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1 Introduction

1.1 Nuclear fusion

The energy source of stars is the nuclear fusion of light atoms, as first proposed by Atkinson
and Houtermans [1] in 1929. For stars with a mass equal to or lighter than our sun, the
primary reaction mechanism is the proton-proton chain reaction, while for heavier stars it is
mainly the Bethe-Weizsäcker cycle [2] [3] [4]. The basic concept is that two nuclei have to
come close enough to each other so that the short-ranged attracting strong force can act and
cause a fusion reaction. This requires that at first the long-range repelling electric force has
to be overcome (Coulomb barrier).

To employ nuclear fusion as a means to generate electricity in terrestrial power plants, those
stellar processes unfortunately cannot simply be copied and downscaled, as the probability of
fusion reactions actually happening, i.e. the cross section σ of the reaction is much too low.
From today’s view, the only realistic fusion reaction is between deuterium (D) and tritium
(T)

2
1D + 3

1T→ 4
2He + 1

0n + 17.59 MeV
where the energy of 17.59 MeV is split to 3.5 MeV for the α particle 4

2He and 14.1 MeV for
the neutron. At temperatures of 100 million degree Kelvin, the reaction rate for the D-T
fusion reaction is ≈ 10−22 m3

s [5]. Deuterium is easily available from sea water and supply is
practically unlimited. The neutron from the fusion reaction can be used to breed tritium by
a reaction with lithium

1
0n+ 6

3Li→ 3
1T + 4

2He + 4.78 MeV
The most advanced concept of a fusion reactor today is based on the magnetic confinement
of a D-T fuel mix heated up to temperatures of 100 - 200 million degree Kelvin. Higher
temperatures are connected with higher average velocities of the particles, making it possible
for them to overcome the Coulomb barrier. At these temperatures, the fuel is in the state of
a plasma, where D and T are fully ionized along with unbound electrons.

To confine the plasma within a reactor, magnetic fields are applied. The basic confinement
mechanism can be understood as follows: a single electrically charged particle is forced to a
circular motion perpendicular to the direction of a magnetic field line (gyration), providing
confinement in this perpendicular direction. Parallel to the magnetic field however, it feels
no Lorentz force and is still free. Early experiments used a cylindrical setup, i.e. straight
magnetic field lines inside the cylinder, with magnetic mirrors on both ends1 to minimize

1increasing magnetic field strength at the ends of the cylinder, causing a repelling force
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1 Introduction

losses. This however proved to be ineffective for particles with high energies, as their parallel
velocity is high enough to overcome the mirror force, and particle collisions lead to a refilling
of the phase space. The solution is to close both parallel ends to a torus, providing confine-
ment in the direction parallel to the magnetic field (toroidal direction). This is however still
not sufficient, as the hoop force would cause the torus to expand radially with time. The
magnetic field has to be given a poloidal component, causing a helical magnetic configuration.
This can be realized in two ways, the first one being the tokamak concept, see. fig. 1.1. As a
plasma at high temperatures is a good electrical conductor, a toroidal current can be induced
in the plasma through a transformer, causing a poloidal magnetic field. This can be also
used as a heating mechanism for the plasma, but as the conductivity of the plasma increases
with increasing temperature2, this is limited to temperatures up to a few 10 million degree
Kelvin. Additional heating is applied in the form of electromagnetic waves or neutral beam
injection. Unfortunately, to drive the toroidal current, the poloidal magnetic flux through the
plasma has to change continuously, requiring a constant ramp-up of the current in the trans-
former coil. This cannot be done indefinitely and thus without any additional current drive
mechanisms, the tokamak can intrinsically only be operated in pulses. The strength of the
toroidal magnetic field decreases with an 1

R dependence from the location of the transformer
coil to the outside of the tokamak, hence the inner side is termed high-field side (HFS) and
the outer one low-field side (LFS). The second concept is the stellarator shown in fig. 1.2,

Figure 1.1: Basic tokamak configuration. Source: [7]

where the necessary magnetic field is generated purely by shaped coils and no plasma cur-
rent is required. Therefore the stellarator can in principle be continuously operated without
additional external means.
The plasma naturally loses energy and consequently temperature, e.g. by radiation of only
partially ionized impurities3 in the plasma. The goal is to achieve a self-sustained fusion re-
action, where all energy / temperature losses are compensated by the energy of the reactions
themselves. This is called ignition and described by the Lawson criterion

nTτE ≥
12kB
Qα

T 2

< σv >
, (1.1)

with the plasma density n, plasma temperature T confinement time τE , thermal velocity v,
cross section σ for the fusion reaction partners, < ... > denotes the average over the particle

2approximately proportional to T
3
2 [6]

3e.g. particles from the wall material
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1.2 Thesis motivation and outline

Figure 1.2: Basic stellarator configuration. Source: [7]

velocity distribution and kB is the Boltzmann constant. In case of a DT plasma, the quantity
Qα is the energy of the α particle, Qα = 3.5 MeV. The confinement time is defined as W

Ploss
,

where W is the energy content of the plasma and and Ploss is the energy loss rate4. Defining
the plasma β as the ratio of plasma thermal pressure to magnetic pressure

β =
2µ0nkBT

B2
, (1.2)

where B is the magnetic field and µ0 the vacuum permeability, we can express the Lawson
criterion as

βτE ≥
24µ0k

2
B

QαB2

T 2

< σv >
. (1.3)

The confinement time is limited by transport processes, whereas higher β is desirable because
the fusion power increases ∼ β2, but the occurrence of instabilities put upper bounds on the
value of β. Furthermore, one wants the magnetic field B to be as small as possible, as it has
to be generated by external means and thus consumes energy.

1.2 Thesis motivation and outline

Modern tokamaks show high pressure gradients and a peak in the current density at the
edge region of the plasma, i.e. at the low-field side. This often results in instabilities in
this region, where exceeding a pressure gradient threshold causes ballooning modes and the
current density can drive peeling modes / external kinks. In the framework of the linear
ideal magnetohydrodynamics (MHD) model of the plasma, ballooning and peeling modes
show coupling. This coupling provides a theoretical model for the type I edge localized mode
(ELM) instability, which for larger Tokamaks like ITER [8] can cause unacceptable heat
loads on crucial parts of the device, the divertor plates. Coupled peeling-ballooning modes
yield threshold values for the maximum pressure gradient and current density which are com-
parable to experimentally observed values for type I ELMs. For the edge region, however,

4energy losses are e.g. heat conduction and radiation
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1 Introduction

fundamental assumptions of the ideal MHD model may break down. Therefore, we compare
the linear ideal MHD stability predictions with a more sophisticated 3D gyrofluid turbulence
model of the plasma, which has larger regions of validity on both temporal and spatial scales
and moreover features additional types of instabilities. A comparison of both fluid models
can be done numerically in terms of growth rates of modes and their mode numbers, which
characterize the structure of the instabilities.

This thesis is structured as follows:
In chapters 2 and 3, we give an overview of the theoretical framework of both models necessary
for this thesis. This is concluded with a theoretical discussion of their differences concerning
regions of validity and physical mechanisms in chapter 4.
In chapter 5, we describe characteristics of the plasma edge region from experimental obser-
vations along with theoretical interpretations.
Chapter 6 is dedicated to the investigation the influence of the distance of a perfectly con-
ducting wall from the plasma boundary on two specific instabilities, the edge ballooning mode
and the external kink. This is done in the framework of ideal linear MHD and necessary for
appropriate comparisons with the gyrofluid model.
In chapter 7, we perform simulations for the numerical comparison of ideal linear MHD and
the gyrofluid model. We prepare suitable equilibria based on the observations in chapter 5
and then simulate their characteristics with codes for both fluid descriptions. Focusing on the
pressure gradient driven ballooning mode, we compare the initial linear phase of instabilities
along with separate discussion of the characteristics of the ideal linear MHD and gyrofluid
simulations.
The first part of the comparison is concerned with the influence of the pressure gradient on
the stability of plasma equilibria. This is studied by varying the maximum pressure gradi-
ent, but leaving the width of the edge region constant, and changing the width at constant
maximum pressure gradient.
Second, the toroidicity of tokamaks has an influence on several plasma instabilities and can
be quantified by the aspect ratio ε. The effect of ε can both be stabilizing and destabilizing,
depending on the type of instability.
Shaping the poloidal plasma cross section can have strong stabilizing effects as observed in
experiments. We use a κ-δ model to describe the shaping analytically, with plasma elongation
κ and triangularity δ, while the maximum pressure gradient is held fixed.
The last, briefly investigated case features a large pressure gradient in the core of the plasma,
yielding a prominent ballooning mode. It is otherwise specifically designed to dimish all other
instabilities occurring exclusively in only one of the fluid model simulations.
The final chapter 8 summarizes the main results of this thesis and gives a brief outlook on
possible future topics based on our work.
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2 Ideal MHD theoretical background

In this chapter, we present the linear ideal MHD model. We give the necessary equations for
plasma equilibria in tokamaks and introduce methods to test those equilibria for their linear
stability. For the purpose of this thesis, two main instabilities are investigated in detail: the
ballooning mode and the external kink / peeling mode. While giving the basic assumptions
and approximations, the question of their validity regime is described in 4, where we contrast
both fluid models (ideal MHD and gyrofluid) with each other.
We conclude with a summary of the important characteristics of ideal MHD; a comprehensive
review of ideal MHD can further be found in [9], [10].

2.1 From the kinetic equations to the ideal MHD model

2.1.1 The Boltzmann equation

The ideal MHD model describes the plasma as a perfectly conductive fluid composed of only
a single species, assumed to be quasi-neutral but able to carry a current. The starting point
for the derivation of the ideal MHD equations is a kinetic model for an arbitrary number α
of particle species. It describes the plasma in terms of a microscopic distribution function
f̂α(~x,~v, t) instead of 3Nα equations of motion for Nα particles in the system. The quantity

f̂α(~x,~v, t)d~xd~v (2.1)

gives the number of particles of species α having position and velocity within the interval
[~x+ d~x,~v + d~v] at a certain time t. Assuming the motion in the six-dimensional phase space
to be incompressible, i.e. the particle number is conserved along a phase space trajectory, we
have the Liouville equation

df̂α
dt

= 0 (2.2)

This has the form of a continuity equation and can be written as

df̂α
dt

=
∂f̂α
∂t

+
∂~x

∂t
· ∇f̂α +

∂~v

∂t
· ∇~vf̂α

=
∂f̂α
∂t

+ ~v · ∇f̂α + ~a · ∇~vf̂α = 0, (2.3)

5



2 Ideal MHD theoretical background

called the Klimontovich equation.
The only forces ~F considered here are electromagnetic, and any relativistic effects are ne-
glected, so

~a =
~F

mα
=

qα
mα

( ~E + ~v × ~B). (2.4)

At this point, the distribution function could in principle still be written as a sum over delta
distributions

f̂α(~x,~v, t) =

N∑
i=1

δα(~xi, ~vi, t) (2.5)

with ~xi and ~vi being the position and velocity of particle i at the time t. We now switch
over to a smooth distribution function fα(~x,~v, t) through averaging f̂α over a macroscopically
small, but microscopically large volume, compare [11] and [12]. Furthermore, we split the
electromagnetic fields in a macroscopic part ~E, ~B and a microscopic part δE,B.

From f̂α(~x,~v, t), we can obtain the velocity-averaged current density ~j and charge density ρ,
which are the source terms for the macroscopic part of the electromagnetic fields. The latter
can be calculated from the Maxwell equations. The microscopic parts, however, determine
the particle interactions within the Debye sphere.
Now writing eq. (2.3) with the macroscopic quantities on the left hand side and culminating

all the microscopic quantities into a single term1
(
∂fα
∂t

)
c

on the right hand side, we obtain

the Boltzmann equation [11]:

∂fα
∂t

+ ~v · ∇fα +
qα
mα

(
~E + ~v × ~B

)
· ∇vfα =

(
∂fα
∂t

)
c

(2.6)

2.1.2 Fluid moments

The first step of the derivation of the ideal MHD equations is to take the following velocity
moments of eq. (2.6) ∫ [

dfα
dt
−
(
∂fα
∂t

)
c

]
d~v = 0 (2.7)∫

m~u

[
dfα
dt
−
(
∂fα
∂t

)
c

]
d~v = 0 (2.8)∫

1

2
m~u2

[
dfα
dt
−
(
∂fα
∂t

)
c

]
d~v = 0. (2.9)

Integration of the collision term yields terms which describe momentum and energy transfer
between different particle species, while the terms between particles of the same species vanish
due to conservation of total momentum and energy [9].
With the following definitions

1This term is called collision term and can formally be written as
(
∂fα
∂t

)
c

=
∑
β

Cαβ , where β denotes all

plasma species

6



2.1 From the kinetic equations to the ideal MHD model

• particle density

nα =

∫
fαd~v (2.10)

• center of mass velocity

~uα =
1

nα

∫
~vfαd~v, (2.11)

• thermal (random) particle velocity

~wα = ~v − ~uα, (2.12)

we can further introduce the quantities [9]

• friction density

~Rαβ = mα

∫
~wαCαβd~wα (2.13)

• pressure tensor

Pα = mα

∫
~wα ~w

T
αfαd~v (2.14)

• heat transfer between unlike particle species α 6= β

Qαβ =
1

2

∫
w2
αCαβd~wα (2.15)

• heat flux

~hα =
1

2
mα

∫
w2
α · ~wαfαd~v. (2.16)

With this, performing the integrals in eqs. (2.7 - 2.9), we obtain the moment equations

• continuity equation

∂nα
∂t

+∇ · (nα~uα) = 0 (2.17)

• momentum equation

mαnα

[
∂~uα
∂t

+ (~uα · ∇)~uα

]
− qαnα( ~E + ~uα × ~B) +∇ · Pα = Rαβ (2.18)

7



2 Ideal MHD theoretical background

• energy equation

3

2
nαkB

dTα
dt

+ (Pα · ∇)~uα +∇ · ~qα = Qαβ, (2.19)

where kB is the Boltzmann constant. This procedure never yields a closed equation system:
every moment equation includes the moment of the next order. A common choice for a
closure equation is the adiabacity condition and will be given later in the framework of the
final, one-species ideal MHD equation. Together with the Maxwell equations

∇× ~E = −∂
~B

∂t
(2.20)

∇ · ~B = 0 (2.21)

∇× ~B = µ0
~j +

1

c2

∂ ~E

∂t
(2.22)

∇ · ~E =
σ

ε0
, (2.23)

where

σ =
∑
α

qαnα (2.24)

(2.25)

is the total charge density and

~j =
∑
α

qαnα~uα (2.26)

the total current density, eqs. (2.17) - (2.19) give a general MHD description of a plasma for
an arbitrary number of species.

2.1.3 Single fluid equations

For our purpose, the plasma is further considered to consist of only 2 species, electrons
and ions2: α = {e, i}. The single fluid ideal MHD equations are now obtained eliminating
phenomena happening on a fast time scale, having short wavelength.
The first assumption is that all velocities are assumed to be small against the speed of light.
This is formally achieved by

c→∞ (2.27)

or equivalently for the vacuum permittivity

ε0 =
1

µ0c2
→ 0. (2.28)

This has two consequences concerning the Maxwell equations:

2e.g. deuterium ions

8



2.1 From the kinetic equations to the ideal MHD model

• in eq. (2.22), the displacement current can be neglected

∇× ~B ≈ µ0
~j (2.29)

• eq. (2.23) implies quasi-neutrality of the plasma

n := ni − ne =
ε0
e
∇ · ~E ≈ 0. (2.30)

In a second assumption we neglect the electron mass, as it is very small in comparison to the
ion mass. All electron responses to forces are thus instantaneous. With this, the momentum
equation (2.18) for α = e now reads

− en( ~E + ~ue × ~B) +∇ · Pe = ~Reβ. (2.31)

Considering only a scalar, isotropic pressure pα instead of a pressure tensor Pα and introducing
the single fluid variables

~v = ~ui (2.32)

p = pe + pi (2.33)

ρ = min (2.34)

~j = en(~ui − ~ue) (2.35)

then gives us the final single fluid ideal MHD equations

∂ρ

∂t
+∇ · (ρ~v) = 0 (2.36)

ρ
d~v

dt
= ~j × ~B −∇p (2.37)

~E + ~v × ~B = 0 (2.38)

∇× ~E = −∂
~B

∂t
(2.39)

∇× ~B = µ0
~j (2.40)

∇ · ~B = 0. (2.41)

As closure condition, we choose the adiabatic law of state

d

dt

(
p

ργ

)
= 0, (2.42)

where γ is the adiabatic index. The friction term Rαβ = 0 in eq. (2.37) because ~Rei = −~Rie,
and eq. (2.37) is obtained by adding the corresponding momentum equations for ions and
electrons.

9



2 Ideal MHD theoretical background

2.2 The Grad Shafranov equation

The Grad Shafranov equation [13], [14] determines the equilibrium for an axisymmetric
plasma (no dependence in toroidal direction) within the framework of ideal MHD. Under
the condition of a static (time-independent) equilibrium, the basic equation (2.37) is the
force balance

∇p = ~j × ~B. (2.43)

We now rewrite this equation in a suitable way for the tokamak.

Using cylindrical coordinates (R,φ, Z), for axisymmetric plasmas the basic assumption is
∂
∂φ = 0 for any scalar quantity. With the vector potential ~A, we can then write

~B = ∇× ~A

= −∂AΦ

∂z
~eR +

1

R

∂(RAΦ)

∂R
~eZ +

(
∂AR
∂Z
− ∂AZ

∂R

)
~eΦ

= BR~eR +BZ~eZ +BΦ~eΦ

= ~Bp +BΦ~eΦ, (2.44)

i.e. a decomposition in poloidal and toroidal direction. Introducing the stream function ψ
as

ψ = RAΦ, (2.45)

the R and Z components of ~B read as

BR = − 1

R

∂ψ

∂Z
(2.46)

BZ =
1

R

∂ψ

∂R
(2.47)

and therefore

~Bp =
1

R
∇ψ × ~eΦ. (2.48)

The stream function ψ is closely related to the poloidal flux ψp via

ψp = 2πψ. (2.49)

For the definition of poloidal and toroidal flux, compare fig. 2.1.

Using the decomposition from eq. (2.44) with Ampère’s law gives

µ0
~j = ∇×

(
~Bp +BΦ~eΦ

)
. (2.50)

10



2.2 The Grad Shafranov equation

Figure 2.1: Poloidal and toroidal flux. Source: [15]

Evaluating the first term on the right hand side, we get

∇× ~Bp = ∇×
(
− 1

R

∂ψ

∂Z
~eR +

1

R

∂ψ

∂R
~eZ

)
(2.51)

= −
(
∂

∂R

1

R

∂ψ

∂R
+

1

R

∂2ψ

∂Z2

)
~eΦ (2.52)

= − 1

R
∆∗ψ~eΦ (2.53)

with the elliptic differential operator

∆∗ = R2∇ ·
(
∇ψ
R2

)
. (2.54)

The second term can be compactly written as

∇× (BΦ~eΦ) =
1

R
∇ (RBΦ)× ~eΦ. (2.55)

Now multiplying the momentum equation with ~B yields

~B · ∇p = 0, (2.56)

so there is no change in pressure along the magnetic field lines, i.e. the pressure is a function
of the surface label only p = p(ψ). In the same manner, multiplying with ~j and using eq.
(2.50), we see that

RBΦ =: F (2.57)

is also a surface quantity F = F (ψ). It is related to the poloidal current via

Ip(ψ) = −2πF (ψ). (2.58)

11



2 Ideal MHD theoretical background

We can therefore write

∇p =
∂p

∂ψ
∇ψ (2.59)

∇F =
∂F

∂ψ
∇ψ. (2.60)

In the last step, we use the momentum equation eq. (2.43) together with eqs. (2.44), (2.50)
and (2.59):

∇p =
∂p

∂ψ
∇ψ = ~j × ~B

=
(
~jΦ +~jp

)
×
(
~BΦ + ~Bp

)
= ~jΦ × ~Bp +~jp × ~BΦ

= − 1

µ0R
∆∗ψ · ~eΦ ×

(
1

R
∇ψ × ~eΦ

)
+

(
1

µ0R
∇F × ~eΦ

)
×BΦ~eΦ. (2.61)

Calculating the first term on the right hand side gives

− 1

µ0R
∆∗ψ · ~eΦ ×

(
1

R
∇ψ × ~eΦ

)
= − 1

µ0R2
∆∗ψ [~eΦ × (∇ψ × ~eΦ)]

= − 1

µ0R2
∆∗ψ∇ψ, (2.62)

because

∇ψ · ~eΦ = 0. (2.63)

The second term on the right hand side is(
1

µ0R
∇F × ~eΦ

)
×BΦ~eΦ =

(
1

µ0R

∂F

∂ψ
∇ψ × ~eΦ

)
×BΦ~eΦ

= −BΦ

R

∂F

∂ψ
∇ψ +

(
1

R

∂F

∂ψ
∇ψ ·BΦ~eΦ

)
~eΦ

= − 1

µ0R2
F
∂F

∂ψ
∇ψ. (2.64)

Projecting eq. (2.61) on ∇ψ, we obtain the Grad Shafranov equation

∆∗ψ = −µ0R
2 ∂p

∂ψ
− F ∂F

∂ψ
. (2.65)

The functions p and F can be considered free functions and cannot be gained through MHD
a priori. They must be taken from models, as input from experimental observations or other
theories beyond the scope of MHD.
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2.3 Extended energy principle

2.3 Extended energy principle

We present the two major methods to address the stability of equilibria within the framework
of ideal MHD, formulated as initial value problem and eigenvalue problem. Correspondence
between both formulations can be shown, see e.g. [9]. We assume that perturbations to
the plasma are small and consequently linearize all relevant plasma quantities ~C(~r, t) around
their equilibrium values ~C0(~r):

~C(~r, t) = ~C0(~r) + ~C1(~r, t) (2.66)

with pertubations
∣∣∣ ~C1
~C0

∣∣∣� 1.

We only consider static equilibria, i.e.

