed in
Section 4, and a short conclusion is given inSection 5. There
we also give a short discussion of transmission schemes for
Þfth generation cellular networks, as well as nonorthogonal
transmission systems and their PAPR behavior.

2. The Finite Set OFDM Case

We Þrst deÞne our signals: an OFDM signal has the form

s(t) =
N∑

k=−N
akeikt, (1)

where the coefficientsak either carry information or, in the
tone reservation scheme, are used to reduce the peak value
of s(t). An ampliÞer generally only has a cutoff or distorting
effect at high amplitudes, and the signal is left undisturbed
where it is magnitude lies below a threshold. In this case,
if |s(t)| exceeds the threshold, sayM, in some regions, a
new function s1 results, such thats(t) = s1(t) for all t
where|s(t)| ≤ M. Then, s − s1 has compact support and
cannot be band-limited. Sinces is band-limited, this meanss1
cannot be band-limited, and thus out-of-band radiation has
been caused. This motivates the investigation of strict PAPR
constraints. The PAPR for the vectora is

PAPR(a) = sup
t∈[0,2π]

∣∣∣
∑N

k=−N akeikt
∣∣∣

2

‖a‖l22N+1

. (2)

While this is the standard deÞnition of PAPR, to make
notation easier, we look at|

∑N
k=−N akeikt| rather than

|
∑N

k=−N akeikt|
2
. Also, we could work with just the nonnega-

tive indices rather than with all the frequencies{−N , . . . ,N}.
Instead of working withL1(T) (deÞned below), we would
then work with the Hardy spaceH1. The results, however,
remain the same. Before we formally state the problem, we
deÞne our spaces.

DeÞnition 1.lpN denotesCN viewed as a linear space and

‖x‖lpN = (
∑N

k=1 |xk|p)
1/p

. If A is a subset of{−N , . . . ,N},
lp(A) denotes vectors inlp2N+1 supported onA. T denotes
the torus.Lp(T) denotesp-integrable functions deÞned on
T with norm

∥∥ f
∥∥
Lp(T) =

(
1

2π

∫

T

∣∣ f (t)
∣∣pdt

)1/p

, (3)

for 1 ≤ p < ∞ and ‖ f ‖L∞(T) = ess.supt∈T| f (t)|. L2(A)
denotes the subspace ofL2(T) spanned by{eik·}k∈A.
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Tone reservation works as follows: we split{−N , . . . ,N}
into two subsetsIN , an information set, andRN =
{−N , . . . ,N}\IN , a compensation set. We call the ratio of the
number of tones in the information set to the total number
of tones available theefficiencyof the system. Using|A| to
denote the number of elements in the setA, the efficiency
is |IN |/(2N + 1). Given a set of information coefficientsa ∈
l2(IN), one seeks a vectorb ∈ l2({−N , . . . ,N} \ IN ) satisfying
‖b‖l22N+1

≤ CEx‖a‖l22N+1
, such that

sup
t∈[0,2π]

∣∣∣∣∣∣
∑

k∈IN
akeikt +

∑

k∈RN

bkeikt

∣∣∣∣∣∣
≤ CEx‖a‖l22N+1

, (4)

for some constantCEx. One would like the inÞmum of (4)
over all possibleb supported onRn. The condition‖b‖l22N+1

≤
CEx‖a‖l22N+1

is, therefore, imposed to make this well-deÞned.
We note, though, that any vectorb that satisÞes (4) must have
this property. To see this, we observe that

(
‖a‖2

l2 + ‖b‖2
l2

)1/2
=
∥∥∥∥∥∥
∑

k∈IN
akeik· +

∑

k∈IcN
bkeik·

∥∥∥∥∥∥
L2

≤ sup
t∈[0,2π]

∣∣∣∣∣∣
∑

k∈IN
akeikt +

∑

k∈RN

bkeikt

∣∣∣∣∣∣
,

(5)

so that if (4) holds, then the condition‖b‖l22N+1
≤ CEx‖a‖l22N+1

is also satisÞed. Certainly, for ÞniteN , a constantC can
always be found that satisÞes inequality (4). Here, however,
we address the relationship betweenN , the size ofIN , and the
best possible constantCEx.

