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We address the peak-to-average power ratio (PAPR) of transmission signals in OFDM and consider the performance of tone
reservation for reduction of the PAPR. Tone reservation is uniqgue among methods for reducing PAPR, because it dees not a
information bearing cofficients and involves no additional coordination of transmitter and receiver. Itis shown that if the OFDM
system always satisbes a given peak-to-average power ratio constraint, tiféoi#imey of the system, Beed as the ratio of the

number of tones used for information to the entire number of tones used, must converge to zero as the total number of tones
increases. More generally, we investigate and provide insight into a ff@@éeeen optimal signal and information properties for

OFDM systems and show that it is necessary to use very small subsets of the available signals to achieve PAPR reduction using tone
reservation.

1. Introduction As such, our approach may be viewed as either addressing a
. N ) __ strict PAPR criterion or a strict criterion of no out-of-band
OFDM is one of todayOs most widely used and promising, giation, Such an approach is necessarily nonprobabilistic.

|nf0{mat|onftrgrl1:%mlvllssr|]on schemesthOr?e of the mka;m disad- e pronabilistic model is currently the accepted model
vantages o » however, IS the largeé peak-o-avera ong communications engaéers working with classical

power ratio (PAPR) of the transmit signals. Reducing the . o
PAPR, which we will call the PAPR reduction problem, haswweless communications systems, §uch_as cellular netvv_orks
oL WLAN. In these areas, one is primarily concerned with

been an area of extensive research over the last ten yegéé afects that PAPR has for communication within the

and various techniques have been proposed. These includg, band th ) king. Devel lated
among others, clipping and bltering, selected mapping€duency ban that one is working. Developments related to

active constellation extension, and tone reservation. See [the digital dividend (i.e., the reallocation of frequencies made
for an overview. available by converting radio and television communication
High PAPR is a problem because most amplipers perfom)f]rom analog Fo dig@tal) have shown, howe\{er, that statistical
poorly at higher amplitudes. Reduction techniques are mostnodels are insficient for various user-oriented commu-
commonly investigated for theirfiects on bit-error rates, Nications applications and that there is strong resistance
capacity or power consummth, and in these contexts, in in these communities to redistribute frequency bands.
a probabilistic approach is appropriate. However, when dn particular, there is concern that new communications
signalOs peak is cif, @ut-of-band radiation is caused, and networks will be introduced in neighboring frequency bands
this is an interference for devices operating in neighboringor that frequency sharing will be introduced, as both of
spectra. If the peak threshold is violated with a certainthese present the possibility for interference. Examples of
probability, then other devices will be subjected to thissuch applications where these issues are most important are
interference the corresponding percent of the time. In manythose where safety plays an important role, such as in wireless
instances, it may be inadmissible to cause such interferen@itomation or car-to-car communication. A further example
to other devices. We explain that when peak ¢litxcurs, is wireless microphones, which are particularly important
only a strict PAPR criterion prents out-of-band radiation. in the entertainment industry. Statistical models can be
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permitted in these areas only in very restricted cases. Whakeservation as the number of tones increases. This paper
distinguishes these applicat®from classical networks is the provides insight to this scheme as the number of tones
type of error that may be tolerated. In particular, a certaininvolved becomes large.
probability that communication fails is inadmissible. This paper provides an initial investigation into the rela-
The starting point for the PAPR reduction schemestionship between the relative size of a subset of transmission
mentioned above is a set of dheients to be transmitted signals and several signal processing properties of the subset.
to the receiver. In order to reduce the signal peak, one mayn Section 2we prove our main result on tone reservation
adjust these cdgcients in some way or add new d¢feients  for OFDM systems with a bnite set of tones.Section 3
on frequencies that have not been used. Iffficients are  we prove the same type of result for systems with an inPnite
manipulated, then the receiver must convert the receivechumber of tones. The discrete Fourier case is addressed in
codficients back to the original céfecients; however, if Section 4and a short conclusion is given 8ection 5There
codficients are added on frequencies that do not carrywe also give a short discussion of transmission schemes for
information, the received information bearing dieients  Pbfth generation cellular networks, as well as nonorthogonal
do not have to be converted. Tone reservation, which wasransmission systems and their PAPR behavior.
introduced in [2], and is one of the popular techniques to

mitigate against high PAPR, takes the latter approach. The Finite Set OFDM Case
In tone reservation, the set of available tones is divide(%'

into two subsets. One set is as@ carry information, while  We brst debne our signals: an OFDM signal has the form
the other is used to reduce the peak value. We will call these

two sets thenformation seind thecompensation s&iven N »
a set of cofficients for the tones in the information set, s(t) = Z are™, (1)
codficients are chosen for tones in the compensation set, so k=-N

that the peak value of the combined signal is reduced. Th
location of these two sets remains Pxed for all codewords angh e reservation scheme, are used to reduce the peak value

over all uses of the channel. of s(£). An ampliPer generally only has a cfftor distorting