~v0 = 0 (2.67)

~E0 = 0. (2.68)

2.3.1 Initial value problem formulation

Using the above approach with the ideal MHD equations (2.36 - 2.42), the time evolution for
the perturbed quantities read as [9]

∂ρ1

∂t
= −∇ · ρ0~v1 (2.69)

ρ0
∂~v1

∂t
= −∇p1 +

1

µ0

(
∇× ~B1

)
× ~B0 +

1

µ0

(
∇× ~B0

)
× ~B1 (2.70)

∂p1

∂t
= −~v1 · ∇p0 − γp0∇ · ~v1 (2.71)

∂ ~B1

∂t
= ∇×

(
~v1 × ~B0

)
(2.72)

together with

∇ · ~B1 = 0 (2.73)

µ0
~j1 = ∇× ~B1. (2.74)

Introducing the displacement vector ~ξ by

∂~ξ

∂t
= ~v1, (2.75)

the perturbed quantities can be expressed in terms of ~ξ:

~B1 = ∇×
(
~ξ × ~B0

)
(2.76)

p1 = −~ξ · ∇p0 − γp0∇ · ~ξ (2.77)

ρ1 = −∇ ·
(
~ξρ0

)
. (2.78)
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2 Ideal MHD theoretical background

Inserting this into eq. (2.70) gives the equation of motion for a pertubation ~ξ applied at the
time t = 0 [9]:

ρ0
∂2

∂t2
~ξ =

1

µ0

(
∇× ~B0

)
×
(
∇×

(
~ξ × ~B0

))
+

1

µ0

(
∇×

(
∇×

(
~ξ × ~B0

)))
× ~B0

+∇
(
~ξ · ∇p0 + γp0∇ · ~ξ

)
. (2.79)

With initial values for ~ξ(~r, 0) and ~v1(~r, 0) , eq. (2.79) allows for the computation of the full
time evolution of all plasma quantities considered.

2.3.2 Eigenvalue problem formulation

But often, one is just interested if the equilibrium is stable or unstable, together with a growth
rate for the instability; this is the second formulation.
To this purpose, one rewrites eq. (2.79) as a normal mode problem, i.e. an eigenvalue
problem. This can be achieved by Fourier analysis of the perturbed quantities

~C1(~r, t) = ~C1(~r) exp(−iωt). (2.80)

For simplicity, we denote both ~C1(~r, t) and ~C1(~r) with the same function symbol. Repeating
the steps described above yields the time-independent eigenvalue equation

− ω2ρ0
~ξ = ~F (~ξ) (2.81)

with the force operator

~F (~ξ) =
1

µ0

(
∇× ~B1

)
× ~B0 +

1

µ0

(
∇× ~B0

)
× ~B1 (2.82)

+∇
(
~ξ · ∇p0 + γp0∇ · ~ξ

)
. (2.83)

As can be shown, see e.g. [6], ~F is self-adjoint and therefore the eigenvalues ω2 are real in ideal
MHD. The sign of ω2 then determines oscillatory behavior or exponential instability of the
physical quantities in question, which greatly simplifies calculations if one is only interested
in tests for stability / instability, but not the actual values of growth rates. The spectrum of
~F involves discrete and continuous regions, but continuous values only appear in the stable
part and thus analytical difficulties can be ignored when only investigating unstable modes.
From eq. (2.81), one can derive the extended energy principle for ideal MHD. This reformu-
lates the stability problem as a criterion for the change in the potential energy δW of the
plasma and explicitly shows the different driving terms for instabilities.
Multiplying eq. (2.81) with the complex conjugate ~ξ∗ and integrating over the plasma volume
yields

ω2K(~ξ) = δW (~ξ) (2.84)

with

δW =
1

2

∫
dV ~ξ∗ · ~F (~ξ) (2.85)
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2.3 Extended energy principle

and the kinetic energy associated with the perturbation ~ξ

ω2K =
1

2

∫
dV ρ

∣∣∣~ξ∣∣∣2 , (2.86)

which always satisfies K > 0. As the total energy is conserved in ideal MHD, the question
of stability can be reduced to the sign of δW (~ξ): if δW ≥ 0 for all physically allowed per-
turbations ~ξ of the plasma, the system is stable. If a ~ξ can be found for which δW ≤ 0,
the system is exponentially unstable. The authors of [16] gave an elementary proof of both
the sufficiency and the necessity of this statement. Furthermore, they could show that for a
perturbation η(~r) for which δW (η) ≤ 0 with initial conditions

~ξ(~r, 0) = η(~r) (2.87)

∂~ξ

∂t
(~r, 0) = 0, (2.88)

there exists a ~ξ(~r, t) that grows ∼ exp(λt), with a growth rate λ ≥
√
−δW (η)
K(η) .

In principle, this approach could be used to analyze a system consisting of plasma - vacuum
region - wall. However, as the vacuum fields do not appear explicitly, one would have to deal
with e.g. complicated pressure balance jump conditions at the interface plasma - vacuum
region as an additional constraint. In [17] it was shown that these additional conditions can
be incorporated into δW , and the latter quantity can furthermore be separated into three
terms for the plasma (P), the plasma surface (S) and the vacuum (V):

δW = δWP + δWS + δWV . (2.89)

With the indices ⊥ and ‖ denoting the directions perpendicular and parallel to the magnetic
field ~B, the individual terms are:

δWP =
1

2

∫
P
dV

[∣∣∣ ~Q∣∣∣2
µ0
− ~ξ∗⊥ · (~j0 × ~Q) + γp0

∣∣∣∇ · ~ξ∣∣∣2
+(~ξ⊥ · ∇p0)∇ · ~ξ∗⊥

]
(2.90)

δWS =
1

2

∫
S
dS
∣∣∣~n · ~ξ⊥∣∣∣2 ~n · [[∇(p0 +

B2
0

2µ0

)
]] (2.91)

δWV =
1

2

∫
V
dV

∣∣∣ ~BV
1

∣∣∣2
µ0

(2.92)

where ~BV
1 is the perturbed part of the vacuum magnetic field, [[x]] denotes the jump of x at

the boundary and we have defined

~Q = ~B1 = ∇× (~ξ × ~B0). (2.93)

(2.94)

Eqs. (2.89) - (2.92) represent the standard form of the extended energy principle.
An intuitive form of the plasma term δWP , originally proposed in [18] and [19], can be
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2 Ideal MHD theoretical background

obtained from the standard form in eq. (2.90) by the decomposition∣∣∣ ~Q∣∣∣2 =
∣∣∣ ~Q⊥∣∣∣2 +

∣∣Q‖∣∣2
= ~b · ~Q+~b× ~Q. (2.95)

With this, δWP can now be written as [9]

δWP =
1

2

∫
P
dV {

∣∣∣ ~Q⊥∣∣∣2
µ0

+
B2

0

µ0

∣∣∣∇ · ~ξ⊥ + 2~ξ⊥ · ~κ
∣∣∣+ γp0

∣∣∣∇ · ~ξ∣∣∣2
−2
(
~ξ⊥ · ∇p0

)(
~κ · ~ξ∗⊥

)
− j0‖

(
~ξ∗⊥ × ~B0

)
· ~Q⊥}, (2.96)

where the curvature ~κ is defined as

~κ = ~b · ∇~b. (2.97)

The first three terms in eq. (2.96) are always positive and thus are stabilizing. From left to
right, they are associated with the energy required to:

• bend magnetic field lines (shear Alfvén wave)

• compress magnetic field lines (compressional Alfvén wave)

• compress the plasma (sound wave)

The last two terms can have positive or negative signs and are the driving terms for insta-
bilities. The term ∼ ~ξ⊥ · ∇p0 may cause pressure driven modes, e.g. ballooning modes. The
dominant driving term is ~κ · ∇p0.
The term ∼ j0‖ can cause current driven modes generally called kink modes. At low β, the
main drive is the current density and the current density gradient, while at high β also the
pressure gradient contributes to the mode, c.f. chapter 2.5.1 below.

When there are no surface currents, the term δWS is zero and has no influence on stability.
The vacuum contribution δWV is always positive and consequently stabilizing.

2.4 Ballooning modes

Ballooning modes are internal, pressure-driven modes. Internal modes are defined to cause
no perturbations of the plasma-vacuum interface. They are usually localized in the direction
perpendicular to the magnetic field, meaning k⊥ � 1

a , but have longer parallel wavelength
k‖
k⊥
� 1, where a is the minor radius of the plasma and k‖, k⊥ are the wave numbers in the

direction parallel and perpendicular to the magnetic field. As we have seen in eq. (2.96),
the driving term is ∼ ~κ · ∇p0. If the curvature ~κ and the pressure gradient ∇p0 have same
signs, this term is destabilizing. This is the case at the low field side of the torus and above
a critical value ∇p0 ∼ β, the plasma becomes unstable to ballooning modes.
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2.4 Ballooning modes

Figure 2.2: Schematic structure of a ballooning mode. Source: [20]

2.4.1 The ballooning transformation

Exploiting the wavelength characteristics for the parallel and perpendicular direction, we
write ~ξ⊥ in an eikonal form

~ξ⊥ = ~η⊥ exp(iS) (2.98)

with

~k⊥ = ∇S (2.99)

~B · ∇S = 0. (2.100)

This representation includes a slowly varying quantity ~η⊥ and a rapidly varying quantity S,
with regard to the typical equilibrium length scale a:

|a∇~η⊥|
|~η⊥|

∼ 1 (2.101)

|a∇S| � 1. (2.102)

Inserting eq. (2.98) in the intuitive form of δWF in eq. (2.96) gives

δWP =
1

2µ0

∫
dV

[∣∣∣∇× (~η⊥ × ~B0

∣∣∣2
⊥

+B2
0

∣∣∣i~k⊥ · ~η⊥ +∇ · ~η⊥ + 2~κ · ~η⊥
∣∣∣2

−2µ0 (~η⊥ · ∇p0)(~η∗⊥ · ~κ)− µ0j0‖(~η
∗
⊥ ×~b0) ·

(
∇× (~η⊥ × ~B0)

)
⊥

]
, (2.103)

where the term ∼
∣∣∣∇ · ~ξ∣∣∣2 describing plasma compressibility has been dropped, because in an

equilibrium with shear, a ~ξ‖ can always be found that makes this term vanish [9].
Eq. (2.103) can now be minimized order by order using the expansion

~η⊥ = η⊥0 + η⊥1 + . . . (2.104)

with

|η⊥i+1|
|η⊥i|

∼ 1

k⊥a
� 1. (2.105)

As we want to consider the limit ~k⊥ → ∞, only the expansion terms η⊥0 and η⊥1 are kept.
Expanding δWP accordingly, the first nonvanishing contribution occurs in the second order
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2 Ideal MHD theoretical background

term δWP2.
To avoid confusion between equilibrium quantities and expansion indices, we drop any labels
indicating equilibrium quantities. One can further express [9]

η⊥0 = X
~b

B2
× ~k⊥, (2.106)

where X is some scalar function, slowly varying on the equilibrium length scale. With that,
the remaining expression for δWP2 describing potential instabilities reads as

δWP2 =
1

2µ0

∫
dV

[
k⊥

∣∣∣~b · ∇X∣∣∣2 − 2µ0

B2
(~b× ~k⊥ · ∇p)(~b× ~k⊥ · ~κ) |X|2

]
. (2.107)

Eq. (2.107) represents the change in the potential energy for localized instabilities for general
multidimensional systems within the limits of ideal MHD.

We now use tokamak flux coordinates (ψ, θ, φ) (see e.g [9]) to rewrite the expression for
δW2 into an explicitly one-dimensional integral, i.e. rewrite the terms dV , ~b · ∇X and ~b×~k⊥
in eq. (2.107).
The volume element in these coordinates is simply

dV = 2πJdψdϕ (2.108)

with J being the Jacobian for the transformation (R,Z, φ) → (ψ, θ, φ). Defining a set of
locally orthogonal unit vectors

~n =
∇ψ
|∇ψ|

~t =
Bφ
B
~bp −

Bp
B
~eφ (2.109)

~b =
Bp
B
~bp +

Bφ
B
~eφ,

we can decompose ~k as

~k = kn~n+ kt~t (2.110)

with components

kn = ~n · ∇S (2.111)

kt = ~t · ∇S. (2.112)

In flux coordinates, S reads as

∇S =
∂S

∂ψ
∇ψ +

∂S

∂θ
∇θ +

∂S

∂φ
∇φ (2.113)

and therefore

kn = (~n · ∇ψ)
∂S

∂ψ
(2.114)

kt = (~t · ∇θ)∂S
∂θ

+ (~t · ~eΦ)
1

R

∂S

∂φ
(2.115)
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2.4 Ballooning modes

Using this decomposition of ~k, we can write the second term in question as

~b · ∇X = kt~n− kn~t (2.116)

The last term ~b× ~k⊥ that needs rewriting can simply be expressed as

~b× ~k⊥ =
1

JB

∂X

∂θ
(2.117)

There is no dependence of X on the toroidal angle φ, as this is completely accounted for in
S(ψ, θ, φ), as can be seen as follows: assuming axisymmetry, one can Fourier analyze ~ξ(ψ, θ, φ)
with respect to the toroidal coordinate φ. This is possible because of the axisymmetry of the
plasma, so we can assume decoupling of toroidal modes, which are labeled with the toroidal
mode number n. Choosing a specific n, we have [9]

~ξ(ψ, θ, φ) = ~ξ(ψ, θ) exp(−inφ). (2.118)

Comparing this with the eikonal representation eq. (2.98), we can write

~ξ(ψ, θ) = η⊥ exp
(
iS̃(ψ, θ)

)
(2.119)

and thus

~ξ(ψ, θ, φ) = ~ξ(ψ, θ) exp(−inφ)

= η⊥ exp
(
iS̃(ψ, θ)

)
exp(−inφ)

= η⊥ exp
(
i(S̃(ψ, θ)− nφ)

)
. (2.120)

Therefore

S(ψ, θ, φ) = −nφ+ S̃(ψ, θ). (2.121)

For large n, this guarantees the desired rapid oscillation of the eikonal exponent. Combining
the above gives the final one-dimensional expression of the change in potential energy for
ballooning modes:

δWP2 =
π

µ0

∫
dψW (ψ) (2.122)

with

W (ψ) =

∫ 2π

0
Jdθ

[
(k2
n + k2

t )

(
1

JB

∂X

∂θ

)2

− 2µ0RBp
B2

dp

dψ
(k2
t κn − ktknκt)X2

]
, (2.123)

where the curvature κ has been decomposed as ~k in eq. (2.110).
However, there is a difficulty associated with configurations with shear q′ 6= 0. Eq. (2.100)
can be written as

Bφ
R

∂S

∂φ
+

1

J

∂S

∂θ
= 0, (2.124)
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2 Ideal MHD theoretical background

and using this with the decomposition in eq. (2.121), we can write

−
Bφ
R
n+

1

J

∂S̃

∂θ
= 0

=⇒ S̃ = n

∫ θ

ϕ0

dθ′
JBφ
R

=⇒ S = n

(
−φ+

∫ ϕ

θ0

dθ′
JBφ
R

)
(2.125)

The function S has to be periodic in the poloidal angle:

S(φ, ψ, θ + 2π) ≡ S(φ, ψ, θ) (2.126)

But with the formulation so far, this cannot be matched with the original conditions [9], [21]
for the eikonal representation in eq. (2.98): the quantity η should vary slowly, while exp(iS)
should oscillate rapidly. This can be seen as follows:
Expanding S about a resonant surface ψ0 gives

S ≈ n

(
−φ+

∫ θ

θ0

JBφ
R

∣∣∣∣
ψ0

dθ′ + (ψ − ψ0)

∫ ϕ

θ0

∂

∂ψ

JBφ
R

∣∣∣∣
ψ0

dθ′

)
(2.127)

The third term on the right hand side of eq. (2.127) is related to the shear and only vanishes
for ψ = ψ0, i.e. a mode localized exactly at this flux surface. But even for a small radial
extend ψ − ψ0, the quantity n(ψ − ψ0) has to be considered for n � 1 and breaks the
periodicity constraint.
This can be overcome by the ballooning transformation developed in [21]. For axisymmetric
plasmas, performing a Fourier decomposition of the displacement ~ξ in the toroidal angle

~ξ = exp(−inφ)~ξ(ψ, θ), (2.128)

gives the normal mode formulation 2.81 in the form

~F (~ξ)~ξ(ψ, θ) = ~F (ψ, θ)~ξ(ψ, θ)

= −ω2ρ~ξ(ψ, θ). (2.129)

The displacement ~ξ(ψ, θ) can now be written as

~ξ(ψ, θ) =
∑
m

exp(−imθ)
∫ +∞

−∞
exp(imχ)~ξQ(ψ, χ)dχ (2.130)

with the so-called quasimode ~ξQ and the ballooning angle χ. This formulation automatically

ensures peroidicity of ~ξ in the poloidal angle ϕ if it satisfies the convergence property

~ξQ(ψ, χ→ ±∞)→ 0. (2.131)

The quasimode itself does not have to satisfy any periodicity restraints. By direct substitution
of eq. (2.130) into eq. (2.129), one can see that the quasimode formally obeys the same
eigenvalue equation as the original ~ξ(ψ,ϕ):

~F (ψ, χ)
(
~ξQ(ψ, χ)

)
= −ω2ρ~ξQ(ψ, χ). (2.132)
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2.4 Ballooning modes

The whole eikonal analysis for ballooning modes can now be repeated for a quasimode, with
the only difference that the domain of integration for the poloidal angle now extends over
±∞. The actual displacement can then be constructed as in eq. (2.130. The quantity δW
can be subsequently minimized by an expansion in 1√

n
and to lowest order reads as in eqs.

(2.122) and (2.123) with

kn = n

[
RBp

∫ χ

χ0

∂

∂ψ

(
JBφ
R

)
dχ′
]

(2.133)

kt =
nB

RBp
. (2.134)

Stability against ballooning modes can thus be tested separately on each flux surface, which
requires a solution ψ of the Grad Shafranof equation.
The detailed calculation is done in [21] and shows that the most unstable ballooning modes
occur in the limit n → ∞. Furthermore, the higher order corrections depend only on terms
of the lowest order approximation. Corrections to the leading order for n → ∞ are of order
O( 1

n) and are always stabilizing . For a ballooning mode with toroidal mode number n, the
enveloping function of the poloidal harmonics of the radial displacement is a Gaussian and
spans ≈

√
n rational flux surfaces, i.e. has a width of ≈ a

nqs .

However, the ballooning formalism requires corrections when applied to the plasma edge
as described in [22]. In this case, integration over ψ extends to the plasma edge and thus
renders the assumptions of the balloning formalism invalid. This can be understood in a
simple physical picture: the ballooning transformation includes a quantity X slowly varying
over plasma dimensions. This is always violated at the edge, where the pressure gradient
drops from a finite value inside the separatrix to zero outside. This problem can be resolved
by applying the ballooning transformation nevertheless, noting that only a few of the Fourier
modes actually extend to the edge. The expansion is then done in powers of 1

3√n instead

of 1√
n

. The derivations follow basically the same structure as in [21] and give the following

modifications to the previously considered ballooning formalism:
The enveloping function is now an Airy function and spans only ≈ 3

√
n rational surfaces resp.

has a width of ≈ a
3
√
nqs . The finite n correction to the leading order is of order O( 1

3√
n2

) and

thus larger for all n, while it remains stabilizing for all cases. When there is now coupling to
peeling modes, the stability boundary at n → ∞ is the same as for conventional ballooning
theory.
Numerical calculations are presented in [22], which can also serve as a starting point for the
development of the coupled peeling-ballooning model described in 5.3.1.

The simplest, least restrictive test for stability based on the energy principle for balloon-
ing modes is the Mercier criterion. If it is fulfilled, the plasma is stable against interchange
modes and the ballooning formalism is valid [9]. In that case, the plasma can of course still be
unstable against ballooning modes. If it is violated, the ballooning formalism can no longer
be applied; this however is irrelevant as the plasma equilibrium is already unstable. In case
of a circular plasma with large aspect ratio and βp ≈ 1, this stability criterion simplifies
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substantially to [9] (
r

q

dq

dr

)2

+
8rµ0

B2
0

dp

dr
(1− q2) > 0, (2.135)

i.e. q > 1 has a stabilizing effect on the negative pressure gradient.

As shown in e.g. [23], shaping of the plasma modifies the stability criterion on the mag-
netic axis:

q2
0 > 1→ q2

0

{
1− 4

1 + 3κ2

[
3

4

κ2 − 1

κ2 + 1

(
κ2 − 2δ

ε

)
+
βp0(κ− 1)2

κ2 + κ

]}
> 1 (2.136)

The effects of the elongation κ, triangularity δ and poloidal β on axis βp0 can be summarized
as follows (for the definitions see e.g. [9] and fig. 6.6):
For

κ > 1
δ

ε
>

κ2

2
βp0 = 0,

the shaping has stabilizing effects, for other combinations the effect is either zero (κ = 1) or
destabilizing. Thus a desirable plasma shaping is that of suitable D-shape, compare [9] and
the references therein.

2.4.2 The s− α model

Minimizing the ballooning mode energy equation (2.122) with respect to X leads to an Euler-
Lagrange equation [9]

∂

∂θ

(
f
∂X

∂θ

)
− gX = 0 (2.137)

with

f =
1

JB2

(
k2
n + k2

t

)
(2.138)

g = −2µ0JRBp
B2

dp

dψ

(
k2
t κn − ktknκt

)
. (2.139)

For a large aspect ratio, circular tokamak with low β ≈ ε2, to leading order eq. (2.137) can
be further written in cylindrical coordinates

∂

∂θ

[
(1 + Λ2)

∂X

∂θ

]
+ α(Λsinθ + cosθ)X = 0 (2.140)

with

Λ = s(θ − θ0)− α(sin θ − sin θ0), (2.141)
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2.5 External kinks

Figure 2.3: s− α diagram. Source: [25]

where θ0 are integration constants, the normalized pressure gradient

a := −2µ0r
2

R0B2
θ

dp

dr
= −q2R0

dβ

dr
(2.142)

and average shear

s :=
r

q

dq

dr
. (2.143)

A numerical solution of eq.(2.140) is shown in fig. (2.3).
The stable upper left part is called first region of stability. The limiting curve for stability can
roughly be approximated by a linear fit s ≈ 1.6α. The stable lower left part is accordingly
called the second region of stability and is only present if the pressure modulation of the local
shear [9]

s̃ :=
r

q

∂

∂r

(
JBθ
R0

)
(2.144)

is taken into account3:

s̃ = s− α cos θ. (2.145)

2.5 External kinks

External kink modes are mainly driven by the current gradient and finite current density at
the edge of the plasma. At high β, also the pressure can provide a drive of kink modes. An
indirect drive through a pressure gradient at the edge is due to the bootstrap current 5.2.