To express this relationship, we introduce theextension
operator, which we denoteEIN . This operator is a map from
l2(IN) to L2({−N , . . . ,N}), given by

EIN a =
∑

k∈IN
akeikt +

∑

k∈RN

bkeikt. (6)

An initial formulation of solvability is that the PAPR reduc-
tion problem is solvable for the subsetIN ⊂ {−N , . . . ,N}
with bound CEx if there exists an operatorEIN : l2(IN) →
L∞({−N , . . . ,N}) such that for alla ∈ l2(IN) satisfying
‖a‖l22N+1

≤ 1,

∥∥EIN a
∥∥
L∞(T) ≤ CEx. (7)

Note that we are interested inan operator that satisÞes
(7); uniqueness is not part of the discussion. Such an
operator will, in general, be nonlinear, since cases where
EIN (a+b) /=EIN a+EIN bmay exist. However, any such operator
scales sublinearly. That is, suppose that the PAPR reduction
problem as just deÞned is solvable forIN with constantCEx.
If ‖a‖l22N+1

> 1, we deÞnea′ = a/‖a‖l22N+1
. Then,

∥∥EIN a′
∥∥
L∞(T) ≤ CEx, (8)

and we may simply rescaleEIN a′ by ‖a‖l22N+1
to determine

an extension fora with bound CEx‖a‖l22N+1
. Note that here

the placement of the coefficients is unchanged, and they are

all simply multiplied by the same appropriate scaling. Thus,
solvability on all ofl2(IN ) and solvability on the unit ball of
l2(IN ) are equivalent, though the best constant in the latter
case may be smaller.

DeÞnition 2.The PAPR reduction problem issolvablefor IN
with bound CEx if there exists an operatorEIN : l2(IN ) →
L∞({−N , . . . ,N}) such that

∥∥EIN a
∥∥
L∞(T) ≤ CEx‖a‖l22N+1

, (9)

for everya ∈ l2(IN ).

Now we proceed as follows: inTheorem 1we give a
necessary condition for solvability. WithTheorem 2we show
that if it is required that the peak-to-average power ratio
remains bounded, then the efficiency of the OFDM system
converges to zero as the system size increases. That is, if the
PAPR reduction problem remains solvable with the same
bound for a sequence of sets{IN} asN → ∞, then the
relative density of the sets, that is, the ratio of information
bearing signals to total signals must converge to zero.

DeÞnition 3.For a subsetIN ⊂ {−N , . . . ,N} we deÞne

F (IN ) =


 f ∈ L1(T), f (t) =

∑

k∈IN
akeikt



. (10)

Theorem 1. If the PAPR problem is solvable for the subsetIN
with extension normCEx, then

∥∥ f
∥∥
L2(T) ≤ CEx

∥∥ f
∥∥
L1(T) , (11)

for all f ∈ F (IN ).

Proof.By assumption, for alls(t) =
∑

k∈IN ake
ikt , ‖a‖l22N+1

≤
1,

∥∥EIN a
∥∥
l∞2N+1

≤ CEx‖a‖l22N+1
≤ CEx. (12)

Again, by assumption,
(
EIN a

)
(t) =

∑

k∈IN
akeikt +

∑

k∈RN

bkeikt. (13)

Let f ∈ F (IN ), f (t) =
∑

k∈IN cke
ikt , be arbitrary. Then

∣∣∣∣∣∣
∑

k∈IN
akck

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∑

k∈IN
akck +

∑

k∈RN

bkck

∣∣∣∣∣∣

=
∣∣∣∣

1
2π

∫

T
f (t)EKs(t)dt

∣∣∣∣

≤
∥∥ f
∥∥
L1(T)‖EKs‖L∞(T)

≤ CEx
∥∥ f
∥∥
L1(T) .

(14)

Set

ak =





ck
‖c‖ l22N+1

ck /=0,

0 ck = 0.
(15)
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Then

∥∥ f
∥∥
L2(T) = ‖c‖l22N+1

=
∣∣∣∣∣∣
∑

k∈IN
akck

∣∣∣∣∣∣
≤ CEx

∥∥ f
∥∥
L1(T) . (16)

The following deÞnition gives the efficiency of the best
subset selection for which the PAPR reduction problem is
solvable for a given bound.

DeÞnition 4(Optimal subset size-OFDM).