Of the handful of methods to reduce PAPR, tone reser-ggect ot high amplitudes, and the signal is left undisturbed
vation is particularly robust and canonical. This is becausghere it is magnitude lies below a threshold. In this case,
the only information that the receiver requires is the location if |s(f)| exceeds the threshold, say, in some regions, a
of the mformatlon set. The receiver may simply Ignore newy function s; results, such thas(s) = si(¢) for all ¢
whatever arrives on the entries of the compensation SeWhere\s(t)\ < M. Then,s — s; has compact support and
With other schemes, such as active constellation extensiogarmot be band-limited. éineés band-limited, this means
[3] or selected mapping4, 5], not only does the receiver annat he hand-limited, and thus out-of-band radiation has

have to be informed of the modibcations made to eachyeen caused. This motivatestinvestigation of strict PAPR
possible set of cdécients, but the receiver also has to convert.,nstraints. The PAPR for the veciois

the received cdécients back to their original values. Thus,

here the coficientsay either carry information or, in the

there is additional overhead involved in setting up and then ‘Zf:]- Ny akeikt‘
performing the information transmission. Both of these are PAPRa) = sup - 2)
avoided in tone reservation. ep2n  llallz,,

However, tone reservation exhibits a tradebetween . - "
the best attainable PAPR and the number of tones in the//"lé this is the standard del?\rnmon Okft PAPR, to make
tation easier, we look at>;__y axe*'| rather than

information set. The main result presented here is that if " e -

the OFDM system satisPes a strict bound on the peakt>i-_y axe’’|”. Also, we could work with just the nonnega-

to-average ratio, then as the number of total tones usedive indices rather than with all the frequenciesN, ..., N}.

increases, at some point the proportion of tones used tdnstead of working withL'(T) (dePned below), we would

carry information must decrease and eventually convergéen work with the Hardy spac#l!. The results, however,

to zero. Equivalently, we bnd a scaling law: if the size ofemain the same. Before we formally state the problem, we

the information set and the total set increase proportionally,dePne our spaces.

signals with larger peaks can be constructed that cannot be

Compensated for by any Compensation SignaL Debpnition 1151 denotesC viewed as a linear Space and
The result presented here certainly does not state tha[;x”lp = (zi‘;l |xk|P)w_ If Ais a subset of—N,...,N}

tone reservation does not deliver strong improvements inl \

PAPR. An fiicient al_gonthm for computing compensation e torus.L?(T) denotesp-integrable functions debned on

codficients is given in§], and the reductions it delivers in T with norm

PAPR are signibcant. Much experimentation has been done,

. . . : . v

Eu??rr]'gc:tl?uré?u?gagfh|ngdforsubset_swﬂh good performance, fllems = (ij |f(t)|"dt) p’ @)

good sets is still not understood. There Lr(T) 21 v

has also been little theoretical work on the performance

bounds of tone reservation. The authors are unaware, fofor 1 < p < o and || fll,.qy = essupclf(1)l. L*(A)

example, of any work that addresses the behavior of tondenotes the subspaceld{T) spanned by e} c4.

(A) denotes vectors ity,,; supported onA. T denotes
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Tone reservation works as follows: we sphtN,...,N}
into two subsetsly, an information set, andRy =

all simply multiplied by the same appropriate scaling. Thus,
solvability on all ofi2(Iy) and solvability on the unit ball of

{-N,...,N}\Iy, acompensation set. We call the ratio of the I?(Iy) are equivalent, though the best constant in the latter
number of tones in the information set to the total number case may be smaller.

of tones available theficiencyof the system. UsingA| to
denote the number of elements in the setthe eficiency
is [Ix1/(2N + 1). Given a set of information cdécientsa €
I’(Iy), one seeks a vectbre I>({—N,...,N} \ Iy) satisfying

1bllg,,, < Cexlallg,,,, such that
sup | 3 axe® + 3 bie™| < Cedlallg,,,  (4)
t€[0,27]

kely kERy

for some constanCgx. One would like the inPmum of 4)
over all possiblé supported onR,,. The condition||bl|z , <

Debpnition 2.The PAPR reduction problem solvabléor Iy
with bound Cgy if there exists an operatdi;, : P(Iy) —
L®({-N,...,N}) such that

)

|Eallp(ry < Cedlallg,,,.
for everya € I4(Iy).