They have long parallel wavelength
k‖
k⊥
� 1, but usually4 low k⊥ ≈ 1

a . In due course, we only

3For this plasma geometry, there is no path from the first region to the second region not traversing unstable
operational regimes. Numerical studies [24] show that this can be overcome by a bean-shaped plasma

4For high β, the external kink develops a more ballooning-like structure
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2 Ideal MHD theoretical background

consider external kink modes, which cause a distorsion of the plasma boundary. The internal
kink, characterized by the mode numbers m = n = 1, can be stabilized by the requirement
q > 1 everywhere in the plasma, which is assured for all investigated cases in our numerical
studies, but in general not realistic for experiments. In general, external kink modes show
larger values of the poloidal mode number m [26], the observation often being

m

n
≈ qedge, (2.146)

as this is the resonance condition. The drive for kink modes decreases with increasing n. An
example visualization of a kink mode is shown in fig. 2.4.

Figure 2.4: Pertubation structure of the plasma column for a kink mode. Adapted from: [26]

2.5.1 Stability

For a large aspect ratio, circular tokamak and low β it is possible [6] to derive δW for a
perturbation ~ξ : using cylindrical coordinates (r, θ, φ), we can use the ordering

∂

∂r
≈ 1

r

∂

∂θ
� 1

R0

∂

∂φ
(2.147)

ξr ≈ ξθ � ξφ, (2.148)

assuming incompressibility

∇ · ~ξ = 0. (2.149)

Performing an expansion in ε, the perturbed parts of the magnetic field obey

Br1 ≈ Bθ1 � Bφ1. (2.150)

With a the minor radius of the plasma and b the minor radius of a perfectly conducting wall,
to leading order δW reads as

δW = πR0

∫ a

0

(
B2

1

µ0
− jz0(Br1ξθ −Bθ1~ξr

)
dθrdr

+πR0

∫ b

a

B2
V 1

µ0
dθrdr, (2.151)
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2.5 External kinks

with

B2
1 = B2

r1 +B2
θ1 (2.152)

and BV 1 the magnetic field in the vacuum region between plasma and wall. Using a Fourier
analysis of ~ξ

~ξ(r, θ, φ) = ~ξ(r) exp(imθ) exp(−inφ), (2.153)

eq. (2.151) can be expressed as

µ0R
π2B2

φ
δW =

∫ a

0
r

[(
r
dξ

dr

)2

+
(
m2 − 1

)
ξ2

](
m

n
− 1

q

)2

dr

+

[
2

qa

(
n

m
− 1

qa

)
+ (1 +mλ)

(
n

m
− 1

qa

)2
]
a2ξ2

a, (2.154)

with the definition

λ =
1 +

(
a
b

)2
1−

(
a
b

)2 . (2.155)

When a → b, i.e. a vanishing vacuum region, the parameter λ becomes arbitrarily large
and thus δW > 0 for all cases (also ξa = 0). If q is monotonically increasing with r, then
inside the plasma m

n < qa for resonant surfaces and thus all modes will be stable, as the term
2
qa

(
n
m −

1
qa

)
is the only possible destabilizing term. Outside the plasma q ∼ r2, and therefore

resonant surfaces in the vacuum region close to the plasma can cause instabilites in the plasma.

A simple model can give estimates of the driving terms even for high β [9]. It assumes a
circular plasma, constant pressure everywhere in the plasma and the whole current flowing
on the plasma surface. Therefore the individual contributions to δW are

δWP =

∫
P

B2
1

2µ0
dV (2.156)

δWV =

∫
P

B2
V 1

2µ0
dV (2.157)

δWS =
1

2

∫
S

∣∣∣~n · ~ξ∣∣∣2 ~n · [[∇(p+
B2

2µ0

)
]], (2.158)

where the plasma and vacuum contributions are always positive. Performing the integral in
eq. 2.158 gives

δWS = −ε2B
2
0R0

µ0

∫ 2π

0
dθ
∣∣∣~n · ~ξ∣∣∣2 [( Bθ

εB0

)2

+
βt
ε

cos θ

]
, (2.159)

with the torodial plasma β

βt =
2µ0p

B2
0

. (2.160)
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2 Ideal MHD theoretical background

The term ∼ B2
θ is connected with jtor and thus is the current-driven part, while the second

term ∼ βt cos θ represents the pressure drive. On the high-field side, the latter is negative and
thus stabilizing and vice versa, reflecting the ballooning structure. For low β, the second term
is small compared to the current-driven first term, resulting in an almost purely current-driven
kink mode.
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3 Gyrofluid theory and the GEM model

We briefly outline the gyrokinetic formalism for the basic gyrokinetic equation underlying
the gyrofluid model in toroidal geometry. The main points of the original gyrofluid model
are presented, and the complete set of gyrofluid equations along with all corrections to the
original model are given in the context of the GEM model.
For the basic gyrokinetic equation, we follow [27] and [28]. The references for the original
gyrofluid model are [29] and [30]. The GEM model is summarized from [31] and [32].
For a comprehensive, modern overview of general gyrokinetics, see e.g. [33] and [34].

3.1 Basic gyrokinetics

The original gyrofluid equations in toroidal geometry [30] are based on the gyrokinetic Vlasov-
Poisson equations in general geometry as derived in [27]. For a single particle with mass m
and charge e, the Lagrangian L in canonical coordinates ~p, ~q reads

L~p~̇q − h(~p, ~q, t), (3.1)

where h(~p, ~q, t) is the canonical Hamiltonian. For a general coordinate transformation to the
coordinates ~z = ~z(~p, ~q, t), the Lagrangian can be rewritten as

L =
6∑
i=1

γiż
i − h+ ~p · ~̇q (3.2)

with

γi = ~p · ~̇qzi. (3.3)

This defines the fundamental one-form

γ =

6∑
i=1

γiż
i − (h+ ~p · ~̇q)dt. (3.4)

Including an electrostatic potential Φ(~q, t) and a magnetic vector potential ~A(~q, t), the Hamil-
tonian can be written as

h =
1

2m

[
~p− e

c
~A( ~q, t)

]2
+ eΦ(~q, t). (3.5)
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3 Gyrofluid theory and the GEM model

Using noncanonical coordinates ~z = (~x,~v) defined by

~x = ~q

~v =
1

m

[
~p− e

c
~A
]
, (3.6)

the fundamental one-form then is

γ =
[e
c
~A(~x) +m~v

]
· d~x−

[
1

2
mv2 + eΦ(~x, t)

]
dt. (3.7)

From this, the gyrophase dependence can be removed by means of a Lie transformation, see
e.g. [35]. The gyrophase θ is the angle of the fast, circular motion of the charged particle
in the plane locally perpendicular to the magnetic field line. This is a transform from a
coordinate system z to a coordinate system Z, formally

Zµ = Tzµ, (3.8)

where

T = . . . T3T2T1 (3.9)

with

Tn = exp(εnLn). (3.10)

The operators Ln are defined by

Lnf = gµn
∂f

∂zµ
(3.11)

∂Zµ

∂εn
= gµn(Z), (3.12)

where gµn is the generator of the Lie transformation Tn.

The one-form γ in eq. (3.7) accordingly transforms as

Γ = T−1γ + dS, (3.13)

where dS represents a gauge transformation of all coordinates. A coordinate transformation
to gyrocenter variables

~x = ~R+
v⊥
Ω
~a(~R, θ) (3.14)

µ =
v2
⊥

2Ω
(3.15)

v‖ = ~v ·~b (3.16)

θ = tan−1

(
~v · ~e1

~v · ~e2

)
(3.17)
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3.1 Basic gyrokinetics

is introduced, where e1, e2 are arbitrary orthogonal unit vectors so that e1, e2,~b form a local
orthogonal system of unit vectors and we have defined

~a = ~e1 cos θ − ~e2 sin θ (3.18)

Ω =
eB0

mc
. (3.19)

Splitting γ in a equilibrium part γ0 and a perturbed part γ̃. Lie transformations are applied
order by order in ε to the one-form in gyrocenter coordinates. The gauge transformations
dSn are chosen so that all θ dependences vanish. Varying the resulting one-form with respect
to the gyrocenter coordinates leads to the Euler-Langrange equations for these coordinates,
which are1

dµ

dt
= 0

dθ

dt
= Ω + e

∂Ψ

∂µ

d~R

dt
= v‖~b+

1

B∗
~b ·
(
c

e
µ∇Ω +

1

e
mcv2

‖
~b · ∇~b+ c∇Ψ

)
m
dv‖

dt
= −

~B∗

B∗
· (µ∇Ω + e∇Ψ) (3.20)

with

~B∗ =
(
B +

mc

e
v‖~b · ∇ ×~b

)
·~b (3.21)

Ψ = < Φ > − e

2Ω

(
∂

∂µ
< Φ̃2 > +

1

Ω
< ∇Φ̃av ·~b×∇Φ̃

)
(3.22)

and

< Φ > =
1

2π

∮
dθΦ (3.23)

Φ̃ = Φ− < Φ > (3.24)

Φ̃av =

∫ 2π

0
Φ̃dθ. (3.25)

In the following, a tilde˜always denotes the fluctuating part of a quantity.
Eqs. (3.20) can be now inserted into the gyrokinetic Vlasov-Poisson equation for the distri-
bution function F = F0 + F̃ in gyrocenter coordinates, which reads

dF

dt
=
∂F

∂t
+
dv‖

dt

∂F

∂v‖
+
d~R

dt

∂F

∂ ~R
= 0. (3.26)

Using the usual gyrokinetic ordering

k‖

k⊥
≈ ñ

n
≈ eΦ̃

Te
≈ F̃

F0
≈ T̃

T
≈ ε � 1 (3.27)

k⊥ρ ≈ 1 (3.28)

1for convenience, we do not indicate the gyroaveraged quantities by a special notation
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3 Gyrofluid theory and the GEM model

with the small parameter

ε =
ρ

L⊥
� 1, (3.29)

where L⊥ is a typical length scale of the fluctuations and

ρs =

√
MiTec

eB
, (3.30)

the above gives the basic gyrokinetic equation in general geometry correct to order ε as
described in [30]

∂

∂t
FB + ∇ ·

[
FB(v‖~b+ ~vE + ~vd)

]
+

∂

∂v‖

[
FB

(
− e

m
~b · ∇J0Φ− µ~b · ∇B + v‖(~b · ∇~b) · ~vE

)]
= 0, (3.31)

with

~vE =
c

B
~b×∇J0Φ (3.32)

~vd =
v2
⊥ + µB

ΩB2
~B ×∇B +

4πv2
⊥

ΩB2
~b×∇p. (3.33)

The velocity vE describes the gyro-averaged ~E × ~B drift, and vd includes all drifts from
∇B and curvature. The linear operator J0 carries out the gyroavering of the electrostatic
potential Φ and is a Bessel function in Fourier space

J0(b) =
∞∑
n=0

1

(n!)2

( v⊥
2Ω

)2n
∇2n
⊥ , (3.34)

where

b =
k⊥v⊥

Ω
. (3.35)

The quasi-neutrality constraint is

ne =
n

1 + b
2

−
bT‖

2
(
1 + b

2

)2 + (Γ0 − 1)Φ, (3.36)

where in general

Γn(b) = exp(−b)In(b), (3.37)

and

In(b) = i−1Jn(ib) (3.38)

is the modified Bessel function.
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3.2 The original gyrofluid model

3.2 The original gyrofluid model

The original gyrofluid equations were first derived for a sheared slab geometry [29] and later
extended to toroidal geometry [30] as in eq. (3.31). Additionally a collision operator C(F ) is
introduced to the right hand side of eq. (3.31), which for a single ion species is

C(F ) = νii

{
F̃ −

[
ñ

n
+
u‖v‖

v2
T

+
T̃‖ + 2T̃⊥

3T0

(
v2
‖ + v2

⊥

2v2
T

− 3

2

)]
F0

}
. (3.39)

Assuming low2 β and a Maxwellian F0

F0 =
n0

(2πv2
T )

3
2

exp

(
−
v2
‖

2v2
T

− µ B
v2
T

)
, (3.40)

eq. (3.31) can be rewritten as shown in [30], grouping all velocity dependent quantities on
the same side of spatial gradients:

∂

∂t
FB + B∇‖

FBv‖

B
+ ~vΦ · ∇(FBJ0) + 2FBJ0

e

T
iωdΦ

+
e

T
iωd

(
FBJ1Φk⊥

v⊥
2Ω

)
+
iωd
v2
t

[
FB(v2

⊥ + µB)
]

− e

m
∇‖
(
J0ΦB

∂F0

∂v⊥

)
+

e

m
J0ΦB

· ∂F0

∂v⊥

(
µB

v2
t

− 1

)
∇‖ lnB − µB∂(FB)

∂v⊥
∇‖ lnB

− ∂

∂v‖
(FBJ0v‖)

ieωdΦ

T
= 0 (3.41)

with

v2
T =

T⊥
m

(3.42)

ωd =
v2
t

iΩB2
~B ×∇B · ∇. (3.43)

2∇B = 0 and ~j is mostly toroidal
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3 Gyrofluid theory and the GEM model

From eq. (3.41), one can now take fluid moments of the form
∫
vj‖µ

kdv‖dµ, with the lowest
moments defined as

n =

∫
Fd3v (3.44)

nu‖ =

∫
Fv‖d

3v (3.45)

p‖ =

∫
F (v‖ − u‖)2d3v (3.46)

p⊥ =
m

2

∫
Fv2
⊥d

3v (3.47)

q‖ = m

∫
F (v‖ − u‖)3d3v (3.48)

q⊥ =
m

2

∫
Fv2
⊥(v‖ − u‖)d3v (3.49)

r‖,‖ = m

∫
F (v‖ − u‖)4d3v (3.50)

r‖,⊥ =
m

2

∫
Fv2
⊥(v‖ − u‖)2d3v (3.51)

r⊥,⊥ =
m

4

∫
Fv4
⊥d

3v (3.52)

s‖,‖ = m

∫
F (v‖ − u‖)5d3v (3.53)

s‖,⊥ =
m

2

∫
Fv2
⊥(v‖ − u‖)3d3v (3.54)

s⊥,⊥ =
m

2

∫
Fv4
⊥(v‖ − u‖)d3v. (3.55)

(3.56)

The temperatures can be obtained through

p‖,⊥ = nT‖,⊥. (3.57)

As with the ideal MHD model, the system of equations is not closed. The term ∇ · (FBv‖~b)
in eq. (3.31) results in the usual moment hierarchy problem: the equation for moment n
includes the moment n + 1. For a model including moments up to the heat fluxes q‖,⊥, one
therefore needs closure conditions for the r and s moments. Furthermore, because of eq.
(3.34), the gyroaveraging operator J0 includes all even powers of v‖ and thus can be regarded
as a function of all fluid moments. Therefore, we need additional closure conditions for these
finite Larmor radius (FLR) terms.

In this thesis, we only present the set of equations for GEM in the following section. We
discuss the necessary closures and approximations, some of which are corrected in the GEM
model.

We first give the closures for the FLR terms, which are of the form < J0 . . . > and < J1 . . . >.
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3.2 The original gyrofluid model

The average < C > of the quantity C is defined as

< C >=
1

n

∫
d3vFC = 2π

∫
dv‖dµBFC (3.58)

As is shown in [30], the fundamental approximation is

< J0 >≈
√

Γ0. (3.59)

This is the same approximation as for the sheared slab case [29], but was found to be reason-
able also for the toroidal case. With this, we have the approximations

< J0 > =
√

Γ0 (3.60)

< J0v‖ > = vT
√

Γ0 (3.61)

< J0v
2
‖ > = v2

T

√
Γ0 (3.62)

< J0v
2
⊥ > = 2v2

T

∂

∂b

(
b
√

Γ0

)
(3.63)

< J0v
3
‖ > = v3

T

√
Γ0 (3.64)

< J0v
2
⊥v‖ > = 2v3

T

∂

∂b

(
b
√

Γ0

)
(3.65)

(3.66)

This introduces two modified Laplacian operators in the fluid moment equations

∇̂2
⊥Φ = 2b

∂
√

Γ0

∂b
Φ (3.67)

ˆ̂∇2
⊥Φ = b

∂2

∂b2

(
b
√

Γ0

)
Φ (3.68)

Due to toroidicity, new terms occur which are not present in a slab model

< J1α > = −∇̂2
⊥ (3.69)

< J1v
2
‖α > = −v2

T ∇̂2
⊥ (3.70)

< J1v
2
⊥α > = −4v2

T
ˆ̂∇2
⊥ (3.71)

< J0v
4
⊥ > = 4v4

T

(
2
√

Γ0 + ∇̂2
⊥ +

ˆ̂∇2
⊥

)
, (3.72)

with

α =
k⊥v⊥

Ω
(3.73)

For the 6 lowest fluid moments n, nu‖, p‖, p⊥, q‖, q⊥, the moment hierarchy problem re-
quires closures for r‖,‖, r‖,⊥, r⊥,⊥ and s‖,‖, s‖,⊥, s⊥,⊥. The closures are artificially broken into
Maxwellian parts and dissipative pieces. The dissipative pieces are given by 10 coefficients

νn = νr + iνi
|ωd|
ωd

= (νr, νi), (3.74)
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3 Gyrofluid theory and the GEM model

which were numerically optimized to give the best fit in order to model kinetic effects c.f.
[30], but not consistently for all kinetic effects. The closures for the r and s moments are

r‖,‖ = 3(2p‖ − n) +
32− 9π

3π − 8
T‖ − 2i

√
2π

3π − 8

|k‖|
k‖

q‖ (3.75)

r‖,⊥ = p‖ + p⊥ − n− 2i

√
2π

3π − 8

|k‖|
k‖

q‖ (3.76)

r‖,‖ + r‖,⊥ = 7p‖ + p⊥ − 4n− 2i
|wd|
wd

(ν1T‖ + ν2T⊥) (3.77)

r‖,⊥ + r⊥,⊥ = p‖ + 5p⊥ − 3n− 2i
|wd|
wd

(ν3T‖ + ν4T⊥) (3.78)

s‖,‖ + s‖,⊥ = −i |wd|
wd

(ν5u‖ + ν6q‖ + ν7q⊥ (3.79)

s‖,⊥ + s⊥,⊥ = −i |wd|
wd

(ν8u‖ + ν9q‖ + ν10q⊥ (3.80)

with the coefficients given in [30]. Finally, for the mirroring term µ~b·∇B, Maxwellian closures
are used to give

r‖,‖ = 6p‖ − 3n (3.81)

r‖,⊥ = p‖ + p⊥ − n (3.82)

r⊥,⊥ = 4p⊥ − 2n. (3.83)

3.3 GEM

The GEM (gyrofluid electromagnetic) model builds on the original gyrofluid model and in-
cludes six moments for each species z: density n, parallel velocity u‖, temperatures T‖,⊥
and heat fluxes q‖,⊥. It ensures energetic consistency on all scales, especially at k⊥ρs ≈ 1,
conserving the fluctuating free energy, which the original gyrofluid model did not. A proof
of the energy theorem in physical units can be found in e.g. [36].

The fluctuating free energy results from the thermal free energy (origin: density fluctuations),
E ×B energy (origin: electrostatic potential), magnetic energy (parallel magnetic vector po-
tential) and parallel free energy (parallel velocities and parallel heat fluxes) and should be
conserved in a proper model. Neglecting free energy conservation gives only very small con-
tributions to growth rate in a linear model, but is essential in the turbulent phase involving a
saturated state. Energetic problems in the standard gyrofluid moments [29], [30] stem from
finite FLR terms and an inconsistency in the treatment of the higher order moment terms:
the original model treats parallel heat flux moments as dependent (dynamical) quantities in
principle, but for simplicity uses a perturbed Maxwellian model for the moment closure in
eqs. (3.81) - (3.83).
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3.3 GEM

The starting point is the observation that there are 3 gyroavering operators in the moment
equations

Φ̃G =
√

Γ0Φ̃ (3.84)

1

2
∇̂2
⊥Φ̃G = b

∂
√

Γ0

∂b
Φ̃ (3.85)

ˆ̂∇2
⊥Φ̃G = b

∂2

∂b2

(
b
√

Γ0

)
Φ̃, (3.86)

giving three gyroaveraged and FLR corrected potentials

Φ̃G =
√

Γ0Φ̃ (3.87)

Ω̃G = b
∂
√

Γ0

∂b
Φ̃ (3.88)

˜̂
ΩG =

b

2

∂2
(
b
√

Γ0

)
∂b2

Φ̃, (3.89)

but only the operators (3.84) and (3.85) appear in the polarisation equation (3.36) (linked
to ñe and T̃i⊥). As shown in [31], this causes inconsistencies and non-conservation of FLR
potential energy terms because of the occurrence of the potential (3.89). Specifically, this
breaks the energy conservation in the transfer channel between potential and thermal energy.
This has potential consequences for the parallel dynamics, magnetic pumping terms, curvature
terms and the E ×B advection terms, all of which are FLR effects. In the following, we use
the definitions of the curvature operator

K = ∇ ·
[ c
B2

( ~B ×∇)
]

(3.90)

the velocities

~vE =
c

B2
~B ×∇φ̃G (3.91)

~wE =
c

B2
~B ×∇Ω̃G (3.92)

and the identities

d

dt
=

∂

∂t
+ ~uE · ∇ (3.93)

∇‖ = ~b · ∇+~b⊥ · ∇. (3.94)

(i) Parallel dynamics (quasistatic compressible part of the drift dynamics)
For sound waves due to a parallel pressure gradient ∇‖p, the conservation of energy is ex-

pressed by the term B∇‖
(
p̃ũ‖
B

)
, which in the context of the original fluid model can be

written as

B∇‖
(
p̃ũ‖

B

)
= B∇‖

[
τi

(
ñi + T̃i‖

)
+ Φ̃G

]
ũ‖

B
(3.95)
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3 Gyrofluid theory and the GEM model

with

τi =
Ti
Te
, (3.96)

thus a modification required.
The same is true for the non-closure part of heat conduction dynamics. The part dealing
with the energetics can be written as

1

2
τiT̃i‖

∂T̃i‖

∂t
= −B∇‖

τiT̃i‖q̃i‖

B
+ q̃i‖∇‖

[
τiT̃i‖

]
(3.97)

2

3
q̃i‖
∂q̃i‖

∂t
= −q̃i‖∇‖

[
τiT̃i‖

]
(3.98)

τiT̃i⊥
∂T̃i⊥
∂t

= −B∇‖

[
τiT̃i⊥ + Ω̃G

]
q̃i⊥

B
+ q̃i⊥∇‖

[
τiT̃i⊥ + Ω̃G

]
(3.99)

q̃i⊥
∂T̃i⊥
∂t

= −q̃i⊥∇‖
[
τiT̃i⊥ + Ω̃G

]
, (3.100)

showing that there is no involvement of the potential 3.89.

