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Abstract

In this Thesis, we present new tools for the study of quantum systems and propose
several novel schemes for practical applications in quantum information science. We
explore two main topics, engineered dissipation and light-matter quantum interfaces, and
investigate both with a focus on collective effects that arise if a large number of particles
interact coherently with an optical quantum field. The majority of the considered
physical systems are ensembles of neutral atoms. We study mainly atomic vapor at room
temperature interacting with light. We use here a refined description of this interaction,
which generalizes the model employed during the last decade and allows us to develop new
protocols for this type of system. We also consider ultracold atoms in optical lattices for
the implementation of the ideas and schemes put forward here. Besides these two main
systems, we also investigate Bose-Einstein condensates and single atoms in optical cavities.

The central part of this Thesis focuses on harnessing dissipative processes for quantum
information science, which represents a radically new approach. We explore this route
and devise a scheme for the generation of long-lived entangled states which are obtained
as the steady states of a dissipative evolution. This method leads to very robust
entanglement, which does not require the initialization of the system in a specific
state. We present here also the theoretical description of the corresponding experiment,
where entanglement has been maintained up to one hour by combining the dissipative
mechanism with continuous measurements. This exceeds the entanglement life-times
observed so far by several orders of magnitude. In this context, we also propose a
dissipative approach to the challenge of entanglement distribution over large distances.
We show how many weakly entangled states can be dissipatively transformed into few
highly entangled ones. Based on these results, we propose a continuous quantum repeater
scheme, which produces long-range high-quality steady state entanglement.

Another large part of this Thesis is concerned with the application of light-matter
interface techniques in different contexts. We analyze a scheme which enables the
deterministic teleportation of quantum states between two macroscopic ensembles under
realistic experimental conditions. Light acts here as an auxiliary system which connects
the two material systems. We also propose a protocol for the realization of an entangling
gate for photons, which is based on the opposite approach. Here, an atomic ensemble acts
as auxiliary system to enable an effective interaction between photons. Apart from these
quantum technology related projects, we investigate the use of light-matter quantum
interface techniques for the study of quantum many-body systems and propose a novel
spectroscopy scheme which uses quantum memories for probing spin systems.
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Zusammenfassung

In dieser Doktorarbeit stellen wir neuartige Untersuchungsmethoden für quanten-
mechanische Systeme sowie verschiedene Protokolle für praktische Anwendungen in
der Quanteninformationswissenschaft vor. Wir untersuchen hier hauptsächlich zwei
Themengebiete - die gezielte Manipulation von Dissipation und Quantenschnittstellen
zwischen Licht und Materie. Kollektive Effekte, die auftreten, wenn eine große Anzahl
von Teilchen kohärent mit einem optischen Quantenfeld wechselwirkt, bilden hierbei einen
besonderen Schwerpunkt. Bei den physikalischen Systemen handelt es sich haupsächlich
um Ensembles neutraler Atome. Wir betrachten dabei insbesondere die Wechselwirkung
von atomaren Wolken bei Raumtemperatur mit Licht. Wir verwenden hierbei eine
verbesserte Beschreibung dieser Wechselwirkung, die das Modell, das während des letzten
Jahrzehnts verwendet wurde, verallgemeinert und es uns so erlaubt, neue Protokolle
für dieses System zu entwickeln. Eine weitere Möglichkeit für die Implementierung der
Protokolle, die hier diskutiert werden, sind Ensembles ultrakalter Atome in optischen
Gittern. Neben diesen beiden Systemen untersuchen wir auch Bose-Einstein Kondensate
und einzelne Atome in optischen Kavitäten.

Der zentrale Teil dieser Arbeit widmet sich dem Einsatz dissipativer Prozesse in
der Quanteninformationswissenschaft. Die gezielte Nutzung von Dissipation ist hierbei
ein radikal neuer Ansatz. Mit Hilfe dieser Idee entwickeln wir eine Methode zur
Erzeugung langlebiger verschränkter Zustände, die hierbei als stationäre Zustände
einer dissipativen Entwicklung erzielt werden. Diese Methode führt zu sehr robuster
Verschränkung und erfordert nicht die Initialisierung des Systems in einem speziellen An-
fangszustand. Wir stellen hier weiterhin die theoretische Beschreibung eines Experiments
vor, in dem Verschränkung bis zu einer Stunde lang aufrecht erhalten werden konnte.
Dieses wurde durch die Kombination des dissipativen Mechanismus mit kontinuierlichen
Messungen erreicht und übertrifft die Lebensdauern, die bisher erzielt wurden, um
mehrere Größenordnungen. Wir entwickeln in diesem Zusammenhang auch einen dis-
sipativen Lösungsansatz für eines der Grundprobleme der Quantentechnologie, nämlich
Verschränkung über weite Distanzen hinweg zu erzeugen. Dazu zeigen wir, wie viele
schwach verschränkte Zustände dissipativ in wenige stark verschränkte umgewandelt
werden können. Basierend auf diesen Ergebnissen entwickeln wir ein Schema für einen
kontinuierlichen Quantenrepeater, der die Erzeugung stark verschränkter Zustände über
weite Distanzen hinweg erlaubt.

Ein weiterer wesentlicher Teil dieser Arbeit widmet sich der Anwendung von Quan-
tenschnittstellen zwischen Licht und Materie. Wir analysieren ein Schema, das die
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deterministische Teleportation von Quantenzuständen zwischen zwei makroskopischen
Ensembles unter realistischen Bedingungen ermöglicht. Licht agiert hierbei als ein Hilf-
ssystem, das die beiden Materiesysteme koppelt. Wir schlagen zudem ein Protokoll für die
Realisierung eines verschränkenden Quantengatters vor, das auf dem umgekehrten Ansatz
beruht. In diesem Fall agiert ein atomares Ensemble als Hilfssystem und ermöglicht so
eine effektive Wechselwirkung zwischen Photonen. Neben diesen auf Quantentechnologie
bezogenen Projekten erforschen wir auch die Anwendbarkeit von Quantenschnittstellen
für neue Untersuchungsmethoden von Quanten-Vielteilchensystemen und entwickeln
eine neuartige Spektroskopiemethode, die Quantenspeicher für die Untersuchung von
Spinsystemen nutzt.
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Chapter 1

Motivation and outline

The laws of quantum mechanics can be harnessed for information processing schemes,
which yield a quantum advantage compared their classical counterparts. These
applications include fast and powerful computers [1–3], unconditionally secure com-
munication [4–6] and quantum simulations [7–9], which can provide new insights into
otherwise intracable problems in physics. The implications of quantum mechanics
for information processing are studied in the field of quantum information science
(QIS), which aims at gaining a deeper understanding of quantum correlations and
explores the potential of quantum technologies (the prospects and achievements in
the main branches of QIS are briefly reviewed in App. A). Most applications in
quantum communication and distributed quantum networks rely on the transmission
of quantum states of light, since photons are natural travelling carriers of information.
However, for the same reason, photonic systems are not well suited for storage. Atomic
systems, in contrast, provide excellent platforms for quantum memories1. Light-matter
interfaces, which allow for the transfer of quantum information between flying and sta-
tionary qubits are therefore an essential prerequisite for technological applications in QIS.

Efficient quantum interfaces require strong light-matter interactions. This can, be
achieved by placing atoms in a high finesse cavity [11]. We consider this type of setup in
Sec. 5.1, where we explore the potential applications of an array of linear optical elements
and single atoms in optical cavities for quantum state engineering and show how it
can be used for number resolved photon detection. An experimentally less demanding
alternative to obtain strong coupling is provided by atomic ensembles consisting of
a large number of atoms [12, 13]. In this case, the coupling is enhanced by means
of collective effects which arise due to the coherent radiation of a large number of
dipoles. We investigate this effect considering atomic vapor at room temperature. More
specifically, we consider ensembles of alkali atoms confined in glass cells. This setup is
very robust and practical from an experimental point of view. At first glance, it may
appear surprising that quantum effects can be observed under these conditions. However,

1Using quantum memories, information can be stored coherently, such that the quantum nature of the
state is preserved. Such a device cannot rely on a classical strategy, since any approach which involves
the measurement of a quantum state and its subsequent reconstruction is fundamentally limited by the
no-cloning theorem [10].
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as explained in Sec. 2.1, quantum information can be encoded in collective atomic
spin states which are unaffected by the thermal motion of the atoms. Due to special
paraffin-based spin preserving coatings, the atoms can collide multiple times with the
walls of the cell, before the collective quantum state is deteriorated. This way, the atoms
in the ensemble can interact coherently with light. An important part of this Thesis is
concerned with a refined description of this interaction. So far, experiments with atomic
ensembles at room temperature have been described assuming a quantum-nondemolition
(QND) interaction2 [12]. Using a more general model, a new generation of developments
and experiments has become possible [IX]. Since it includes effects which have not been
taken into account before and have therefore been treated as noise, it enables a better
performance of light-matter interface schemes3. Moreover, it allows for the design and
implementation of protocols which go beyond the possibilities that can be realized using
QND interactions, for instance the purely dissipative generation of entanglement as
described in Sec. 3.1. This new description plays also a central role in Sec. 4.1, where
we discuss a protocol for the teleportation of a macroscopic quantum state between two
ensembles and show that this scheme is experimentally feasible.

Apart from vapor at room temperature, we also consider ultracold gases in optical lat-
tices [19–21]. This system consists of neutral atoms at nanokelvin temperatures which are
trapped in a periodic potential of standing waves created by counter-propagating laser
fields. This system provides another excellent platform for the realization of light-matter
interface schemes [22]. In Sec. 4.2, we show how this fact can be used to gain insights into
phenomena in quantum many-body physics. More specifically, we propose a novel spec-
troscopy technique which uses quantum memories to probe important properties of spin
systems which are realized or simulated by ultracold atoms in optical lattices. Ultracold
atoms in deep optical lattices can form a Mott insulator [23, 24], i.e. a state of matter,
where the atoms are strongly localized at individual lattice sites. These localized atoms
are in the motional ground state and quantum information can be encoded in internal
ground state levels. This system features strong short-range interactions, which can be
induced in a highly controlled way (see Sec. 2.2). In Sec. 4.3, we use these interactions
in order to realize an entangling gate for photons. We propose here a scheme, where
a photonic state is mapped to an ensemble of atoms using light-matter interface tech-
niques. The resulting atomic state is processed employing inter-atomic interactions and
subsequently transferred back to a light field.

Apart from the systems described above, we also consider Bose-Einstein condensates
(BECs) interacting with optical fields. We study the superradiant scattering of laser
light from elongated BECs and propose schemes for the detection and application of the
correlations that are created between atoms and photons in this process.

2 This description has been successfully used for many different experiments including the demonstration
of a quantum memory for light [14], quantum teleportation between light and matter [15] and the
generation of entanglement between two distant atomic samples using measurements and feedback
operations [16].

3 Recent experiments using the refined description include improved entanglement assisted and backaction
evading magnetometry approaching the quantum Cramér-Rao limit [17] and a quantum memory for
squeezed states of light [18].
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These ideas, tools and protocols are based on the control of unitary dynamics.
However, a central part of this Thesis is devoted to the investigation and application
of dissipative time evolutions. The coupling of a quantum system to its environment,
generally referred to as dissipation, is traditionally considered to be the main problem
impairing experiments involving quantum superposition states and the development
of quantum technologies. Therefore, experiments are typically performed under strict
isolation conditions. Harnessing dissipation4 rather than avoiding it, is a radically new
concept and represents a paradigm shift in QIS. In Sec. 3, we show that even limited
control of the coupling between system and environment can enable one to turn a major
problem into an asset. This change in perspective is not only of conceptual interest, but
yields also significant practical advantages. The coupling of a system with a reservoir can
be engineered such that the desired state is obtained as the steady state of the dissipative
evolution. This way, the desired state is reached independently of the initial state. The
initialization of the system in a well defined state, which is typically considered a critical
issue [60], is therefore rendered unnecessary. Moreover, the resulting state is stabilized
by the dissipative dynamics and can be maintained, in principle, for arbitrary long times.
Using these ideas, it is therefore possible to overcome important restrictions set by the
limited coherence times of quantum systems.

We conclude this introduction, by providing an overview to the following chapters
and summarizing main results. Chapter 2 introduces the physical systems and inter-
actions investigated in this Thesis. The main system under consideration, atomic vapor
at room temperature, is described in Sec. 2.1. The next section, Sec. 2.2, is devoted to
ultracold atoms in optical lattices. Finally, we briefly review the physics of Bose-Einstein
condensates and single atoms in optical cavities in Sec. 2.3 and Sec. 2.4.
Chapter 3 is concerned with new methods utilizing dissipation. In Sec. 3.1, we propose
a scheme for the generation of long-lived atomic entanglement by dissipation [IV]. This
protocol can be implemented in any system where a tunable quadratic interaction with
an active and a passive part corresponding to two sideband modes can be realized, for
instance in ions or using optomechanical resonators. Here, we analyze the scheme in
detail for atomic ensembles at room temperature and present the theoretical description
of the corresponding experiment [III], which has been performed at the Niels Bohr
Institute in Copenhagen. This implementation does not only include the first purely
dissipative generation of unconditional entanglement but also the generation of an
inseparable steady state by means of a hybrid approach, which combines the dissipative
mechanism with continuous measurements. This way, it has been possible to maintain
entanglement for up to an hour, which exceeds the entanglement life times observed so
far [61,62] by several orders of magnitude. Sec. 3.2 addresses the question how the quality
of dissipatively produced entanglement can be improved in the presence of additional
noise. Moreover, we investigate how steady state entanglement can be put to work in
a continuous quantum repeater protocol which does not require the decoupling of the
system from the environment, as would be the case for standard schemes. We devise and
analyze a new type of repeater scheme, which allows for the distribution of high-quality,

4See for example [25–49,49–59].
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long-range entanglement in a steady state [II].
Chapter 4 regards the use of light-matter interface schemes for applications in QIS and
for the study of quantum many-body systems. In Sec. 4.1, we analyze an experimentally
feasible scheme for the teleportation of an atomic state between two ensembles at
room temperature. The deterministic teleportation between two matter systems over
a macroscopic distance is an essential prerequisite for quantum networks, but could
not yet be implemented. In atomic vapors at room temperature, teleportation between
light and matter has been realized [15, 63]. However, the teleportation of quantum
states between two atomic ensembles could not be realized so far due to the lack of
an experimentally realizable protocol. Here, we devise a scheme which is particularly
designed for this specific system. We take typical sources of noise into account and
show that the scheme is feasible under current experimental conditions. In Sec. 4.2, we
develop a novel technique for probing dynamical spin correlations by merging the concept
of QND spectroscopy [64, 65] with quantum memory technology [12, 66]. The latter is
used to introduce a time delay in the measurement process, while storing information
coherently such that dynamical correlations in spin degrees of freedom can be accessed
directly and the dynamical spin structure factor can be measured [V]. The investigation
of quantum memory techniques for spectroscopy is a promising starting point for using
light-matter interfaces for the study of correlated systems. The range of applicability
of this idea is very broad, since it can for example be used to study non-equilibrium
dynamics. Moreover, it opens the door towards new possibilities for the manipulation
of quantum many-body states. The fully coherent character of the probing scheme
provides promising prospects for the investigation and engineering of quantum states
and complex dynamics, since it allows one to monitor a system nondestructively and
act back on it conditioned on the result of the measurement. In Sec. 4.3, we propose
a scheme for quantum information processing of light states. This scheme [I] combines
ideas from interface schemes in atomic ensembles [12, 66, 67] with tools available for
ultracold atoms in optical lattices [68, 69]. The implementation of a two-qubit gate for
light [70–76] is a very difficult task, as photons are non-interacting particles in principle.
Photons can interact via optical nonlinearities, but up to now there are no materials
available which allow for reasonably short gate times. Approaches involving linear optics
and measurements [77] are intrinsically probabilistic and therefore not very efficient.
The scheme put forward here is deterministic and uses atomic interactions to provide an
effective nonlinearity. The required operations are within the state of the art and the
protocol is robust against the main sources of errors in a realistic setup.
In chapter 5, entanglement is studied in terms of particle number correlations. Unlike
in the other chapters, the physical systems under consideration are not vapors at room
temperature or ultracold atoms in optical lattices, but single atoms high-finesse optical
cavities and Bose-Einstein condensates. More specifically, in Sec. 5.1 a cavity-based
filtering scheme is proposed and analyzed, which enables several quantum communication
related tasks such as the creation and purification of photon number entangled states
and non-destructive photon counting [VI]. In Sec. 5.1, superradiance in Bose-Einstein
condensates is studied and protocols for the creation and purification of entanglement
between two condensates in different momentum states are put forward [VIII].
Chapter 6 concludes this Thesis with a summary and an outlook.
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Chapter 2

Physical systems

In this chapter, we introduce the four physical systems which are considered in this
Thesis, atomic ensembles at room temperature (Sec. 2.1), ultracold atoms in optical
lattices (Sec. 2.2), single atoms in high finesse optical cavities (Sec. 2.3) and Bose-Einstein
condensates (Sec. 2.4). We describe these systems in the context of the results presented
in the following chapters and highlight special features which make them particularly
interesting candidates for the implementation of the ideas put forward here. Since large
and important parts of this Thesis center on the study of atomic ensembles at room
temperature (Sec. 2.1), this system is described in more detail. The other sections are
specifically tailored to the aspects, which are relevant for the following chapters. In this
and all following chapters we use the convention ~ = 1.

