
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Bildverstehen und wissensbasierte Systeme
Institut für Informatik

Representation and parallelization techniques for classical
planning

Tim-Christian Schmidt

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Felix Brandt

Prüfer der Dissertation: 1. Univ.-Prof. Michael Beetz, Ph.D.

2. Univ.-Prof. Dr. Bernhard Nebel,

Albert-Ludwigs-Universtiät Freiburg

Die Dissertation wurde am 20.09.2011 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 14.02.2012 angenommen.

Abstract

Artificial Intelligence as a field concerns itself with the study and design of intelligent agents.
Such agents or systems perceive their environment, reason over their accumulated perceptions
and through this reasoning, derive a course of action which achieves their goals or maximizes
their performance measure. In many cases this planning process boils down to a principled
evaluation of potential sequences of actions by exploring the resulting anticipated situations
of the agent and its environment, that is to some form of combinatorial search in an implicit
graph representing the interdependencies of agent actions and potential situations.

This thesis focuses on the search algorithms that implement this reasoning process for intel-
ligent agents. The first part covers a novel subclass of such reasoning problems where a goal
driven agent must find a sequence of actions to achieve its goal such that some value function
of the sequence is closest to a reference value. Such problems occur for example in recom-
mender systems and self-diagnosing agents. The contribution here is an algorithm and a family
of heuristic functions based on memoization that improves on the current state-of-the-art by
several orders of magnitude.

The second part focuses on cost- and step-optimal planning for goal-driven agents in which
the problem is to derive the least-cost action sequence which achieves the agent’s goals. Here,
dynamic programming can be employed to avoid redundant evaluations. The contributions
of this thesis address two challenges associated with the use of dynamic programming algo-
rithms.

The first challenge is the memory consumption of these techniques. At the heart of such
search algorithms lies a memoization component that keeps track of all generated situations
and the best known way to attain them which is used to derive potential new situations. In
practice the rapid growth of this component is the limiting factor for the applicability of this
class of algorithms, relegating their use to problems of lower complexity or instances where
the necessary graph traversal can be limited by other means such as very strong but often
computationally expensive heuristics. The contribution in this thesis is a data structure that
significantly reduces the necessary amount of memory to represent such a memoization com-
ponent and which can be integrated into a wide range of search algorithms.

III

Another challenge lies in the parallelization of such algorithms to take advantage of con-
current hardware. Conceptually their soundness relies on maintaining a coherent memoization
state across all participating threads or processes. As a state-of-the-art planner can explore on
the order of millions of planning states per second, each of which have to be tested against
and potentially update said state, standard synchronization primitives generally result in pro-
hibitive overhead. The second contribution describes a technique that allows to adaptively
compartmentalizing this state based on problem structure guaranteeing consistency across
participating threads with negligible synchronization overhead. Both techniques are applica-
ble to a wide range of search algorithms. In combination they allow to exploit the significant
computational advantages of dynamic programming on problems of higher complexity while
profiting from the inherent parallelism in current and future computing platforms.

Kurzfassung

Intelligente Software-Agenten zeichnen sich durch die Fähigkeit aus durch Schlussfolger-
ungsprozesse und Umgebungswissen eigenständig Aktionen auszuwählen und durchzuführen,
die geeignet sind ihre vorgegebenen Ziele zu erreichen. In vielen Fällen sind diese Schlussprozesse
im Kern als heuristische Suche über einem Umgebungs- und Aktionsmodell implementiert,
wobei die Skalierbarkeit dieser Suche sowohl die mögliche Umgebungskomplexität als auch
die Qualität des Agentenverhaltens direkt beeinflusst. Diese Dissertation greift diese Heraus-
forderung auf und beschreibt im ersten Teil ein neuartiges Suchverfahren für eine Klasse von
komplexen Suchproblemen die im Kontext selbstdiagnostizierender Agenten auftreten und im
zweiten Teil eine neuartige Datenstruktur und Parallelisierungstechnik für auf Dynamischer
Programmierung basierender Suchverfahren, die ihren Einsatz in komplexeren Umgebungen
ermöglicht.

V

Contents

Abstract III

Kurzfassung V

Contents VII

List of Figures XI

List of Tables XV

List of Algorithms XVII

1 Introduction 1
1.1 On AI planning . 4
1.2 Genealogy . 6
1.3 Classical Planning . 7
1.4 State of the Art . 10
1.5 Motivation . 10
1.6 Contributions . 13

2 Preliminaries 17
2.1 Classical Planning . 17

2.1.1 Propositional STRIPS . 17
2.1.2 The Apartment Domain . 19
2.1.3 Classical Planning - Assumptions, Classification and Complexity . . 21

2.2 Classical planning as a problem of combinatorial optimization 26
2.3 Graph-traversal algorithms . 27

2.3.1 Depth-first search . 27
2.3.2 Breadth-first search . 30

2.4 Terminology and Conventions . 32

VII

2.5 Heuristics . 33

2.5.1 Admissibility . 35

2.5.2 Best-first search and A∗ . 35

2.5.3 Consistency . 38

3 Target Value Search 41
3.1 Example Domains . 41

3.1.1 Pervasive Diagnosis for manufacturing systems 41

3.1.2 Consumer Recommender Systems 43

3.2 Problem definition . 44

3.2.1 Conventions . 45

3.2.2 Complexity . 46

3.3 Heuristics for Target Value Search . 47

3.3.1 A straightforward approach . 47

3.3.2 An Admissible Estimator for Target Value Search 48

3.3.3 Multi-interval Heuristic for Target Value Search 50

3.3.4 Computing the Interval Store . 51

3.4 Algorithms for Target Value Search . 53

3.4.1 Best-First Target Value Search . 54

3.4.2 Depth-First Target Value Search . 56

3.5 Empirical Evaluation . 59

3.5.1 The Test Domains . 60

3.5.2 Comparison of HS, BFTVS and DFTVS 61

3.5.3 Scaling of DFTVS . 64

3.5.4 Interval Store Evaluation . 66

3.6 Summary . 68

4 State-set Representation 71
4.1 Background . 71

4.1.1 Pattern Databases . 71

4.1.2 State Representation . 72

4.1.3 State-Sets in Unit-Cost Best-First Search 75

4.1.4 Set-representation techniques . 76

4.1.5 Explicit set representations . 77

4.1.6 Implicit Set Representations . 78

4.2 LOES - the Level-Ordered Edge Sequence 82

4.2.1 Conventions . 84

4.2.2 Prefix Tree minimization . 85

4.2.3 Sampling representative states . 85

4.2.4 Analyzing the sample set . 87

4.2.5 On Prefix Tree Encodings . 87

4.2.6 The LOES Encoding . 93

4.2.7 Size Bounds of LOES Encodings 94

4.2.8 Mapping Tree Navigation and Set Operations to LOES 95

4.2.9 Building a Dynamic Data-Structure for Dynamic Programming based
on LOES . 102

4.2.10 Construction of a LOES code from a Lexicographically-ordered Key-
Sequence . 107

4.2.11 Virtual In-Place Merging . 109

4.2.12 Practical Optimizations . 110

4.2.13 Empirical Comparison of LOES and BDD in BFS-DD 112

4.2.14 Pattern Database Representations 120

4.2.15 Combined Layer Sets . 120

4.2.16 Inverse Relation . 121

4.2.17 Compressed LOES . 121

4.2.18 Empirical Comparison of LOES and BDD for Pattern Database Rep-
resentations . 123

4.3 Summary . 137

5 Parallelization of Heuristic Search 139
5.1 Background . 139

5.1.1 Parallel Structured Duplicate Detection 142

5.2 Parallel Edge Partitioning . 143

5.2.1 Parallel Breadth-First Search with Duplicate Detection and Edge Par-
titioning - an Integration Example 147

5.3 Empirical Comparison of PEP, PSDD, PBNF and HDA∗ 152

5.3.1 Successor Generation . 152

5.3.2 Performance and Scaling . 153

5.4 Summary . 160

6 Conclusion 161

7 Outlook 165

Bibliography 167

List of Figures

1.1 Schematic view of intelligent agents . 3
1.2 Stanford Research Institute’s Shakey autonomous robot 5
1.3 2007 DARPA Urban Challenge . 6
1.4 Screenshot of the video game “Empire” . 7
1.5 GOAP example plan . 9

2.1 The apartment domain . 19
2.2 Graphical notation for apartment domain states 21
2.3 Abstract architectural view of a planning system. 21
2.4 Complexity of satisficing planning in pSTRIPS 24
2.5 Complexity of optimal planning in propositional STRIPS 25
2.6 Excerpt of the apartment domain-graph . 26
2.7 IDDFS apartment example . 29
2.8 BFS-DD apartment example . 32
2.9 A∗ apartment example . 37
2.10 Monotonicity of consistent heuristics . 39

3.1 A modular printing system . 42
3.2 Hiking map of the Yosemite Valley National Park. 44
3.3 Search- and connection graph . 45
3.4 Target value search example . 46
3.5 Non-admissibility of admissible SP heuristics in TVS. 48
3.6 Principle of interval heuristics . 49
3.7 Single-interval heuristic example . 50
3.8 Multiple-interval heuristic example . 50
3.9 Computing Interval Store entries . 52
3.10 Computing the Interval Store . 53
3.11 DFTVS Example I . 56
3.12 DFTVS Example II . 57

XI

3.13 The sparse domain . 60
3.14 The dense domain . 61
3.15 HS, BFTVS and DFTVS query times I . 62
3.16 HS, BFTVS and DFTVS query times II . 62
3.17 HS, BFTVS and DFTVS query times III . 63
3.18 HS, BFTVS and DFTVS query times IV . 63
3.19 HS, BFTVS and DFTVS query times V . 64
3.20 HS, BFTVS and DFTVS query times VI . 65
3.21 HS, BFTVS and DFTVS query times VII 65
3.22 Scaling of DFTVS I . 66
3.23 Scaling of DFTVS II . 67
3.24 Interval Store construction time . 67
3.25 Interval Store query time . 68

4.1 PDB for tile 4 of the 8-puzzle . 72
4.2 Dijkstra’s algorithm with unit- and variable-edge-costs 74
4.3 Array, Packed and Combined representations of a state 77
4.4 BDD example . 79
4.5 BDD dependency on variable ordering . 80
4.6 Example Prefix Tree . 84
4.7 Permutation of the Prefix Tree . 85
4.8 Historical Ahnentafel . 88
4.9 Ahnentafel Representation of the Prefix Tree. 88
4.10 Binary encoding of binary tree structure after Knuth. 89
4.11 Enumeration of Binary Trees by the Catalan Numbers 90
4.12 LOUDS and BP Encodings of a Prefix Tree 92
4.13 LOES Encoding of a Prefix Tree . 93
4.14 LOES - Worst and Best Case . 94
4.15 Tree navigation through the LOES using the rank function. 95
4.16 Structure of the two level rank dictionary. 96
4.17 Path-offset Computation Example . 100
4.18 Member-Index Computation Example . 101
4.19 Lifecycle of a Memoization Component in Dynamic Programming 102
4.20 Principle of a Merge-Sort . 103
4.21 Dynamic LOES Example . 105
4.22 Iteration Example . 106

4.23 Construction Example . 109
4.24 Destructive Iteration Example . 110
4.25 The PDB for tile 4 of the 8-puzzle and its inverse relation. 121
4.26 LOES and cLOES encodings . 125
4.27 Pipesworld Tankage PDB representation sizes 128
4.28 Pipesworld Tankage relative searchtimes 129
4.29 Driverlog PDB representation sizes . 130
4.30 Driverlog relative searchtimes . 131
4.31 Gripper PDB representation sizes . 132
4.32 Gripper relative searchtimes . 133
4.33 15-puzzle, Korf’s 100 Instances, runtime 135
4.34 15-puzzle, Korf’s 100 Instances, searchtime 136

5.1 Parallel DFS . 140
5.2 Apartment, State Transition Graph Example 143
5.3 Apartment, Duplicate Detection Scope example 144
5.4 15-Puzzle, Duplicate Detection Scope example 145
5.5 15-Puzzle, DDS with Edge Partitioning examples 146
5.6 15-Puzzle Concurrent Job Definition with Edge Partitioning 148
5.7 15-Puzzle Concurrent Job Execution with Edge Partitioning 151
5.8 8-Puzzle, Abstract and Concrete State Transitions 153
5.9 SDD, Parallel Speed-Up . 156
5.10 EP, Parallel Speed-Up . 156

List of Tables

4.1 Peak Memory, LOES and FD . 113
4.2 Airport Domain, Runtime and Peak-Memory, LOES and BDD 114
4.3 Blocksworld Domain, Runtime and Peak-Memory, LOES and BDD 115
4.4 Depots Domain, Runtime and Peak-Memory, LOES and BDD 115
4.5 Driverlog Domain, Runtime and Peak-Memory, LOES and BDD 116
4.6 Freecell Domain, Runtime and Peak-Memory, LOES and BDD 116
4.7 Gripper Domain, Runtime and Peak-Memory, LOES and BDD 117
4.8 Microban Domain, Runtime and Peak-Memory, LOES and BDD 117
4.9 Satellite Domain, Runtime and Peak-Memory, LOES and BDD 118
4.10 Travel Domain, Runtime and Peak-Memory, LOES and BDD 118
4.11 Mystery Domain, Runtime and Peak-Memory, LOES and BDD 119
4.12 n-Puzzle Domain, Runtime and Peak-Memory, LOES and BDD 119
4.13 Pipesworld Tankage PDB size and searchtime 128
4.14 Driverlog PDB size and searchtime . 130
4.15 Gripper PDB size and searchtime . 132
4.16 15-puzzle, Korf’s 100 Instances, Results Overview 134

5.1 FD, SDD, and EP, State Generations per Second 154
5.2 SDD Runtimes and Expansions . 154
5.3 EP Runtimes and Expansions . 155
5.4 HDA∗ and PBNF, Runtimes . 157
5.5 15-Puzzle, Korf’s 100 Instances, SDD runtimes 159
5.6 15-Puzzle, Korf’s 100 Instances, EP runtimes 159

XV

List of Algorithms

1 DBDFS . 27
2 IDDFS . 28
3 BFS-DD . 31
4 BFS-DD with search terminology . 34
5 A∗ . 36

6 BFTVS . 55
7 DFTVS . 58
8 DFTVS-FB . 58
9 GEXP . 59

10 PERM-SEARCH . 86
11 RANK . 97
12 POPCOUNT . 98
13 PATH-OFFSET . 99
14 MEMBER-TEST . 99
15 MEMBER-INDEX . 100
16 IT-ADVANCE . 104
17 IT-EXTRACT . 107
18 ADD-STATE . 108
19 BFS-DD-LOES . 111
20 cLOES-PATH-OFFSET . 122
21 cLOES-ADD-STATE . 124

22 PAR-BFS-DD . 149

XVII

CHAPTER 1

Introduction

Since its inception as a scientific field, Artificial Intelligence (AI) has concerned itself pri-
marily with the study and design of intelligent agents [McC59]. In AI, an agent is commonly
defined as some entity that „perceives and acts in an environment” [RNC+10]. Embodiments
of agents hence span a large range from sentient, biological beings over robots acting in a phys-
ical environment to immaterial software components interacting with their virtual peers. But
what then constitutes an intelligent agent or intelligence per se? There is little agreement on a
general, precise definition. In their public statement “Mainstream Science on Intelligence”1, a
group of researchers in fields related to intelligence testing gave this rather general definition:

“[Intelligence is. . .] A very general mental capability that, among other things,
involves the ability to reason, plan, solve problems, think abstractly, compre-
hend complex ideas, learn quickly and learn from experience. It is not merely
book learning, a narrow academic skill, or test-taking smarts. Rather, it reflects
a broader and deeper capability for comprehending our surrounding - "catching
on," "making sense" of things, or "figuring out" what to do”.

Even when limiting oneself to definitions given by practitioners of their own field, there is
considerable divergence. However, four general approaches to defining artificial intelligence
are prevalent (c.f. [RNC+10]).

THINKING HUMANELY based on the idea of cognitive modeling, i.e. developing a theory of
the mind and expressing it as a computer program.

“The exciting new effort to make computers think . . . machines with minds,
in the full and literal sense” [Hau89]

1Wall Street Journal on December 13, 1994, see also [Got97]

1

CHAPTER 1 Introduction

“[The automation of] activities that we associate with human thinking, such
as decision making, problem solving, learning . . . ” [Bel78]

THINKING RATIONALLY based on the idea of using formal principles of valid inference and
reasoning (i.e. based on “laws of thought”)

“The study of mental faculties through the use of computational models”
[Cha85]

“The study of computations that make it possible to perceive, reason and act.”
[Win92]

ACTING HUMANELY based on the idea of equivalence between agent and human behavior for
an external observer (c.f. the “Turing Test” [Tur50])

“The art of creating machines that perform functions that require intelligence
when performed by people.” [KPSM90]

“The study of how to make computers do things at which, at the moment,
people are better.” [RK91]

ACTING RATIONALLY based on the idea of agents acting in a way that results in the best
(expected) outcome.

“Computational Intelligence is the study of the design of intelligent agents.”
[PMG98]

“AI . . . is concerned with intelligent behavior in artifacts.” [Nil98]

While all these definitions have their rationale and merits, for the purposes of this thesis, I
restrict this discussion to the notion that an intelligent agent takes rational actions as it relates
straightforwardly to the potential merits of deploying such agents in practice. The behavior
of agents, in other words the mapping from sequences of perceptions to actions is referred
to as the agent function. Under this definition, it is this agent function that epitomizes its
intelligence. Russel and Norvig define such rational agents as follows:

“For each possible percept sequence, a rational agent should select an action that
is expected to maximize its performance measure, given the evidence provided by
the percept sequence and whatever built-in knowledge the agent has.” [RNC+10]

2

Agent Environm
ent

Sensors

Actuators

What the world is like now

What action should I take nowCondition Action Rules

What the world is like now

What action should I take nowGoals

What will it be like if I do action a

State

How the world evolves

What my actions do

Sim
ple,

R
eflex-based

M
odel-based,

G
oal-based

FIGURE 1.1 Schematic diagrams of a simple, reflex-based and model-based, goal-based intel-
ligent agents according to the classification of [RNC+10]. Agent knowledge is represented
as ellipses, activities as boxes.

In other words, rational action at any point in time depends on four things: (1) A performance
measure defining some success criterion, (2) the agent’s prior knowledge about the environ-
ment, (3) the agent’s abilities to interact with the environment and (4) the hitherto accumu-
lated perceptions about the environment. The component that implements the agent function
is commonly referred to as the agent program.

They continue by outlining two main criteria for classifying agent programs: The first relates
to the world view of the agent. For simple agent programs, the agent’s world view corresponds
to the last received perception. For model-based agents, the world view of the agent depends
on all hitherto received perceptions and/or prior knowledge about the environment and its dy-
namics (i.e. the agent builds and updates an internal model of the environment). The second
pertains to the action selection conditioned on that world view. Reflex agent programs com-

3

CHAPTER 1 Introduction

prise of a static set of condition-action rules. Goal-based agent programs reason about their
world view (and often their prior knowledge of the world) to select an action to best achieve
their goal. Finally utility-based agent programs allow for the most general behavioral patterns
required for autonomous agents. Their behavior results from weighing possible (courses of)
actions and their (anticipated) consequences by some unified utility measure and acting in way
that (expectedly) maximizes accumulated utility over their lifetime. Figure 1.1 gives schematic
examples of two prominent agent classes.

1.1 On AI planning

The facet of intelligence I want to concern myself with throughout this thesis is planning, the
“figuring out, what to do” part of the agent program. Due to its importance for the design of
intelligent agents, it comprises one of the central sub-disciplines of AI. Planning can be de-
scribed as the process of notional anticipation of the consequences of (sequences of) actions
(by an agent) in order to achieve some goal. A planning problem then is to find (or decide
on) a course of action that achieves a given goal when implemented in some specific situa-
tion. Depending on the problem, these courses of actions or plans can take the shape of action
sequences or reactive policies where later actions depend on the outcome of earlier ones. In
general plans are structured (or complex) solutions and that structure (e.g. the length of the
plan) has to be discovered and optimized as part of the process, which distinguishes plan-
ning from other classification and control problems. As this rather vague description already
suggests, in practice planning problems and processes vary significantly depending on the in-
telligent agent’s environment, abilities and tasks. For example environments can be fully or
partially observable (e.g. the agent’s sensors (and prior knowledge) allow for an accurate rep-
resentation of all task relevant phenomena of the environment versus only allowing for, say, a
probability over multiple possible environment states), static or dynamic (e.g. all changes to
the environment are due to agent actions versus the presence of other interacting processes in
the environment) and the agent’s actions’ effects in the environment can be deterministic or
not (e.g. actuators can fail to execute a desired action properly). Over the years, a correspond-
ingly wide variety of formal frameworks have been developed to enable formalizing of and
reason in such domains.

4

SECTION 1.1 On AI planning

FIGURE 1.2 Stanford Research Institute’s Shakey autonomous robot, the first intelligent agent
that could reason about its abilities and its environment to infer suitable courses of actions
in order to solve complex problems, hence melding logical reasoning and physical actions.
The non-flattering name allegedly stemmed from the jerkiness of his movements. It is the
oldest real inductee in the robot hall of fame and today on display at the Computer History
Museum in Mountain View, California.

5

CHAPTER 1 Introduction

FIGURE 1.3 Two autonomous vehicles at the 2007 DARPA Urban Challenge navigating a four-
way intersection.

1.2 Genealogy

The first agent able to comprehend its environment and abstractly reason about its abilities
to plan a course of action in order to solve complex problems was Shakey (see Figure 1.2),
a robot developed at the Stanford Research Institute between 1966 and 1972 [NRR+68]. The
system could (on “a good day”) formulate and execute plans encompassing moving from
place to place and pushing blocks to satisfy high-level commands. The project was hugely
influential in AI planning and spawned a number of noteworthy and to this day relevant tech-
niques. Amongst them was the input language to the Stanford Research Institute Problem
Solver (STRIPS) [FN71], a software system that could infer sequences of actions (i.e. plans)
to solve complex problems. It also brought forth A∗ ([HNR68] and [HNR72]), a technique for
best-first graph traversal derived from Dijkstra’s algorithm [Dij59], that improved performance
by incorporating heuristics and is still used in the majority of state-of-the-art planners today.
Another important contribution attributed [LPW79] to the project was the visibility graph

method for determining Euclidean shortest paths between points on a plane with obstacles.

Over the last 40 years, its progeny has made great strides. In its time it took Shakey’s PDP-
10 multiple hours to come up with and execute its plans of moving between positions and
pushing boxes. In the 2007 Urban Challenge (see Figure 1.3), the winning autonomous ve-
hicle managed to traverse a 96km urban area course in little less than 4 hours while obeying
all traffic laws and avoiding other agents on the course [MC07], reasoning about a complex,
dynamic environment in real time. Apart from increases in available processing power this

6

SECTION 1.3 Classical Planning

FIGURE 1.4 In the game “Empire” by Sega the AI uses goal oriented action planning to direct
its units in real-time [Pav08].

was made possible by advancements in combinatorial optimization techniques and the de-
velopment of more expressive planning frameworks which allow modeling (amongst others)
multiple agents, dynamic domains, imperfect sensing, uncertain action effects and durations.

1.3 Classical Planning

The reasoning framework behind what in 1970 was described as “the first electronic person”
[Dar70] is nowadays referred to as “classical planning”. Perhaps unsurprisingly, it pertains to
the most restricted class (in regards to environment phenomena) of planning problems. Classi-
cal planning assumes full observability, a finite (in terms of possible states and actions), static
and deterministic environment as well as episodic progression of time (i.e. time passes in ab-
stract episodes and steps, in each of which the agent chooses an appropriate action). World
state is usually represented as conjunctions of (possibly negated) atomic formulae and agent
actions as corresponding logical operators. Valid plans in this framework are action sequences
that achieve the agent’s goal if consecutively executed in its current state. The quality or merit
of a valid plan in classical planning is generally defined as inversely proportional to its length.
Hence, rational agent behavior comprises of finding and executing the shortest valid plan. A
close relative of classical planning is automated theorem proving where the task is to deduce
(find a plan) some theorem (goal) from a set of axioms (the initial state) through repeated
application of deduction rules (the actions). In delineation, theorem proving is not an opti-
mization problem as the task commonly involves no valuation on deductions (i.e., one is as
good as any). More generally, classical planning is a discrete optimization problem, or more

7

CHAPTER 1 Introduction

specifically one of combinatorial optimization. Combinatorial optimization problems gener-
ally comprise of selecting some optimal object from a finite (or at least countable) set of
candidates [Sch03] too large to be tackled by exhaustive exploration.

Many different approaches have been developed to solve classical planning problems over
the last five decades. They can be roughly categorized into search-based and logic-based

approaches. The former are also known as explicit state planners - they work by begin-
ning from the initial state systematically applying the logical operators corresponding the
agents actions to generate new reachable states (or apply their inverses from the goal state for
regressive-search planners). In other words, they traverse (or search) the domain graph begin-
ning from the initial state until they discover the shortest path to any goal state. Most such plan-
ners make use of a guidance function which encodes domain knowledge, a so called heuris-

tic, to speed up the traversal. Notable examples from this class that significantly improved
the state-of-the-art (mostly through more advanced heuristics) include the General Problem
Solver (GPS) [NSS+59], the original STRIPS solver [FN71], UnPOP [McD96], the Fast For-
ward Planning System (FF) [HN01], the Fast Downward Planning System (FD) [Hel06a] and
LAMA [RW10]. The latter class is more varied in their approaches. Most of its members
attempt to constructively prove the existence of a solution. Notable examples are GRAPH-
PLAN [Blu95, BF97], which searches a derivative (of the original planning problem), small
search space describing mutual interactions of agent operators and subgoals for plan candi-
dates and tries to refine these candidates into plans for the original problem, the SATPlan
family of planners [KS92, KS96, KS99, KSH06] that bijectively map classical planning prob-
lems to SAT instances which they then attempt to solve and lifted planning approaches such
as GAMER [EK08a] where states are grouped in equivalent sets and successor sets generated
in bulk. Common to these approaches is that at some point they all break down to traver-
sals of implicitly defined graphs derived from the original problem description, i.e. problems
of combinatorial search and optimization. In fact, newly developed approaches to classical
planning have repeatedly stimulated new insights and advances for other approaches. This has
been particularly the case for heuristic search-based approaches, where for example ideas such
as GRAPHPLAN’s exploration of the planning graph led to the development of a powerful,
domain-independent class of heuristics (in this particular case, the hm or critical-path family
of heuristics [HG00]). For brevity and clarity, I restrict the following discussion of classical
planning to (mostly) search-based approaches. I want to note however, that the main contribu-
tions of this thesis apply to combinatorial search in general and are hence not restricted to any
particular approach.

Over the last 40 years classical planning has matured, been successfully applied to ever

8

SECTION 1.3 Classical Planning

Applying Goal-Oriented Action Planning to Games 9

Key:

kTargetIsDead

Cur Value: Goal Value:

truefalse

Attack

Key:

kTargetIsDead

kWeaponIsLoaded

Cur Value: Goal Value:

true !

true

true !

false

Key:

kTargetIsDead

kWeaponIsLoaded

kWeaponIsArmed

Cur Value: Goal Value:

true !

true !

true

true !

true !

false

Load
Weapon

Key:

kTargetIsDead

kWeaponIsLoaded

kWeaponIsArmed

Cur Value: Goal Value:

true !

true !

true !

true !

true !

true !

Draw
Weapon

Key: Value:

kTargetIsDead

kWeaponIsLoaded

Effect:

Precond:
true

true

Key: Value:

kWeaponIsLoaded

kWeaponIsArmed

Effect:

Precond:
true

true

Key: Value:

kWeaponIsArmed

None

Effect:

Precond:
true

--

Figure 2. The planner’s regressive search.

In each step of the regressive search, the planner tries to find an action that has an effect

that will satisfy one of the unsatisfied goal conditions. A property of the world is

considered unsatisfied when the goal state’s property has a different value from the

current state’s property. Often, actions that solve one of the unsatisfied conditions add

FIGURE 1.5 Example plan for an non-player-controlled character in the video game “F.E.A.R”
generated through regression search (from [Ork03]).

larger problems and remained highly relevant. As a technology it has in recent years success-
fully cracked the threshold to commercial applications. Particularly in the field of entertain-
ment software, planners are at work in many recent high-profile releases (for an example see
Figure 1.4). The growing complexity of game-worlds make traditional approaches such as
finite state machines (FSM) and rule-based systems, where the designer, in order to achieve
consistently believable behaviors, must more or less anticipate the bulk of possible game sit-
uations and explicitly model corresponding behavior challenging. Planning eases this burden
considerably by reasoning over game settings in real-time and stringing together appropriate
sequences of atomic agent actions. The most prolific de-facto standard in the field is goal ori-

ented action planning (GOAP) [Ork06], a simplified variant of STRIPS based on regression
search.

Figure 1.5 shows a simple example plan for a non-player character comprising of atomic
actions defined by FSMs. Efforts are currently underway (see [OBdBB+04] and [YdB06])
to create a standardized problem definition language for game AI in order to foster devel-
opment of middleware solutions. Inevitably the underlying technology has recently spread
to less diverting applications such as missile route planning and targeting [DS07] as well as
threat analysis [Bja08]. Other commercial deployments include Training and Simulation sys-
tems [DEZGK11], traffic management for elevator systems [Koe01] and smart greenhouses

9

CHAPTER 1 Introduction

[HL10]. While not strictly classical planning, the fundamentals have been successfully trans-
ferred to query optimization for relational database management systems, where model-based
planner are used to derive cost-optimal access plans for a given SQL2 query and database
[YL89]. In many other domains featuring combinatorial optimization problems such as air-
port ground traffic control [THN04] and gene-analysis [UE10], current domain-independent
planners are on the verge of achieving a feasible level of maturity and performance. Being
able to cast such problems in standardized descriptions (and solve them) alleviates the need
to develop expansive special purpose solvers and is hence commoditizing them, a process that
will allow organizations to reap the economical benefits of combinatorial optimizations in a
wide variety of domains with little set-up costs.

1.4 State of the Art

Most of the significant leaps in optimal classical planning over the last decades stemmed on
the one side from research into novel informed search algorithms that aimed to reduce the
memory requirements of A∗ such as IDA∗ [Kor85], frontier search [KZTH05] and breadth-
first heuristic search [ZH04a]. The other fruitful branch has been heuristics. In the context of
classical planning, heuristics are essentially approximate guiding functions that (in the best
case) lead the search algorithm towards promising solution candidates. For many domains,
discoveries of suitable or improved heuristics have led to tremendous increases in the scope of
problems planners can handle. The contributions are too extensive to list here but a selection
of influential developments were the families of relaxation heuristics [BG01, HN01], critical

path heuristics [HG00], abstraction heuristics [CS98] and landmark heuristics [Hel10, KD09].

1.5 Motivation

In recent years, research into classical planning has been driven along two major axes.
The first axis is domain-independent planning and the respective community is very much

focused on the International Planning Competitions (IPC) held in the context of of the main
conference in the field, the International Conference on Automated Planning and Schedul-
ing (ICAPS). These competitions have led to the development of the ever evolving Plan-
ning Domain Definition Language (PDDL)[MGH+98, YL03, FL03], the de-facto standard
in academia for the description of planning problems along with a wide variety of benchmark
instances. The performance of different approaches in these competitions have traditionally

2Structured Query Language

10

SECTION 1.5 Motivation

strongly influenced the direction of the community. The winning entry in the classical plan-
ning track (for the detailed results, see [HDR08]) of the competition in the year 20083 was
GAMER[EK08a], a symbolic heuristic search planner build around the idea of representing
state-sets as binary decision diagrams[Bry86] (BDDs), a time and, often, very space efficient
data structure. GAMER’s approach is noteworthy as the planner also managed to win in the
two other tracks it competed in (fully-observable, non-deterministic track [BB08] and the net-
benefit optimization track [HDR08]). The best performing planner in the sequential optimal
track however turned out to be a straightforward breadth-first search (BFS) provided as a
reference implementation by the competition organizers. In these competitions, planners are
tested on a variety of domains (priorly undisclosed to the participating teams), each of which
sport multiple problem instances of increasing difficulty. A planner is awarded a point, if it
manages to solve an instance in a fixed allotment of time. While the BFS could only solve rel-
atively simple instances, it could do so across all domains, whereas the competitors generally
either failed completely in a domain or predictably dominated the BFS. BDDs are a some-
what difficult member in the family of classical planning techniques. One of their caveats is
that they result in very small representations for some domains, while more or less leading
to exponential bloat in others, another is that they do not integrate easily with many algo-
rithms and heuristics, a particular problems are strong heuristics that give very accurate cost
predictions and result in the algorithms having to handle large numbers of individually small,
value-equivalent state-sets. The resulting trade-off is generally not clear cut, for example the
runner up planner in the classical planning track, HSP∗F , an A∗ based heuristic search planner
with such a strong heuristic (a variant of additive h2 [HBG05]) came in barely behind GAMER
(115 vs. 111 points).

The other axis of research is domain-dependent planning, where a common approach is
to employ standard search algorithms in combination with strong domain-dependent heuris-
tics and hand-crafted, efficient state representations. This combination often enables domain-
dependent planners to outperform their more general peers by several orders of magnitude.
Examples of such efficient encodings and heuristics can be found in [KZTH05], [KF07],
[HR10]and [BK10]. The practical potential of efficient state-representation as well as the lim-
its in both domain-applicability and combinability with heuristics and algorithms of current
techniques were the primary motivation behind the development of the Level-ordered Edge
Sequence, one of the main contributions of this thesis.

Planning is a computationally hard problem. Even classical planning is PSPACE-complete
and NP-hard only with severe restrictions on the problem specification (c.f. section 2.1.3).

3IPC-2008, part of the International Conference on Automated Planning and Scheduling 2008

11

CHAPTER 1 Introduction

Parallel search algorithms have been around for many years [KR87, RK87, BK91] and intu-
itively seem like an obvious fit for planning. Despite of this, current state-of-the-art planners
are exclusively based on sequential implementations. The reason is due to the large utility
gain planners enjoy from exploiting dynamic programming (c.f. the duplicate detection exam-
ple for the 15-puzzle above). The price for employing dynamic-programming is that search
algorithms have to manage a large amount of state during execution. So much of it in fact, that
memory use is generally the primary bottleneck in planners and much work has been done on
efficiently employing external memory in search (see [ZH04b, Kor04, ZH07a] amongst oth-
ers). Recent parallel dynamic-programming algorithms (e.g. [EHMN95, BLZR09, KFB09])
combine the benefits of a vastly reduced search space with better utilization of existing com-
putational resources, but result in a higher memory-footprint per encountered state - seldom
an acceptable trade-off in practice. Another significant hurdle in parallelizing planning is that
this search state changes at a very high frequency and generally needs to be kept consistent
across all cooperating processes to guarantee the soundness of the respective algorithm. The
resulting synchronization overhead is often so significant, that the parallel algorithm barely (if
at all) outperforms its sequential counterpart, even when running on a large number of proces-
sors. Burns et Al. [BLZR09] provide a good overview on the relative performance of current,
parallel best-first algorithms on a number of standard problems. Yet, as standard workstations
sport more and more processors and cloud computing enable the economical use of large clus-
ters, the potential benefits of parallel planning are increasing significantly. This motivated the
development of Parallel Edge Partitioning (PEP) the second main contribution of this the-
sis, a very low overhead, lock-free synchronization scheme that exploits the innate topology
of planning problems and integrates straightforwardly into a wide range of best-first search
algorithms.

Both LOES and PEP are designed to integrate as orthogonally as possible into the heuristic
search toolkit. LOES’ aims to increase the space efficiency of search algorithms and memo-
ization heuristics as well as the effective I/O bandwidth of external memory and distributed
planning systems by simply replacing standard state-set representations with LOES based
ones, thereby alleviating the primary bottleneck of classical planning. The analogous more or
less holds for the parallelization of best-first search algorithms based on PEP. PEP straight-
forwardly allows to partition layer expansions into sets of distinct independent jobs that can
be executed in parallel without the further synchronization. It enables the parallel adaptation
of existing search algorithms and allows best-first search to exploit the nowadays prevalent
concurrent computing platforms without impacting spatial efficiency.

12

SECTION 1.6 Contributions

1.6 Contributions

The contributions of this thesis can be categorized into three areas. The two main contributions
are general techniques for state-set representation in classical planning and parallelization of
the underlying combinatorial search algorithms. The third contribution is in the description
of a heuristic and search algorithm for target-value search, a class of combinatorial search
problems that occurs in system diagnosis. In detail they are:

LEVEL-ORDERED EDGE SEQUENCE An adaptive succinct data structure for memoization [Mic68]
in combinatorial search. This research was motivated by the results of international plan-
ning competition 2008. Gamer [EK08a], the winning entry in the sequential optimal
track showed the potential of space-efficient state-set representations for classical plan-
ning. The outcome is notable for the fact that gamer uses symbolic (or lifted) search, an
approach that for classical planning is usually outperformed by state-of-the-art explicit-
state search algorithms. Its representation is based on binary decision diagrams (BDDs)
[Bry86], a technique that in recent years gained considerable traction in planning but
sports a number of notable drawbacks. First is its lack of robustness. The search domain
needs to exhibit a suitable structure for the method to be space efficient. If the domain
lacks such structure (and many do), BDDs can quickly outgrow standard set represen-
tations by orders of magnitude. This pattern is apparent in the competition results (see
[HDR08]) - where gamer “works” it usually dominates all competitors, where it does
not, it fails to solve even the easiest instances. Second, operations pertaining to individ-
ual states are relatively costly in BDDs, making it a hard to integrate with many search
techniques and heuristics (hence gamer using symbolic search). Lastly, BDDs only offer
very limited possibilities to associate ancillary data with individual states without incur-
ring a large hit to its space efficiency. The last issue is of general importance for domain
independent planning. Many of the strong and general heuristics developed so far cannot
feasibly be integrated into domain independent solvers. Abstraction heuristics in partic-
ular often show very good performance when coupled with efficient, hand-crafted (do-
main dependent) representations, but are limited to very coarse abstractions with current
general representations. Other heuristics need to be expensively computed from scratch
for each generated state, relegating them to few domains where their computational cost
is outweighed by their performance. Suitable representation techniques could ease this
burden by enabling memoization techniques such as dynamic programming, where so-
lutions to common subproblems are retained for future use. The Level-Ordered Edge
Sequence (LOES) is a space-efficient data structure for state-sets and maps represented

13

CHAPTER 1 Introduction

as prefix trees that allows efficient member queries, enumerations and serves as a min-

imal perfect-hashing function for members. Underlying the data structure is a pointer-
less level-order tree encoding, similar to the static data-structures used to encode large
suffix trees. LOES adapts these principles to the dynamic environment of dynamic pro-
gramming allowing amortized O(log(n)) insertions and worst-case O(log(n)) lookups
and value updates. Its principles and use in search algorithms are partly discussed in
[SZ11b]. Its suitability as a representation for abstraction heuristics in [SZ11a].

PARALLEL EDGE PARTITIONING In order to continue to benefit from advances in semicon-
ductor technology, search algorithms must be adapted to exploit hardware parallelism.
Unfortunately most state-of-the-art heuristic search algorithms cannot be trivially paral-
lelized. The central culprit is duplicate detection, i.e. keeping track of what states have
already been visited during the search. Modern classical planners (depending on the do-
main) generate on the order of a million states per second per processor, all of which
have to be tested against (and potentially update) the set of previously generated states.
At such query and update rates, straightforward adaptations based on OS synchroniza-
tion primitives suffer from so much overhead that they often barely outperform their
single-threaded counterparts on massively parallel machines. Omitting or delaying du-
plicate detection is only feasible in few domains. As part of PARC’s parallel planning
effort, we developed Parallel Edge Partitioning (PEP), a divide and conquer approach
for best-first search that exploits problem structure to parallelize graph search with low
synchronization overhead. The idea is to automatically generate an abstraction of the
search domain, partition all shared state-sets according to this abstraction and leverage
said compartmentalization to avoid synchronization overhead for duplicate detection.
PEP is an evolution of a prior approach developed at PARC and the Mississippi State
University [ZH07b] characterized by a simpler and (computationally) cheaper synchro-
nization model and most importantly a dependency only on explicitly expressed prob-
lem structure (in the domain description). These properties allow it to be combined with
many state-of-the-art best-first search algorithms and to be used in basically any clas-
sical planning domain. This is joint work with Rong Zhou and a first outline of the
technique was published in [ZSH+10].