(ii) Magnetic pumping terms
The equation for the fluctuating perpendicular ion heat flux q̃i⊥ includes the potential 3.89

∂q̃i⊥
∂t

= −
[
τi

(
T̃i⊥ − T̃i‖

)
+ 2˜̃ΩG − Ω̃G

]
∇‖ logB, (3.101)

which can be repaired by replacing
˜̂
ΩG with Ω̃G, thus the modified equation reads

∂q̃i⊥
∂t

= −
[
τi

(
T̃i⊥ − T̃i‖

)
+ Ω̃G

]
∇‖ logB. (3.102)

(iii) Curvature terms
The same problem shows up in the equations for the thermal state variables. The part for
the perpendicular fluctuating ion temperature is

∂T̃i⊥
∂t

= K

(
φ̃G + Ω̃G + τip̃i⊥

2
+

3τiT̃i⊥ + Ω̃G + 2˜̃ΩG

2

)
. (3.103)

Again, this can be repaired by
˜̂
ΩG → Ω̃G, giving

∂T̃i⊥
∂t

= K

(
φ̃G + Ω̃G + τip̃i⊥

2
+

3(τiT̃i⊥ + Ω̃G)

2

)
. (3.104)

(iv) FLR generalizations of the E ×B advection

In these terms, the variables T̃i⊥ and q̃i⊥ are acted upon by the operator 2c
B2
~B × ∇ ˜̂

ΩG · ∇.

This breaks the conservation of the FLR potential energy 1
2 Ω̃GT̃i⊥, but can again be repaired
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3.3 GEM

by the replacement of
˜̂
ΩG with Ω̃G.

The only non-FLR corrections are associated with the curvature terms in the fluid moment
flux variables. Eqs. (3.81) - (3.83) affect the equations for ũ‖, q̃i‖ and q̃i⊥ and arise from
curvature drift terms in the gyrokinetic equation (3.31), but there are no curvature terms
involving the potential in the equations for ũu‖, q̃i‖ and q̃i⊥. Furthermore, a perturbed
Maxwellian closure was assumed, but the variables q̃i‖ and q̃i⊥ are still treated as dynamical.
This means that the r moments should include terms of the form pressure × conductive heat
fluxes. As described in [31], correcting this leads to the modified equations

∂ũ‖

∂t
=
τi
2
K(4ũ‖ + 2q̃i‖ + q̃i⊥) (3.105)

∂q̃i‖

∂t
=
τi
2
K(3ũ‖ + 8q̃i‖) (3.106)

∂q̃i⊥
∂t

=
τi
2
K(ũ‖ + 6q̃i⊥), (3.107)

ensuring free energy conservation.

3.3.1 The GEM equations

The complete set of equations for the 6-moment GEM model include the polarisation equa-
tion ∑

i

ai

[
Γ1ñz + Γ2T̃z⊥ +

Γ0 − 1

τz
φ̃

]
= ñe, (3.108)

where z denotes the particle species, Ampere’s law

−∇2
⊥Ã‖ =

∑
z

azũz‖ = j̃‖, (3.109)

and the fluid moment equations.
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3 Gyrofluid theory and the GEM model

The set of fluid moment equations without dissipation is

d[nz + ñz]

dt
+ ~wE · ∇

[
Tz + T̃z

]
+B∇‖

ũz‖

B
=

K

(
φ̃G +

τz p̃z‖ + τz p̃z⊥ + Ω̃G

2

)
(3.110)

βe
∂Ã‖

∂t
+ µz

dũz‖

dt
+ µz ~wE · ∇q̃z⊥ =

−∇‖
(
φ̃G + τz

[
pz + p̃z‖

])
+K

(
µzτz

4ũz‖ + 2q̃z‖ + q̃z⊥

2

)
−τz

(
Ω̃G + τzT̃z⊥ − τzT̃z‖

)
∇‖ logB (3.111)

1

2

d
[
Tz + T̃z‖

]
dt

+B∇‖
ũz‖ + q̃z‖

B
=

K

(
φ̃G + τz p̃z‖

2
+ τzT̃z‖

)
− (ũz‖ + q̃z⊥)∇‖ logB (3.112)

d
[
Tz + T̃z⊥

]
dt

+ ~wE · ∇
(

[nz + ñz] + 2
[
Tz + T̃z⊥

])
+B∇‖

q̃z⊥
B

=

K

(
φ̃G + Ω̃G + τz p̃z⊥

2
+ 3

φ̃G + τzT̃z⊥
2

)
+ (ũz‖ + q̃z⊥)∇‖ logB (3.113)

µz
dq̃z‖

dt
= −3

2
∇‖
(
τz

[
Tz + T̃z‖

])
+K

(
µzτz

3ũz‖ + 8q̃z‖

2

)
(3.114)

µz
dq̃z⊥
dt

+ µz ~wE · ∇(ũz‖ + 2q̃z⊥) = −∇‖
(

Ω̃G + τz

[
Tz + T̃z⊥

])
+K

(
µzτz

ũz‖ + 6q̃z⊥

2

)
− τz

(
Ω̃G + τzT̃z⊥ − τzT̃z‖

)
∇‖ logB. (3.115)

The treatment of dissipation in GEM involves three different mechanisms:

(i) Dissipation without collisions
This is due to phase mixing, i.e. Landau damping and is represented by a Landau damping
operator

aLz := aL0

(
1− 0.125V qR∇2

‖

)
(3.116)

directly applied to the parallel heat flux variables q̃z‖ with

aL0 = 1 (3.117)

V =
τz
µz

(3.118)

∇2
‖ = B∇‖

(
1

B

)
∇‖, (3.119)
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3.3 GEM

and qR and ∇‖ normalized to L⊥.

(ii) Dissipation with collisions
This is done in a way that matches the collisional Braginskii fluid model [37] in the limit of
large collision frequency and short mean free path. It includes dissipation through resistiv-
ity and thermal conduction with anisotropic temperatures. A drift kinetic Chapman-Enskog
procedure is applied to a state with stationary state variables (c.f. [38]), generalized to a
bi-Maxwellian distribution for the part without dissipation.
In contrast to the original gyrofluid model, a Lorentz collision operator is used and involved
coefficients are chosen to capture the collisional limit as mentioned above. The modifications
for the fluctuating quantities can then be written as

βe
∂Ã‖

∂t
+ µz

dũz‖

dt
= ...+ µeνe

[
ηj̃‖ +

αe
κe

(
q̃e‖ + q̃e⊥ + αej̃‖

)]
(3.120)

1

2

dT̃z‖

dt
= ...− νz

[
τz

(
T̃z‖ − T̃z⊥

)
− Ω̃G

]
(3.121)

dT̃z⊥
dt

= ...+ νz

[
τz

(
T̃z‖ − T̃z⊥

)
− Ω̃G

]
(3.122)

µz
dq̃z‖

dt
= ...− 5µzνz

2κz

(
q̃z‖ − 0.6αz j̃‖

)
+ 1.28νz

(
q̃z‖ − 1.5q̃z⊥

)
(3.123)

µz
dq̃z⊥
dt

= ...− 5µzνz
2κz

(
q̃z⊥ − 0.4αz j̃‖

)
− 1.28νz

(
q̃z‖ − 1.5q̃z⊥

)
. (3.124)

For two particle species, deuterium ions i and electrons e, the parameters are

η = 0.51 (3.125)

αe = 0.71 (3.126)

κe = 3.2 (3.127)

κi = 3.9, (3.128)

and the collision frequencies νz for species z.

(iii) Nonlinear dissipation: cascading to arbitrarily small scales
This is implemented by artificial diffusion terms in the equations (3.115) and controlled by
perpendicular and parallel dissipation coefficients ν⊥ and ν‖.
With eq. (3.93), the general form of the modifications to the moment equations can be
formally written as

∂F

∂t
= S +D(f), (3.129)

with F being the functional of the time derivative of the dependent variables f , S the
right hand side of eqs. (3.115) and D the artificial dissipation operator. For a constant
magnetic field ~B, the modeling of nonlinear dissipation in xy-plane 3 can be achieved by the
substitutions

~uE · ∇ → ~uE · ∇ − ν⊥∇2
⊥ − ν‖∇2

‖ (3.130)

3locally perpendicular to the magnetic field line, where x is a radial coordinate and y a poloidal coordinate
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3 Gyrofluid theory and the GEM model

or as an alternative, hyperdiffusion

~uE · ∇ → ~uE · ∇+∇2
⊥ν⊥∇2

⊥ − ν‖∇2
‖. (3.131)

For variable ~B, the substitutions are

~uE · ∇ → ~uE · ∇ −∇ · ν⊥
1

B2
∇⊥ −∇ · (~bν‖~b) · ∇ (3.132)

and for hyperdiffusion

~uE · ∇ → ~uE · ∇+∇2
⊥ · ν⊥

1

B4
∇2
⊥ −∇ · (~bν‖~b) · ∇. (3.133)
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4 Validity regimes

For the framework of ideal MHD presented in chapter 2, the following critical assumptions
must be valid [9]

• high collisionality ν

• small gyroradius ρg

• small resistivity η

• slow timescales τ with plasma motion velocities � the speed of light c.

High ν ensures an isotropic scalar pressure p, i.e. any anisotropic part Π of the total pressure
P with

P = p1 + Π (4.1)

can be neglected. As the electron mass me is considered arbitrarily small, the electrons have
infinite small response time to any forces. This means that the MHD time scales must be
large against the electron plasma frequency and the electron cyclotron frequency. Conse-
quently, the spatial scales must also be large compared to the Debye length and the electron
and ion gyroradii ρe and ρi. Small resistivity preserves the characteristic nested flux-surface
topology. Finite resistivity breaks it and gives rise to new instabilities and phenomena like
the tearing mode and the reconnection of magnetic field lines on a larger resistive time scale.

The displacement current ∼ ∂ ~E
∂t can be neglected because of the slow time scales resp. low

velocities.

For typical tokamak plasma parameters1, the last two assumptions are well satisfied, while
the first one is violated by large margin. This violation enters the momentum and energy
equation for ideal MHD, and therefore seems to render the ideal MHD theory invalid. Ex-
perimental observations nevertheless show ideal MHD to be applicable very well to a range
of plasma phenomena. This is due to an essential difference between the directions parallel
and perpendicular to the magnetic field lines. Generally speaking, the parallel direction is
poorly treated in ideal MHD, because the mean free path along the field lines is of order
102m, i.e. the collisionality is low. In perpendicular direction however, the charged particles
are confined to gyrating motion around the field lines with small gyroradius. So even with
zero collisionality, the magnetic field ensures a short mean free path of the particles. Indeed

1T ∼ keV, n ∼ 1019 1
m3
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4 Validity regimes

it could be shown in [39] that in the collisionless limit, the anisotropic part of the ion pressure
is negligible

|Π⊥i|
pi
≈ ρi

a
� 1. (4.2)

The parallel part of the ideal MHD equations mostly describe expansion and compression of
the plasma. Most relevant ideal MHD plasma motions however are incompressible

∇ · ~v = 0. (4.3)

Therefore the parallel equations have little consequences for ideal MHD equilibrium and
stability considerations. Furthermore, incompressible modes grow faster than compressible
modes.

This motivates the introduction of collisionless MHD, satisfying all three assumptions. The
derivation for the continuity equations remains unchanged, and is universally valid. Calcu-
lating the perpendicular part of the plasma current with the assumption of ν = 0 results
in modified momentum and energy equations. The set of equations for collisionless MHD is
then given by [9]

dρ

dt
= 0 (4.4)

ρ

(
d~v⊥
dt

)
⊥

= ~j × ~B −∇⊥p (4.5)

~B · ∇
(v‖
B

)
= −∇ · ~v⊥ (4.6)

dp

dt
= 0 (4.7)

~E + ~v × ~B = 0 (4.8)

∇× ~E = −∂
~B

∂t
(4.9)

∇× ~B = µ0
~j (4.10)

∇ · ~B = 0 (4.11)

For incompressible motions, these equations basically give the same predictions as collision
dominated ideal MHD [9].
The typical time scales τMHD of ideal MHD are

τMHD =
a

VTi
(4.12)

with the thermal ion velocity

VTi =

√
2Ti
Mi

, (4.13)

the latter also being the characteristic velocity of the ideal MHD regime. The length scale
of ideal MHD instabilities is the dimension of the plasma ∼ a. For common tokamaks like
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ASDEX Upgrade, τMHD ≈ 10−6s.

As gyrofluid models are a subset of gyrokinetic theory, they obey the same gyrokinetic order-
ing. This ordering is due to a large difference in frequencies between the gyration of particles
around the magnetic field lines (fast) and the gyrocenter velocity (slow) and only the slow,
low-frequency part is considered. The high-frequency part could simply be filtered out, but
this would be nonconservative. Instead, the gyrokinetic equations are ordered as discussed in
chapter 3, eq. (3.27). Generally speaking, the fluctuations of all plasma quantities have to
be small and of the same order compared to the equilibrium quantities, and the difference in

parallel/perpendicular dynamics is described by the ratio of typical wave numbers
k‖
k⊥
� 1.

With the GEM modifications to the original gyrofluid theory, also free energy conservation
is ensured [31] as discussed in chapter 3.

There are two defining perpendicular spatial scales of gyrofluid models, the drift scale

ρs =

√
TeMi

eB
c (4.14)

and the perpendicular gradient length L⊥ of the background gradients. Gyrokinetic ordering
requires the ratio to be small

δ =
ρs
L⊥

, (4.15)

where δ is called drift parameter. For similar electron and ion temperatures Te ≈ Ti, we
further have ρs ≈ ρi and

δ ≈ ρi
a
, (4.16)

i.e. the gyrofluid dynamics extends to the ion gyroradius scales, much smaller than the ideal
MHD spatial scales.

As discussed before, ideal MHD neglects the electron mass2 me, resulting in instantaneous
response of the electrons parallel to the magnetic field lines. Therefore for MHD, we have

(∇pe)‖ � (∇φ)‖. (4.17)

The single fluid approximation of ideal MHD requires similar ion/electron moblitites, so the
net current density j must satisfy

1

ne
j � vi, ve (4.18)

except for the Lorentz force, c.f. [40]. As outlined in [36], next to the characteristic MHD
velocity VTi , the analysis of MHD waves in plasmas introduces two distinctive velocities:
the Alfvén velocity

v2
A =

B2

4πnMi
(4.19)

2As a consequence, the electron drift wave mechanism is not included in the ideal MHD dynamics
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4 Validity regimes

and the adiabatic sound velocity

v2
s =

5

3

p

nMi
. (4.20)

Sound waves travel in parallel direction, and their velocity is small compared to the Alfvén
velocity.
When comparing to the Alfvén velocity, the condition 4.18 is

j � nevA. (4.21)

Using the definition of vA, this gives

j2 � n2e2v2
A = n2e2 B2

4πnMi
, (4.22)

representing the Alvén current as the current limit. Further using

ρi =
c2

e2B2
MiTi (4.23)

with Ampère’s law

~j =
c

4π
∇× ~B, (4.24)

gives

j2 ≈ c2

16π2

B2

a2
. (4.25)

Combining eqs. (4.16) and (4.25) gives [36]

ρ2
i

a2
≈ δ2 � 2πp

B2
<

8πp

B2
= β. (4.26)

This is usually well satisfied everywhere in the fusion plasma. But when instead comparing
to vs, this gives the different criterion

δ � β, (4.27)

which is violated for the edge region of fusion plasmas. For the edge region with exemplary
electron density ne = 2.5 · 1019 1

m3 , electron temperature Te = 300 eV and magnetic field
strength B0 = 2.5T, we have

• β ≈ 10−4 - 10−3

• δ2 ≈ 10−6 � β

• δ ≈ 10−3 ≈ β.
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For the core region with e.g. ne = 5.0 · 1019 1
m3 , Te = 2500 eV and magnetic field strength

B0 = 3.5T it is

• β ≈ 10−2

• δ2 ≈ 10−6 � β

• δ ≈ 10−3 < β.

This then means that the ideal MHD condition (∇pe)‖ � (∇φ)‖ no longer holds. So the
electron and ion species have to be treated separately, making two-/many-fluid models nec-
essary.
The gyrofluid GEM model treats two species, ions and electrons, with valid descriptions of
both the parallel and perpendicular direction. It also includes no assumptions on collisional-
ity, giving rise to possible resistive effects. In contrast to the ideal linear MHD framework,
temperature profile and temperature gradient effects for both species are present. A detailed
description of the correlation of the plasma quantities along with the energy transfer channels
and possible instabilities is given in [40].

The drives for instabilities in ideal MHD are the pressure gradient and the current den-
sity, giving rise to interchange/ballooning modes and kink modes. For the purpose of this
thesis, we introduce the gyrofluid counterparts of the ballooning mode, the drift wave and
the ion temperature gradient mode (ITG). The mode type can be identified by the parallel
mode structure as discussed in [41].
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4 Validity regimes

The instabilities are characterized as follows:

• Drift wave:

Φ̃ ≈ p̃e ≈ p̃i (4.28)

because for ηi ≈ 1, we have T̃e < ñe.

• ITG:

T̃i � all other quantities (4.29)

Q̃i > Q̃e (4.30)

p̃i > p̃e (4.31)

• Ballooning mode :

h̃e & Φ̃� all other quantities (4.32)

p̃e ≈ T̃i, (4.33)

with the nonadiabatic density

h̃e = ñe − φ̃, (4.34)

mostly governing the free energy dynamics [41]. This represents the MHD regime for Φ

∇‖Φ̃� ∇‖p̃e → E‖ ≈ 0 (4.35)

∇⊥Φ̃� ∇⊥p̃e → E⊥ � ∇⊥p̃e (4.36)

It is further split in two regimes:
-resistive ballooning for Cωcv ≈ 1

-ideal ballooning somewhat below αM . 1 with

αM = β̂ωcvωp (4.37)

ωcv =
2L⊥
R0

(4.38)

C =
0.51νe
L⊥cs

me(qR0)2

Mi
(4.39)

ωp = (ωn + ωt) + τi(ωn + ωi), (4.40)

where

ωn =
L⊥
Ln

(4.41)

ωt =
L⊥
LTe

(4.42)

ωi =
L⊥
LTi

. (4.43)
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5 The plasma edge

5.1 L- and H-mode

Experiments with increased neutral beam injection (NBI) heating at the ASDEX tokamak
lead to the discovery of an operation regime of enhanced confinement [42] compared to pre-
vious discharges. This regime was termed H-mode (for high confinement mode) and occured
abrubtly once a certain threshold in heating power was passed1. It manifested itself in steep
edge gradients for temperatures (electron and ion), electron density and pressure and thus
shows a pedestal, compare fig. 5.1. This forms because of a transport barrier in the plasma
edge. Until today, the physical mechanism behind the transition from L- to H-mode remains
unclear. No simulations at any level of theoretical sophistication were able to reproduce a
stable H-mode or its dynamics. A possible mechanism is described in e.g. [43], while a com-
prehensive overview of H-mode theories can be found in [44].
The former operational regime with lower confiment is consequently named L-mode and the
difference in confinement can be described by the H-factor

H =
τHE
τLE

(5.1)

with the confinement times τH,LE for the H- and L-mode. Typical values for H are around 2
for the regular H-mode2.
The H-mode is in general accompanied by a variety of edge instabilities which will be described
in detail below in chapter 5.3. These instabilities expel plasma and energy from the edge,
lower the pedestal height and the profile gradients. After that the gradients get ramped up
again and transit into the next instability interval because of continued heating and fueling,
so the evolution is cyclic during the discharge.

For a plasma quantity C, the gradient length LC associated with it is defined by

L−1
C = ∇ log(C) =

∇LC
LC

(5.2)

and describes the characteristic distance over which the quantity changes. A typical deu-
terium H-mode discharge at ASDEX Upgrade3 has electron density and temperature profiles
in the edge region as shown in fig. 5.1.

1Before crossing this threshold however, the confiment was actually decreased with input of additional heating
power

2The so-called improved H-mode achieves even higher values
3here: shot number 17151, see [45]
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5 The plasma edge

Figure 5.1: Electron density and temperatures in the edge region for ASDEX Upgrade shot 17151.
Adapted from [45]

For this discharge, the ion temperature gradient length LTi ≈ 3.0 cm - 4.0 cm, and the
electron density gradient length is Lne ≈ 2LTi , as can be taken from fig. 5.2. These gradient
lengths, however, are in generall taken over different radial extents and should therefore only
be considered as averaged quantitites, giving a simplified characteristic of the edge region.

Figure 5.2: Left side: logarithmic plot for electron temperature and electron density. Their correlation
gives the ratio ηe of LnE to LTe . Right side: modified tanh fit for the electron temperature
measure points for different values of ηe. Adapted from [45]

In the edge, the ratio of of ion and electron temperatures is Ti
Te
≈ 1.2. Taking the mid-pedestal

values, the electron density is about 2.5 - 3.0 in units of 1019m3 and the temperatures are
300 eV - 500 eV, corresponding to 3.5 - 5.8 million Kelvin.
For L-mode discharges, the gradient lengths for the temperatures do not differ much from
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5.2 Bootstrap current

the H-mode values, with LTi ≈ 5 - 6 cm. The density gradient length however is in the range
of 3 - 4 times Ln, i.e. & 20 cm.