EN (CEx) = max{|IN |; IN ⊂ {−N , . . . ,N},

such that PAPR is solvable forIN

with constantCEx}.

(17)

Now, we may state the following theorem.

Theorem 2.For all0< CEx <∞, the following limit holds:

lim
N→∞

EN (CEx)
2N + 1

= 0. (18)

In other words, the theorem states that if a PAPR bound
is always satisÞed, then the system efficiency converges to
0 as the total size increases. Thus, the number of tones
that may be used to carry information does not scale
with N . Theorem 2gives a limiting value as the dimension
approaches inÞnity, but it should not be read as a strictly
asymptotic statement. Because of the convergence to zero,
(18) rules out the existence of any arbitrarily large dimen-
sionsN for which solvability occurs or a certain parameter
pairCEx and|In|/n. In other words, given a constantCEx and
a relative density, there is a limit to how large the dimension
can be and satisfy both the extension constantCEx and the
prescribed relative density.

The proof will use arithmetic progressions and Sze-
mer«ediÕs Theorem,Theorem 3.

DeÞnition 5.An arithmetic progression of lengthk is a subset
of Z that has the form{a,a + d,a + 2d, . . . ,a + (k − 1)d} for
some integera and some positive integerd.

Theorem 3(Theorem 1.2 in [7]). For any integerk ≥ 1
and any0 < δ ≤ 1, there exists an integerNSZ(k,δ) ≥ 1
such that for everyN ≥ NSZ(k,δ), every setA ⊂ {1,. . . ,N}
of cardinality|A| ≥ δN contains at least one arithmetic
progression of lengthk.

Proof ofTheorem 2. Assume that the claim is not true. Then,
there exists a subsequence{Nk}∞k=1 ⊂ N and a constant
G(CEx) > 0 such that

ENk (CEx,F )
2Nk + 1

≥ G(CEx) (19)

for all k = 1, 2,. . . . Now, we setδ = G(CEx)/2 and apply
Szemer«ediÕs Theorem,Theorem 3. Thus, for anym, there
exists some largeN ∈ {Nk}∞k=1 such thatIN contains an

arithmetic progression of lengthm. Denote this progression
{a + dl}m−1

l=0 . Now, note that
∥∥∥∥∥∥

1√
m

m−1∑

l=0

ei(a+dl)·

∥∥∥∥∥∥
L2(T)

= 1, (20)

while
∥∥∥∥∥∥

1√
m

m−1∑

l=0

ei(a+dl)·

∥∥∥∥∥∥
L1(T)

≤ log(m/2)√
m

. (21)

(This is the usual bound for the Dirichlet kernel.) Applying
Theorem 1, for any Þxed constantCEx, (20) and (21) lead to
the contradiction

1=
∥∥∥∥∥∥

1√
m

m−1∑

l=0

ei(a+dl)·

∥∥∥∥∥∥
L2(T)

≤ CEx

∥∥∥∥∥∥
1√
m

m−1∑

l=0

ei(a+dl)·

∥∥∥∥∥∥
L1(T)

≤ CEx
log(m/2)√

m

(22)

whenm is large.

Thus, if a bound on the peak of all transmission signals is
given as one increases the number of total tones available,
at some sizeN the proportion of tones allocated to carry
information must decrease in order to satisfy the PAPR
constraint.

From this theorem, we also see that when tone reser-
vation is used, the subsets chosen as information and
compensation sets are very important. In particular, the
information set should not have any long arithmetic pro-
gressions; however, determining subsets with little additive
structure is a very challenging problem. As an indication
of this, consider that what is now known as Szemer«ediÕs
theorem was an open question for length 3 for decades before
Roth proved it in 1952 [8], for which he was awarded the
Fields Medal in 1958. Szemer«edi proved the result for length
4 in 1969 [9] and his Þnal result in 1975 [10]. Sets with only
short arithmetic progressions is certainly a nearly equivalent
problem and thus also very difficult. For a taste of this area,
one may see Chapter 2 of [11].

The following theorem shows that if the PAPR reduction
problem is solvable for a Þnite information set when we allow
the compensation set to be the entire rest of the integers;
then, using a projection onto a Þnite set, we obtain solvability
for the Þnite compensation set. However, the extension norm
increases depending on the size of the compensation set.