COMBINING GUIDED AND UNGUIDED SEARCH FOR TARGET-VALUE-PATH PROBLEMS A cen-
tral part of PARC’s Pervasive Diagnosis [KPD+10] framework is a planner for the
generation of informative production plans. The planner has to solve a class of com-
binatorial optimization problems with a non-additive cost functions which we coined

14

SECTION 1.6 Contributions

target-value path problems. In these problems, the planner has to find the (set of) path(s)
between to given nodes in a graph with value closest to some given target-value. In non-
cyclical graphs, such problems can be decomposed into a part with an additive cost-
problem solvable by standard best-first search algorithms and non-additive part that has
to be tackled with unguided search through a novel class of interval heuristics. Con-
tributions here include a novel subclass of abstraction heuristics termed multi-interval

heuristics, a dynamic-programming algorithm for their construction and a depth-first
search algorithm that exploits this structure by combining guided and unguided search.
This work was first published in [SKP+09].

15

CHAPTER 2

Preliminaries

In this chapter, I will give an overview of the fundamental building blocks of a classical plan-
ner. At the beginning is an overview of propositional STRIPS, a widespread formalism for
classical planning.This is followed by an example problem, its STRIPS representation and its
interpretation as a graph search problem. From there I will discuss basic search algorithms
and end with the concept of heuristics and their incorporation into the graph search.

2.1 Classical Planning

One of the oldest planning formalisms is the input language of the Stanford Research Institute
Problem Solver or STRIPS, a planner originally designed for the Shakey project, which in
its relevance has so far outstripped the planner it was developed for that the acronym nowa-
days generally denotes the language. While STRIPS itself is still in widespread use today,
it also forms the base of most other current classical planning formalisms such as the Plan-

ning Domain Definition Language (PDDL) [MGH+98], GOAP[Ork05] and Simplified Action

Structures (SAS and SAS+) [Kle90].

2.1.1 Propositional STRIPS

In propositional planning, world states and goals are modeled as logical sentences and oper-
ators as inference rules. Formally, a propositional planning instance is a 4-tuple 〈P,O, i, G〉
with components (see [Byl94]):

• P , a set of propositional variables (or conditions).

• O, a set of operators or inference rules, where each is given as a 4-tuple of subsets of P
of the form 〈Ptrue , Pfalse , Qtrue , Qfalse〉 such that:

17

CHAPTER 2 Preliminaries

– Ptrue ⊆ P , the variables of P that must be true for the operator to be executable
(i.e. the positive preconditions).

– Pfalse ⊆ P , the variables of P that must be false for the operator to be executable
(i.e. the negative preconditions).

– Qtrue ⊆ P , the variables of P that are made true by the operator (i.e. the positive

postconditions).

– Qfalse ⊆ P , the variables of P that are made false by the operator (i.e. the negative

postconditions).

– Ptrue ∩ Pfalse = ∅ and Qtrue ∩Qfalse = ∅

• i ⊆ P , the initial state given as the subset of variables of P that are true.

• G, the goal given as a 2-tuple of subsets of P of the form 〈Gtrue , Gfalse〉
– Gtrue ⊆ P , the variables of P that must be true.

– Gfalse ⊆ P , the variables of P that must be false.

– Gtrue ∩Gfalse = ∅
A state is an assignment to all propositional variables in P . In propositional STRIPS (pSTRIPS)1

states are represented as subsets s of P with the interpretation that all elements in s are as-
signed the value true, while all variables in P \ s are false. State transitions for a STRIPS
instance 〈P,O, i, G〉 are given by the transition function δ : 2P × O → 2P which is formally
defined as

δ(s, 〈Ptrue , Pfalse , Qtrue , Qfalse〉) =
{
s \Qfalse ∪Qtrue if Ptrue ⊆ s ∧ Pfalse ∩ s = ∅
s else

For convenience it is common to define an extension of δ for operator sequences as follows.

δ(s, []) = s

δ(s, [o1, o2, . . . , on]) = δ(δ(s, o1), [o2, . . . , on])

Another convenient short-hand is to define the successors of a state δ(s).

δ(s) = {s′ ∈ 2P |∃o ∈ O s′ = δ(o, s) ∧ s′ 6= s}
1the original STRIPS as given by [FN71] only allows positive preconditions and goal conditions, resulting in a

slightly reduced expressiveness [Bae95]

18

SECTION 2.1 Classical Planning

A

B C

D

1

2

3
4

FIGURE 2.1 The apartment domain comprising of four rooms A . . .D and four doors 1 . . . 4.

An s-plan (s ⊆ 2P) for a pSTRIPS instance 〈P,O, i, G〉 is an operator sequence πs =

[o1, . . . , on] (oi ∈ O), such that Gtrue ⊆ s′ and Gfalse ∩ s′ = ∅ with s′ = δ(s, πs), or informally
a sequence of operators that when executed in s results in a successor state s′ that fulfills the
instance’s goal conditions. An i-plan is a plan for the initial state. An optimal plan π∗i is the
shortest such sequence of operators.

The pSTRIPS formalism is hence a very simple logical framework which allows to model
an agent’s context as a set of variables and his or her possible actions within this context as
corresponding operators manipulating said variables. Both sets together are referred to as the
domain of a planning problem. Within this domain, jobs for the agent can be defined by de-
scribing both current and desirable conditions in the form of assignments to the propositional
variables. Such tasks are called problem instances in planning terminology.

2.1.2 The Apartment Domain

To provide some grounding, I want to consider a simple example domain of navigating a small
apartment (see Figure 2.1). The (somewhat closed off) apartment comprises of a kitchen (A),
a bedroom (B), a living room (C) and a bathroom (D) with four connecting doors (1 . . . 4). To
navigate it, an agent can open and close doors (if it is in the same room) and move between
adjacent rooms. A corresponding propositional STRIPS formalization with 8 propositional

19

CHAPTER 2 Preliminaries

variables and 24 operators can be given as follows:

P =



pA, “agent is in room A”

pB , “agent is in room B”

pC , “agent is in room C”

pD, “agent is in room D”

p1, “door 1 is open”

p2, “door 2 is open”

p3, “door 3 is open”

p4 “door 4 is open”



O =



o
1
A→C = 〈{p1, pA}, ∅, {pC}, {pA}〉, “move from room A to room C”

o
1
C→A = 〈{p1, pC}, ∅, {pA}, {pC}〉, “move from room C to room A”

o
2
A→B = 〈{p2, pA}, ∅, {pB}, {pA}〉, “move from room A to room B”

o
2
B→A = 〈{p2, pB}, ∅, {pA}, {pB}〉, “move from room B to room A”

o
3
B→C = 〈{p3, pB}, ∅, {pC}, {pB}〉, “move from room B to room C”

o
3
C→B = 〈{p3, pC}, ∅, {pB}, {pC}〉, “move from room C to room B”

o
4
C→D = 〈{p4, pC}, ∅, {pD}, {pC}〉, “move from room C to room D”

o
4
D→C = 〈{p4, pD}, ∅, {pC}, {pD}〉, “move from room D to room C”

o
1
open from A = 〈{pA}, {p1}, {p1}, ∅〉, “open door 1 from room A”

o
1
open from C = 〈{pC}, {p1}, {p1}, ∅〉, “open door 1 from room C”

o
1
close from A = 〈{pA, p1}, ∅, ∅, {p1}〉, “close door 1 from room A”

o
1
close from C = 〈{pC , p1}, ∅, ∅, {p1}〉, “close door 1 from room C”

o
2
open from A = 〈{pA}, {p2}, {p2}, ∅〉, “open door 2 from room A”

o
2
open from B = 〈{pB}, {p2}, {p2}, ∅〉, “open door 2 from room B”

o
2
close from A = 〈{pA, p2}, ∅, ∅, {p2}〉, “close door 2 from room A”

o
2
close from B = 〈{pB , p2}, ∅, ∅, {p2}〉, “close door 2 from room B”

o
3
open from B = 〈{pB}, {p3}, {p3}, ∅〉, “open door 3 from room B”

o
3
open from C = 〈{pC}, {p3}, {p3}, ∅〉, “open door 3 from room C”

o
3
close from B = 〈{pB , p3}, ∅, ∅, {p3}〉, “close door 3 from room B”

o
3
close from C = 〈{pC , p3}, ∅, ∅, {p3}〉, “close door 3 from room C”

o
4
open from D = 〈{pD}, {p4}, {p4}, ∅〉, “open door 4 from room D”

o
4
open from C = 〈{pC}, {p4}, {p4}, ∅〉, “open door 4 from room C”

o
4
close from D = 〈{pD, p4}, ∅, ∅, {p4}〉, “close door 4 from room D”

o
4
close from C = 〈{pC , p4}, ∅, ∅, {p4}〉 “close door 4 from room C”



The operators model conditions for and consequences of agent actions in the domain. Op-
erator o3C→B for example is enabled, if the agent is in room C and door 3 is open. Upon
execution, pC is set to false and pB to true, denoting the agent’s new whereabouts. Similarly
o4open from D is enabled if the agent is in the bathroom (pD) with a closed door 4 (¬p4). Upon
execution, p4 is set to true.

One can now formulate tasks over this domains by giving initial assignments for all vari-
ables and goal assignments for some non-empty subset. A task such as “starting in the bath-
room, with all doors closed, move to the kitchen” is then formalized as

20

SECTION 2.1 Classical Planning

4
1

2 3

A

B

C

D
pA ∧ p2 ∧ p4 �{pA, p2}, {p4}�

FIGURE 2.2 Graphical notation for apartment domain states. (left) The state graph with cor-
responding domain elements. (middle) Assignments true and false are represented by solid
and dashed outlines respectively. (right) Goals simply omit elements for unqualified (or do
not care) Variables.

Planner Controller System

SystemDesc

Objectives

Initial State Events

Execution Status

Plans Actions

Observations

FIGURE 2.3 Abstract architectural view of a planning system.

i = {pD}
G = 〈{pA}, ∅〉

As the apartment domain will be used as an example throughout the chapter and the STRIPS
syntax is somewhat abstruse, I will (where appropriate) use an equivalent graphical notation
to denote states of the domain. It is informally introduced in Figure 2.2.

2.1.3 Classical Planning - Assumptions, Classification and Complexity

Over the last decades, a multitude of planning frameworks have been developed in the field
of AI. Most of them were explicitly constructed for specific problems. According to their

21

CHAPTER 2 Preliminaries

domain properties, such as imperfect sensing, uncertain action outcomes, parallel actions,
multiple agents, inherent system dynamics, varying action durations and concurrency, these
frameworks differ widely in their expressivity. Figure 2.3 shows the architecture of a generic
planning system. Given a description of the system, its (more or less known) initial state and
the agent’s objectives for the system, the planner computes a plan. This plan defines behaviors
conditioned on the system state and is usually interpreted by a control layer. The control layer
aggregates system observations into a (more or less complete) system state and dependent on
that state derives appropriate actions from the plan. It reports its execution status to the planner
which can, under certain conditions, lead to the computation of an updated plan. In addition
to the agent’s actions, the system is usually also influenced both by exogenous events (e.g. by
other agents acting upon the same system or the system’s internal dynamics). A common way
of classification for planning problems is through dichotomies given by the following set of
restrictive assumptions:

A1 - FINITE DOMAIN The domain comprises of only finitely many states, actions and events.
The apartment domain sports 64 (meaningful) states and 24 actions. In an expanded
domain with path-planning aspects, the position of the agents could be modeled with
real-valued coordinates.

A2 - FULLY OBSERVABLE SYSTEM The controller always knows the complete state of the
system. In the apartment domain, the position of the agent as well the state of all doors
is known at all times. In a more complex setting, an agent in the bathroom might not be
able to determine whether doors 1, 2 and 3 are open or closed without first leaving the
bathroom.

A3 - DETERMINISTIC ACTIONS All actions have a single, well-defined outcome. E.g. (if en-
abled,) actions such as “move fromA toB” or “close door 2” will always succeed in the
apartment domain. In a more complex setting, an agent’s actuators may have a chance
of failing at these tasks (e.g. a robot’s gripper might slip from the door handle).

A4 - STATIC SYSTEM The system is not subject to exogenous events (i.e. all changes to the
system are due to the controller’s actions). In a more complex setting, doors could be
opened or closed due to draft or concurrently acting agents.

A5 - ATTAINMENT GOALS The planner’s objectives take the form of a set of goal states G. A
more complex domain might require defining action-costs conditioned on system state
and tasking the planner with minimizing the accumulation of said costs over the agent’s
lifetime.

22

SECTION 2.1 Classical Planning

A6 - SEQUENTIAL PLANS Plans are linearly ordered sequences of actions. In more complex
domains, agents might be capable of parallel execution of actions and/or actions might
depend on the outcome of prior actions and system events.

A7 - IMPLICIT TIME Actions (and corresponding state transitions) happen instantaneously

(i.e. there is no notion of action duration). A more complex model of the apartment
domain might include distinct durations for all actions where furthermore the effects of
an action in the domain could unfold gradually. As an example the agent might unlock
and push a door, which now has enough momentum to open after some amount of time.

A8 - OFFLINE PLANNING The planner exists in an open-loop-system relationship with the
controller, i.e. there is no feedback from the control layer. In a more complex domain,
the underlying system description might be updated during plan execution necessitating
plan adaptations (e.g. certain actuators of an agent could malfunction, doors might jam,
etc.).

Frameworks such as propositional STRIPS which fulfill all these restrictive assumptions
are classified as classical planning systems. While theoretically the “easiest” class of planning
problems considered in AI they are in general still extremely computationally challenging.
Deciding the existence of an i-plan2 (the PLANSAT or PLANEX problem) for a proposi-
tional STRIPS instance is only polynomially bounded with severe restrictions on the operators
and/or goals. In general the problem is PSPACE -complete[Byl91]. For a detailed overview of
restrictions and corresponding complexity classes see figure 2.4. Erol et. al. showed [ENS92]
that optimal propositional planning (PLANMIN) is NP -complete, if no negative postcon-
ditions or delete lists are allowed (i.e. Qfalse = ∅) and PSPACE -complete otherwise and
Bylander [Byl94] later refined these results to what is shown in figure 2.5.

These results serve well to frame the expectations of what a domain-independent planner
can achieve. The additional restrictions one needs to impose to guarantee polynomial com-
plexity in the (already very restricted) classical planning framework are too severe for most
planning problems. For an argument against and in favor of such tradeoffs of tractability and
expressiveness see [LB87] and [DW91] respectively. I will here not dwell further on this issue.

However it has been shown that many practical problems can be formulated in propositional
planning respecting the restrictions for NP -complete boundedness. Earlier work concentrated
on individual domains like the n-puzzles [RW90] or blocksworld [GN91] while recently this

2Such tasks, where the goal is to find some i-plan in absence of any optimality criterion is commonly referred
to as satisficing planning in AI.

23

CHAPTER 2 Preliminaries

Pfalse = ∅
|Qtrue ∪Qfalse | = 1

|Ptrue ∪ Pfalse | = 1

|Gtrue ∪Gfalse | ≤ c
Ptrue ∪ Pfalse = ∅

Pfalse = ∅
|Ptrue | ≤ 2

|Qfalse ∪Qtrue | ≤ 2

|Qfalse ∪Qtrue | ≤ 1

pSTRIPS

Pfalse = ∅
|Ptrue | ≤ 1

|Qfalse ∪Qtrue | ≤ 2

|Pfalse ∪ Ptrue | ≤ 1

|Ptrue ∪ Pfalse | ≤ 1

Qfalse = ∅
|Qtrue | ≤ 1

Qfalse = ∅

N
P

-co
m

p
lete

p
oly

n
om

ial
N

P
-h

a
rd

P
S
P
A

C
E

-co
m

p
lete

FIGURE 2.4 Computational complexity of satisficing planning in propositional STRIPS
(PLANSAT) for different restrictions on the operator and goal sets after Tom Bylander
(see [Byl91] for proofs).

24

SECTION 2.1 Classical Planning

N
P

-com
p
lete

p
oly

n
om

ial
P

S
P
A

C
E

-com
p
lete

Ptrue ∪ Pfalse = ∅
Qfalse = ∅

|Qtrue | ≤ 2

|Ptrue ∪ Pfalse | = 1

|Gtrue ∪Gfalse | ≤ c

Ptrue ∪ Pfalse = ∅
|Qfalse ∪Qtrue | ≤ 1

pSTRIPS

Ptrue ∪ Pfalse = ∅
Qfalse = ∅

|Qtrue | ≤ 3

Ptrue ∪ Pfalse = ∅
|Qfalse ∪Qtrue | ≤ 2

|Ptrue | ≤ 1

|Qtrue | ≤ 1

Pfalse ∪Qfalse = ∅

Ptrue ∪ Pfalse = ∅
|Qtrue | ≤ 1

Pfalse ∪Qfalse = ∅

FIGURE 2.5 Computational complexity of optimal planning in propositional STRIPS
(PLANMIN) for different restrictions on the operator and goal sets after Tom Bylander
and Erol et. Al. (see [ENS92] and [Byl94] for proofs).

25

CHAPTER 2 Preliminaries

o4
open from D

o4
close from D

i

o
4C
→

D

o4 D
→

C
o4
open from C

o4
close from C

o3
close from C

o3
open from C

o4
close from C

o4
open from C

o3
open from C

o3
close from C

o
4C
→

D

o4 D
→

C

o4
open from D

o4
close from D

FIGURE 2.6 Subset of the apartment domain-graph pertaining to operating doors 3 and 4 and
moving between C and D for an agent starting in D with all doors closed (state i, top-left).
The complete graph (with a single agent) comprises of 64 states.

has been shown for entire classes of problems (see [Hel03] and [Hel06b]). Research into NP -
complete problems(i.e. [CKT91],[MJPL92] and [MSL92]) suggests that they are generally
hard only for a small share of their instances. Because of this, efforts to construct (feasible)
domain-independent solvers have so far mostly focused on classical planning. Note that for
the following, I will use STRIPS and pSTRIPS interchangeably.

2.2 Classical planning as a problem of combinatorial
optimization

Having discussed the problem formulation, I will now tend to the actual planning, i.e. the task
of deriving a plan from a STRIPS instance. Every STRIPS domain can be straightforwardly
interpreted as a finite labeled graph, where for each triple s, s′ ∈ 2P , o ∈ O with δ(s, o) = s′

there is a directed transition from s to s′ labeled o. Inert transitions or “no-ops” (i.e. where

26

SECTION 2.3 Graph-traversal algorithms

s = s′) are generally omitted. Figure 2.6 shows part of the domain graph for an apartment
instance where the agent starts in the bathroom with all doors closed.

In this graph the task is to look for a path from i, the initial state to some state g ∈ G. A Prob-
lem, where the goal is to look for some specific substructure of some given discrete structure
is termed a combinatorial search. Problems, which in addition demand the minimization (or
maximization) of some property of qualifying substructures are commonly classified as com-

binatorial optimizations [Knu73]. Hence satisficing classical planning (i.e. where one looks
for some i-plan) lies in the former class and optimal classical planning (i.e. where one looks
for the shortest i-plan) lies in the latter. For the remainder of this work, I will concentrate on
optimal (classical) planning.

2.3 Graph-traversal algorithms

In order to find a suitable plan, the domain graph must be traversed (i.e. searched) in a sys-
tematic way. In the following, I will give a short introduction into the cardinal approaches to
graph search.

2.3.1 Depth-first search

Algorithm 1: DBDFS
Depth-bounded depth-first search (recursive implementation);

Input: π a sequence of operators
Input: d the search depth limit
Output: an i-plan or ⊥
if d > 0 then

s← δ(π, i);
if s ∈ G then

return π;
end
foreach o ∈ O s.th. δ(s, o) 6= s do

DBDFS(π ◦ o, d− 1);
end

end

The idea of depth-first search (DFS) is that starting from some initial state, one explores
as far as possible along each path. Once no further exploration is possible in the current path

27

CHAPTER 2 Preliminaries

(i.e. the last state has no successors), one steps back to the most recent state with unexplored
successors and continues from there. In other words, DFS is a straightforward backtracking

technique [CLR90].
As domain graphs are in general cyclical, basic DFS is not complete. In the apartment do-

main, every (feasible) state has at least one successor, so the procedure would never backtrack
and indefinitely append to the initial path. A slight modification - a depth-bound, i.e. some
maximal allowable path-length, which enforces backtracking upon transgression - can cure
this. Furthermore, exploration stops once the current path is an i-plan, or in other words the
last state of the path is a goal state. See Listing 1 for the pseudo-code.

Algorithm 2: IDDFS
Iterative deepening depth-first search;

Output: an optimal i-plan or ⊥
π ← ⊥;
d← 1;

while π = ⊥ do
π ← DFS-DL([], d);
d← d+ 1;

end
return π ;

The idea then is to run multiple DFS from i with increasing depth limits (beginning with
one) until a solution is found. This procedure is optimal (i.e. the i-plan it computes is at least

as short as any other plan for the problem) and complete (i.e. if there is an i-plan, it will
eventually be found). This algorithm was first described in [SA77] and is today known as
iterative deepening depth-first search (IDDFS)[RNC+10] and given in Listing 2.

Figure 2.7 gives an example apartment instance and shows the candidates generated by ID-
DFS during its graph traversal. Three runs of DBDFS are necessary to find an optimal i-plan.
The number of candidates for a run is usually exponential in its depth-limit, hence subsequent
runs regenerating candidates of previous runs results in only little relative overhead.

2.3.1.1 Shortcomings

Of note are candidates 4 and 8 in the last run. These plans, when executed in i result in i.
They stem from cycles in the domain-graph. Note that successor states in classical planning
only depend on the current state and not on the sequence of actions that lead to the state.
Stochastic processes with this characteristic are said to exhibit the Markov property, but the

28

SECTION 2.3 Graph-traversal algorithms

i G

depth 3

op
tim

al
i-p

lan

4 5 6 7 8 9321 depth 1

depth 2

FIGURE 2.7 Candidates (worst-case) as generated by IDDFS for an apartment instance where
the agent starts in the kitchen with all doors closed and wants to move to the living-room.

29

CHAPTER 2 Preliminaries

term is sometimes used in the context of deterministic problems as well. When the goal is to
find the shortest plan, following cycles in the domain graph is not advisable. Intuitively this is
easy to see - theoretically it stems from optimal classical planning problems exhibiting optimal

substructure. This property informally states that every part of a (structured) optimal solution
of a problem is in itself an optimal solution to to one of its subproblems (for a formal definition
see [CLR90]). Concretely given a pSTRIPS instance S = 〈P,O, i, G〉 with some optimal i-
plan [o1, . . . , on] it holds that for any pair of operators oi and oj (w.l.o.g. 1 ≤ i < j ≤ n)
and corresponding states si−1 = δ([o1, . . . , oi−1], i) and sj = δ([o1, . . . , oj], i), [oi, . . . , oj]
is an optimal i-plan for the related instance (a subproblem) S ′ = 〈P,O, si−1, 〈sj, P \ sj〉〉.
The proof by contradiction is straightforward - assume [o′1, . . . , o

′
m] is a shorter i-plan than

[oi, . . . , oj] for S ′. Then [o1, . . . oi−1, o
′
1, . . . , o

′
m, oj+1, . . . , on] is an i-plan for S (because of

the markov property) and shorter than [o1, . . . , on]. Hence [o1, . . . , on] cannot have been an
optimal i-plan for S to begin with.

A related form of redundancy can be seen with candidates 3 and 7. While both stem from
applying different plans at i, they result in the same state. Due to the optimal substructure of
the problem, any optimal i-plan of the original instance “passing through” this state, will have
an optimal i-plan for the corresponding subproblem as a prefix. Furthermore from the markov
property follows that all optimal i-plans of the subproblem are interchangeable. Hence all
plans that lead from i to a state s form an equivalence class and can be represented by any

one of the shortest such plans or in more formal terms, pSTRIPS planning is amendable to
dynamic programming (DP)[Dre02]. DP is special divide and conquer technique applicable
when a problem can be broken down into “slightly smaller” subproblems which overlap (see
[DPV06]) and allows to significantly reduce the number of candidates that have to be con-
sidered during the search. Its bottom-up form consists of initially solving the smallest class
of subproblems in a domain, memoizing their solutions and use these to incrementally solve
(and memoize) the next harder class of subproblems until one ends up with a solution for the
original problem.

2.3.2 Breadth-first search

To recapitulate, equivalence classes of any STRIPS instance can be represented by a pair of
a domain-state and plan 〈s, π〉 where s = δ(i, π) and there is no shorter sequence π′ with
s = δ(i, π′). Beginning from i, the idea is to first generate all plans for length one and store all
discovered equivalence classes. One can then generate the equivalence classes with plan length
d + 1, by iterating over all classes with length d 〈s, π〉d, determining successors s′ = δ(s, o)

and, if s′ is not already forming an equivalence class, add 〈s′, π◦o〉d+1 to the set of classes. The

30

SECTION 2.3 Graph-traversal algorithms

Algorithm 3: BFS-DD
Breadth-first search with duplicate detection;

Output: an optimal i-plan or ⊥
EC ← {〈i, []〉0};
d← 0;

while (∀s∀π)∃〈s, π〉d ∈ EC do
foreach (∀s∀π)〈s, π〉d ∈ EC do

foreach o ∈ O s.th. δ(s, o) 6= s do
s′ ← δ(s, o) ;
if s′ ∈ G then

return π ◦ o;
end
if (∀π′∀i)@〈s′, π′〉i ∈ EC then

EC ← EC ∪ {〈s′, π ◦ o〉d+1}
end

end
end
d← d+ 1;

end
return ⊥ ;

31

CHAPTER 2 Preliminaries

i G

op
tim

al
i-p

la
n

4 5 6321

FIGURE 2.8 Candidates (worst-case) as generated by BFS-DD for an apartment instance
where the agent starts in the kitchen with all doors closed and wants to move to the living-
room.

process ends once a class of a goal state is created, with the corresponding π representing an
optimal i-plan (π∗i). Graph exploration methods in which states are visited in the order of their
distance from the initial state are classified as breadth-first traversals. The specific algorithm
described above is called breadth-first search with duplicate detection (BFS-DD) and a Listing
is given in 3.

Figure 2.8 shows the candidates generated by BFS-DD for the example problem from Figure
2.7. Each candidate represents an equivalence class and hence results in a distinct endstate.
Even for this trivial problem, the number of generated candidates is less than half that of
IDDFS’. For larger problems, the difference is in general far more dramatic. Utilizing DP
reduces the candidate set (or search space) from all possible paths down to the shortest paths

to each state in the domain graph.

2.4 Terminology and Conventions

In the following, I want to introduce some terminology that is well established In the planning
and scheduling community in connection with graph search algorithms.

IMPLICIT GRAPH A graph that is not explicitly represented in memory (e.g. through node

32

SECTION 2.5 Heuristics

records cross-referenced by pointers), but through some initial state and a generator

function that maps states to its successors.

CANDIDATE (OR STATE) GENERATION The process when a candidate or state is computed
through application of the generating function.

CANDIDATE (OR STATE) EXPANSION The process of determining all applicable operators of
the candidate followed by the computation of all corresponding “successors” by re-
peated application of the generating function on the candidate with each such operator.

OPEN At any state of the traversal (i.e. search), Open denotes the collection of candidates or
states that have been generated but not been expanded. Open is often structured into
classes of priority for state expansion according to the traversal’s rules. In the context of
this work, I indicate these by a subscript integers.

CLOSED At any state of the traversal (i.e. search), Closed denotes the collection of candidates
or states that have both been generated and expanded.

FRONTIER The class of Open that by the traversal’s rules has the currently highest, equivalent

priority for expansion. In other words the candidates to be expanded next.

Listing 4 gives an example of the use of this terminology for BFS-DD. In it (and future
listings), ancillary information for candidates or states is assumed to be stored in some asso-
ciative data structure Dict . I will cover possible implementations of such structures in detail
in chapter 4.

2.5 Heuristics

In search a heuristic h is some function that estimates the cost of optimal s-plans (h(s) ≈
c(π∗s)) for any state in the search space. The idea is to use such functions to rank states in
Open for expansion. The expansion order has a significant influence on the number of states
processed during a search. For explicit state search, in the best case, only non-goal states that
are part of some optimal i-plan are expanded (i.e. |π∗i |−1 states), in the worst case all non goal
states have to be processed during construction of π∗i (i.e. |S| − |G|+ 1 states). Even in basic
domains these bounds usually differ by orders of magnitudes. As an example, the (relatively)
small 10-puzzle (5x2) domain [SS06] features a search space 2P of around 1.8 million legal
states, while the optimal plans for the two hardest instances comprise of 55 moves (actions)

33

CHAPTER 2 Preliminaries

Algorithm 4: BFS-DD with search terminology

Breadth-first search with duplicate detection;

Output: an optimal i-plan or ⊥
Open0 ← {i};
Closed ← ∅;
Dict [i]← [];
d← 0;

while Open 6= ∅ do
foreach s ∈ Opend(≡ Frontier) do

Opend ← Opend \ {s};
foreach o ∈ O s.th. δ(s, o) 6= s do

s′ ← δ(s, o) ;
if s′ ∈ G then

return Dict [s] ◦ o;
end
if s′ /∈ Open ∪ Closed then

Dict [s′]← Dict [s] ◦ o;
Opend+1 ← Opend+1 ∪ {s′};

end
end
Closed ← Closed ∪ {s};

end
d← d+ 1;

end
return ⊥ ;

34

SECTION 2.5 Heuristics

each. In the heuristic search literature, this state evaluation is usually given in the following
form.

f(s) = g(s) + h(s) (2.1)

The evaluation for a state s, f(s) is defined as the sum of the cost for reaching s from the
initial state i, g(s) and the cost of reaching the closest goal state from s as predicted by the
heuristic estimator h(s). Note that g and hence f are not functions as the evaluation is usually
not fixed during a search. For the principled application of heuristics, two formal properties,
admissibility and consistency are of special importance.

2.5.1 Admissibility

Estimators that represent optimistic guesses or in other words, whose values lower-bound (i.e.
never overestimate) the cost of the (an) optimal s-plan for every state in a domain are called
admissible.

h(s) ≤ c(π∗s) ∀s ∈ S (2.2)

As the denomination already alludes, admissibility (of the heuristic) is a central property for
many optimal informed search algorithms. A search algorithm is considered admissible if it
guarantees to find a minimal path (i.e. optimal plan) to a goal state, whenever such a solution
exists.

2.5.2 Best-first search and A∗

The state evaluation is used to structure Open into subsets. Candidates are then expanded in
ascending order of their evaluations. The difference from BFS-DD is that states are not ex-
panded in monotonic order of their distance from i. As noted, this evaluation is not a function,
i.e. the evaluation can change during the traversal if a shorter paths to nodes previously ex-
panded states are encountered. This complicates the algorithm slightly, as such states have to
be reopened (i.e. removed from Closed and reentered into Open according to their updated,
more promising evaluation). The resulting A∗-algorithm is given in Listing 5.

Figure 2.9 shows the candidates generated by A∗ for the example problem from Figure
2.7. The simple heuristic in the example estimates the necessary number of actions by only
considering the living room doors and whether the agent is in the living room. It is given as

35

CHAPTER 2 Preliminaries

Algorithm 5: A∗

A∗ - best-first search with duplicate detection;

Output: an optimal i-plan or ⊥
Openh(i) ← {i};
Closed ← ∅;
Dictπ[i]← [];
Dictdepth [i]← 0;
d← 0;

while Open 6= ∅ do
foreach s ∈ Opend(≡ Frontier) do

Opend ← Opend \ {s};
if s ∈ G then

return Dictπ[s];
end
foreach o ∈ O s.th. δ(s, o) 6= s do

s′ ← δ(s, o) ;
if s′ ∈ Open ∧ Dictdepth [s

′] > d+ 1 then
Open ← Open \ {s′};

end
if s′ ∈ Closed ∧ Dictdepth [s

′] > d+ 1 then
Closed ← Closed \ {s′};

end
if s′ /∈ Open ∪ Closed then

Dictπ[s
′]← Dictπ[s] ◦ o;

Dictdepth [s
′]← d+ 1;

Opend+1+h(s′) ← Opend+1+h(s′) ∪ {s′};
end

end
Closed ← Closed ∪ {s};

end
d← d+ 1;

end
return ⊥ ;

36

SECTION 2.5 Heuristics

i G

op
tim

al
i-p

lan

4 5321

hLR = 2

f = 2

hLR = 2

f = 3

hLR = 1

f = 2

hLR = 1

f = 3

hLR = 0

f = 2

1 2

FIGURE 2.9 Candidates (worst-case) as generated by A∗ for an apartment instance where the
agent starts in the kitchen with all doors closed and wants to move to the living-room.
Heuristic hLR comprises of three possible values 0 if the agent is in the living room, 1 if
the agent is not in the living room but any living room door is open and 2 otherwise.

37

CHAPTER 2 Preliminaries

hLR(s) =





0 if pC ∈ s
1 if pC /∈ s ∧ {p1, p2, p3} ∩ s 6= ∅
2 else

Heuristic hLR codifies two pieces of domain knowledge, namely that changing rooms re-
quires at least one move action and accessing a room requires at least one of its doors to be
open. This construction makes hLR trivially admissible.

In comparison to BFS-DD, A∗ with hLR needs only two expansions, which on this small
example does not vastly influence the number of generated candidates. For larger problems
however, a good heuristic usually reduces the number of state generations by multiple orders
of magnitudes over the unguided case.

A∗ is admissible, if used with an admissible heuristic. The proof is straightforward. By the
time A∗ terminates with some π∗i , its construction guarantees that all candidates with a lower

evaluation than π∗i have been generated and tested. As the evaluation lower-bounds the “true
cost” of any candidate π, any untested candidate π′ with f(π′) > |π∗i |(≡ c(π∗i)) cannot be an
optimal i-plan. On a side-note, if one uses h(s) = 0,∀s ∈ S (clearly an admissible heuristic),
A∗ “nearly” degenerates into BFS-DD3, which is by this argument also admissible.

2.5.3 Consistency

A stronger attribute for heuristics is consistency. Formally, a heuristic function is consistent if
two properties hold for all states of the domain graph.

h(s) ≤ cs→s′ + h(s′) ∀s ∈ 2P ,∀s′ ∈ δ(s) (2.3)

h(g) = 0 ∀g ∈ G (2.4)

That is, first, the estimate of any successor of a state must not exceed the estimate of a state
plus the cost of the action to generate the successor and, second, the estimate for all goal states
must be 0. The first property demands that for all state-successor pairs, h(s) − h(s′) ≤ cs→s′

must hold and it thus never overestimates the cost between any two states in the search space,
which can be understood as a form of triangle inequality. For this reason, the property (and
such heuristics) is also referred to as local admissibility. Consistency is traditionally defined

3the difference is in when a state is tested against the goal condition: immediately after it is generated for
BFS-DD or before it is expanded for A∗

38

SECTION 2.5 Heuristics

1 11
i gs1 s2

h(s2) = 1 h(g) = 0h(s1) = 2h(i) = 2

f(i) = 2 f(s1) = 3 f(s2) = 3 f(g) = 3

FIGURE 2.10 Example plan showing the monotonicity of f for a consistent heuristic h.

over all pairs of states (as opposed to the state-successor relationship above) in the domain
graph along with the cost of transitioning between these states. The corresponding interpreta-
tion of that definition is that the triangular inequality holds for heuristic estimates of elements
of the domain graph. Pearl introduced the above definition and showed its equivalence [Pea84].
I follow his definition as it is often easier to verify in practice and allows (in my opinion) for
a more intuitive interpretation of the nature of consistency (as also noted by [Hol10]).

It implies that cost estimates (through f) of partial solutions are monotonically increasing
in distance from i (see figure 2.10 for an example) or formally

Theorem 1. Consistent heuristics make f monotonically increasing in the search depth.

f(s′) ≥ f(s) ∀s ∈ S,∀s′ ∈ δ(s)

Proof. [Nil98]

f(s) = g(s) + h(s)

= g(s′)− cs→s′ + h(s)

≤ g(s′) + h(s′)

= f(s′)

Another characteristic of consistent heuristics is that they are also admissible. This follows
straightforwardly from the second property and the local admissibility. The reverse does not
hold in general. Consistency is important property in combination with A∗ - with a consistent
heuristic, the monotonic order of candidate evaluation and expansion guarantees that no can-
didate will be reopened. In fact, it can be shown that with a consistent heuristic, A∗ is optimal

in regards to the number of candidate evaluations and expansions for a given problem and
heuristic among best-first algorithms [DP85]. In other words, there is no admissible best-first

39

CHAPTER 2 Preliminaries

algorithm that using the same heuristic information, can do with expanding less candidates
than A∗4.

A popular technique for an admissible, yet inconsistent heuristic to exchange heuristic in-
formation between states and successors is the pathmax technique introduced in [Mer84]. Here
estimates h are updated to h′ through repeated applications of the pathmax equation 2.5.

h′(i) = h(i) (2.5)

h′(s′) = max(h(s′), h′(s)− cs→s′) ∀s ∈ S,∀s′ ∈ δ(s) (2.6)

This (by its definition) achieves monotonically increasing cost estimates along paths repre-
sented in Open and Close for an admissible heuristic h . The technique works by propagating
h’s estimates along the search graph, taking into account the problem’s action costs. Tech-
nically h′ is consistent5. The second property follows directly from the admissibility of h,
whereas local admissibility is a result of the definition of pathmax.

Theorem 1. Inductive updates through pathmax transform an admissible heuristic h into a

locally admissible heuristic h′ (cf.[RNC+10])

h′(s) ≤ cs→s′ + h′(s′) ∀s ∈ S,∀s′ ∈ δ(s)

Proof.
If h′(s′) = h(s′)︷ ︸︸ ︷

h′(s′) ≤ h′(s)− cs→s′ ∨
Else︷ ︸︸ ︷

h′(s′) = h′(s)− cs→s′ (2.7)

However while this information dissemination can lead to substantial reductions in state ex-
pansions (see [Mer84] and [ZSH+09]) it does not guarantee (as a genuinely consistent heuristic
would) that A∗ will never have to reopen states (see [ZH02] and [Hol10]).

4[Hol10] notes that this argument technically ignores the case where multiple states with f(s) = c(π∗) are
encountered and also that expanding less nodes does not necessarily imply less runtime.

5Note that this also implies the admissibility of h′.

40

CHAPTER 3

Target Value Search

A domain that nicely showcases the merits (and limits) of different search algorithms and
heuristics as well as the complexities arising from removing some of the restrictive assump-
tions of classical planning are target-value-path problems. A target value-path problem is to
find a path between two nodes in a graph, such that its valuation g(π) (typically the sum of
the path’s edge values) comes as close as possible to the target value. Nykänen and Ukko-
nen [NU99], [NU02] concerned themselves with a similar decision problem, namely whether
paths of a given cost exist between any two nodes of the graph.

3.1 Example Domains

3.1.1 Pervasive Diagnosis for manufacturing systems

Target value problems arise for example when integrating model-based planning and diag-
nosis as in pervasive diagnosis (see [Fro02], [KPdK+08] and [KPD+10]). This work orig-
inated within PARC’s Tightly Integrated Production Printer (TIPP) project [WDZF11], a
planner-controlled, hypermodular manufacturing system comprising of reconfigurable and
self-describing modules such as paper routers, inverters, print engines, feeders and finishers.

In this context, a diagnosis engine represents its belief in the malfunctioning of each compo-
nent with a probability value (i.e. 1.0 denotes a component that is known to be malfunctioning
and 0.0 denotes one that is known to be fine). After each plan execution, the engine updates
its beliefs based on the fitness of the resulting product and the involved components. The idea
is to exploit degrees of freedom in production plans for such manufacturing systems (see fig-
ure 3.1) to gain information about the health of its components and use this information to
increase long-run productivity.

From a search perspective, this problem presents itself as a graph modeling the structure

41

CHAPTER 3 Target Value Search

FIGURE 3.1 Conceptual representation of a modular printing system and (some) possible ways
of printing a single-sided sheet.