5.2 Bootstrap current

The bootstrap current ~jb is a toroidal current driven by the radial diffusion and the friction
of particles in a tokamak plasma4. For large aspect ratios, the drive comes predominantly
from a radial density gradient, while for small aspect ratios the current is rather driven by
the radial pressure gradient. There are several model equations for realistic plasmas based on
neoclassical models see e.g. [6] and [46]. In summary, the bootstrap current behaves like

<~jb · ~B >∼ c1
p′e
pe

+ c2
p′i
pi

+ c3
T ′e
Te

+ c4
T ′i
Ti
, (5.3)

where the coefficients {cn} are dependent on the collisionality, the ratio of trapped particles
to circulating particles and the flux function F (ψ) = RBφ. The average < x > is defined as
[6]

< x >=

∮
x
dlp
Bp∮ dlp
Bp

, (5.4)

where dlp is a poloidal line element and Bp is the poloidal magnetic field.

Unlike the externally driven (ohmic) plasma current, ~jb peaks off-axis and the magnitude
as well as the peak position of the bootstrap current is very sensitive to the profile form, cf
[6].
As the q profiles flattens with increased current density, the bootstrap current causes a de-
crease in shear. An experimental current density profile with a bootstrap current at the
plasma edge is shown in fig. 5.3. For the purpose of this thesis however, we want to avoid a
large bootstrap currents, especially at the plasma edge. This is because the bootstrap current
may drive a large external kink instability, which is too close to the separatrix to be handled
adequatly by gyrofluid or gyrokinetic codes. This is not a problem of the model itself, as the
gyrofluid model GEM which is used in this thesis includes fully self-consistent fields. The
issue is the q factor, which at the separatrix →∞. Consequently, in the vicinity of the sepa-
ratrix the shear becomes very large. This causes a severe deformation of the computational
grid cells, rendering simulations of that region inaccurate / impossible. For advancements in
treating regions very close to the separatrix, see e.g. [47] on conformal coordinates.

5.3 Edge localised modes

Typical for H-mode operation are several types of edge instabilities termed edge localized
modes (ELMs), which can be classified in type I - V and grassy ELMs [48]. All types have

4This is also true in reverse due to the Onsager symmetrie, see e.g. [6]
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5 The plasma edge

Figure 5.3: Typical current density profile with a bootstrap current at the edge

characteristics with regard to the parameter regime in which they appear, sometimes so
narrow regimes that their occurrence is restricted to specific machines. For our purposes, we
focus on type I ELMs with some notes on type III, as there exist predictive models in the
framework of MHD. An overview of all known ELM types can be found in [48] and [49] .
The phenomenology of ELMs in general is a cyclic sequence of a bursty, fast time scale
expulsion of plasma and energy from the edge accompanied with a degradation of ∇ne, ∇Te
and the pedestal height, all of which then ramp up again on a slower timescale. ELM activity
can be observed measuring the Dα activity, resulting from the plasma-wall interaction. A
schematic picture of ELMs affecting the pressure profile is shown in fig. 5.4 Type I ELMs
are less frequent than type III, with occurrence frequencies fELM ≈ 10 Hz for type I5 and
fELM ≈ 100 Hz for type III while the ELM itself takes a few 100 µs. Type I expels ≈ 10−20%
of the plasma edge energy and ≈ 5% of the plasma edge particle inventory, while the smaller
type III expels ≈ 1 - 5% of both. They lead to a decreased confinement factor ηH compared
to eq. (5.1), with typically η = 0.85 [49].
For ITER-sized devices, the heat load to the divertor plates by type I ELMs may be too large,
causing ablation of the plates and making it necessary to replace them in very short intervals,
which is unacceptable for economic operation. Smaller ELMs however are desirable even
though they lower the confinement, because they regularly flush out impurities and helium
ash and limit plasma density.
Type III ELMs often show magnetic fluctuation precursors with poloidal mode number m ≥
10, while type I ELMs occur rather without any precursors and show a distinct crash in ne
only at the low field side. ELMs also show a filament-like structure, with pertubations of the
plasma aligned with magnetic field lines with a radial extent of a few centimeters, see fig.
5.5. It is yet unclear if the filaments are a consequence of ELMs or a cause for them [48].

5These are example values, the device size plays an important role
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5.3 Edge localised modes

Figure 5.4: Schematic effect of ELMS on the pressure profile. Source: [50]

Figure 5.5: Filament structure before an ELM (a), during the ELM (b) and inbetween two ELMs (c).
Source: [51]

5.3.1 Peeling-ballooning model

Like the H-mode, the physical mechanisms behind ELMs are still not understood. There is,
however, a model for type I ELMs within the framework of ideal MHD6, based on the coupling

6Type III ELMs are thought to be related to resistive effects and magnetic reconnection [48]
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5 The plasma edge

of peeling modes and ballooning modes [52]. Assuming a circular plasma cross section and
a monotonically increasing q profile, the pertubation of the magnetic potential ψ for a given
toroidal mode number n is written as a sum over poloidal harmonics

ψ = exp(−inϕ)
M+1∑
m=1

exp(iθ(m−m0))Cmψm(r − rm), (5.5)

where M denotes the number of rational surfaces in the plasma with toroidal mode number n,
Cm is the amplitude of the mode labeled by m, ψm describes the normalized spatial structure
of mode m and rm is the radial position of the resonant surface with q(rm) = m

n . The value
of m0 has to be chosen so that

m0 < nq0 < m0 + 1, (5.6)

where q0 is the q value on the magnetic axis.
The sum in eq. (5.5) is over the M internal modes and one external Fourier mode7 CM+1ψM+1

with a resonant surface outside the plasma. With this approach the minimized change in
potential energy δW for the magnetic pertubation ψ can formally be expressed as [52]

δW = C2
M+1δWK +

1

2

M∑
m=1

CMCM+1IM+1−m, (5.7)

where δWK is the potential energy of an external kink in cylindrical geometry and the in-
teraction term IM−m describes the effect of the external mode M + 1 on the internal modes.
Under the assumption that the coupling between the last internal resonant harmonic and the
external mode dominates8, this can further be written as

δW ≈ C2
M+1

(
δWK −

1

4
I2

0

detHM−1

detHM

)
≈ C2

M

(
detHM

detHM−1
− 1

4
I2

0

1

δWK

)
, (5.8)

where

detHM

detHM−1
= δWB (5.9)

describes the stability of the ballooning mode with toroidal mode number n and M resonant
internal poloidal harmonics. The definitions of the matricesHm are given in [52]. Equation 5.8
is an analytic expression for coupled ideal ballooning-kink instabilities, where the interaction
term I0 is always destabilizing in case of a circular cross section [52]. For n → ∞, the
conventional ballooning stability threshold is recovered [52], [53] and [54], but for finite n the
above results in substantial modifications.

7This can be extended to several external modes, with ≈ 20 external modes a typical value for the linear
ideal MHD stability computations in this thesis

8This is justified because the overlap of those two modes is generally the largest
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5.3 Edge localised modes

Figure 5.6: Schematic stability diagram for peeling-ballooning modes for different shapings. Adapted
from:[54]

For an external mode whose resonant surface is just outside the plasma, i.e. a peeling mode,
the kink contribution δWK and the interaction term I0 can be further simplified [52], giving

δW ≈
sd− qaR

j‖
B

M + 1− nqa

−α(1 + s2)

4s4

exp(−2
s ln2(M + 1− nqa)

δWB
, (5.10)

where qa is the q value on the LCFS, j‖ is the parallel current density at the edge of the
plasma and s and α are defined as in the s − α-model in chapter 2.4.2. This modifies the
stability properties compared to treating peeling and ballooning instabilites separately and
independently. Depending on the value of M + 1 − nqa, the peeling or ballooning effect is
more prominent, with the latter being maximal at M + 1 − nqa = exp(−2) [52]. The onset
of instability thus occurs at smaller values of the edge current density and pressure gradient
as expected by conventional stability criteria, driving coupled peeling-ballooning modes at
intermediate values of n, possibly preventing access to the 2nd region of stability.

Shaping the plasma cross section however can have a stabilizing effect, noticably increasing
the maximum allowed pressure gradient and to a lesser extent the current density threshold,
see fig. 5.6. For further numerical studies on the peeling-ballooning model, see e.g. [55] and
[56].

The model for type I ELMs can now be envisaged as outlined in [54]. Additional heating
increases the pressure gradient in the edge and forms an H-mode pedestal on a relatively fast
timescale until the ballooning threshold is reached9. An increased pressure gradient in the
edge can drive a large bootstrap current if the density is not too high. This happens on a
resistive, slower timescale until the peeling mode treshold is crossed10. At this point, both
the peeling and the ballooning criterion are violated and the type I ELM is triggered. The

9At this point, ballooning modes are triggered which might give rise to small ELMs. As ELMs decrease the
pressure gradient, this would have a decreasing feedback on the ballooning mode growth, cf [54]

10Shaping effects may require a larger bootstrap current
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5 The plasma edge

plasma expulsion mechanism, however, is yet unclear and not included in the ideal MHD
picture. The mechanism has to explain the very fast timescale of the crash and the plasma
expulsion. However, lowering the pressure gradient has a self-enhancing effect on the peeling
mode instability, which could explain the large amplitude of the type I ELM. Furthermore, a
lesser pressure gradient drives a smaller bootstrap current, causing the plasma to drop below
the peeling stability threshold again. After this, the plasma is at or near its original state
with low pressure gradient and low current density.

Figure 5.7: Schematic ELM cycle for the peeling-ballooning model. Source: [57]

Two possibilites for ELM control or mitigation are Pellet Pace Making (PPM) and the Res-
onant Magnetic Pertubation (RMP) method outlined in [58].
ELMs are triggered by injection of trigger pellets, where a higher ELM frequency in general
leads to smaller ELMs. The idea behind PPM is then to trigger more, but smaller ELMs
(type II or type III) instead of less frequent, but large type I ELMs. The trigger pellets
are considerably smaller than the usual fuel pellets and are injected from the low-field side,
preventing over-fuelling of the core plasma.
RMP coils generate non-axisymmetric magnetic pertubations on resonant flux surfaces at
the edge region of the plasma, causing stochastic magnetic field lines and lowering the edge
pressure gradient through increased radial transport. They do not have influence on the core
region and thus cannot trigger any modes there.

54



6 Perfectly conducting wall: Influence on
edge stability

The gyrofluid code GEM [31], numerically solving the GEM equations in chapter 3.3.1, run
with local geometry uses a dampening layer for the edge of the radial computation box. All
dependent fluctuating quantities are damped by a function shown in fig. 6.1. This function
is an overlap of two Gaussians with a width1 ∆, centered at ±1

2Lx, where Lx is the length
of the radial computation box and fixed ∆ = 0.1Lx. The fluxtube center is located at the
origin of the computational box. The dampening ensures fixed background gradients with a
smooth transition to zero amplitude of the fluctuating parts of the plasma quantities. While

Figure 6.1: GEM edge dampening layer

this damping layer is not identical to a perfectly conducting wall close to the plasma, its
effects are similar with respect to the plasma perturbations. For simplicity, we take the GEM
quantity ∆ to correspond to the distance between a perfectly conducting wall and the plasma.
Note that the comparison of the GEM dampening layer and a perfectly conducting wall close
to the plasma surface is only of meaning in the edge region of the plasma. The dampening
layer always limits the radial computation box, regardless of the position of the latter, so
only for flux tube positions in the edge of the plasma are the setups similar.
As discussed in 5, in the edge we have a typical length scale L⊥ = LTi ≈ 4 cm. In our GEM
simulations, we always chose2 Lx = L⊥, corresponding to ∆ ≈ 0.4 cm. For a minor radius

1The Gaussian drops to 1
e

at a distance ∆ away from its center
2for the local geometry, flux tube model with fixed gradients, we always have to ensure Lx < L⊥
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6 Perfectly conducting wall: Influence on edge stability

a = 50 cm, this translates to a relative plasma-wall distance dwp := a+∆
a ≈ 1.01.

For realistic tokamaks, the distance between plasma and wall is much larger dwp > 1. With
regard to the comparison between the gyrofluid model and ideal MHD in chapter 7, in this
chapter we thus study the influence of the distance between a perfectly conducting wall and
a plasma with regard to ideal MHD instabilities.

We model 3 different equilibria with the high-resolution ideal MHD equilibrium solver HE-
LENA [90] [59], all of which are designed to be unstable against both an edge ballooning
mode and an external kink, but stable against internal kinks (q > 1). The profiles for each
case, see figs. 6.2 - 6.5, were specifically chosen to yield these characteristics. The pressure
gradients and current densities peak at s ≈ 0.96 - 0.97, with the radial coordinate s defined
as

s =

√
ψ

ψ0
. (6.1)

The last closed flux surfaces are

• circular with large aspect ratio R0
a = 100

• circular with small aspect ratio R0
a = 3.3

• shaped with elongation and triangularity commensurate to experimental setups of
ASDEX Upgrade.

For several values of dwp, we then perform scans for the growth rates as a function of the
toroidal mode number n and analyze the radial mode structures of the fastest growing mode
with radial coordinate s with the linear MHD stability code ILSA [91] [92] [60] in MISHKA
mode.

For up-down symmetric plasma cross sections, the geometric definitions of the elongation κ
and the triangularity δ are

κG =
yb

xd − x0

δG =
xb − x0

xd − x0
, (6.2)

compare fig. 6.6. For all cases investigated in this thesis, the last closed flux surface as used
in HELENA is analytically prescribed by the equations

x(θ) = x0 + a cos(θ + δH sin(θ) (6.3)

y(θ) = aκH sin(θ) (6.4)

where x and y are cartesian coordinates and θ is the poloidal angle.
While these definitions ensure

κG = κH , (6.5)
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Figure 6.2: Pressure gradients

Figure 6.3: Current densities
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6 Perfectly conducting wall: Influence on edge stability

Figure 6.4: q profiles

Figure 6.5: Global magnetic shear
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Figure 6.6: Geometric definitions for the plasma shape. The x position of the geometric center is x0,
the outermost point has xd and the point with largest Z value has x position xb.

the triangularity differs

δG = sin(δH). (6.6)

For small δH however, the difference is negligible.
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6 Perfectly conducting wall: Influence on edge stability

6.1 Large aspect ratio limit

As a common theoretical approximation is to take the limit of a circular large aspect ratio
plasma, we investigate the case with plasma parameters

• R0 = 20 m

• a = 0.2 m

• B0 = 2.0 T,

meaning ε = 0.01. Much smaller values for ε resulted in problems for the computation of
suitable equilibria. The spectra in fig. 6.7 show a significant influence of dwp on modes
with low to medium toroidal mode numbers n . 16, associated with external modes. The
relatively higher instability of this part of the spectrum is due to an destabilizing effect of
low inverse aspect ratio on low-n modes, compare e.g. the studies in [85].

Figure 6.7: Growth rates vs. toroidal mode number n
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6.1 Large aspect ratio limit

For dwp ≤ 1.10, which corresponds to a distance of 2 cm between plasma surface and per-
fectly conducting wall, the effect of the wall becomes noticeable. The n = 1 mode gets fully
stabilized, the maximum growth rates drop and the onset of instability is shifted to slightly
higher n. This concurs with the theoretical expectations discussed in chapter 2.5 For the wall
placed on the surface of the plasma, the maximum growth rate has dropped to ≈ 1

3 of its
original value for dwp = 2.50.

The high-n part of the spectra, associated with ballooning modes, is barely affected by dwp.
Only for dwp = 1.02 (i.e. 0.4 cm between plasma and wall) and less, one can observe a slight
drop in growth rates for this part. This reflects the weak ballooning drive ∼ κ∇p0 from a
small curvature κ of the plasma and a small coupling between internal and external modes,
which was presented in chapter 5.3.1.

The weak coupling can also be observed in the radial mode structures, see fig. 6.8 and
6.9 . When decreasing dwp, the mode structure of the ballooning modes is mostly unaffected;
slight changes become visible for dwp ≤ 1.10. The external part of the perturbation, however,
decreases relative to the amplitude of the ballooning part with smaller dwp. For dwp < 1.05,
i.e. the distance between plasma surface and wall < 1 cm, the ballooning amplitude becomes
dominant. The position of maximum amplitude of the ballooning mode does not change with
dwp, and is located approximately at the position of maximum pressure gradient.

dwp = 2.50 dwp = 1.25

Figure 6.8: Radial mode structures for the fastest growing modes
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6 Perfectly conducting wall: Influence on edge stability

dwp = 1.10 dwp = 1.05

dwp = 1.01 dwp = 1.00

Figure 6.9: Radial mode structures for the fastest growing modes
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6.2 Small aspect ratio

6.2 Small aspect ratio

The plasma parameters for this circular equilibrium are

• R0 = 1.65 m

• a = 0.5 m

• B0 = 2.0 T,

giving ε = 0.303. For the fastest growing modes, the spectra in fig. 6.10 show toroidal mode
numbers of n = 10 - 18, typical for experimental equilibria with both an edge ballooning and
external kink instability, and higher compared to the previous case with a large aspect ratio.

Figure 6.10: Growth rates vs. toroidal mode number n
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6 Perfectly conducting wall: Influence on edge stability

Except for the case with dwp = 1.00, the overall growth rates are much higher compared to

the large aspect ratio equilibrium, although the maximum pressure gradient dp
dψ is only larger

by ≈ 40%. For dwp = 2.50, the highest growth for the small aspect ratio is ≈ 6 times the
corresponding growth rate for the large aspect ratio case. This behavior reflects the increased
ballooning drive by a substantially higher curvature κ, which is ≈ 12 times larger compared
to the large aspect ratio. The increased curvature drive for ballooning modes therefore dom-
inates the stabilizing effect from magnetic field line bending, recall the intuitive form of the
energy principle in eq. 2.96.

For smaller dwp, the mode numbers corresponding to the maximum growth rates as well
as the onset of instability are shifted towards larger values of n. The shift, however, is much
more pronounced than in the large aspect ratio case. The low-n and medium-n part of the
spectra show similiar decreasing growth rates as the previous case with small ε, but the drop
of the maximum growth rates is noticeably larger. For dwp = 2.50 → 1.00, the relative de-
crease is ≈ 1

6 , twice the value as for the case with ε = 0.01.

The high-n, ballooning part of the spectra equally shows a larger impact of dwp, especially
for dwp = 1.00. As for small ε, the effect of the wall becomes visible at dwp = 1.10 and lower.
For above plasma parameters, this means a plasma-wall distance of 5cm.

The evolution of the radial mode structures with dwp in figs. 6.11 and 6.12 show the edge bal-
looning mode, with a maximum approximately at the position where the pressure gradient.
The amplitude of the external kink at the boundary of the computational domain is initially
larger than the one corresponding to the ballooning mode, but drops below for dwp < 1.05.
The overall picture of the radial mode structures is similar compared to the large aspect ratio
case, despite the differences for the high-n part of the spectra for both setups.

dwp = 2.50 dwp = 1.25

Figure 6.11: Radial mode structures for the fastest growing modes
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6.2 Small aspect ratio

dwp = 1.10 dwp = 1.05

dwp = 1.01 dwp = 1.00

Figure 6.12: Radial mode structures for the fastest growing modes
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6.3 Shaped plasma

Using the boundary description of HELENA in eqs. 6.2, the plasma parameters are

• R0 = 1.65 m

• a = 0.5 m

• B0 = 2.0 T

• κ = 1.6

• δH = 0.4.

The triangularity δH = 0.4 from the analytical description of the boundary corresponds to a
geometric δ = 0.39. The spectra in fig. 6.13 show the strong stabilizing effect of D-shaped
plasma cross sections.

Figure 6.13: Growth rates vs. toroidal mode number n
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6.3 Shaped plasma

For our case, this is most prominent for the low-n to intermediate-n modes, which get com-
pletely stabilized even with negligible influence from the perfectly conducting wall, dwp = 2.50.
This is due to lower edge current density drive (with regard to the circular case with high ε),
fig. 6.3, and shaping effects. In the high-n, ballooning part of the spectra, growth rates are
higher by ≈ 10% - 15% compared to the circular, small aspect ratio case. This is a result of
the increased maximum pressure gradient dp

dψ , which is larger by ≈ 30%.

The plasma-wall distance furthermore effects the high-n modes stronger than observed in
the previous chapter 6.2, but as the lower-n part is stable, the difference between the max-
imum growth rates for dwp = 2.50 and dwp = 1.03 is much smaller, on our case ≈ 20%.
For lower dwp ≤ 1.03, however, the wall provides complete stabilization for all modes in the
investigated toroidal mode number interval.

Comparing to the circular case, the radial mode structures inf figs. 6.14 and 6.15 show a
smaller amplitude ratio between external and internal modes due to the lower edge current
density and shaping effects. As the plasma shaping already provides a stabilizing effect on
the lower-n, external modes, a smaller plasma-wall distance has only a small decreasing effect
on the external perturbations up to dwp = 1.03. For lower dwp, however, the combination
of shaping and proximity of the perfectly conducting wall result in stabilization of both the
ballooning modes and the external modes with toroidal mode numbers n ≤ 35.

As the shift of the onset of instability shift to higher n becomes more pronounced with
lower dwp, it is possible that very localized ballooning modes with n > 35 are still unstable
for dwp ≤ 1.03, but computations for higher n become inreasingly involved and were not
pursued further.

dwp = 2.50 dwp = 1.10

Figure 6.14: Radial mode structures for the fastest growing modes
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dwp = 1.08 dwp = 1.06

dwp = 1.04 dwp = 1.03

Figure 6.15: Radial mode structures for the fastest growing modes, shaped cross section
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6.4 Comparison

6.4 Comparison

Both the growth rates and the toroidal mode numbers of the fastest growing modes show a
change only for dwp < 1.10, compare figs. 6.16 and 6.17. For these plasma-wall distances, the
maximum growth rates show large drops for smaller aspect ratios, but remain finite for the
circular case for all dwp. Shaping further provides stabilizing effects, so that the corresponding
equilibrium is stable against modes with n ≤ 35 even for dwp > 1.0. The large aspect ratio
case shows similar behavior as the circular small aspect ratio equilibrium, but the relative
growth rate changes are smaller by a factor ≈ 2.
The toroidal mode numbers generally increase for dwp < 1.10, as the external low-n modes
get damped by the wall. This effect is most pronounced for the circular small aspect ratio
case: because shaping effects already cause a stabilizing influence on the low-n modes even
for dwp = 2.50, the change of n remains small. The large aspect ratio case, however, features
a large external contribution due to the small ε, and consequently also a small ballooning
drive ∼ κ∇p0, therefore the mode numbers of the fastest growing modes remain smaller.