2.1 Atomic ensembles at room temperature

Atomic ensembles provide an excellent platform for the realization of light-matter inter-
face schemes and related applications. As outlined in chapter 1, strong motivation for
using many particles comes from the quest for achieving high interaction strengths such
that atoms and light induce changes to the mutual quantum states with high efficiency1.
Due to collective enhancement, ensemble based quantum interfaces can be realized even in
free space. This effect originates from the fact that the initial state of the light field excites
a collective mode in the atomic ensemble, which is shared by all particles in the sample.
This type of mapping between atoms and light can be achieved using different techniques
involving Raman transitions [78], electromagnetically induced transparency [79, 80] or
photon echo methods [81, 82]. We focus here on Faraday interaction based interface
schemes [14,83] and consider macroscopic gas samples at room temperature. More specif-
ically, we describe in the following the interaction of an ensemble of alkali atoms, which
are contained in glass cells with freely propagating light [12]. This setup features simplic-
ity from an experimental point of view and long coherence times. Faraday interactions
between light and macroscopic ensembles have been used extensively in many different
experiments over the last decade and enabled the realization of several important tasks

1Comprehensive recent reviews on the various approaches based on atomic ensembles can be found
in [12,13].
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Figure 2.1: Light-matter interaction involving a strong ŷ-polarized laser field (depicted in
green) and two atomic ensembles, which are spin polarized parallel and antiparallel
with respect to a homogeneous magnetic background field which is oriented along
x̂ and defines the quantization axis. Atoms are assumed to possess two ground
and two excited states |↑〉, |↓〉 and |e↑〉, |e↓〉. The strong off-resonant driving field
induces diagonal transitions |↑〉 → |e↓〉, |↓〉 → |e↑〉 which lead to the emission of
photons in x̂-polarization (corresponding to the transitions |e↑〉 → |↑〉, |e↓〉 → |↓〉).
Due to the Zeeman splitting Ω of the atomic ground states, photons are scattered
into the upper and lower sideband (shown in blue and red respectively) which are
centered at ωL ± Ω, where ωL is the frequency of the incident classical field.

in quantum information science, such as the demonstration of a quantum memory for
coherent and squeezed states [14,18], the teleportation between light and matter [15], the
creation of entanglement between two macroscopic objects [16] and sensing beyond the
standard quantum limit [17].
In Sec. 2.1.1 and in Sec. 2.1.2, we introduce the specific setup considered here and explain
how light and atoms interact. In Sec. 2.1.3, we present the corresponding input-output
relations, which relate the photonic and atomic variables before and after the interaction.

2.1.1 The physical system - description of atoms and light

In the following, we explain how atoms and light can be described in terms of bosonic
variables and introduce the setting which will be used (with minor modifications) in
Sec. 3.1, Sec. 4.1 and Sec. 4.2.

Setup and light variables

We consider the setup shown in Fig. 2.1. A strong ŷ-polarized laser pulse propagates
along ẑ and passes two atomic ensembles in a homogeneous magnetic field, which defines
the quantization axis and is oriented along x̂. Each atomic ensemble consists of a large
number N of hydrogen-like atoms with an internal level structure as depicted in Fig. 2.1.
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These atoms are confined in cubic glass cells which are separated by a distance of approx-
imately 0.5m and have a spatial extent of several cm. Each cell contains on the order
of 1012 alkali atoms and is equipped with a paraffin-based spin-preserving coating. The
length of the laser pulse irradiating the ensembles is several orders of magnitude larger
than the spatial extent of the cells2. The laser field covers a very narrow bandwidth b
around the central frequency ωL and is far off-resonant with respect to the atomic tran-
sitions such that absorption effects can be neglected.
We adopt here a one-dimensional model3, i.e. we consider only light scattered in forward
direction. The scattering of photons in other directions can be included in this description
in the form of noise processes [84]. A three-dimensional analysis of the scattering interac-
tion considered here can be found in [85, 86]. The strong coherent field in ŷ-polarization
is described by a C-number, while the co-propagating x̂-polarized light field is described
quantum mechanically4. The strong classical field induces diagonal transitions |↑〉 → |e↓〉,
|↓〉 → |e↑〉 which result in the emission of x̂-polarized photons through decay processes
|e↑〉 → |↑〉, |e↓〉 → |↓〉. This way, the classical field couples the atoms and the quantized
radiation field. The strength of this effective interaction depends on the Rabi frequency
of the driving field and its detuning from the relevant atomic transitions. In the following,
the quantum field will be described in terms of spatially localized modes [12,63,87,88]

xL(z) =
1√
4π

∫

b

dω
(
aωe−i(ω−ωL)z/c + H.C.

)
, (2.1)

pL(z) =
−i√
4π

∫

b

dω
(
aωe−i(ω−ωL)z/c −H.C.

)
,

where the annihilation and creation operators aω and a†ω refer to a x̂-polarized photon
with frequency ω and obey the commutation relations [aω, a†ω′ ] = δ(ω − ω′), [aω, aω′ ] = 0.
The spatial argument z refers to the distance along the optical path and ωL is the central
frequency of the classical beam. Due to the finite bandwidth b of this field, the canonical
commutation relation [xL(z), pL(z′)] = icδb(z − z′) involves a Dirac delta function with a
finite width on the order of c/b.

Atomic variables

We will describe the atomic state of an ensemble in terms of its collective spin J =
∑N

i=1 Fi,
where Fi is the total angular momentum of the ith atom. For a two-level system as con-
sidered here, F = 1/2. In the following, we consider strongly polarized samples. More
specifically, we assume that the ensemble is initially prepared in a coherent spin state
(CSS) where all atoms are in state |↑〉, |ΨCSS〉 = | ↑1 ... ↑N〉, such that the collective spin
along the quantization axis x̂, 〈Jx〉 = N/2, is a macroscopic quantity. If the light field

2Under the experimental conditions considered here, the pulse is several hundred kilometers long.
3Only the light field in forward direction is of interest for the protocols, which are described by means of
this formalism in the following chapters. These schemes rely on measurements, to which only photons
scattered along ẑ contribute. As shown in Sec. 3.1, these processes are weaker, since forward scattering
is enhanced for samples of high optical depth.

4 In the specific example considered here, this field is initially in the vacuum. In general, any other state
containing only few photons can be considered along the lines explained here.
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interacts with the ensemble via a Faraday interaction [12], the collective atomic spin is
rotated depending on the Stokes vector of the applied light field. We assume that the
deviations from perfect x̂-alignment which occur during the interaction are small such
that the collective atomic state remains close to the CSS. In this case, the longitudinal
component of the collective spin Jx can be considered to be a classical quantity and can
accordingly be replaced by its mean value 〈Jx〉 ≈ 〈J〉 ≈ N/2. The transverse components
of the collective spin Jy and Jz can be described in terms of canonical variables xA and
pA (with [xA, pA] = i) using the Holstein-Primakoff approximation [89, 90], as will be ex-
plained in the following.
The Holstein-Primakoff transformation maps spin operators to bosonic creation and anni-
hilation operators aA and a†A with [aA, a†A] = 1. To this end, the collective ladder operators
J± = Jy ± iJz are expressed in terms of aA and a†A by

J+ =
√

N

√
1− a†AaA

N
aA, J− =

√
N a†A

√
1− a†AaA

N
. (2.2)

The transformation for Jx can be obtained using the identity

J2
x = J(J + 1)− J2

y − J2
z = J(J + 1)− 1

2
(J+J− + J−J+) = (J − a†AaA)2.

By identifying Jx = J−a†AaA, the fully polarized initial state |ΨCSS〉 = | ↑1 ... ↑N〉 = |J, J〉
can be mapped to the ground state of an harmonic oscillator |J, J〉 7→ |0〉A, such that the
expression Jx|J, J〉 = J |J, J〉 corresponds to (J−a†AaA)|0〉A = J |0〉A. This transformation
is exact. If the atomic state is close to the CSS, 〈a†AaA〉/〈J〉 ¿ 1 can be assumed5. In
this case, Eq. (2.2) can be expanded in a series to first order and approximated by

J+ ≈
√

N aA, J− ≈
√

N a†A.

Within this approximation, the transverse components of the collective spin are given by
Jy = (J+ + J−)/2 ≈

√
〈J〉(aA + a†A)/

√
2 and Jz = −i(J+ − J−)/2 ≈

√
〈J〉(aA − a†A)/2

and can be identified with the atomic quadratures

xA ≈ Jy/
√
〈J〉, pA ≈ Jz/

√
〈J〉,

where xA = (aA + a†A)/
√

2 and pA = −i(aA− a†A)/
√

2 has been used. Within the approxi-
mation outlined above, these atomic operators obey the canonical commutation relations
[xA, pA] = [Jy, Jz]/〈J〉 ≈ i. In the following we will use either the atomic quadratures xA

and pA or the corresponding creation and annihilation operators a†A and aA, depending
on which description is more convenient.

2.1.2 Interaction between an atomic ensemble and light

Light and atoms interact off-resonantly via the electric dipole interaction. In the parame-
ter regime considered here, the corresponding dipole Hamiltonian (or level shift operator)

5 This condition corresponds to the assumption that the number of collective excitations 〈a†AaA〉 is small
compared to the number of atoms in the ensemble. In the experimental parameter regime considered
here, this condition is very well fulfilled, since 〈a†AaA〉 is on the order of one, while N ≈ 1012.
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describes processes where the population of the excited levels is negligible and the atomic
polarization follows the ground state population adiabatically. More precisely, if the de-
tuning |∆| is large compared to the effective atomic rates for ground state transitions
|↑〉 ↔ |↓〉 and the Doppler width, the excited levels can be adiabatically eliminated (see
Sec. 3.1). This way, an effective light-matter interaction which involves only photons and
atomic ground states is obtained. For the type of level scheme considered here, the re-
sulting effective interaction is referred to as Faraday interaction and can be interpreted as
follows. The collective spin experiences a small (Faraday-) rotation due to the interaction
with the light field. In return, the Stokes vector of the light field undergoes a (Stark-shift
induced) rotation which depends on the collective spin state of the ensemble. This way,
the interaction leads to a mutual exchange of quantum statistics between the two systems.
Experiments involving this effect have been described assuming a quantum-nondemolition
(QND) interaction during the past decade [12]. As explained below, the QND Hamilto-
nian, HQND, corresponds to the limiting case of a more general model of the Faraday
interaction. This generalized approach leads to a refined description of the corresponding
experiments and enables a new generation of protocols that can be realized using Faraday
rotations [IX]. In this subsection, the interaction of light with an atomic ensemble is
introduced and discussed for two-level systems. We also consider its implementation in
Cesium ensembles and explain how this interaction can be tuned by varying externally
controllable parameters.

Light-matter interaction in a simple model including the ground states |↑〉 and
|↓〉 and two excited states

To start with, we consider the simple model illustrated in Fig. 2.1. In this subsection, we
focus on the interaction of the light field with the first ensemble. As explained in Sec. 2.1.1,
atoms and light are described by means of the operators aA, a†A and aL(z), a†L(z) respec-

tively. The operator a†A = 1√
N

∑N
i=1 |↓〉i〈↑|, refers to a collective atomic excitation. The

action of this collective operator on the product state |0〉A ≡ |↑1, ↑2, . . . , ↑N〉 results in the
symmetric coherent superposition of all N possible terms which represents a state where
one spin in the ensemble has been flipped a†A|0〉A = 1√

N

∑N
i=1 |↑1, . . . , ↓i, . . . , ↑N〉.

The atomic ensemble and the light field can be shown to interact according to a Hamil-
tonian which is quadratic in the operators xA, pA, xL and pL within the approximations
described above6 [VII], [83]. By means of suitable local operations, any quadratic Hamil-
tonian describing the interaction of two one-mode continuous variable systems can be
expressed as a sum of a passive and an active contribution [91] Hint = s1Hpas + s2Hact.
The passive contribution7 Hpas = aL(0)a†A + H.C. is excitation number conserving. If a
collective atomic excitation is created, a photon is annihilated. In contrast, the active
interaction Hact = a†L(0)a†A +H.C. corresponds to the creation (or annihilation) of atomic

6 In the following, Gaussian input states and Gaussian measurements (homodyne detection on the quadra-
tures of the light field) are considered. The time evolution according to a quadratic Hamiltonian is a
linear transformation which preserves the Gaussian character of the involved quantum states. There-
fore, the setting under consideration can be conveniently described using the Gaussian formalism (see
Sec. 3.1.5).

7We assume here a pointlike atomic ensemble located at z = 0.
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Figure 2.2: Off-resonant probing of the D2 line in spin polarized 133Cs ensembles as shown in
Fig. 2.1. The strong coherent field in ŷ-polarization is depicted in green while the
quantum field in x̂-polarization is shown in blue and red. Only desired transitions
are shown - the level splittings are not depicted true to scale.

and photonic excitations in pairs. The former interaction can be understood as the in-
terspecies analog of a beamsplitter interaction while the latter creates entanglement and
is referred to as ”squeezing interaction”. The light-matter interaction considered here
involves both types and will be parametrized by the parameters κ/

√
T (where T is the

pulse duration) and Z

Hint =
κ√
T

(µ− ν) [µHpas + νHact] , (2.3)

where µ = (Z + 1
Z
)/2 and ν = (Z − 1

Z
)/2. The QND Hamiltonian corresponds to the

special case |µ| = |ν|, where Hpas and Hact contribute exactly with equal strength. In
the simple model considered here, an imbalance |µ| 6= |ν| can arise due to the Larmor
splitting of the ground state, which leads to different detunings ∆ + Ω and ∆−Ω for the
two-photon transitions associated with the active and the passive part of the interaction
(see Sec. 3.1.3 and Fig. 3.2a). However, in the experimental settings considered here, the
detuning ∆ is much larger than the Larmor splitting such that this effect is negligible
(in a magnetic field of 1 Gauss, the Zeeman shift of magnetic sublevels is about 105Hz
while the detuning is on the order of 108 Hz). The non-QND character of the light-matter
interaction in Cesium atoms is due to the fact that the levels |↑〉 and |↓〉 couple to several
excited levels [92–95] as described below.

Light-matter interaction including the multi-level structure of the manifold of
excited states in Cesium

In contrast to the simple model considered above, Cesium atoms have a multi-level struc-
ture. We consider here 133Cs vapor as used in [III,VII], [14–16]. As illustrated in Fig. 2.2a,
a two-level subsystem can be encoded in the 6S1/2 ground state8 with total spin F = 4 by
identifying the states |↑〉 and |↓〉 with the outermost levels corresponding to the magnetic

8 Since 133Cs atoms have a single electron outside a closed shell and nuclear spin I = 3/2, the 6S1/2

ground state consists of two manifolds with total spin F = 4 and F = 3.
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quantum numbers (the projection of the spin along x̂) mF = 4 and mF = 3, such that
| ↑〉 ≡ |F = 4,mF = 4〉 ≡ |4, 4〉 and | ↓〉 ≡ |F = 4,mF = 3〉 ≡ |4, 3〉. If all atoms
have been initialized in state |↑〉, it can be assumed that only a small fraction is trans-
ferred to state |↓〉 during the interaction and that the population in all other levels can
be neglected. The strong laser field in ŷ-polarization probes the D2 line and couples
these levels off-resonantly to the excited states in 6P3/2. This way, the passive part of
the interaction (corresponding to the transfer of atoms from |↓〉 to |↑〉 and the creation
of a photon in the red sideband) involves the upper levels with F = 4, 5, while the ac-
tive part of the light-matter interaction (corresponding to the transfer | ↑〉 → | ↓〉 and
the creation of a photon in the blue sideband) involves the manifolds with F = 3, 4, 5.
The corresponding Z-parameter can be easily determined if the detuning and the cor-
responding Clebsch-Gordan coefficients are known. In this specific case, one obtains
Z = (µ + ν) = 2.5 for a blue detuning of ∆ = 850MHz with respect to the state with
total spin F = 5 within 6P3/2. In general, Z can be calculated as follows. The effec-
tive rate for ground state transitions | ↑〉 ↔ |↓〉 involving the excited state |l〉 is given

by Γ|a〉→|l〉→|b〉 = Ω2
probe| calclb

∆l+iγLW(l)
|2γLW(l) ≈ Ω2

probe
|calclb|2

∆2
l

γLW(l), where Ω2
probe is the Rabi

frequency of the applied laser field9, cal and clb are the Clebsch-Gordan coefficients for
the transitions |a〉 → |l〉 and |l〉 → |b〉, γLW(l) is the natural line width of the excited state
and ∆l À γLW(l) was assumed. If several excited states contribute, the different paths can
interfere and the effective rate for the off-resonant transition |a〉 → |b〉 is therefore given
by the sum γ|a〉→|b〉 = Ω2

probe|
∑

l
calclb

∆l
|2γLW, where the line widths of the involved excited

levels have been assumed to be approximately equal. If the ratio r2 =
Γ|↓〉→|↑〉
Γ|↑〉→|↓〉

= µ2

ν2 is

calculated, Z2 = r+1
r−1

can be determined.