Now we proceed as follows: ifheorem 1we give a
necessary condition for solvability. Wittheorem 2wve show
that if it is required that the peak-to-average power ratio

Cexlallg,., is, therefore, imposed to make this well-debned.remains bounded, then theffeiency of the OFDM system

We note, though, that any vectétthat satisPesf must have
this property. To see this, we observe that

172
2 2
(lallz + 1611%) ™" =

z are® + Z brel*

kely kEIﬁ] 12
< sup | D ae®t+ > bret |,
t€[0,21] | kery keRy

so that if @) holds, then the conditioniblz ., < Cexllallg,,,
is also satisbed. Certainly, for bnits a constantC can
always be found that satispes inequality Here, however,
we address the relationship betweérthe size ofy, and the
best possible constatkx.

To express this relationship, we introduce tietension
operatorwhich we denoté, . This operator is a map from
I(Iy) to L3({-N,...,N1), given by

Ena= > ae®+ > beel,
kely kERN

(6)

An initial formulation of solvability is that the PAPR reduc-
tion problem is solvable for the subsbBt ¢ {-N,...,N}
with bound Cegy if there exists an operatdt;, : ’(Iy) —
L*({-N,...,N}) such that for alla € [?(Iy) satisfying
lallg,,, <1,

| |EIN a

()

Note that we are interested ian operator that satispes

|L°°('[|') < CE)(.

converges to zero as the system size increases. That is, if the
PAPR reduction problem remains solvable with the same
bound for a sequence of sety} asN — oo, then the
relative density of the sets, that is, the ratio of information
bearing signals to total signals must converge to zero.

Debnition 3.For a subsely ¢ {—N,...,N} we debne

> akeikf]». (10)

kely

FUm={f6HWLfm=

Theorem 1. If the PAPR problem is solvable for the siipset
with extension norr@g,, then

S 2ry = Cexll fllpagry»
forall f € F (In).

(11)

Proof.By assumption, for ali(t) = ey, axe™, llallz,. <

2N+1
1,

||E[Na||l?}\“1 =< CE)(HQHZ%I\H1 < CE)(. (12)
Again, by assumption,
(Ea)(t) = > axe™ + > e, (13)

kely kERN

Letf € F (In), f(t) = Sier, cke’*, be arbitrary. Then

Z aCk z aici + Z bick

: . . . keln kely keRy
(7); uniqueness is not part of the discussion. Such an
operator will, in general, be nonlinear, since cases where - ‘ij f(t)mdt‘ (14)
Ey, (a+b) # Ej,a+Er, b may exist. However, any such operator 2n Jv
scales sublinearly. That is, suppose that the PAPR reduction

i i i < |l g2y 1Bk sl =y
problem as just debned is solvable frwith constantCey. m
It lallg,., > 1, we dePne’ = a/llall5,,,. Then, < Ced Il
En @' ||~y < Cex (8)  Set
. . C
and we may simply rescalg, a’ by llall;z ,, to determine ﬁ , 70,
an extension fom with bound Cexllallg,,,. Note that here ay = OC Bywa 0 (15)
Cr = U

the placement of the cécients is unchanged, and they are



Then

Z aCk

kely

(16)
O

S 2y = llellg,,, = < Cexl| fllaqmy-

The following dePnition gives theffesiency of the best

subset selection for which the PAPR reduction problem is

solvable for a given bound.
Debnition 4Optimal subset size-OFDM).
Ev(Cex) = max{|Iy|; Iy C {-N,...,N},
such that PAPR is solvable fy  (17)

with constantCgy}.
Now, we may state the following theorem.
Theorem 2. For all0 < Cgx < 0, the following limit holds:

Env(Cey _

lim 0.