Figure 6.16: Growth rates of the fastest growing modes

For all cases, the proximity of a perfectly conducting wall has the largest effect on the low-n
part of the spectra, associated with external modes. The high-n, ballooning part is much less
affected, with the exception of dwp = 1.00 for the circular, small aspect ratio case. For the
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6 Perfectly conducting wall: Influence on edge stability

Figure 6.17: Toroidal mode numbers of the fastest growing modes

large aspect ratio, the influence of dwp can even be neglected for large n.

So for an equilibrium featuring an edge ballooning mode and an external kink, both dwp = 1.01
and dwp = 1.00 give an indication of the pure ballooning contribution to the growth rates.
Neither of them, however, gives the exact contribution, as dwp = 1.01 still allows external
modes and dwp = 1.00 can have a strong effect on the internal ballooning mode as well. Fur-
thermore, the coupling between internal and external modes is forced to zero, thus neglecting
possible destabilizing effects.

In chapter 5, we stated that we have to exclude external modes from the GEM simula-
tions. This is accomplished by a radial computation domain which does not cover a small
region close to the LCFS. Therefore apart from instabilities exclusive to the gyrofluid model
(ITGs, drift wave etc.), the GEM computations only consider the internal instabilities caused
by the pressure gradient drive. The external modes are not suppressed like in the ILSA anal-
ysis, they are simply neglected. Thus a comparison between the ILSA and GEM results for
dwp = 1.01 and dwp = 1.00 give the best comparison for the actual ideal ballooning instability.
Opposing GEM and ILSA for dwp = 2.50 give an indication of the error due to current driven
contributions.
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7 Numerical comparison

In this chapter, we present a numerical comparison of ideal linear MHD stability analysis and
the nonlinear gyrofluid model GEM. We investigate the properties of model equilibria with
regard to the pressure profile pedestal height, pedestal width, aspect ratio of the plasma and
shaping effects of the plasma cross section (elongation κ and triangularity δ).

The ideal MHD equilibria are computed with HELENA, using pressure and current den-
sity as input profiles. The pressure profiles p(ψ) are described analytically by

p(ψ) = psep + a0

(
tanh

2(1− ψmid)
∆

− tanh
2(ψ − ψmid)

∆

)
+ a1Θ

(
1− ψ

ψped

)
·
[
1−

(
ψ

ψped

)a1]a2
, (7.1)

allowing for scans of the pedestal height and pedestal width of the pressure profiles. The
coordinate ψ takes is normalized 0 ≤ ψ ≤ 1, and Θ is the Heaviside function.
The current density profiles are given simple analytic forms with artificially small current
densities and gradients in the edge region, avoiding drive of peeling / external kink modes
because of the issues discussed in chapter 5. The exact profiles are given in each following
section.

The equilibria are then tested for stability in the framework of ideal linear MHD with ILSA.
This yields the growth rates as a function of the toroidal mode number n and the radial
mode structure of possible instabilities for each n. We compute the spectra for plasma-wall
distances dwp = 2.50, dwp = 1.01 and with a fixed boundary dwp = 1.00 in conformal wall
geometry. As we will see in due course, external contributions are often inevitable for the
ideal linear MHD computations, but we have to exclude modes located at the LCFS for
the gyrofluid computations as discussed in chapter 6. The fixed boundary dwp = 1.00 not
only completely surpresses external modes, but has also potential effect on ballooning modes
located close to the edge, because there is no more coupling of external/internal modes as
presented in chapter 5.3.1.

From the equilibria provided by HELENA, the Hamada metric is set up as described in
[83],[84] and [36]. Unlike HELENA and ILSA, GEM additionally requires knowledge of the
ion and electron temperature profiles. The local values of the temperatures (at the position
of the fluxtube) enter the collision frequency νe,i, defined as the inverse of the Braginskii
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collision time1

τe,i =
6
√

2π
3
2 ε20
√
me,iT

3
2
e,i

ln Λe4n
(7.2)

with the Coulomb logarithm2

ln Λ ≈ 6.6− 0.5 ln(n) + 1.5 ln(Te). (7.3)

The temperature profile determine the gradient lengths LTe,i . For our purposes, we chose

a temperature profile as described in chapter 5, yielding edge values of Ti
Te

= 1.2 and
LTi = 0.035m. The simulation is started by applying a small perturbation to the density, so
that possible instabilities can grow.
We use GEM in the local geometry representation, simulating only a single fluxtube with
small radial computation domain Lx

3. The radial background gradients are kept fixed4, and
the radial profiles are approximated by linear functions, i.e. constant gradients over the radial
domain.

For all GEM runs, we investigate the fluctuating total energy ET , the ion heat flux Qi
and their respective growth rates γE = 1

2
∂ET
∂t and γQ = 1

2
∂Qi
∂t , the mode number spectra of

ne, φ, Ti and vorticity ω = ∇×~v, and the envelope of the parallel mode structure for n, φ, h,
Ti and Te. For convenience, we have dropped the tilde from the fluctuating quantities. The
mode number spectra show the squared amplitude of the respective quantities as a function
of kyρs and therefore give the toroidal mode number n of the maximum of the corresponding
quantity because of the relation

n =
kyr

q(r)
. (7.4)

For the linear phase, a comparison between the ideal linear MHD stability analysis and the
gyrofluid simulation can be done in terms of growth rates and toroidal mode numbers n.
Note that at high n, the latter cannot be simply compared because of dissipation at small
grid scales (towards the ion gyroradius) and FLR effects included in the gyrofluid model,
occurring at high mode numbers n ≥ 100. The spectra show if the dynamics have already
reached the ion gyroradius scale kyρs ≈ 1, with the vorticity showing the scale of the actual
(fluid-like) plasma motion. During the linear phase, the spectra amplitudes at kyρs = 1 are
several orders of magnitude lower than at lower wave numbers kyρs ≈ 0.1, while flattening of
the amplitude profiles mark the onset of the turbulent phase. In general, higher amplitudes
at higher ky indicate stronger turbulent character of the plasma and dynamics on smaller
scales.

1in cgs units, except Te,i are given in eV
2with n in units of 1020 1

m3 and Te,i in eV
3recall that Lx ≤ L⊥ to validate the flux tube treatment, i.e. the profiles do not change significantly over

the radial computation domain
4enforced by Dirichlet boundary conditions for the fluctuating quantities
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7.1 Pedestal height

7.1 Pedestal height

We consider a circular plasma cross section with nominal parameters

• major radius R0 = 1.65m

• minor radius a = 0.5m

• vacuum magnetic field B0 = 2.5T,

i.e. an inverse aspect ratio ε = 0.303. We vary the pressure pedestal height, i.e. the pressure
gradient in the edge, but leave the pedestal width constant. The pressure profiles in fig. 7.1
were chosen to cover the range from the onset of ideal MHD instability (p2) to the max.
achievable pressure gradient (p10), above which no equilibrium could be found by HELENA.

Figure 7.1: Pressure profiles

The flux-surface averaged current density profile shown in fig. 7.2 is given by

< jtor(ψ) >= j0 (1− ψ)2 . (7.5)
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The current density and the current density gradient at the edge of the plasma were chosen
small to avoid drives for peeling modes as discussed in 5.2.

Figure 7.2: Current density profile

This setup yields q profiles with q0 ≈ 1.5 and edge values qa = 4 . . . 5, while the q factor at
the positions of maximum pressure gradient is q ≈ 3.5, fig. 7.3.

Figure 7.3: q profiles
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The pressure gradients vary by a factor of ≈ 4 from the lowest pressure gradient p1 to the
highest one p10, fig. 7.2.

Figure 7.4: Pressure gradients

The global magnetic shear, see fig. 7.5, varies by a factor of ≈ 3 at the position of the
maximum pressure gradient.

Figure 7.5: Global magnetic shear
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7.1.1 Linear ideal MHD stability - ILSA

The spectra computed by ILSA are shown in figs. 7.6 - 7.9. For dwp = 2.50, the onset of
instability is at n = 2 for higher pressure gradients (p6 - p10) and shifts to higher values of n
for lower pressure gradients. This behavior is due to decreasing contributions from external
modes (having lower n) for lower pressure gradients, compare the radial mode structures in
fig. 7.10, and an increasing radial mode width with increasing pressure gradients. As the
pressure gradient exceeds the critical value for ballooning modes over a larger radial region,
ballooning modes with lower n and thus less radial localization are destabilized.

Figure 7.6: ILSA spectra with dwp = 2.50

Even though the flux-surfaced current density was explicitly chosen to be small at the plasma
edge, the setup gives a large difference of the current density at the inboard and outboard side,
and only the average current density is small, fig. 7.7. These currents are the Pfirsch-Schlüter
currents jPS [?] [?], which are

jPS ∼
r

R0

dp

dr
cos Θ, (7.6)
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where Θ is the poloidal angle and r the radial coordinate of the plasma cross section. For
sufficient pressure gradients, external instabilities caused by jPS cannot be avoided. This has
to be taken into account when comparing with the GEM simulations.

Figure 7.7: Contour plot of jtor(R,Z) in units of A
m2 , with R being the distance from the tokamak

symmetry axis and the cylindrical coordinate Z

For higher pressure gradients, the external part becomes comparable to the internal balloon-
ing part even for dwp = 1.01, see fig. 7.10. This effect could not be prevented by altering
the pressure profile form and must be taken into account when comparing the linear MHD
results to the gyrofluid ones, as the the gyrofluid code radial simulation domain excludes
the external contributions as discussed above. For lower pressure gradients, the spectra are
more ballooning-like with max. growth rates at high values of n > 25. The max. growth
rates monotonically grow with increasing pressure gradient, but for the two highest pressure
gradients (p9 and p10), the high-n part of the spectra shows clear stabilizing effects from the
high magnetic shear of these configurations. The maximum growth rates differ by a factor of
≈ 1.8, and the increase of the growth rates becomes lower for higher pressure gradient.

This general picture is the same for dwp = 1.01 and dwp = 1.00, except that the growth
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rates do no increase monotonically with increasing pressure gradient. For the cases with
pressure profile p7 and above, the max. growth rates decrease. This is due to the significant
contribution from external modes, which get stabilized by a perfectly conducting wall close
to the plasma as shown in chapter 6. The latter also causes the shift of the onset of stability
to higher n, as the external modes typically have low n.

Figure 7.8: ILSA spectra with dwp = 1.01

The case with pressure profile p1 is stable in the framework of linear ideal MHD.
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Figure 7.9: ILSA spectra with dwp = 1.00
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p2 p2

p5 p5

p10 p10

Figure 7.10: Left column: radial mode structures for the fastest growing modes with dwp = 2.50
Right column: radial mode structures for the fastest growing modes with dwp = 1.01
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7.1.2 Gyrofluid - GEM

The fluctuating part of the total energy ET shows clear initial exponential growth of the
total energy , see fig. 7.11, correlated to the linear phase of the instability. The growth rates
increase with increasing pressure gradient, and the time point of maximum growth rates
γE and onset of the nonlinear saturation phase shifts to smaller time values, compare fig.
7.12.The growth rate γE is maximal at t = 16.5µs for p3 and at t = 4.7µs for p10. Both the
growth rates and the maximum values of ET increase less with higher pressure gradient, a
trend similar to the ILSA results.
Only for the cases with p4 and higher there is a clear overshoot of ET , and the saturation level
in the nonlinear phase as well as the fluctuations around the average value tend to increase
with increasing pressure gradient.
The cases p1 and p2 show a short, small increase in growth rate shortly after the begin of the
simulation, with no clear ideal ballooning signature. This can be seen in the parallel mode
structure of both cases, see fig. 7.19; and at the time point of the initial small burst, the
squared amplitude of ne is much higher than in the following cases.
The case with p2 can be considered a threshold case, as there is a small increase in the growth
rate at t ≈ 17µs. This could still be a mere fluctuation, but the growth rate γQ of the ion
heat flux Qi in fig. 7.14 indicate that this is indeed qualitatively different from the case with
p1, which was stable in the linear ideal MHD picture. Else, the ion heat fluxes and their
growth rates follow the trend of ET and γE .

Figure 7.11: Total energy ET
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Figure 7.12: Growth rate γE

Figure 7.13: Ion heat flux Qi
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Figure 7.14: Growth rate γQ
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The spectra of ne, Qi, φ at the time point of maximum growth rate all have a peak at
kyρs = 0.1 for all cases, compare figs. 7.15 - 7.18, except p1 and p2. The latter do not show
this peak for the spectra of ne and φ, but it is present in the spectra of Qi. Again, this
indicates the threshold character of the case with p2. Except for p1 and p2, the vorticity
ω already reaches down to the ion gyroradius scale. The spectra for vorticity and ion heat
flux show largest squared amplitudes especially at kyρs & 1 for p3, the first case after the
threshold case p2, and decrease subsequently with increasing pressure gradient.

Figure 7.15: Spectra of ne at the time of max. growth rate

Figure 7.16: Spectra of Qi at the time of max. growth rate

The parallel mode structures in fig. 7.19 identifies the case p3 to have a strong ITG-like mode
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Figure 7.17: Spectra of φ at the time of max. growth rate

Figure 7.18: Spectra of ω at the time of max. growth rate

structure, with Ti � all other quantities. While p2 is the threshold case for gradient driven
instability, for the transition to the ideal MHD ballooning regime, the threshold case is p4.
The non-adiabatic coupling he is already larger than all other quantities, but still the squared
amplitudes for Ti ≈ φ. From p5 onward, there is clear ideal MHD ballooning regime, with
he > φ � all others. For higher ∇p, the ideal MHD ballooning character further becomes
more pronounced, and the temperature gradient effects dimish with decreasing ηi.
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p1 p2

p3 p4

p5 p10

Figure 7.19: Parallel mode structures at the time of maximum growth rate
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7.1.3 Comparison

The growth rates from ILSA are generally higher by a factor of ≈ 2−3 compared to the GEM
values for dwp = 2.50, see fig. 7.20, while the relative difference is smaller for higher pressure
gradients. The relative difference has a noticeable drop from the case p5 onwards, the first
case with a clear ideal MHD ballooning regime. There are two trends visible: the growth
rates agree better for higher pressure gradients and a consequently clearer ideal ballooning
mode structure of the gyrofluid simulations, and a smaller plasma-wall distance dwp. For
larger ∇p, the relative difference in growth rates gets smaller even for practically no influence
of the perfectly conducting wall dwp = 2.50, although the external contributions of the ideal
MHD stability analysis grow substantially. Therefore the clearer ballooning character is more
important to the gyrofluid results than the neglected external modes. For the steepest pres-
sure pedestal p10, the growth rates are in very good agreement for dwp = 1.01 and dwp = 1.00.
Note that for dwp = 1.00, the growth rates obtained from ILSA underestimate the ballooning
instability of the underlying equilibrium, as the complete suppression of the external modes
also eliminates the destabilization of ballooning modes by means of the internal-external cou-
pling described in chapter 5.3.1 The largest relative difference with regard to the growth rates
is for the cases p2 - p4, which are all outside the MHD regime.
In general, the growth rates computed with GEM can be regarded as too small, as the radial
computation domain does not cover the contributions from the external modes as well as
a small part of the actual internal ballooning part, as a region close to the edge is always
missing.

Figure 7.20: Maximum growth rate comparison
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The mode numbers obtained by GEM with fixed radial computation domain are nearly in-
sensitive to the pressure gradient, even for the ITG-like case p3, see fig. 7.21. Only the
cases p1 and p2 show slightly higher mode numbers expected for more ITG-like setups. The
gyrofluid mode numbers are slightly smaller than the MHD ones, except for the cases with
higher pressure gradients. As the cases with higher pressure gradients show significant exter-
nal contributions, this deviation is clearly understandable, as the GEM computations neglect
these external contributions and thus experience no shift to smaller mode numbers. Again,
the difference is smaller when dwp = 1.01 for the same reasons as with the growth rates.

Figure 7.21: Toroidal mode number comparison for the fastest growing modes

In [72], the dynamics of edge ballooning modes has been investigated with GEM using global
geometry, i.e. true radial dependence of the profiles and no assumptions of linearized profiles
and constant gradients. The underlying equilibrium, however, was not computed with exter-
nal ideal MHD equilibrium solvers like HELENA. The initial profiles were pre-equilibrated
to yield shapes according to experimental observations. The nominal ballooning case in [72]
roughly corresponds to our case p8. The global simulations gives a maximum growth rate
of ≈ 7.2 · 105 1

s , compared to γ ≈ 6.0 · 105 1
s for our study. Furthermore, the toroidal mode

number for the global case is ≈ 10 at the time of maximum growth, which would be in good
agreement with the ILSA results in fig. 7.21.
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7.2 Pedestal width

We consider a circular plasma cross section with nominal parameters

• major radius R0 = 1.65m

• minor radius a = 0.5m

• vacuum magnetic field B0 = 2.5T,

i.e. an inverse aspect ratio ε = 0.303. We vary the pedestal by changing the parameter ∆ in
eq. (7.1), while leaving the pedestal height constant, see figs. 7.22 and 7.23. Furthermore we
chose

ψped = 1−∆ (7.7)

ψmid = 1− ∆

2
. (7.8)

Figure 7.22: Pressure profiles

For higher ∆ the pedestal width increases, the pressure gradient decreases and the radial
position of the maximum pressure gradient shifts away from the LCFS as shown in fig. 7.24.

89



7 Numerical comparison

Figure 7.23: Pressure profiles pedestal region. R0 is the major radius and r the distance from the
center of the plasma cross section

The range of ∆ covers the onset of linear MHD instability (∆ = 0.175) to the maximum
pressure gradient (∆ = 0.025) above which no equilibrium could by found.
The pressure profiles with ∆ = 0.15, 0.175 and 0.2 have gradient maxima outside the temper-
ature profile pedestal (towards the axis), where LTi ≈ 0.1m. The pressure gradient maximum
for ∆ = 0.025 is located very close to the edge and was chosen so that the density gradient
length is actually smaller than the ion temperature gradient length.
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Figure 7.24: Pressure gradients

The fixed flux-surface averaged current density < jtor > is the same as in the previous section
analyzing the pedestal height, see fig. 7.2.

This setup gives q profiles shown in fig. 7.25, with q0 > 1 ensuring stability against internal
kinks and moderate values of qa ≈ 4.5. The q profile for ∆ = 0.025 shows a larger increase
in the edge region relative to the other q profiles, resulting in a much larger global magnetic
shear, fig. 7.26.

Figure 7.25: q profiles
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Figure 7.26: Global magnetic shear
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7.2.1 Linear ideal MHD stability - ILSA

In the ILSA spectra, figs. 7.27 - 7.29, we see a very strong effect of the wall on the spectrum
corresponding to the pressure profile with ∆ = 0.025, and a smaller but still noticeable effect
on the one with ∆ = 0.05. The fastest growing modes for both values of ∆ still show a clear
external part aside the internal ballooning part even for dwp = 1.01, see fig. 7.30. This is
due to the Pfirsch-Schlüter currents as in chapter 7.1. For the cases from ∆ = 0.175 to 0.075,

Figure 7.27: ILSA spectra with dwp = 2.50

the maximum growth rate increases with smaller pedestal width for all values of dwp and
the spectra show a strong ballooning character with max. n > 25. The onset of instability
is shifted to higher n for larger ∆ because the external, low-n part of the perturbations
decrease, compare fig. 7.30. The cases with ∆ = 0.05 and 0.025 exhibit an external part that
is comparable or even larger than the internal ballooning part, despite a close proximity of
the conducting wall. This also explains the sharp drop of the growth rate for ∆ = 0.025

93



7 Numerical comparison

Figure 7.28: ILSA spectra with dwp = 1.01

Figure 7.29: ILSA spectra with dwp = 1.00
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when changing dwp = 2.50 to 1.01, with a relative decrease of γmax by ≈ 60%. For the
perfectly conducting wall placed directly on the plasma surface dwp = 1.00, the growth rates
for this case even drop below the ones for ∆ = 0.175, although the maximum pressure gradient
is larger by a factor of ≈ 6.5, reflecting the strong coupling of external and internal modes.
This case also shows a radial mode structure concentrated around a narrow interval close
to the LCFS, a clear deviation from the Gaussian as expected by theory [52]. For broader
pedestal widths and pressure gradient maxima closer to the axis, the mode structure regains
its Gaussian shape with smaller / negligible external modes.
The case with ∆ = 0.20 is stable in the framework of ideal linear MHD for both plasma-wall
distances.
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∆ = 0.025 ∆ = 0.05

∆ = 0.075 ∆ = 0.10

∆ = 0.125 ∆ = 0.175

Figure 7.30: Radial mode structures for the fastest growing modes with dwp = 1.01
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7.2.2 Gyrofluid - GEM

Only the states with ∆ = 0.025 - 0.075, i.e. with clearly edge-localized pressure gradient with
small Ln, show a clear initial exponential growth of ET with an overshot and subsequent
saturated state. This is also reflected in the growth rates γE , compare figs. 7.31 and 7.32.
The growth rates decrease with larger ∆ resp. smaller pressure gradient, and the time points
where γE is maximal shift to higher values due to the pressure gradient drive to the instability.
This agrees with the parallel mode structure in fig. 7.39, with dominant he and φ. Also the
increasing role of Ti and Te is visible as the pressure gradients get smaller, i.e. ηi gets larger
because of the fixed temperature profiles. That is the general gradual transitional behavior
of the ITG mode, compare e.g. the investigations in [41]. As observed in the pressure scan
in chapter 7.1, a higher pressure gradient yields more pronounced ideal ballooning signature.
The ion heat fluxes and their growth rates concur with this trend, compare figs. 7.33 and
7.34, except for ∆ = 0.025: while the growth rate γE stagnates compared to ∆ = 0.05, the
ion heat flux growth rate γQ is clearly smaller, and Qi shows a lower saturation level as the
case with ∆ = 0.05.