Theorem 4.Suppose thatIN is a subset of{−N , . . . ,N} and
that for everya ∈ l2(Z) supported onIN the PAPR reduction
problem is solvable with an extension sequence supported on
Z \ IN and with extension boundCEx. Assume thatλ > 1
and thatλN is an integer. Then the PAPR reduction problem
is also solvable with an extension sequence supported on
{−λN , . . . ,λN} \ IN with extension constant(2/(λ− 1))CEx.
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Proof.Let f (t) =
∑

n∈IN ane
int , and let

f (t) + g(t) =
∑

n∈IN
aneint +

∑

n∈Z\IN
aneint (23)

be its extension, such that‖ f + g‖L∞(T) ≤ CEx‖a‖l2(Z). We

simply project f + g onto span{ein·}λNn=−λN using a Fej«er
kernel. We deÞne the following set of kernels:

K N ,λ =


K(t) =

N∑

n=−N
eint +

−N−1∑

n=−λN

dneint +
λN∑

n=N+1

dneint ,

wheredn = d−n for n = N + 1,. . . ,λN



.

(24)

For any kernelK ∈ K λ,N , we have

f (t) = 1
2N + 1

N∑

n=−N
f
(

2πl
2N + 1

)
K
(
t − 2πl

2N + 1

)
, (25)

and we may deÞnef + gλN to be the convolution off + g
with K . The Fourier expansion off + gλN is supported on
{−λN , . . . ,λN} and agrees witha on IN . UsingPK to denote
the projection given by convolution withK ,

∥∥ f + gλN
∥∥
L∞(T) ≤ ‖PK‖ f +

∥∥g
∥∥
L∞(T) ≤ CEx‖a‖l2(Z)‖PK‖.

(26)

The norm‖PK‖ is the‖ · ‖L1(T)-norm ofK . We will construct
K using two Fej«er kernels. We recall that the Dirichlet kernel
is deÞned by

Dn(t) =
n∑

k=−n
eikt, (27)

and the Fej«er kernel by

Fn(t) =
1
n

n−1∑

k=0

Dn =
(

sin(nt/2)
sin(t/2)

)2

. (28)

Thus, for anym > l,

m∑

k=0

Dk −
l∑

k=0

Dk

= (m− l)
2l−m∑

k=0

(
eikt + e−ikt

)

+
2(m−l)∑

k=1

(
m− l − k

2

)(
ei(2l−m+k)t + e−i(2l−m+k)t

)
.

(29)

By settingdk = (λN −N − (k/2)) for k = N + 1,. . . ,λN and
K(t) = 1/(λN −N )(

∑λN
k=0Dk(t) −

∑N
k=0Dk(t)) and using the

positivity given in (29), we obtain

‖K‖L1([0,1]) =
∫ 1

0

∣∣∣∣∣∣
1

λN −N




λN∑

k=0

Dk(t) −
N∑

k=0

Dk(t)



∣∣∣∣∣∣
dt

≤ 1
λN −N

∫ 1

0

λN∑

k=0

Dk(t) +
N∑

k=0

Dk(t)dt

≤ 2λN
λN −N

= 2
λ− 1

.

(30)

Returning to (26), we have

∥∥ f + gλN
∥∥
L∞(T) ≤

2
λ− 1

CEx‖a‖l2(Z), (31)

where the Fourier expansion ofgλN is supported on
{−λN , . . . ,λN} \ IN .

3. The Infinite Set Case

The inÞnite set case is particularly important because of
the insight it brings to the mathematical structure of tone
reservation. By using the projections discussed inTheorem 4
though, the inÞnite set case also has practical implications.
Our Þrst step en route to proving the inÞnite-dimensional
form of Theorem 2is to prove an equivalence between the
PAPR reduction problem and a norm equivalence. Recall that
Theorem 1stated that solvability implies a norm equivalence
in the Þnite set case. In the inÞnite set case, we show that
solvability holds if and only if the norm equivalence holds. By
constructing functions that violate the norm relation, we will
show when solvability cannot hold (Theorem 6). However,
using a special case when the norm relation holds, we will use
the if and only if statement to identify sets where solvability
does hold (Theorem 7).