The character of the interaction can be changed from the predominantly passive to the
active type by altering the sign of the detuning (by using for example red instead of blue
detuning). A change in the type of interaction can also be achieved by switching the
polarization of the classical and the quantum field. As illustrated in Fig. 2.2a, using a x̂-
polarized classical field (which drives vertical transitions, in this picture) and correspond-
ingly a quantum field in ŷ-polarization (which is associated with diagonal transitions)
would involve the excited levels with F = 3, 4, 5 for the passive part of the interaction
and the levels with F = 4, 5 for the active one (as opposed to the setting discussed above,
where it is the other way round). The imbalance between the active and the passive
part becomes less pronounced for large detunings. If ∆ is much larger than the hyperfine
splitting of the excited states, the interaction Hamiltonian can be well approximated by
HQND [12, 84,95].

The light matter-interaction can be equivalently described in terms of the ground state
polarizability Hint ∝

∑
j E−(0)αj E+(0), where E±(0) describes the electric field10 in-

teracting with the atomic ensemble at the position z = 0 and αj is the ground state
polarizability tensor operator of the jth atom. It is proportional to the square of the

9We use here a notation, where the Rabi frequency is independent of the atomic transition and the
corresponding Clebsch-Gordan coefficient are stated expicitely.

10E−(z) = E−(z)êx + E−(z)êy, where êx/y is the unit vector in x/y-direction, E(z) is the electric field
of the classical beam and E−(z) = ρ(ωL)

∫
b
dωa†ωe−i(ω−ωL)z/c (the mode density ρ(ω) is assumed to be

approximately constant for the narrow-band laser light considered here).
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relevant reduced dipole matrix element µd and can always be decomposed into its scalar,

vector and tensor part αj =
µ2

d

∆
(αS1+iαV Fj×+ αT Tj), where Fj× is the Cartesian vector

product of the ground state spin of the jth atom Fj and the vector applied to its right
side. The scalar part depends neither on the quantum state of light nor on the atomic
state. It adds therefore only a global phase to the input-wave function and represents the
index of refraction. The physical meaning of the vector and the tensor part can be best
understood by considering their action on the Stokes operators of the light field

S1 =
1

2
(Nx −Ny) , S2 =

1

2
(N+45◦ −N+45◦) , S3 =

1

2

(
Nσ+ −Nσ−

)
,

where Nx/y, N±45◦ and Nσ± are the numbers of photons in x/y, ±45◦ and σ±-polarization
respectively. The vector part of the atomic polarizability leads to circular birefringence of
the medium, i.e. different indices of refraction for σ+ and σ−-polarized light nσ+ 6= nσ− ,
while nx = ny and n+45◦ = n−45◦ . This way, S3 is conserved, but not S1 and S2. The
tensor part leads to linear birefringence, (i.e. different indices of refraction for x and
y-polarized light nx 6= ny) such that S1 is conserved, but not S2 and S3. The tensor
part vanishes asymptotically for large detunings. Due to symmetry reasons, it equals
zero for spin-1

2
systems. HQND corresponds to pure circular birefringence (which leaves

S3 unchanged). If a tensor term is added to the interaction, none of the Stokes operators
of the light field is conserved and the interaction is not of QND-type any more.

2.1.3 Input-output relations and characteristic properties of the
interaction

In the following, the canonical quadratures x = (a+a†)/
√

2 and p = −i(a−a†)/
√

2 will be
used. As explained in Sec. 2.1.1, the atomic quadratures xA and pA can be identified with
the transverse components of the collective spin. In terms of quadratures, the quadratic
Hamiltonian introduced above (2.3) is given by

Hint =
κ√
T

(
pApL(0) +

1

Z2
xAxL(0)

)
. (2.4)

As will become apparent in Sec. 2.1.3 (see Eq. (2.8)), Z quantifies the squeezing11 (and
corresponding anti-squeezing) of the variances involved in the process [95]. In the balanced
case (|µ| = |ν|), Hint reduces to the QND Hamiltoninan HQND = κ√

T
pApL(0). Below,

we introduce the input-output relations which describe the light-matter interaction and
highlight characteristic features of the imbalanced and the balanced (QND) type. A
general derivation of the input-output relations can be found in App. D.1.1.

QND interaction

The balanced type of the interaction corresponds to the limit Z → ∞ (where κ/
√

T is
constant). HQND = κpApL is referred to as quantum-nondemolition interaction since the

11Z =
√

aV

14aT
, where aV and aT are the atomic vector and tensor polarizabilities [95]. The calculation

of these values can be found in [12].
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Figure 2.3: Illustration of the propagating light field in terms of spatially localized modes. a)
At time t = 0, the front part of the light pulse enters the ensemble. b) At a later
time t = ξ/c, the atoms interact with the localized light mode with quadratures
x̄L(ξ, t), p̄L(ξ, t).

p-quadratures of atoms and light are conserved. We describe this case here explicitly,
since we discuss an interesting application, which relies on a QND interaction and is
not necessarily related to a specific implementation in an atomic multi-level structure in
Sec. 4.2. The QND case will also be discussed in Sec. 4.1.3. The input-output relations
for a single cell in the absence of a magnetic field [63] are given by

xout
A = xin

A + κpin
L , pout

A = pin
A ,

xout
L = xin

L + κpin
A , pout

L = pin
L , (2.5)

where xin
L = 1√

T

∫ T

0
dtx̄L(ct, 0) and xout

L = 1√
T

∫ T

0
dtx̄L(ct, T ) (analogous definitions hold

for pin
L and pin

L ). Here, the variable transformation xL(r, t) → xL(ct− ξ, t) = x̄L(ξ, t) has
been made. The spatial variable ξ = ct− z refers to a coordinate system which is fixed to
the propagating light pulse as illustrated in Fig. 2.3. ξ = 0 refers to the front part of the
pulse which enters the ensemble first, while the rear part which passes last corresponds to
ξ = cT . Shot-noise limited measurements of the collective spin by homodyne detection of
the light field require the application of magnetic fields. In the presence of magnetic fields,
atomic ground states are Zeeman-shifted by the Larmor splitting Ω as shown in Fig. 2.2.
The scattering of a narrow-band classical field with central frequency ωL leads therefore
to the emission of photons into sideband modes, which are centered around ωc ± Ω in
frequency space, as illustrated in Fig. 2.1 which allows for noise reduced measurements on
the light field using lock-in methods (see [96]). In the time domain, atomic information
is mapped to sin(Ωt) and cos(Ωt) modulated light modes

xin
h,cos =

√
2

T

∫ T

0

dth(t) cos(Ωt)x̄L(ct, 0), (2.6)

xout
h,cos =

√
2

T

∫ T

0

dth(t) cos(Ωt)x̄L(ct, T ).

xh,cos/sin and ph,cos/sin refer to a light mode with an arbitrary envelope function h(t),
which varies slowly on the time scale set by the Larmor frequency Ω. The envelope func-
tion h(t) is normalized such that 1

T

∫ T

0
dth(t)2 = 1. In the limit ΩT À 1, which is well

fulfilled under the experimental conditions considered here, sine and cosine modulated
modes are canonical and independent [xh,sin/cos, ph,sin/cos] = i, [xh,sin/cos, ph,cos/sin] = 0.
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The input-output relations for a single ensemble in a magnetic field involve an infinite hi-
erarchy of coupled backaction modes [63], whose envelope functions are given by Legendre
polynomials. The input-output relations for the atomic quadratures

xout
A = xin

A +
κ√
2
pin

L0,cos, pout
A = pin

A +
κ√
2
pin

L0,sin,

involve only light modes of 0th order with modulation function L0(t) = 1. The input-
output relations for these light modes

xout
L0,cos = xin

L0,cos +
κ√
2
pin

A +
κ2

4
pin

L0,sin +
κ2

4
√

3
pin

L1,sin,

pout
L0,cos = pout

L0,cos,

xout
L0,sin = xin

L0,sin −
κ√
2
xin

A − κ2

4
pin

L0,cos −
κ2

4
√

3
pin

L1,cos,

pout
L0,sin = pout

L0,sin, (2.7)

involve light modes of the next (1st) order and are described by the quadratures xin
L1,sin/cos

and pin
L1,sin/cos with L1(t) = 2

√
3

T 3/2

(
T
2
− t

)
. The general expression for the symplec-

tic transformation Rout = S(Ω)Rin, which relates the infinitely dimensional vectors

Rin/out =
(
xA, pA, x

in/out
L0,sin, p

in/out
L0,sin, x

in/out
L0,cos, p

in/out
L0,cos, x

in/out
L1,sin, p

in/out
L1,sin . . .

)T

listing the atomic and

photonic modes of all orders through the matrix S(Ω) can be found in [97]. If a setup
as shown in Fig. 2.1 with antiparallel oriented spins, or equivalently, antiparallel oriented
magnetic fields, is considered, the input-output relations R̃out = SI(Ω)SII(−Ω)R̃in, where

R̃in/out =
(
xA,I , pA,I , xA,II , pA,II , x

in/out
L0,sin, p

in/out
L0,sin, . . .

)T

, simplify considerably since all pho-

tonic contributions except for the lowest order cancel such that

xout
A,cos = xin

A,cos + κpin
L0,cos, xout

A,sin = xin
A,sin + κpin

L0,sin,

pout
A,cos = pin

A,cos, pout
A,sin = pin

A,sin,

xout
L0,cos = xin

L0,cos + κpin
A,cos, xout

L0,sin = xin
L0,sin + κpin

A,sin,

pout
L0,cos = pin

L0,cos, pout
L0,sin = pin

L0,sin, (2.8)

where the EPR-operators xA,cos = (xA,I + xA,II)/
√

2, pA,cos = (pA,I + pA,II)/
√

2 and
xA,sin = −(pA,I − pA,II)/

√
2, pA,sin = (xA,I − xA,II)/

√
2 have been used. A comparison

of Eq. (2.5) with Eq. (2.8) shows that the the input-output relations for two atomic
ensembles which are Larmor precessing in opposite directions are formally equivalent
to two independent sets of input-output relations describing the simple case of a single
ensemble in the absence of a magnetic field.
This antiparallel setup has for instance been used for the implementation of a quantum
memory for light [14] and entanglement generation between two ensembles [16]. Since only
the p-quadrature of each set of variables is mapped by the interaction, the realization of
a quantum memory required the measurement of the p-quadrature of the light field and
a subsequent feedback operation on the atoms in order to transfer both quadratures
xL0,sin/cos and pL0,sin/cos. Also the creation of entanglement based on a QND interaction
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requires measurements on the light field. The light-matter interaction itself does not
create entanglement, but it allows for a projection onto an Einstein-Podolski-Rosen (EPR)
entangled state with squeezed non-local variances var(xA,sin) and var(xA,cos) if xL0,sin and
xL0,cos are measured.
However, an ideal beamsplitter or squeezing interaction which would allow for perfect
mapping or for the creation of infinitely entangled states in the limit κ → ∞, can be
realized based on a QND interaction by means of a double-pass scheme [98–100], in which
one of the two contributions, HP or HA is cancelled by interference.

Non-QND interaction

In the following, we consider the general interaction described by Eq. (2.4). The input-
output relations for a single cell in a magnetic field are given by

(
xout

A

pout
A

)
= e−

κ2

2Z2

(
xin

A

pin
A

)
+

√
1− e−

κ2

Z2

(
xin

+,r

pin
+,r

)
,

(
xout
−,r

pout
−,r

)
= e−

κ2

2Z2

(
xin

+,r

pin
+,r

)
−

√
1− e−

κ2

Z2

(
xin

A

pin
A

)
,

where the exponentially rising/falling reading modes with quadratures xr,±, pr,± are given
by

(
xin
±,r

pin
±,r

)
=

1

2

((
Z +

1

Z

)(
xin
±,us

pin
±,us

)
+

(
Z − 1

Z

)(
pin
±,ls

xin
±,ls

))
.

x±,us, p±,us and x±,ls, p±,ls refer to exponentially modulated modes
(

xin
±,us

pin
±,us

)
=

κ√
TZN±

∫ T

0

dτe±
κ2τ

2Z2T R(τ)

(
p̄L(cτ, 0)
−x̄L(cτ, 0)

)
,

(
pin
±,ls

xin
±,ls

)
=

κ√
TZN±

∫ T

0

dτe±
κ2τ

2Z2T R(τ)

(
p̄L(cτ, 0)
x̄L(cτ, 0)

)
,

which are located at ωL ± Ω in frequency space respectively (compare Fig. 2.1). The
subscripts us and ls refer accordingly to the upper and lower sideband. The normalization
constants N+, N− and the rotation matrix R(τ) are given by

N+ =

√
e

κ2

Z2 − 1, N− =

√
1− e−

κ2

Z2 ,

R(τ) =

(
cos(Ωτ) − sin(Ωτ)
sin(Ωτ) cos(Ωτ)

)
.

As outlined above, the setup involving two antiparallel oriented ensembles in magnetic
fields can be conveniently described in terms of EPR modes such that two independent
sets of equations are obtained

(
xout

A,sin/cos

pout
A,sin/cos

)
= e−

κ2

2Z2

(
xin

A,sin/cos

pin
A,sin/cos

)
+

√
1−e−

κ2

Z2

(
Z 0
0 −1

Z

)(
pin

+,sin/cos

xin
+,sin/cos

)
, (2.9)

(
xout
−,sin/cos

pout
−,sin/cos

)
= e−

κ2

2Z2

(
xin

+,sin/cos

pin
+,sin/cos

)
+

√
1−e−

κ2

Z2

(
Z 0
0 −1

Z

)(
pin

A,sin/cos

xin
A,sin/cos

)
. (2.10)
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The quadratures x±,sin, p±,sin and x±,cos, p±,cos refer to light modes with an exponentially
rising/falling envelope function. They are defined according to Eq. (2.6) with h(t) =
κ
√

2
ZN±

e±
κ2t

2Z2T . Due to the inherent backaction of the interaction, these input-output relations

display an exponential scaling in the coupling strength, as opposed to Eq. (2.8). This is
due to the fact that the light field is continuously mapped to both atomic quadratures
xA and pA which in turn are mapped to the passing photonic field. This way, the light
field passing the ensembles at time t = t1 is subject to an interaction which involves the
photonic contributions which have been mapped to the atomic state during the time t < t1
and experiences therefore an effective backaction mediated by the atoms. An imbalanced
quadratic interaction (|µ| 6= |ν|) allows for the realization of protocols which are not
possible employing an interaction of QND-type, for instance the creation of entanglement
by dissipation (see Sec. 3.1).

2.2 Ultracold atoms in optical lattices

Neutral atoms at nanokelvin temperatures which are trapped in optical lattices constitute
are a very clean and controllable system [101]. As explained below, they can be designed
such that atoms in different internal states experience different trapping potentials result-
ing in so-called spin dependent lattices [68, 69]. Optical lattices are also very versatile
since they allow for the realization of different trapping geometries in one, two and three
dimensions as well as superlattice structures [102–106]. Most importantly, many relevant
parameters such as the interaction strength between the particles and the tunneling rate
between lattice sites can be controlled with high precision and tuned over a wide range.
Due to these features, ultracold atoms in optical lattices are an ideal testbed for simu-
lating condensed matter systems and also a promising system for quantum information
processing [19–21] (see App. A.3). The success story of ultracold atoms in optical lattices
includes the realization of the Bose-Hubbard model, the observation of the quantum phase
transition from a superfluid to a Mott insulator [23,24] and the creation of highly entan-
gled cluster states [68,69]. Optical lattices are an interesting platform for the realization
of the ideas presented in this Thesis, since atoms in a Mott insulating state are promising
candidates for quantum registers12 and provide an optically thick sample, which is very
well suited for the implementation of light-matter interface schemes [22].
Ultracold atoms play a central role in Sec. 4.2 and Sec. 4.3. In the following, we focus
on introducing the concepts and phyiscal mechanisms which are used in Sec. 4.3 for the
realization of an entangling gate for photons13. To this end, we briefly review the physics of
cold atoms in optical lattices (Sec. 2.2.1) and explain the two types of operations involved
in the processing of atomic states in Sec. 4.3, i.e. state dependent transport (Sec. 2.2.2)
and controlled collisions between neighboring atoms (Sec.2.2.3).