Figure 7.31: Total energy ET
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Figure 7.32: Growth rate γE

Figure 7.33: Ion heat flux Qi
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Figure 7.34: Growth rate γQ

All the setups with larger pedestal widths feature pressure gradients too small to excite
ballooning modes, so ET and Qi are more than a magnitude smaller than the previous cases.
All of them show some low-amplitude growth rates shortly after the start of the simulations.
These cases can further be separated into two different regimes, the first with ∆ = 0.10, 0.125
and the second with ∆ = 0.15, 0.175, 0.20. This is evident from the parallel mode structures
in fig. 7.39 and the spectra in figs. 7.35 - 7.38. The first regime has strongly ballooned
ne and Te, while for the second regime Te is significantly smaller. The ion temperature Ti,
however, plays no role for either. Moreover the first regime has mode numbers ≈ 24 similar
to the cases with the maximum pressure gradient located in the temperature profile pedestal,
while the cases with a pressure gradient maximum in the core show a jump to higher mode
numbers ≈ 36.
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Figure 7.35: Spectra of ne at the time of max. growth rate

Figure 7.36: Spectra of Qi at the time of max. growth rate
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Figure 7.37: Spectra of φ at the time of max. growth rate

Figure 7.38: Spectra of ω at the time of max. growth rate
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∆ = 0.025 ∆ = 0.05

∆ = 0.075 ∆ = 0.10

∆ = 0.175 ∆ = 0.20

Figure 7.39: Parallel mode structures at the time of maximum growth rate
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7.2.3 Comparison

Similar to the investigation of the pedestal height, the GEM growth rates are smaller by a
factor 2 compared to ILSA for the cases with dwp = 2.50 and ∆ = 0.025, 0.05, 0.075 , i.e. small

pedestal widths with larger pressure gradients and locations of dp
dψ close to the LCFS, see fig.

7.40. Both models however show the same trend for those 3 values of ∆, with decreasing γ
for smaller pressure gradients. The case with ∆ = 0.025 can be considered an exception, as
the external part of the perturbation is still very large and results in a strong deviation for
dwp = 1.01 and 1.00. The consequent loss of coupling of the internal and external modes and
the suppression of the external perturbations in the linear ideal MHD stability analysis drops
the growth rates below the GEM growth rates .
All other cases show a substantial difference between the predictions of ideal linear MHD
and the gyrofluid model. The pressure gradients are too small to cause an MHD regime
ballooning behavior for the GEM simulations, and the growth rates are accordingly smaller
by about 50%.. Only for large ∆, meaning pressure gradients peaked in the core region of
the plasma, become the growth rates similar. The type of the instabilities, however, remain
different in character.

Figure 7.40: Maximum growth rate comparison

The mode numbers in fig. 7.41 further illustrate these characteristics. The mode numbers
obtained with GEM and ILSA agree best for ∆ = 0.05 and ∆ = 0.075, as for this case the
external perturbation part (i.e. the part not captured by our GEM simulations) is relatively
small and the pressure gradient is still large enough to drive a clear ballooning mode. For
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smaller ∆, the external part gets large and thus shifts the ideal MHD mode numbers to
smaller values, while for GEM only the internal ballooning part is considered and the mode
numbers therefore stay approximately constant. Generally the agreement is better for lower
dwp, as the external part gets dimished.
The mode numbers of the intermediate first regime as defined above still agree with the ILSA
predictions, but the types of instabilities are not comparable. For the second regime the mode
numbers are mutually different, highlighting the additional dynamics of the gyrofluid model.

Figure 7.41: Toroidal mode number comparison for the fastest growing modes
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7.3 Aspect ratio

We consider a plasma with fixed minor radius a = 0.5 and fixed pressure profile, compare
fig. 7.42, varying the inverse aspect ratio ε (i.e. change the major radius R0). The vacuum
magnetic field is B0 = 2.5T. The pressure gradient consequently remains fixed as well, fig.

Figure 7.42: Pressure profile

7.43, and corresponds to the case p3 investigated in chapter 7.1.

Figure 7.43: Pressure gradient
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The current density is increased for smaller aspect ratios, fig. 7.44, primarily in the core region
of the plasma. This proved necessary, as for too small current densities, no equilibria could
be found with HELENA. The ballooning drive caused by ∇p, however, stays the same.

Figure 7.44: Current density profiles

This results in q profiles as shown in fig. 7.45, where higher ε yields higher q values but
approximately the same relative increase, with the exception of the lowest ε = 0.1. The latter
case features a steeper increase in the edge region with ρvol > 0.95.

Figure 7.45: q profiles

The behavior of the q profiles is reflected in the global magnetic shear in fig. 7.46, with all
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cases except ε = 0.1 showing roughly the same shear over the whole radius of the plasma.

Figure 7.46: Global magnetic shear
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7.3.1 Linear ideal MHD stability - ILSA

The ideal linear MHD stability spectra for dwp = 2.50, see fig. 7.47, show a gradual stabi-
lization of the lower-n part with increasing ε. The onset of instability is shifted to higher
toroidal mode numbers n, and the growth rates for lower n generally decrease. The case with
ε = 0.1 features an unstable mode for n = 1 and is characterized by a larger contribution
from external, low-n modes compared to the cases with higher ε. Moreover, the high-n part
shows a stabilizing effect from the higher shear for the smallest inverse aspect ratio.

The growth rates follow no monotonic trend with ε, as their is an competition between
different effects stemming from the changing curvature. Higher ε resp. curvature has a sta-
bilizing effect on the external kink mode (low-n), compare [85], which was already observed
in chapter 6.1. Additionally, larger curvature provides an increased drive κp0 for ballooning
modes (high-n) as already discussed, but increases the stabilizing effect of magnetic field line
bending for all modes.

Figure 7.47: ILSA spectra with dwp = 2.50
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The spectra behavior is clearly represented in the radial mode structures, compare fig. 7.48.
Only the case with ε = 0.1 exhibits a strong external perturbation, whereas the other cases
have a dominating ballooning structure. Consequently, the radial extent of the instability is
larger for ε = 0.1, as it includes more low-n, less localized modes. Furthermore, the relative
amplitude of maximum internal to maximum external perturbation increases with higher ε,
concurring with stronger ballooning character.

ε = 0.1 ε=0.2

ε = 0.3 ε = 0.4

Figure 7.48: radial mode structures for the fastest growing modes with dwp = 2.50
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The influence of the plasma-wall distance dwp accordingly has the strongest effect on the case
ε = 0.1, see figs. 7.49 and 7.50. Smaller aspect ratios show a gradual stabilizing effect on the
low-n to medium-n part of the spectra (1 ≤ n ≤ 15), but have almost no consequence on the
growth rates of the high-n ballooning part. Except the case ε = 0.1, also the toroidal mode
numbers of the onset of instability only increase slightly with smaller dwp. The growth rate
for the smallest aspect ratio, however, drops by ≈ 50% when changing dwp from 2.50 to the
wall placed on the plasma surface.

Figure 7.49: ILSA spectra with dwp = 1.01
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Figure 7.50: ILSA spectra with dwp = 1.00

As the cases with inverse aspect ratio ε = 0.2 to 0.4 already are ballooning dominated with
smaller external contributions, the impact of dwp on the radial mode structure is also small
for these cases, compare figs. 7.48 and 7.51. As expected, the mode structure for ε = 0.1
shows a clear decrease of the external part and consequently a narrower radial extent of the
instability. Moreover, the destabilization of ballooning modes by coupling to the external
modes gets damped for dwp = 2.50 → 1.01, as can be clearly seen in the dip of the mode
amplitude around s ≈ 0.99 for ε = 0.1.
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ε = 0.1 ε=0.2

ε = 0.3 ε = 0.4

Figure 7.51: Radial mode structures for the fastest growing modes with dwp = 1.01
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7.3.2 Gyrofluid - GEM

In fig. 7.52, the total energy shows only marginal differences for ε = 0.1 and 0.2 with regard
to the peak of ET , but the case with ε = 0.2 features a slightly shorter linear phase. As
a consequence, the maximum growth rate for the higher inverse aspect ratio is larger and
moreover has a more pronounced overshoot, compare fig. 7.53. For higher ε, the growth rates
drop noticeably and the time point of peak ET shifts to larger values.

Figure 7.52: Total energy ET

In contrast, the ion heat flux shown in fig. 7.54 has a qualitatively different behavior. The
peak value of Qi for ε = 0.2 is much larger than for ε = 0.1, and is reached in a shorter time.
With regard to the maximum Qi, this remains true also for ε = 0.3. However, the time of
peak Qi is shifted to a higher value. Consequently, the growth rates for Qi in fig. 7.55 follow
the same pattern as γE . The difference of the highest inverse aspect ratio to the other cases
is significant and best visible for the ion heat flux. There is no longer an overshoot of Qi,
whereas a weakly pronounced one is still visible for ET . Both growth rates γE and γQ are
considerably smaller, and the instability grows on a timescale approximately a factor of 2
longer compared to all other cases.

The spectra for φ in fig. 7.56 feature two distinct peaks kyρs = 0.05 and 0.1 for ε = 0.1 and
0.2, whereas the peak at higher wave number is still slightly larger. For all other quantities,
however, there is a prominent single peak at kyρs = 0.1 for all values of ε, see figs. 7.57 - 7.59.
As a general trend, the turbulent character at the time of maximum growth rate increases
with higher inverse aspect ratio. This is most clearly visible for the vorticity ω: at kyρs = 1,
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Figure 7.53: Growth rate γE

Figure 7.54: Ion heat flux Qi
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Figure 7.55: Growth rate γQ

the squared amplitude increases by approximately a factor of 10 with subsequently higher
ε.

Figure 7.56: Mode number spectra φ
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Figure 7.57: Mode number spectra ne

Figure 7.58: Mode number spectra Qi
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Figure 7.59: Mode number spectra ω

The parallel mode structures in fig. 7.60 show an increasing amplitude of the temperatures
Ti, Ti with smaller aspect ratio. This behavior reflects the theoretical predictions that tem-
perature gradient driven modes in toroidal systems are enhanced by curvature [86]. The
ballooning character for the GEM simulations is most prominent for ε = 0.1 and 0.2, i.e.
smaller curvature, as the drive for the ITG mode is weak. This highlights the observed sim-
ilar characteristics of the energetics for these two cases. For higher inverse aspect ratio, the
ideal ballooning character gets dimished, as the amplitude of φ decreases. For ε = 0.3, the
temperature amplitudes are already comparable to φ, and for the highest inverse aspect ratio,
the Ti amplitude clearly dominates φ.
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ε = 0.1 ε = 0.2

ε = 0.3 ε = 0.4

Figure 7.60: Parallel mode structures at the time of maximum growth rate
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7.3.3 Comparison

In agreement with the observations in the previous sections, the relative difference of the
maximum growth rates is smallest for the most pronounced ballooning character of the GEM
simulations. This is the case for the smallest inverse aspect ratio ε = 0.1, see fig. 7.61,
where in agreement with theory the temperature dynamics show the weakest amplitude for
the gyrofluid model.

For dwp = 2.50 and ε = 0.1, the relative difference of the max. growth rates is ≈ 30%,
as there is a larger contribution from external modes in the ideal linear MHD stability anal-
ysis. As these contributions get suppressed for dwp = 1.01, the growth rates match, although
the radial mode structure from ILSA still shows an external mode (which is not covered in
the GEM simulations) comparable to the internal mode amplitude. For dwp = 1.00, however,
the complete suppression of the external modes also cancel all couplings (i.e. destabilizing
effects) to the ballooning modes, dropping the ILSA growth rate below the GEM value.

For our selected case, the relative difference in growth rates increases with higher ε and
consequently deteriorating ideal ballooning signature of the GEM results. Except ε = 0.3,
the trend of both the ideal linear MHD and the gyrofluid results as a function of ε are roughly
comparable, but this is not due to the same physical dynamics.

Figure 7.61: Maximum growth rate comparison
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For ε = 0.3 and 0.4, the temperature amplitudes in the parallel mode structures of the GEM
runs become comparable / dominant to the ideal ballooning signature. These temperature
profile effects are outside the scope of ideal linear MHD, but the stabilizing effect of curvature
on the external kinks present in the ILSA runs has no counterpart in the GEM simulations,
as external modes have been excluded from the latter.

The toroidal mode numbers show the best agreement for ε = 0.1, compare fig. 7.62 in
accordance to the growth rate observations, but with dwp = 1.00. This is due to the fact that
the perfectly conducting wall in direct contact with the plasma suppresses the external, low-n
modes as already discussed and therefore leaves the high-n ballooning modes as dominant
instabilities. For this inverse aspect ratio and dwp = 1.00, despite the match of the maximum
growth rates, the mode numbers differ significantly, as there is still a large external mode in
the ILSA stability analysis. For ε = 0.2, the mode numbers agree well, as the radial mode
structure computed with ILSA show a dominant internal ballooning mode. Note that for
larger ε, the ILSA mode numbers in fig. 7.62 are n = 25, because the simulations only extend
to this toroidal mode number. We limited the range of n, because the spectra showed a
strong ideal ballooning behavior, differing from the GEM observations, so modes with higher
n obtained with ILSA would not provide any further insight. From figs. 7.47 - 7.50, however,
they can be expected to be much higher. Consequently the difference to the GEM mode
numbers, which are almost insensitive to the aspect ratio, increases with higher ε.

Figure 7.62: Toroidal mode number comparison for the fastest growing modes
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7.4 Shaping effects

We use a fixed pressure profile p(ψ), and current density profile was chosen as in eq. 7.5.
Note that the radial coordinate is ψ instead of ρ as in the previous sections. The plasma
cross section shape is varied with respect to elongation κ and triangularity δ as described in
eqs. (6.3) and (6.4). The upper limit of the shaping parameters corresponds to experimental
values of ASDEX Upgrade κ = 1.6, δ = 0.4 [7]. For this range of triangularities, there is
no large difference between the code parameter δH and the experimental δ, so we use them
interchangeably.

Figure 7.63: Pressure profile vs. normalized ψ

As the HELENA parametrization of the poloidal boundary surface does not conserve the
volume, the position of the maximum pressure gradient shifts slightly to the magnetic axis
for higher κ and δ, see fig. 7.64. The change however is very small and can be neglected.

For higher κ and δ, the q profile shows overall larger values, with the largest absolute differ-
ences close to the edge, compare fig. 7.65. This is understandable from geometric consider-
ations, as basically the length in poloidal direction increases when following a magnetic field
line. The q value can be approximated as [6]

q =
2ABt
µ0R0I

, (7.9)

where A is the area of the poloidal cross section. For a circular plasma, A = a2π, where a is
the minor radius of the circle. For a plasma with elongation κ and δ = 0, we have A = πa2κ,
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Figure 7.64: Pressure gradients with κ = 1.1, δ = 0.0 and κ = 1.6, δ = 0.4

so for fixed current I the relation is

q(κ) = κqcircular. (7.10)

This relative increase in the q values then results in a higher global magnetic shear, compare
fig. 7.66. Elongation by itself has a weaker increasing effect on both q and the shear, whereas
triangularity features large changes.

Figure 7.65: q profiles with κ = 1.1, δ = 0.0 and κ = 1.6, δ = 0.4
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Figure 7.66: Global magnetic shear profiles with κ = 1.1, δ = 0.0 and κ = 1.6, δ = 0.4
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7.4.1 Linear ideal MHD stability - ILSA

We first investigate the effects of varying elongation κ at zero triangularity δ = 0.0 and
negligible effect of the wall dwp = 2.50, see fig. 7.67. Comparing to the circular case with
κ = 1.0 and δ = 0.0, higher elongation has a destabilizing effect on the low-n part of the
spectra (n . 5), where κ ≥ 1.2 features an unstable n = 1 mode. This mode, is an unstable
kink-ballooning mode, see fig. 7.68, and higher κ increases the ratio of internal to external
amplitude.

Figure 7.67: ILSA spectra with dwp = 2.50, elongation scan with δ = 0.0

κ = 1.2 κ = 1.6

Figure 7.68: Radial mode structures for the n = 1 modes with dwp = 2.50 and triangularity δ = 0.0
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Modes with high n also show slightly larger growth rates for κ ≤ 1.4, therefore the elonga-
tion rather has overall influence on the internal modes and less on the external pertubations.
Higher elongation, however, decreases the corresponding growth rates, indicating a stabilizing
effect from the higher shear of the equilibria.

For fixed low elongation κ = 1.1, a stabilizing effect of increasing triangularity is visible
for δ ≥ 1.2, see fig. 7.69. Furthermore, only the intermediate to high n modes are affected
(n & 10, with the strongest effect on modes with the highest n. Comparing δ = 0.0 and
δ = 0.4, the maximum growth rate drops by ≈ 10%, while the growth rates for n = 25
decrease by more than 40%.

Figure 7.69: ILSA spectra with dwp = 2.50, triangularity scan with low elongation κ = 1.1

With fixed high elongation κ = 1.6, triangularity shows an even stronger stabilizing effect,
even for low-n modes, compare fig. 7.70. When comparing zero triangularity to δ = 0.4, the
growth rate of the fastest growing mode decreases by ≈ 1

3 . For high δ = 0.3, 0.4, the spectra
exhibit complete stabilization of modes with n & 20− 25.

The strong effect of triangularity on modes with higher n, i.e. modes with stronger ballooning
character, can be understood with the changing plasma geometry. For δ ≥ 0, the length of a
poloidal flux surface boundary on the high-field side relative to the magnetic axis increases,
while the length on the low-field side decreases. Higher elongation enhances this even fur-
ther. Now following a magnetic field line, the field line resides longer in the region of favorable
curvature, therefore showing a stabilizing effect on ballooning modes associated with higher n.
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Figure 7.70: ILSA spectra with dwp = 2.50, triangularity scan with high elongation κ = 1.6

The overall higher stabilizing influence of δ on the ballooning part of the spectra causes
a shift of the toroidal mode numbers of the fastest growing modes to lower values. Changing
elongation, however, has only marginal impact on the mode numbers, with a slight shift to
lower n.

The radial mode structures only experience slight changes with fixed κ and varying δ, see fig.
7.71, and generally an increased ratio of max. amplitude of internal to external modes with
fixed δ and varying κ. This ratio increase is more pronounced for higher δ, because higher
elongation shows mostly a destabilizing effect on the ballooning part and the destabilization
is stronger for lower n. Higher triangularity, however, is linked to lower n, thus the stronger
effect.
The increased external-internal mode amplitude ratio for fixed κ and increasing δ stems from
the stabilizing effect of triangularity on ballooning modes and the shift of the fastest growing
mode to lower n, which is also associated with stronger external perturbations.
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7.4 Shaping effects

κ = 1.1, δ = 0.0 κ = 1.1, δ = 0.4

κ = 1.6, δ = 0.0 κ = 1.6, δ = 0.3

Figure 7.71: Radial mode structures for the fastest growing modes with dwp = 2.50

The effect of a close proximity dwp = 1.01 of the perfectly conducting wall to the plasma
surface for zero triangularity and changing elongation is commensurate with the findings in
the previous sections, with the spectra shown in figs. 7.72 - 7.74. As higher κ destabilizes the
low-n modes, low dwp results in a wider spread of the toroidal mode numbers for the onset
of instability with varying κ, as the external parts of the low-n modes get dampened. The
maximum growth rates are marginally lower as for dwp = 2.50, and the difference is negligible
for high n, as these modes already feature a strong ballooning character and are therefore
not affected.

The shift of the onset of instability gets smaller for higher elongation, where for κ = 1.6 only
the n = 1 mode gets completely stabilized with the relative plasma-wall distance dwp = 1.01.
This is because for higher κ, the radial mode structures already show a more dominating
ballooning character, compare the previous fig. 7.71 and the radial mode structures for
dwp = 1.01 in figs. 7.75 and 7.75, so consequently the impact of dwp also dimishes with
increasing elongation.
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Figure 7.72: ILSA spectra with dwp = 1.01, pure elongation scan with δ = 0.0

Figure 7.73: ILSA spectra with dwp = 1.01, triangulation scan with low elongation κ = 1.1

128



7.4 Shaping effects

Figure 7.74: ILSA spectra with dwp = 1.01, triangulation scan with high elongation κ = 1.6

Placing the perfectly conducting wall on the plasma surface, dwp = 1.00, does not yield
any qualitative and only slightly quantitative changes of the toroidal mode number spectra
compared to dwp = 1.01, so we just refer to the results cumulated in the comparison with
GEM, figs. 7.94 - 7.99.

κ = 1.1, δ = 0.0 κ = 1.1, δ = 0.4

Figure 7.75: Radial mode structures for the fastest growing modes with dwp = 1.01
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κ = 1.6, δ = 0.0 κ = 1.6, δ = 0.3

Figure 7.76: Radial mode structures for the fastest growing modes with dwp = 1.01
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7.4.2 Gyrofluid - GEM

For strong shaping, the GEM simulations showed violent dynamics during the turbulent
saturated phase due to the high pressure gradient. A high ∇p, however, was necessary to
obtain a clear ballooning signature. As gyrofluid studies of κ − δ effects of the turbulent
particle transport and ion heat flux in flux-surface geometry with low pressure gradient an
in an ITG-regime have already been done with GEM in ref. [84], we did not pursue this
further and focused solely on the initial linear phase. The simulations were performed until
the dynamics reached the ion gyroradius range kyρs ≈ 1, i.e. the spectra flattened.
The fluctuating total energy and its associated growth rate in figs. 7.77 and 7.78 for a scan of
the elongation with δ = 0.0 show similar behavior as the previous ILSA analysis. Increasing
κ from 1.1 to 1.2 yields only a marginal change in the peak of ET , but the maximum value
is taken in a shorter time, resulting in a slightly higher growth rate. For higher κ, the time
with maximum GT increases and the peak ET as well as the highest growth rate for each case
decreases. For κ = 1.5 and 1.6, there is a competition between ITG and ballooning mode at
the beginning t ≈ 4µs, but eventually the ballooning instability dominates. The ion heat flux
and its growth rate concur with the behavior of ET and GT , compare figs. 7.79 and 7.80.
The relative change in the peak values and the maximum growth rate is approximately the
same as for the energetics.