The equivalence statement holds for arbitrary orthonor-
mal systems, so we state it in that generality. This is
Theorem 5. In Theorem 6, we prove that the PAPR problem
is not solvable in the OFDM setting at positive efficiencies
for sets of inÞnite cardinality. Let{ψk}k∈Z be an orthonormal
basis forL2(T). LetK be a subset ofZ and deÞne

X :=


 f ∈ L1(T) : f (t) =

∑

k∈K
akψk(t)



. (32)

Given a functions ∈ X, we are interested in Þnding a
compensation functiong, g(t) =

∑
k∈Kc bkψk, such that

‖s + g‖∞ ≤ CEx‖s‖2. Here, we may view the nonlinear
operator as a map fromL2(T) to L2(T), so thatEKs = s + g.
If a map exists so that such ag can be found for everys ∈ X,
then we say that the PAPR reduction problem issolvablefor
the pairK and{ψk}k∈Z with extension normCEx.



6 EURASIP Journal on Advances in Signal Processing

Theorem 5.The PAPR problem is solvable for the pairK and
{ψk}k∈Z with extension normCEx if and only if

∥∥ f
∥∥
L2(T) ≤ CEx

∥∥ f
∥∥
L1(T) , (33)

for all f ∈ X.

Remark 1.We give a short discussion of the geometric
interpretation of this theorem in our conclusion inSection 5.

When (33) holds, we will say thatX has thenorm
equivalence property. Note that in contrast to the Þnite set
case ofTheorem 1, here we have a necessary and sufficient
condition for solvability.

Before giving the proof ofTheorem 5we emphasize
several points. IfCEx is the smallest constant for which the
reduction problem is solvable, then it is also the smallest
constant for which (33) holds and vice versa. To see this,
suppose thatC1 is the smallest constant for which solvability
holds, but the norm equivalence holds forC2 < C1. By
the equivalence statement ofTheorem 5, solvability also
holds for C2, which contradicts thatC1 is the smallest
such constant. The same argument applies for the opposite
implication as well. The statement that the best constant for
the norm relation is also the best constant for solvability is
the more signiÞcant, since here, this property follows from
the Hahn-Banach Theorem. The Hahn-Banach Theorem,
however, requires the axiom of choice to repeatedly extend
the functionalÕs domain by one dimension. Indeed, here the
axiom of choice is used to justify this because in most settings
it cannot be done constructively. Therefore, constructing an
extension with the optimal constant is equivalent to realizing
what the axiom of choice states exists, but for which a
method of construction does not exist. This shows how
mathematically complex an optimal implementation of tone
reservation is.

Proof.(i) Assume that the PAPR problem is solvable. Then,
for all s(t) =

∑
k∈K akψk(t), ‖a‖l2(Z) ≤ 1,

‖EKs‖L∞(T) ≤ CEx‖s‖L2(T) ≤ CEx. (34)

SinceL∞(T) ⊂ L2(T),

EKs =
∑

k∈K
akψk +

∑

k∈Z\K
bkψk. (35)

Let f ∈ X, f (t) =
∑

k∈K ckψk(t), be arbitrary. Then,

∣∣∣∣∣∣
∑

k∈K
akck

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∑

k∈K
akck +

∑

k∈Z\K
bkck

∣∣∣∣∣∣

=
∣∣∣∣

1
2π

∫

T
f (t)EKs(t)dt

∣∣∣∣

≤
∥∥ f
∥∥
L1(T)‖EKs‖L∞(T)

≤ CEx
∥∥ f
∥∥
L1(T).

(36)

Set

ak =





ck
‖c‖ l2

ck /=0,

0 ck = 0.
(37)

Then,‖ f ‖L2(T) = ‖c‖l2 = |
∑

k∈K akck| ≤ CEx‖ f ‖L1(T) .
(ii) Assume‖ f ‖L2(T) ≤ CEx‖ f ‖L1(T) for all f ∈ X. Let

a ∈ l2(Z) be a sequence supported inK with only Þnitely
many nonzero terms satisfying‖a‖l2(Z) ≤ 1. Sets(t) =∑

k∈K akψk(t). For f ∈ X, f (t) =
∑

k∈K ckψk(t), deÞne the
functional! a by

! a f =
∑

k∈K
akck. (38)