42

SECTION 3.1 Example Domains

of the production process with states corresponding to intermediate products, edges to opera-
tions of individual system components and edge weights representing the diagnosis engine’s
confidence in the operability of the respective component. For the following, I will constrain
the problem to its simplest case, that of single, non-intermittent faults. Here one assumes at
most one component in the production system is malfunctioning and if such a component is
involved in a production plan, the resulting product will be faulty. Furthermore, such manu-
facturing defects can only be discovered in the final product. Hence, the problem is slightly
beyond what can be expressed in classical planning frameworks (c.f. chapter 2.1.3) as the sys-
tem is neither fully observable (assumption A3) nor does it sport straightforward attainment

goals (assumption A5).
Executing plans whose predicted success probability (based on the system’s current beliefs)

is as close as possible to 0.5 will maximize the diagnostic engine’s information gain about
the system’s true state [LdKK+08]. Intuitively this is because such plans involve components
the diagnosis engine knows least about. Due to the assumption of non-intermittent faults,
the probability (based on the current beliefs of the diagnosis engine) for manufacturing a
faulty product is (perhaps un-intuitively) the sum of the malfunctioning probabilities of all
components involved in the plan. Note that this sum never exceeds 1 due to the single fault
assumption (for an in-depth discussion of the theoretical background and cases where these
restrictions are lifted, see [LdKK+08] and [KPD+10]). For brevity, I here assume that the
process graph is suitably preprocessed to remove (or unroll) cycles.

3.1.2 Consumer Recommender Systems

Another example of a target-value-path problem is a recommender system for recreational
hikes in a National Park (see figure 3.2). In this domain, a hiker specifies his parking spot and
the desired hike duration (as well as possibly some landmarks he would like to see) and the
system recommends an appropriate hike based on these parameters. The system uses these in-
puts and a map of the area with expected traversal times for each path segment to first generate
an unrolled graph incorporating all cycle-free paths beginning and ending at the parking spot
and visiting the specified landmarks and then runs a target-value search on the this graph to
find the hike that best matches the parameters.

Other potential domains include comprehensive training programs, with complex temporal
and causal interdependencies between courses where participants need to reach certain point
thresholds (i.e. university studies or mandatory professional training programs). Another in-
teresting area are automated quality assessment systems for software development. In this
domain, one of the problems is to determine nightly-build processes as selections out of a

43

CHAPTER 3 Target Value Search

To
 Tioga
 Road
3.6 mi
5.9 km

I.6 m
i (2.6 km

)

Pohono Trail

Se
nt

ine
l D

om
e

Tr
ai

l

Pohono T
ra

il

I.I
m

i (
I.7

 k
m

)

I.0 mi (I.6 km)

I.0 m
i (I.6 km)

I.3 mi (2.9 km)

Sentinel
Rock
7038 ft
2145 m

 3
.4

m
i (5

.5
km

)

To Taft Point
5.5 mi
8.9 km

Glacier Point Road
(Closed in winter)

North
Pines

Lower
Pines

Upper
Pines

Taft
Point

Liberty Cap
7076 ft
2I57 m

Mt. Starr King
9092 ft
277I m

Mt. Broderick
6706 ft
2044 m

4035 ft
I230 m

LeConte
Memorial
Lodge

Medical
Clinic

Camp 4

5907 ft
I80I m

El Capitan
7569 ft
2307 m

Sentinel
 Beach

Swinging
Bridge

72I4 ft
2I99 m

5044 ft
I538 m

Half
 Dome

8836 ft
2693 m

Mirror
Lake
4094 ft
I248 m

Grizzly
Peak

Road open ONLY to bicycles
and cars with wheelchair

emblem placards

Columbia
Rock

Washington
ColumnRoyal

Arches

Clark
Point

Fo
ur

 M
ile

 Tr
ail

Yosemite Fa
lls

 T
ra

il

Panoram
a Trail

Mist Trail

horse trail only

Panorama Trail

Southside Drive

 one-way

Northside Drive
one-way

Campground
reservation

Dewey
Point

Leaning
Tower

Eagle
Peak
7779 ft
237I m

Middle
Brother

Lower
Brother

Cathedral
Rocks

Cathedral
Spires

Crocker
Point

Stanford
Point

North
Dome

7525 ft
2294 m

Yellow
Pine

 Beach

Sentinel
Dome
8I22 ft
2476 m

Yosemite
Point
6936 ft
2II4 m

Illilouette Ridge

Washburn
Point

Little
Yosemite

Valley

Wilderness Permit
Required

6I00 ft
2476 m

Ribbon
Meadow

Pohono
Bridge

7503 ft
2287 m

7385 ft
2250 m

El Capitan
Bridge

Sentinel
Dome &
Taft Point
Trailhead

Cl
os

ed
 in

 winter

Closed in winter

Closed in winter

To
Tioga
 Road
6.9 mi
II.I km

To
Tioga
 Road
3.I mi

 5.0 km
To

Tioga
 Road
5.0 mi
8.0 km

To
Tuolumne
 Meadows

I6.0 mi
 25.7 km

Tunnel
View
4409 ft
 I343m

To
Clouds

Rest
4.2 mi
6.8 km

Housekeeping
Camp

Royal
Arch

Cascade

Staircase
 Falls

Sentinel
Falls

Merc
ed River

Yosem
ite Creek

Sentinel Creek

Te
na

ya
 Creek

Ro
ya

l
Ar

ch
 C

re
ek

Merced

 R
iv

er

Lower
Yosemite

Fall

Vernal
 Fall

Nevada
Fall

In
di

an
 C

an
yo

n
Cr

ee
k

Merced River

Bridalveil
Fall

Bridalveil Creek

Brida

Ribbon
Fall

Ribbon Creek

Snow
Creek
Falls

Snow
 Creek

Illilouette
Fall

Horsetail
Fall (spring only)

Upper
Yosemite

Fall

2.
0

m
i (

3.
2

km
)

2.2 m

i (3
.5 k

m)

0.3 m
i (0.5 km

)

0.
2

m
i (

0.
3

km

)

0.6 m
i (I.0 km

)

3.2 mi (5.I km
)

2.
9

m
i (

4.
7

km
)

I.3 mi (2.I km
)

0.
5

m
i (

0.
8

km
)

I.2
 m

i (
I.9

 km
)

4.8 mi (7.4 km)

2.0 mi (3.2 km)

I.2
 m

i (I
.9 km)

2.6
 m

i (4
.2

km
)

1.4 mi (2
.3 km)

2.
7

m
i (

4.3
 km)

2.5 mi (4.0 km)

0.9 mi (1
.4

km
)

I.0
 mi (I.6

 km
)

I.3 mi (2.I km)

I.8 m

i (2.9 km)

I.5 mi (2.4 km)

I.5 m
i (2.4 km

)

I.2 mi (I.9 km)

2.6 m i (4.2 km)

I.8 mi (2.9 km)

I.3 mi (2.I km)

I.3
m

i (
2.I

 km
)

I.2 mi (I.0 km)
0.9 m

i (1.4 km
)

(cables)10

11

5

8

1420

16

2
6

1921
13

3

4

1

9

7

12

15

18
17

Lower Yosemite Fall Trail

North

Glacier Point
(Closed in winter)

Yosemite Village
Visitor Center

The Ahwahnee

Curry Village

Nature Center at Happy Isles
(Summer only)

Yosemite Lodge

To Tamarack Flat
Campground
3.5 mi
5.6 km

18

10

For your safety, always carry plenty
of water and be prepared for sudden
changes in weather.

This map should not be used for
backcountry trips. Please visit a
park visitor center or wilderness
center for more information.

Hiking Trail

Waterfall

Self-guiding Nature Trail

Ranger Station

Walk-in Campground

Bicycle / Foot Path
 (paved)

Trailhead Parking

I Mile

I Kilometer

Shuttle Route / Stop
 (summer only)

Shuttle Route / Stop
 (year round)

Campground

Store

 See Vernal and Nevada Falls close-up area map on reverse side

Yosemite National Park
National Park Service
U.S. Department of the InteriorYosemite Valley Hiking Map

07/08

To
 Tioga
 Road
3.6 mi

5.9 km

I.6 m
i (2.6 km

)

Pohono Trail

Se
nt

in
el

 D
om

e
Tr

ai
l

Pohono T
ra

il

I.I
 m

i (
I.7

 k
m

)

I.0 mi (I.6 km)

I.0 m
i (I.6 km

)

I.3 mi (2.9 km)

Sentinel
Rock
7038 ft
2145 m

 3
.4

 m
i (

5.5
 km

)

To Taft Point
5.5 mi
8.9 km

Glacier Point Road
(Closed in winter)

North
Pines

Lower
Pines

Upper
Pines

Taft
Point

Liberty Cap
7076 ft
2I57 m

Mt. Starr King
9092 ft
277I m

Mt. Broderick
6706 ft
2044 m

4035 ft
I230 m

LeConte
Memorial
Lodge

Medical
Clinic

Camp 4

5907 ft
I80I m

El Capitan
7569 ft
2307 m

Sentinel
 Beach

Swinging
Bridge

72I4 ft
2I99 m

5044 ft
I538 m

Half
 Dome

8836 ft
2693 m

Mirror
Lake
4094 ft
I248 m

Grizzly
Peak

Road open ONLY to bicycles
and cars with wheelchair

emblem placards

Columbia
Rock

Washington
ColumnRoyal

Arches

Clark
Point

Fo
ur

 M
ile

 T
ra

il

Yosemite Fa
lls

 T

rail

Panoram
a Trail

Mist Trail

horse trail only

Panorama Trail

Southside Drive

 one-way

Northside Drive
one-way

Campground
reservation

office

Dewey
Point

Leaning
Tower

Eagle
Peak
7779 ft
237I m

Middle
Brother

Lower
Brother

Cathedral
Rocks

Cathedral
Spires

Crocker
Point

Stanford
Point

North
Dome

7525 ft
2294 m

Sentinel
Dome
8I22 ft
2476 m

Yosemite
Point
6936 ft
2II4 m

Illilouette Ridge

Ostrander
Rocks

Washburn
Point

Ribbon
Meadow

Pohono
Bridge

7503 ft
2287 m

7385 ft
2250 m

El Capitan
Bridge

Sentinel
Dome &
Taft Point
Trailhead

Cl
os

ed
 in

 w
inte

r

Closed in winter

Closed in winter

To
Tioga
 Road
6.9 mi
II.I km

To
Tioga
 Road
3.I mi

 5.0 km
To

Tioga
 Road
5.0 mi
8.0 km

To
Tuolumne
 Meadows

I6.0 mi
 25.7 km

Tunnel
View
4409 ft
 I343m

ona Tunnel

Inspiration

To
Clouds

Rest
4.2 mi
6.8 km

Housekeeping
Camp

Loop trail past
Mirror Lake
closed due to
2009 rockfall

Little
Yosemite

Valley

Wilderness Permit
Required

6I00 ft
1859 m

Royal
Arch

Cascade

Staircase
 Falls

Sentinel
Falls

M

erc
ed River

Yosem
ite Creek

Sentinel Creek

Te
na

ya
 C

reek

Ro
ya

l
A

rc
h

 C
re

ek

Merced

 R
iv

er

Lower
Yosemite

Fall

Vernal
 Fall

Nevada
Fall

In
di

an
 C

an
yo

n
C

re
ek

M
erced River

Bridalveil
Fall

Bridalveil Creek

Bridalveil Creek

Ribbon
Fall

Ribbon Creek

Snow
Creek
Falls

Snow
 C

reek

Illilouette
Fall

Horsetail
Fall (spring only)

Upper
Yosemite

Fall

2.
0

m
i (

3.
2

km
)

2.2 m
i (3

.5 km)

0.3 m
i (0.5 km

)

0.
2

m
i (

0.
3

km
)

0.6 m

i (I.0 km
)

3.2 mi (5.I km
)

2.
9

m
i (

4.
7

km
)

I.3 mi (2.I km)

0.
5

m
i (

0.
8

km
)

I.2
 m

i (
 I.

9 km)

4.8 mi (7.4 km
)

2.0 mi (3.2 km
)

I.2
 m

i (I
.9 km)

2.6
 m

i (

4.2
 km)

I.6 mi (2.6 km)

2.
7

m
i (

4.3 km)

2.5 mi (4.0 km)

0.9 m
i (1

.4
 k

m
)

I.0
 mi (I.

6
km

)

I.5 miles (2.4

I.8 m

i (2.9 km)

1.2 miles (1.9 km)

I.5 m
i (2.4 km

)

I.2 mi (I.9 km)

2.6 m i (4.2 km)

I.8 mi (2.9 km)

I.3 mi (2.I km)

I.3

 m
i (

2.
I k

m)

I.2 mi (I.0
 km

)

0.9 m
i (1.4 km

)

(ca
bles)10

11

5

8

1420

16

2
6

1921
13

3

4

1

9

7

12

15

18
17

Lower Yosemite Fall Trail

North

Glacier Point
(Closed in winter)

Yosemite Village
Visitor Center

The Ahwahnee

Curry Village

Nature Center at Happy Isles
(Summer only)

Yosemite Lodge

To Tamarack Flat
Campground
3.5 mi
5.6 km

To Glacier
Pt. Road
1.7 mi
2.7 km

18

10

Hiking Trail

Waterfall

Self-guiding Nature Trail

Ranger Station

Walk-in Campground

Bicycle / Foot Path
 (paved)

Trailhead Parking

I Mile

I Kilometer

Shuttle Route / Stop
 (summer only)

Shuttle Route / Stop
 (year round)

Campground

Store

Some trail mileages are approximate.

FIGURE 3.2 Hiking map of the Yosemite Valley National Park.

large set of interdependent transformation (compilation, automated refactorings, code genera-
tion, etc.) and analysis tasks (unit and integration tests, code coverage, model checking, clone
detection, profiling, etc.) such that they make best use of available time between development
activities.

3.2 Problem definition

Abstractly the target value search problem is defined as follows. Given a directed acyclic
graph G = (V,E) with non-negative edge values where the set of vertices V corresponds
to the problem states, each edge e ∈ E between vertices v, v′ ∈ V corresponds to a possible
transition between problem state v and v′ through some domain operator and the edge-value to
the value associated with that transition (g(v → v′)), a target-value-path between two vertices
v0, vg ∈ V with target-value tv (or plan πtvv0→vg in short, respectively πtv when the initial
and end vertex are clear in the context) is a sequence of edges leading from v0 to vg, whose
value is as close as possible to tv. The value g(π) of a plan π is simply defined as sum of its
comprising edges’ values. Let

∏
v0→vg be the set of all plans leading from v0 to vg in G. Then∏tv

v0→vg = argmin∏
v0→vg

(|tv − g(π)|), the set of paths between v0 and vg with minimal deviation

from the target-value is defined as the target-value path set with respect to v0, vg, tv and every
element of

∏tv
v0→vg is a target value path. In the following target-value search (or tvs, in short)

44

SECTION 3.2 Problem definition

v0

vg

v0

vg

Original graph G Connection graph C

FIGURE 3.3 Excerpt of the search graph G and the corresponding connection graph C for
vertices v0 and vg.

refers to function mapping tuples 〈v0, vg, tv〉 (in a non-deterministic way) to some element of∏tv
v0→vg .

3.2.1 Conventions

For reasons of clarity and brevity, I limit the following discussion to connection graphs. The
connection graph Cv0,vg is the subgraph of G containing v0, vg and those vertices in V that are
both descendants of v0 and ancestors of vg as well as all edges (∈ E) between them. In other
words, I assume that all vertices that either cannot be reached from v0 or from which vg cannot
be reached are pruned from G, along with corresponding edges. Note, that C can be extracted
by creating the respective intersection of vertex and edge sets reachable through breadth-first
sweep from v0 along successor links and from vg along predecessor links, in time and space
linear in the size ofG (henceO(|V |+ |E|)). For an example, see figure 3.3. I generally assume
that edge values are positive and, as the graphs are explicit, that predecessors can be accessed
efficiently.

Here, a few remarks on terminology and notation in this chapter. I omit indices where they
are implied by context. I use the term prefix for any path beginning at v0 (to some vertex
in C), the term suffix for any path (from some vertex in C or interchangeably from (the last
vertex of) some prefix) ending in vg; note that due to the construction of C, any vertex or
prefix will have at least one suffix. Valuations are defined for all paths in C as the sum of their
respective edge values. Costs are defined only for paths in

∏
v0→vg as the absolute difference

between valuation and target-value. The term completion of a prefix denotes its concatenation

45

CHAPTER 3 Target Value Search

e1

e2

e3

e4

0.2

0.3

0.2

0.3

v0 v vg

FIGURE 3.4 Target value search does not exhibit optimal substructure. Consider the above
graph for tv = 0.5. After expanding v0, one has two paths [e1], [e2] to v1. Both can lead to
optimal solutions with the right completion (i.e. [e1, e4] and [e2, e3]), the selection of which
depends on the whole prefix, not only on its last vertex.

with any of its suffixes, the term optimal completion of a prefix w.r.t a target-value, denotes
a completion that brings the valuation of the combined path (exactly) to the target-value (i.e.
cost zero) and the term best completion for the element that brings it closest to the target-value
(i.e. minimal cost). Paths (or variables holding paths) are denoted with symbol π - the use
subscripts with arrow notation πa→b implies that following the path (or executing the plan)
from vertex (in state) a leads to (ends up in) b.

3.2.2 Complexity

At first glimpse, the problem might appear unchallenging. In non-cyclical connection graphs,
satisficing planning is trivial. For example, a depth-first search (c.f. section 2.3.1) in such a
structure is complete even without backtracking. Also the graphs I concern myself with are
generally rather small (i.e. such that there is no problem in storing the entire graph in memory).
The combinatorial search problem is the (seemingly simple) selection of the best solution from
a set of solutions represented by the connection graph.

The challenge stems from the fact that target value search does not exhibit the property of
optimal substructure, a prerequisite for greedy or dynamic programming approaches (as are
exploited in shortest-path problems, c.f. section 2.3.1.1). Consider an arbitrary decomposition
of a target-value path

πtvvo→vg =

Prefix︷ ︸︸ ︷
πtv
′

vo→v ◦
Suffix︷ ︸︸ ︷
πtv
′′

v→vg

46

SECTION 3.3 Heuristics for Target Value Search

The partitions’ target-values tv′ and tv′′ are interdependent as tv′ = tv − g(πtv
′′

v→vg) and
tv′′ = tv − g(πtv′vo→v) and so are the respective cost functions for the subproblems. See figure
3.4 for an example. Also the number of solutions represented by C is in general exponential
in the size of the graph. As in the worst case, all prefixes in C up to (roughly) the target-
value will have to be generated during a target-value search, the problem is in EXPTIME . In
their treatise [NU99] of the related decision problem, Nykänen and Ukkonen prove that the
corresponding decision problems are generally NP -complete and specifically show that for
the simplest case of integer edge-weights, pseudo-polynomial algorithm exist (i.e. that those
problems are weakly NP -complete). NP -equivalence of target-value search problems then
follows directly from the equivalent decision problem in cycle-free graphs being in NP .

3.3 Heuristics for Target Value Search

3.3.1 A straightforward approach

A intuitive approach to tackle target-value search problems with heuristic search is to use
some estimate h of suffix lengths and search through path space withA∗ using an inadmissible

evaluator, such as f(πv0→v) = |g(πv0→v) + h(v) − tv|. Note that due to the lack of optimal
substructure, the elements of our search are not (as usual) the vertices of the graph, but the
prefixes (i.e. entire edge sequences relative to v0). Also using an admissible heuristic h does
not result in an admissible evaluator f due to the non-linearity introduced by the absolute
value operator (see figure 3.5 for an example). Because of this, the A∗ will be complete but
inadmissible and solutions will usually not be generated in descending order of their quality.

The idea then is to adapt the algorithm to continue with the search until one can verify the
optimality of a produced solution. This can be done as follows. Once the A∗ produces the
first solution πtv≈ it is set as current best solution and the search continues with some small
modifications. First, based on the current best solution, Open is pruned of all prefixes whose
g value exceeds tv + |tv − g(πtv≈)| (i.e. all prefixes that can due to their already accrued sum
of edge values only result in worse solutions). Second, all generated prefixes are tested (and
potentially pruned) against the current best solution. Third, if a new solution is produced that
is closer to the target-value, it replaces the current best solution. The search terminates if either
a perfect solution is found (i.e. g(πtv≈) = tv) or Open is empty (returning πtv≈).

47

CHAPTER 3 Target Value Search

g(πtv
vo→vg

)

g(πvo→v) h(v)

f(πtv
vo→vg

)

g(π∗
v→vg

)

f(πvo→v)

tv

FIGURE 3.5 An example showing why an admissible heuristic for classical planning is not
admissible for target value problems. A suitable estimator of the cost (i.e. deviation of the
target value) of a prefix is f(πvo→v) = |tv−g(πvo→v)+h(v)|. The upper bar represents the
value of the target value path πtvvo→vg . Below is some prefix πvo→v (gray bar) along with an
admissible estimate h(v) for the distance between v and vg (white bar). Below is the actual
shortest distance between v and vg in the graph. The last bars give the evaluators for πvo→v
and πtvvo→vg . Notice how due to the nonlinearity, f(πvo→v) overestimates the optimal path
cost f(πtvvo→v).

3.3.2 An Admissible Estimator for Target Value Search

Compared to an exhaustive search, the above scheme can help to reduce search times sig-
nificantly (c.f.experimental results later in this chapter). Much preferable however would be
to design an admissible estimator for these problems, immediately directing the search to-
wards an optimal solution. In somewhat related work, Dow and Korf show how an admissible
heuristic for best first-search can be constructed for the treewidth problem, which also sports
a non-additive cost function [DK07].

In the following, I will describe such an heuristic that we developed at PARC. The idea
behind it is to concisely annotate each vertex v in the graph with information about the values
of all elements in

∏
v→vg (in other words, the set of suffixes from v in C). In the initial ver-

sion, each annotation takes the form of an interval, representing the range of values of these
suffixes (see [KPdK+08] and [KSP+08]). Now this interval [lv;uv] can be leveraged for any
given prefix πv0→v and target value tv by first computing the optimal target value for the com-
pletion tvsuf = tv − g(πv0→v) and then derive an admissible estimate for the cost of the best
completion

48

SECTION 3.3 Heuristics for Target Value Search

valuetv a
−

g(π
v
0→

v)

tv b−
g(π

v
0→

v)

tv c−
g(π

v
0→

v)

da dc

lv uv

FIGURE 3.6 Heuristic computation for a prefix πv0→v and three different target values tva, tvb

and tvc corresponding to the three cases in equation 3.2. The gray bar [lv;uv] represents
the interval of completion valuations for vertex v. For tva, the optimal completion target
value falls below that interval, i.e. the best completion will at least have cost da. For tvb,
the optimal completion target value falls inside the interval, i.e. there might be an optimal
completion in C. For tvc, the optimal completion target value falls above the interval, i.e.
the best completion will at least have cost dc.

f(πv0→v) =





lv − tvsuf if tvsuf ≤ lv

0 if lv < tvsuf < uv

tvsuf − uv else

(3.1)

The second case suggests, that an optimal completion might exist in the graph, hence the
heuristic value is set to 0. In the first and last case, one can derive that no optimal completion
exists and that the best completion is the suffix with the highest respectively lowest valuation.
Figure 3.6 depicts these relationships graphically.

An important observation is that if the bounds lv and uv represent the actual valuations of
the lowest and highest valued path in

∏
v→vg , f gives the actual costs of the prefix and its best

completion in cases one and three (i.e. a perfect estimate). From now on, I will assume that this
is the case. The second case represents an optimistic guess as the interval usually represents
the valuations of a very large number of completions. To guarantee admissibly, one has to
account for the possibility that an optimal completion can be found amongst these suffixes.
Figure 3.7 gives an example for the comparative evaluation of two prefixes in the frontier of a
best-first search, where to guarantee admissibility on has to prefer the (in hindsight) “wrong”
candidate.

49

CHAPTER 3 Target Value Search

value

uvalva

lvb uvbtv −
g(π

v
0→

v b)

tv
− g(

π v0
→

v
a
)

c∗a

c∗b

fa = c∗a(> 0)

fb = 0

FIGURE 3.7 Valuation of two candidate prefixes πa = πv0→va and πb = πv0→vb in the frontier
of a best-first search. The upper triangles represent the valuations of all completions of va,
the lower ones of vb. If this (complete) information was available, πa would be preferred to
πb as its best completion results in lower cost (i.e. c∗a < c∗b). As tv − g(πb) falls within vb’s
interval the (admissible) estimate fa exceeds fb and hence the heuristic prefers πb.

value

uvalva

lvb uvbtv −
g(π

v
0→

v b)

tv
− g(

π v0
→

v
a
)

c∗a

c∗b

fb = c∗b(> c∗a)

fa = c∗a

FIGURE 3.8 The situation from figure 3.7 with a 2-interval heuristic. Now fb exceeds fa and
the heuristic (correctly) prefers πa.

3.3.3 Multi-interval Heuristic for Target Value Search

To reduce this problem, I expand the annotations of C’s vertices to multiple, disjoint intervals.
To limit the growth of this precomputed associative store, I bound the maximum number of
intervals per vertex by a constant k. Varying k allows to tradeoff space and heuristic quality.
With a suitable construction algorithm for computing the intervals, heuristics with higher k
dominate those with lower values (i.e. ∀π ∈ 2E ∧ ka > kb, f

ka(π) ≥ fkb(π)). Figure 3.8
gives an example of how a higher k estimator can improve guidance during a best-first search
(compared to figure 3.7). Intuitively, the smaller the aggregate ranges covered by the intervals
of some vertex v’s interval set, the higher the chance for a corresponding prefix π ∈∏

v0→v to
be estimated as f(π) = f ∗(π) (i.e. as the cost of the prefix’ best completion). Formally, given a

50

SECTION 3.3 Heuristics for Target Value Search

vertex v with disjoint intervals [liv;u
i
v], a given prefix πv0→v, target value tv and corresponding

optimal completion valuation tvsuf = tv − g(πv0→v) the multi-interval heuristic is defined as

h(πv0→v) =

{
0 if ∃i, liv < tvsuf < uiv

min({|tvsuf − liv|} ∪ {|tvsuf − uiv|}) else
(3.2)

or intuitively as 0, iff tvsuf falls inside one of the intervals or the minimum distance between
tvsuf and any interval bound otherwise. I will from here on refer to the collection of intervals
of a vertex as its entry and the collection of entries as the interval database or store.

3.3.4 Computing the Interval Store

This database can be computed efficiently on the C through dynamic programming. I first turn
to computing the entry of a vertex v given the entries of its successors v′1 . . . v

′
n ∈ δ(v). In a

first step, the intervals of each v′i are transformed by adding the value of the corresponding
edge g(v → v′i) to all bounds and added to v’s entry. In a second step, one repeatedly looks for
overlapping intervals in v’s entry and combines them until all intervals are disjunct. Finally, as
long as the number of intervals in v’s entry exceeds the allowance k, one takes the two closest
intervals and combines them. See figure 3.10 for an example. In the special case that a vertex
has no predecessors, its entry is simply set to {[0; 0]}.

As C is a directed and acyclic graph, there is a well defined topological order (see [Jar60])
for vertices of the graph. Processing vertices in their inverse topological order guarantees that
all successors of a vertex have been processed before the vertex itself is processed. This can
be achieved as follows. The process starts by initializing a counter for each vertex v in C

to the number of v’s successors in C and adding the goal nodes to a first-in first-out (fifo)
queue. While this queue holds nodes the next node is removed, its entry computed according
to procedure above (see figure 3.10) and the counters of all its predecessors decremented by
one. If one of these counters hits 0, the corresponding predecessor (vertex) is in turn added to
the queue. An example is given in figure 3.10.

3.3.4.1 Complexity of computing the interval store

This technique guarantees that each vertex in the connection graph is processed only once.
This can be shown through an induction proof: if all of the descendants of v (i.e. the transitive
closure of the successor relationship) have been accessed only once, then this is certainly
true for its successors, so v’s counter will be 0 and v will be added to the queue and thus be
processed once (induction step). vg starts on the queue and has no descendants in C, so vg will

51

CHAPTER 3 Target Value Search

v

v�1

v�2

v�3 → [0.7; 0.8], [1.0; 1.1]

→ [0.2; 0.4], [0.6; 0.7]

→ [0.1; 0.2]0.2
0.1

0.1

Initial situation

v → [0.3; 0.4], [0.3; 0.5], [0.7; 0.8], [0.8; 0.9], [1.1; 1.2]+

+

+

v

v�1

v�2

v�3 → [0.7; 0.8], [1.0; 1.1]

→ [0.2; 0.4], [0.6; 0.7]

→ [0.1; 0.2]0.2
0.1

0.1

Interval propagation

v → [0.3; 0.4], [0.3; 0.5], [0.7; 0.8], [0.8; 0.9], [1.1; 1.2]

v → [0.3; 0.5], [0.7; 0.9], [1.1; 1.2]

Eliminating overlap

v → [0.3; 0.9], [1.1; 1.2]

v → [0.3; 0.5], [0.7; 0.9], [1.1; 1.2]

Shrink to entry bounds

FIGURE 3.9 Construction of a database entry for vertex v given entries for its successors v′1, v
′
2

and v′3.

52

SECTION 3.4 Algorithms for Target Value Search

v0 vg

va

vb

vc

[vg]

(1)

(1)

(2)

(0)(3)

v0 vg

va

vb

vc

(1)

(0)(3)

(0)

(0)

[vb, vc]

v0 vg

va

vb

vc

(0)

(0)

(0)

[vc, va] (0)

(2)

v0 vg

va

vb

vc

(0)

(0)

(0)

(0)[va]

(1)

v0 vg

va

vb

vc

(0)

(0)

(0)

(0)[v0]

(0)

v0 vg

va

vb

vc

(0)

(0)

(0)

(0)

(0)

[]

v0

vg

va

vb

vc

FIGURE 3.10 Construction of the database for a small connection graph of five vertices. Round
brackets denote counters, square brackets the fifo queue. Filled vertices still need to be
processed.

only be processed once (base case). From this it follows that each edge will be accessed twice
(in the predecessor direction to decrement the predecessor count and, in the other direction to
access successor intervals). This results in running time of O((k + 1)|E|), where k denotes
the user defined maximum size of a entry. The worst-case space requirement of this algorithm
is linear in the size of the vertex set of C. If the lattice graph shows little topological structure
(i.e. all vertices other then v0 and vg have exactly v0 as predecessor and vg as successor) the
queue can grow up to |V | − 2 vertices in a lattice graph. Redeemingly, target-value search is
trivial in such graphs, as the number of paths is only |V | − 2.

3.4 Algorithms for Target Value Search

With an admissible estimator at hand, it is time to turn towards a suitable search strategy
for target value search. Even though any such strategy must operate in path space (i.e. 2V ,
c.f. section 3.2.2), candidate structure can still be leveraged in limited ways. First, prefixes
ending in the same vertex with equal valuation form an equivalence class and can hence be
considered duplicates. This is as the goal is to find any of the best solutions. Because any two
equally valued prefixes to some vertex v will result in respective completions that are equal
from a cost perspective, only one of them must be considered during the search. Second, the
addition to guiding the search, the interval heuristic can to detect when the problem of finding
completion for some prefix degenerates into a shortest or longest path problem. In a directed
acyclic graph, these problems can be solved straightforwardly in vertex space.

53

CHAPTER 3 Target Value Search

3.4.1 Best-First Target Value Search

I want to start by summarizing the effects of the above properties of (multi-) interval estimators
on the admissibility of search algorithms.

DUPLICITY the best completions of any set of prefixes ending in the same vertex, with equal
prefix values are identical and hence the best target value paths for all of these prefixes
will have equal deviation from the original target value. In other words, such sets form
an equivalence class in which the respective best solutions stemming from all of its
elements will be equal w.r.t. the target-value search’s objective function. Because of this
only one such prefix needs to be considered for admissibility.

DOMINATION For any prefix πv0→v with f(πv0→v) > 0, f(πv0→v) is the actual deviation of
the prefix’s best completion from the target value (i.e. f(πv0→v) = f ∗(πv0→v)). From
this one can deduce that for any pair of prefixes πv0→va , πv0→vb with f(πv0→va) >

f(πv0→vb) > 0, πv0→va is dominated by (i.e. will necessarily produce a worse solution
then) πv0→vb and can therefore be discarded without affecting admissibility.

Listing 6 shows how the interval heuristic can be integrated into an adaptation of the A∗

algorithm called BFTVS. One important difference to the version presented in section 2.5.2
is that costs and their estimates (i.e. f) are real-valued as opposed to the discrete integer val-
ues for unit-cost operators in classical planning. Hence Open here is a general priority queue
that allows accessing its constituents in descending order of their priorities (usually fibonacci
heaps [FT87] are the implementation of choice for these data structures as they efficiently sup-
port priority updates - a feature not required for BFTVS on which I will extend later). Another
is that in this application (in contrast to shortest path search), it is entirely possible to have
multiple paths between two nodes in Open that are not mutually redundant because of duplic-

ity and domination. Hence the entire path (predix) must be stored for elements in Open. For
Closed this is not necessary - it only serves the purpose of keeping track of which equivalence
classes have already been processed in the search and these are defined by the vertex and path
valuation alone. If a candidate is generated that corresponds to one of these classes, it can be
safely discarded without affecting admissibility. After a candidate passes this test, Open must
be searched for an equivalent entry. The algorithm of 6 represents an equivlent, simplyfied
version of what was given in [KSP+08] better showing the close relationship to A∗. Further
simplifications are possible (and were used in the evaluation). Note that if any eqivalent en-
try exists Open, it will (by the above definition of equivalence) have equal priority. Because
of this property, priority updates are unecessary and the implementation can be simplified by

54

SECTION 3.4 Algorithms for Target Value Search

Algorithm 6: BFTVS
Best-First Target Value Search

Input: C the connection graph
Input: tv the target value
Input: f an admissible estimator
Data: cand a 3-tuple comprising of a vertex, prefix and target value 〈v, π, tv〉
Data: Open a priority queue of cand elements
Data: Closed a set of vertex, target-value tuples
Output: a target value path or ⊥

Open.push(〈v0, [], tv〉,f([]));
while cand ← q.next() do

if cand .v = vg then
return cand .π;

end
Closed .insert(〈cand .v, cand .tv〉);
for v′ ∈ δ(cand .v) do

tv′ ← cand .tv − g(v → v′);
candnew ← 〈v′, cand .π ◦ v → v′, tv′〉 ;
if ¬Closed .has(〈v′, tv′〉) then

if ¬Open.hasEq(candnew) then
Open.insert(candnew , f(candnew .π));

end
end

end
end
return ⊥;

55

CHAPTER 3 Target Value Search

f(π, tv − g(π)) = 0

f(π, tv − g(π)) > 0

v0 vgf(π, tv − g(π)) = 0

f(π, tv − g(π)) > 0

vg

FIGURE 3.11 Division of the search space into guided (dark blue) and unguided (light blue)
parts in case an optimal target value path exists (left) or not.

upon discovery of a new equivalence class, adding the respective class to Closed (which is
then somewhat misleadinginly named), implement Open as a simple linked-list ordered by
increasing f and restrict duplicate detection to Closed . In contrast to first approach (c.f. sec-
tion 3.3.1), which in many cases (if there is no optimal target value path) has to generate all
prefixes in C, valued less than tv+ f(πtvv0→vg), BFTVS can often make do with a small subset
which usually well compensates the cost for constructing the database (especially if it can be
reused, i.e. multiple queries are performed with the same vg). However in the worst case, both
algorithms have to generate all prefixes with values≤ tv+f(πtvv0→vg) inC, a majority of which
can end up in Open at same time. Worst-case memory requirements are hence exponential in
problem size (i.e. C), which severly limits scalability. In practice, the issue can be somewhat
attenuated for BFTVS with interval heuristics by exploiting the domination property. Admis-
sibility is still guaranteed if from all candidates with estimated costs > 0 only the one with the
lowest estimate is kept. Nevertheless, growth of Open and (to a lesser extend) Close is only
exponentially bounded by the size of the connection graph.

3.4.2 Depth-First Target Value Search

Another take on the interval heuristic is that intuitively it divides the prefix-space (i.e. the
subset of all paths in C that begin at v0) for a given target value into a part with no heuristic
guidance and a part with perfect heuristic guidance as figure 3.11 shows. In many problems,
an optimal target value path is unlikely to exist (i.e. the valuation of best solution will deviate

56

SECTION 3.4 Algorithms for Target Value Search

vg

v0

step 1:
depth first search through blind-spot
backtracking upon f(π, tv − g(π)) > 0

step 2:
select candidate with lowest positive f

step 3:
greedy expansion guided by the (perfect) f

FIGURE 3.12 Basic steps of a DVTVS search.

somewhat from the target value). In this case an admissible search algorithm must exhaustively

explore (with the exception of redundant candidates and their offspring) the light blue part, but
can then “pierce” the dark blue part due to the perfect guidance. Also, redundant candidates
are scarce relative to a shortest path search due to the comparatively very restrictive definition
of redundancy. At the same time Open is costly to represent in memory not only due to the
number of elements it comprises but also due to the need to represent each element’s complex
structure. In summary, for this domain, the costs of duplicate detection in the general case
outweigh its savings. These are the guiding insights behind depth-first target value search

(DFTVS).

The idea is straightforward. First run a depth-first search from vg which backtracks once
the estimator returns a positive value1. Before the search, a best candidate reference is ini-
tialized to some dummy value ⊥ with infinite cost. Each generated candidate with a positive
estimate (before backtracking) replaces the current reference if its cost estimate is lower. Once
the depth-first search finishes, the best candidate can be expanded straightforwardly into the
target-value path through the perfect guidance of f (i.e. for a candidate πv0→v, one appends
the successor v′ ∈ δ(v) such that f(πv0→v, tv) = f(πv0→v ◦ v′, tv)). Figure 3.12 depicts these
steps graphically.

1technically one can backtrack when the estimator returns 0 but the derived target value for the suffix equalled
one of the bounds in the store. For brevity and clarity I omit this implementation detail in the discussion.

57

CHAPTER 3 Target Value Search

Algorithm 7: DFTVS
Depth First Target Value Search

Input: C the connection graph
Input: tv the target value
Input: f an admissible interval based estimator
Data: π̂ the current best candidate
Output: πtvv0→vg the target value path

π̂ ← ⊥ ; // assume f(⊥) =∞
if DFTVS-FB([]) then

return π̂;
end
return GEXP(π̂);

Algorithm 8: DFTVS-FB
Depth First Target Value Search bounded by f (recursive definition)

Input: πv0→v a prefix
Data: C the connection graph
Data: f an admissible interval based estimator
Data: tv the target value
Data: π̂ the current best candidate
Output: true if πtvv0→vg has been found, false otherwise

if f(πv0→v) > 0 then
if f(πv0→v) < f(π∗) then

π̂ ← πv0→v;
return false;

end
end
if v = vg then

π̂ ← πv0→v;
return true;

end
for v′ ∈ δ(v) do

if DFTVS-FB(πv0→v ◦ v′) then
return true;

end
end
return false;

58

SECTION 3.5 Empirical Evaluation

Algorithm 9: GEXP
Greedy prefix expansion guided by f (recursive definition)

Input: πv0→v a prefix
Data: C the connection graph
Data: f an admissible interval based estimator
Data: tv the target value
Output: πv0→vg a completion of πv0→v

if v = vg then
return πv0→v;

end
v′ ← argmin

δv
(f(πv0→v ◦ v′));

return GEXP(πv0→v ◦ v′);

The f -bounded depth-first search as well as the greedy expansion are most easily defined
as recursive algorithms (see listings 8 and 9 respectively). Based on these functions, the actual
DFTVS is exceedingly simple (see listing 7). For clarity I assume that the connection graph,
cost estimator and (for the depth-first exploration) current best candidate are accessible in the
scope of the heuristic functions. The only necessary extension to the above idea is a goal test
for candidates generated during the blind search. If DFTVS-FB finds the target value path (i.e.
ending in vg with f = 0) it stores the path in π̂, stops the exploration and signals success to
DFTVS by returning true. Otherwise it returns false, whereupon π̂ holds the least non-zero
cost candidate encountered during the sweep. At this point it is shown that no zero cost solution
exists and the best solution is an expansion of the path in π̂. As f ’s guidance is optimal, the
simple greedy expansion scheme of GEXP will transform π̂ into πtvv0→vg .