Figure 7.77: Total energy ET , elongation scan with δ = 0.0
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Figure 7.78: Growth rate γE , elongation scan with δ = 0.0

Figure 7.79: Ion heat flux Qi, elongation scan with δ = 0.0
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Figure 7.80: Growth rate γQ, elongation scan with δ = 0.0
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The parallel mode structures reflect the differences for κ = 1.5 and 1.6, see fig. 7.81. Only
for these cases, a decrease of the squared amplitude of φ is clearly visible. For the other
elongation values, the decrease of φ with higher κ is weak.

κ = 1.1 κ = 1.2

κ = 1.3 κ = 1.4

κ = 1.5 κ = 1.6

Figure 7.81: Parallel mode structures at the time of maximum growth rate, elongation scan with
δ = 0.0
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The spectra in figs. 7.82 - 7.85, however, show not much variation at the time of maximum
γE . There is a dominant peak at kyρs = 0.1 for all cases, with a second, less pronounced
peak at kyρs = 0.175. As with ET and Qi, the squared amplitude for all cases increases with
κ = 1.1→ 1.2, and subsequently decreases for higher elongations.

Figure 7.82: Spectra of ne at the time of maximum growth rate

Figure 7.83: Spectra of Qi at the time of maximum growth rate
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Figure 7.84: Spectra of φ at the time of maximum growth rate

Figure 7.85: Spectra of ω at the time of maximum growth rate
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For constant low elongation κ = 1.1 and varying triangularity, however, the GEM results
showed only marginal changes. Neither the energetics in figs. 7.86 and 7.87 nor the ion heat
flux and its associated growth rate in figs. 7.88 and 7.89 feature significant evolution with δ.
Alongside, the spectra and parallel mode structure were almost completely insensitive to δ
as well5.

Figure 7.86: Total energy ET , triangularity scan for low elongation κ = 1.1

5Not explicitly shown here, for the spectra and parallel mode structures see figs. 7.81 - 7.85 for triangularity
δ = 0.0
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Figure 7.87: Growth rate γE , triangularity scan for low elongation κ = 1.1

Figure 7.88: Ion heat flux Qi, triangularity scan for low elongation κ = 1.1
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Figure 7.89: Growth rate γQ, triangularity scan for low elongation κ = 1.1
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Increasing δ at higher elongation κ = 1.6 shows almost the same picture for both the energetics
and the ion heat flux, compare figs. 7.90 - 7.93. A more triangular plasma cross section
decreases the peak values of both ET and Qi slightly, but the maximum growth rates are
unaffected. For the strongest shaping with κ = 1.6 and δ = 0.4, however, there is a clearly
visible drop in the growth rates for both the fluctuating total energy and the ion heat flux.
Moreover, the time point of the peak growth rate shifts to slightly higher values as the
instability becomes weaker. The spectra and parallel mode structures nevertheless do not
show noticeable differences compared to vanishing triangularity δ = 0.0.

Figure 7.90: Total energy Etotal, triangularity scan for high elongation κ = 1.6
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Figure 7.91: Growth rate γE , triangularity scan for high elongation κ = 1.6

Figure 7.92: Ion heat flux Qi, triangularity scan for high elongation κ = 1.6
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Figure 7.93: Growth rate γQ, triangularity scan for high elongation κ = 1.6
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7.4.3 Comparison

For vanishing triangularity and varying elongation, the growth rates in fig. 7.94 show similar
scaling with κ, slightly rising for κ = 1.1 → 1.2 and decreasing for higher κ. For higher
elongation, however, the relative growth rate drop is larger for GEM than for the ILSA
spectra, as the squared amplitude of φ and thus the ballooning signature of the parallel mode
structures decreases. The toroidal mode numbers of the fastest growing modes for GEM and
ILSA roughly follow the same trend for all dwp and are also comparable with regard to their
absolute values. The agreement is slightly worse for larger κ, concurring with the change in
the parallel mode structures.

Figure 7.94: Maximum growth rate comparison, elongation scan with δ = 0.0

As the GEM dynamics were only marginally affected by triangularity at fixed elongation, the
ILSA and GEM mode numbers and growth rates show very different scalings with δ, see figs.
7.96 - 7.99. At high δ, the difference between the growth rates becomes small, but this is due
to the strong stabilizing effect of triangularity in the framework of linear ideal MHD stability
analysis and not reflected in the GEM simulations. Only for the strongest shaping, κ = 1.6
and δ = 0.4, a clear decrease of γ computed with GEM can be observed. The mode numbers,
however, show no significant change even for this case.
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Figure 7.95: Toroidal mode number comparison for the fastest growing modes, elongation scan with
δ = 0.0

Shaping effects on turbulent particle transport and ion heat flux in flux-surface geometry have
been studied in the context of GEM gyrofluid simulations based on HELENA equilibria in
reference [84], and equally found barely any effect of triangularity. The scaling with elongation
nevertheless agreed well with experimental observation. It is possible that excluding a small
region close to the plasma surface from the GEM radial computation domain is the cause
for the lack of impact of δ. Advancements in the numerical treatment of this small region
could clarify that issue, see e.g. the ongoing studies of conformal coordinates in [47] and the
references therein.
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Figure 7.96: Maximum growth rate comparison, triangularity scan for low elongation κ = 1.1

Figure 7.97: Maximum growth rate comparison, triangularity scan for high elongation κ = 1.6
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Figure 7.98: Toroidal mode number comparison for the fastest growing modes, triangularity scan for
low elongation κ = 1.1

Figure 7.99: Toroidal mode number comparison for the fastest growing modes, triangularity scan for
high elongation κ = 1.6
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7.5 Core ballooning

As we have observed in the chapter 7.1, the relative difference in growth rates when comparing
linear ideal MHD and the gyrofluid model was smallest for high pressure gradients, resulting in
a strong ideal ballooning signature of the parallel mode structures, and smaller contributions
from external modes in the MHD stability analysis. So we consider an equilibrium with
the profiles shown in figs. 7.100 - 7.104. The pressure gradients peak in the core region at
ρvol ≈ 0.8, therefore we can avoid edge physics in the gyrofluid runs and the pressure does
not provide any drive to external modes.

Figure 7.100: Pressure profiles

Figure 7.101: Pressure gradients
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The flux-surface averaged current density was chosen to be

< jtor > (ψ) = j0 (1− ψ) exp(−ψ) (7.11)

as this choice yields quasi-parabolic q profiles, on that matter c.f. [93]. The shear at the
position of the maximum pressure gradient is always small, so there are no detrimental
distortions of the grid elements on the GEM simulations. The nominal plasma parameters
are

• major radius R0 = 1.65m

• minor radius a = 0.5m

• vacuum magnetic field B0 = 2.5T,

and the plasma cross section is circular.

This section is not supposed to be a comprehensive study of core ballooning, for detailed
studies of kinetic core ballooning, see e.g. [87]. It is merely meant to briefly test the remain-
ing differences between gyrofluid and ideal linear MHD stability when other dynamics such
as peeling modes, ITGs, shear deformation of the computation grid etc. can be considered
small, and the ballooning character is very dominant. As this study is similar to the pedestal
height investigations in chapter 7.1, we only show the essential characteristics.

Figure 7.102: Current density profile
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Figure 7.103: q profiles

Figure 7.104: Global magnetic shear
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7.5.1 Linear ideal MHD stability - ILSA

The ILSA spectra in fig. 7.105 clearly show an increasing maximum growth rate with higher
ballooning drive from the pressure gradient ∇p. As the radial mode structure only exhibits
an internal ballooning mode, compare the example in fig. 7.106, the toroidal mode number
of the onset of instability remains almost unchanged, as there are no low-n external modes.
The small shift of δn = 1 for higher pressure gradients results from pressure gradients which
exceed the critical ∇p over a larger radial intervall, therefore causing slightly less localized
modes with lower n.
The plasma-wall distance dwp has no effect on the (maximum) growth rates and the mode
numbers, as the ballooning mode is sufficiently away from the edge region and there are no
external modes, so we only consider dwp = 2.50.

Figure 7.105: ILSA spectra with dwp = 2.50
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Figure 7.106: Radial mode structure for the fastest growing modes for p4

7.5.2 Gyrofluid - GEM

As in the study of the pedestal height, increasing pressure gradients lead to a higher peak
of the fluctuating total energy ET , and the linear phase occurs on a subsequently shorter
timescale, see fig. 7.107. The spectra, here exemplary for φ shown in fig. 7.108, show a
dominant peak which shifts to higher kyρs (i.e. higher n) for larger ∇p, commensurate with
the ILSA bevahior.
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Figure 7.107: Total energy ET

Figure 7.108: Spectra of φ at the time of maximum growth rate
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7.5.3 Comparison

As can be seen in figs. 7.109 and 7.110, the growth rates and mode numbers of ILSA and GEM
are in good agreement. The growth rates are within 5% of each other, while the GEM mode
numbers are slighty higher, but follow the same trend as ILSA. One should note, however,
that the equilibrium setups are very artificial, specifically designed to suppress instabilities
exclusive to only one of the models, ideal linear MHD and gyrofluid theory with the restriction
of no surface-located modes.

Figure 7.109: Maximum growth rate comparison
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Figure 7.110: Toroidal mode number comparison for the fastest growing modes
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8.1 Conclusions

We give a brief overview of the main results of this thesis, highlighting the comparison be-
tween ideal linear MHD stability analysis and gyrofluid simulation predictions.
The general steps for the comparison can be summarized as follows:

(i) Prescribing analytical profiles for the pressure p and the flux-surface averaged current
density < jtor >, we computed the corresponding equilibria with the HELENA code. The
current density lacked any bootstrap current to avoid drive for external kink / peeling insta-
bilities. The latter could however never be completely avoided, as large pressure gradients
close to the LCFS caused large differences of the current density at the inboard and outboard
side, resulting in moderate to severe external modes nonetheless.

(ii) The equilibria were then investigated for instability with the linear MHD stability code
ILSA in MISHKA mode, giving growth rates γ as function of the toroidal mode number n
and the radial mode structures.

(iii) The equilibria provided the initial setup, from which the time-dependent GEM equa-
tions were computed with the gyrofluid code GEM using local geometry (flux tube represen-
tation). This additionally required local values of the temperature profiles for the electron
and ion temperatures, Te and Ti, which were chosen from experimental observations of the
H-mode ASDEX Upgrade shot #17151. From the time evolution of the fluctuating part of
the total energy ET , a growth rate for the initial linear instability phase could be calculated.
The amplitude spectra as function of kyρs yielded toroidal mode numbers for the initial phase.

Perfectly conducting wall

As the GEM code run with local geometry uses a dampening layer with width ∆ at the bound-
ary of the radial computation box, fluctuating quantities are dimishing, ensuring Dirichlet
boundary conditions to hold the background equilibrium gradients constant over the radial
domain. For the edge region of the plasma, this resembles the effect of a perfectly conducting
wall close to the plasma surface to an extent, as the wall suppresses perturbations of the
plasma surface as well. Furthermore, because the large shear close to the plasma boundary
causes severe distorsions to the computational grid elements of GEM in this region, simu-
lations had to exclude a small radial layer close to the plasma surface, i.e. surface-located
and external instabilities could not be resolved. The latter instabilities, however, occurred
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in most cases analyzed in the framework of linear ideal MHD. Therefore we investigated the
influence of the relative distance dwp between the plasma surface and a perfectly conducting
wall on the linear ideal MHD stability of specific equilibria. These equilibria were prepared
to feature an edge ballooning mode and an external kink / peeling mode, but otherwise to
be stable with regard to other ideal MHD instabilities. We investigated three equilibrium
setups: circular plasma cross sections with large and small aspect ratio R0

a , and a shaped
plasma with elongation κ = 1.6 and triangularity δ = 0.4 with small aspect ratio.
For all cases, dwp = 1.10 was the threshold, below which the growth rates of the fastest grow-
ing modes started to drop, at an increased rate for smaller dwp. The same threshold character
was seen for the toroidal mode numbers n of the most virulent modes, although to a lesser
extent. The proximity of the wall had the most pronounced stabilizing impact on the lower-n
part of the spectra and the external kink instabilities. For the shaped plasma cross section,
however, the shaping itself showed a strong stabilizing effect and masked the influence of the
wall until dwp reached low values. Choosing ∆ to correspond to the distance between plasma
surface and perfectly conducting wall, for equilibria with an edge ballooning instability we
have dwp ≈ 1.01, providing a strong stabilizing effect on the external modes (excluded from
the GEM simulations) and a lesser but not negligible effect on the ballooning modes. Thus,
this gives an estimate on the pure ballooning contribution to the plasma instability within the
linear ideal MHD framework and allows for better comparison with GEM results. However,
because internal and external modes are coupled, the dampening of the kink / peeling modes
also cause a lower ballooning contribution.

Pedestal height

Considering a circular plasma cross section and an aspect ratio of 3.3, the first part of the
comparison varied the pressure pedestal height with fixed pedestal width. With regard to
the maximum growth rates, two trends could be observed: the difference between ILSA and
GEM results decreased with higher pressure gradient ∇p, i.e. larger pedestal height, and a
smaller dwp. For the highest ∇p and dwp = 1.01, the growth differ by merely ≈ 10%. Along-
side, the parallel mode structure from the GEM simulations showed a more pronounced ideal
ballooning signature with increasing ∇p. For lower pressure gradients, however, the relative
difference of the growth rates grew up to a factor of 2. The mode numbers share the better
agreement for lower dwp, but the difference becomes larger for the higher pressure gradients.

Pedestal width

Instead varying the pedestal width and leaving the pedestal height approximately constant
changes both ∇p and the location of the pressure gradient maximum. Only for high pressure
gradients and smaller pedestal widths do the growth rates obtained with GEM follow the
behavior of the ILSA spectra, with a relative difference of γ commensurate with the pedestal
height scan. For low ∇p and broad pedestal widths however, the GEM parallel mode struc-
tures showed no ideal ballooning signature, and the growth rates dropped abruptly, in contrast
to the gradual decrease of γ for lower pressure gradient in the ILSA simulations. Again, lower
dwp yielded better agreement. The mode numbers are in good agreement for narrow and in-
termediate pedestal widths, but the physics differ for the latter. For broad pedestals, the
mode numbers differ by a large amount, concurring with the growth rate characteristics.

156



8.2 Outlook

Aspect ratio

With fixed plasma minor radius, lower inverse aspect ratio ε and lower dwp yielded bet-
ter agreement of the growth rates, as high ε tended to increase temperature dynamics in the
gyrofluid computations and consequently dimished the ideal ballooning character. The mode
numbers showed overall good agreement with the exception of the lowest ε and dwp 6= 1.0,
as low inverse aspect ratio showed a strong external mode with lower n, an instability which
was never captured in the GEM simulations as mentioned above.

Shaping effects

For a fixed triangularity δ and varying the elongation κ of the plasma cross section, the
growth rates trend is the same for GEM and ILSA, with the absolute differences comparable
with the previous studies. At large κ, the γ difference increases slightly, as the ideal ballooning
signature of the GEM simulations deteriorates. The mode numbers agree well for dampened
external kinks dwp = 1.01, with slight differences for higher elongation as observed for the
growth rates. Keeping κ constant and changing δ, however, has only marginal effects on the
GEM dynamics (γ and n), in stark contrast to the strong stabilizing effect of triangularity
on the linear ideal MHD framework. Previous gyrofluid studies of turbulent particle trans-
port and heat flux in shaped flux-surface geometry [84] equally showed negligible influence of
triangularity, but elongation scalings in agreement with experimental observations.

Core ballooning

The overall observation that growth rates differed the least with high pressure gradient and
otherwise small contributions from instabilities exclusive to only of the codes (external kink
/peeling for ILSA and temperature effects for GEM) agreed with the stability analysis of
an equilibrium setup which featured only a strong core ballooning mode. No external mode
was unstable for all toroidal mode numbers n, and ITG modes were very weak. This equi-
librium setup, however, was specifically tuned to yield these characteristics, and the plasma
parameters of the simulations vastly differed from experimental values.

8.2 Outlook

Global geometry

Using a global geometry lifts the restrictions of the flux tube treatment, the latter only
featuring a small radial computation domain. The profiles can be given experimental shapes
with radial dependencies instead of simple linearized functions with constant gradient, yield-
ing a much more realistic description of the plasma dynamics. First studies of edge localized
ideal ballooning mode (linear and turbulent phase) and the blowout due to the instability have
been performed in [72]. However, the initial profiles need further pre-equilibration to give a
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consistent initial state for the GEMR simulations. Moreover, the magnetic field line geom-
etry cannot simply be obtained by e.g. HELENA equilibria and must be computed separately.

Conformal coordinates

As the high shear in the edge region of the plasma and the consequent severe deforma-
tion of the grid elements prevented simulations of surface-located instabilities with GEM,
the external kink / peeling modes occurring in the linear ideal MHD stability analysis lim-
ited the comparison of mode numbers and growth rates between GEM and ILSA. Conformal
coordinates, however, may allow for resolving even the regions close to the plasma surface.
For results on this topic, see e.g. [47]. If the implementation of conformal coordinates is
successful, one could study the differences of gyrofluid and ideal linear MHD that stem solely
from the additional dynamics of the gyrofluid model. Furthermore, it could shed light on the
insensitivity of the GEM simulations on the triangularity δ, i.e. if the lack of scaling with δ
is only a problem of extending the radial computation domain further towards the surface.

158



Bibliography

[1] R. D. Atkinson and F. G. Houtermans. Zur Frage der Aufbaumöglichkeit der Elemente
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[61] S. Günter. Einführung in die Plasmaphysik. Lecture script. TU Munich.

162

http://jolisfukyu.tokai-sc.jaea.go.jp/fukyu/mirai-en/2007/index.html/
http://jolisfukyu.tokai-sc.jaea.go.jp/fukyu/mirai-en/2007/index.html/
http://www.jet.efda.org/focus-on/edge-localised-modes/elm-model/


Bibliography

[62] S. Günter. Plasmaphysik und Fusionsforschung. Lecture script. TU Munich.

[63] B. J. Burke, S. E. Kruger, C. C. Hegna, P. Zhu, P. B. Snyder, C. R. Sovinec, and
E. C. Howell. Edge localized linear ideal magnetohydrodynamic instability studies in an
extended-magnetohydrodynamic code. Physics of Plasmas, 17(032103), 2010.

[64] B. D. Scott. GEM - an energy conserving electromagnetic gyrofluid model. arxiv.org/
PS_cache/physics/pdf/0501/0501124v1.pdf, 2008.

[65] B. D. Scott. Drift wave versus interchange turbulence in tokamak geometry: Linear
versus nonlinear mode structure. Physics of Plasmas, 12(062314), 2005.

[66] B. D. Scott. Basics of turbulence computation for magnetically confined plasmas. ITER
school Aix-en-Provence, 2007.

[67] L. J. Zheng, M. T. Kotschenreuther, and J. W. Van Dam. Revisiting linear gyrokinetics
to recover ideal magnetohydrodynamics and missing finite larmor radius effects. Physics
of Plasmas, 14(072505), 2007.

[68] B. D. Scott. Introduction to turbulence in magnetised plasmas. ITER school Aix-en-
Provence, 2007.

[69] A. Kendl and B. D. Scott. Flux surface shaping effects on tokamak turbulence and flows.
Physics of Plasmas, 13(012504), 2006.

[70] B. D. Scott. E × B shear flows and electromagnetic gyrofluid turbulence. Physics of
Plasmas, 7(5), 2000.

[71] B. D. Scott. Three-dimensional computation of collisional drift wave turbulence and
transport in tokamak geometry. Plasma Phys. Control. Fusion, 39, 1997.

[72] A. Kendl, B. D. Scott, and T. T. Ribeiro. Nonlinear gyrofluid computation of edge
localised ideal ballooning modes. Physics of Plasmas, 17(072302), 2010.

[73] B. D. Scott, A. Kendl, and T. T. Ribeiro. Nonlinear dynamics in the tokamak edge.
Contrib. Plasma Physics, 50:228, 2010.

[74] S. Saarelma, S. Günter, T. Kurki-Suonio, and H-P. Zehrfeld. ELM phenomenon as an
interaction between bootstrap-current driven peeling modes and pressure-driven balloon-
ing modes. Plasma Phys. Control. Fusion, 42, 2000.

[75] P. B. Snyder and H. R. Wilson et. al. Edge localized modes and the pedestal: A model
based on coupled peeling-ball ooning modes. Physics of Plasmas, 9(5), 2002.

[76] H. R. Wilson et. al. Ideal magnetohydrodynamic stability of tokamak high-confinement
mode edge region. Physics of Plasmas, 6(5), 1999.

163

arxiv.org/PS_cache/physics/pdf/0501/0501124v1.pdf
arxiv.org/PS_cache/physics/pdf/0501/0501124v1.pdf


Bibliography

[77] H. R. Wilson, P. B. Snyder, G. T. A. Huysmans, and R. L. Miller. Numerical studies of
edge localized instabilities in tokamaks. Physics of Plasmas, 9(4), 2002.

[78] H. R. Wilson et. al. Influence of the plasma edge on tokamak performance. Nucl. Fusion,
40(3Y), 2000.

[79] M. Kaufmann et. al. Edge operational regimes in tokamaks. Czech. J. Phys, 48(S2),
1998.

[80] MPI für Plasmaphysik. Ein neues Betriebsszenario für das Fusionskraftwerk. http:

//www.mpg.de/print/399622.

[81] D. Lortz. The general peeling instability. Nucl. Fusion, 15, 1975.

[82] B. D. Scott. Three-dimensional computation of collisional drift wave turbulence and
transport in tokamak geometry. Plasma Phys. Control. Fusion, 39, 1997.

[83] B. D. Scott. E × B shear flows and electromagnetic gyrofluid turbulence. Physics of
Plasmas, 7(5), 2000.

[84] A. Kendl and B. D. Scott. Flux-surface shaping effects on tokamak edge turbulence and
flows. Plasma Phys. Control. Fusion, 39, 1997.

[85] Aiba Noboyuki et. al. The effect of the aspect ratio on the external kink-ballooning
instability in high-beta tokamaks. J. Plasma Fusion Res. Series, 6:241, 2004.

[86] B. Coppi and F. Pegoraro. Theory of the ubiquitous mode. Nucl. Fusion, 17(5).
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