12Very recently, novel techniques have been developed which allow for the imaging and manipulation
of single atoms at individual lattice sites [107–109]. This unpreceded level of control opens up many
possibilities to be explored in future.

13This protocol is based on the transfer of the photonic input state to a sample of cold atoms in an
optical lattice using a light-matter interface scheme. Subsequently, the resulting atomic quantum state
is processed by means of the methods explained here and afterwards converted back to a photonic state.
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2.2.1 Mott insulating states in optical lattices

An artificial one-dimensional atom lattice can be created by loading a cold gas of neutral
atoms into the standing wave which is produced by interfering retro-reflected laser beams.
By adding standing waves along other spatial directions, higher dimensional atom lattices
can be obtained. The interaction of the atoms with the light field constituting the standing
wave can be dissipative (arising due to the absorption of photons by the atoms and
subsequent spontaneous emission), or conservative (produced by the interaction of the
light field with the induced dipole moment of the atom). The dissipative part of the
interaction can be used for cooling, while the conservative part can be employed for
trapping. If the detuning of the lasers constituting the standing wave with respect to
the relevant atomic transitions ∆ is chosen large enough, the conservative interaction
dominates and gives rise to an energy level shift of the atoms [19–21]. This Stark shift
depends on the amplitude of the standing wave field at each point of space. The spatial
dependency of the shift in the potential energy gives rise to a dipolar force, which leads
to trapping of the atoms in the minima of the standing wave for positive detuning ∆ > 0
[110]. For negative detuning ∆ < 0, the interaction between the standing waves and the
atoms leads to an optical potential, where the atoms tend to stay at the maxima of the
light field. For a three-dimensional optical lattice created by laser fields with wave vector
k = 2π/λ, this potential takes the form

V (x, y, z) = V0x sin2(kx) + V0y sin2(ky) + V0z sin2(kz),

where V0 is proportional to the dynamic polarizability of the trapped atoms and the
intensity of the applied laser fields. For many experimental settings, atoms in optical
lattices can be described by the standard Bose-Hubbard Hamiltonian [23,24].

HBH = −J
∑

〈i,j〉

(
b†ibj + bib

†
j

)
+

U

2

∑
i

ni (ni − 1) ,

where
∑

〈i,j〉 is a sum over neighboring lattice sites i, j. b†i is the creation operator for

a particle at site i (with [bi, b
†
i ] = i) and ni = b†ibi is the number of particles at this

site. J and U denote the tunneling matrix element and the on-site interaction energy
respectively. More specifically, the second term of the Hamiltonian (which is proportional
to U) describes the repulsion between two atoms occupying the same lattice site due
to contact collisions, while the kinetic term (which is proportional to J) describes atoms
moving from one lattice site to the next one by tunneling through the intermediate optical
potential barrier. An important advantage of ultracold atoms in optical lattices lies in
the fact that the parameters J and U can be externally manipulated. The ratio J/U
can be increased by decreasing the lattice depth V0. Similarly, the scattering length as

characterizing collisions between two atoms can be increased using an external magnetic
field which is tuned to a Feshbach resonance. Since U ∝ as, the ratio J/U can be
rendered arbitrarily small close to this resonance. An adiabatic transition between the
regimes J/U À 1 and J/U ¿ 1 gives rise to a quantum phase transition between a
superfluid and a Mott insulating state. In the superfluid phase, atoms are delocalized
over the whole lattice and strong long range correlations and large fluctuations in the
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Figure 2.4: State dependent transport and controlled collisions in optical lattices. Panels a)
and b) show the fine structure and hyperfine splitting of the S1/2 ground state
of the most commonly used alkali atoms 23Na and 87Rb (which have nuclear spin
I = 3/2). σ±-polarized light fields give rise to state dependent optical potentials
as described in the text. Panels c) and d) illustrate how state dependent lattice
shifts can be used to implement a controlled phase gate. Panel c) depicts the
situation at times t = ±τ , while panel d) illustrates the situation at −τ < t < τ ,
corresponding to the explanation given in the text. Orange (green) lines represent
σ+ (σ−) -polarized optical potentials affecting the atomic levels |a〉 (|b〉).

particle number can be observed. In the Mott insulating state, the atoms are strongly
localized. For the realization of the quantum gate as described in Sec. 4.3, the atomic
system is assumed to be prepared in the ground state of the Bose-Hubbard Hamiltonian
in the Mott insulating regime. For lattices with filling factor one, this state can be written
as |ΨMI〉 ∝

∏
i b
†
i |vac〉 [19]. In the following, it is explained how a Mott insulator with

one atom per site can be used for quantum information processing by inducing collisions
between atoms in a coherent and controlled way [68,69].

2.2.2 State dependent transport

Controlled collisions in optical lattices rely on state dependent transport, which can be
implemented using two counter-propagating linearly polarized laser beams, whose rotation
axes are rotated by an angle 2θ with respect to each other. We assume here propagation in
±x̂-direction. The resulting light field can be decomposed into two standing waves with
positive and negative circular polarization, σ+ and σ−, with corresponding potentials
V± cos2(kx ± θ). As mentioned above, the strength of the optical potential depends on
the dynamic polarizability, which is proportional to the atomic dipole moment. Hence,
selection rules for the optical transitions induced by σ±-polarized standing waves can be
used to create different trap potentials for different atomic levels. For example, for the
most commonly used alkali atoms 23Na and 87Rb [19], the σ+-polarized light field couples
the S1/2 ground state levels with ms = −1/2 (where ms is the magnetic quantum number
associated with the spin) to two excited levels, P1/2 and P3/2, with ms = 1/2, as shown in
Fig. 2.4a). The detunings of the light field with respect to these two atomic transitions
have opposite signs and the frequency is chosen such that their resulting contributions to
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the Stark shift of ground state levels with ms = −1/2 cancel. This way, ground state levels
with ms = −1/2 are not trapped by the σ+-polarized light field and these levels are only
affected by the optical potential in σ−-polarization, V−. Analogously, S1/2 ground state
levels with ms = 1/2 are only affected by V+. By shifting the potentials V± with respect
to each other (which can be done by changing their relative phase θ), atoms occupying
different internal states corresponding to ms = −1/2 and ms = 1/2 can be displaced in
the lattice in opposite directions.
For the alkali atoms 23Na and 87Rb considered here, the hyperfine structure of the S1/2

ground state consists of two manifolds with total spin F = 2 and F = 1, respectively.
Each of these manifolds consists of 2F + 1 levels with magnetic quantum numbers mF =
−F, · · · , F , as shown in Fig. 2.4b. A two-level system |a〉, |b〉 can be encoded, for instance,
by identifying |a〉 = |F = 2,mF = 2〉 and |b〉 = |F = 1,mF = −1〉 [19]. By representing
|a〉 and |b〉 as combinations of ground state fine levels with ms = −1/2 and ms = 1/2, their
corresponding level shifts can be expressed in terms of V ± as Va = V+, Vb = V+/4+3V−/4,
where the factors 1/4 and 3/4 follow from the corresponding Clebsch-Gordan coefficients.
Hence, the hyperfine levels |a〉 and |b〉 are affected differently by the optical potentials in
σ+ and σ−-polarization and can be displaced with respect to each other.

2.2.3 Collisional phases

In the following, we explain how state dependent transport can be used to induce con-
trolled collisions and therefore entanglement between atoms in the lattice [68, 69]. We
consider two adjacent atoms placed at positions r1, and r2. The atoms are assumed to be
prepared in the states

ψj(rj, t) =
1√
2

(
ψa

j (rj, t) + ψb
j(rj, t)

)

at time t = −τ . ψβ
j (rj, t) denotes the wave function of atom j in state β = a, b. After

the preparation of the two atoms, a state dependent shift of the optical potentials is
performed, as shown schematically in Fig. 2.4c and d. For illustration, we assume here
that the potential Vb moves to the right while Va moves to the left, such that the wave
functions |b〉1 and |a〉2 start to overlap. The interatomic interaction is described by a
contact potential V ba(r1 − r2) = (4πaba

s /m)δ3(r1 − r2), where m is the atomic mass and
aba

s is the scattering length corresponding to the collision. Subsequently the lattices are
shifted back such that the atoms reach their original positions at t = τ . The phase
accumulated in the time interval [−τ, τ ] is given by

φba =

∫ τ

−τ

dt∆Eba(t),

where ∆Eba(t) is the energy shift due to the collision, which can be calculated pertur-
batively. This energy is proportional to the scattering length aba

s and the overlap of the
wave functions at each time [19]. In addition to the collisional phase, the lattice move-
ment leading to a displacement of the atomic wave functions ψβ

i during the time interval
[−τ, τ ] gives rise to a kinetic phase φβ. Within the adiabatic limit, in which both atoms
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remain in the motional ground state during the shift, the kinetic phase can be expressed
as

φβ =
m

2

∫ τ

−τ

dt(ṙβ)2,

where ṙβ denotes the spatial trajectory followed by the wave function ψβ of the atom.
Adiabaticity requires the condition |r̈β| ¿ vosc/τ , where vosc is the mean velocity of
atoms in the vibrational ground state. Considering both collisional and kinetic phases,
the internal states of the atoms after the controlled interaction are given by

|a〉1|a〉2 → e−2iφa|a〉1|a〉2,
|a〉1|b〉2 → e−i(φa+φb)|a〉1|b〉2,
|b〉1|a〉2 → e−i(φa+φb+φba)|b〉1|a〉2,
|b〉1|b〉2 → e−2iφb|b〉1|b〉2.

In Sec. 4.3, this scheme is used to realize a fundamental two-qubit gate by choosing the
interaction time τ such that φcol = φba = π.

2.3 High-finesse optical cavities

Cavities allow for the realization of strong light-matter couplings via the Purcell effect.
We are particularly interested in the strong coupling regime, where the interaction be-
tween single atoms and photons can be studied at the quantum level [11,111]. The realm
of strong coupling has already been reached in several experiments [112–115] and cavi-
ties have been used for many proof of principle realizations, which include for example
the observation of quantum jumps by quantum non-demolition measurements [116, 117],
the realization of a non-classical light source [118], the implementation of a two-photon
gateway [119] and the demonstration of electromagnetically induced transparency with a
single atom [120].
The protocols put forward in Sec. 5.1 rely on the ability to use the internal state of a
single atom in a high finesse optical cavity to apply a controlled phase to a light field [121].
In the following we will explain how this can be done. In Sec. 2.3.1, we briefly introduce
the basics of cavity quantum electrodynamics. The quantum gate which allows for the
control of phases is described in Sec. 2.3.2.

2.3.1 Basic properties of optical cavities and light-atom coupling
in the strong coupling regime

In this subsection, we briefly introduce some basic properties of optical cavities and explain
how light and matter interact in the strong coupling regime [122]. For simplicity, we
consider here planar cavities, - the concepts reviewed here can easily be generalized to
other types of cavities. The quality of a cavity can be characterized in terms of its finesse

F =
π (R1R2)

1/4

1−√R1R2

,
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Figure 2.5: Realization of a controlled phase-flip gate between a single atom and light. An atom
with a level structure as shown in a) is placed in a cavity in the strong coupling
regime. The light field is on resonance with the cavity and couples the ground
state |↑〉 resonantly to the excited state |e〉. |e〉 decays to |↑〉 through spontaneous
emission at a rate Γ. b) If the atom is in state |↓〉, the incident field is not affected
by the presence of the atom, and for a sufficiently slowly varying input pulse, the
interaction with the resonant cavity changes the phase of the light field by π. c) If
the atom is initially in state |↑〉, it couples to the cavity mode. Due to the resulting
normal mode splitting, the incoming light field is detuned from the atom-cavity
system and is reflected from the input mirror without acquiring a phase shift. This
transformation is insensitive to the precise values of g, Γ, and the cavity decay rate
as long as the system is in the strong coupling and weak driving regime.

where R1 and R2 are the reflectivities of the mirrors as indicated in Fig. 2.5a. A high
finesse corresponds to very low cavity leakage, such that light travels back and forth many
times between the mirrors, before it leaves the cavity. If there is no incident light field
entering the cavity from outside, a fraction of ploss = 2π/F of the power circulating inside
is lost after one round trip. In the following, we will be interested in a related quantity,
the photon decay rate κ. The photon decay rate is defined by κ = 1/τcav, where τcav is
the photon life time in the cavity. For cavities with highly reflecting mirrors, the decay
rate can be shown to be inversely proportional to the finesse, κ = πc/(FLcav).
The finesse can also be directly related to the transmissivity T . For a symmetric
cavity(R1 = R2) of length Lcav, the transmissivity for light with wavelength λ is given by

T =
1

1 + (4F2/π2) sin2(φ(λ)/2)
,

where φ(λ) = 4πLcav/λ is the phase shift acquired in one round trip. If φ(λ) = 2πm,
where m is an integer, the light field and the cavity are on resonance. In this case, the
light field travelling forth and back in the cavity is in phase after each reflection leading
to constructive interference. For high values of F , this resonance condition corresponds
to sharp peaks in the transmissivity at φ(λ) = 2πm ± π/F , which have a full width at
half maximum (FWHM) ∆ΦFWHM = 2π/F . Accordingly, high finesse cavities have sharp
resonant modes.
In the following we will model the cavity field by a single mode and consider its coupling
to an atom. We consider here a two-level atom with ground state |g〉 and excited state
|e〉 which interacts with the light field via the electric dipole interaction. The atom can
decay from |e〉 to |g〉 through spontaneous emission at a rate Γ, as shown in Fig. 2.5a. The
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cavity is assumed to be tuned to the atomic transition, such that the resonant exchange of
excitations between the atom the cavity is possible. We consider here the strong coupling
limit, g À κ, Γ, where g is the atom-photon coupling parameter, which characterizes the
strength of the coherent light-matter interaction. In this regime, the unitary interaction
between the atom and the light field is faster than the dissipative dynamics which leads
to the loss of photons (which can either happen through cavity leakage at a rate κ,
or through spontaneous emission at the non-resonant atomic rate Γ. The atom-photon

coupling parameter is given by g =
√

µ2
geω/2ε0V0, where µge is the electric dipole matrix

element of the transition, V0 is the modal volume of the cavity and ε0 is the vacuum
permittivity. The resonant interaction between a two-level atom and a cavity mode in
the strong coupling regime can be described by the Jaynes-Cummings model [123]. If
the cavity mode and the two-level atom are not coupled, the composite system can be
described by the (bare) states |φA, n〉, where n ∈ N is the number of excitations in the
system and φA refers to the internal state of the atom. Apart from the ground state,
these states are doubly degenerate. The ground state |g, 0〉, where the atom is in state
|g〉 and no photons are in the cavity, corresponds to the energy E0 = ω/2. The excited
states |e, n − 1〉 and |g, n〉 (for n ≥ 1) correspond to the energy En = (n + 1

2
)ω. If the

two systems are coupled, the degeneracy is lifted and the new eigenstates of the system
in the presence of a strong light-matter interaction are given by the dressed states

|Φ〉±n =
1√
2

(|g, n〉 ± |e, n− 1〉) .

The eigenstates of the coupled system form doublets with energies

E±
n =

(
n +

1

2

)
ω ±√ng.

The emergence of doublets with an energy difference of ∆En = 2
√

ng is referred to as
normal mode splitting. This frequency shift between the eigenstates of the uncoupled
systems (bare states) and the strongly coupled atom-cavity system (dressed states) lies
at the heart of the controlled phase flip gate described in the next subsection.