3.5 Empirical Evaluation

In this section, I give a comparative evaluation of the modified A∗ (HS) with an inadmissible
estimator (f(π) = |tv−(g(π)+h∗sp(π))| where h∗sp(π) is the lowest valued completion of π or
in other words h is a perfect shortest-path heuristic) as discussed in section 3.3.1, BFTVS and
DFTVS. The algorithms are evaluated using two domain generators: sparse and dense. All
tests were performed on a machine with a 2.8 GHz Intel Core 2 Duo CPU with 4 GB of RAM
running MacOS X 10.5.6. All algorithms are implemented as parts of a uniform framework in
C++ to allow fair runtime comparisons.

59

CHAPTER 3 Target Value Search

width

h
ei

g
h
t

FIGURE 3.13 The sparse domain: vertices are always connected to their “right", as well as
their “lower" or “upper" neighbors (depending on whether the column is “odd" or “even").

3.5.1 The Test Domains

Both generators produce connection graph lattices, consisting of designated start and goal
vertices v0, vg and a “grid" of vertices between them. Generally edge values are assigned
randomly (sampled from a uniform (0; 1] distribution). Both are parameterized in terms of
width, height and a seed value for a random-number generator. In the sparse domain, vertices
(with the exception of v0 and vg) have a constant out-degree of 2, and path lengths (in number
of edges) between start and goal vary between width + 1 and height × width + 1. Its general
connection pattern is shown in figure 3.13.

The dense domain has uniform path-lengths of width + 1. The generator employs an addi-
tional parameter, a probability p, which governs the out-degree of nodes in the grid: a vertex
has a connection to a vertex in its “right" neighboring column with probability p (besides its
direct right neighbor, with whom it is always connected). The corresponding connection pat-
tern is depicted in figure 3.14. It results in an average out degree of p(width−1)+1, (which is
approximately p

√
|V | for the “square" graphs I mostly use in the evaluation). In general, for

“square" graphs, I use the term dimension (d) to denote width and height parameters. Also, if
not otherwise noted, I allow up to 5 intervals per entry (i.e. k = 5) and use 0.5 as probability
parameter for the dense domain.

Both domains are hard in that they contain a very large number of paths between v0 and
vg (exponential in width with a base of p(width − 1) + 1 for dense, and in width × height
with a base of 2 for sparse). Note that the ratio of paths to vertices in the example domains
given in section 3.1 is usually far lower. Especially for dense, the regular structure also allows
a straightforward interpretation of which target values result in hard instances . Due to the
uniform distributions of edge values, the values for elements of

∏
v0→vg will be normally

60

SECTION 3.5 Empirical Evaluation

width

h
ei

g
h
t

FIGURE 3.14 The dense domain: vertices are always connected to their “right" neighbor; ad-
ditionally, for each “other” vertex in the “right" neighboring column, there is a connection
with probability p.

distributed around 0.5(0.5(width + 1)) in the interval (0;width + 1]. The closer the target-
value to the peak of the normal distribution, the harder the instance as comparatively more
candidates are close to this valuation.

3.5.2 Comparison of HS, BFTVS and DFTVS

Figures 3.15, 3.16, 3.17 and 3.18 (note the logarithmic scale of the value axis) give the average
query time (in µsec), using the HS, BFTVS and DFTVS algorithms with target-values set to
different fraction of the highest valued path in the respective graph. BFTVS and DFTVS query
times include database construction, whereas the time for computing shortest-path lengths
used by HS’ heuristic is omitted (they were retrieved as lower bounds from a pre-computed 1-
interval database at runtime). Each datapoint represents an average over 25 graphs specified by
different seed values. The runtime distributions reflect the normal distribution of path lengths
in the dense domain. As expected, the problem is hardest for BFTVS and DFTVS if the target
value is half the sum of the lowest and highest valued path of the graph, as then most paths
valuations are close to the target value, resulting in a large blind-spot. The relative differences
in runtime between BFTVS and DFTVS widen rapidly from one order of magnitude at 6×6 to
three orders of magnitude at 8× 8, so I limited this comparison to very small graphs (between
25 and 64 vertices, excluding v0 and vg). HS fares between another 1 to 3 orders of magnitude
worse than BFTVS. Due to its memory overhead, I do not give results for the 8 × 8 case
(incrementing the dimension of dense pretty reliably increases the average search time by
about two orders of magnitude). In dense, HS is consistently hardest for target values around
1/3 of the longest path’s valuation. The algorithm is (unsurprisingly) a bad fit for target value

61

CHAPTER 3 Target Value Search

100

1000

10000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Dense 5x5
M

ic
ro

se
co

nd
s

Target value as a fraction of maximum path valuation

DFTVS BFTVS HS

FIGURE 3.15 Average query times for multiple target values (between lowest and highest val-
ued paths in the graph) over 25 5 × 5 graphs of the dense domain (with different seed
values) of HS, BFTVS and DFTVS.

100

1000

10000

100000

1000000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Dense 6x6

M
ic

ro
se

co
nd

s

Target value as a fraction of maximum path valuation

DFTVS BFTVS HS

FIGURE 3.16 Average query times for multiple target values (between lowest and highest val-
ued paths in the graph) over 25 6 × 6 graphs of the dense domain (with different seed
values) of HS, BFTVS and DFTVS.

62

SECTION 3.5 Empirical Evaluation

100

1000

10000

100000

1000000

10000000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Dense 7x7
M

ic
ro

se
co

nd
s

Target value as a fraction of maximum path valuation

DFTVS BFTVS HS

FIGURE 3.17 Average query times for multiple target values (between lowest and highest val-
ued paths in the graph) over 25 7 × 7 graphs of the dense domain (with different seed
values) of HS, BFTVS and DFTVS.

100

1000

10000

100000

1000000

10000000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Dense 8x8

M
ic

ro
se

c
o

n
d

s

Target value as a fraction of maximum path valuation

DFTVS BFTVS

FIGURE 3.18 Average query times for multiple target values (between lowest and highest val-
ued paths in the graph) over 25 8 × 8 graphs of the dense domain (with different seed
values) of BFTVS and DFTVS (HS is omitted due to its poor scaling).

63

CHAPTER 3 Target Value Search

100

1000

10000

100000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Sparse 5x5

M
ic

ro
se

co
nd

s

Target value as a fraction of maximum path valuation

DFTVS BFTVS HS

FIGURE 3.19 Average query times for multiple target values (between lowest and highest val-
ued paths in the graph) over 25 5 × 5 graphs of the sparse domain (with different seed
values) of HS, BFTVS and DFTVS.

search. The search must produce multiple solutions to guarantee admissibility and particularly
the priority queue proves very costly in comparison to the optimized data structures of BFTVS
and DFTVS as can be best seen on the instances with the lowest and highest target values
where the problem degenerates into a shortest or respectively longest path search in a directed
acyclic graph.

Figures 3.19, 3.20 and 3.21 gives the respective average query time for the sparse domain,
albeit for smaller graphs (up to d = 6 for the HS and d = 7 for BFTVS and DFTVS. Due to the
larger number of paths in these graphs (see above, i.e. the much higher exponents outweighs
the lower base), search times are about an order of magnitude higher in comparison to dense

graphs with the same number of vertices. The relative results closely mirror those in the dense
domain.

3.5.3 Scaling of DFTVS

As HS and BFTVS quickly approach time and space barriers, I will concentrate on DFTVS in
the following empirical evaluations. Figure 3.22 gives an overview of the runtime distribution
of DFTVS queries (µ = blue line, σ = red bars) in relation to graph size. Each datapoint
represents 10 instances (differing in their seed values) against each of which 1000 queries were
executed with target-values randomly sampled from a uniform distribution between minimal
and maximal path valuations in the graph. Average query times show relatively modest growth

64

SECTION 3.5 Empirical Evaluation

100

1000

10000

100000

1000000

10000000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Sparse 6x6
M

ic
ro

se
co

nd
s

Target value as a fraction of maximum path valuation

DFTVS BFTVS HS

FIGURE 3.20 Average query times for multiple target values (between lowest and highest val-
ued paths in the graph) over 25 6 × 6 graphs of the sparse domain (with different seed
values) of HS, BFTVS and DFTVS.

100

1000

10000

100000

1000000

10000000

100000000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Sparse 7x7

M
ic

ro
se

c
o

n
d

s

Target value as a fraction of maximum path valuation

DFTVS BFTVS

FIGURE 3.21 Average query times for multiple target values (between lowest and highest val-
ued paths in the graph) over 25 7 × 7 graphs of the sparse domain (with different seed
values) of BFTVS and DFTVS (HS is omitted due to its poor scaling).

65

CHAPTER 3 Target Value Search

1

10

100

1000

10000

d=3 d=6 d=9 d=12 d=15 d=18 d=21 d=24 d=27 d=30 d=33 d=36 d=39 d=42 d=45 d=48
1

10

100

1000

10000

100000

DFTVS dense scaling

m
ic

ro
se

c
o

n
d

s
(m

e
a
n
)

graph size

m
ic

ro
se

c
o

n
d

s
(s

ta
n
d

a
rd

 d
e
vi

a
ti
o

n
)

FIGURE 3.22 Mean (blue function) and standard deviation (red bars) of DFTVS query times
over uniformly sampled target values in multiple dense graphs of different sizes (d ∈
[3 . . . 50]).

in graph size, with their standard deviation following suite largely being around a magnitude
larger than the mean. Note how DFTVS’s µ, σ for the d = 50 graphs (2002 vertices each) are
only about 1/50-th and 1/18-th of BFTVS’s µ (∼ 9.5 ∗ 105) and σ (∼ 1.3 ∗ 106) respectively on
the d = 8 graphs (66 vertices each) from figure 3.16.

Figure 3.23 shows the same for the sparse domain on up to d = 30 graphs (902 vertices).
As sparse is a significantly harder domain, only a 100 queries were run per instance (of which
again, 10 were generated for each datapoint) for this evaluation. Correspondingly the mean
runtime is one to two orders of magnitude higher then for the dense instances. The standard
deviation of runtime shows a similar pattern as in the dense instances being consistently about
one order of magnitude higher than the mean runtime.

3.5.4 Interval Store Evaluation

Figure 3.24 gives average construction times (in µsec) needed to build a 5-interval store for
different graphs (dimensions 3-90). Each datapoint represents an average over 25 graphs
(with differing random seeds). The results show that the overhead for computing the database
only represents a small part of total query runtime in both domains. Hence constructing a
database even for single queries is hardly an issue from a computational point of view. Note
that the graph description size (i.e. |V |+ |E|) is quadratic in d for sparse and cubic for sparse

66

SECTION 3.5 Empirical Evaluation

1

10

100

1000

10000

100000

1000000

10000000

d=3 d=5 d=7 d=9 d=11 d=13 d=15 d=17 d=19 d=21 d=23 d=25 d=27 d=29 d=31 d=33 d=35 d=37 d=39
1

10

100

1000

10000

100000

1000000

10000000

100000000

DFTVS sparse scaling

m
ic

ro
se

c
o

n
d

s
(m

e
a
n
)

graph size

m
ic

ro
se

c
o

n
d

s
(s

ta
n
d

a
rd

 d
e
vi

a
ti
o

n
)

FIGURE 3.23 Mean (blue function) and standard deviation (red bars) of DFTVS query times
over uniformly sampled target values in multiple sparse graphs of different sizes (d ∈
[3 . . . 40]).

0

7500

15000

22500

30000

d=3 d=8 d=13 d=18 d=23 d=28 d=33 d=38 d=43 d=48 d=53 d=58 d=63 d=68 d=73 d=78 d=83 d=88

Interval Store Construction Time

M
ic

ro
se

c
o

n
d

s

Graph Size

Sparse Dense

FIGURE 3.24 Average interval store construction times for sparse and dense graphs of differ-
ent sizes (d ∈ [3 . . . 90], corresponding to graphs of 11 to 8102 vertices).

67

CHAPTER 3 Target Value Search

0

50000

100000

150000

200000

250000

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

DFTVS Query runtime

m
ic

ro
se

c
o

n
d

s

graph size

1 Interval 2 Intervals 4 Intervals 8 Intervals
16 Intervals 32 Intervals

FIGURE 3.25 Average query time for dense graphs of different sizes (d ∈ [3 . . . 40]) in relation
to the number of intervals per entry.

as the average number of edges is 2|V | in the former and p(d−1)|V | in the latter domain. The
resulting larger computation time for building the store is the only sense in which dense is the
harder domain. For all other purposes, the much larger number of paths between v0 and vg in
the sparse domain make it a much harder search problem.

Lastly, figure 3.25 shows how the number of intervals per entry (i.e. constant k) influence
search time. For this evaluation, I generated 5 dense graphs for each dimension (from d = 3 to
d = 40 corresponding to 11 and 1602 vertices respectively). For each graph 200 target values
were randomly (uniformly) chosen between the lowest and highest path valuations occurring
in the respective graph. Corresponding queries were then executed with the different databases
and their runtime averaged. With the exception of single and dual intervals per entry, doubling
the number of intervals roughly halves the query’s runtime. This coincides quite well with the
observations of Holte [HH99] about the relation between size and accuracy of memory-based
heuristics.

3.6 Summary

In this chapter I have introduced a novel class of combinatorial search problems, an efficient
memoization technique that allows for deriving admissible estimates for the subdomain of
a-cyclical connection graphs and a corresponding domain-dependent algorithm that exploits
properties of these estimates to drastically improve scalability. This also serves as a good

68

SECTION 3.6 Summary

example of the innate challenges of domain independent planning.
For one, there are no silver bullets. Techniques such as duplicate detection are a big ben-

efit (and sometimes even a requirement) when tackling large instances in many domains but
there are nearly always relevant problems where they prove highly detrimental. One potential
strategy to deal with such issues is to design domain independent planners as sets of inter-
changeable search, estimation and storage policies that are combined into concrete planning
algorithms at runtime based on domain and instance analysis of some top level component.
State of the art academic domain independent planners feature this to a limited extent in e.g.
allowing the user to select between different heuristics or modify the search algorithm slightly.
The popular SPIN explicit state model checking tool [Hol97] is a good example of such a de-
sign philosophy.

Another is that domain knowledge is very valuable. It is not atypical that the exploitation of
even small insights such as the nature of the above estimates reduces the necessary effort by
orders of magnitude. In other words, domain-dependent planning will always be relevant in
challenging domains. It however likewise strongly depends on the availability of comprehen-
sive toolkits of interoperable search technologies and corresponding software components that
can be easily adapted to economically transform domain know-how into efficient planners.

69

CHAPTER 4

State-set Representation

I will now turn to state and state-set representation, a topic that I have only touched on in very
coarse terms so far. The empirical results of section 3.5 already gave a hint of its criticality.
For planning, efficient management of search states lies at the heart of memoization techniques
and in particular unit-cost best-first algorithms. The scope of this chapter will hence be more
general than the last. The time and space complexity of handling large state sets and maps,
be it in the form of redundant states for duplicate detection, search-frontiers to guarantee
best-first properties or as memory-based heuristics, profoundly influences the solvability of
search problems. Of special importance for any reasonably general search algorithm is that the
employed representations strike a good balance between small size and efficient operations.

4.1 Background

First, I want to provide some background and coarsely discuss where and what the challenges
associated with state-set representation are. While the techniques I introduce later in this chap-
ter are fairly general, I limit the following discussion to the context of propositional planning
as introduced in chapter 2.

4.1.1 Pattern Databases

Before delving into representation techniques I want to shortly discuss Pattern Databases
[CS98], an important class of memoization heuristics. Conceptually pattern databases are enu-
merations of all possible subgoals (up to a certain size) with associated costs (i.e. f ∗) for their
optimal solutions. The subproblem instances are represented by patterns and are stored in a
map such that given any concrete state, it can be efficiently matched to its pattern and the
corresponding value can be retrieved (c.f. the interval store of chapter 3). In propositional

71

CHAPTER 4 State-set Representation

1 2

3 4 5

876

? ?

? 4 ?

???

?

[→ 0]

[→ 1]

[→ 2]

[→ 1]

[→ 1]

[→ 2]

[→ 1]

[→ 2]

[→ 2]

1 2
3 4 5

876

8 3 5
7 4

126

3 7 1
5 4 2

 68

.

Problem Abstraction Pattern Database

FIGURE 4.1 The 8-puzzle domain, its abstraction to tile 4 and the corresponding pattern
database. There is one entry in the database for each each possible problem instance in
the abstraction. Each entry comprises of a description of the problem instance and the min-
imum cost of solving it. These abstract problem instances are referred to as “patterns” as
they each correspond to multiple concrete problem instances.

planning these subgoals stem from a derived, (relatively) easy-to-solve domain that is usually
defined by an abstraction of the original problem. A suitable abstraction must be interpretable
as a (usually not invertible) function mapping original problem configurations to their ab-
stract counterparts. These abstract problem configurations are referred to as patterns. One then
solves the abstract problem for all patterns and stores them with the associated costs of their
optimal solutions in a database. A practical example is given in Figure 4.1. In this example
the abstraction removes the identities of all tiles but tile 4. By associating each configuration
of the 8-puzzle to the pattern with the matching position of tile 4, this can be interpreted as
a many-to-one mapping function. Depicted on the right of Figure 4.1 then is the resulting
pattern database. From a theoretical perspective, pattern databases (or PDBs in short) define
one of the four fundamental classes of heuristics known for propositional planning [HD09].
For the purpose of this chapter they provide a good use-case of memoization techniques in
propositional planning due to their conceptual simplicity and practical relevance (see [CS96],
[Kor97] [Ede02] and [KF07] amongst many others).

4.1.2 State Representation

I will begin the discussion of representation techniques on the level of state encodings. To
this end, I return to propositional planning and the example problem as given in chapter 2.
The intuitive way to represent states of a propositional planning problem is as an array of
assignments covering the propositional variables. Each position corresponds to one variable.

72

SECTION 4.1 Background

Nearly all programming environments offer support for some binary type such as bool in C++
language. In the apartment domain, a corresponding state comprises an 8 bool array. The first
thing to note is that in many domains, non trivial subsets of the propositional variables are
mutually exclusive in their assignments. In the apartment domain, this is the case for variables
pA . . . pD which represent the location of the agent. Intuitively only one of them can be true

in any sensible state. Hence on a logical level, out of the 16 possible assignments to pA . . . pD
only four really occur. From an information theory perspective the maximum entropy of these
four propositional variables is only log2 4 = 2 Bit. Domain properties of that ilk provide
ample opportunity for representational simplification and corresponding multi-valued repre-
sentations (such as the popular simplified action structures SAS [SR86] and SAS+ [BK91]
formalisms) for propositional planning are widely used in planning. Here such groups of
mutually exclusive propositional variables are swapped for corresponding multi-valued vari-
ables, e.g. pRoom ∈ {A,B,C,D}. Note that these formalisms offer the same expressiveness
as propositional planning [BN95]. Robust automated domain translation algorithms which ex-
tract multi-valued variables exist (see [EH00] and [Hel06a]). These transformations are also
beneficial from a computational standpoint. For practical purposes, manipulating an integer is
as costly as a boolean, so in the apartment example a room transition reduces from updating
two memory values to a single one.

This relates to a second optimization opportunity. Modern processors operate on the level of
machine words. For example C++ compilers usually map bool values to 8-bit integers or when
aggressively optimizing even to 32-bit integers1. Under these conditions a state in the simple
apartment domain can occupy between 40 (multi-valued) and 256 Bit (single valued, o3). This
extreme runtime bias is often problematic for best-first search due to the large number of states
that need to be held in memory. A simple and popular workaround in search and planning are
packed states. Here, multiple state variables are stored in a single machine word using basic
bitwise and arithmetic operators. This is a technique with little computational overhead for
reducing storage requirements. For example, in many problems, most variable domains rarely
exceed 16 different assignments and hence the variable is representable with only 4 Bits. For
such cases, a packed representation can reduce the average storage requirements by a factor of
about eight (as opposed to using a full 32-bit word to store each variable assignment).

73

CHAPTER 4 State-set Representation

0 0
.1

.5

.2

.8

2.7

1.0

.4

0

1

1
1

0

0.8

0.5
0.1

.1
.5

.2

.8

2.7

1.0

.4

0

1

2

1
1

0

0.7

2.8

0.5
0.1

.1
.5

.2

.8

2.7

1.0

.4

0

0.7

1.7

0.5
0.1

.1
.5

.2

.8

2.7

1.0

.4

t0

t1

t2

FIGURE 4.2 Dijkstra’s algorithm with unit-(left) and variable-(right) edge-costs over a small
explicit graph. Open at each time step is denoted by the gray nodes with the frontier com-
prising of the nodes with the lightest shade. Values in the nodes are the currently ascribed
g-values.

74

SECTION 4.1 Background

4.1.3 State-Sets in Unit-Cost Best-First Search

During planning, states usually occur in and are manipulated as part of groups . Linear-space
search algorithms such as IDA∗ [Kor85] are specfically designed to limit the size of occurring
state collections and hence use much less memory than best first algorithms such as A∗ but
by forgoing duplicate detection and global expansion orders they pay the price of extra node
expansions to find optimal solutions. This time-space tradeoff pays off in domains with few
duplicates such as the sliding-tile puzzles or target value search where IDA∗ and DFTVS eas-
ily outperform A∗, but many domains (e.g. multiple sequence alignment) are not conducive
to this approach. Hence current state-of-the-art heuristic search planners such as Fast Down-
ward [Hel06a], HSP∗F and GAMER [EK08a] include full duplicate detection in their search
algorithms. The nature of best-first search is to expand candidates in ascending order of their
f -estimates. Guaranteeing this constraint requires buffering newly generated candidates in
Open. In the general case (i.e. real-valued estimates and inconsistent heuristics), such a buffer
must support efficient retrieval/removal of the candidate with the lowest estimate (i.e. highest
priority), addition and removal of candidates, tests whether a particular candidate is present
in the buffer (set-member test) and changes to candidates’ f -values (i.e. priorities). One of
the numerous priority queue implementations such as Binomial-Heaps[Vui78] or Fibonacci-
Heaps[FT87] are usually backing Open in general best-first search implementations.

In contrast to variable-cost Best-First-Search, Open in unit-cost best-first search usually
breaks down to small number of f -value layers. These few different f -values, each associated
with a relatively large number of states can be much more efficiently represented as a list of
sets, lists or deques. Figure 4.2 shows this with a small example of Dijkstra’s algorithm[Dij59]
(basically A∗ with a Null-heuristic). Note that for the special case of a null-heuristic the f -
estimate reduces to the g-value (i.e. the distance from the initial state) and hence Open to an
equivalent, flat set (i.e. Open is equivalent to the search frontier).

To enable duplicate detection, a search algorithm must keep track of all unique states it has
generated at any point in time. To this end it usually maintains Close, a set comprising of
encountered states not in Open.

Now I will give a quick overview of the most critical operations performed on sets in unit-
cost search.

1for example GCC with an o3 flag on the OS-X platform

75

CHAPTER 4 State-set Representation

4.1.3.1 Set member tests and member associated data

Generated candidates are tested against Close and Open for duplicate detection. Furthermore,
many search algorithms rely on the association of meta-data with known states, such as f -
values and predecessor identifiers. When using pattern databases, the corresponding abstrac-
tion of the state is also tested against the database to retrieve the associated h-value. Note that
even with duplicate detection one and the same state can be (and generally is) generated mul-
tiple times during a search. Set-member tests and retrieval of meta-data are hence generally
the most frequent set operations in search.

4.1.3.2 Set iteration

In unit-cost BFS candidates are expanded in logical phases. Each such phase consists of gen-
erating the successors of all candidates in the lowest (f -value) layer in Open (i.e. the search
frontier). Overall this set iteration is somewhat less critical than member tests, as theoretically
only non-duplicate states are iterated over once during a unit-cost search (if the heuristic is
consistent).

4.1.3.3 Set creation and union

Nodes generated during a layer expansion which passed duplicate testing need to be inserted
into the appropriate Open layer for later expansion. Meanwhile, after a state has been ex-
panded, it needs to be removed from Open and inserted into Close. A common optimization
(if the representation supports it efficiently) is to merge the frontier in toto with Close at the
end of a layer expansion instead of moving individual candidates during the expansion.

4.1.4 Set-representation techniques

Commonly used data structures for state-sets in search can be classified into explicit and im-

plicit representations. I classify as the former any structure whose constituents’ representation
is some function of the individual states, i.e. the set-representation of a state is only dependent
on the assigned state itself. The latter usually comprise some information derived from the
states, the set composition and/or the problem space from which its individual elements can
be reconstructed on demand. In the following, I will present examples of set representations
for state-sets and maps as found in state of the art propositional planners.

76

SECTION 4.1 Background

00↔ a0

01↔ a1

10↔ a2

000↔ b0

001↔ b1

010↔ b2

011↔ b3

100↔ b4

1001↔ a1b4

1010↔ a2b0

0100↔ a2b1

1010010000110 101001010110

Array Packed Combined

LUT a

LUT b

LUT ab

a2 b0

FIGURE 4.3 State variable assignments a2 and b0 in Array, Packed and Combined represen-
tations of a state, requiring 2 Words, 5 Bits and 4 Bits of memory

4.1.5 Explicit set representations

As mentioned above, states of discrete planning problems have a more or less “natural” ma-
chine representation as arrays of multi-valued assignments. The most widely used explicit
set representations are based on standard container library primitives. Pointers or entire value
arrays are organized in fairly standard dynamic data structures such as sorted lists, deques
(backed by dynamic arrays or single or double-linked lists), sets (most often implemented as
red-black trees [Bay72]) or hash-tables (variants of extensible hashing [FNPS79]). Fast Down-
ward [Hel06a] is an example for popular state-of-the-art planner using STL vectors and maps
for representation.

A straightforward extension is to represent individual elements by compressed derivatives
of their “natural” representation (i.e. an array of state variable assignments) such as the packed
representations sketched above. Forming the cross-product of state variable domains is a way
to further increase coding efficiency. For example, two domains with respective sizes 3 and 5
would individually require 2 and 3 Bits to encode for a total of 5 Bits. Forming the crossprod-
uct yields 15 different assignments which can be encoded in 4 Bits. Ultimately, by using the
crossproduct of all fluent domains, one ends up with an enumeration of all possible state as-
signments. As long as the domains of combined variables remain relatively small, lookup
tables (or short LUTs) can be employed for quick mapping between natural and packed or
combined representation. These LUTs grow with the crossproduct’s domain. To maintain a
net reduction in storage size runtime can be sacrificed by using the original, small fluent-

77

CHAPTER 4 State-set Representation

level LUTs and computationally projecting the combined fluent to its original constituents
during (de-)coding. This makes for a good example of the runtime and space trade-off that
will permeate this chapter. Explicit representations map more or less directly to high perfor-
mance container libraries readily available for basically any commercial-grade programming
language. As, from a best-first search point of view, the design of most of these components is
strongly biased to favor runtime over size, they are usually only competitive on large problems
in planners relying on complex and computationally expansive heuristics where the number of
generated states per unit of runtime is comparatively small (hence those planners usually run
out of time before saturating available memory).

4.1.6 Implicit Set Representations

4.1.6.1 Statemaps

The first implicit representation is a straightforward extension of the above enumeration thread.
The crossproduct over all state variables can be interpreted as a minimal perfect hash function
for states. That is it bijectively maps each state to a unique integer in range [0; |2P |), making
a representation of the actual state in the hash-table superfluous. For propositional planning
simply interpreting the packed assignment vector as a binary encoded integer produces such a
mapping. All that needs to be represented is the information associated with states (e.g. a pres-
ence bit, distance to the initial node, etc.). Such hash tables have a size that is a constant factor
of the state-space’s cardinality. While generally very time efficient, state-maps are only space
efficient or in fact reasonable if one expects first that the state space is sufficiently small and
second that the such represented set ultimately comprises a significant subset of the total state
space. In domain independent planning this is reasonable to assume only for small and highly
abstract pattern databases where usually most of the possible variable assignments are reach-
able and thus present in the set. In domain dependent planning, with hand-crafted enumeration
functions that allow to skip a large share of unreachable states, such representations have also
been used with very good success for large pattern databases (e.g. for the sliding-tile-puzzles
[KF02] or tower-of-hanoi domains [KF07]). In all its properties relegate the technique to more
or less special cases.

4.1.6.2 Binary Decision Diagrams

A more widely applicable variation of the idea of representing state-sets as functions that map
elements of the state-space to a binary co-domain denoting membership is based on Binary
Decision Diagrams (BDD). BDDs are used to represent boolean functions in memory. A flurry

78

SECTION 4.1 Background

b1
b0b1b2 f

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

b0 b0

b2 b2 b2 b2

0

1

0 1 0

1

0

10 1

0 1
1

0 0 1

b1

b0 b0

b2

0

1

0

0

1

1

0 1

1

0

b1

b0

b2

0

0

0

1

1

0 1

1

FIGURE 4.4 BDD for f with order b1b0b2. The example shows how the exponential (in the
number of arguments) function table is transformed into an ordered and reduced BDD
through repeated pruning of nodes with isomorphic children.

of variants and acronyms exists in the literature, but when henceforth BDDs are mentioned, I
refer to ordered and reduced binary decision diagrams. BDDs were originally introduced by
CY Lee[Lee59] in the late 1950s, but their full potential as an efficient general data structure
was only realized by Randal Bryant[Bry86] when he imposed a fixed variable ordering on the
decision diagram, creating a canonical representation for boolean functions. This normal-form
allows to map many logical operations on boolean functions, such as conjunctions, disjunc-
tions, negations and abstractions to polynomial-time graph manipulation algorithms. BDDs
represent functions as rooted, directed acyclic graphs consisting of decision nodes and ter-
minating nodes true and false. Each decision (inner) node corresponds to a variable of the
function and sports exactly two successors for assignments true and false. The variable-order
governs the order of variable appearance in every path from a root to one of the terminating
nodes in the graph. Two reduction rules govern the minimization of these graphs. The first is
to merge all isomorphic subgraphs and the second is to remove any node from the graph that
has two isomorphic children.The order together with the repeated application of the two basic
transformation rules leads to the compressed and canonical function representation of ordered
and reduced binary decision diagrams (see figure 4.4 for an example).

The promise of BDDs lies in their potential to represent and manipulate functions over
exponential domains in polynomial time and space. In the worst case a BDD’s graph-size is
exponential in the number of the represented function’s arguments (i.e. is a linear function
of the size of the domain). In practice, their efficiency is highly dependent on the selected

79

CHAPTER 4 State-set Representation

odd-even natural

FIGURE 4.5 Ordered and reduced binary decision diagrams for f(x1,x2m) = x1x2+x3x4+
. . . + x2m−1x2m with odd before even variables on the left and natural order on the right
resulting in graphs of exponential (2m+1) and linear (2m) order respectively (based on
diagrams by Dirk Beyer, 1995 used under GFDL).

80

SECTION 4.1 Background

variable ordering. For an example of how a bad order can increase the size of the graph by
orders of magnitude, see figure 4.5. Unfortunately, finding the optimal variable ordering for
a given set of functions has been shown to be an NP-hard problem(see [BW02]). Usually
initial orderings are determined using either domain knowledge or (more or less) informed
guesses. Refined implementations (i.e. BuDDy [LN99] and CUDD [Som97]) allow to dynam-
ically adapt the variable order by exploring permutations derived from greedy heuristics or
simulated annealing and reorganize their internal graph representation correspondingly (see,
among others [ISY02] and [PSP94]).

Search techniques based on BDDs were first developed in the field of symbolic model
checking[McM93] and later transitioned to lifted planning [CGGT97]. They were expanded
to directed-search [ER98], [EH01] and later developed to somewhat integrate strong heuris-
tics [JBV02] (i.e. heuristics with a comparatively large range of occurring h-values strongly
dependent on individual variable assignments). It is reasonable to assume that for most classes
of planning problems, any problem state can be represented as an assignment to a binary
variables x0, . . . , xm−1 (See the above section about packed representations for propositional
planning as an example). By mapping such assignments to true or false, a set-interpretation
of such a boolean function is straightforward.

Empirical analysis of their compression power [BH08] show that BDDs work remarkably
well in some domains. As the representation allows efficient manipulations on the function (i.e.
set) level, BDDs more or less lend themselves to lifted planning approaches. The basic idea of
lifted, breadth-first search is to start with BDD representations of the successor function δ and
the initial frontier (i.e. a singleton set comprising the initial state) l0 = {i} of a problem. Layer
expansions can then be computed as the composition of δ and the layer, i.e. ln+1 = δ ◦ ln. Goal
checking can also be done on the function level by an existential abstraction of g (the BDD
encoding the goal state-set) and a layer, i.e. evaluating the predicate ∃s : g(s) ∧ l(s) where s
is some complete variable assignment.

Their spatial and computational efficiency depends on the size of the underlying graph.
As even space-optimized implementations specifically targeted at model-checking require be-
tween 16 to 20 bytes to represent a node, a BDD can quickly require orders of magnitude
more storage than an equivalent packed representation if the normalization process fails to
uncover lots of redundancies in the graph. Note the strong dependence on the chosen vari-
able order. Finding good orderings for arbitrary SAS+ instances/domains is more or less an
open problem. Work done so far has mostly focused on exploiting static domain properties
captured in the variable’s causal graphs (see [EH01]). A particular problem with exploiting
dynamic (i.e. set-specific) properties through dynamic reordering is that this order pertains to

81

CHAPTER 4 State-set Representation

all represented sets and the quality of such an order can hence deteriorate quickly as more
sets are created during a search. This can lead to large spikes in peak memory requirement
before re-orderings can bring the size back in check and significant computational overhead
as reordering a large BDD is a relatively expensive operation and dynamic optimization tech-
niques usually require multiple iterations to find a good order. A more severe problem is the
representation’s dependence on problem structure. A particularly challenging case is when
state variable assignments in a set represent permutations, in which case Hung has shown
that the number of nodes in a BDD is always a function of the number of represented states,
regardless of the variable ordering [Hun97]. This happens for example when a task includes
some assignment (sub)problem (i.e. of some mutually exclusive resource to different entities,
or the position of the agent in the apartment domain of chapter 2) which is quite common in
classical planning. Pathologic examples of assignment problems are the sliding-tile puzzles
(see also[EK08b]). Another barrier for employing BDDs with many search algorithms is that
there is no efficient way of associating data with individual states. The usual workaround is
inverse association, where sets are divided into disjunct subsets corresponding to the values
of associated data. This scheme works well as long as these subsets remain large or in other
words there is little variance in the associated data. For high variance data this is usually not
workable as the resulting large number of small sets (i.e. BDDs) offer little opportunity for
graph compression along with high house-keeping overhead.

In all BDDs, when coupled with suitable search algorithms, are a powerful representation
technique in amendable domains. However those only represent a faction of relevant problems.
For example, while the domains chosen for the optimal sequential track at the last international
planning competition were by and large favorable to BDD compression as demonstrated by
GAMER’s [EK08a] overall performance(see [HDR08] for the detailed results), it failed to
solve even the smallest instances in domains (e.g. parc-printer) that deviated from that trend.

4.2 LOES - the Level-Ordered Edge Sequence

In this section, I will describe the Level-Ordered Edge Sequence (LOES) a technique for
space-efficient set representation in state-space search. The main motivation for its devel-
opment was to address the widely varying space and time performance of BDDs in many
domains. For qualitative and quantitative performance comparisons, I chose packed represen-
tation as a baseline, as it is both popular in practice and its sizes scale linearly in the number of
represented states and their complexity. As the later evaluation will show relative performance
of BDDs over packed representations ranges from exceptional (i.e. unguided search in grip-

82

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

per) to dismal (guided search in the n-puzzles) based on structural properties of the underlying
domain.

Additionally, as mentioned above, BDDs are problematic when represented sets are small
or ancillary information for elements must be stored. A practical example for the former case
is best-first search in conjunction with pattern databases. As their (potentially) space-efficient
representation in BDDs enables one to employ more informative (i.e. usually larger and less
abstract) PDBs, the cardinality of h-values in the database necessarily increases. To avoid
re-opening nodes, most unit cost search algorithms expand equal f -estimate candidates in
ascending order of their g-values. Ceteris paribus, this leads to fragmentation of the frontier
into large numbers of equally promising (and individually small) state-sets, accentuating the
weaknesses of BDDs as associative structures through the corresponding decrease in space
efficiency. The work done on automatic fragmentation (see [JBV02]) omits discussing space
efficiency (probably for this reason) and reports sizable gains in time efficiency only in com-
parison to undirected BDD search on a very small subset of the structurally well-behaved
BDD domains. Likewise, there is little evidence supporting the restriction to weak heuristics
or undirected search in order to employ BDDs is universally worthwhile from a performance
viewpoint. Domain independent planners (and architects of a domain dependent planners) ben-
efit from a representation (at least as a fallback) that is reasonably robust to structural domain
properties.

LOES aims to combine the robustness of proven techniques such as packed representations
with the benefits of redundancy elimination across set members. Its design goal was to offer
good spatial efficiency over a wide amount of domains with a strong worst-case guarantee.
Usual operations need to be supported in a time and space efficient way. Of particular practical
concern are their peak memory requirements. To enable efficient directed search, association
of data to individual set elements should be possible with little time and space overhead.

The idea is to logically represent state-sets as prefix trees (analogous to the compressed
graph representation of BDDs), provide a space-efficient encoding for these trees which allows
time efficient execution of the required operations on the compressed structure and a way to
efficiently adapt these trees as new elements are inserted during a search. In comparison to
the less constrained BDD graphs, LOES only allows for a lesser degree of exploitation of
redundancies amongst set members -namely commonalities and correlations of elements’ state
variable assignments- however the more regular nature of the resulting graphs is amenable to
a much more efficient in-memory representation. Like BDDs all set operations can execute
directly on the compressed structure. Unlike BDDs all operations sport very little memory
overhead. In contrast to BDDs, LOES allows economic association of arbitrary data records

83

CHAPTER 4 State-set Representation

s0 : 110

s1 : 000

s2 : 100

0 1

0

0 0 0

1

0

Bit0

Bit1

Bit2

FIGURE 4.6 Prefix tree for a set of three states.

with individual states, i.e. it can be used as a map or dictionary.

4.2.1 Conventions

First, some necessary conventions and definitions. A reasonable assumption holding in most
planning formalisms is that the encoding size of a state of a search problem can be determined
upfront (e.g., before the start of the search). For example in pSTRIPS, states can be repre-
sented as fixed-size bit vectors, where each bit represents the assignment to one conditional
variable of the problem instance. For SAS+ or other multi-valued formalisms, array, packed
or combined representations (as are shown in figure 4.3 above) can be used to represent world
states as fixed-length bit-strings. Without loss of generality, I assume that any state for a given
problem can be encoded in m bits. In the following I will refer to these state encodings as
bit-strings or simply strings. Any set of such states (i.e. their strings) can be mapped into an
edge-labeled binary tree of depth m with labels true and false like the example set in figure
4.6. Each level of the tree represents a bit position of the member strings. Edges from a node
at level i denote true or false assignments to the bit at position i in the string. Every path from
the root to a leaf in such a binary tree corresponds to a unique state within the set and can be
reconstructed by the respective sequence of edge-labels. The mapping is hence bijective. In
this context, I will refer to this logical interpretation of a set of strings as its prefix tree because
all elements represented by a subtree rooted by some inner node at level i share a common
prefix b0 . . . bi in their string representation denoted by the path from the root to that node.

84

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

Bit0 → Bit1

Bit1 → Bit2

Bit2 → Bit0

s0 : 110

s1 : 000

s2 : 100

s�0 : 011

s�1 : 000

s�2 : 010

Permutation0 1

0

0 0 0

1

0

0

0

0 0

1

1

9 Nodes 7 Nodes

FIGURE 4.7 Permuting the encoding’s bit-order can reduce the size of a prefix tree.

4.2.2 Prefix Tree minimization

The order (and hence storage efficiency) of a prefix-tree graph depends on the average length
of common prefixes shared between elements of the represented set. This in turn can be influ-
enced by reordering the bits of the state-encoding (see Fig.4.7 for an example). One way to
find a suitable order efficiently is a greedy search through the permutation space of the state
encoding maximizing the average length of the prefixes amongst set elements at each step.