N—-ow 2N +1 (18)
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arithmetic progression of lengttx. Denote this progression
{a+dI}5t. Now, note that

‘ 1 m—1
il Z i(a+dl)- =1 (20)
e 1
\/m 1=0 12(T)
while
m—1
‘ 1 S eitardd. - log(m/ 2)' 21)
\/m =0 LY(T) \/m

(This is the usual bound for the Dirichlet kernel.) Applying
Theorem 1for any bxed constartgy, (20 and (21) lead to
the contradiction

In other words, the theorem states that if a PAPR bound

is always satisbed, then the systefitiency converges to

0 as the total size increases. Thus, the number of tones
that may be used to carry information does not scale

with N. Theorem 2gives a limiting value as the dimension
approaches inbnity, but it should not be read as a strictl

sionsN for which solvability occurs or a certain parameter
pair Cex and|I,|/n. In other words, given a consta@gyx and
a relative density, there is a limit to how large the dimensio
can be and satisfy both the extension const@gtand the
prescribed relative density.

The proof will use arithmetic progressions and Sze
merediOs TheoremMheorem 3

Debpnition 5.An arithmetic progression of lengtis a subset
of 7 that has the form{a,a+ d,a+ 2d,...,a + (k — 1)d} for
some integenr and some positive integer

Theorem 3(Theorem 1.2 in ¥]). For any integek > 1
and any0 < & < 1, there exists an integssz(k,8) > 1
such that for evety > Ngz(k,9), every set c {1,...,N}

of cardinality|A| > 6N contains at least one arithmetic

progression of lendth

Proof ofTheorem 2Assume that the claim is not true. Then,
there exists a subsequen@;};.; C N and a constant
G(Cgy) > 0 such that

ENk(CEXa F )

(19)
forallk = 1,2,... Now, we set = G(Cex/2 and apply
SzemeediOs Theorentheorem 3 Thus, for anym, there
exists some largdl € {Ni};.1 such thatly contains an

M
asymptotic statement. Because of the convergence to zerg
(18 rules out the existence of any arbitrarily large dimen-

n

‘ 1 m—1
1= = z pilatd):-
\/m =0 12(T)
1 m—1
< Ced|— z pila+dl): (22)
\/ﬁ =0 Ll('[r)
log(m/2
< CE)( g\(/m )
whenm is large. O

Thus, if a bound on the peak of all transmission signals is
given as one increases the number of total tones available,
at some sizeV the proportion of tones allocated to carry
nformation must decrease in order to satisfy the PAPR
onstraint.

From this theorem, we also see that when tone reser-
vation is used, the subsets chosen as information and
compensation sets are very important. In particular, the
information set should not have any long arithmetic pro-
gressions; however, determining subsets with little additive
structure is a very challenging problem. As an indication
"of this, consider that what is now known as SzeediDs
theorem was an open question for length 3 for decades before
Roth proved it in 1952 §], for which he was awarded the
Fields Medal in 1958. Szemeeli proved the result for length
4in 1969 P and his Pnal result in 1978L0)]. Sets with only
short arithmetic progressions is certainly a nearly equivalent
problem and thus also veryfticult. For a taste of this area,
one may see Chapter 2 dff].

The following theorem shows that if the PAPR reduction
problem is solvable for a bnite information set when we allow
the compensation set to be the entire rest of the integers;
then, using a projection onto a Pnite set, we obtain solvability
for the Pnite compensation set. However, the extension norm
increases depending on the size of the compensation set.

Theorem 4. Suppose thd}y is a subset gF-N,...,N} and

that for every: € [2(Z) supported offiy the PAPR reduction
problem is solvable with an extension sequence supported on
Z \ Iy and with extension bountkx. Assume that > 1

and thatAN is an integer. Then the PAPR reduction problem

is also solvable with an extension sequence supported on
{—=AN,...,AN} \ Iy with extension constaf@/(A — 1)) Cex.



EURASIP Journal on Advances in Signal Processing
Proof.Let f(t) = 3,1, ane™, and let

fO+gd = Saem+ S a,em

ne€ly neZ\Iy

(23)

be its extension, such thdtf+g||me < Cexllallp@z). We

simply project f + ¢ onto span{e""‘}ﬁf,m using a Fegr
kernel. We debne the following set of kernels:

-N-1

Z dneint +

n=—AN

AN )
Z dn elnt ,

n=N+1

N
Ky = {K(t) = > e+

n=-N

whered,, =d_, forn =N+ 1,...,)LN]>.