Since

∣∣! a f
∣∣ ≤ ‖a‖l2(Z)‖c‖l2(Z) ≤

∥∥ f
∥∥
L2(T) ≤ CEx

∥∥ f
∥∥
L1(T),

(39)

! a is continuous onX. SinceX is a closed subspace ofL1(T),
by the Hahn-Banach Theorem [12], the functional! a has the
extension! E to all ofL1(T), where‖! a‖ = ‖! E‖. The dual
of L1(T) is L∞(T). Thus, for somer ∈ L∞(T),

! E f =
〈
f ,r
〉
, (40)

for all f ∈ L1(T), so that‖! E‖ = ‖r‖L∞(T) . SinceL∞(T) ⊂
L2(T), r possesses the unique expansion

r(t) =
∑

k∈Z
dkψk(t), (41)

for somed ∈ l2(Z). The sequencesd anda agree onK , and
we deÞneEKs := r.

Theorem 6. ForK ⊂ Z, letS(N ) = K ∩ {−N , . . . , 0,. . . ,N}.
If lim supN→∞(|S(N )|/(2N + 1)) > 0, then the PAPR problem
is not solvable forK and the Fourier basis{eik·}k∈Z.

In particular, this theorem states that if the ratio of
the number of basis functions used for transmission to the
total number of basis functions doesnot tend to zero, then
arbitrarily high peaks can be constructed that cannot be
sufficiently dampened by any compensation function.

Similar questions concerning the sizes of subsets of
orthonormal bases that have a norm equivalence have been
studied. In [13], Bourgain addresses anL2 − Lp norm
equivalence forp > 2. The general technique used here
to determine a norm equivalence is well known in the
functional analysis and local Banach space community.

Proof.First suppose that the PAPR problem is solvable forK
and{eik·}k∈Z. We develop a contradiction to the equivalence
given inTheorem 5. Suppose that arbitrary subsetsS(N ) of
{−N , . . . ,N} are chosen such that

lim sup
N→∞

|S(N )|
2N + 1

= δ > 0. (42)
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For any positive integerk, using Szemer«ediÕs Theorem
(Theorem 3) again, there exists a large integerN such that
S(N ) has an arithmetic progression of lengthk. Denote the
arithmetic progression{a + dl}k−1

l=0 . We again have

∥∥∥∥∥∥
1√
k

k−1∑

l=0

ei(a+dl)·

∥∥∥∥∥∥
L2

= 1, (43)

while

∥∥∥∥∥∥
1√
k

k−1∑

l=0

ei(a+dl)·

∥∥∥∥∥∥
L1

≤ log(k/2)√
k

. (44)

ApplyingTheorem 5, for any Þxed constantCEx, for k large
enough lines (43) and (44) give the contradiction

1=
∥∥∥∥∥∥

1√
k

k−1∑

l=0

ei(a+dl)·

∥∥∥∥∥∥
L2

≤ CEx

∥∥∥∥∥∥
1√
k

k−1∑

l=0

ei(a+dl)·

∥∥∥∥∥∥
L1

≤ CEx
log(k/2)√

k
.

(45)

We point out that the sequence of coefficients used to give
the contradiction is not at all exoticÐit is just a sequence of 1Õs
placed at the right locations.

If we work with a Þnite total number of tones and have an
extension constantCEx, then since the constantCEx in both
aspects ofTheorem 5is the same, we can deduce a bound on
the longest arithmetic progression inIN . Namely, denoting
byk the length of the longest arithmetic progression, we have
1≤ CEx(log(k)/

√
k).

To emphasize the role of the density, we contrast
Theorem 6with the following theorem.

Theorem 7([14] and Theorem III.F.6 in [15]). Letλ > 1 be
a real number and assume that the subsetK = {nk}∞k=1 ⊂ Z
has the property|nk+1| ≥ λ|nk| for all k ≤ 1. Then there
exists a constantCK such that for alla ∈ l2 supported on
K there exists a continuous functiong ∈ L2(T) satisfying
‖g‖L∞ ≤ CK‖a‖l2 with Fourier coefficients satisfyinĝghk = cnk .
That is, a compensation signal exists.

In the case addressed inTheorem 7, a compensation
signal can always be found. But, of course, the difference is
that the density ofK is zero: for everyM elements ofK we
have roughlyλM elements in the compensation set.