4.2.3 Sampling representative states

As the permutation space is quite large (i.e. m!), the first step is to generate a representative
sample set of domain states. If the problem is to solve a specific instance of a domain the
following simple algorithm already provides good results. As one is only interested in states
reachable in the instance, it makes sense to start with a singleton set comprising of the initial
state. At each iteration one randomly picks a state from this set, generates its successors and
add them back to the set. The process ends after the set has either grown to a specified size or a
fixed number of iterations have been executed, whichever happens first. The random selection
is aimed at generating a good sample of valid states at different search depths.

85

CHAPTER 4 State-set Representation

Algorithm 10: PERM-SEARCH
Top-down, greedy search of sampleset for a permutation of bit positions that minimizes
the entropy of subtree sizes at each tree level.

Input: sampleset a set of sampled states
Output: bitorder a permutation of the state encoding

subtrees← {sampleset};
bitorder← 〈〉;
while unassigned bit-positions do

foreach unassigned bit-position p do
subtreesp ← {∅};
foreach S ∈ subtrees do

Sptrue ← {s ∈ S : s[p] = true};
Spfalse ← S/Sptrue;
subtreesp ← subtreesp + Sptrue + Spfalse;

end
end
p∗ ← argmin

p
{H(subtreesp)};

bitorder← bitorder ◦ p∗;
subtrees← subtreesp

∗
;

end

86

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

4.2.4 Analyzing the sample set

Then a suitable permutation or more precisely bijective mapping of bit-positions to tree levels
can be deduced by greedily constructing a prefix tree over these sample states in top-down
fashion. Algorithm 10 gives the pseudo code for perm-search. Each iteration begins with sets
for each leaf node of the current tree, holding the subset with the prefix corresponding to
the path from the root to the leaf node. The process starts with a single leaf-set comprising
all states of the sample set, an empty bit-order and all bit-positions designated as candidates.
During an iteration the algorithm examines each remaining unassigned candidate bit and com-
putes the temporary new tree layer incidental to tis selection by partitioning each set according
to the value of this bit in its states. To maximize average prefix lengths it selects the candidate
with the least entropy in its leaf-sets as next in the bit-order. It terminates after m iterations,
when all candidates have been assigned. Intuitively this process will move bits whose value is
near-constant in the sample set to the most significant bit positions in the permuted string.

4.2.5 On Prefix Tree Encodings

While prefix trees can eliminate quite a bit of redundancy amongst set-members, standard
in-memory representations often result in a size increase in comparison to a packed repre-
sentation. The culprit are pointers, each of which require up to 8 bytes of storage on current
machines (c.f. the 16 to 20 bytes required to store a BDD node). An alternative are pointer-
less structures such as the Ahnentafel2 representation of binary heaps. A historical Ahnentafel
established the generation order of individuals solely through their positions in the document.
At the first position is the subject. The ordering rule is that for any individual at position i, the
male ancestor can be found at position 2i and the female ancestor at position 2i + 1 with the
offspring to be found at position bi/2c (see Figure 4.8 for one of the first such documents).

In this way, a full binary tree is stored in an array through a bijection which maps its ele-
ments (individuals) to positions in the array in level-order (i.e. the order of their generation).
Figure 4.9 gives an example. This technique is well suited for full binary trees (such as binary
heaps), but not a good fit if the tree is sparse as most position are unused overhead. However
the scheme can be adapted to the sparse (or general) case in a straightforward manner. The fol-
lowing encoding of general binary trees was supposedly first introduced by Knuth [Knu73].
Given some binary tree, each “missing” child is replaced with special terminating nodes. Then
the tree is converted into a bit string by traversing it in left-to-right level-order. For each regu-
lar node a 1 bit is appended to the string and for each terminating node a 0 Bit is appended. An

2German for ancestor table.

87

CHAPTER 4 State-set Representation

FIGURE 4.8 The first Ahnentafel published by Michael Eytzinger in Thesaurus principum hac
aetate in Europa viventium Cologne: 1590, pp. 146-147, showing the ancestry of Henry
III of France. Note that for older generations on the right, the tree structure collapses into
strings, in which the relative positions of the entities defines their relationships.

b0

b1 b1

b2 b2 b2 b2

0

1

0 1 0

1

0 10 10 10 1

B L B L L L

b0b1b2
1 1 0
0 0 0
1 0 0

FIGURE 4.9 Binary prefix tree and corresponding Ahnentafel representation of a set of three
states. Table entries discern between the presence of the left, right and both children at a
node. Hatched entries represent unused overhead.

88

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

111100000

1

0

1

1

1

0 0

0 0

FIGURE 4.10 A sparse binary tree (left). The tree with added terminating nodes (middle). Bi-
nary code for the left-to-right level-order traversal (right).

example is given in figure 4.10. For an n node tree, this results in an 2n + 1 length bit-string.
The idea of an induction proof is as follows. A single node tree comprises of the node and
two terminating nodes or a 3 bit string. If any n− 1 node tree can be encoded in 2n− 1 bits,
any n node tree can be encoded in 2n + 1 bits by beginning with an n − 1 tree that differs in
only one position, replacing the terminating node with the differing node and adding two new
terminating nodes. The resulting bit-string hence grows by 2 bits.

As this is a level-order encoding, the following holds. Say the bit of a node is at some
position p in the string , then i (i.e., its order or rank in the level-order traversal) can be
determined by counting the number of set bits in the string from its beginning up to p. The
children of this node can be found at positions 2i and 2i+ 1 in the encoding .

4.2.5.1 Binary Tree Encoding from the Perspective of Information Theory

Now a short information-theoretical digression on binary trees to show that such an encoding
of the tree structure is close to optimal. The number of different binary trees with regards to
their order (i.e. number of nodes) can be derived as follows [dS58]. There is only one empty
and one single node tree configuration. Higher order trees always comprise of a root node and
n − 1 nodes amongst its two subtrees. Thus if the first subtree has i ∈ [0;n − 1] nodes, the
second must be of order n − 1 − i. From these observations a recursive generating function
(see 4.1) can be derived straightforwardly - the corresponding series is known as the Catalan

numbers (note that the Catalan series plays a far more central role in combinatorics than this
short section might suggest; for a more in depth treatment see [S+99]).

89

CHAPTER 4 State-set Representation

C0 = 1

C1 = 1

C2 = 2

C3 = 5

FIGURE 4.11 First four numbers of the Catalan Series and corresponding binary trees.

Cn =





1 if n = 0

n−1∑

i=0

CiCn−1−i else
(4.1)

Figure 4.11 gives C0 to C3 with the different specific binary trees of the corresponding de-
gree. By considering some enumerative function that bijectively maps binary trees of order n
to the co-domain 0 . . . Cn − 1, computing the base 2 logarithm of Cn gives the information
theoretic minimum number of bits required to represent a general binary tree of n nodes in the
“worst case” (i.e. by assuming all trees have an equal likeliness to occur). Stirling’s approxi-
mation gives log2Cn as 2n+ o(n) 3. It is worth pointing out that general k-ary trees (where a
node can have up to k children) can be bijectively mapped to binary trees of the same degree
(and number of edges) using techniques such as left-child right-sibling (LCRS). Hence these
deliberations extend to general trees of n nodes.

3note the little-o notation, i.e. lim
n→∞

o(n)
n = 0

90

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

4.2.5.2 Succinct Data Structures

Jacobson has introduced the term succinct data structure for any data type representation
that uses space “close” to the information theoretic lower bound while allowing efficient in-
place search and navigation [Jac88]. There are quite a few encodings that achieve 2n bits per
node on ordered n-ary trees (where there is some total order defined for the children of a
node). During encoding, the tree is usually traversed in level- or pre-order (breadth-first or
depth-first order in search terminology). Nodes are commonly stored either as sequentially
concatenated bit-strings of i true bits terminated by a false bit for a node with i children or
nested pairs of parenthesis. Two well known succinct data structures based on such encodings
are the Level-Ordered Unary Degree Sequence (LOUDS see [Jac88]) using level-ordered,
concatenated node records and Balanced Parenthesis (BP, see [MR02]) using nested pairs
of open and closed parenthesis in pre-order. Figure 4.12 gives the corresponding codes of
both approaches for a small example tree. For LOUDS, each tree node (other than the root)
accounts for a true bit in its parent’s record and a false bit in its own record, for BP each node
results in exactly 2 bits for the open and close parenthesis. Hence both can encode arbitrary
ordered n-ary trees in 2n bits per node. As most succinct data structures, efficient navigation is
implemented on top of two fundamental functions, rank and select. Rank computes the number
of occurrences of a symbol in a string up to a given index and its inverse select, computes the
index of the n-th occurrence of a symbol. Constant-time (and hence efficient) implementations
for both functions are possible using directories of less than n bits (see [Eli74]), hence LOUDS
and BP qualify as succinct structures. Such structures are used as static maps or dictionaries
over semi-structured data such as large, static XML documents[DRR06].

4.2.5.3 Design Considerations

Level-ordered representations have led a somewhat obscure existence, as pre-order encod-
ings support a superset of navigation operations efficiently. Yet for descending a tree by label
sequence (in other words, a set-member test and hence the most critical operation in the plan-
ning context), it is usually the most efficient organization due its cache-friendly locality of
reference over the first tree levels. A good empirical evaluation of the efficiency of common
navigation primitives on different succinct tree representations can be found in [ACNS10].
Another focus in the design of LOES was to avoid the variable length node records used by
all common succinct encodings, as they necessitate an efficient select implementation to de-
termine record boundaries for the required navigation primitives. The required directory to
support this amounts to a noticeable increase in the size of such structures. In contrast to the

91

CHAPTER 4 State-set Representation

111011001000100

ba c d ef g h

0001011010001111

a

d

g

h

c

e f

b

LO
UD

S
BP

a

b c d

e f g

h

1

2 3 4

5 6 7

8

a

b c d

e f g

h

1

2 5 6

3 4 7

8

FIGURE 4.12 Level-order (equivalent to LOUDS without the abstract supernode as defined in
[Jac89]) and balanced parenthesis encodings of an example tree. The numbers at each node
give the respective encoding order.

92

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

0

0

0 0

1

1

1

2

3 4

10111011

FIGURE 4.13 LOES code for the three state example set. The numbers at each node show the
logical tree traversal during encoding.

ordinal LOUDS and BP encodings, which concern themselves solely with representing tree
structure as a means to address node information in a separate array, LOES stores the entire
(key)set information within the encoding and exploits the known size of the represented state
encodings. Most importantly however it is designed in a way that it can accommodate updates
to the key-set in amortized O(log(n)) time.

4.2.6 The LOES Encoding

The logical tree encoding for LOES is straightforward. The prefix tree is traversed in level
order and for each inner node a 2-bit record is appended to the LOES string. The first bit in
the record denotes whether a false edge originates from that node, the second bit analogously
denotes the presence of a true edge. This exploits the known tree depth, resulting in less than
2n bits in the code and comprises the entire information associated with the prefix tree, i.e.
there is no need for an external label file to reconstruct the set from the LOES code. In fact,
for the above type of prefix trees, the encoding resembles Knuth’s when it is pruned of the
first and last level of bits (as each node in the tree has exactly one incoming edge). Figure
4.13 shows how this allows to encode the example set in a single byte, little more than half the
length of the more general encodings mentioned above.

93

CHAPTER 4 State-set Representation

0 1

0
0 0 0 0

1

1 11 1
1

0

b0b1b2b3 → b2b3b0b1

s0 : 0001→ 0100

s1 : 0101→ 0101

s2 : 1001→ 0110

s3 : 1101→ 0111

0 1

0

1 1

0

0
1

15 nodes, 22 bit

1111111010101001010101 1001111111

9 nodes, 10 bit

FIGURE 4.14 Encoding permutations for a set of 4 states resulting in worst and best-case prefix
trees. The corresponding LOES is shown at the bottom.

4.2.7 Size Bounds of LOES Encodings

For a set of i unique states, the prefix tree is maximal, if the average common prefix length
of the states is minimal. Intuitively this results in a structure that resembles a perfect binary
tree up to depth k = blog2 ic and degenerate trees from each of the nodes at depth k. Hence
the set-tree will at worst encompass i + i(m − k) nodes. For large sets of long states (i.e.
k = log2 i� m� i) this is less than (m+1)i nodes. As each node (with the exception of the
tree root) has exactly one (incoming) edge and each record in LOES holds at least one edge,
the code will at worst be about twice the length of the concatenation of packed states in the
set. The complete formula is given as equation 4.2.

ubLOES = 2︸︷︷︸
bit

node

(2i︸︷︷︸
0...blog2 ic

+ i(m− blog2 ic)︸ ︷︷ ︸
blog2 ic+1...m

− i︸︷︷︸
leaf nodes

︸ ︷︷ ︸
inner nodes in the prefix tree

) bit ≤ 2i(m+ 1) bit (4.2)

The best case results from the opposite situation, when the structure represents a degenerate
tree up to depth j = m− blog2 ic, followed by a perfect binary tree on the lower levels. Such
a tree comprises of 2i+(m− j) nodes, of with each record in the binary tree holds two edges.

94

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

0

0

0 0

1

1

10111011

2rank(0) = 2

FIGURE 4.15 Tree navigation through the LOES using the rank function.

For large sets (i.e. m � i), 2i bits is hence a tight lower bound on the minimal length of the
LOES code. Figure 4.14 gives an example and equation 4.3 the related formula.

lbLOES = 2︸︷︷︸
bit

node

(iblog2 ic︸ ︷︷ ︸
0...blog2 ic

+ 2i︸︷︷︸
m−blog2 ic+1...m

− i︸︷︷︸
leaf nodes

︸ ︷︷ ︸
inner nodes in the prefix tree

)bit ≥ 2ibit (4.3)

4.2.8 Mapping Tree Navigation and Set Operations to LOES

For use in state-space search or planning a set/map data structure needs to support four oper-
ations in a time and space efficient way:

• Set-member queries.

• Bijective mapping of the set’s i elements to integers 0 . . . i− 1 to allow efficient associ-
ation of ancillary data to states

• Iteration over the set elements.

• Insertion of new elements.

All of these operations require efficient navigation through the LOES string. The level-order
encoding guarantees that for any edge in the sequence at some offset o, the record this edge
points to points to can be found at offsets 2rank(o) to 2rank(o) + 1, where rank is a function
that gives the number of set bits in the sequence up to (and including) offset i. This is, because
each set bit (present edge) in the LOES code results in an edge-pair record for the target node

95

CHAPTER 4 State-set Representation

...11...01...11...00...

512 bit

65536 bit

i

j

rank(i− 1)

block level

rank(j − 1)− rank(i)

sub-block level

16 bit

64 bit

FIGURE 4.16 Structure of the two level rank dictionary.

on the next level (with the exception of the leaf level). As these records are stored in level
order, all preceding (in the LOES) edges result in preceding child records. Hence the child
record for some edge at offset o will be the rank(o) + 1-th record in the sequence (as the root
node has no incoming edge). Transforming this to offsets with 2-bit records, 2rank(o) and
2rank(o) + 1 then give the respective offsets of the edge’s target node’s false and true edges.
Again, note the logical correspondence to the Ahnentafel encoding for binary heaps. Figure
4.15 shows this for the small example set.

4.2.8.1 Fast Rank Computation

The most basic implementation of rank is a linear scan of the LOES code. Navigating a tree top
to bottom requires a rank computation at every level. As sets and hence the code can get very
large, path computation with O(nm) cost operators is not feasible in practice. An appropriate
implementation of rank is backed by a two-level dictionary, which logically partitions the
LOES into blocks of 216 bits and sub-blocks of 512 bit. For each block, the index holds an
8-byte unsigned integer, denoting the number of set bits from the beginning of the sequence
up to the beginning of the block. On the sub-block level, a 2-byte unsigned integer for each
sub-block stores the number of set bits from the beginning of the enveloping block up to the
beginning of the sub-block. Figure 4.16 gives a graphical representation of this structure. The

96

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

relative block overhead of this dictionary is hence

64

216︸︷︷︸
block index

+
16

29︸︷︷︸
sub-block index

≈ 0.0323 (4.4)

The dictionary can be constructed quickly with a linear scan through the LOES. I omit the
pseudocode as it is extremely straightforward.

Algorithm 11: RANK
The rank function computes the number of set bits from the beginning of a sequence up
to (and including) offset.

Input: offset an offset
Output: number of set bits in LOES[0;offset]
Data: LOES an encoded state-set
Data: blocks block level of the dictionary
Data: subblocks sub-block level of the dictionary

rank← blocks[boffset
216
c] ; /* blocks[offset� 16] */

rank← rank + subblocks[boffset
29
c] ; /* blocks[offset� 9] */

for i← 23boffset
29
c to boffset

26
c do

w ← LOES[i] ; /* next uint64 of the LOES */

if i = boffset
26
c then /* prune extra bits */

w ← w
263−offset mod 64 ; /* w � (63− (offset ∧bw 0x3F)) */

end
rank← rank + popcount(w);

end
return rank;

With this dictionary, the rank function comprises of straightforward look-ups of the block
and sub-block indices and set-bit counting within the sub-block. As the operation is critical
for the performance of all set primitives, algorithm 11 gives an exhaustive description for an
implementation on a 64-bit machine (assuming bit addressing from most to least significant bit
within a word). Note that necessary computations map to a few memory-lookups, single-cycle
shifts and bitwise-conjunctions as indicated by the comments.

The popcount function computes the number of set bits in a machine word. This is im-
plemented in hardware for many current consumer level CPUs 4. For the evaluated imple-
mentation, I used a simple software fallback given in listing 12. For formatting reasons, the

4the instruction is optional on the common INTELr IA64 and AMDr x86-64 ISAs, support is indicated by the
CPUID.01H:ECX.POPCNT[Bit 23] flag.

97

CHAPTER 4 State-set Representation

Algorithm 12: POPCOUNT
Software implementation of popcount on 32-bit words.

Input: value a 32-bit integer
Output: count number of set bits in value

// 16 pair counts
1 value← value− ((value� 1) ∧bw 0x55555555);
// 8 quad counts

2 value← (value ∧bw 0x33333333) + ((value� 2) ∧bw 0x33333333);
// 4 octet counts, accumulate to highest byte and normalize

3 count← ((value + (value� 4) ∧bw 0x0F0F0F0F)0x01010101)� 24;

algorithm is given for 32-Bit integers, but straightforwardly extends to larger types. In the first
line, all 16 2-bit pairs are counted. In the second line these are combined to 8 4-bit counts and
then again to 4 8-bit counts in the final line, after which all bytes are accumulated to the most
significant byte which is then normalized through a shift. More efficient implementations exist
for larger chunks (see [EQ01]). Implementing rank like this results in an O(1) operator with a
very small constant and makes it an efficient building block for the required set operations.

4.2.8.2 The Path-Offset Function

The first such set operation is the path-offset function (Algorithm 13). It navigates through the
LOES according to the label-sequence interpretation of a state. Logically it begins at the root
of the prefix tree represented by the LOES. If the state maps to a valid path from the tree root
to some leaf, path-offset returns the offset of the bit corresponding to the last edge of the path.
Else it evaluates to ⊥. An example is given in figure 4.17

4.2.8.3 Set-Member Testing

With the path-offset function in place, member tests are straightforward (see Listing 14). As
set contains a state, if and only if its label interpretation corresponds to a valid path through
the prefix tree, one simply needs to check whether path-offset returns a valid offset.

4.2.8.4 Set-Member Indexing

The member index function (Algorithm 15) maps states to values {⊥, 0, . . . , n − 1}. It is
bijective for all member states of the set and hence allows associating ancillary data for each
member through offset addressing and hence without resorting to pointers. The idea is that

98

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

Algorithm 13: PATH-OFFSET
given an encoded state, path-offset navigates the LOES according to the states path
interpretation

Input: state a bitsequence of length m
Input: LOES an encoded state-set
Output: offset an offset into LOES or ⊥
offset← 0;
for depth← 0 to m− 1 do

if state[depth] then
offset← offset + 1;

end
if LOES[offset] then

if depth = m− 1 then
return offset;

end
else

offset← 2rankLOES(offset);
end

end
else

return ⊥;
end

end

Algorithm 14: MEMBER-TEST
Member-test computes whether state is in the set encoded by LOES.

Input: state a bitsequence of length m
Input: LOES an encoded state-set
Output: true iff state is represented in LOES

return (path-offset(LOES, state) 6= ⊥);

99

CHAPTER 4 State-set Representation

has s =001?

o0 = s[0]

10111011

o

0

0
0 0

1
1

o1 = 2rank(o0) + s[1] = 2

10111011

o

0

0

0 0
1

1

10111011

o

o2 = 2rank(o1) + s[2] = 5

pass! pass! fail!

1

0

0

0 0

1

1

∅

FIGURE 4.17 Path-offset computation for an encoded state s = 001 over a LOES code corre-
sponding to the example set. At each level, the offset of the associated edge-presence bit
is computed and the LOES tested at the offset. If the corresponding bit is set, the process
continues at the next level (or returns the offset at the last level), else ⊥ is returned.

Algorithm 15: MEMBER-INDEX
Member-index maps state to {⊥, 0, . . . , n− 1} such that for all states in LOES, the
mapping is bijective.

Input: state a bitsequence of length m
Data: LOES an encoded state-set
Data: levelOffsets array of offsets denoting the positions of the last set bits at each level

o← path-offset(state);
if o = ⊥ then

return ⊥;
end
a← rankLOES(o);
b← rankLOES(levelOffsets[m− 1]− 1);
return a− b− 1;

100

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

1
0 0

1

 4-3-1=0
 5-3-1=1
 6-3-1=2

10111011

 34 56

0

0

s0 = 000→
s1 = 010→
s2 = 011→

rank

FIGURE 4.18 Index mappings for all states in the example set. One subtracts rank+1 (of the
offset) of the last edge in the last-but-one level from the rank of the path-offset of an element
to compute its index.

101

CHAPTER 4 State-set Representation

time
key insertion

key lookup

FIGURE 4.19 The lifecycle of a memoization component in dynamic programming comprises
of key lookups to retrieve or update the associated data, as well as insertions of new key-
data pairs.

the path interpretation of each state in the set ends in a unique (to this state) edge at the leaf-
level of the tree. The ranks of these bits in the LOES form a consecutive range, One can use
path-offset to compute the associated offset of that bit for a member state. Computing the
rank of that offset, gives the corresponding unique integer for that state. These values can be
normalized to the desired [0;n) interval by subtracting the rank of the last offset of the last but
one layer plus one (i.e. the rank of the first set bit in the last layer). Figure 4.18 shows how this
uniquely maps constituents of the example set to the range [0; 2].

4.2.9 Building a Dynamic Data-Structure for Dynamic Programming
based on LOES

The LOES code as described so far is a domain-specific adaptation of familiar level-order
tree encodings. As other approaches, it is static as additions of an element necessitate changes
to the bit-string that are not locally confined and the cost of such naive insertion is hence
O(n) making its direct use unpractical for scenarios where the tree structure changes regu-
larly such as dynamic programming where new keys have to be inserted regularly. This is
particularly true in the large problems LOES is aimed at where the key set can comprise of
hundreds of millions of states. In the following, I will show that for the purposes of dynamic
programming, a memoization component based on LOES can be constructed that guarantees
worst-case O(log(n)) lookup and insertion costs. For brevity and clarity (and following the
usual conventions) I refer to any operation that only depends on the complexity of keys (i.e.
the length of their bit-sequences) as constant time.

First, figure 4.19 gives an example at how a memorization component is employed in dy-
namic programming. Over its lifecycle, data is looked up for keys, new data is associated with
keys and finally new key-data pairs are inserted. Newly discovered subproblems (i.e. keys) are
generally never discarded in DP, making the memorization component grow monotonically

over time. Note that the first two operations do not change the key set in any way and are

102

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

b ad c

b d a c

b da c

lo
g
(n

)

n

FIGURE 4.20 In a merge-sort, beginning from n single element sequences (which are trivially
sorted), sorted sequences of size k are iteratively combined to sorted sequence of size 2k
until the final sorted n element sequence is constructed.

covered by the above query algorithms in O(1) time (i.e. their complexity is independent of
the number of keys in the set).

To see how this lifecycle can be exploited consider the standard merge-sort algorithm
[Knu73]. In a merge sort, a sequence of n elements is first split into n singleton sequences that
are sorted by default. Then in each iteration, pairs of sorted sequences of size k are converted
into a sorted sequence of 2k elements. Figure 4.20 shows this graphically. Such a transfor-
mation can be computed in linear time in the length of both sequences. As there are log(n)

iterations and each iteration comprises of sequences of a combined length n, merge-sort is an
O(n log(n)) algorithm.

For now I want to assume, that two LOES sequences of n and m keys over compatible
key-spaces can be “merged” into a new LOES sequence comprising the union of both keys
in an O(n + m) operation. Now consider an memorization component that comprises of an
array of LOES sequences where the position of a LOES corresponds to the number of merges
the set has participated in. When a new key is added to this structure, it is first converted into
a LOES code with merge count 0. If the corresponding position in the array is free, the new
LOES is simply inserted in this position. Otherwise, it is merged with the prior occupant, its
merge count incremented and the insertion-merge process continues.

Note that over the lifecycle of the component, this resembles a merge sort and inherits its
complexity guarantees under the assumption of linear cost set merges and constant cost sin-
gleton construction. In other words this scheme guarantees a worst case insertion complexity
of O(n log(n)) after n insertions and hence an amortized O(log(n)) complexity per insertion.

103

CHAPTER 4 State-set Representation

The price is that lookups and data-changes now have to be executed against multiple LOES
sets, but this scheme guarantees that such a composite set of n nodes can comprise of no more

than log(n) LOES codes at any time. As the lookup operations only depend on key complexity,
these operations are O(log(n)) in the worst case. In other words, the amortized complexities
of queries and insertions are the same as for pointer based tree-structures such as AVL- or
Red-Black trees.

Figure 4.21 shows the transformations and their corresponding merge-sort analogues for
the example lifecycle given in figure 4.19. Note that the amortized insertion cost and query
cost per element is upper bounded by O(log n) at any time in the lifecycle. A singleton LOES
set can be trivially constructed from an m bit key, by concatenating m 10 and 01 records
depending on the bit configuration. For a fixed key-length, this operation is trivially constant
time. What remains is to devise a way to merge two LOES encoded sets in linear time. To
elaborate on this topic, I first want to show how the keys encoded in a LOES can be retrieved
in lexicographic order in linear time.

4.2.9.1 Lexicographic Set-Member Enumeration

Algorithm 16: IT-ADVANCE
Given an iteration state offsets corresponding to a LOES element, It-advance modifies
this state such that it corresponds to the next element in the LOES.

Data: LOES an encoded state-set
Data: offsets an array of LOES offsets (Iteration state)

level← m− 1;
continue← true;

for continue & level ≥ 0 do
recid ← boffsets[level]

2
c;

repeat
offsets[level]← offsets[level] + 1;

until LOES[offsets[level]] = true;
continue← recid 6= boffsets[level]

2
c;

level← level− 1;
end

This iteration works by logically iterating over the set bits in the LOES subranges corre-
sponding to the levels of the tree in parallel. Iteration state is represented by an array of offsets
into the LOES, one for each level. This state is initialized with the offsets of the first set bit in
each level, that is the path interpretation of the first set element. These offsets can be computed

104

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

time

b ad c

b d a c

b da c

d0
db

0
1

b ad c

b d a c

b da c

db
0
1

a 0
1

dcba2

b ad c

b d a c

b da c

b ad c

b d a c

b da c

1 2 3 4 5

FIGURE 4.21 Given an example history of updates and queries, the above diagram shows the
LOES file configuration after each update and the analogous merge-sort operations corre-
sponding to the update in blue. Operations corresponding to previous updates are shown in
orange. The first key-insertion creates a singleton LOES code from key d. As the 0-merge
position in the merge-array is empty the code is directly inserted. The second insertion starts
out the same, but as the 0 position is now occupied by d, the d code is removed, merged
with the b code and the resulting b, d code inserted at the 1-merge position. Insertion of a
works analogously to insertion of d. Note that now multiple positions in the merge-array
are occupied, hence query 4 has to be executed against both the a and b, d codes, but as
each atomic query is O(1) the dlog2(n)e = O(log(n)) worst-case complexity guarantee is
upheld. The insertion of key c finally leads to two cascading merges. As 0 is occupied in
the array, first the a, c merged code is created and as 1 is occupied, a second merge takes
place and the resulting a, b, c, d code is stored at the (free) 2-merge position.

105

CHAPTER 4 State-set Representation

0

0

0 0

1
1

0

0

0 0
1

1

0

0

0 0

1
1




0
2
4




o

(mod 2)−−−−−−→




0
0
0




s

10111011
o0 o1 o2

10111011
o0 o1 o2

10111011
o0 o1 o2


0
3
6




o

(mod 2)−−−−−−→




0
1
0




s




0
3
7




o

(mod 2)−−−−−−→




0
1
1




s

FIGURE 4.22 Iteration over the example set. The first row shows the LOES offsets (i.e. the
iterator state) at each iteration stage. The second row shows how the associated element
in the LOES can be reconstructed by field-wise (mod 2) application to these offsets. A
graphical representation of the prefix tree with the respective element highlighted is given
in the last row.

by single walk from the root to the first leaf (i.e. following the first set bit at each level) in O(1)
(as individual steps take constant time and the tree depth is only dependent on key complex-
ity). The iteration finishes when the leaf-level offset is advanced past the last set bit in the
LOES. Algorithm 16 gives the pseudocode for advancing the iteration state from one element
to the next element in the set. Beginning at the leaf-level, the respective offset is advanced to
the next set bit. If the offset passes a record boundary (every 2-bits) the process continues at
the next higher level. As at least one bit is set per record, the operation comprises no more than
2m offset increments. Figure 4.22 shows the different iteration states for our running example.

Algorithm 17 shows how to reconstruct the represented element given the offsets of the
edges corresponding to its path interpretation at each level. It exploits the invariant that even-
offsets into the LOES always correspond to false labels and odd-offsets to true labels. Hence,
a simple modulo 2 of the offset will produce the corresponding bit assignment. Note that the
iteration scheme guarantees to return keys in ascending lexicographical order. Over the course
of the iteration each offset variable traverses over its corresponding level and looks up the
corresponding bit values, that is all positions in the string will be referenced and accessed ex-
actly once by some offset. As the worst-case length of a LOES code is linearly bound by the

106

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

Algorithm 17: IT-EXTRACT
Given an iteration state offsets corresponding to a LOES element, It-extract reconstructs
the original bit-string of the element.

Output: state a bitstring of length m
Data: offsets an array of LOES offsets (Iteration state)

for i← 0 to m− 1 do
if offsets[i] mod 2 then

state [i]← 1;
end
else

state [i]← 0;
end

end

number of its represented keys, the complexity of lexicographic enumeration is O(n). Given
two lexicographically ordered sequences of elements of sizes i and j, the merged lexicograph-
ical sequence of length i + j can be trivially constructed in linear time, by comparing the
two next elements of both sequences, choosing the precedent according to lexicographic order
and advancing the iteration of the corresponding sequence. This scheme results in a total of
i+ j iteration steps, each of which comprises of a constant cost key comparison (in regards to
the number of elements in the sequence) and a constant cost iterator advancement. Hence the
“merged” lexicographic sequence of keys of two LOES sets of i and j keys can be generated
O(i+ j) time.

4.2.10 Construction of a LOES code from a Lexicographically-ordered
Key-Sequence

What remains to be shown is that such a sequence of lexicographically ordered states can be
transformed into a LOES code in linear time. The idea is as follows. Construction begins with
empty bit-sequences for each layer of the tree. Algorithm 18 shows how these sequences are
manipulated when adding a new state. If the set is empty, corresponding records are merely
appended on all levels. Later insertions start with determining the position or depth d of the
first differing bit between s′, the lexicographically largest element in the LOES (i.e. the last
insertion) and s, the element to be inserted. Then, the last bit of sequence d is set to true.
Finally corresponding (to s) records are appended to all bit-srings > d. Note that duplicates
(i.e. s = s′) are automatically ignored by this process. After the last state has been added, all

107

CHAPTER 4 State-set Representation

Algorithm 18: ADD-STATE
Given a LOES code partitioned by tree level and a state lexicographically greater than the
states represented in the LOES, add-state manipulates the code partitions, such that their
concatenation contains the state (in addition to all prior constituents).

Input: s a bitsequence of length m
Data: treelevels an array of bitsequences
Data: s’ a bitsequence of length m or ⊥
if s’ = ⊥ then

depth← −1;
end
if s’ = s then

return;
end
else

depth← i : ∀j < i, s[j] = s’[j] ∧ s[i] 6= s’[i];
treelevels[depth].lastBit← true;

end
for i← depth + 1 to m− 1 do

if s [i] then
treelevels[i]← treelevels[i] ◦ 〈01〉;

end
else

treelevels[i]← treelevels[i] ◦ 〈10〉;
end

end
s’← s;

108

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

0

0

0

0

0

0 0
1

0

0

0 0

1
1

10
10
10

10
11
1010

10
11
1011

10111011
s0 = 000 s1 = 010 s2 = 011

concatenation

FIGURE 4.23 Construction of the set by adding the example states in lexicographic order with
algorithm ??. After all states are added, the edge sequences are concatenated in level-order
to form the LOES.

sequences are concatenated in level-order to form the LOES. Figure 4.23 shows this process
for our running example. Note that for each insertion consists of at mostm constant time string
operations, where m is the complexity of a key (i.e. the number of bits in its encoding). The
computational complexity of each insertion step is hence independent of the number of keys
in the set. For a set of n keys there are n insertion steps plus the one final concatenation of bit
strings. The total size of these bit strings is a linear function of n. Hence the total computational
complexity of this operation is O(n).

4.2.11 Virtual In-Place Merging

With these operations in place, LOES can serve as a black-box map implementation for dy-

namic programming with amortized O(log(n)) test, update and insertion operations. But a
potential problem remains. In the worst case (consider the case when the merged-indexed
LOES array is completely filled), a single insertion can lead to temporary doubling in required
memory as the two largest order sets are merged. What is needed is a way to free memory
occupied by the two source sets of the merge as it is allocated to the growing target set. This
can be done by exploiting the fact that memory accesses are entirely predictable during an it-
eration. Per level, bit-string positions are accessed in linear sweeps, hence memory associated
to previously accessed positions can be safely freed. For obvious reasons, memory handling

109

CHAPTER 4 State-set Representation

o0 o1 o2

deallocated blocks

traversed positions

FIGURE 4.24 As a LOES code is accessed in multiple disjunct linear scans during iteration,
memory blocks can be freed as soon as all containing bits have been accessed once. The
above figure exemplifies this. In this situation, dotted blocks can be freed as they have been
completely traversed.

on the bit level is impractical, so assume all bit sequences are logically backed by blocks
that are managed by some segregated store. Based on this one can implement a destructive
iteration, that produces all keys in lexicographic order as specified above, but simultaneously
relinquishes ownership of these blocks as soon as it has been completely covered by all corre-
sponding linear sweeps. While this scheme differs from the usual interpretation of “in-place”
operations on first sight, it is related in spirit as the net memory overhead during the trans-
formation is a small number of blocks, only dependent on key complexity (i.e. the number of
levels in the tree). As the level i string of a merged LOES sequence can be at most the sum of
the length of the level i strings in its two constituent sequences, the worst case overhead is 4m
blocks, where m is the key size in bits. Figure 4.24 gives an example.

4.2.12 Practical Optimizations

An easy practical optimization to trade space-efficiency for faster runtime is to represent the
lower order merged sets in a compatible data structure with a lower constant overhead and
higher space cost. Once a set size limit for such a buffer is reached, it is transformed into a
LOES code and from there on treated in the fashion above.

LOES integrates straightforwardly into unit-cost search algorithms. As discussed in the
beginning of this chapter, Open comprises of relatively few, individually large sets of equal
f -estimate candidates. For brevity, I here only sketch the integration of LOES into BFS-DD

110

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

Algorithm 19: BFS-DD-LOES
Breadth-first search with duplicate detection and bulk operations;

Output: an optimal i-plan or ⊥
Open0 ← {i};
Closed ← ∅;
Dict [i]← [];
d← 0;

while Open 6= ∅ do
foreach s ∈ Opend(≡ Frontier) do

foreach o ∈ O s.th. δ(s, o) 6= s do
s′ ← δ(s, o) ;
if s′ ∈ G then

return Dict [s] ◦ o;
end
if s′ /∈ Open ∪ Closed then

Dict [s′]← Dict [s] ◦ o;
Opend+1 ← Opend+1 ∪ {s′};

end
end

end
Closed ← Closed ∪Opend;
Open ← Open \Opend;
d← d+ 1;

end
return ⊥ ;

111

CHAPTER 4 State-set Representation

(c.f. section 2.3.2 and particularly algorithm 3). Heuristic best-first searches work analogously.
In BFS-DD Open comprises (at most) of two layers, the frontier and unique states generated
during expansion of the frontier. The only optimization to the algorithm (see Listing 19) is that
states are not individually moved from Open to Close during layer expansion which would
necessitate the support of efficient deletion, but are moved in bulk after the last state has been
expanded. While I omit details in the listing, LOES significantly simplifies the dictionary
design. It comprises separate stores for Open and Close, each of which holds a sequence of
records of ancillary data (preferably in a packed representation) for the corresponding states.
Organization of these sequences is mandated through the member-index function.

4.2.13 Empirical Comparison of LOES and BDD in BFS-DD

The following empirical evaluation concentrates on (peak-)memory requirements during blind
searches in a range of IPC5 domains. To this end, I implemented a breath-first search environ-
ment for comparative evaluation of LOES and BDD based representations. The BDD ver-
sion is based on the BuDDy package [LNAH+01], a high-performance implementation from
the model-checking community. Both representations provide an identical interface and are
treated as black-boxes by the BFS-DD like algorithm (i.e. the LOES version used the scheme
above with virtual in-place merges and a small insertion buffer backed by an STL map, it-
eration through the BDD was implemented by computing its satisfying set). In contrast to
BFS-DD, I did not use a per-state dictionary in this evaluation as it would have put the BDD
at a severe (spatial efficiency) disadvantage. Instead I organized Close as a set of “former”
frontiers. Note that the solution can be reconstructed once a goal is found by beginning from
a singleton set comprising the goal, repeatedly computing the predecessor set and its inter-
section with the corresponding frontier in Close until the initial state is discovered. While a
somewhat clumsy technique it allows for a good black-box comparison of the two represen-
tations within identical test implementations. Note that this results in multiple membership
tests for each Close lookup (i.e. one for each prior layer), a significant overhead that only
results from making the testbed BDD-“friendly”. Hence the upside and motivation for this
design is that resulting algorithm provides realistic, identical loads with equivalent operations
to both representations. A direct consequence however is that the time comparison to FD is
strongly biased towards the latter (i.e. each Close lookup in layer n of FD corresponds to
n − 1 lookups for the LOES and BDD implementations). The tests were run on (identical)
workstations equipped with Intel 2.26 GHz Xeon processors and 8GB of RAM.

5International Planning Competition

112

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

Instance mloes mfd
mloes

mfd

Blocks-9-0 46.8 1460.3 0.03

Depots-3 17.8 737.2 0.02

Driverlog-7 37.9 3686.1 0.01

Freecell-4 53.7 1092.9 0.05

Gripper-7 13.7 1720.5 0.01

Microban-5 31.6 682.9 0.05

Satellite-4 18.6 101.8 0.18

Travel-6 22.1 225.1 0.10

Airport-9 11.4 171.9 0.07

TABLE 4.1 Peak allocated process memory for LOES and FD on the largest instances FD could
solve in MB.

4.2.13.1 FD’s Time-Space Tradeoff

To provide some context, I ran Fast Downward (FD) in its blind-heuristic mode (h = 0)
over the same instances. FD uses STL containers for all representation tasks, which results in
very fast but large state, set and queue representations. Table 4.1 compares the peak memory
requirements of LOES and FD for the largest instances in each domain FD could solve.