2.3.2 Realization of a controlled phase-flip gate

In the following, we explain how a phase-flip can be applied to a light field depending
on the internal state of a single atom in a high finesse optical cavity [121]. The phase
flip gate used in Sec. 5.1 is illustrated in Fig. 2.6 and has many possible applications
in quantum information science, including the preparation of superpositions of coherent
states [124], continuous two-qubit parity measurements in a cavity quantum electrody-
namics network [125], and low energy switches [126]. The basic mechanism can be un-
derstood by considering a light field, which is reflected from a cavity. In the completely
off-resonant case, the light field acquires a phase shift π, when it is reflected from the
cavity, while a resonant field is reflected without changing its phase. This effect is due to
interference between the field which is reflected from the first mirror and the field which
travels through the cavity and is reflected back by the second mirror. To show this, we
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Figure 2.6: Illustration of a cavity consisting of two mirrors with reflectivities R1 and R2 (the
depicted setting corresponds to the asymmetric case R1 < R2 = 1). a) Photon-
atom coupling in a cavity. An atom with levels |g〉 and |e〉 interacts coherently with
a single photon at a rate g. The photon can be lost through cavity leakage (with
rate κ) or through spontaneous emission (at the non-resonant atomic decay rate
Γ). b) Phase shift at a cavity. As explained in the text, an incoming coherent field
is divided into infinitesimally short segments of length cτ , where τ is the round trip
time of the the light in the cavity. |α(t)

√
τ〉 denotes the state entering at time t,

|γ̃(t)〉 and |γ(t)〉 refer to the field inside the cavity and |β(t)
√

τ〉 denotes the state
leaving it.

consider a coherent input state [127]. Since any quantum state can be expressed in terms
of coherent states (which form an overcomplete basis), the result holds for arbitrary input
states. The incoming light pulse is divided into infinitesimally small segments of length
cτ , where τ = 2Lcav/c is the round trip time of the light in the cavity. We assume that the
length of the incoming light pulse Lin is large compared to the cavity length Lin À Lcavity

and that the round trip time is short on the time scale set by the cavity decay, τ ¿ 1/κ.
The considered setting is illustrated in Fig. 2.5b. Mirror 2 is assumed to be perfectly
reflecting while mirror 1 is modelled as a beamsplitter with transmissivity tBS =

√
κτ and

reflectivity rBS =
√

1− t2BS = 1− 1
2
κτ +O(τ 2). We denote the state corresponding to the

input light segment at time t by |α(t)
√

τ〉 (note that the expectation value of the number
of photons in this segment, nα = |α2|τ , is proportional to τ). This input field can either
be reflected at mirror 1 and contribute to the field leaving the cavity or be transmitted
and add to the field inside the cavity. Analogously, the field inside the cavity can either
be reflected from this mirror or be transmitted and leave the cavity such that14

β(t)
√

τ = −√κτγ̃(t) +

(
1− 1

2
κτ +O(τ 2)

)
α(t)

√
τ

= −γ̃(t)
√

κτ + α(t)
√

τ +O(τ
3
2), (2.11)

γ(t) = α(t)
√

κ τ +

(
1− 1

2
κτ +O(τ 2)

)
γ̃(t)

= α(t)
√

κ τ + γ̃(t)− κ

2
γ̃(t)τ + O(τ 2). (2.12)

We consider only terms up to first order in τ . If the wavelength of the incoming light
field λin is resonant with the cavity, i.e. λin = 2Lcav/m, where m is an integer, an overall

14 We use the beamsplitter transformation b1 = −ta1 + ra2 and b2 = ta2 + ra1 (with input modes a1,
a2 and output modes b1, b2). The input fields |γ̃(t)〉 and |α(t)〉, transform here into the output fields
|β(t)〉 and |γ(t)〉.
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phase of m2π is acquired during one round trip. In this case, γ̃(t) = γ(t− τ). This leads
to the differential equation

dγ(t)

dt
= −κ

2
γ(t) + α

√
κ

and to the steady state (ss) solution, γss = αss√
κ
. By inserting this result in Eq. (2.11),

βss = −αss is obtained. This sign change of the coherent state amplitude corresponds to
a phase shift of π per photon. If the cavity field is off-resonant and an overall phase shift
of (2m + 1)π is acquired, γ̃(t) = −γ(t− τ). The off-resonant case results therefore for in
βss = αss.
If an atom with an internal level structure as shown in in Fig. 2.6a is placed in the cavity,
the internal state of the atom determines whether the incoming light field is resonant
or off-resonant. We assume here that the incoming light field is resonant with the bare
cavity mode. If the atom is in state |↓〉, it does not influence the reflection of the light
field from the cavity and a phase π is acquired (see Fig. 2.6b). However, if the atom is in
state |↑〉, it can interact resonantly with the light field in the cavity. Due to the resulting
normal mode splitting, the incoming light field is detuned from the dressed cavity mode.
In contrast to the resonant case, no light field is built up in the cavity. The cavity acts
here like a normal mirror and the incoming light field is reflected without a phase change.
The basic ingredients of the scheme such as the trapping of a single atom in a strongly
coupled cavity and the preparation of the initial atomic state have been demonstrated
experimentally in [128], where the decrease in the cavity field intensity for an atom in state
|↑〉 compared to the case of an atom in state |↓〉 is used to measure the state of the atom.
State preparation and readout for a single atom in a cavity have also been demonstrated
in [129]. Apart from these systems, circuit quantum electrodynamics provides another
promising platform for an experimental realization (see, for instance, [130] for a review).

2.4 Bose-Einstein condensates

A dilute gas of weakly interacting bosons trapped in an external potential can form a Bose-
Einstein condensate (BEC) when cooled to nanokelvin temperatures. In this peculiar state
of matter, a large number of bosons occupy a single quantum state and quantum effects
appear on a macroscopic scale. Since the development of the Bose-Einstein statistics
of noninteracting particles [131, 132] in 1924 and 1925 and the first realization of Bose-
Einstein condensation in 1995 [133–135], BECs have become a very interesting and well-
developed platform for implementations in quantum information science. Due to their
high optical density and unique coherence properties, BECs are attractive candidates for
the study and applications of quantum effects in light-matter interactions.
We consider this system in Sec. 5.2, where we study the creation of entanglement in
superradiant Raman scattering from an elongated BEC. Due to strong collective effects
of coherently decaying atoms, the scattering of laser light from a BEC can be enhanced
and highly directional. Superradiance has been first proposed by Dicke in 1954 [136,137]
and been studied in many different systems. BEC superradiance has been observed for
Rayleigh scattering involving two atomic levels [138–140] as well as for Raman scattering
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Figure 2.7: Atoms at low temperatures. a) Dilute gas of noninteracting bosons at different
temperatures 298K = T1 > T2 > T3 > T4 = 0. At temperatures close to the
absolute zero point, a macroscopic fraction of the sample occupies the ground
state of the external potential if the phase space density is larger than unity, i.e.
if the interatomic distance is comparable to the de Broglie wavelength λdB of the
atoms. b) Raman scattering in a Λ configuration. The atoms are assumed to
possess two long-lived ground states |b〉 and |c〉 an an excited state |e〉. A strong
classical driving field with frequency ωL (and Rabi frequency ΩL) couples the levels
|b〉 and |e〉. The levels |e〉 and |c〉 are coupled via a quantized radiation field with
frequency ωqu with coupling strength gqu.

processes [141,142], which involve an atomic level structure of the type shown in Fig. 2.7.
Below, we briefly introduce the basic properties of Bose-Einstein condensates (Sec. 2.4.1)
and explain how collective Raman scattering from BECs leads to entanglement between
atoms and light (Sec. 2.4.2).

2.4.1 Basic properties of Bose-Einstein condensates

We consider a gas of N non-interacting identical bosonic particles with mass m at tem-
perature T [143]. The atomic sample is assumed to be trapped in a harmonic external
potential

U(x, y, z) =
m

2

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
. (2.13)

The Bose-Einstein distribution function, which determines the number of bosons which
occupy a quantum level with energy E is given by

f(E) =
1

e
E − µ
kBT − 1

, (2.14)

where kB is the Boltzmann constant. The energy scale is here defined such that E0 = 0.
The chemical potential µ is defined by the condition that the total number of particles
equals the total occupancy of all single particle energy levels. It is bounded from above by
the energy of the lowest lying energy eigenstate of the external potential µ ≤ E0 = 0. The
number of particles in the system N = N0 + Ne, can be expressed as a sum of particles
occupying the ground state N0 and the number of particles in excited states Ne. The
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latter can be calculated by means of the Bose-Einstein distribution function f(E) and the
density of states g(E). For the harmonic potential defined by Eq. (2.13), g(E) is given
by g(E) = E2/ (2ωxωyωz) and accordingly

N = N0 +

∫ ∞

0

dEf(E)g(E) = N0 +
1

2ωxωyωz

∫ ∞

0

dE
E2

e
E−µ
kBT − 1

. (2.15)

Using this expression, we consider now the dependence of the chemical potential µ at con-
stant particle number density for decreasing temperature T . For high temperatures, the
chemical potential takes large negative values. If the gas is cooled to lower temperatures,
while keeping N constant, µ increases. At a critical temperature T = Tc, a quantum
phase transition occurs. The chemical potential approaches the energy of the lowest lying
energy eigenstate µ = E0, such that the energy required to add a particle (at constant
entropy) is given by the ground state energy E0 = 0. At this point, a macroscopic fraction
of the sample occupies the lowest energy state, i.e. the state with zero velocity15. In the
thermodynamic limit, the condensate fraction is given by

N0

N
= 1−

(
T

Tc

)3

With decreasing temperature, an increasing percentage of particles occupies the ground
state. The rest of the particles occupies the states with E > 0 according to a thermal
distribution. In the ideal case, the fraction of atoms in the ground state with zero velocity
approaches unity as T → 0.

2.4.2 Superradiance in Bose-Einstein condenstaes

In this subsection, we consider superradiant Raman scattering of laser light from a
BEC. We derive the Hamiltonian used in Sec. 5.2 and show how entanglement between
atoms and light is generated by means of this interaction. This short overview fol-
lows the discussion of collective atomic recoil lasing from a three-level atomic BEC in [144].

Superradiant scattering of light from a BEC involves the highly directional emis-
sion of photons. The selection of particular superradiant modes can be due to several
factors [145]. If an elongated (cigar-shaped) BEC is used, geometrical effects favor
certain directions. Alternatively, this can be achieved by placing the BEC in a low
finesse ring cavity or by creating a seed matter wave using a Bragg pulse [146, 147]. If
a cigar shaped BEC with length L and diameter D is used, the number of modes in
the axial direction is approximately given by the Fresnel number F = D2/(Lλ), where
λ is the wavelength of the superradiant transition. In typical experiments, this number
is equal or larger than one, such that the so-called endfire modes along the main axis
of the condensate can successfully compete with all other modes [148]. This is due

15Tc is defined as the temperature at which a significant fraction of particles contributes to N0. At the
transition point, N = Ne(Tc, µ = 0). Using Eq. (2.15), N = T 3

c ζ(3)/(ωxωyωz) is obtained, where
ζ(x) is the Riemann zeta function (ζ(3) ≈ 1.2). The transition temperature is accordingly given by
Tc ≈ 0.94(Nωxωyωz)

1
3 /kB .
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to the fact that collective effects along the main axis of the condensate correspond
to processes which profit from the high optical depth of the sample in this direction,
while coherent processes in the other directions are weak. If the Fresnel number of the
sample equals approximately one, the dynamics of the system can be well described
by a one dimensional theory. We consider here a Bose-Einstein condensate at zero
temperature, which is assumed to be very dilute, such that atom-atom interactions
can be neglected. The atoms are assumed to possess two ground states, |b〉 and |c〉,
and an excited level |e〉 with energies ωa, ωb and ωe in a Λ-configuration, as shown in
Fig. 2.7b. The two ground states are assumed to be long-lived and can for example
correspond to hyperfine levels. Atoms in state |α〉 at position x are described by bosonic
annihilation and creation operators in the interaction picture with respect to the internal
atomic energies aA,α(x, t), a†A,α(x, t) with [aA,α(x, t), a†A,α′(x

′, t)] = δα,α′δ(x − x′) and

[aA,α(x, t), aA,α′(x
′, t)] = [a†A,α(x, t), a†A,α′(x

′, t)] = 0. The free Hamiltonian of the atomic
system is given by

HA = − 1

2m

∑

α=a,b,e

∫
d3x a†A,α(x, t)∇2aA,α(x, t),

where m is the atomic mass. The atomic sample is irradiated by a strong narrow-band
laser field with central frequency ωL, which induces transitions between the atomic ground
state |b〉 and the excited state |e〉. As shown in Fig. 2.7, atoms in state |e〉 can decay
to state |b〉 by emitting a photon at frequency ωqu. This quantized radiation field is
described by the annihilation and creation operators aqu and a†qu (with [a†qu, aqu] = 1),
while the strong coherent driving field is treated classically. For simplicity, we consider
here a one-dimensional single-mode model. This description corresponds to a setting,
where the BEC is placed in a cavity which selects the mode with annihilation operator
aqu. The light-matter interaction is assumed to be far off-resonant and is governed by the
Hamiltonian

Hint = −ΩL

2

∫
d3x a†A,b(x, t)aA,e(x, t)e−i(kLx−∆Lt) + H.C.

+ gqu

∫
d3x aA,e(x, t)a†A,c(x, t)a†qu(t)e

−i(kqux−∆qut) + H.C. ,

where the dipole approximation has been made. kL and kqu denote the wave vectors of the
classical and the quantum field. The detunings ∆L and ∆qu are given by ∆L = ωL−ωe+ωb

and ∆qu = ωqu − ωe + ωc. ΩL = µbeEL, where µαα′ is the dipole matrix element of the
transition |α〉 → |α′〉 and EL is the electric field amplitude of the driving beam. The
coupling strength gqu is given by gqu = µce

√
ωqu/2ε0V , where ε0 is the vacuum permit-

tivity and V the modal volume. The excited level |e〉 can be adiabatically eliminated if
the detuning ∆L is much larger than the natural linewidth γLW,ec corresponding to the
transition |e〉 → |c〉. This way, an effective Hamiltonian involving only atomic ground
state levels is obtained16

Heff = − 1

2m

∑

α=a,b

∫
d3xa†A,α(x, t)∇2aA,α(x, t)− δã†quãqu

16 Stark-shifts due to Rayleigh scattering are absorbed into the level energies. Dipole forces due to
inhomogeneous mode profiles are neglected in this one-dimensional treatment.
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+ i geff

∫
d3x

(
ã†qua

†
A,c(x, t)aA,b(x, t)ei∆kx −H.C.

)
,

where geff = gquΩL

2∆L
is the effective coupling strength. δ = ωL − ωqu − ∆cb, where ∆cb =

ωc−ωb, is the detuning of the Raman transition from two-photon resonance, ãqu = iaque
iδt

and ∆k = kL − kqu is the momentum difference transferred to an atom if a photon is
scattered. As next step, the Hamiltonian is expressed in terms of momentum eigenstates
using the transformation

aA,b(x) ∝
∞∑
−∞

bne
in∆kx, aA,c(x) ∝

∞∑
−∞

cne
in∆kx,

where we omitted the explicit time dependence in the notation. The creation and an-
nihilation operators bn, b†n (cn, c†n) refer to modes corresponding to an atom in state |b〉
(|c〉) with momentum p = n∆k, |b, n〉 (|c, n〉). These operators fulfill the commutation
relations [bn, b†m] = δn,m, [cn, c†m] = δn,m and [bn, cm] = [bn, c†m] = 0. Using these modes,
the effective Hamiltonian can be reexpressed in the form17

Heff = ωr

∞∑
−∞

n2
(
b†nbn + c†ncn

)− δã†quãqu + igeff

∞∑
−∞

(
ã†qub

†
ncn−1 −H.C.

)
,

where the recoil frequency ωr is given by ωr = ∆k2/2m. This Hamiltonian describes
a two-photon Raman process, where atoms in state |b, n〉 are transferred to the state
|c, n+1〉 by scattering a pump photon into the quantized radiation field. In the following,
we assume that the atoms are initially prepared in the state |b, 0〉. In the linear regime,
where the number of atoms in the recoiling state is small compared to the number of
atoms in the initial state, N0 (such that there is no depletion of atoms in the resting
condensate), the Holstein-Primakoff approximation can be made (see Sec. 2.1.1). In this
case, it can be assumed that b0 ≈

√
N0, such that

Heff = ω1c
†
1c1 − δã†quãqu + igeff

√
N0

(
ã†quc

†
1 −H.C.

)
.

The interaction part of this Hamiltonian is of the active (two-mode squeezing) type dis-
cussed in Sec. 2.1.2 (compare Eq. 2.3). It leads to the creation of correlated atom-photon
pairs and represents the inter-species analogue of an optical parametric amplifier, which
produces entangled photon pairs and is a key element in many applications in quantum
information science. The resulting two-mode squeezed state (TMSS) is of the form

|TMSS〉 =
(
1− λ2

) ∞∑
n=0

λn|n, n〉,

with λ = tanh(r), where r ∈ C is the so-called squeezing parameter. This state is
expressed in the Fock basis. The ket |n, n〉 on the right side refers to a state with n
scattered photons in the quantized radiation field and n atoms, which have been coherently
transferred from level |b〉 to level |c〉.
17Finite size effects of the condensate are neglected.