(24)

For any kerneK € K, 5, we have

) = ﬁnif(%)dt— ), (@29)

and we may dePn¢ + gy to be the convolution off + ¢

with K. The Fourier expansion of + g,y is supported on
{—AN,...,AN} and agrees with on Iy. UsingPx to denote
the projection given by convolution witK,

IIf + awllpery < 1Pkl f + gl () = Cexllalle) I Px|l.
(26)

The norm|| Pkl isthe|l - [l 11(r)-norm of K. We will construct

By settingdy = (AN — N — (k/2))fork = N+1,...,AN and
K(t) = V(AN = N)(ZNo Di(t) — SV Di(#)) and using the
positivity given in 9), we obtain

1Kl qo,ay = J N (sz(t) - sz(t)) dt
0| AN-N\;5 k=0
1 1 AN N
< J S D)+ > Di(t)dt
AN =N Jo = k=0
21
<
“AN-N
__2
) (30)
Returning to 26), we have
2
||f+g/\N||Lw(1r) = )L_*lcExHaHZZ(z), (31)

where the Fourier expansion ofyy is supported on
{=AN,...,AN}\ Iy. O

3. The Infinite Set Case

The inPnite set case is particularly important because of
the insight it brings to the mathematical structure of tone
reservation. By using the projections discussethieorem 4
though, the inPnite set case also has practical implications.
Our brst step en route to proving the inbnite-dimensional
form of Theorem 2is to prove an equivalence between the
PAPR reduction problem and a norm equivalence. Recall that

K using two Fegr kernels. We recall that the Dirichlet kernel Theorem 1stated that solvability implies a norm equivalence

is debned by
D,(1) = > ™, (27)
k=—n
and the Fegr kernel by
1S (sin(nt/2)\?
Fa(t) = EEOD" a ( sin(t/2) ) ' (28)
Thus, for anym > I,
m 1
>.Di— > D
k=0 k=0
2l-m

_ (m _ l) z (eikt + e—ikt)
k=0

2(m-I)
. S (m - g) (@m0t 4 gie-mei).
k=1

(29)

in the Pnite set case. In the inPnite set case, we show that
solvability holds if and only if the norm equivalence holds. By
constructing functions that violate the norm relation, we will
show when solvability cannot holdrfieorem §. However,
using a special case when the norm relation holds, we will use
the if and only if statement to identify sets where solvability
does hold Theorem 7.

The equivalence statement holds for arbitrary orthonor-
mal systems, so we state it in that generality. This is
Theorem 5 In Theorem 6 we prove that the PAPR problem
is not solvable in the OFDM setting at positivefigencies
for sets of inPnite cardinality. L&t },., be an orthonormal
basis forL%(T). LetK be a subset df and debne

X = <|f el{T): f(1) = zakq/k(t)]». (32)
kek

Given a functions € X, we are interested in Pnding a
compensation functiong, g(t) = >ick bk, such that
Is+gll, =< Cgxlsllo. Here, we may view the nonlinear
operator as a map from?(T) to L?(T), so thatExs = s + g.

If a map exists so that suctyacan be found for everye X,
then we say that the PAPR reduction problensddvabléor
the pairK and {yx},., with extension nornCgy.
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Theorem 5. The PAPR problem is solvable for thefpaind  Set
{yk} e, With extension norr@ey if and only if

C_ C 3&
—llele 77
1l = Cell Moy ) “ 10 60 .

forallf € X. Then, | fll sy = llelle = | Siex aidel = Cexl fll1y-

Remark 1We give a short discussion of the geometric (||)2Assume\|f\|Lzm < Cedlfllpa for all f € X. Let

interpretation of this theorem in our conclusion ection 5 @ € [(Z) be a sequence supported fawith only Pnitely

many nonzero terms satisfyingallz;y < 1. Sets(t) =

When (33 holds, we will say that{ has thenorm  Xkeck akyi(t). For f € X, f(t) = Xjex ckyk(t), debne the

equivalence propertyote that in contrast to the pbnite set functional! , by

case ofTheorem 1 here we have a necessary anfficgent

condition for solvability. Lof = D ack. (38)
Before giving the proof offheorem 5we emphasize kek

several points. I1€g is the smallest constant for which the _.