The algorithms used SAS+ representations generated by FD’s preprocessor as input. For
the BDD a variable-reordering using the package’s recommended heuristic was initiated after
each layer. As the order of expansions within a layer is undefined in breadth-first search and
in practice generally depends on the inherent (i.e. most efficient) iteration order of the data
structure, the total number of expansions differs for FD, BDD and LOES. A natural compar-
ison point is after the last but one layer is fully expanded. For spatial reference, I also give
the size of a corresponding, idealized (i.e. no padding or other overhead) concatenation of the
(optimally) packed states in Open and Close (Packed). Note that, Packed also does not include
overhead for buffers and other ancillary structures that the LOES and BDD include and does
not represent FD’s space requirements (c.f. table 4.1).

4.2.13.2 Results by Domain

Tables 4.2 to 4.16 give the results by domain. Individual states on average required between
6 − 58% of the memory of the ideally packed representation on the larger instances of all

113

CHAPTER 4 State-set Representation

airport |O ∪ C| spck sloes sbdd tfd tloes

P1 10 0.00 0.00 0.02 0 0

P2 15 0.00 0.00 0.02 0 0

P3 175 0.00 0.00 0.08 0 0.04

P4 22 0.00 0.00 0.02 0 0.03

P5 30 0.00 0.00 0.04 0 0.03

P6 765 0.01 0.01 0.61 0 0.8

P7 765 0.01 0.01 0.61 0 0.8

P8 27,458 0.57 0.26 9.82 1 43.92

P9 177,075 4.60 1.54 100.32 5 395.58

TABLE 4.2 Runtime and peak-memory requirements of LOES and BDD for instances of the
airport domain. |O ∪ C| is the number of states in Open and Close before the first state
expansion in the goal layer, spck, sloes and sbdd are the peak memory requirements (in MB)
of Packed, LOES and BDD. tfd, tloes and tbdd the respective runtimes in seconds.

test domains. As LOES exploits the same redundancies as BDD (albeit to a lesser degree),
its compression rate is analogous to the latter, albeit the variance is much smaller. LOES in
particular avoids the blow-up BDDs suffer in domains like freecell, microban and the n-
puzzles, showing robustness across all test domains. A key advantage of LOES and Packed
over BDDs not evident in these results is that both allow to easily associate ancillary data to set
elements without using pointers, which is necessary for most search algorithms. LOES also
represents small sets efficiently making it suitable for many best-first algorithms and/or strong
heuristics.

Relative to FD, the results show that the runtime comparison is not in favor of LOES, which
took about 10 and 20 times longer than FD on the larger instances both can solve. As shown
in the table 4.1, FD uses up to two orders of magnitude more memory than LOES. In fact even
on the hardest instances, it generally only ran for less than 5 minutes before either producing
a solution or running out of memory. While certain overhead stems from employing LOES, a
significant part is due to the testbed implementation used in this comparison. The implementa-
tion for example employs a simple successor generator which performs a linear scan over the
set of grounded operators to find the ones whose preconditions are satisfied, whereas FD uses
a decision tree to quickly determine the set of applicable operators. Another source of over-
head is that the implementation is not particularly optimized for bulk insertions and only uses

114

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

blocksworld |O ∪ C| spck sloes sbdd tfd tloes

Blocks-7-0 38,688 0.13 0.09 0.61 0 2.89

Blocks-7-1 64,676 0.22 0.14 1.23 0 7.45

Blocks-7-2 59,167 0.20 0.13 1.23 0 5.56

Blocks-8-0 531,357 2.60 1.37 9.82 5 64.99

Blocks-8-1 638,231 3.12 1.51 4.91 6 87.77

Blocks-8-2 439,349 2.15 1.13 4.91 4 49.32

Blocks-9-0 8,000,866 43.87 19.13 39.29 90 1832.57

Blocks-9-1 6,085,190 33.37 16.54 39.29 73 1265.1

Blocks-9-2 6,085,190 33.37 15.10 39.29 75 1189.86

Blocks-10-0 103,557,485 629.60 271.02 130.84 MEM 110602

Blocks-10-1 101,807,541 618.96 275.43 283.43 MEM 112760

Blocks-10-2 103,557,485 629.60 283.75 130.84 MEM 110821

TABLE 4.3 Runtime and peak-memory requirements of LOES and BDD for instances of the
blocksworld domain. |O ∪ C| is the number of states in Open and Close before the first
state expansion in the goal layer, spck, sloes and sbdd are the peak memory requirements (in
MB or MEM if the process ran out of it) of Packed, LOES and BDD. tfd, tloes and tbdd the
respective runtimes in seconds.

depots |O ∪ C| spck sloes sbdd tfd tloes

Depots-3 3,222,296 19.97 2.77 69.81 72 1174.48

Depots-4 135,790,678 1068.38 147.98 924.29 MEM 373273

TABLE 4.4 Runtime and peak-memory requirements of LOES and BDD for instances of the
depots domain. |O ∪ C| is the number of states in Open and Close before the first state
expansion in the goal layer, spck, sloes and sbdd are the peak memory requirements (in MB
or MEM if the process ran out of it) of Packed, LOES and BDD. tfd, tloes and tbdd the
respective runtimes in seconds.

115

CHAPTER 4 State-set Representation

driverlog |O ∪ C| spck sloes sbdd tfd tloes

Driverlog-6 911,306 3.58 0.81 0.61 21 144.74

Driverlog-4 1,156,299 3.72 0.83 0.61 20 195.22

Driverlog-5 6,460,043 23.10 4.45 1.23 162 1689.65

Driverlog-7 7,389,676 34.36 5.66 1.23 233 2735.61

Driverlog-8∗ 82,221,721 411.67 64.08 4.91 MEM 228181

TABLE 4.5 Runtime and peak-memory requirements of LOES and BDD for instances of the
driverlog domain. |O ∪ C| is the number of states in Open and Close before the first state
expansion in the goal layer, spck, sloes and sbdd are the peak memory requirements (in MB
or MEM if the process ran out of it) of Packed, LOES and BDD. tfd, tloes and tbdd the
respective runtimes in seconds.

freecell |O ∪ C| spck sloes sbdd tfd tloes

Freecell-2 142,582 0.97 0.52 9.82 3 80.81

Freecell-3 1,041,645 9.19 4.47 39.29 25 904.13

Freecell-4 3,474,965 36.04 20.19 100.32 95 4321.72

Freecell-5 21,839,155 278.57 128.10 MEM MEM 53941.8

Freecell-6∗ 79,493,417 1137.16 519.96 MEM MEM 481452

TABLE 4.6 Runtime and peak-memory requirements of LOES and BDD for instances of the
freecell domain. |O ∪ C| is the number of states in Open and Close before the first state
expansion in the goal layer, spck, sloes and sbdd are the peak memory requirements (in MB
or MEM if the process ran out of it) of Packed, LOES and BDD. tfd, tloes and tbdd the
respective runtimes in seconds.

116

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

gripper |O ∪ C| spck sloes sbdd tfd tloes

Gripper-5 376,806 1.48 0.11 0.31 3 65.26

Gripper-6 1,982,434 8.74 2.06 0.31 20 466.55

Gripper-7 10,092,510 50.53 2.69 0.61 123 2894.97

Gripper-8 50,069,466 280.53 13.22 0.61 MEM 22720.9

Gripper-9 243,269,590 1479.00 133.92 1.23 MEM 410729

TABLE 4.7 Runtime and peak-memory requirements of LOES and BDD for instances of the
gripper domain. |O ∪ C| is the number of states in Open and Close before the first state
expansion in the goal layer, spck, sloes and sbdd are the peak memory requirements (in MB
or MEM if the process ran out of it) of Packed, LOES and BDD. tfd, tloes and tbdd the
respective runtimes in seconds.

microban |O ∪ C| spck sloes sbdd tfd tloes

Microban-4 51,325 0.39 0.20 2.46 0.43 9.57

Microban-6 312,063 3.01 1.33 4.91 3.27 247.02

Microban-16 436,656 4.89 2.05 2.46 5 329.95

Microban-5 2,200,488 22.30 10.35 69.81 29.3 676.4

Microban-7 25,088,052 287.11 122.66 741.19 MEM 24574.1

TABLE 4.8 Runtime and peak-memory requirements of LOES and BDD for instances of the
microban domain. |O ∪C| is the number of states in Open and Close before the first state
expansion in the goal layer, spck, sloes and sbdd are the peak memory requirements (in MB
or MEM if the process ran out of it) of Packed, LOES and BDD. tfd, tloes and tbdd the
respective runtimes in seconds.

117

CHAPTER 4 State-set Representation

satellite |O ∪ C| spck sloes sbdd tfd tloes

Satellite-3 19,583 0.04 0.01 0.04 0 2.25

Satellite-4 347,124 0.95 0.12 0.08 13 74.5

Satellite-5 39,291,149 182.67 14.27 4.91 MEM 28580.9

Satellite-6 25,678,638 97.96 8.27 0.61 MEM 13684.6

Satellite-7∗ 115,386,375 591.47 37.96 2.46 MEM 380135

TABLE 4.9 Runtime and peak-memory requirements of LOES and BDD for instances of the
satellite domain. |O ∪ C| is the number of states in Open and Close before the first state
expansion in the goal layer, spck, sloes and sbdd are the peak memory requirements (in MB
or MEM if the process ran out of it) of Packed, LOES and BDD. tfd, tloes and tbdd the
respective runtimes in seconds. Instances denoted by ∗ were still running, in which case the
numbers are for the largest layer both BDD and LOES processed.

travel |O ∪ C| spck sloes sbdd tfd tloes

Travel-4 7,116 0.02 0.01 0.08 0.08 0.42

Travel-5 83,505 0.22 0.07 0.31 1.46 7.6

Travel-6 609,569 1.82 0.41 1.23 14.4 77.09

Travel-7 528,793 1.58 0.46 0.61 8.45 71.61

Travel-8 14,541,350 62.40 10.28 19.64 MEM 8178.87

Travel-9∗ 68,389,737 317.95 50.93 161.36 MEM 167795

TABLE 4.10 Runtime and peak-memory requirements of LOES and BDD for instances of the
travel domain. |O ∪ C| is the number of states in Open and Close before the first state
expansion in the goal layer, spck, sloes and sbdd are the peak memory requirements (in MB
or MEM if the process ran out of it) of Packed, LOES and BDD. tfd, tloes and tbdd the
respective runtimes in seconds. Instances denoted by ∗ were still running, in which case the
numbers are for the largest layer both BDD and LOES processed.

118

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

mystery |O ∪ C| spck sloes sbdd tfd tloes

Mystery-2 965,838 13.47 3.09 19.64 88.6 469.84

Mystery-4∗∗ 38,254,137 228.01 23.52 19.64 MEM 11674.1

Mystery-5∗∗ 54,964,076 563.49 150.90 130.84 MEM 290441

TABLE 4.11 Runtime and peak-memory requirements of LOES and BDD for instances of
the mystery domain. |O ∪ C| is the number of states in Open and Close before the first
state expansion in the goal layer, spck, sloes and sbdd are the peak memory requirements (in
MB or MEM if the process ran out of it) of Packed, LOES and BDD. tfd, tloes and tbdd
the respective runtimes in seconds. Instances denoted by ∗∗ have no solution. The numbers
hence represent the reachable search-space.

n-puzzle |O ∪ C| spck sloes sbdd tfd tloes

8-Puz-39944 181,438 0.78 0.42 4.91 1.08 26.49

8-Puz-72348 181,438 0.78 0.43 4.91 1.04 26.37

15-Puz-79∗ 23,102,481 176.26 102.32 558.08 MEM 17525.6

15-Puz-88∗ 42,928,799 327.52 188.92 771.70 MEM 71999.7

TABLE 4.12 Runtime and peak-memory requirements of LOES and BDD for instances of the
n-puzzle domain. |O ∪ C| is the number of states in Open and Close before the first state
expansion in the goal layer, spck, sloes and sbdd are the peak memory requirements (in MB
or MEM if the process ran out of it) of Packed, LOES and BDD. tfd, tloes and tbdd the
respective runtimes in seconds. Instances denoted by ∗ were still running, in which case the
numbers are for the largest layer both BDD and LOES processed.

119

CHAPTER 4 State-set Representation

a small buffer to accommodate new set elements. Whenever that buffer is full, it is combined
with the previous LOES representation of the set, which includes iterating over that previ-
ous set (which needless to say is costly for the very large layer sets in breadth-first-search).
However the focus of this comparison is between LOES and BDD based representations. The
testbed allows to run both as black-box configurations in an equal context producing realistic
loads. Resulting inefficiencies of the testbed are equally suffered by both techniques (they run
after all the same code to generate the same states). In that regard, the results paint a favorable
picture of LOES’ runtime. Despite the supposedly high overhead from the basic successor
generation, it still regularly outperformed BDD in absolute runtime by an order of magnitude.

In conclusion, the results show that LOES offers good space efficiency for representing ex-
plicit state-sets of all sizes. It provides these robust space savings even in traditionally hard
combinatorial domains such as the n-puzzles where redundancies are relatively hard to ex-
ploit. In particular, it does while also defining a consecutive address-space over set elements
(i.e. a perfect-hash), which allows space-efficient association of ancillary data to set-elements
without addressing overhead.

4.2.14 Pattern Database Representations

Having discussed the basics of LOES and its use in dynamic programming based search al-
gorithm, I now turn my attention to the representation of pattern databases as another relevant
use-case for employing memoization techniques in heuristic search (for a short overview of
PDBs, see section 4.1.1). For brevity I do not concern myself in detail with pattern selection,
domain abstraction and the corresponding regression search, but assume a pattern database
has already been computed and exists as some collection of pattern-value pairs. For in-depth
coverage of these interesting topics, I would like to point the reader to [HBH+07, HHH07].
First I want to discuss two possible approaches of representing the pattern-value mapping as
a LOES code.

4.2.15 Combined Layer Sets

The most straightforward representation is to convert all patterns into a LOES code. LOES
allows to assign a unique id with every unique pattern in the range {0, . . . , |PDB| − 1} which
can be interpreted as an address (i.e. be used as an offset) of the associated values in a packed
bit-string where each record comprises of the minimal amount of bits necessary to discern
between the occurring (in the PDB) values. Computation of the heuristic then comprises of
determining the id of the pattern using the member-index function (Algorithm 15) and get the

120

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

[→ 0]

[→ 1]

[→ 2]

[→ 1]

[→ 1]

[→ 2]

[→ 1]

[→ 2]

[→ 2]

Pattern Database

1→ { }
2→ { }

0→ { }
Inverse Relation

FIGURE 4.25 The PDB for tile 4 of the 8-puzzle and its inverse relation.

value by interpreting id as an offset into the packed bit-string.

4.2.16 Inverse Relation

Especially in unit-cost search, the number of patterns in a PDB usually by far outstrips the
number of different values. One can avoid associating these highly repetitive values with in-
dividual patterns by storing the inverse of the heuristic function. In general, heuristics are not
injective, hence a well-defined inverse does not exist. Instead, the inverse relation (a left-total
relation, where every input is associated with multiple outputs) is stored (see figure 4.25 for
an example). That is, each set of patterns sharing a common value is encoded as a LOES and
the value associated to the whole set. The heuristic function is then computed through con-
secutive tests of the pattern against each of the pattern-sets and upon a hit, returning that set’s
associated value. Note, that due to the function property of the heuristic, these sets are pair-
wise disjoint. If furthermore, the heuristic is a total function (i.e. the union over all pattern sets
comprises the entire abstract pattern space), one can omit storing the largest of the sets and
denote its associated value as a default which is returned if the tests against all remaining sets
fails. A further optimization is to keep track of the success probabilities of the member-tests
over time and query the sets in descending order of these probabilities.

4.2.17 Compressed LOES

Note that for the inverse relation representation, there is no need to associate any information
with individual states. The only required operations on the sets are membership tests. This
allows for further optimization. The idea is to “mark” inner nodes representing complete sub-

trees (i.e. prefixes for which all possible suffixes are present in the set).If one encounters a root

121

CHAPTER 4 State-set Representation

Algorithm 20: cLOES-PATH-OFFSET
given an encoded state, cLOES-path-offset navigates the cLOES according to the states
path interpretation

Input: state a bitsequence of length m
Output: offset an offset into cLOES
Data: cLOES an encoded state-set

offset← 0;

for depth← 0 to m− 1 do
if cLOES[offset,offset + 1] = 00 then

return offset;
end
if state[depth] then

offset← offset + 1;
end
if cLOES[offset] then

if depth = m− 1 then
return offset;

end
else

offset← 2rankcLOES(offset);
end

end
else

return ⊥;
end

end

122

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

of a complete subtree during a descent through the prefix tree, membership tests can be an-
swered immediately. To exploit this, I developed a variant of LOES, called compressed Level
Order Edge Sequence (cLOES), that allows to prune complete subtrees from the structure. The
idea is straightforward - I use the remaining code-point 00 (i.e. no further edge at this node) to
denote a root of a complete subtree for inner nodes. Note that first 00 records do not occur in
regular LOES as all records correspond to inner nodes which are guaranteed to have at least
a single child and second this does not violate the edge-index child-record-position invariant
of LOES. As algorithm 20 shows, the changes to member tests are minimal - whenever we
reach a new record, we first test if it denotes a complete subtree (i.e. equals 00) and if so return
the current offset. Else the algorithm behaves analogously to path-offset. Algorithm 15 can be
reused as is, calling cLOES-path-offset instead of path-offset.

Tree construction expectedly differs from LOES. Algorithm 21 gives the procedure anal-
ogous to 18 with cLOES modifications (lines 10 to 23). The logic differs as follows. If an
insertion generates an 11 record on the leaf level, I convert this to a 00 record. For each such
event, I run a simple bottom-up pattern-matching algorithm over (the ends of) all level codes.
The pattern to match is where the bit-string on some level i ends in 11 and the bit-string on
the lower level in 0000. On a match, I prune the last four bits of the lower level and change the
record of the higher level into 11. The intuition behind this is simple - whenever a record sports
two edges pointing to complete subtrees, the record is a root-node of a complete subtree.

Figure ?? shows the corresponding LOES and cLOES encodings of a small example set
featuring a complete depth 2 subtree. As only inner nodes are represented in a LOES ,this is
the smallest configuration that actually leads to a size reduction in the encoding (of 4 bits).
The “hook” that allows to derive address spaces over set elements in LOES is that every edge
of the prefix tree corresponds to a set bit in the code. These set bits can be efficiently ranked
with help of the index structure. Only edges on the last (i.e. lowest) level of the tree can be
bijectively mapped to set elements (as all others are potentially shared between members). By
pruning edges on the lowest level, cLOES trades this feature for smaller set encodings.

4.2.18 Empirical Comparison of LOES and BDD for Pattern Database
Representations

My setup for the following evaluation consisted of a preprocessor for converting PDDL [MGH+98]
input files into multivalued problem descriptions similar to Fast Downward’s preprocessor
[Hel06a]. The difference is that this preprocessor outputs additional at-most-one constraints
covering the problem variables. They come in the form of lists of variable-assignment tuples

123

CHAPTER 4 State-set Representation

Algorithm 21: cLOES-ADD-STATE
Given a cLOES code partitioned by tree level and a state lexicographically greater than
the states represented in the LOES, cLOES-add-state manipulates the code partitions,
such that their concatenation contains the state (in addition to all prior constituents). It
guarantees that complete subtrees are represented as 00 nodes on their root level.

Input: s a bitsequence of length m
Data: codes an array of bitsequences
Data: s’ a bitsequence of length m or ⊥
if s’ = ⊥ then

depth← −1;
end
if s’ = s then

return;
end
else

depth← i : ∀j < i, s[j] = s’[j] ∧ s[i] 6= s’[i];
10 if depth = m− 1 then

codes[depth]]lastRec ← 00;
for i← depth− 1 to 0 do

if codes[i]lastRec = 11 ∧codes[i+ 1]last2Recs = 0000 then
codes[i]lastRec ← 00;
codes[i+ 1].popRecord();
codes[i+ 1].popRecord();

end
else

break;
end

end
23

end
else

codes[depth].lastBit← true;
for i← depth + 1 to m− 1 do

if s [i] then
codes[i]← codes[i] ◦ 〈01〉;

end
else

codes[i]← codes[i] ◦ 〈10〉;
end

end
end
s’← s;

end

124

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

1→ 0000

2→ 0100

3→ 0101

4→ 0110

5→ 0111

101
1
1011101111

1011100010

LOES

cLOES

FIGURE 4.26 LOES and cLOES encodings for an example set of five states

125

CHAPTER 4 State-set Representation

and are interpreted such that for any valid state, at most one of the tuples in every list holds
true. For the original problem, these constraints add no additional information over what is
encoded in the multi-valued description - that is, no successor of the initial state generated
through the operator set will violate any of these constraints. They are of use as the original,
implicit constraints are often lost when creating an abstraction (i.e. by projecting a problem
down to a subset of its original variables).

To give an intuition, consider the multi-valued encoding generated by Fast Downward’s (and
the above) preprocessor for the N -puzzles. It comprises of one variable for each tile denoting
its position. There are operators for every viable pairing of the blank tile and neighboring non-
blanks. Each such operator has the specific positions of the blank and the tile as precondition
with their switched positions as effect. As tiles start out on different positions in the initial
state, the constraint that no two tiles can occupy the same position is implicitly upheld through
the operator set. Once even a single tile (i.e. variable) is projected away (which results in the
removal of its references from all operator preconditions and effects) that constraint is violated,
creating a non surjective abstraction (i.e. there are viable patterns in the abstraction, that have
no counterpart in the original problem).

This creates two problems. The lesser one is an often exponential increase in the size of the
pattern database. The greater one is the severe reduction in quality of the resulting heuristic.
If one, say, projects on 7 variables from the 15-puzzle, the resulting database will comprise
≈ 270 million patterns, but as tiles can move “through” each other will carry no more in-
formation than sum of manhattan distances (also known as taxicab norm [Kra86]) from the
current positions of these 7 tiles to their goal positions. Note, that this does not affect the
admissibility of the heuristic. Evaluating these “redundant” constraints in the abstract space
allows to mitigate this problem by pruning invalid states during the regression search (see also
[HBG05]).

The translation process is followed by a rule based system selecting variables for one or
more PDBs. Both of these components are experimental at this point which somewhat limit
the scope of the following evaluation. These two components derive domains which are ab-
stractions of the original problem. The next step is then to construct the PDBs through a re-
gression search. Here one starts with all goal-states as the initial layer 0 and computes further
layers as the set of predecessors (i.e. δ−1) of the last layer minus the content of all prior layers
until all reachable states are part of some layer. These layers represent an inverse relationship
representation of the PDB as for each state in layer i, it minimally takes i steps to reach a
goal in the abstract domain (and hence at least i in the original domain). For the comparison,
I encoded these PDBs in five representation forms.

126

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

PERFECT HASHING (PH) The perfect hash function maps each possible assignment vector
(of the abstract problem) to a unique id given by its lexicographic rank. Ids are used for
addressing packed records holding the associated values.

BINARY DECISION DIAGRAM (BDD) The PDB is stored as an inverse relation with each set
represented as a BDD as described above. Common subgraphs are shared between sets.
As above, I used the buddy package, a high performance implementation from the model
checking community for my evaluation. If the union of sets comprises all possible pat-
terns, the largest equal-value subset is automatically removed and its value set as default.

LOES Analogous to PH. The perfect hash function is implemented through a LOES set of all
occurring patterns and its member-index function. If the LOES comprises all possible
patterns, the largest equal-value subset is automatically removed from the LOES and its
value set as default.

INVERSE RELATION LOES (IR LOES) Analogous to BDD. Each set is represented as a LOES.
All sets use the same encoding permutation. If the union of sets comprises all possible
patterns, the largest equal-value subset is automatically removed and its value set as
default.

INVERSE RELATION COMPRESSED LOES (IR CLOES) Analogous to BDD. Each set is rep-
resented as a cLOES with a specific encoding permutation. If the union of sets com-
prises all possible patterns, the largest equal-value subset is automatically removed and
its value set as default.

The PDBs were then used in A∗ searches. The Pipesworld Tankage, Driverlog and Grip-
per instances were run on a 2.2 GHz Intel Core processor running Mac OS 10.6.7 with 8 GB
of memory. For the 15-Puzzle STRIPS instances, a 3.3 GHz Xeon processor with 4 GB of
memory was used. The aim was to have the same PDBs represented and used as a heuristic
in all five techniques. Hence the employed PDBs had to be relatively small (in the number of
patterns) as depending on the domain, the spatial effectiveness of the different representations
often differed by multiple orders of magnitude.

4.2.18.1 The Pipesworld Tankage Domain

The IPC-4 Pipesworld Tankage domain models the problem of transporting oil derivatives
through pipeline segments connecting areas that have limited storage capacity due to tankage
restrictions for each product. The additional constraints made explicit by the preprocessor state

127

CHAPTER 4 State-set Representation

TABLE 4.13 Total PDB size (i.e. number of patterns), solution length and complete search
times (parsing, analysis, PDB construction and search) for the Pipesworld Tankage
instances.

instance size sl tPH tIR LOES tIR cLOES tLOES tBDD

Pipesworld-1 67144 5 1.4 1.4 1.7 2.6 3.3

Pipesworld-2 3559 12 0.2 0.1 0.2 0.2 0.2

Pipesworld-3 38204 8 1.8 1.8 2.0 2.1 2.7

Pipesworld-4 85422 11 5.0 4.9 5.7 5.9 7.4

Pipesworld-5 212177 8 9.9 10.2 10.8 11.6 16.7

Pipesworld-6 113364 10 9.0 9.3 9.8 9.8 11.6

Pipesworld-7 13620 8 4.2 4.3 4.1 4.2 4.7

Pipesworld-8 35307 11 11.5 14.4 11.9 12.8 16.6

1E+03

1E+04

1E+05

1E+06

1E+07

P1 P2 P3 P4 P5 P6 P7 P8

!"!#"# !"!#"#
$#%&#

"&&#"#

!"!#"# !"!#"#
$#%&#

'((#"#

)'#!
"(!'

)&%&

&(&#& %""$& &&'($

%##'

'&('%

+",-#" %+,-#" "+!,-#"

!+',-#* !+#,-#*

'+&,-#"
&+",-#"

'+(,-#"

B
yt

e

Instance

PH IR LOES IR cLOES LOES BDD

FIGURE 4.27 Size of the PDB representations in bytes for the Pipesworld Tankage instances.

128

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

 1 2 3 4 5 6 7 8 9

24

0
2
4
6
8

10
12
14
16
18
20
22

Instance

Re
la

tiv
e

Se
ar

ch
tim

e
as

 a
 fa

ct
or

 o
f P

H

LOES

7.1-23.6

1.2-2.6

IR LOESIR cLOES

BDD

FIGURE 4.28 Relative search time as a multiple of PH for the Pipe Tankage instances.

that for any pipe, there can only be one batch that is closest to a source area and one batch
that is closest to a destination area. The analysis component generated single PDBs for all
instances. The PDBs are relatively small and retain a good amount of the original problem’s
constraints. This shows in the sizes for the different representations (see Figure 4.27) where
BDD outperforms PH by between one to two orders of magnitude, with the LOES versions
besting this by another order of magnitude.

On the time dimension (see Figure 4.28), LOES only performs marginally worse than PH
while the IR variants take about twice as long. BDD performance varies considerably and
performs a good order of magnitude worse than PH and the LOES encodings.

4.2.18.2 The Driverlog Domain

The IPC-3 Driverlog domain involves delivering packages between locations using trucks.
The complication is that the trucks require drivers who must walk between trucks in order
to drive them. The paths for walking and the roads for driving form different maps on the
locations.

Driverlog is an example where the preprocessing fails to uncover any explicit constraints
over those encoded in the multi-valued variables. This results in PDBs of very low quality
comprising of all possible abstract patterns. It is also a domain that is quite amendable to
BDD representation. This shows in the space comparison (see Figure 4.29), where the BDD

129

CHAPTER 4 State-set Representation

TABLE 4.14 Total PDB size (i.e. number of patterns), solution length and complete search
times (parsing, analysis, PDB construction and search) for the Driverlog instances.

instance size sl tPH tIR LOES tIR cLOES tLOES tBDD

Driverlog-1 30375 7 0.3 0.4 0.6 0.6 0.8

Driverlog-2 339750 19 8.9 9.2 11.2 12.6 16.3

Driverlog-3 1766250 12 37.4 35.7 38.5 51.3 75.2

Driverlog-4 2466625 16 125.5 118.0 120.7 151.9 179.4

Driverlog-5 1800000 18 54.9 55.5 57.1 65.6 83.5

Driverlog-6 4478976 11 266.5 267.7 267.3 294.2 352.0

Driverlog-7 3779136 13 333.1 337.7 334.7 359.4 417.9

1E+04

1E+05

1E+06

1E+07

P1 P2 P3 P4 P5 P6 P7

!"!#"#

"$$#"#

%&&#"#

&'('%$#

!"!#"#

)#'$#

&#!)#

&('"%

%!##(*

!''#%*!

'())!&'

!!&'###

&(**%"# &%"!*"#

B
yt

e

Instance

PH IR LOES IR cLOES LOES BDD

FIGURE 4.29 Size of the PDB representations in bytes for the Driverlog instances.

130

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

8 2 3 4 5 6 7

35

0

5

10

15

20

25

30

Instance

Re
la

tiv
e

Se
ar

ch
tim

e
as

 a
 fa

ct
or

 o
f P

H
BDD

IR cLOES

IR LOES
LOES

16.3-33.4

1.
5-

5

FIGURE 4.30 Relative search time as a multiple of PH for the Driverlog instances.

shines on the large, multi-million pattern instances (that are scarcely subdivided by the IR rep-
resentation), actually taking up an order of magnitude less space than on the smaller instances.
Remarkably the IR LOES variants still manage to outperform PH by a factor of two to three.
LOES predictably performs worse as its packed store alone is nearly the same size as PHs
(the difference stems from the fact, that it can omit storing the largest equal-value subset of
patterns in PBD and denote the corresponding value as its default).

The runtime comparison (see Figure 4.30) paints a similar picture, as the representations’
look-up cost is similar to the Pipesworld Tankage instances.

4.2.18.3 The Gripper Domain

The IPC-1 Gripper domain models a mobile robot that can use its two grippers to pick up and
put down balls, in order to move them from one room to another.

In this domain, the preprocessor picked up the implicit constraint that no object can be in
both grippers at the same time. The variable selection logic constructed PDBs comprising of
the variables for the gripper states, the location of the robot and goal qualified balls. A rule
was in place that would split PDBs as the abstract state space grew too large. The resulting
PDBs were not additive and were hence combined by taking the maximum of their heuristic
values. The preprocessing logic opted for multiple PDBs beginning with instance 6, mitigating
the growth of the PDBs (see Figure ??).

131

CHAPTER 4 State-set Representation

instance size sl tPH tIR LOES tIR cLOES tLOES tBDD

Gripper-1 600 11 0.0 0.0 0.0 0.0 0.0

Gripper-2 4604 17 0.0 0.1 0.1 0.1 0.2

Gripper-3 30320 23 0.4 0.6 1.2 1.0 1.4

Gripper-4 181428 29 3.6 3.9 8.1 7.5 9.9

Gripper-5 1016072 35 28.5 25.9 37.3 52.3 63.6

Gripper-6 1460128 41 51.7 63.7 78.2 90.4 190.5

Gripper-7 1975008 47 136.6 237.8 277.8 206.3 746.3

Gripper-8 2582788 53 574.9 1187.4 1346.0 757.7 3751.0

TABLE 4.15 Total PDB size (i.e. number of patterns), solution length and complete search
times (parsing, analysis, PDB construction and search) for the Gripper instances.

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

P1 P2 P3 P4 P5 P6 P7 P8

!"#$%&#'

("')%&#)

)"*$%&#*

'")+%&#(

+"',%&#!
'"#(%&#! '"$*%&#!)"(-%&#!

'"#)%&#)

"$%&#*

!"!*%&#(

+"#$%&#$

+")(%&#- +"$,%&#- '")#%&#- '"--%&#-

B
yt

e

Instance

PH IR LOES IR cLOES LOES BDD

FIGURE 4.31 Size of the PDB representations in bytes for the Gripper instances.

132

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

 1 2 3 4 5 6 7 8

35

0

5

10

15

20

25

30

Instance

Re
la

tiv
e

Se
ar

ch
tim

e
as

 a
 fa

ct
or

 o
f P

H

BD
D

IR cLOES

IR LOES LOES

Si
ng

le
 P

D
B

14.9-32.3

7.3-9.9

FIGURE 4.32 Relative search time as a multiple of PH for the Gripper instances.

Gripper is one of the domains where BDDs are known to perform extremely well. Still
it outperformed IR cLOES in storage efficiency only in instances 5 and 8, when the PDBs
where about 1 and 2.6 million patterns in size. PH consistently required around 2 orders of
magnitude more storage on the larger instances. The runtime comparison (see Figure 4.32)
paints an interesting picture. For the smaller PDBs, PH is about 1.3 (LOES) to 5 (IR cLOES)
times faster than the LOES versions. As the pattern databases grow the advantages from the
quick addressing shrink considerably, probably due to increased cache misses. Again the more
complex matching in BDDs is a good order of magnitude slower.

4.2.18.4 The 15-Puzzle Domain

The 15-Puzzle is a classic combinatorial search benchmark. It is also a token problem for
pattern database heuristics (e.g. [CS98]). The preprocessor works quite well in this domain
and manages to extract constraints ensuring that no two tiles can occupy the same posi-
tion. Furthermore the analysis component manages to create additive PDBs by excluding
the blank and selecting tiles up to its pattern space size limit (which allowed up to 6 vari-
ables in this domain), resulting in an additive 6-6-3 PDB. While this represents an unusually
strong PDB for an domain-independent planner, it still noticeably weaker than the handcrafted
and blank-compressed additive PDBs typically employed in domain-specific n-puzzle solvers
(e.g. [FKH04]). I run the planner over Korf’s 100 random instances [Kor85], which are known

133

CHAPTER 4 State-set Representation

to be quite challenging for domain-independent planners (e.g., the state-of-the-art Fast Down-
ward planner using a merge & shrink heuristic with an abstraction size of 104 nodes cannot
solve the easiest instance within 96 GB of RAM). It is also a permutation problem and hence
a hard domain for the type of redundancy-elimination techniques employed by LOES and par-
ticularly BDDs. As the analysis component is deterministic, the same pattern database was

TABLE 4.16 Number of instances solved, PDB size and relative search speed over Korf’s
hundred 15-puzzle instances.

Rep. #solved size (MB) tx
tPH

PH 91 20.0 1.00

BDD 40 117.6 0.11

IR LOES 82 11.4 0.36

IR cLOES 70 9.6 0.23

LOES 68 11.2 0.49

generated for all instances. Table 4.16 shows the resulting sizes for the different representa-
tions. Despite the permutation problem, LOES’ succinct encoding ends up around half the
size of PH. While this represents a noticeable relative reduction in PDB size, the absolute
differences were too small to significantly impact the A∗ runs. The BDD based representation
was predictably not competitive. I ran all instances with a hard 30 minute cut-off timer. Figure
4.33 gives the total planning time per instance (i.e. parsing, analysis, PDB creation, -encoding
and the A∗ search) and figure 4.34 the pure search time. As all PDBs are qualitatively equal,
PH fared best with 92 solved instances, thanks to its simple and fast lookups. Plain LOES
fared worst of all LOES variants despite its fast search speed (at ≈ 49% of PH), as its PDB
representation is the most time-consuming to build. These results would change if the problem
were memory-bottlenecked, e.g. if on a 25-puzzle the analysis component allowed PDBs of
such size, that the additional space overhead of PH would represent a bottleneck for the A∗

algorithm.
An important point to keep in mind is that for pattern databases, all encodings map well

to a common interface. The question for a domain-independent planner is more or less which
representation to choose. In all, this comparative evaluation was arguably limited by the em-
ployed experimental preprocessing and analysis components which in most domains I tried,
failed to extract additional constraints that help in defining informative abstractions. I have in-
cluded Driverlog as a representative of these cases. As abstraction selection rules and heuris-

134

SECTION 4.2 LOES - the Level-Ordered Edge Sequence

I61
I23
I86
I34
I85
I71
I48
I47
I81
I90
I73
I74
I69
I87
I83
I28
I65
I50
I42
I95
I29
I45
I46
I44
I93
I94
I67
I51
I97
I31
I62
I30
I58
I25
I24
I57
I55
I75
I36
I35
I64
I78
I21
I89
I96
I39
I77
I79
I68
I41
I38
I70

I100
I80
I40
I43
I27
I22
I52
I54
I99
I76
I98
I32
I84
I33
I37
I12
I13
I18
I2
I6
I9

I20
I26
I91
I8

I11
I19
I5

I72
I49
I1

I92
I4

I63
I7

I14
I56
I53
I16
I3

I10
I15
I17
I59
I60
I66
I82
I88

0 300 600 900 1200 1500 1800

seconds

BDD
PH
IR LOES
IR cLOES
LOES

FIGURE 4.33 Planning time (parsing, analysis, PDB creation and search) over Korf’s 100 in-
stances of the 15-puzzle in ascending order of duration for PH. I23 stands for instance
23. If a representation has no bar for an instance, it failed to terminate successfully in 30
minutes.

135

CHAPTER 4 State-set Representation

I61
I23
I86
I34
I85
I71
I48
I47
I81
I90
I73
I74
I69
I87
I83
I28
I65
I50
I42
I95
I29
I45
I46
I44
I93
I94
I67
I51
I97
I31
I62
I30
I58
I25
I24
I57
I55
I75
I36
I35
I64
I78
I21
I89
I96
I39
I77
I79
I68
I41
I38
I70

I100
I80
I40
I43
I27
I22
I52
I54
I99
I76
I98
I32
I84
I33
I37
I12
I13
I18
I2
I6
I9

I20
I26
I91
I8

I11
I19
I5

I72
I49
I1

I92
I4

I63
I7

I14
I56
I53
I16
I3

I10
I15
I17
I59
I60
I66
I82
I88

0 225 450 675 900

seconds

BDD search time
PH search time
IR LOES search time
IR cLOES search time
LOES search time

FIGURE 4.34 Search time over Korf’s 100 instances of the 15-puzzle in the order correspond-
ing to Figure 4.33. If a representation has no bar for an instance, it failed to terminate
successfully in 30 minutes.

136

SECTION 4.3 Summary

tics evolve and ripen, it is quite probable that such unconstrained (i.e. the number of patterns
in the PDB equals the product of the patterns’ variables’ domains) and weak PDBs (i.e. few
different values) are eventually generated. While generally undesirable as they take up large
amounts of memory while offering little guidance, there is a good chance as the Driverlog
example shows, that a BDD-based representation can reduce the size by orders of magnitude
and make the trade-off worthwhile. In domains where the selection process manages to derive
good quality PDBs such as Pipesworld Tankage, Gripper and n-puzzles, the LOES vari-
ants usually show the best spatial efficiency. Somewhat surprisingly that even extends to small
PDBs in permutation domains (see the n-puzzles). BDDs are competitive, if the domain is
very amendable to its redundancy reduction techniques (i.e. Gripper). On the time dimension,
the picture is much clearer. First, all three techniques have the theoretical advantage, that the
computational complexity of heuristics lookups only depend on pattern complexity and not
on PDB size. Second, the LOES variants are about 1.5-5 times slower than PH and the BDD
adds another order-of-magnitude on top of that. As PDBs grow to more reasonable sizes PH’s
advantage shrinks considerably. While LOES and BDD require multiple memory accesses per
lookup, their hierarchical structure and small encodings are good fits for current machines
memory hierarchy. PH on the other hand can make do with a single sequential read but the
corresponding accesses are uniformly distributed over a large memory range (i.e. mainly due
to its worse spatial efficiency) with a comparably larger chance of cache misses. This effects
already manifest themselves on the larger test PDBs (see figures 4.32,4.28 and 4.30). Note
however that in many domain-dependent applications, PDBs often comprise in the hundreds
of millions of states, probably strongly amplifying this effect. Finally in permutation problems
with relatively small PDBs, PH is competitive. Particularly if the computation is time limited,
the tradeoff of PH’s faster lookups for its slightly worse space efficiency may be well worth it
as the n-puzzles example shows.