29

Chapter 3

Engineered Dissipation

Any quantum technology is challenged by dissipation. The interaction of the system
with its environment is typically regarded to be a major obstacle, and in particular the
degradation of entangled states due to dissipation is traditionally considered to be a key
problem. Contrary to this belief, new approaches aim at utilizing dissipation for quantum
information processes [31, 33, 50, 58, 149–151], including quantum state engineering [25,
40, 42], quantum computing [42], quantum simulations [49, 59], quantum memories [152]
and error correction [153,154]. In this chapter, new ideas and tools harnessing dissipation
for generating robust entangled states are put forward. More specifically, in Sec. 3.1, a
method for the creation of steady state entanglement is described, which allows for the
continuous production of event-ready entanglement which can in principle be maintained
for arbitrary long times. This section is complemented by App. B. Sec. 3.2 (which is
supplemented by App. C) is concerned with the dissipative distillation of steady state
entanglement and its distribution over large distances by means of a continuous quantum
repeater scheme. The results presented in Sec. 3.1 and Sec. 3.2 have been published
in [IX, IV, III, XI]1 and [II] respectively.

3.1 Entanglement generated by dissipation

In this section, a robust method for generating steady state entanglement between two
distant atomic ensembles is presented. The proposed scheme relies on the interaction
of the two atomic systems with the common vacuum modes of the electromagnetic field
which act as an engineered environment. In the following, the theoretical framework for
two-level systems including dipole-dipole interactions is described in detail and comple-
mented by a general discussion of the implementation in multi-level ground states. Based
on these results, the first realization of purely dissipative entanglement generation has
been demonstrated experimentally in [III], as described below.
This section is organized as follows. In Sec. 3.1.1, the proposed scheme is introduced and
the current status of related work is briefly reviewed. The main idea of the proposal is
explained in Sec. 3.1.2, which also contains a summary of the central results. In Sec. 3.1.3
the full master equation is derived for two-level atoms and the evolution of the amount of

1Related results have been published in [VII].
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entanglement which is created in the atomic system is calculated. In Sec. 3.1.4, the gener-
ation of steady state entanglement in multi-level systems is discussed and in Sec. 3.1.5 the
experimental realization of the scheme is described. Sec. 3.1.6 summarizes and concludes
this section.

3.1.1 State of the art and related work

The pursuit of the generation of persistent entanglement is not only of fundamental inter-
est in view of the investigation of entangled quantum states at long time scales but also
vital for many applications, such as quantum repeaters [12,66,67,155–162]. On account of
this problem, quantum systems are usually strictly isolated in the endeavor to avoid their
interaction with the environment. In contrast, an ostensibly counter-intuitive approach
using dissipation [25–49, 49–59] is adopted in the following. Here, the interaction of the
system with the environment is employed such that dissipation drives the system into the
desired state. More specifically, a scheme for the generation of long-lived entanglement be-
tween two distant, mesoscopic ensembles is proposed and analyzed (see also [163]). Both
atomic samples are placed in magnetic fields and interact with an environment consisting
of the vacuum modes of the electromagnetic field. A laser field mediates the coupling of
the atomic system to the environment. The interaction of the system and the bath can
be controlled via laser- and magnetic fields, which allow one to engineer the coupling in
such a way that the unique steady state of the dissipative evolution is an entangled state.
This dissipative approach has several remarkable advantages. For example, the scheme
performs well starting from an arbitrary initial state. This feature renders the initial-
ization of the system in a pure state unnecessary. Most importantly, the evolution is
robust against moderate external noise. Entanglement is obtained in a steady state. This
auspicious property is very promising in view of the quest for viable, extremely long-lived
entanglement. Protocols, where entanglement is needed at instants of time which are not
specified in advance (e.g. protocols including probabilistic subroutines) benefit from this
type of entanglement2. Moreover, the production of endurable entanglement is crucial in
applications which require the continuous presence of entanglement, as for example dis-
sipative quantum repeater schemes [II], which provide a novel way of overcoming typical
T2 times in the creation of long-distance entanglement (see Sec. 3.2).
Below, it is shown for two-level systems that steady state entanglement can be generated
even in the presence of undesired transitions and fluctuating magnetic fields. Moreover,
external pump fields are included and it is demonstrated that, surprisingly, incoherent
pumping can be beneficial in a certain parameter range. In atoms with multi-level ground
states, additional dynamics leads to particle losses, which result in the production of a
quasi-steady state. Remarkably, incoherent pumping can enable the creation of entan-
glement in a true steady state. Finally, the first demonstration of purely dissipative
entanglement generation [III] is reported on. This experiment includes also the creation
of atomic steady state entanglement by combining the dissipative mechanism outlined
above with continuous measurements. This hybrid method allowed for the observation of

2 If dissipatively generated entanglement is used in standard schemes, the driving fields which stabilize
the state are switched off and the entangled atomic state can either be used directly (for example for
teleportation) or can be read out on demand [98].
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Figure 3.1: Setup for creating steady state entanglement between two atomic ensembles. a)
The ensembles are separated by a distance R and placed in magnetic fields B, which
are oriented along x̂ (see Sec. 2.1). A strong ŷ-polarized laser beam (shown in
green) couples the atomic system to the environment which consists of the vacuum
modes of the copropagating electromagnetic field in x̂ polarization (depicted in
red). Panels b) and c) show the atomic level schemes. The magnetic field causes
a Zeeman splitting Ω of the atomic ground-states levels |↑〉 and |↓〉 and defines
the quantization axis. Atoms and light interact as explained in Sec. 2.1. A static
electric field is applied to the second ensemble, such that the energy difference
between ground and excited states is enhanced by 2∆.

continuously produced event-ready entanglement for up to an hour.

3.1.2 Main idea and central results

In the following, the basic idea for generating purely dissipatively driven entanglement in
atomic ensembles is explained and a realistic description including noise effects is intro-
duced. First, the underlying concept is explained for two bosonic modes with annihilation
operators a and b. The entangled target state under consideration is a two mode squeezed
(TMS) state |ΨTMS〉, which is characterized in terms of

Ã|ΨTMS〉 = B̃|ΨTMS〉 = 0,

where the nonlocal annihilation operators Ã and B̃ are given by3

Ã = µ a + ν b†, B̃ = µ b + ν a†. (3.1)

These equations uniquely characterize the pure squeezed state with squeezing parameter r
where µ = cosh(r) and ν = sinh(r). This state can be prepared by means of a dissipative
evolution governed by the master equation

dtρ(t) = κÃ

(
Ãρ(t)Ã† − Ã†Ãρ(t)/2− ρ(t)Ã†Ã/2

)

+ κB̃

(
B̃ρ(t)B̃† − B̃†B̃ρ(t)/2− ρ(t)B̃†B̃/2

)
, (3.2)

3Here, the operators Ã, B̃ (labelled with a tilde) refer to bosonic modes. Later in the text, operators A,
B (without a tilde) are used to denote linear combinations of spins.
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where the coefficients κÃ and κB̃ are positive. This time evolution drives the system into
the unique steady state ρ∞ = |ΨTMS〉〈ΨTMS|, for t → ∞ (see App. B.2). Starting from
this result, it is now explained how this concept can be applied for creating entanglement
between two macroscopic atomic ensembles and how a dissipative evolution of type (3.2)
can be realized. More specifically, two ensembles which are placed in magnetic fields as
shown in Fig. 3.1a are considered. Atoms are assumed to possess a two-level ground state
with internal states |↑〉 and |↓〉 (see Fig. 3.1b). The target state is an entangled state
where the collective spins of the two samples are correlated in ŷ and in ẑ direction. The
amount of entanglement generated can be measured by the quantity [16,164]

ξ =
var(Jy,I + Jy,II) + var(Jz,I − Jz,II)

|〈Jx,I〉|+ |〈Jx,II〉| . (3.3)

For separable states ξ ≥ 1. Jx,I =
∑NI

i=1 ji
x,I is the collective spin in x̂ direction in the first

ensemble, where NI is the number of atoms and ji
x,I is the x̂-spin component of the ith

atom4. Analogous definitions hold for for spins in ŷ and ẑ direction and for the collective
spin of the second ensemble. In order to prepare this target state, a dissipative evolution
governed by a master equation of type (3.2) is used, where the nonlocal operators Ã and
B̃ are replaced by

A =
1√
N

(
µJ−I + νJ+

II

)
, B =

1√
N

(
µJ−II + νJ+

I

)
. (3.4)

µ, ν ∈ R with µ2 − ν2 = 1 and J±I/II are collective spin operators5, with J− =
∑N

i=1 |↑〉i〈↓|
and J+ =

∑N
i=1 |↓〉i〈↑| such that Jy = 1

2
(J+ +J−) and Jz = i

2
(J+−J−). The light-matter

interaction shown in Fig. 3.1b gives rise to the desired master equation. More specifically,
after adiabatic elimination of excited states, the effective ground state Hamiltonian is of

the form H ∝ ∫
∆ωls

dk
(
Aa†k + A†ak

)
+

∫
∆ωus

dk
(
Ba†k + B†ak

)
, where a†k is the creation

operator for a photon with wave vector k. The first and second integral cover narrow
bandwiths ∆ωls and ∆ωus centered around the lower and upper sideband respectively
(see Sec. 3.1.3). The modes of the light field are treated as bath and are therefore traced
out. Using the Born-Markov approximation, one obtains a master equation of standard
Lindblad form (compare Eq. (3.2)). Collective Lamb shifts can be shown to be negligible
in the setting considered here (see App. B.3.2). In the limit t →∞, this evolution drives
the system into an entangled steady state. In the absence of noise and for N À 1,

ξideal
∞ = (|µ| − |ν|)2 .

Next, additional processes such as thermal motion, undesired atomic transitions and fluc-
tuating magnetic fields as well as resonant pump fields are included. Details can be found

4 The quantization axis is defined by the direction of the magnetic field, which is oriented along x̂, hence
jx = 1

2 (|↑〉〈↑| − |↓〉〈↓|).
5 For large, strongly polarized atomic ensembles, collective spins can be described by bosonic modes
J−I ∝ a, J−II ∝ b using the Holstein-Primakoff approximation. The results derived here are based on
related approximations and are valid for N À 1 (compare App. B.4).
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in Sec. 3.1.3. For large particle numbers NI = NII = N À 1 and t →∞,

ξ∞ =
1

P2,∞

Γ̃ + dΓP 2
2,∞ (|µ| − |ν|)2

Γ̃ + dΓP2,∞
, (3.5)

where P2,∞ is the steady state value of the atomic polarization P2 =
1
N

∑N
i=1 (|↑〉i〈↑ | − |↓〉i〈↓ |), Γ is the single particle decay rate and Γ̃ is the dephasing rate

associated with noise effects and d is the optical depth of one atomic ensemble. As shown
in Sec. 3.1.3, the application of resonant pump fields can be beneficial even though noise
is added by doing so. Note that for d →∞ we get ξ∞ → ξideal

∞ . For a large optical depth,
the entangling dynamics is significantly enhanced by collective effects. In contrast, noise
processes are single particle effects and therefore not amplified by a factor d. Eq. (3.5)
shows that for strong coupling between atoms and light, entanglement can be generated
in a steady state. This is the main theoretical result of this section.
Intuitively, entanglement is created by virtue of interference of different processes in the
first and second ensemble. As illustrated in Fig. 3.1b, the interaction of light and atoms
in the first ensemble is chosen such that the emission of a photon in the upper sideband
corresponds to a spin flip |↑〉 → |↓〉. Similarly, in the second ensemble the emission of a
photon in the upper sideband involves a spin flip |↓〉 → |↑〉. Due to collective effects [12],
light is emitted in forward direction with high probability, for samples with large optical
depth. As spin flips in either ensemble lead to emission of light into the same spatial
mode, both processes are indistinguishable if a photon is detected. An analogous ar-
gument holds for photons in the lower sideband. In this respect, the setup resembles
quantum repeater schemes [66, 67, 156–162], where collective excitations in two atomic
ensembles are converted to photons, which subsequently interfere at a 50/50 beamsplitter
such that entanglement can be created conditioned on the detection of a photon in one
of the two output ports of the beamsplitter6. Here, no beamsplitter is needed, since both
ensembles emit into the same spatial mode. The most important difference, however, lies
in the fact that the scheme presented here is not conditioned on a specific measurement
outcome. It works deterministically and does not require a detection of the emitted pho-
ton.
The ideas put forward here are devised and elaborated for two-levels systems, but the
proposed scheme can also be realized using atoms with multi-level ground states. In a
multi-level setting, the population in the two-level subsystem is continually reduced due
to undesired transitions to other ground state levels. Below, this and other features of the
multi-level structure are taken into account and it is found that the continuous reduction
of the collective spin leads to the formation of a quasi steady state: the steady state with
respect to the relevant two-level subsystem is superposed by slow additional dynamics
due to the multi-level structure. This can be counteracted by the application of external

6The basic working principle of this approach can be illustrated by considering two single atoms with
ground state |g〉 and excited state |e〉, which are placed in two different cavities. Both atoms are initially
prepared in the excited state |Ψin〉 = |e〉1|e〉2. Atoms can spontaneously decay to their ground state
|e〉 → |g〉 while emitting a photon. The light emitted from both cavities is combined at a beamsplitter
and photon detectors are placed at each output port. The atoms are projected into a maximally
entangled state |Ψout〉 = (|e〉1|g〉2 + |g〉1|e〉2) /

√
2 if a photon is detected at one of the two output ports.
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pump fields. These fields add noise to the system and limit therefore the amount of entan-
glement that can be generated. However, for samples with large optical depth, incoherent
pumping can render the creation of true steady state entanglement in atoms with multi-
level ground states possible. This is illustrated in Sec. 3.1.4 by considering 133Cs vapors
at room temperature and typical experimental parameters. There, the most fundamental
limitations imposed by undesired radiative processes are taken into account and it is esti-
mated that steady state entanglement with ξ∞ = 0.9 should be attainable for a moderate
optical depth d = 30 in the absence of other (implementation-dependent) sources of noise.
The described scheme has been realized recently [III] using Cs atoms. In this experiment,
purely dissipatively driven entanglement between two macroscopic atomic ensembles at
room temperature has been demonstrated yielding an order of magnitude improvement
in the entanglement life time compared to previous experiments, where entanglement has
been generated in this system using standard methods. By combining the dissipative
mechanism with continuous measurements on the light field scattered in forward direc-
tion, steady state entanglement can be continuously generated and has been observed
for up to an hour. These results represent a new step in the quantum control of entan-
glement. Dissipatively generated entanglement provides not only event-ready entangled
links for standard protocols but is also an elementary resource for future applications in
continuous quantum information processing schemes, such as dissipative distillation and
repeater protocols, which allow for the distribution of long-range high-quality steady state
entanglement as described in the next section (Sec. 3.2).