reduction problem is solvable, then it is also the smallestSlnce

constant for which 83) holds and vice versa. To see this, |

suppose tha€; is the smallest constant for which solvability " af | = Nalle@licle@ < [1f i < Cedl fllzsmy.

holds, but the norm equivalence holds fé < C;. By (39)

the equivalence statement dheorem 5 solvability also ) . . )

holds for C», which contradicts thatC; is the smallest @ « IS continuous onX. SinceX is a closed subspaceld{T),

such constant. The same argument applies for the oppositBY the Hahn-Banach Tlheorerrlﬂ, the functionall , has the

implication as well. The statement that the best constant fo£Xtension g to all of LX(T), where|! 4|l = [I! gll. The dual

the norm relation is also the best constant for solvability isOf L*(T) is L*(T). Thus, for some: € L(T),

the more signibcant, since here, this property follows from

the Hahn-Banach Theorem. The Hahn-Banach Theorem, Lef=(f.r), (40)

however, requires the axiom of choice to repeatedly exten

the functionalOs domain by one dimension. Indeed, here th

axiom of choice is used to justify this because in most settingé

it cannot be done constructively. Therefore, constructing an

extension with the optimal constant is equivalent to realizing r(1) = Z diyi (1), (41)

what the axiom of choice states exists, but for which a ket

method of construction does not exist. This shows how.

mathematically complex an optimal implementation of tone

reservation is.

rall f € LY(T), so that||! gll = [I7ll=(t). SinceL*(T) c
(T), r possesses the unique expansion

for somed € 12(z). The sequencesanda agree ork, and
we debPnédiks = r. O

Theorem 6.ForK c 7, letS(N) = Kn {-N,...,0,...,N}.
Proof. (i) Assume that the PAPR problem is solvable. Then !f limsupy _ .. (IS(N)1/(2N + 1)) > 0, then the PAPR problem

for all s(t) = Yrex aryi(?), lallez) < 1, is not solvable f&f and the Fourier basfg*" } ;7.
In particular, this theorem states that if the ratio of
1Exsllzem) = Cexlsllizm = Cex (34 the number of basis functions used for transmission to the
) total number of basis functions doest tend to zero, then
SinceL*(T) ¢ L¥(T), arbitrarily high peaks can be constructed that cannot be
sufficiently dampened by any compensation function.
Exs = zakV/H z bryi. (35) Similar questions concerning the sizes of subsets of
kek keZ\K orthonormal bases that have a norm equivalence have been
studied. In [L3, Bourgain addresses ai? — L? norm
Letf € X, () = Jkex ccyk(t), be arbitrary. Then, equivalence forp > 2. The general technique used here

to determine a norm equivalence is well known in the
functional analysis and local Banach space community.

Z aiCx | =

kekK

zakzk"’ Z bick

keK keZ\K

Proof.First suppose that the PAPR problem is solvable&for
1 and {e*'} ;. We develop a contradiction to the equivalence
= ‘ > J f(t)EKS(t)dt‘ (36)  given inTheorem 5 Suppose that arbitrary subsei(V) of
T
{—=N,...,N} are chosen such that
< |1 f a1 Exsllz=cmy IS(N)|

limsupz—= =6 >0 42
< Ced| f I aqry- NﬁoopZN*' 1 (42)
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For any positive integek, using SzemediOs Theorem smallest value fok such that 2-¥N is an integer. We then

(Theorem 3 again, there exists a large integérsuch that
S(N) has an arithmetic progression of lengthDenote the
arithmetic progressioria + dl}}—3. We again have

1 k-1
il zei(aﬂil)- =1, (43)
\/E 1=0 12
while
15 log(k/2)
= D eflard < =R (44)
k 1=0 Il \/E

Applying Theorem 5 for any bxed constar@ey, for k large
enough lines43) and (44) give the contradiction

1 k-1 )
1= zez(aﬂﬂ)
k =0 12
1 k-1 ) (45)
< Ce| = 3 el
\/E 1=0 1
log(k/2
< CEx%.
(I

have
K K
Z k e2miZtuy — Z k p2mi2 MN
k=1 k=1
(46)
Ky m K
_ cheZniZ“""’N+ Z L.
k=1 k=Kym+1

Clearly, the term on the left remains bounded, while the
term on the right tends to inbnity ak — o. However,
since the indice$2t},_, correspond tol = 2 in Theorem 7
there exists a sequencsupported orZ \ {2¥},_, such that
llallp@zy < Cexlcllp(z) for a constant independent efand

S pei 4 S et

keN kez\{zk}’io

<Cee (47)

L=([0,1])

One could ask if all subsets @fof density zero might
correspond to a subspace for which the PAPR reduction
problem is solvable or, equivalently, for which a norm
equivalence holds. Here, however, a famous result tells us that
this is not the case. That is, Green and Tao have proved the
following theorem.