4.3 Summary

I began this chapter with an overview of common representation techniques used in state-of
the art propositional planning and from there introduced LOES, which I believe offers excit-
ing opportunities to better exploit dynamic programming and other memoization techniques in
domain-independent planning. It shows good space efficiency for representing explicit state-
sets of all sizes and provides robust space savings even in traditionally hard combinatorial
domains such as the n-puzzles. In particular, it defines a consecutive address-space over set
elements, which allows space-efficient association of ancillary data to set-elements without ad-

137

CHAPTER 4 State-set Representation

dressing overhead which makes it compatible with a wide range of search algorithms. LOES
also allows for quite efficient representation of strong, precomputed heuristics. The very basic
domain analysis I employed in the above evaluation can only give a hint of the potential for ad-
hoc abstraction in heuristic search. Particularly noteworthy is also LOES’ impedance match
with BDDs and PH for PDB representations. The inverse relation representation straightfor-
wardly allows to adaptively interchange BDD and LOES based representations of state-sets.
In this way, a domain-independent planner can leverage the superior efficiency of BDDs in ap-
propriate domains while mitigating their lack of robustness by falling back to a LOES-based
representation. In all, I am convinced that techniques such as LOES are a worthwhile addition
to the toolkit of propositional planning.

138

CHAPTER 5

Parallelization of Heuristic Search

From its beginnings in the 1960s to today, the scale of problems that can be reasonably tackled
by heuristic search has increased immensely. Next to algorithmic advances this was due to an
exponential increase in computational capability per dollar thanks to advances in semiconduc-
tor design and manufacturing over the last six decades. Moore noted in 1965 that the average
number of components in an integrated circuit doubled every 18 months and predicted that
trend would continue “for at least ten years” [Gor65]. This prediction has more or less held
to this day and became known as “Moore’s Law”. CPU designers leveraged these advances
and the accompanying possibility to increase operating frequency resulting in an equally ex-
ponential growth in processing speed and hence provided vast “free” speed-ups of heuristic
search algorithms (and other programs). In the mid 2000s, power consumption more and more
emerged as the main roadblock preventing the continuation of this trend in CPU design. As
roughly, power consumption is linear in the number of components and performance increase
of a CPU due to architectural advances is roughly proportional to the square root of the com-
plexity increase (known as “Pollack’s Rule”), to further exploit manufacturing advances the
design trend changed to integrating more and more processors on a single integrated circuit.

5.1 Background

One recently popular approach to exploiting parallelism in planning is to run parallel execu-
tions of different heuristic search algorithms (or, often simply different heuristics) over one
given problem (e.g. [HRK]), The efficiency of state of the art heuristics and algorithms varies
widely with a problem’s underlying domain structure. In scenarios where the task is solve a
single or small number of problem instances without in-depth knowledge over their underly-
ing domain, this idea exploits that typically for any given problem, some class of heuristics
vastly outperforms its peers. The general idea has long been popular in many hard, computa-

139

CHAPTER 5 Parallelization of Heuristic Search

i

a b c

Th
re

ad
 A

Th
re

ad
 B

Th
re

ad
 C

i-plans

FIGURE 5.1 In Parallel Depth-First Search, a short breadth-first search is run until the size of
the frontier matches or exceeds the desired number of threads. A DFS task is then spawned
for state in the frontier. The only interdependency between these tasks is the necessary
dissemination of (task-local) i-plans.

tional problems. Huberman et al. [HLH97] give a general framework for principled selection
of participants for such runs (or portfolios) based on risk theory.

The following discussion however is based on a different scenario. Here I assume that the
problem domain is understood to a degree that allows the selection of a suitable heuristic and
algorithm combination and the intent is to better exploit the inherent parallelism of modern
CPUs to solve larger instances in such a domain. A direct result of this scenario is that adap-
tations have to be made on the algorithmic level to parallelize the selected search algorithm.

For depth-first algorithms, these modifications are often trivial. For example, creating DFS
tasks for all elements in δ(i) is a straightforward and efficient modification. The only necessary
shared state between these tasks is the current best solution. This value needs only be read (and
potentially be updated) if a participating thread uncovers a new i-plan. While DFS is hence
technically not an embarrassingly parallel workload as intermediate results have to be com-
municated between tasks, these communications are so rare that synchronization with platform
primitives is not a bottleneck. This basically provides linear speed-up for domains suitable to
depth first search (see [RK87] and [KR87] for a discussion of parallel DFS on amongst others
the n-puzzles). Things are different for Best-First Search with duplicate detection. To guar-

140

SECTION 5.1 Background

antee admissibility, states must be expanded in order of their increasing f -estimates across
all threads. To avoid redundant expansions, every previously unknown state generated by one
task must be broadcast to all other tasks immediately. State-of-the-art heuristic-search plan-
ners such as Fast Downward [Hel06a] generate on the order of hundreds of thousands of states
per second in most domains on a contemporary CPU. Platform level synchronization primi-
tives such as semaphores do not scale to such levels - in fact the computational overhead is
such that even in shared-memory systems and regardless of the number of involved CPUs,
straightforward adaptations of A∗ (e.g. ensuring mutual exclusive access to shared Open and
Close structures) often give reduced performance when compared to their single-threaded
(i.e. mutex free) counterparts in most domains, sometimes by orders of magnitude as shown
in [BLZR09].

More significant changes to the control-flow of BFS algorithms are needed to provide the
necessary scalability. As this is a relatively novel area of heuristic best-first search, the cor-
responding body of work is rather manageable. The mutual toehold is to partition Open and
Close in a way that reduces synchronization overhead. One thread of research has focused
on using hash-functions to assign states to search tasks. Every state generated is immediately
run through the hash-function and assigned a task id. If the id does not match the generating
task, the state is transferred accordingly. Each task holds local Open and Close collections
for states with its id and is solely responsible for duplicate detection and expansions of such
states. Hence none of these structures need to be globally synchronized. Analogous to the
modified A∗ in section 3.3.1, the first solution discovered by a subtask is not necessarily op-
timal - it can only be guaranteed if the f -value of the current best global solution is less or
equal than the smallest f -values in every task’s Open queue. This scheme forms the basis of
Parallel Retracting A∗ (PRA∗) [EHMN95] which was specifically developed in the early 90s
for the connection machine series of supercomputers. PRA∗ also differs from vanilla A∗ in that
it allows the retraction (hence the “R” in the name) of expanded nodes to preserve memory.
Conceptually, retraction replaces the children of some node n with f -estimates higher some
value c with a 〈n, c〉 tuple in Open to reduce its size. The tuple can later be re-expanded as
the children move into the frontier (for details see, again, [EHMN95]). Relative to the com-
putational abilities of its processors, the connection machine architecture is characterized by
very high bandwidth and low-latency inter-processor computations (see [Kat87]). Despite this
the authors note that over-congestion of the inter-cpu communication network usually lim-
ited scalability of the algorithm, a somewhat expected result as nearly every generated state
needs to be moved to another task (i.e. CPU). On basically all contemporary computing plat-
forms, the relative (in CPU cycles) latency of sending structured data between tasks/processes

141

CHAPTER 5 Parallelization of Heuristic Search

is much higher. Hash-Distributed A∗ (HDA∗) [KFB09] adapted PRA∗ to this effect by using
buffered, asynchronous communications between tasks which somewhat alleviates the latency
issue. The bandwidth issue however still remains. On n CPUs, every state generated by a task
must be moved to another task with probability n− 1/n (under the assumption of a perfectly
distributing hash unction). As limn→∞(n− 1/n) = 1, basically every state generated (including
all duplicates) by some processor in HDA∗ must be moved over the inter-processor connection
network when running in a highly parallel regime. In the empirical evaluation by [KFB09],
this results in a significant drops of scaling efficiency at around four cores on a high-end off-
the-shelf workstation and around 64 cores on the TSUBAME1 grid cluster (see [KFB09]).

5.1.1 Parallel Structured Duplicate Detection

The above approaches use hash-functions (e.g. [Zob70]) on the (SAS+ in the case of (HDA∗))
encodings with the aim to distribute generated states as evenly as possible amongst participat-
ing tasks. While the task-local partitioning of Open and Close avoids synchronization over-
head, complete disregard for the consequential communications overhead cripples their perfor-
mance on anything but special-purpose hardware. Very similar challenges arise for duplicate
detection in external memory search, where the assumption is that large parts of Open and
Close reside in comparatively slow, block-oriented memory. Here Zhou and Hansen [ZH04b]
showed that partitioning the search graph based on an abstraction of the state space and ex-
panding nodes in the frontier in an order that respects this partitioning can drastically limit the
necessary number of costly I/O operations and increase overall performance. Such abstractions
are straightforward to generate, by projecting a planning instance to a subset of its proposi-
tional variables. As an example consider the projection of apartment domain instances (c.f.
section 2.1.2) to P ′ = {pA, pB, pC , pD}. All references of variables in P \ P ′ in O, i and G
are removed to form the respective O′, i′ and G′ (see section 4.1.1 for another example).

The abstract domain induces the much simplified search graph given by figure 5.2. Note
that the abstraction preserves successor relationships. That is, for every pair of domain states
s, s′ s.th. s′ ∈ δ(s) in apartment, there is a correspondingly labeled transition between the
abstractions a = abs(s) and a′ = abs(s′) in the abstract search graph. Or in a slightly dif-
ferent interpretation, the successors of a state mapping to a under abstraction abs map to
δ′(a). Hence by partitioning Open and Close according to their elements respective abstract
states, duplicate detection of successors of a state s can be limited to partitions pertaining to
δ′(abs(s)). This set of partitions is called the duplicate detection scope of s (see figure 5.3 for

1a supercomputer that ranked the 7-th fastest in the world when it was installed in 2006

142

SECTION 5.2 Parallel Edge Partitioning

o4
open from D

o4
close from D

o4
C→D

pA pB

pC pD

FIGURE 5.2 Domain state transition graph for the projection of the apartment domain to
{pA, pB, pC , pD}. As these propositional variables adhere to an exactly one constraint in
apartment, I denote abstract states by the corresponding true propositional variable. The
figure only gives operator labels for transitions ending in pD.

an example). The concept is useful for external memory search as under a suitable abstrac-
tion, these partitions are small enough, that during expansion, a partition of the frontier and
its corresponding duplicate detection scope can be held in RAM, significantly speeding up the
search.

The same authors later leveraged the technique for parallel breadth-first heuristic search
2 [ZH07b]. The idea of parallel structured duplicate detection (PSDD) is straightforward -
partitions of the frontier with disjunct duplicate detection scopes can be expanded in parallel
without any need for further synchronization. As synchronization is now done on the level of
(rather large) sets of states at a low frequency, its overhead is usually negligible. Later Burns
et al. applied PSDD to optimal [BLZR09] and approximate [BLRZ09] best-first search with
good success.

5.2 Parallel Edge Partitioning

One potential shortcoming of PSDD (or SDD in general) is its dependence on local structure
in the abstract search graph. First, a helpful definition.

Definition 1. The maximum concurrency of parallel search is the maximum number of par-

allel processes allowed during search such that no synchronization is needed for concurrent

2in BFHS a heuristic is used to prune Open , not to guide the search.

143

CHAPTER 5 Parallelization of Heuristic Search

pA pB

pC pD

FIGURE 5.3 Duplicate detection scope {pC , pD} for expanding states corresponding to abstract
state pD in apartment. The scope comprises of states pertaining to those abstract states that
have an incoming transition from pD.

node expansions in these processes.

Lemma 1. The maximum concurrency of parallel structured duplicate detection or paral-

lel edge partitioning under some abstraction is the maximum number of disjoint duplicate-

detection scopes in the corresponding abstract state-space graph.

For the apartment example (see figure 5.2), maximum concurrency according to lemma
1 is 1, i.e. no two abstract states have disjunct duplicate detection scopes. In fact, the scope
of pC is the complete state space. The abstract graph has little local structure mostly because
the domain is exceedingly small. In the worst case, domain structure is such that no abstrac-
tion results in any concurrency (i.e. any abstract graph is fully connected). Figure 5.4 gives a
simple single-tile abstraction of the 15-puzzle domain resulting in a maximum concurrency
of 4. More elaborate abstractions, i.e. the position of two or three tiles can raise this signifi-
cantly. Note however that the abstract domain graph usually needs to be kept in memory and
can amount to significant spatial overhead for very fine-grained abstractions. Also as the aver-
age amount of states per partition in the frontier decreases, relative synchronization overhead
increases accordingly. In all SDD depends heavily on a suitable domain abstraction.

Parallel Edge Partitioning (PEP) avoids these issues by using a staggered expansion scheme.
Each expansion task is associated with an edge (a, a′) of the abstract domain graph in that only
the subset of operators corresponding to said edge are applied during the expansion. This leads
to the following definition.

144

SECTION 5.2 Parallel Edge Partitioning

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Abstract Domain Graph Disjoint Detection Scopes

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

FIGURE 5.4 Domain state transition graph for the abstraction to the position of a single tile
of the 15-puzzle domain. Abstract states are denoted by the possible positions 0 to 15.
Maximum concurrency for this abstraction is 4, as the duplicate detection scope of positions
0,3,12 and 15 show. The figure on the right shows that concurrency is a factor of the selected
abstract states.

.

Definition 2. An edge-partitioned duplicate-detection scope of a state s with respect to an

abstract edge (a, a′) under a state-space projection function abs s.th. a = abs(s) corresponds

to the set of stored nodes that map to abstract node a′.

As with SDD, the edge-partitioned duplicate-detection scope of a state s with abs(s) = a

under the subset for operators pertaining to (a, a′), i.e. the subset of all states in Open and
Close mapping to a′ under abs) is guaranteed to contain all potential duplicates of s’ succes-
sors. As structured duplicate detection, edge partitioning was originally devised for external
memory search (see [ZH07a]). In this context it is important during expansion that the states
pertaining to any abstract node and its duplicate detection scheme fit in memory. For an ab-
straction to P ′, each abstract node can represent a set of up to 2|P\P

′| states in Open and Close

(i.e. all possible combinations of the propositional variables abstracted away). To guarantee
this abstraction choice has to be constrained to cases where representing (n+1)2|P\P

′| (with n
denoting the maximum out-degree in the induced abstract graph) states does not exceed avail-
able memory.. However this is a weak bound in practice as the average out-degree is often
much smaller. With edge partitioning, the analogous bound is 2|P\P

′|+1 and hence indepen-
dent of structural properties of the abstract graph. In practice, this allows external memory
search to scale to significantly larger problems (see [ZH07a] for empirical evaluation of SDD
and EP on a variety of IPC domains). In the context of parallel search, given the same abstract
search graph, parallel edge partitioning intuitively allows for a significant increase in maxi-
mum concurrency as figure 5.5 shows for the two examples. Taking a more principled view
on the issue, the following holds for structured duplicate detection.

145

CHAPTER 5 Parallelization of Heuristic Search

pA pB

pC pD

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

FIGURE 5.5 Maximum concurrency (4 and 16 respectively) with parallel edge partitioning for
the abstractions of the apartment and 15-puzzle domains. Note that multiple tasks can be
expanding the states of the same abstract set in parallel as long as the target sets are disjunct
(e.g. pB in apartment and 8 in 15-puzzle).

Theorem 1. The maximum number of disjoint duplicate-detection scopes under structured

duplicate detection (without edge partitioning) is bounded by the size of the abstract state-

space graph divided by the minimum out-degree of the abstract graph, that is,

⌊ size of abstract graph
minimum out-degree of abstract graph

⌋

Proof: An abstract node with the minimum out-degree has the fewest number of successors,
which in turn produces the smallest duplicate-detection scope (in terms of the number of
abstract nodes). Suppose an abstract graph can be partitioned into k disjoint scopes. Since the
same abstract node cannot appear in more than one scope, the value of k cannot exceed the
total number of abstract nodes divided by the size of the smallest scope or, equivalently, the
minimum out-degree. �

Corollary 1. The maximum concurrency of parallel structured duplicate detection (without

edge partitioning) is bounded by the size of the abstract state-space graph divided by the

minimum out-degree of the abstract graph.

Corollary 2. The maximum concurrency of parallel structured duplicate detection (without

edge partitioning) on a fully connected abstract state-space graph is one (i.e., no concur-

rency).

From the above theorem, these two corollaries can be deduced directly. In practice for ab-
stractions of reasonable coarseness, dividing the number of states in the abstract graph by their

146

SECTION 5.2 Parallel Edge Partitioning

average out-degree usually gives a reasonable benchmark for the supported concurrency of the
abstraction. The second corollary shows that PSDD can (as alluded earlier) fail to extract any
synchronization-free, parallel expansion regime even when the abstraction is non trivial (i.e.
there is more than a single abstract node in the graph).

Theorem 2. The (maximum) number of disjoint duplicate-detection scopes under edge parti-

tioning is the size of the abstract state-space graph.

Corollary 3. The maximum concurrency of parallel edge partitioning is equal to the size of

the abstract state-space graph.

Theorem 2 and corollary 3 follow straightforwardly from the property that each duplicate
detection scope under PEP corresponds to a single abstract node. In contrast to SDD, PEP is
much more likely to operate close to its respective concurrency bound during layer expansion
(i.e., as figure 5.4 shows, maximum concurrency can not be sustained during expansion of
some abstract nodes in SDD). Note however, that in practice some abstract nodes usually
correspond to empty sets in the frontier and non-empty sets vary greatly in size.

Theorem 3. For any given state-space projection function, the maximum concurrency of any

parallel search algorithm is bounded by the size of the abstract state-space graph if duplicates

must be detected as soon as they are generated.

Proof: Suppose the size of the abstract graph is k and yet the maximum concurrency of the
parallel search is greater than k. Without loss of generality, assume there is a (k+1)-th process
that can join the other k processes with no synchronization. Since duplicates must be caught as
soon as they are generated, this means the (k + 1)-th process must be given exclusive access
to its duplicate-detection scope, which consumes at least one abstract node. But since there
are only k abstract nodes, according to the pigeonhole principle, there must be one abstract
node that is shared by two processes and they must synchronize with each other to perform
duplicate detection simultaneously. This leads to a contradiction, which proves the (k + 1)-th
process must not exist, and instead the Theorem must hold. �

5.2.1 Parallel Breadth-First Search with Duplicate Detection and Edge
Partitioning - an Integration Example

Having discussed the basic principle of parallel edge partitioning, I now want to show how
the technique can be used to easily parallelize a search algorithm. For clarity, I chose the
straightforward BFS-DD as my example case but the approach transfers naturally to other

147

CHAPTER 5 Parallelization of Heuristic Search

Frontier

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

1

2

3
45

6
7

89

FIGURE 5.6 Example of a search frontier for a 15-puzzle instance partitioned according to
position of the blank tile. Dotted partitions are empty. Jobs (1 through 9) are created corre-
sponding to each out-going edge of a non-empty partition (0, 9 and 14) in the frontier.

unit-cost heuristic best-first search algorithms. As the actual sequential algorithm has already
been given and discussed thoroughly in section 2.3.2 I will concentrate on the mutual synchro-
nization aspects of parallelizing the algorithm in the context of a common threading package3.
The overall scheme is relatively straightforward. I assume the runtime environment provides
a pool of k worker threads representing available parallel execution units. W.l.o.g. thread 1 is
designated the coordinator of the group. I assume that Open (comprising of two layers frontier
and next) and Close are partitioned according to some abstraction abs . Furthermore I assume
that the corresponding abstract search graph has been generated in a preprocessing step and is
readily available in memory with its edges labeled with the sets of corresponding operator ids.

Listing 22 gives the algorithm run on all participating threads with the exception of the
initialization code between lines 1 and 2 that I included for completeness. All threads are
synchronized to stay within a single layer through an initial barrier (line 3). Before the layer
expansion, a job list is generated by the coordinator thread. To this end it first scans the fron-
tier for non-empty partitions and creates a job for each outgoing edge of these partitions (line
4). Jobs are four-tuples comprising of the source partition id, target partition id, the set of
operator-ids corresponding to the abstract transition and the job’s current progress in its life-
cycle (comprising of discrete states READY ,PROCESSING ,FINISHED). Figure 5.6 gives
an example for a simple abstraction in the 15-puzzle.

The thread then sets the binary variables associated with each partition to denote their avail-

3modeled roughly after the BOOST thread library

148

SECTION 5.2 Parallel Edge Partitioning

Algorithm 22: PAR-BFS-DD
Parallel Breadth-first search with duplicate detection;

Output: an optimal i-plan or ⊥
1 // Initialization by the calling context

if i ∈ G then
return [];

end
next ← {i};
// solution is a synchronized variable
solution ← ⊥;

2 // Spawn threads with the following algorithm

while true do
3 Barrier ;

// Sequential layer initialization

if id = 1 then
Close ← Close ∪ frontier ;
frontier ← next ;
next ← ∅;

4 extract-jobs-from-frontier(job-array);
if job-array = ∅ then

Terminate all threads;
end

5 ∀abstract-node : abstract-node.free← true

end

6 Barrier ;
// Parallel layer expansion

7 while ∃job ∈ job-array s.th. job.state = READY do
8 if atomic-test-and-set-false(job.target.free) then

// thread now owns job resources
if job.state = READY then

job.state← PROCESSING ;
Sequential BFS-DD expansion of states in the frontier pertaining to
job.source with duplicate detection against the partition of Open ∪ Close
corresponding to job.target;
If a goal is encountered, reconstruct the i-plan and write it to solution;
job.state← FINISHED ;

end
job.target.free← true;

end
end

end
9 // Clean-up by calling context after threads terminate

return solution;

149

CHAPTER 5 Parallelization of Heuristic Search

ability (line 5). A second barrier (line 6) ensures that parallel layer expansion only begins after
initialization is finished. Each thread scans the job-array for waiting jobs. Note that there is
no synchronization on this structure. It then attempts to attain ownership of the job’s target
resource by executing an atomic test-and-set on the corresponding binary variable. Upon suc-
cess, the job state has to be tested again as “between” lines 7 and 8, a cooperating thread might
have acquired the job, processed it and released the resource. If that test passes, the job is exe-
cuted by generating successors for the job’s operators of all states in the frontier corresponding
to the the job’s source partition id. The edge partitioning guarantees consistency during this
partial expansion as figure 5.7 shows.

If a goal state is encountered during this expansion, the corresponding i-plan is written to
the synchronized solution variable and a termination request send to all worker threads. After
processing the job, the thread updates the job state accordingly and releases the resource. After
the worker threads terminate, the calling context simply returns the contents of the solution

variable. Note that with exception of accesses to solution and the synchronization by barriers
at the beginning of each layer, the algorithm does not make use of any platform level synchro-
nization primitives with their associated costly system calls. This is particularly important
when using relatively fine-grained abstractions that result in a comparatively large number of
individually small jobs.

For any parallel algorithm, it is important to prove the absence of deadlocks. Fortunately,
the proof is trivially simple for parallel edge partitioning, because it breaks one of the four
necessary conditions for a deadlock. In computer science, it is common knowledge that these
conditions are (1) mutual exclusion, (2) hold and wait, (3) no preemption, and (4) circular
wait, and that breaking any one of the four is sufficient to prevent a deadlock from happening.
The condition that is never satisfied in parallel edge partitioning is “hold and wait," because
each task only requires a single shared resource. As parallel edge partitioning is deadlock-free
by design, it has no overhead for deadlock detection or avoidance. For example, the SDD-
based PBNF employs machinery to detect and resolve such deadlocks, which in turn can lead
to lifelocks which to avoid required even more machinery [BLZR09] - in the end, its authors
had to fall back to complex verification tools to guarantee its functioning.

In contrast, parallelization based on PEP is very simple on a conceptual level and that sim-
plicity transfers into implementation practice - to great benefit as developing and debugging
parallel algorithms remains challenging. Listing 22 serves as an example that PEP based algo-
rithms stay manageably simple, even when avoiding the use of operating system synchroniza-
tion primitives in favor of faster but more complicated, user-space based synchronization.

150

SECTION 5.2 Parallel Edge Partitioning

C
lose

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

O
pen

Frontier

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

N
ext
0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

read access (shared) write access (exclusive)

FIGURE 5.7 Expansion of partition 12 by a thread along edge (12, 13) for a 15-puzzle instance
partitioned according to position of the blank tile. The thread reads partition 12 of the fron-
tier for the original states and partitions 13 from Close, the frontier and next for duplicate
detection. If states pass the test, they are written to partition 13 in next. PEP guarantees that
no other thread reads or writes partition 13 of next concurrently. Note that other threads can
(and do) concurrently read partition 13 in the frontier.

151

CHAPTER 5 Parallelization of Heuristic Search

5.3 Empirical Comparison of PEP, PSDD, PBNF and HDA∗

Now that I described the technique and gave an example of its integration, it is time to revisit
the original motivation for its development. That is, to expand the heuristic search toolkit with
a conceptually simple but effective parallelization model. In the following I will compare the
performance PEP-based BFHS (EP), PSDD-based BHFS (SDD), PBNF and HDA∗ on a vari-
ety of IPC instances. Breadth-first heuristic search [ZH04a] differs from parallel BFS-DD in
that it (1) only retains the “hull” of Close but still guarantees full duplicate detection with the
smaller memory footprint, (2) recreates an i-plan not directly, but instead keeps an interme-
diate layer that upon discovery of a goal state allows it to split the problem into two (much
simpler) subproblems to which it recursively applies itself (a significantly more clever version
of what was sketched in section 4.2.13) and (3) uses a heuristic to prune states if their ad-
missible estimate exceeds a pre-supplied upper-bound. In concept and effect (apart from the
pruning) it is a breadth-first search with a low memory footprint at the cost of some computa-
tional overhead and a significant increase in algorithmic complexity. I refer interested readers
to [ZH04a, ZH06] for a much more in-depth treatment. The implementations of PEP, PSDD
and HDA∗ used in this evaluation were programmed by my colleague Rong Zhou. The test
uses relatively large instances from different IPC domains. The experiments were performed
on dual quad-core Intel Xeon workstation. For a short introduction of these domains, see sec-
tion 4.2.13. To put the following results into context, it is my understanding that (at the time of
writing) single-threaded (BFHS-)SDD is amongst the fastest sequential algorithms available.

5.3.1 Successor Generation

I want to start this comparison by a quick look at successor generation. The abstract state graph
offers a computationally trivial method of speeding up this process. Consider figure 5.8. The
usual pSTRIPS encoding of the 8-puzzle sports 192 operators in total, each corresponding
to one particular configuration of the blank and a neighboring tile. For the above abstraction
to the position of the blank tile, each abstract transition corresponds to 8 of these operators.
In general, the successor generator tests the preconditions of each operator and if they apply
creates the corresponding successor. Using the partitioning of Open and the abstract graph
one can immediately discard the vast majority of these operators as they are bound to fail their
precondition tests. In the 8-puzzle example, this leaves between 16 (for states in partitions
0, 2, 6, 8) to 32 (for states in partition 4) potentially applicable operators. For larger problems,
this ratio only widens (e.g. 720 operators versus at most 60 for the 15-puzzle). A further
benefit is that the operator descriptions themselves can be simplified. In the example, the

152

SECTION 5.3 Empirical Comparison of PEP, PSDD, PBNF and HDA∗

0 1 2

3 4 5

6 7 8
pSTRIPS Operators

oa : b = 2, t1 = 5→ b = 5, t1 = 2

ob : b = 2, t2 = 5→ b = 5, t2 = 2

oc : b = 2, t3 = 5→ b = 5, t3 = 2

od : b = 2, t4 = 5→ b = 5, t4 = 2

oe : b = 2, t5 = 5→ b = 5, t5 = 2

of : b = 2, t6 = 5→ b = 5, t6 = 2

og : b = 2, t7 = 5→ b = 5, t7 = 2

oh : b = 2, t8 = 5→ b = 5, t8 = 2

FIGURE 5.8 Abstract state graph on the position of the blank in the 8-puzzle with correspond-
ing pSTRIPS operators for the transition from 2 to 5.

atomic precondition that blank must be in position 2 is trivially fulfilled for all states in that
partition and hence needs not to be evaluated. Exploiting this property can dramatically reduce
the amount of computation necessary for successor generation.

To this end, see table 5.1 for a comparison of the number of states generated per second
when running FD, SDD and EP with no parallelization and a blind heuristic. FD is known for
its state of the art successor generator using efficient, decision tree based precondition check-
ing (see [Hel06a] for details). The staggered expansion of EP with the ex aequo smaller du-
plicate detection scopes furthermore leads to much better spatial locality of memory accesses
and hence less cache misses. Unsurprisingly the extend of this benefit depends on domain
structure and chosen abstraction as the table shows. On average SDD is about 3.2× and EP
about 5.8× faster than FD.

5.3.2 Performance and Scaling

In heuristic STRIPS planning however, it is fairly usual that evaluating a state takes longer
than generating it. Thus the comparison between EP, SDD and FD is with their default admis-
sible heuristics turned on. While the heuristics used are not the same, they are all based on
abstractions: the merge&shrink heuristic [HHH07] for FD and pattern database heuristics for
both SDD and EP.

SDD and EP were limited to 2 GB of RAM, FD was allowed the machine’s full 4 GB as
there is no simple way to limit its peak memory usage. For the merge&shrink heuristic, an
abstraction size of 1000 was set, identical to what was used by [KFB09]. The runtime results
are given in table 5.2 for SDD and table 5.3 for EP. These problems are the largest in each

153

CHAPTER 5 Parallelization of Heuristic Search

FD SDD EP

problem St/sec St/sec × FD St/sec × FD

driverlog-14 1.1M 1.4M 123% 1.5M 138%

depots-13 0.63M 1,6M 263% 2.0M 319%

logistics-9 0.67M 3.2M 476% 3.7M 538%

freecell-5 0.30M 0.26M 87% 1.6M 545%

blocks-10 0.41M 2.0M 475% 2.4M 572%

satellite-5 0.76M 2.6M 328% 6.3M 786%

gripper-8 0.53M 2.6M 494% 6.2M 1,175%

TABLE 5.1 Brute-force speed (million of states per second) comparison of FD, SDD, and EP
on pSTRIPS planning problems.

Problem Len Exp 1 Thrd 2 Thrd 7 Thrd |G̃|
logistics-9 36 2,032,316 4.84 3.26 2.05 14,641

depots-13 25 1,924,439 16.50 10.79 7.71 625

satellite-5 15 3,162,393 28.68 23.14 20.71 1,331

elevator-12 40 24,223,337 84.00 47.13 22.81 1,600

gripper-8 53 66,906,969 95.30 64.10 48.59 3,600

blocks-10 34 119,755,718 202.44 129.56 77.23 2,197

freecell-5 30 16,633,205 423.10 294.86 242.85 2,304

driverlog-14 28 46,243,536 446.28 234.25 126.44 784

TABLE 5.2 Results for SDD on IPC planning problems with 1, 2 and 7 threads. Columns show
solution length (Len), number of node expansions (Exp), runtime in wall-clock seconds,
and the size of the abstract graph (|G̃|).

154

SECTION 5.3 Empirical Comparison of PEP, PSDD, PBNF and HDA∗

Problem Len Exp 1 Thrd 2 Thrd 7 Thrd |G̃|
logistics-9 36 10,623,253 4.63 3.07 1.96 1,331

depots-13 25 28,027,766 14.94 8.15 3.66 625

satellite-5 15 60,083,105 18.61 11.17 10.87 121

elevator-12 40 76,038,474 58.69 32.28 12.46 64

gripper-8 53 348,411,069 50.88 46.39 39.97 180

blocks-10 34 949,979,726 215.47 154.65 132.29 169

freecell-5 30 65,609,725 75.34 48.76 36.57 64

driverlog-14 28 664,970,840 353.13 191.49 84.98 784

TABLE 5.3 Results for EP on IPC planning problems with 1, 2 and 7 threads. Columns show
solution length (Len), number of node expansions (Exp), running time in wall-clock sec-
onds, and the size of the abstract graph (|G̃|). Note that EP expansions are staggered, hence
the higher numbers.

of the eight domains that can be solved within 2GB of RAM. While EP requires 10× more
staggered node expansions than SDD needs full node expansions, it is still significantly faster.
This reflects PEP’s faster precondition checking. It also shows that PEP can be equally or
more effective with a coarser abstraction function than SDD. Note that for this comparison,
EP, on average, uses abstract graphs that are more than 10× smaller than SDD’s. This not
only conserves memory, it is also faster to traverse and manipulate a smaller abstract graph.
However, EP can leverage sufficient concurrency out of an abstract graph with as few as 64

abstract nodes. Note that if SDD (or PBNF for that matter) used an abstract graph that small,
its wall-clock runtime would be significantly worse than what is presented in Table 5.2.

FD ran on the same instances but only managed to solve satellite-5 and freecell-5 and
ran out of memory on the rest of the problems except for elevator-12 (not supported by
FD), hence no runtime is given. While all planners become slower with heuristics turned
on, their relative speed remains roughly the same (while the heuristics are different, they are
both lookup based). Measuring the number of states generated and evaluated per second, on
average, EP is 1.85× faster than SDD, which in turn is 3.05× faster than FD. FD was also run
on a machine with 96 GB of memory, which enabled it to solve 3 more problems. Even here,
logistics-9 and driverlog-14 remain unsolvable.

Understanding the relative speed difference of sequential algorithms is important when
comparing their parallelized counterparts. For example, the most commonly used metric for

155

CHAPTER 5 Parallelization of Heuristic Search

0

0.25

0.50

0.75

1.00

1 Thrd 2 Thrd 3 Thrd 4 Thrd 5 Thrd 6 Thrd 7 Thrd

SDD Scaling

logistics-6 blocks-14 satellite-6 freecell-3 depots-7
driverlog-11 elevator-12 gripper-8 blocks-16 Reference

FIGURE 5.9 Relative runtime of SDD as a function of participating threads on different IPC
problems. Reference is an ideal, perfectly parallelizable workload.

0

0.25

0.50

0.75

1.00

1 Thrd 2 Thrd 3 Thrd 4 Thrd 5 Thrd 6 Thrd 7 Thrd

EP Scaling

logistics-6 blocks-14 satellite-6 freecell-3 depots-7
driverlog-11 elevator-12 gripper-8 blocks-16 Reference

FIGURE 5.10 Relative runtime of EP as a function of participating threads on different IPC
problems. Reference is an ideal, perfectly parallelizable workload.

156

SECTION 5.3 Empirical Comparison of PEP, PSDD, PBNF and HDA∗

HDA* PBNF

Problem 2 Thrd 7 Thrd 2 Thrd 7 Thrd

logistics-9 6.67 3.39 4.14 2.28

depots-13 15.48 6.27 10.13 9.20

satellite-5 28.86 11.05 59.20 MEM

elevator-12 96.58 50.66 31.34 12.85

gripper-8 178.83 58.26 89.79 67.97

blocks-10 MEM MEM MEM MEM

freecell-5 MEM MEM 183.75 226.90

driverlog-14 MEM MEM MEM MEM

TABLE 5.4 Runtime (in seconds) of HDA∗ and PBNF on IPC planning problems with 2 and 7
threads. MEM denotes instances where the algorithm failed as it ran out of memory.

parallel efficiency is the so-called speedup ratio, which measures the performance of a parallel
algorithm against its corresponding sequential implementation rather than its direct competi-
tors. This can be misleading as the same search algorithm with a slow successor generation
function achieves ex aequo higher parallel speedups than with a fast one. Here for example,
the speed difference in successor generation between EP and FD is over a factor of 5.6, which
means the threads of EP must synchronize 5.6 times less frequently with one another just to
achieve the same relative speedup ratios as FD, if both use synchronization mechanisms with
comparable overhead (e.g., POSIX threads). Graphs 5.9 and 5.10 give the parallel speedups
for SDD and EP (now with equal abstractions). Under these conditions, with exception of the
logistics instance, EP shows almost perfect scaling.

The original HDA∗ is built on top of FD, which as table 5.1 shows has a slower suc-
cessor generator than the other planners used. To ensure a fair comparison, HDA∗ was re-
implemented to make sure that it is comparable to SDD in speed and uses exactly the same
admissible pattern database heuristic.

Table 5.4 shows the runtime of HDA∗ and PBNF (the lifelock-free version) on the same set
of planning problems. The PBNF implementation used was the one described in [BLZR09].
All algorithms used the same admissible heuristic (computed by the same C code).

Before going into the details, a few important remarks. HDA∗ and PBNF represent the
current state of the art in parallel heuristic so they make for obvious comparison candidates.

157

CHAPTER 5 Parallelization of Heuristic Search

Nevertheless, it is somewhat problematic to compare breadth-first heuristic search with a best-
first search algorithm like A∗ or its parallel variants, such as HDA∗ and PBNF, simply on
the grounds of parallel-speedup ratios or runtime. Despite its significant computational com-
plexity, memory is usually the limiting factor in pSTRIPS planning (c.f. chapters 3 and 4) so
trading spatial for temporal efficiency is seldom viable in practice. Hence in addition to the
general reservations with the parallel-speedup metric stated above, I want to elaborate on two
specific problems arising from this comparison.

Problem #1 The underlying rationale for using a breadth-first instead of a best-first ap-
proach to heuristic search is that the former induces a smaller search frontier than the latter.
Moreover, this difference increases as more accurate heuristics are employed [ZH06]. Since
the frontier can be seen as a snapshot of the “workload" of the search algorithm, A∗ has the
inherent advantage of having a larger available work-pool (from which to create parallel work
tasks) than breadth-first heuristic search at any point in time.

Reason #2 The parallel version of breadth-first heuristic search uses (g-cost) layer-based
synchronization to conserve memory. As such there is a higher chance of starvation as the
algorithm approaches the end of a layer expansion. PBNF is not layer-based. The implemen-
tation of HDA∗ is f -estimate layer-based (i.e., states with equal f -estimates form a layer) and
there are always fewer f -estimate layers than there are g-cost layers. For example with a per-
fect heuristic h∗ would, f -estimate layer-based best-first search would only need to expand
nodes from a single layer (i.e. basically remove the need of layer-based synchronization for
HDA∗).

Despite all these disadvantages, the results shows that EP runtime compares very favorably
with SDD, HDA∗ and PBNF over all thread counts. The only exception is blocks-10 for
which EP needed more incremental expansions than the number of nodes generated and was
outperformed by SDD. (i.e. on average states generated less than one successor each during
staggered expansions). These results are remarkable, as HDA∗ and PBNF are considerably
less memory-efficient than BFHS which prevents them from solving larger problems. One
interesting observation is that PBNF ran out of memory on satellite-5 with 7 threads, but not
with 2 threads. Unlike PEP, PBNF’s memory requirements can increase with the number of
threads used. For satellite-5, PBNF’s peak number of states held in memory are roughly 16,
32, and 54 million for 1, 2, and 4 threads.

Another interesting question raised by PBNF’s results on satellite-5 is whether it is still
appropriate to view it as a best-first search, especially when it is run on a (relatively) large

158

SECTION 5.3 Empirical Comparison of PEP, PSDD, PBNF and HDA∗

Problem 1 Thrd 2 Thrd 3 Thrd 4 Thrd 5 Thrd 6 Thrd 7 Thrd

15-puzzle-17 1,488.40 810.14 565.81 454.22 384.15 352.26 315.14

15-puzzle-53 1,111.11 594.92 411.61 317.96 268.30 235.38 213.79

15-puzzle-56 722.65 398.54 280.22 219.57 193.36 174.45 156.92

15-puzzle-59 1,001.89 561.94 407.03 326.94 285.92 251.35 240.54

15-puzzle-92 964.70 521.49 365.13 282.13 238.52 209.64 191.97

TABLE 5.5 Runtime of SDD (in seconds) on a selection of Korf’s 100 instances.

Problem 1 Thrd 2 Thrd 3 Thrd 4 Thrd 5 Thrd 6 Thrd 7 Thrd

15-puzzle-17 425.13 294.43 243.15 219.50 203.93 196.14 190.62

15-puzzle-53 333.47 238.06 195.12 176.59 163.20 156.98 154.04

15-puzzle-56 246.44 183.16 150.73 137.82 129.29 125.09 121.99

15-puzzle-59 309.83 212.66 181.96 164.83 153.28 145.59 141.82

15-puzzle-92 270.65 192.65 161.73 146.97 136.61 133.16 128.76

TABLE 5.6 Runtime of EP (in seconds) on a selection of Korf’s 100 instances.

number of threads. While the safe version of PBNF (using a technique called “hot nblocks"
where an nblock is essentially a partition) guarantees a livelock-free search, its node expansion
order can deviate arbitrarily from best-first order. In the extreme, if a partition on Open is not
interfering with a better one and is the only one the free list, PBNF will choose it for expansion
no matter how bad (from a best-first perspective) that partition is, resulting in what is basically
a random expansion order.