3.1.3 Creation of steady state entanglement in a two-level sys-
tem

As outlined above, light modes act as environment and the interaction between the system
and the bath is controlled by means of laser- and magnetic fields. In the following, the
interaction between atoms and light is explained in more detail. The master equation
governing the dissipative evolution of the reduced density matrix of the atomic system ρ
is given by

dtρ = Lentρ + Lnoiseρ,

where Lent and Lnoise are Lindblad operators. Desired interactions give rise to the en-
tangling dynamics represented by Lentρ. The second term Lnoiseρ summarizes all unde-
sired effects. Below, Lentρ and Lnoiseρ are determined. To this end, the master equation
corresponding to the light-matter interaction in Fig. 3.1 is derived, including undesired
radiative processes. Then, excited states are adiabatically eliminated such that an effec-
tive master equation for atomic ground states |↑〉 and |↓〉 is obtained. Finally, thermal
motion of atoms is taken into account and additional effects due to pump fields and noise
processes are included. Based on these results, the amount of entanglement that can be
produced is calculated.
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Light–matter interaction

In this subsection, the setup for the creation of entanglement between two atomic en-
sembles is described and the interaction between light and matter is explained. The
considered setup is shown in Fig. 3.1 and explained in Sec. 2.1.1. The laser field is as-
sumed to be far off-resonant such that the interaction is well within the dispersive regime.
The detuning |∆| is considered to be large compared to the Doppler width δDoppler and
atomic decay rates Γatomic. Here and in the following, Γatomic denotes the largest effective
atomic rate for transitions between ground state levels, including single particle as well as
collective rates (see below). The strong ŷ-polarized coherent beam is treated as classical
field. With respect to quantization along x̂, it drives diagonal transitions |↑〉 → |e↓〉,
|↓〉 → |e↑〉. Fig. 3.1 depicts only desired transitions, where photons are scattered into the
copropagating x̂-polarized quantum field in two independent frequency bands, the upper
and the lower sideband, centered around ωL ± Ω.
For the realization of the proposed scheme, several setups are possible. In a simple two-
level model, where the Larmor splitting of excited states equals the Larmor splitting of
ground states, a homogeneous static electric field can be applied to the second ensemble
such that the resulting Stark shift enhances the energy difference between ground and
excited states by 2∆ as shown in Fig. 3.1b. This yields the following effective ground
state Hamiltonian H = HA + HL + Hint, where excited states have been eliminated un-
der the condition |∆| À Γatomic, δDoppler. HA = Ω (Jx,I − Jx,II) accounts for the Zeeman

splitting of atoms in the external magnetic field and HL =
∫

dk (ωk − ωL) a†kak is the free
Hamiltonian of the light field. In a rotating frame, the interaction Hamiltonian is given
by

Hint =

∫

∆ωls

dk
∑

λk

ḡ(k)

(
µ

N∑
i=1

σI,ie
i∆kri +ν

N∑
j=1

σ†II,je
i∆krj

)
a†k

+

∫

∆ωus

dk
∑

λk

ḡ(k)

(
µ

N∑
i=1

σII,ie
i∆kri +ν

N∑
j=1

σ†I,je
i∆krj

)
a†k + H.C. , (3.6)

where the first and second integral cover narrow bandwidths ∆ωls and ∆ωus centered
around the lower and upper sideband respectively (a complete treatment based on the
full Hamiltonian including all light modes can be found in App. B.3.1). λk specifies the
two orthogonal polarizations of the light mode with wave vector k. The atomic operator
σI/II,i = |↑〉I/II,i〈↓| refers to a particle in ensemble I/II at position ri, ∆k = kL− k, and
kL is the wave vector of the applied classical field. AC Stark shifts have been absorbed
in the detuning. ḡ(k)µ and ḡ(k)ν are the effective coupling strengths for the passive
(beamsplitter-like) part of the interaction and the active (squeezing) component of the

Hamiltonian respectively. More specifically, ḡ(k)µ =
Ωprobe

∆−Ω
gk and ḡ(k)ν =

Ωprobe

∆+Ω
gk, where

Ωprobe is the Rabi frequency of the applied classical field. Here and in the following,
the off-resonant (entangling) light field is referred to as probe field. Later in the text,
resonant fields are introduced which will be referred to as pump fields. The definition
of the coupling constant for transitions between ground and excited states gk can be
found in App. B.3.1. The parameters µ = ∆+Ω

2
√

∆Ω
and ν = ∆−Ω

2
√

∆Ω
are normalized such that

µ2 − ν2 = 1.
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A Hamiltonian of type (3.6) can be realized in many different ways. In general, the
scheme presented here can be implemented in any system where a tunable quadratic
interaction with an active and a passive part corresponding to two sideband modes can
be realized, for example in ions or using optomechanical resonators. Here, the focus
is on the creation of dissipatively driven entanglement in atomic ensembles and in the
following the level structure depicted in Fig. 3.1b is therefore considered. If the Larmor
splitting of excited states is considerably larger than the splitting of ground states, a
λ/2 plate can be introduced between the two ensembles instead of applying an external
electric field7. As discussed in Sec. 3.1.4, alkali atoms provide another possibility to
realize the desired light-matter interaction. Due to their multi-level structure is is not
even necessary to introduce electric fields or passive optical elements. It is remarked
for clarity, that the possibility illustrated in Fig. 3.1b implies that the effective coupling
constants (after adiabatic elimination) ḡ(k)µ and ḡ(k)ν describing the interaction of light
with the first and the second ensemble have different signs, as the light is blue detuned
in the former and red detuned in the latter, such that µI = −µII and νI = −νII . This is
not the case in the implementation considered in Sec. 3.1.4. Due to the complex levels
structure, both effective coupling constants have the same sign and therefore µI = µII

and νI = νII . In order to describe both alternatives in a compact way, a unified notation
is used and the sign is absorbed in the definition of the atomic operators referring to the
second ensembles σII,i → sgn(µIµII)σII,i as explained in App. B.3.2.

It is instructive to consider Hamiltonian (3.6), where excited levels have been
adiabatically eliminated, because it shows clearly that the light matter interac-
tion depicted in Fig. 3.1b corresponds to a beamsplitting interaction of the type

H ∝ ∫
∆ωls

dk
(
Aa†k + A†ak

)
+

∫
∆ωus

dk
(
Ba†k + B†ak

)
between photons in the upper

and lower sideband with the nonlocal operators A and B (with additional phase factors
e±i∆kri). By deriving the corresponding master equation and including thermal motion
as explained below, it can be shown that this Hamiltonian yields a master equation which
consists of a desired part of type (3.2) with jump operators A and B and an additional
contribution representing noise terms. However, in the following, the master equation is
derived starting from the full Hamiltonian including excited levels since this approach is
better suited to take dipole-dipole interactions into account.

Effective master equation for ground states

In the following, the derivation of the master equation for atomic ground states |↑〉 and
|↓〉 is outlined and the approximations used to obtain the shown result are commented
on. The full calculation can be found in App. B.3.1. For brevity, a short hand notation
is used and master equations of Lindblad form dtρ(t) = κ/2

(
Aρ(t)A† − A†Aρ(t)

)
+ H.C.

with complex decay rate κ and jump operator A are abbreviated by the expression

7 A λ/2 plate interchanges the fields in x̂ and ŷ polarization. If such a passive optical element is placed
between the first and the second atomic ensemble, the roles of classical and quantum fields are therefore
interchanged. Accordingly, the classical field drives π-transitions |↑〉 → |e↑〉, |↓〉 → |e↓〉 in the second
ensemble, while the quantum field is associated with transitions which change the magnetic quantum
number ∆m = ±1.
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dtρ(t) = κ/2Aρ(t)A† + ... .
Here, the full Hamiltonian including excited levels and undesired transitions8 is considered
without applying the rotating wave approximation for quantum fields (see Eq. B.2). As
explained in App. B.3.1, counter-rotating terms play an important role in the calculation
of the imaginary parts of the master equation, but do not affect the real parts. Starting
from the full Hamiltonian, a master equation of Lindblad form for the reduced atomic
density matrix is obtained (see Eqs. (B.3)-(B.5)). To this end, the approximation of
independent rates of variation is applied [165] following the standard procedure assuming
Born-Markov dynamics. The approximation of independent rates of variations is valid
if the Rabi frequency of the applied laser field Ωprobe is very small compared with the
frequencies of atomic transitions. Since we consider here transitions in the optical
domain, this assumption is clearly legitimate. More generally, here and in the following
sections situations exhibiting two very different time scales for variations in the system
and in the bath of light modes are considered Γatomicτc ¿ 1, where τc is the correlation
time in the reservoir. For optical frequencies this is very well justified and Born-Markov
dynamics can be assumed. Moreover, the discussion is restricted to settings, where the
level splitting Ω between the states |↑〉 and |↓〉 is sufficiently large, such that the upper
and lower sideband can be treated as independent baths9 (compare App. B.3.1). Finally,
it is assumed that the condition kL À R/L2 is fulfilled. kL is the wave vector of the
applied laser field. Since frequencies in the optical domain are considered, kL is on the
order of 107m−1. L is the spatial extent of the atomic ensembles, which is assumed to
be on the order of cm, while the distance between the two ensembles R is about one meter.

As next step, excited states are adiabatically eliminated under the condition
|∆| À Γatomic, δDoppler. This leads to an effective master equation for atomic ground
states. Using the abbreviated notation introduced in the beginning of this subsection,

dtρ(t) =
1

2

N∑
i,j=1

e−ikL(rj−ri)Jij

(
Aiρ(t)A†

j + Biρ(t)B†
j

)

+
1

2

N∑
i,j=1

e−ikL(rj−ri)J̌ij

(
Ciρ(t)C†

j + Diρ(t)D†
j

)

+ ... , (3.7)

where Jij and J̌ij are complex decay rates which are discussed below and A = 1√
N

∑N
i=1 Ai.

The operators B, C and D are defined analogously. Ai, Bi, Ci and Di are given by

Ai = µ σI,i + ν σ†II,i, Ci = µ σ↓↓,I,i + ν σ↑↑,II,i,

Bi = µ σII,i + ν σ†I,i, Di = µ σ↓↓,II,i + ν σ↑↑,I,i,

where the abbreviations σ↑↑,I/II,i = | ↑〉I/II,i〈↑ | and σ↓↓,I/II,i = | ↓〉I/II,i〈↓ | are used.
Terms involving the operators A and B represent desired transitions involving a spin

8Undesired radiative transitions |↑〉 → |↑〉 and |↓〉 → |↓〉 involve the emission of a photon but no change
of the internal atomic state. These processes are not explicitely shown in Fig. 3.1b.

9 If the upper and lower sideband are not treated as independent baths, cross terms appear, which rotate
fast (with frequency ±2Ω) compared to the single-bath terms, (which do not rotate in this picture).
These cross terms can be neglected in a rotating wave approximation if Ω À Γatomic.
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flip | ↑〉 → | ↓〉 or | ↓〉 → | ↑〉 as shown in Fig. 3.1b. Terms involving the opera-
tors C or D represent undesired transitions which lead to dephasing. Desired and
undesired transitions are associated with different decay rates Jij and J̌ij respectively.
In the four level model considered here, J̌ij = 2Jij, due to the ratio of Clebsch-
Gordan coefficients |〈1

2
,±1

2
; 1,∓1|1

2
,∓1

2
〉|2/|〈1

2
,±1

2
; 1, 0|1

2
,±1

2
〉|2 = 2. As introduced above,

Jij = γ(rij) + ig(rij) is a complex decay rate with real part γ(rij) = γ(rji) and imaginary
part g(rij) = g(rji). Imaginary single particle terms represent energy shifts (single atom
Lamb shift) and are absorbed in the definition of detunings. Therefore, only imaginary
terms g(rij) with i 6= j are considered in the following and renormalized atomic energies
and the resulting effective detunings are used. The real and imaginary part of Jij are
given by [166]

γ(rij) =
3

2
Γ
(
1−(p̂ · r̂ij)

2)sin(kLrij)

kLrij

+
3

2
Γ
(
1−3 (p̂ · r̂ij)

2)
(

cos(kLrij)

(kLrij)2
− sin(kLrij)

(kLrij)3

)
, (3.8)

g(rij) = −3

2
Γ
(
1− (p̂ · r̂ij)

2) cos(kLrij)

kLrij

+
3

2
Γ
(
1− 3 (p̂ · r̂ij)

2)
(

sin(kLrij)

(kLrij)2
+

cos(kLrij)

(kLrij)3

)
,

where p̂ is the unit vector of the dipole matrix element p = 〈e↑|e x̂| ↑〉, which is assumed
to be real. r̂ij is the unit vector of the interatomic distance rij = ri − rj and rij = rji is
the length of the vector rij. Γ is the effective decay rate of a single isolated atom.

Master equation including thermal motion and noise processes

In this subsection, atomic motion is taken into account [85, 167, 168]. As shown below,
thermal motion gives rise to noise terms which are small compared to the desired con-
tributions for samples with large optical depth. Atoms are statistically distributed. The
dynamics of the whole system is governed by two different time scales, the characteristic
time of radiative emission 1/Γatomic and the characteristic time of atomic redistribution
L
v
, where L is the length of a cubic ensemble and v is the average velocity. In the limit,

where the time scale of atomic motion is fast compared to the time scale of radiative de-
cay Γatomic

L
v
¿ 1, the emission can be described independently of the evolution of atomic

positions which enters the master equation in the form of averaged coefficients, where the
average in time corresponds to an average in space10. The atomic positions can be treated
as independent random variables. For simplicity, a Gaussian probability distribution of

width L is chosen, P (r) = 1
π3/2L3 e

− r2

L2 [85]. As shown in App. B.3, the imaginary parts of
the averaged decay rates can be neglected. The averaged master equation is given by

dtρ(t) =
1

2

N∑
i,j=1

Γij

(
Aiρ(t)A†

j+Biρ(t)B†
j

)
+

1

2

N∑
i,j=1

Γ̌ij

(
Ciρ(t)C†

j +Diρ(t)D†
j

)
+ ... . (3.9)

with Γ̌ij = 2Γij for the basic model discussed here. For kLL À 1 and i 6= j, Γij = Γ 3
4(kLL)2

.

The resonant optical depth of one atomic ensemble is d = N
Γij

Γ
= 3N

4(kLL)2
. Using this

10An analysis of the generation of entanglement between two atomic ensembles in the opposite limit of
fixed atomic positions can be found in [93].
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definition and 1/ (kLL)2 ¿ 1, one obtains

dtρ(t) = d
Γ

2
Aρ(t)A† + d

Γ

2
Bρ(t)B† (3.10)

+ µ2 Γ

2

N∑
i=1

(
σI,iρ(t)σ†I,i + σII,iρ(t)σ†II,i

)

+ ν2 Γ

2

N∑
i=1

(
σ†I,iρ(t)σI,i + σ†II,iρ(t)σII,i

)

+ d
Γ̌

2
Cρ(t)C† + d

Γ̌

2
Dρ(t)D† +

Γ̌

2

(
µ2 + ν2

)

N∑
i=1

(σ↓↓,I,iρ(t)σ↓↓,I,i + σ↓↓,II,iρ(t)σ↓↓,II,i)

+ ... .

The first three lines correspond to the first sum in Eq. (3.9). The entangling terms in the
first line are enhanced by a factor d. For sufficiently optically thick samples, additional
noise terms in the second and third line, which reflect thermal motion, are small compared
to the desired contributions. The last two lines correspond to the second sum in Eq. (3.9),
where |↑〉〈↑|+ |↓〉〈↓| = 1I was used. The first two terms d(Γ̌/2)Cρ(t)C† + d(Γ̌/2)Dρ(t)D†

are collective dephasing terms. They do not have an effect on the entanglement generated
(see App. B.4.2) and can therefore be omitted.
In the following sections, the effect of pump fields is considered. Resonant pump fields
cause incoherent cooling (and heating) processes, which can be taken into account by
adding cooling (and heating) terms which correspond to a transfer of atoms from level
|↓〉 to level |↑〉 (and back). Finally, additional processes, which do not lead to spin flips
but cause dephasing, such as fluctuating magnetic fields are included. The full master
equation is given by

dtρ(t) = d
Γ

2
Aρ(t)A† + d

Γ

2
Bρ(t)B† (3.11)

+
Γcool

2

N∑
i=1

(
σI,iρ(t)σ†I,i+σII,iρ(t)σ†II,i

)

+
Γheat

2

N∑
i=1

(
σ†I,iρ(t)σI,i+σ†II,iρ(t)σII,i

)

+
Γd
2

N∑
i=1

(σ↓↓,I,iρ(t)σ↓↓,I,i + σ↓↓,II,iρ(t)σ↓↓,II,i)

+ ... .

Note that the last three lines represent single particle processes. They do not feature a
collective enhancement factor d as the entangling terms in the first line. The noise terms
proportional to Γµ2 and Γν2 in the second and third line in expression (3.10) have been
absorbed in lines two and three of Eq. (3.11). Hence, Γcool (Γheat) is the total single-particle
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cooling (heating) rate. Noise terms proportional to Γ (µ2 + ν2) in expression (3.10) have
been absorbed in the last line, such that Γd is the total dephasing rate. More details
concerning the derivation of the full master equation (3.11) can be found in App. B.4.2.

Creation of entanglement

In this subsection, the amount of entanglement which can be generated in the presence
of noise processes is determined for a given optical depth d and given parameters µ
and ν. Details of the calculation can be found in App. B.4. For simplicity, identical
conditions for both ensembles are assumed. The amount of entanglement produced is
measured by means of the quantity ξ defined in Eq. (3.3). Hence, the time evolution of
ΣJ = var(Jy,I + Jy,II) + var(Jz,I − Jz,II) as well as the evolution of the mean value of the
longitudinal spin |〈Jx,I〉| = |〈Jx,II〉| need to be calculated. Here and in the following, the
limit N À 1 is considered. ΣJ decays according to

dtΣJ = −
(
Γ̃ + dΓP2(t)

)
ΣJ + NdΓP2(t)

2 (|µ| − |ν|)2 ,

where Γ̃ = Γcool + Γheat + Γd and P2(t) = 2
N
〈Jx〉. The evolution of the mean value of the

longitudinal spin is given by

dt〈Jx〉 = −1

2
(Γheat + Γcool) 〈Jx〉t +

N

2
(Γcool − Γheat) .

There are two distinct time scales. For atomic ensembles with large optical depth, the
evolution of the transverse spin components is collectively enhanced and therefore fast
compared to the decay of 〈Jx〉 which is due to single particle processes. In the limit where
the entangled quantum state follows the changing atomic polarization adiabatically, the
time evolution of ξ(t) is given by

ξ(t) =
1

P2(t)
e−(Γ̃+dΓP2(t))t+

1

P2(t)

Γ̃ + dΓP2(t)
2(|µ| − |ν|)2

Γ̃ + dΓP2(t)

(
1− e−(Γ̃+dΓP2(t))t

)
.