Theorem 8(see [L7]). The prime numbers contain arithmetic
progressions of arbitrary length.

Thus, the primes are an example of a subset of the

We point out that the Sequence Of (fﬁeients used to give na.tura.l numberS W|th density Zero, but for Wh|Ch the PAPR
the contradiction is not at all exoticBit is just a sequence of 1dgduction problem is not solvable.

placed at the right locations.

If we work with a Pnite total number of tones and have an 4, The Discrete Fourier Case

extension constantg,, then since the constardgy, in both

aspects ofTheorem 5s the same, we can deduce a bound onFor completeness, we include a short section on the discrete

the longest arithmetic progression ig. Namely, denoting

Fourier case. The discretetté®y is important, because it

by k the length of the longest arithmetic progression, we havés often used to model or approximate the analog setting.

1 < Ce(log(k)/ k).

Using sampling theorems, one can than relate results from

To emphasize the role of the density, we contrastthe discrete setting to the continuous setting. This is done

Theorem 6with the following theorem.

Theorem 7([14] and Theorem III.F.6 in 15]). LetA > 1be
a real number and assume that the subiset{n;}; , C Z
has the propertjni+1|l > Alngl| for all k < 1. Then there
exists a constaifly such that for alk € I? supported on
K there exists a continuous functipre L%(T) satisfying
lgll;~ < Ckllallz with Fourier cocients satisfyirg, = c,,.
That is, a compensation signal exists.

In the case addressed iFheorem 7 a compensation
signal can always be found. But, of course, tiféedénce is
that the density oK is zero: for everyl elements oK we
have roughl™ elements in the compensation set.

in the papers §, 18 19. Also, if a signal has been digitized,
then it falls into the discrete, Pnite-dimensional setting. The
proofs and a more thorough discussion of the work presented
here can be found inZ(|.

Debnition 6.The N x N inverse discrete Fourier transform
(DFT) matrix is given by

Fy = %e—%i(j—l)(k—l)/N' (48)

This matrix is denoted?, and forx € 1%, Fx denotes this
matrix applied tox.

Debnition 7.The unit ball inZ% is denotedk ; that is,

Now we give an example of when uncontrollable peaks

can occur (see also Section 5.21]). Consider a sequence
¢ € I2(Z) supported on the positive integers, and such that

B}{r = {x e lﬁ, : ||x||l§T < 1}. (49)

limg o S5 ;¢ = co. LetM be a large positive integer and Since for any bniteV' solvability in the Pnite-dimensional

settyy = N2°M for any N < 2°M, SetKyu to be the

setting holds for some constant, we must consider a sequence
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of subsets for an increasing sequence of dimensions anekists a constant such that forf(¢) = >;_; are? i for any
address whether the solvability constant remains bounded: € N

Thus, we assume tha;},., is an increasing sequence or

natural numbers, and for eacN; we have a subsét, of S l2qo.ap = CllS M xqo,1yy- (53)
{1,...,N¢}. Here Iy, denotes{l,...,Ni} \ Iy,. Similarly to
Debnition 2 the discrete PAPR problem s®lvabldor the
sequenceNi} . and {Iy,},_, if there exists a constadky,
such that for each, for allx llz\,k with supp() C Iy,, there
exists a compensation vectore l%,k supported inIy, such

Thus, if we rearrange the Fourier basis by repeatedly
taking one element from the s¢¢2™*},_, and one from its
complement, we can acheive solvability for a subset with a
relative density of one half, by the depbnitions used here. What
is lost, however, is the structure. Here, the highest frequency

that grows exponentially with respect to the total number of
Cex signals.
Flx+ 1)l < —= . 50 S . . .
IF(x+ )l < 1/Nk”x”’fzvk (50) The Khinchine inequality (1.B.8 in15) is the analogous

statement to PaleyOs Theorem for the Walsh basis. Here,
again, one could gain solvability by taking the elements
with indices {2¢};_,, but one then loses the structure and

e desireable properties. For example, with the natural
ordering one can move from the inPnite setting to the Pnite