Finally, SDD and EP were run on Korf’s 100 15-Puzzle instances encoded as STRIPS plan-
ning problems. Tables 5.5 and 5.6 give their respective runtimes for a selection of instances.
Note that the previous best planner can solve 93 of them in hours [HBH+07]. With 2 GB of
RAM, EP solves 95 of them in minutes, using a weaker admissible heuristic. Note that none
of Korf’s 100 instances can be solved by FD or the original HDA∗ - both ran out of memory
on the 96 GB machine when attempting to solve the easiest instance (#79). On average, EP
achieves 3× speedup in precondition checking over SDD in this domain (c.f. figure 5.8).

159

CHAPTER 5 Parallelization of Heuristic Search

5.4 Summary

In this chapter, I described parallel edge partitioning and showed how it allows to exploit
structural domain properties in a principled way in order to efficiently parallelize graph search
algorithms. Parallel edge partitioning has several theoretical and practical advantages over
its related approach, parallel structured duplicate detection. By establishing a conception-ally
simple, deadlock free synchronization regime, it significantly reduces the complexity of par-
allel search algorithm design. By reducing the size of duplicate detection scopes, it increases
the degree of synchronization-free concurrency and improves memory system performance
through higher spatial locality of loads and stores. In the context of domain-independent
propositional planning, edge partitioning allows for an expansion regime that significantly
speeds up precondition checking during successor generation making it a worthwhile tech-
nique even for sequential algorithms.

160

CHAPTER 6

Conclusion

In this thesis, I have introduced two techniques to widen the memory and I/O bottleneck
in explicit state planning on the one side and enable the exploitation of ever more parallel
hardware on the other. Due to algorithmic advances over the recent years, spatial complexity
has established itself more and more as the biggest bottleneck in state-of-the-art propositional
planners. As a result, space-efficient representation has more and more moved into the center
of attention of the academic community. Binary Decision Diagrams quickly emerged as the
technology of choice even though they have proven to be difficult citizens. Their benefits are
limited to a subset of domains where they often only work well when few, large sets need to
be represented. Their integration is challenging as they offer no easy (space efficient) way to
associate the ancillary data to elements most search algorithms rely on. Their computational
overhead for explicit state search is significant. Despite all these shortcomings, over a wide
range of problem domains, a planner based on BDDs outperformed all other state-of the art
planners at the last international planning competition [HDR08].

The development of the Level Ordered Edge Sequence encoding technique was strongly
motivated by these results. LOES encodings result in state-set representations that are consis-
tently small and computationally efficient for sets of all sizes. LOES spans an address space
over its constituents which enables time and space efficient association of additional data to
its constituents and hence integrates naturally into a wide range of state-of-the-art algorithms
and memoization techniques in the context of combinatorial search and optimization. Further-
more, its close conceptional relationship with binary decision diagrams allows for straight-
forward interoperability between the two representations. Such hybrid representations, where
LOES serves as a fallback for domains which are not amendable to BDD compression, their
computational overhead is deemed too high or the resulting limitation in applicable search
algorithms is impractical, allow to alleviate the memory bottleneck of domain-independent
propositional planners by orders of magnitude.

161

CHAPTER 6 Conclusion

In recent years, parallel computing has become the norm rather than the exception in nearly
all deployed hardware platforms, from high-end servers to mobile phones. While the depth-
first family of search-algorithms adapts more or less straightforwardly to this form of com-
putation, breadth and best-first algorithms are much more challenging to parallelize. Still, in
most domains the latter, with their ability to exploit overlapping subproblems and optimal
substructure, outperform the former (even when parallelized) by orders of magnitude. This
ability relies on the runtime accumulation of vast amount of state and its manipulation at a
high frequency in a consistent way. That need for consistency results in so much overhead due
to communication and synchronization that straightforward parallelizations based on transac-
tional data structures generally give worse performance than their sequential counterparts (see
[BLZR09] for some empirical evidence). Efficient parallel breadth and best-first search neces-
sitates changes on the algorithmic level, but even with current tools, designing and debugging
explicitly parallel algorithms remains challenging. This may be the reason for the surpris-
ingly little work in this field so far. On thread of work has focused on explicitly distributing
search state, thereby mostly eliminating the need for synchronization and focused to deploy
on very high end supercomputers to manage the ensuing communications load (i.e.[EHMN95]
and [KFB09]). Performance and scaling of these approaches on of-the-shelf hardware is pre-
dictably lacking.

The other thread of work based on structured duplicate detection has focused on domain ab-
straction to exploit domain inherent concurrency allowing to lift synchronization to the level
of a few, large partitions of shared state with drastically reduced frequency. However, SDD
depends on special domain properties and is hence not generally applicable. The technique
also necessitates careful resource handling to avoid dead- and lifelocks, markedly complicat-
ing algorithm design. Last but not least, the one relatively complex parallel best-first algorithm
hitherto developed on top of these ideas (i.e. PNBF [BLZR09]) trades off spatial-efficiency for
its scalability in a substantial way, an at best questionable design choice given the realities of
propositional planning. Parallel Edge Partitioning more or less removes these barriers of entry.
It represents a conceptually simple and powerful synchronization scheme that exploits basic
domain structure for very good concurrency, regardless of any inherent properties. Most im-
portantly, it avoids most of the complexities of parallel algorithm design by being inherently
deadlock free. In fact, it enabled developing and debugging a parallel version of breadth-first
heuristic search, one of the fastest (but also relatively complex) explicit state search algo-
rithms in less than a week. The resulting algorithm shows very good speed increases over
its sequential base and consistently outperformed the other (publicized) parallel breadth- and
best-first approaches while retaining BFHS’ frugal memory requirements. In fact it produced

162

the best results on Korf’s 100 instances (of the 15-puzzle) hitherto published for any domain
independent planner.

In summary, both are widely applicable technologies that fill important gaps in the map
of heuristic search techniques. As such they should transfer naturally to the field of domain
dependent planning. A particularly interesting domain during my work at PARC were target-
value path problems. They represent a challenging, novel class of combinatorial optimization
problems with practical applications. The development of depth-first target value search shows
how a toolkit of well defined and understood heuristic search techniques can be used to inte-
grate domain knowledge and economically derive efficient domain specific solvers. The work
on target value search serves as a good example of the cross-fertilization between domain-
dependent and domain-independent planning.

163

CHAPTER 7

Outlook

The bulk of research presented in this thesis was driven by our groups’ “Planning in the Cloud”
vision. The overarching idea in a single sentence is to provide a domain independent planner
with a sufficiently expressive problem description language that can be deployed in com-
mercial cloud computing environment and scales to large problem sizes. Large combinatorial
optimization and search problems permeate our environment. The potential spoils are often
sizable. A primary example is the ever more elaborate logistics and production planning which
enables many large organizations to run more efficient “just-in-time”, “lean-manufacturing”
or “agile-manufacturing” regimes than their smaller competitors. Computing (near-) optimal
solutions to such problems has thus far often been the privilege of either large organizations or
extensive collaboration as their set-up cost is often sizeable, partly due to the necessary elab-
orate algorithm development and implementation effort and partly due to the often massive
computational power required for feasibly running the resulting solvers.

The on-demand availability of large parallel clusters at low hourly rates in the form of cloud
computing services together with high-performance, general combinatorial optimizers could
on the one hand make these powerful tools available to a much wider audience and on the
other hand make optimization techniques economically feasible for a wide range of problems.

The techniques described here represent the very first step towards that aim. Parallel Edge
Partitioning provides a natural framework for a principled mapping of shared search state
across multiple distributed collaborating machines each sporting multiple processing elements.
The primary pain point for high performance computing in current commercial cloud environ-
ments is the excessive latency and lacking bandwidth of inter-node links (see [EH08], [HH09]
and [RVG+10] amongst many others). Edge partitioning was originally devised as a technique
to ease the communications load in external memory search and hence expands straightfor-
wardly from an intra-node (shared-memory) synchronization technique to the inter-node dis-
tributed memory case helping to lower the frequency and scope of necessary communications.

165

CHAPTER 7 Outlook

Compression techniques such as LOES can act synergistically in two ways - first partitioning
the search state according to structural domain properties through parallel edge partitioning
allows LOES to even better exploit the memory at each node (i.e. all states at a pep-node
share assignments to subsets of their state variables leading to ceteris paribus longer common
prefixes in the partitions) and second succinctly encoding state-sets that have to be moved
between nodes can significantly ease the bandwidth bottleneck.

Such large scale heuristic search problems also represent a natural ecosystem for memoiza-
tion based heuristics. Pattern databases and merge & shrink heuristics have the inherent advan-
tage that estimates are reused many times during a search. Particularly for large problems, this
surmounts to a sizable reduction in computational complexity to heuristics that require costly
re-computation for every state generated. One of the biggest limitations to their wide-spread
use in domain independent planning has been that the spatial efficiency of the common per-
fect hash representation degenerates quickly as the underlying abstractions became more fine
grained (i.e. for stronger heuristics). Here the especially the combination of LOES and BDDs
looks extremely promising, robustly offering up to several order of magnitude better space
efficiency for large PDBs. In all these advances open up several concrete, interesting research
questions for the future such as automatic pattern selection in domain independent planning
for strong PDB heuristics, memoization techniques for hm and landmark style heuristics (i.e.
the two other important families of heuristics [HD09]) to make them computationally feasible
when large amounts of states need to be traversed, optimal mappings of a problem’s abstract
graph’s nodes to the platform’s computing topology such that communications between dis-
tributed memory environments are minimized and adaptive load-balancing schemes for such
massively parallel search algorithms.

166

Bibliography

[ACNS10] D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct trees in
practice. Proc. 11th ALENEX, pages 84–97, 2010.

[Bae95] C. Baeckstroem. Expressive equivalence of planning formalisms. Artificial

intelligence, 76(1-2):17–34, 1995.

[Bay72] R. Bayer. Symmetric binary b-trees: Data structure and maintenance algo-
rithms. Acta informatica, 1(4):290–306, 1972.

[BB08] D. Bryce and O. Buffet. 6th international planning competition: Uncertainty
part. In Proceedings of IPC. Citeseer, 2008.

[Bel78] R. Bellman. An introduction to artificial intelligence: can computers think?

Boyd & Fraser Pub. Co., 1978.

[BF97] A.L. Blum and M.L. Furst. Fast planning through planning graph analysis.
Artificial intelligence, 90(1-2):281–300, 1997.

[BG01] B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence,
129(1-2):5–33, 2001.

[BH08] M. Ball and R.C. Holte. The compression power of symbolic pattern databases.
In International Conference on Automated Planning and Scheduling (ICAPS),
pages 2–11, 2008.

[Bja08] P. Bjarnolf. Threat analysis using goal-oriented action planning. Master’s the-
sis, University of Skövde, 2008.

[BK91] C. Backstrom and I. Klein. Parallel non-binary planning in polynomial time.
In Proceedings of the 12th International Joint Conference on Artificial Intelli-

gence, pages 268–273. Citeseer, 1991.

167

Bibliography

[BK10] Teresa Maria Breyer and Richard E. Korf. 1.6-bit pattern databases. In National

Conference on Artificial Intelligence, 2010.

[BLRZ09] E. Burns, S. Lemons, W. Ruml, and R. Zhou. Suboptimal and anytime heuristic
search on multi-core machines. In Proceedings of the Seventeenth International

Conference on Automated Planning and Scheduling (ICAPS-09), 2009.

[Blu95] A.L. Blum. Fast planning through planning graph analysis. Technical report,
DTIC Document, 1995.

[BLZR09] E. Burns, S. Lemons, R. Zhou, and W. Ruml. Best-first heuristic search for
multi-core machines. In Proceedings of the 21st international jont conference

on Artifical intelligence, pages 449–455. Morgan Kaufmann Publishers Inc.,
2009.

[BN95] C. Backstrom and B. Nebel. Complexity results for sas+ planning. Computa-

tional Intelligence, 11(4):625–655, 1995.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35:677–691, 1986.

[BW02] B. Bollig and I. Wegener. Improving the variable ordering of obdds is np-
complete. Computers, IEEE Transactions on, 45(9):993–1002, 2002.

[Byl91] T. Bylander. Complexity results for planning. In Proceedings of the Twelfth

International Joint Conference on Artificial Intelligence, volume 1, pages 274–
279. Citeseer, 1991.

[Byl94] T. Bylander. The computational complexity of propositional strips planning.
Artificial Intelligence, 69(1-2):165–204, 1994.

[CGGT97] A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. Planning via model
checking: A decision procedure for ar. Recent Advances in AI planning, pages
130–142, 1997.

[Cha85] E. Charniak. Introduction to artificial intelligence. Pearson Education India,
1985.

[CKT91] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems
are. In Proceedings of the 12th IJCAI, pages 331–337. Citeseer, 1991.

168

Bibliography

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. The

Massachusetts Institute of Technology. New York, 1990.

[CS96] J. Culberson and J. Schaeffer. Searching with pattern databases. Advances in

Artifical Intelligence, pages 402–416, 1996.

[CS98] J.C. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence,
14(3):318–334, 1998.

[Dar70] Brad Darrach. Meet shakey, the first electronic person. Life Magazine,
69(21):58–68, 1970.

[DEZGK11] Carmel Domshlak, Ziv Even-Zur, Yannai Golany, and Erez Karpas. Command
and control training centers: Computer generated forces meet classical plan-
ning. In System Demo Proceedings of the 21st International Conference on

Automated Planning and Scheduling (ICAPS-2011), 2011.

[Dij59] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[DK07] P.A. Dow and R.E. Korf. Best-first search for treewidth. In Proceedings of the

National Conference on Artificial Intelligence, volume 22, page 1146. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[DP85] R. Dechter and J. Pearl. Generalized best-first search strategies and the opti-
mality of a*. Journal of the ACM (JACM), 32(3):505–536, 1985.

[DPV06] S. Dasgupta, C.H. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill,
Inc. New York, NY, USA, 2006.

[Dre02] S. Dreyfus. Richard bellman on the birth of dynamic programming. Operations

Research, pages 48–51, 2002.

[DRR06] O.N. Delpratt, N. Rahman, and R. Raman. Engineering the louds succinct tree
representation. Experimental Algorithms, pages 134–145, 2006.

[dS58] A. de Segner. Enumeratio modorum, quibus figurae planae rectilineae per di-
agonales dividuntur in triangula. Novi Commentarii Acad. Sci. Petropolitanae,
7:203–209, 1758.

169

Bibliography

[DS07] K. Doris and D. Silvia. Improved missile route planning and targeting using
game-based computational intelligence. In Computational Intelligence in Secu-

rity and Defense Applications, 2007. CISDA 2007. IEEE Symposium on, pages
63–68. IEEE, 2007.

[DW91] J. Doyle and M.P. Wellman. Impediments to universal preference-based default
theories. Artificial Intelligence, 49(1-3):97–128, 1991.

[Ede02] S. Edelkamp. Symbolic pattern databases in heuristic search planning. Artifi-

cial Intelligence Planning and Scheduling (AIPS), pages 274–283, 2002.

[EH00] S. Edelkamp and M. Helmert. Exhibiting knowledge in planning problems to
minimize state encoding length. Recent Advances in AI Planning, pages 135–
147, 2000.

[EH01] S. Edelkamp and M. Helmert. Mips: The model-checking integrated planning
system. AI magazine, 22(3):67, 2001.

[EH08] C. Evangelinos and C.N. Hill. Cloud computing for parallel scientific hpc ap-
plications: Feasibility of running coupled atmosphere-ocean climate models on
amazons ec2. ratio, 2(2.40):2–34, 2008.

[EHMN95] M. Evett, J. Hendler, A. Mahanti, and D. Nau. Pra*: Massively parallel heuris-
tic search. Journal of Parallel and Distributed Computing, 25(2):133–143,
1995.

[EK08a] S. Edelkamp and P. Kissmann. Gamer: Bridging planning and general game
playing with symbolic search. Sixth International Planning Competition Book-

let (ICAPS 2008), 143, 2008.

[EK08b] S. Edelkamp and P. Kissmann. Limits and possibilities of bdds in state space
search. KI 2008: Advances in Artificial Intelligence, pages 46–53, 2008.

[Eli74] P. Elias. Efficient storage and retrieval by content and address of static files.
Journal of the ACM (JACM), 21(2):246–260, 1974.

[ENS92] K. Erol, D.S. Nau, and VS Subrahmanian. On the complexity of domain-
independent planning. In Proceedings of the National Conference on Artificial

Intelligence, pages 381–381. Citeseer, 1992.

170

Bibliography

[EQ01] E. El-Qawasmeh. Beating The Popcount. International Journal of Information

Technology, 9(1):1–18, 2001.

[ER98] S. Edelkamp and F. Reffel. Obdds in heuristic search. KI-98: Advances in

Artificial Intelligence, pages 81–92, 1998.

[FKH04] A. Felner, R.E. Korf, and S. Hanan. Additive pattern database heuristics. Jour-

nal of Artificial Intelligence Research, 22(1):279–318, 2004.

[FL03] M. Fox and D. Long. Pddl2. 1: An extension to pddl for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20(1):61–124,
2003.

[FN71] R.E. Fikes and N.J. Nilsson. Strips: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208,
1971.

[FNPS79] R. Fagin, J. Nievergelt, N. Pippenger, and H.R. Strong. Extendible hashing - a
fast access method for dynamic files. ACM Transactions on Database Systems

(TODS), 4(3):315–344, 1979.

[Fro02] M.P.J. Fromherz. Planning and scheduling reconfigurable systems with regular
and diagnostic jobs, October 30 2002. US Patent App. 10/284,560.

[FT87] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615,
1987.

[GN91] N. Gupta and D.S. Nau. Complexity results for blocks-world planning. In
Proceedings of AAAI-91, volume 629. Citeseer, 1991.

[Gor65] E.M. Gordon. Cramming more components onto integrated circuits. Electron-

ics Magazine, 4, 1965.

[Got97] L.S. Gottfredson. Foreword to" intelligence and social policy.". Intelligence,
24(1):1–12, 1997.

[Hau89] J. Haugeland. Artificial intelligence: the very idea. The MIT Press, 1989.

[HBG05] P. Haslum, B. Bonet, and H. Geffner. New admissible heuristics for domain-
independent planning. In Proceedings of the National Conference on Artificial

171

Bibliography

Intelligence, volume 20, page 1163. Menlo Park, CA; Cambridge, MA; Lon-
don; AAAI Press; MIT Press; 1999, 2005.

[HBH+07] P. Haslum, A. Botea, M. Helmert, B. Bonet, and S. Koenig. Domain-
independent construction of pattern database heuristics for cost-optimal plan-
ning. In Proceedings of the National Conference on Artificial Intelligence, vol-
ume 22, page 1007. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2007.

[HD09] M. Helmert and C. Domshlak. Landmarks, critical paths and abstractions:
WhatÂŠs the difference anyway. In Proc. ICAPS, volume 9, pages 162–169,
2009.

[HDR08] M. Helmert, M. Do, and I. Refanidis. Results of the international planning
competition 2008. http://ipc.informatik.uni-freiburg.de/, 2008.

[Hel03] M. Helmert. Complexity results for standard benchmark domains in planning.
Artificial Intelligence, 143(2):219–262, 2003.

[Hel06a] M. Helmert. The fast downward planning system. Journal of Artificial Intelli-

gence Research, 26(1):191–246, 2006.

[Hel06b] M. Helmert. New complexity results for classical planning benchmarks. In
Proceedings of the sixteenth international conference on automated planning

and scheduling (ICAPS 2006), pages 52–61, 2006.

[Hel10] M. Helmert. Landmark heuristics for the pancake problem. In Third Annual

Symposium on Combinatorial Search, 2010.

[HG00] P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In Proc.

AIPS, pages 140–149. Citeseer, 2000.

[HH99] R.C. Holte and I.T. Hernádvölgyi. A space-time tradeoff for memory-based
heuristics. In PROCEEDINGS OF THE NATIONAL CONFERENCE ON AR-

TIFICIAL INTELLIGENCE, pages 704–709. JOHN WILEY & SONS LTD,
1999.

[HH09] Z. Hill and M. Humphrey. A quantitative analysis of high performance com-
puting with amazon’s ec2 infrastructure: The death of the local cluster? In Grid

Computing, 2009 10th IEEE/ACM International Conference on, pages 26–33.
IEEE, 2009.

172

Bibliography

[HHH07] M. Helmert, P. Haslum, and J. Hoffmann. Flexible abstraction heuristics for
optimal sequential planning. In Proc. ICAPS, volume 2007, pages 176–183,
2007.

[HL10] M. Helmert and H. Lasinger. The scanalyzer domain: Greenhouse logistics as
a planning problem. Proc. ICAPS 2010, pages 234–237, 2010.

[HLH97] B.A. Huberman, R.M. Lukose, and T. Hogg. An economics approach to hard
computational problems. Science, 275(5296):51, 1997.

[HN01] J. Hoffmann and B. Nebel. The FF planning system: Fast plan genera-
tion through heuristic search. Journal of Artificial Intelligence Research,
14(1):253–302, 2001.

[HNR68] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. Systems Science and Cybernetics, IEEE

Transactions on, 4(2):100–107, 1968.

[HNR72] P.E. Hart, N.J. Nilsson, and B. Raphael. Correction to a formal basis for
the heuristic determination of minimum cost paths. ACM SIGART Bulletin,
(37):28–29, 1972.

[Hol97] G.J. Holzmann. The model checker spin. Software Engineering, IEEE Trans-

actions on, 23(5):279–295, 1997.

[Hol10] R.C. Holte. Common misconceptions concerning heuristic search. In Third

Annual Symposium on Combinatorial Search, 2010.

[HR10] Malte Helmert and Gabriele Röger. Relative-order abstractions for the pancake
problem. In European Conference on Artificial Intelligence, pages 745–750,
2010.

[HRK] M. Helmert, G. Röger, and E. Karpas. Fast downward stone soup: A baseline
for building planner portfolios. In PAL 2011 3rd Workshop on Planning and

Learning, page 28.

[Hun97] N.N.W. Hung. Exploiting symmetry for formal verification. University of Texas
at Austin, 1997.

173

Bibliography

[ISY02] N. Ishiura, H. Sawada, and S. Yajima. Minimization of binary decision di-
agrams based on exchanges of variables. In Computer-Aided Design, 1991.

ICCAD-91. Digest of Technical Papers., 1991 IEEE International Conference

on, pages 472–475. IEEE, 2002.

[Jac88] G.J. Jacobson. Succinct static data structures. PhD thesis, Carnegie Mellon
University Pittsburgh, PA, USA, 1988.

[Jac89] G. Jacobson. Space-efficient static trees and graphs. In Foundations of Com-

puter Science, 1989., 30th Annual Symposium on, pages 549–554. IEEE, 1989.

[Jar60] M.P. Jarnagin. Automatic machine methods of testing pert networks for con-
sistency. Technical report, K-24/60, US Naval Weapons Lab., Dahlgren, Va,
1960.

[JBV02] Rune M. Jensen, Randy E. Bryant, and Manuela M. Veloso. SetA*: An efficient
BDD-based heuristic search algorithm. In Proceedings of AAAI-2002, pages
668–673, Edmonton, Canada, August 2002.

[Kat87] R. Katriel. Three highly parallel computer architectures and their suitability for
three representative artificial intelligence problems. 1987.

[KD09] E. Karpas and C. Domshlak. Cost-optimal planning with landmarks. In Proc.

IJCAI, volume 9, 2009.

[KF02] R.E. Korf and A. Felner. Disjoint pattern database heuristics. Artificial intelli-

gence, 134(1-2):9–22, 2002.

[KF07] R.E. Korf and A. Felner. Recent progress in heuristic search: A case study of
the four-peg towers of hanoi problem. In Proceedings of the 20th International

Joint Conference on Artificial Intelligence (IJCAI-07), pages 2324–2329, 2007.

[KFB09] A. Kishimoto, A. Fukunaga, and A. Botea. Scalable, parallel best-first search
for optimal sequential planning. In Proceedings of the Nineteenth International

Conference on Automated Planning and Scheduling (ICAPS-09), 2009.

[Kle90] C.B.I. Klein. Planning in polynomial time. In Expert systems in engineering:

principles and applications: international workshop, Vienna, Austria, Septem-

ber 24-26, 1990, proceedings, volume 462, page 103. Springer, 1990.

174

Bibliography

[Knu73] D.E. Knuth. The art of computer programming: sorting and searching, vol-
ume 3. Addison Wesley Publishing Company, 1973.

[Koe01] J. Koehler. From theory to practice: AI planning for high performance elevator
control. KI 2001: Advances in Artificial Intelligence, pages 459–462, 2001.

[Kor85] R.E. Korf. Depth-first iterative-deepening an optimal admissible tree search.
Artificial intelligence, 27(1):97–109, 1985.

[Kor97] R.E. Korf. Finding optimal solutions to rubik’s cube using pattern databases. In
Proceedings of the National Conference on Artificial Intelligence, pages 700–
705. JOHN WILEY & SONS LTD, 1997.

[Kor04] Richard E. Korf. Best-first frontier search with delayed duplicate detection. In
National Conference on Artificial Intelligence, pages 650–657, 2004.

[KPD+10] L. Kuhn, B. Price, M. Do, J. Liu, R. Zhou, T. Schmidt, and J. de Kleer. Perva-
sive diagnosis. IEEE Transactions on Systems, Man and Cybernetics, Part A:

Systems and Humans, 40 Issue 5(10):932–944, Sept. 2010.

[KPdK+08] L. Kuhn, B. Price, J. de Kleer, M. Do, and R. Zhou. Pervasive diagnosis:
Integration of active diagnosis into production plans. In proceedings of AAAI,
2008.

[KPSM90] R. Kurzweil, R. Productions, M.L. Schneider, and AIMS Media. The age of

intelligent machines, volume 579. MIT press, 1990.

[KR87] V. Kumar and V.N. Rao. Parallel depth first search. part ii. analysis. Interna-

tional Journal of Parallel Programming, 16(6):501–519, 1987.

[Kra86] E.F. Krause. Taxicab geometry: An adventure in non-Euclidean geometry.
Dover Pubns, 1986.

[KS92] H. Kautz and B. Selman. Planning as satisfiability. In Proceedings of the

European Conference on Artificial Intelligence ECAI, volume 54, pages 359–
363. John Wiley & Sons, Inc., 1992.

[KS96] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic,
and stochastic search. In Proceedings of the National Conference on Artificial

Intelligence, pages 1194–1201, 1996.

175

Bibliography

[KS99] H. Kautz and B. Selman. Unifying sat-based and graph-based planning. In
INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE,
volume 16, pages 318–325. Citeseer, 1999.

[KSH06] H. Kautz, B. Selman, and J. Hoffmann. Satplan: Planning as satisfiability. In
5th International Planning Competition, 2006.

[KSP+08] L. Kuhn, T. Schmidt, B. Price, J. de Kleer, M. Do, and R. Zhou. Heuristic search
for target-value path problem. In Proceedings of the 23rd AAAI Conference on

Artificial Intelligence (AAAI-08), 2008.

[KZTH05] R.E. Korf, W. Zhang, I. Thayer, and H. Hohwald. Frontier search. Journal of

the ACM (JACM), 52(5):715–748, 2005.

[LB87] H.J. Levesque and R.J. Brachman. Expressiveness and tractability in knowl-
edge representation and reasoning. Computational intelligence, 3(1):78–93,
1987.

[LdKK+08] J. Liu, J. de Kleer, L. Kuhn, B. Price, R. Zhou, and S. Uckun. A Unified Infor-
mation Criterion for Evaluating Probe and Test Selection. In Prognostics and

Health Management, 2008. PHM 2008. International Conference on, pages 1–
8, 2008.

[Lee59] C.Y. Lee. Representation of switching circuits by binary-decision programs.
Bell System Technical Journal, 38(4):985–999, 1959.

[LN99] J. Lind-Nielsen. Buddy-a binary decision diagram package. Technical report,
Technical University of Denmark, 1999.

[LNAH+01] J. Lind-Nielsen, H.R. Andersen, H. Hulgaard, G. Behrmann, K. Kristoffersen,
and K.G. Larsen. Verification of large state/event systems using composition-
ality and dependency analysis. Formal Methods in System Design, 18(1):5–23,
2001.

[LPW79] T. Lozano-Pérez and M.A. Wesley. An algorithm for planning collision-free
paths among polyhedral obstacles. Communications of the ACM, 22(10):560–
570, 1979.

[MC07] G. Motors and AG Continental. Tartan racing: A multi-modal approach to the
darpa urban challenge. 2007.

176

Bibliography

[McC59] John McCarthy. Programs with common sense. In Proceedings of the Tedding-

ton Conference on the Mechanization of Thought Processes, 1959.

[McD96] D. McDermott. A heuristic estimator for means-ends analysis in planning.
In Proceedings of the 3rd International Conference on Artificial Intelligence

Planning Systems (AIPS-96), pages 142–149, 1996.

[McM93] K.L. McMillan. Symbolic model checking, volume 174. Kluwer Academic,
1993.

[Mer84] L. Mero. A heuristic search algorithm with modifiable estimate. Artificial

intelligence, 23(1):13–27, 1984.

[MGH+98] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. Pddl-the planning domain definition language. The

AIPS-98 Planning Competition Comitee, 1998.

[Mic68] D. Michie. Memo functions and machine learning. Nature, 218(1):19–22,
1968.

[MJPL92] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing conflicts:
a heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence, 58(1-3):161–205, 1992.

[MR02] J.I. Munro and V. Raman. Succinct representation of balanced parentheses,
static trees and planar graphs. In Foundations of Computer Science, 1997.

Proceedings., 38th Annual Symposium on, pages 118–126. IEEE, 2002.

[MSL92] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of sat
problems. In Proceedings of the National Conference on Artificial Intelligence,
pages 459–459. Citeseer, 1992.

[Nil98] N.J. Nilsson. Artificial intelligence: a new synthesis. Morgan Kaufmann, 1998.

[NRR+68] N.J. Nilsson, C.A. Rosen, B. Raphael, L.J. Chaitin, S.E. Wahlstrom, and CA.
Stanford Research Institute Menlo Park. Application of intelligent automata to

reconnaissance. Defense Technical Information Center, 1968.

[NSS+59] A. Newell, J.C. Shaw, H.A. Simon, Rand Corporation, and International Con-
ference on Information Processing. Report on a general problem-solving pro-
gram, 1959.

177

Bibliography

[NU99] M. Nykänen and E. Ukkonen. Finding paths with the right cost. In STACS 99,
pages 345–355. Springer, 1999.

[NU02] M. Nykänen and E. Ukkonen. The exact path length problem. Journal of

Algorithms, 42(1):41–53, 2002.

[OBdBB+04] J. Orkin, P. Baillie-de Byl, D. Borrajo, J. Funge, M. Garagnani, P. Goetz,
JJ Kelly III, I. Millington, B. Schwab, and RM Young. Working group on
goal-oriented action planning. Technical report, International Game Develop-
ers Association, 2004.

[Ork03] J. Orkin. Applying goal-oriented action planning to games. AI Game Program-

ming Wisdom, 2:217–229, 2003.

[Ork05] J. Orkin. Agent architecture considerations for real-time planning in games.
Proceedings of the Artificial Intelligence and Interactive Digital Entertainment,
2005.

[Ork06] J. Orkin. Three states and a plan: the ai of fear. In Game Developers Confer-

ence, volume 2006. Citeseer, 2006.

[Pav08] Adam Pavlacka. Interview with Kieran Bridgen, studio communications man-

ager for Creative Assembly, 12 2008.

[Pea84] J. Pearl. Heuristics: intelligent search strategies for computer problem solving.
Addison-Wesley Pub. Co., Inc., Reading, MA, 1984.

[PMG98] D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence. Oxford
University Press, 1998.

[PSP94] S. Panda, F. Somenzi, and B.F. Plessier. Symmetry detection and dynamic vari-
able ordering of decision diagrams. In Proceedings of the 1994 IEEE/ACM in-

ternational conference on Computer-aided design, pages 628–631. IEEE Com-
puter Society Press, 1994.

[RK87] V.N. Rao and V. Kumar. Parallel depth first search. part i. implementation.
International Journal of Parallel Programming, 16(6):479–499, 1987.

[RK91] E. Rich and K. Knight. Introduction to artificial networks. Mac Graw-Hill

Publications, New York, 1991.

178

Bibliography

[RNC+10] S.J. Russell, P. Norvig, J.F. Candy, J.M. Malik, and D.D. Edwards. Artificial

intelligence: a modern approach. Prentice hall, 2010.

[RVG+10] J.J. Rehr, F.D. Vila, J.P. Gardner, L. Svec, and M. Prange. Scientific computing
in the cloud. Computing in Science & Engineering, 12(3):34–43, 2010.

[RW90] D. Ratner and M. Warmuth. Finding a shortest solution for the n× n-extension
of the 15-puzzle is intractable. J. Symb. Comp, 10:111–137, 1990.

[RW10] S. Richter and M. Westphal. The lama planner: Guiding cost-based any-
time planning with landmarks. Journal of Artificial Intelligence Research,
39(1):127–177, 2010.

[S+99] R.P. Stanley et al. Enumerative Combinatorics: Volume 2, volume 118. Cam-
bridge university press Cambridge;, 1999.

[SA77] D.J. Slate and L.R. Atkin. Chess 4.5—the northwestern university chess pro-
gram, 1977.

[Sch03] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algo-

rithms and Combinatorics, vol. 24. Springer, Berlin, 2003.

[SKP+09] T. Schmidt, L. Kuhn, B. Price, J. de Kleer, and R. Zhou. A depth-first approach
to target-value search. In Second Annual Symposium on Combinatorial Search,
2009.

[Som97] F. Somenzi. Cudd: Colorado university decision diagram package. Public

software, Colorado Univeristy, Boulder, 1997.

[SR86] E. Sandewall and R. Roennquist. A representation of action structures. De-
partment of Computer and Information Science, Linkoeping University, 1986.

[SS06] J. Slocum and D. Sonneveld. The 15 puzzle book. The Socum Puzzle Founda-
tions, 2006.

[SZ11a] Tim Schmidt and Rong Zhou. Representing pattern databases with succinct
data structures. In Proceedings of the Fourth Annual Symposium on Combina-

torial Search, SOCS 2011, 2011.

[SZ11b] Tim Schmidt and Rong Zhou. Succinct set-encoding for state-space search. In
Proceedings of the 25th Conference on Artificial Intelligence (AAAI-11), 2011.

179

Bibliography

[THN04] S. Triig, J. Hoffmann, and B. Nebel. Applying automatic planning systems to
airport ground-traffic control-a feasibility study. In KI 2004: advances in arti-

ficial intelligence: 27th Annual German Conference on AI, KI 2004, Ulm, Ger-

many, September 20-24, 2004: proceedings, page 183. Springer-Verlag New
York Inc, 2004.

[Tur50] A.M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460,
1950.

[UE10] T. Uras and E. Erdem. Genome rearrangement: a planning approach. In Twenty-

Fourth AAAI Conference on Artificial Intelligence, 2010.

[Vui78] Jean Vuillemin. A data structure for manipulating priority queues. Commun.

ACM, 21:309–315, April 1978.

[WDZF11] Ruml Wheeler, M.B. Do, R. Zhou, and M.P.J. Fromherz. On-line planning and
scheduling: An application to controlling modular printers. Journal of Artificial

Intelligence Research, 40:415–468, 2011.

[Win92] P.H. Winston. Artificial intelligence. Addison-Wesley, 1992.

[YdB06] B. Yue and P. de Byl. The state of the art in game ai standardisation. In Proceed-

ings of the 2006 international conference on Game research and development,
pages 41–46. Murdoch University, 2006.

[YL89] H. Yoo and S. Lafortune. An intelligent search method for query optimiza-
tion by semijoins. Knowledge and Data Engineering, IEEE Transactions on,
1(2):226–237, 1989.

[YL03] H.L.S. Younes and M.L. Littman. Ppddl1. 0: An extension to pddl for ex-
pressing planning domains with probabilistic effects. In In Proceedings of the

14th International Conference on Automated Planning and Scheduling. Cite-
seer, 2003.

[ZH02] R. Zhou and E.A. Hansen. Memory-bounded a* graph search. In Fifteenth

International FLAIRS Conference (FLAIRS-02), 2002.

[ZH04a] R. Zhou and E. Hansen. Breadth-first heuristic search. In Proceedings of the

14th International Conference on Automated Planning and Scheduling, pages
92–100, 2004.

180

Bibliography

[ZH04b] R. Zhou and E.A. Hansen. Structured duplicate detection in external-memory
graph search. In Proceedings of the National Conference on Artificial Intel-

ligence, pages 683–689. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2004.

[ZH06] R. Zhou and E.A. Hansen. A breadth-first approach to memory-efficient graph
search. In Proceedings of the National Conference on Artificial Intelligence,
volume 21, page 1695. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2006.

[ZH07a] R. Zhou and E.A. Hansen. Edge partitioning in external-memory graph search.
In Proceedings of the 20th International Joint Conference on Artificial Intelli-

gence (IJCAI-07), pages 2410–2416, 2007.

[ZH07b] R. Zhou and E.A. Hansen. Parallel structured duplicate detection. In Proceed-

ings of the National Conference on Artificial Intelligence, volume 22, page
1217. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2007.

[Zob70] A.L. Zobrist. A new hashing method with application for game playing by.
1970.

[ZSH+09] Z. Zhang, N.R. Sturtevant, R. Holte, J. Schaeffer, and A. Felner. A* search
with inconsistent heuristics. In Proceedings of the Twenty-first International

Joint Conference on Artificial Intelligence (IJCAI’09), 2009.

[ZSH+10] R. Zhou, T. Schmidt, E.A. Hansen, M.B. Do, and S. Uckun. Edge partition-
ing in parallel structured duplicate detection. In Third Annual Symposium on

Combinatorial Search, 2010.

181

	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	On AI planning
	Genealogy
	Classical Planning
	State of the Art
	Motivation
	Contributions

	Preliminaries
	Classical Planning
	Propositional STRIPS
	The Apartment Domain
	Classical Planning - Assumptions, Classification and Complexity

	Classical planning as a problem of combinatorial optimization
	Graph-traversal algorithms
	Depth-first search
	Breadth-first search

	Terminology and Conventions
	Heuristics
	Admissibility
	Best-first search and A*
	Consistency

	Target Value Search
	Example Domains
	Pervasive Diagnosis for manufacturing systems
	Consumer Recommender Systems

	Problem definition
	Conventions
	Complexity

	Heuristics for Target Value Search
	A straightforward approach
	An Admissible Estimator for Target Value Search
	Multi-interval Heuristic for Target Value Search
	Computing the Interval Store

	Algorithms for Target Value Search
	Best-First Target Value Search
	Depth-First Target Value Search

	Empirical Evaluation
	The Test Domains
	Comparison of HS, BFTVS and DFTVS
	Scaling of DFTVS
	Interval Store Evaluation

	Summary

	State-set Representation
	Background
	Pattern Databases
	State Representation
	State-Sets in Unit-Cost Best-First Search
	Set-representation techniques
	Explicit set representations
	Implicit Set Representations

	LOES - the Level-Ordered Edge Sequence
	Conventions
	Prefix Tree minimization
	Sampling representative states
	Analyzing the sample set
	On Prefix Tree Encodings
	The LOES Encoding
	Size Bounds of LOES Encodings
	Mapping Tree Navigation and Set Operations to LOES
	Building a Dynamic Data-Structure for Dynamic Programming based on LOES
	Construction of a LOES code from a Lexicographically-ordered Key-Sequence
	Virtual In-Place Merging
	Practical Optimizations
	Empirical Comparison of LOES and BDD in BFS-DD
	Pattern Database Representations
	Combined Layer Sets
	Inverse Relation
	Compressed LOES
	Empirical Comparison of LOES and BDD for Pattern Database Representations

	Summary

	Parallelization of Heuristic Search
	Background
	Parallel Structured Duplicate Detection

	Parallel Edge Partitioning
	Parallel Breadth-First Search with Duplicate Detection and Edge Partitioning - an Integration Example

	Empirical Comparison of PEP, PSDD, PBNF and HDA*
	Successor Generation
	Performance and Scaling

	Summary

	Conclusion
	Outlook
	Bibliography