Now we give an example of when uncontrollable peaks
can occur (see also Section 5.2 of [16]). Consider a sequence
c ∈ l2(Z) supported on the positive integers, and such that
limK→∞

∑K
k=1 ck = ∞. LetM be a large positive integer and

set tN ,M = N2−M for any N ≤ 2−M . SetKN ,M to be the

smallest value fork such that 2k−MN is an integer. We then
have

K∑

k=1

cke2πi2ktN ,M =
K∑

k=1

cke2πi2k−MN

=
KN ,M∑

k=1

cke2πi2k−MN +
K∑

k=KN ,M+1

ck.

(46)

Clearly, the term on the left remains bounded, while the
term on the right tends to inÞnity asK → ∞. However,
since the indices{2k}∞k=0 correspond toλ = 2 in Theorem 7,
there exists a sequencea supported onZ \ {2k}∞k=0 such that
‖a‖l2(Z) ≤ CEx‖c‖l2(Z) for a constant independent ofc and

∥∥∥∥∥∥∥

∑

k∈N
c2k e2πik· +

∑

k∈Z\{2k}∞k=0

cke2πik·

∥∥∥∥∥∥∥
L∞([0,1])

≤ CEx. (47)

One could ask if all subsets ofZ of density zero might
correspond to a subspace for which the PAPR reduction
problem is solvable or, equivalently, for which a norm
equivalence holds. Here, however, a famous result tells us that
this is not the case. That is, Green and Tao have proved the
following theorem.

Theorem 8(see [17]). The prime numbers contain arithmetic
progressions of arbitrary length.

Thus, the primes are an example of a subset of the
natural numbers with density zero, but for which the PAPR
reduction problem is not solvable.

4. The Discrete Fourier Case

For completeness, we include a short section on the discrete
Fourier case. The discrete setting is important, because it
is often used to model or approximate the analog setting.
Using sampling theorems, one can than relate results from
the discrete setting to the continuous setting. This is done
in the papers [6, 18, 19]. Also, if a signal has been digitized,
then it falls into the discrete, Þnite-dimensional setting. The
proofs and a more thorough discussion of the work presented
here can be found in [20].

DeÞnition 6.TheN × N inverse discrete Fourier transform
(DFT) matrix is given by

Fjk =
1√
N
e−2πi( j−1)(k−1)/N . (48)

This matrix is denotedF, and for x ∈ l2N , Fx denotes this
matrix applied tox.

DeÞnition 7.The unit ball inlpN is denotedBp
N ; that is,

B
p
N =

{
x ∈ l

p
N : ‖x‖lpN ≤ 1

}
. (49)

Since for any ÞniteN solvability in the Þnite-dimensional
setting holds for some constant, we must consider a sequence
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of subsets for an increasing sequence of dimensions and
address whether the solvability constant remains bounded.
Thus, we assume that{Nk}∞k=1 is an increasing sequence or
natural numbers, and for eachNk we have a subsetINk of
{1,. . . ,Nk}. Here,IcNk

denotes{1,. . . ,Nk} \ INk . Similarly to
DeÞnition 2, the discrete PAPR problem issolvablefor the
sequences{Nk}∞k=1 and{INk}∞k=1 if there exists a constantCEx,
such that for eachk, for all x ∈ l2Nk

with supp(x) ⊂ INk , there
exists a compensation vectorr ∈ l2Nk

supported inIcNk
such

that

‖F(x + r)‖l∞Nk ≤
CEx√
Nk
‖x‖l2Nk . (50)

Theorem 9(see [20]). Let {Nk}∞k=1 be a subsequence ofN,
and letINk be a subset of{1,. . . ,Nk}. LetYk = {y ∈ l2Nk

:
supp(F∗y) ⊂ INk}. The discrete PAPR problem is solvable for
the sequence of sets{INk}∞k=1 with constantCEx if and only if

∥∥y
∥∥
l2Nk
≤ CEx√

Nk

∥∥y
∥∥
l1Nk

(51)

for all y ∈ Yk.

Note that‖y‖l2Nk ≤ ‖y‖l1Nk holds for any vectory. But ask

increases, at some pointCEx/
√
Nk < 1, and so the important

point is thatCEx remains Þxed.
For a setA, |A| denotes its cardinality.