Theorem 9(see RQ). Let {Ny};., be a subsequenceNpf
and letly, be a subset ¢f.,...,Ni}. LetYy = {y € §
suppF*y) c Iy, }. The discrete PAPR problem is solvable f
the sequence of sigts } .., with constanCex if and only if

Cex setting with the optimal projection constant 1. But if one
1y |112\1k = VN« 1y |Z}vk (1) deviates from this ordering, this very helpful property is lost.
This relationship between structure and norm equivalences
forally € Yz. requires much further study.

This paper shows that the PAPR reduction problem
is a challenging mathematical problem, both for general
increases, at some poi@t,/+/Nx < 1, and so the important orthonormal systems and for specibPc systems, such as
point is thatCex remains bxed. OFDM. Specibc orthonormal systems demonstrate their

For a setA, |A] denotes its cardinality. own difficult properties: for example, with OFDM we have

seen that the ordering of the elements plays an important role
Theorem 10(see P(). Let{N};_, be a subsequenceNof and allows one to introduce the density that was investigated
and letly, be the corresponding sets as debned earlier. If here. Thus, the notion of density, as investigated here, is
fundamentally tied to the OFDM system.

Note thatllyll, < llyllx holds for any vectoy. But ask
Nk N

lim supM >0, (52) On the other hand, there are results that hold for all
n—oo Nk orthonormal systems. Here, for example, we see that the
then the discrete PAPR problem is not solvable. worst case PAPR behavior of an OFDM signal is just an

instance of the/N behavior of anyN orthonormal signals
The proof uses the pPnite-dimensional equivalence relal16l. A theorem of Kashin and Tzafriri 1] states that
tion in Theorem 9and SzemadiOs Theorem, just as the under very reasonable conditions the expected maximum of
proof of Theorem 6used theL? — L1 equiva|ence relation, a Signal formed as a linear combination Mforthonormal

Theorem 5and SzemadiOs Theorem. functions on the unit interval behaves Iikﬁog(N). This
is discussed inZ2, where it is also shown that a signalOs
5. Discussion and Conclusion PAPR value is highly concentrated in probability around

its expectation. This may be compared to probabilistic

The approach to the PAPR reduction problem presentecbounds for the OFDM system in2@. Thus, even in
here has two parts: brst, we showed an equivalence betweerpectation, the PAPR behavior of the OFDM system s, in
solvability and a norm relation, and then we considered casefact, just an instance of a uniform behavior. Understanding
when we could violate or satisfy the norm relation. Therethese properties is particularly important for the emerging
is a very interesting éfierence between these two parts in effort in communications research to address overall energy
that the equivalence statement holds for any orthonormalconsumption, rather than considering only the energy of
basis and proving the statement did not require working withthe transmitted signal. In particular, one must address how
the functions. The second step, however, required using thenuch energy is necessary to create a certain signal in terms
special structure of the Fourier system. BO], we present of the signalOs properties. In this way, one can address the
the analogous result for the Walsh or CDMA system, andrelationship between signal properties, such as PAPR, and
there we also use every special property of that system. Vércuit design with the goal of reducing energy consumption
make the heuristic conjecture that if an orthonormal basisat the circuit level; se@f] for a recent discussion.
has structure, then one can construct a function in the span  This paper is a contribution to the mathematical under-
of a subset of elements with positive relative density thastanding of peak-to-average power ratio and, in particular,
violates the norm relation. tone reservation. We have shown that tone reservation

Compare this conjecture with the following observation. is inherently related to such mathematical areas as the
PaleyOs Theorem (Theorem |.B.241if)[ states that there Hahn-Banach Theorem, norm equivalences, and arithmetic
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progressions, and presented results in each of these arefi6] H. Boche and V. Pohl, OSignal representation and
The general result of the paper is that is a Pxed portion of  approximation-fundamental limits European Transactions
subcarriers is always allocated for carrying information, then ~ on Telecommunicatignel. 18, no. 5, pp. 4450456, 2007.
signal peaks cannot be held below a bxed threshold. [17] B. Green and T. Tao, OThe primes contain arbitrarily long
arithmetic progressions&hnals of Mathematicgol. 167, no.
2, pp. 481D547, 2008.
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