Theorem 10(see [20]). Let{Nk}∞k=1 be a subsequence ofN,
and letINk be the corresponding sets as deÞned earlier. If

lim sup
n→∞

∣∣INk

∣∣
Nk

> 0, (52)

then the discrete PAPR problem is not solvable.

The proof uses the Þnite-dimensional equivalence rela-
tion in Theorem 9and Szemer«ediÕs Theorem, just as the
proof of Theorem 6used theL2 − L1 equivalence relation,
Theorem 5, and Szemer«ediÕs Theorem.

5. Discussion and Conclusion

The approach to the PAPR reduction problem presented
here has two parts: Þrst, we showed an equivalence between
solvability and a norm relation, and then we considered cases
when we could violate or satisfy the norm relation. There
is a very interesting difference between these two parts in
that the equivalence statement holds for any orthonormal
basis and proving the statement did not require working with
the functions. The second step, however, required using the
special structure of the Fourier system. In [20], we present
the analogous result for the Walsh or CDMA system, and
there we also use every special property of that system. We
make the heuristic conjecture that if an orthonormal basis
has structure, then one can construct a function in the span
of a subset of elements with positive relative density that
violates the norm relation.

Compare this conjecture with the following observation.
PaleyÕs Theorem (Theorem I.B.24 in [15]) states that there

exists a constantC such that forf (t) =
∑n

k=1 ake
2kπit for any

n ∈ N
∥∥ f
∥∥
L2([0,1]) ≤ C

∥∥ f
∥∥
L1([0,1]) . (53)

Thus, if we rearrange the Fourier basis by repeatedly
taking one element from the set{e2kπi·}∞k=1 and one from its
complement, we can acheive solvability for a subset with a
relative density of one half, by the deÞnitions used here. What
is lost, however, is the structure. Here, the highest frequency
grows exponentially with respect to the total number of
signals.

The Khinchine inequality (I.B.8 in [15]) is the analogous
statement to PaleyÕs Theorem for the Walsh basis. Here,
again, one could gain solvability by taking the elements
with indices{2k}nk=1, but one then loses the structure and
the desireable properties. For example, with the natural
ordering one can move from the inÞnite setting to the Þnite
setting with the optimal projection constant 1. But if one
deviates from this ordering, this very helpful property is lost.
This relationship between structure and norm equivalences
requires much further study.

This paper shows that the PAPR reduction problem
is a challenging mathematical problem, both for general
orthonormal systems and for speciÞc systems, such as
OFDM. SpeciÞc orthonormal systems demonstrate their
own difficult properties: for example, with OFDM we have
seen that the ordering of the elements plays an important role
and allows one to introduce the density that was investigated
here. Thus, the notion of density, as investigated here, is
fundamentally tied to the OFDM system.

On the other hand, there are results that hold for all
orthonormal systems. Here, for example, we see that the
worst case PAPR behavior of an OFDM signal is just an
instance of the

√
N behavior of anyN orthonormal signals

[16]. A theorem of Kashin and Tzafriri [21] states that
under very reasonable conditions the expected maximum of
a signal formed as a linear combination ofN orthonormal
functions on the unit interval behaves like

√
log(N ). This

is discussed in [22], where it is also shown that a signalÕs
PAPR value is highly concentrated in probability around
its expectation. This may be compared to probabilistic
bounds for the OFDM system in [23]. Thus, even in
expectation, the PAPR behavior of the OFDM system is, in
fact, just an instance of a uniform behavior. Understanding
these properties is particularly important for the emerging
effort in communications research to address overall energy
consumption, rather than considering only the energy of
the transmitted signal. In particular, one must address how
much energy is necessary to create a certain signal in terms
of the signalÕs properties. In this way, one can address the
relationship between signal properties, such as PAPR, and
circuit design with the goal of reducing energy consumption
at the circuit level; see [24] for a recent discussion.

This paper is a contribution to the mathematical under-
standing of peak-to-average power ratio and, in particular,
tone reservation. We have shown that tone reservation
is inherently related to such mathematical areas as the
Hahn-Banach Theorem, norm equivalences, and arithmetic
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progressions, and presented results in each of these areas.
The general result of the paper is that is a Þxed portion of
subcarriers is always allocated for carrying information, then
signal peaks cannot be held below a Þxed threshold.
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