In the steady state

ξ∞ =
1

P2,∞

Γ̃ + dΓP 2
2,∞ (|µ| − |ν|)2

Γ̃ + dΓP2,∞
, P2,∞ =

Γcool − Γheat

Γcool + Γheat

.

This result shows that for high optical depth, the system reaches an entangled steady
state. Under the dissipative dynamics considered here, entanglement persists for arbitrar-
ily long times. In the absence of noise, Γ̃ = 0 and Eq. (3.12) reduces to ξ∞ = (|µ| − |ν|)2.

Fig. 3.2a shows the attainable amount of entanglement in the steady state ξ∞ for
moderate optical depth d = 30 versus Z = (|µ| − |ν|)−1 if only probe fields are applied.
In this case Γprobe

cool = µ2Γ and Γprobe
heat = ν2Γ. The dephasing rate Γd = Γrad

d + Γadd
d consists

of a radiative part11 Γrad,probe
d = 2 (µ2 + ν2) Γ , which is due to light-induced transitions

11 In the two-level model shown in Fig. 3.1b, Γrad,probe
d = 2

(
Γprobe

cool + Γprobe
heat

)
, due to the ratio of Clebsch-

Gordan coefficients |〈12 ,± 1
2 ; 1,∓1| 12 ,∓ 1

2 〉|2/|〈12 ,± 1
2 ; 1, 0| 12 ,± 1

2 〉|2 = 2.
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Figure 3.2: Steady state entanglement ξ∞ in a two-level system for an optical depth d = 30 per
ensemble. a) ξ∞ versus Z = (|µ| − |ν|)−1. The horizontal black line indicates the
separable limit (for separable states ξ ≥ 1, the smaller ξ, the higher the amount of
entanglement). The lowest line (violet) depicts ξ∞ for purely radiative dephasing
Γadd

d = 0. The next curves show in ascending order Γadd
d = 2Γ (blue), Γadd

d = 5Γ
(green), Γadd

d = 10Γ (red) and Γadd
d = 20Γ (orange), where Γ is the single particle

decay rate. b) Steady state entanglement ξopt∞ for optimal squeezing parameter Z
versus pump parameter x. The curves correspond in ascending order to Γadd

d =
15(grey), Γadd

d = 20Γ (orange), Γadd
d = 25Γ (brown), Γadd

d = 30Γ (pink) and
Γadd

d = 35Γ (green). The inset shows the steady state polarization P2,∞ versus Z
in the absence of pump fields x = 0 (dashed line) and for x = 5 (solid line).

|↑〉 → |↑〉 and |↓〉 → |↓〉, and an additional term Γadd
d which summarizes all non-radiative

sources of dephasing such as fluctuating magnetic fields. This additional component can
take values up to Γadd

d = 20Γ while still allowing for a reduction of ξ∞ by 15%. For large
values of Γadd

d , the limiting mechanism is the decrease in polarization for high squeezing
parameters and can be counteracted by applying resonant σ+ and σ− polarized pump
fields to the first and second ensemble respectively, which drive the transition |↓〉 → |e↑〉.
In this case, the cooling rate can be roughly estimated12 as Γcool = (1 + x) Γµ2 . The

pump parameter x is given by x =
Ω2

pump

γ2
LW

(∆−Ω)2

Ω2
probe

k, where Ωpump is the Rabi frequency of

the pump field and γLW is the natural line width of excited levels. The correction factor
k takes Doppler broadening due to thermal motion into account13. In the presence of
pump fields, radiative dephasing is enhanced Γrad

d = 2 ((1 + x) µ2 + ν2) Γ. The heating

12 Rates Γab are calculated using the formula Γab = Ω2
ab

c2
ab

|∆ab+iγLW|2 γLW, where Ωab is the
Rabi frequency, ∆ab the detuning, γLW the natural line width of excited levels and cab

l =
〈jb,mb; jL2 ,mL2 |je,me〉〈je,me|ja,ma; jL1 ,mL1〉 is the product of the Clebsch-Gordan coefficients for
the transition under consideration (jL1/2 and jL1/2 refer to the absorbed and emitted photons involved
in the process). The cooling rate Γcool = Γprobe

cool + Γpump
cool consists of a probe- and a pump induced part.

As probe fields are considered to be far off-resonant, the corresponding cooling rate is calculated using
the approximation Γprobe

cool = Ω2
probe

1
(∆−Ω)2

γLW. Contributions due to resonant pump fields are given by

Γpump
cool = Ω2

pump
1

γ2
LW

γLW.
13 The correction factor k takes into account that due to the Doppler broadening of atoms moving at

room temperature only a fraction k = γLW
δDoppler

of all atoms in the cell is on resonance with the applied

field. The Doppler width is given by δDoppler = ν
c

(
2kBT
m ln 2

)1/2
, where c/ν = λ is the wavelength of the

applied light field, kB is the Boltzmann constant, T is the temperature and m is the atomic mass.
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rate is unaffected. Fig. 3.2b shows the maximal attainable amount of entanglement ξopt
∞

(entanglement for optimal squeezing parameter Z), for d = 30 versus pump parameter x.
For x = 5, additional dephasing up to Γadd

d = 37Γ can be tolerated while still allowing for
a reduction of ξopt

∞ by 15%. Remarkably, the application of external pump fields, which
amounts to adding extra noise to the system, is advantageous in this case.

3.1.4 Implementation in multi-level systems

In Sec. 3.1.3, the theoretical framework for creating steady state entanglement between
two atomic ensembles at room temperature is presented in detail for two-level systems.
This section complements the main results derived in Sec. 3.1.3 by considering the im-
plementation in multi-level systems. In the following, the possibility of transferring the
concepts developed for two-level systems to atoms with multi-level ground states is inves-
tigated by means of a general simplified model and the conditions for obtaining entangle-
ment in a steady state are analyzed qualitatively.
As specific example, the implementation of the proposed scheme in ensembles of alkali
atoms is studied, where the two-level system is encoded in a multi-level ground state
manifold. Due to the richer internal structure, no external electric fields or optical el-
ements need to be employed in contrast to the setup discussed in the previous section.
As explained below, suitable values µI = µII and νI = νII are realized naturally. In
principle, it is possible to include all magnetic sublevels and all possible transitions of a
particular alkali atom in the following consideration. However, rather than aiming for a
complete description which takes the entire level structure of a specific atom into account,
the general model used here is primarily intended to describe the underlaying physics. In
Sec. 3.1.4, it is shown how additional dynamics in a multi-level system can be taken into
account by means of this simplified model which allows one to describe the physical effects
with a small set of parameters while capturing all relevant features. Below, the attainable
degree of entanglement is estimated.

Including multi-level dynamics

In the following, encoding of a two-level subsystem in a multi-level ground state is con-
sidered. For example, the ground state of alkali atoms with nuclear spin I is split in
two manifolds with total angular momentum F = I + 1/2 and F ′ = I − 1/2 respec-
tively. The relevant two-level subsystem can be encoded in the two outermost states of
the F = I + 1/2 ground state manifold such that |↑〉 ≡ |F,±F 〉 and |↓〉 ≡ |F,±(F − 1)〉
in the first/second ensemble.
In general, the maximum attainable amount of entanglement ξideal = (|µ| − |ν|)2 is deter-
mined by the different rates µ2Γ and ν2Γ at which probe-field induced transitions |↓〉 → |↑〉
and |↑〉 → |↓〉 occur. The values of the parameters µ and ν depend on the multi-level
structure of the excited states as well as on polarization and detuning of the applied laser
field. This can be illustrated by considering the off-resonant probing of 133Cs atoms on
the D2 line using the setup shown in Fig. 3.1a. ŷ-polarized probe light which propagates
along ẑ, interacts successively with two Cs ensembles in x̂-oriented magnetic fields. It
is assumed that the applied magnetic fields are weak (B ≈ 1Gauss), such that the Lar-
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mor splitting Ω ≈ 300kHz is much smaller than the fine structure splitting of excited
states. The first ensemble is strongly spin polarized along the orientation of the magnetic
field, while the second ensemble is polarized antiparallel. As explained in Sec. 2.1.2 and
shown in Fig. 2.2, the passive and the active part of the interaction involve different the
upper levels. Taking the different Clebsch-Gordan coefficients into account, one obtains
Z = (µ− ν)−1 = 2.3 for blue detuning ∆ = 700MHz with respect to the F = 5 mani-
fold of 6P3/2. (Both parameters, µ and ν, are positive). Alternatively, x̂-polarized probe
light can be used in combination with red detuning. Both variants are possible; for the
reminder of this subsection, x̂-polarized probe fields will be considered.
More generally, the multi-level structure of excited states affects only the value of ξideal.
The multi-level character of the ground state leads to additional dynamics that needs to
be taken into account. Firstly, atoms can leave the relevant two-level subsystem. While
matter and light interact, atoms redistribute or are lost to other groundstate manifolds.
Therefore, the atomic population in the two-level subsystem is continually reduced. This
is accounted for by introducing a time- dependent population N2(t) and including the
effect accordingly in the corresponding polarization P2(t). The subscript ”2” emphasizes
that these quantities are defined with respect to the two-level subsystem {|↑〉, |↓〉}. In
order to calculate N2(t) and P2(t), a general model is introduced which allows one to
analyze the realization of the proposed scheme in atoms with multi-level ground states.
A high degree of population and polarization with respect to the two-level subsystem is
required in the process of generating long-lived entanglement. Therefore σ± polarized
pump and repump fields have to be applied. These additional fields induce transitions
with ∆mF = +1 in the first ensemble and transitions with ∆mF = −1 in the second one.
For alkali ensembles, pump fields drive transitions within the manifold F = I + 1/2 while
repump fields transfer atoms in F ′ = I − 1/2 back to F = I + 1/2. In the desired case
of high polarization with respect to the two outermost states, the atomic population in
sublevels with F = I + 1

2
, mF < F − 1 (mF > −F + 1) in the first (second) ensemble can

be neglected. In this regime, it is sufficient to restrict the description to three states, |↑〉,
|↓〉 and |h〉, where |h〉 ≡ |F ′, F ′〉 for the first and |h〉 ≡ |F ′,−F ′〉 for the second ensemble.
Finally, one has to distinguish between spin operators which refer to the relevant two-level
subsystem and experimentally measurable quantities which are defined with respect to
F = I + 1/2. For clarity, operators referring to the full multi-level structure are labelled
with the subscript ”exp”. The longitudinal spin of each ensemble is given by

Jx,exp =
N∑

i=1

F∑
m=−F

m|m〉i〈m|≈
N∑

i=1

(F |↑〉i〈↑ |+(F−1)|↓〉i〈↓ |)=Jx,2+
2F − 1

2
N2(t), (3.12)

where N2 =
∑N

i=1 (|↑〉i〈↑ |+ |↓〉i〈↓ |). For transverse spin components,

Jy,exp =
1

2

N∑
i=1

F∑
m=−F

√
F (F +1)−m(m+1)(|m + 1〉i〈m|+|m〉i〈m+1|)≈

√
2FJy,2,(3.13)

such that

ΣJ,exp = 2FΣJ,2 + 2(2F − 1)N↓, (3.14)

with N↓ =
∑N

i=1 |↓〉i〈↓|.
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Dissipatively driven entanglement between two alkali ensembles

In the following, the calculation of the entanglement which can be produced in the de-
scribed setting is outlined and the time evolution of ξexp(t) is computed. The master
equation governing the evolution of the atomic system according to the general model out-
lined in Sec. 3.1.4, as well as details of the calculation summed up below, can be found in
App. B.5. Atomic populations N↑=

∑N
i=1 |↑〉i〈↑|, N↓=

∑N
i=1 |↓〉i〈↓| and Nh =

∑N
i=1 |h〉i〈h|

can be calculated using the rate equations

dt




N↑(t)
N↓(t)
Nh(t)


 = M




N↑(t)
N↓(t)
Nh(t)


 , (3.15)

where

M =



− (Γ↑↓ + Γ↑h) Γ↓↑ Γh↑

Γ↑↓ − (Γ↓↑ + Γ↓h) Γh↓
Γ↑h Γ↓h −2

(
Γh↑+Γh↓

)


 .

Γab is the single-particle rate for the transition |a〉 → |b〉. If the transition rates are
known, the number of atoms in the relevant two-level subsystem N2(t) = N↑+N↓ and the
polarization P2(t) = (N↑ −N↓) /N2(t) can be directly computed. Based on this result, the
time evolution of ΣJ,2 = var (Jy,I + Jy,II)2 + var (Jz,I − Jz,II)2 can be calculated. Again,
the situation exhibits two different time scales. The decay collective of ΣJ,2 is fast com-
pared to the evolution of N2(t) and P2(t). A calculation analogous to the one described
in App. B.4 leads to

ΣJ,2 =N2(0)e−(Γ̄+d(t)ΓP2(t))t+N2(t)
Γ̄+d(t)ΓP2(t)

2 (µ−ν)2

Γ̄+d(t)ΓP2(t)

(
1−e−(Γ̄+d(t)ΓP2(t))t

)
, (3.16)

with d(t) = dN2(t)/N and Γ̄ = Γ↑↓ + Γ↓↑ + Γ↑h + Γ↓h + Γ↑↑ + Γ↓↓ + Γadd
d , where Γadd

d

accounts for non-radiative dephasing. On time scales which are long compared to the fast
desired dynamics (but short enough to avoid profuse depletion of the relevant two-level
subsystem, such that N2(t) À 1 is guaranteed), ΣJ,2 is given by the long-time (lt) solution

Σlt
J,2 = N2(t)

Γ̄ + d(t)ΓP2(t)
2 (µ− ν)2

Γ̄ + d(t)ΓP2(t)
. (3.17)

Now, this result is related to experimentally measurable quantities. Inserting Eqs. (3.12),
(3.13), (3.14) and (3.17) into the definition ξexp = ΣJ,exp/ (2 | 〈Jx〉exp |) yields

ξlt
exp =

Γ̄ + d(t)ΓP2(t)
2 (µ− ν)2

Γ̄ +d(t)ΓP2(t)

2F

P2(t) + 2F − 1
+

N↓(t)
N2(t)

2(2F − 1)

P2(t) + 2F − 1
. (3.18)

This long-time solution is a generalization of Eq. (3.5) which takes multi-level dynamics
into account. Particle losses result in a decrease in d(t) and P2(t). If transitions out of the
two-level subsystem can be counteracted efficiently by pump- and repump-fields, a true
entangled steady state can be reached. Otherwise, a quasi steady state is produced. These
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Figure 3.3: Entanglement between 133Cs ensembles with optical depth d = 30 for blue detuned
probe light (∆ = 700MHz). a) Steady state entanglement ξexp,∞ versus strength
of the repump fields xrepump (see Sec. 3.1.4 and App. B.6) for different values for
the non-radiative dephasing rate Γadd

d . The curves correspond in ascending order
to Γadd

d = 0 (violet), Γadd
d = 2 (blue), Γadd

d = 5 (green), Γadd
d = 10 (red) and

Γadd
d = 20 (orange). b) Entanglement versus time in units 1/Γ in the absence

of repump fields (xrepump = 0; all other parameters take values as in a). The
fast entangling dynamics results in a drop in ξexp(t) (indicating the creation of an
inseparable state), but since particle losses are not counteracted by repump-fields,
this additional slow dynamics eventually causes ξexp(t) to rise. Hence, a quasi
steady state is produced. The behavior on long time scales is determined by the
stationary state given by Eq. (3.12) superposed by slow multi-level dynamics.

two cases are illustrated in Figs. 3.3a and 3.3b respectively using the concrete example of
133Cs ensembles (F=4) at room temperature. Fig. 3.3a shows the amount of steady state
entanglement generated in case of sufficient repump power. More specifically, the depicted
curves represent solutions for different values of Γadd

d versus the repump parameter xrepump,
starting from xrepump = 0.01. The repump parameter xrepump quantifies the strength of
the applied repump fields and is given by the ratio xrepump = Ω2

repump/Ω
2
pump,opt, where

Ω2
pump,opt is the optimal Rabi frequency that can be chosen for the pump field within

the validity of the model considered here (Ω2
pump,opt is the minimal Rabi frequency of the

pump field leading to N↑,∞/N2,∞ ≥ 0.95 in the steady state). Details of the calculations
leading to the plots can be found in App. B.6. Fig. 3.3b illustrates the case, where particle
losses dominate the evolution of ξexp(t). The curves in this figure show the amount of
entanglement generated in the absence of repump fields as a function of time in ms. For
short times the time evolution is governed by the desired dynamics within the relevant
two-level subsystem and reaches quickly an entangled steady state. For longer times this
stable state with respect to the entangling dynamics is superposed by the slow additional
evolution imposed by the multi-level structure of the ground state. The fast desired
dynamics entangles the collective spins of both ensembles, while particle losses cause a
slow but continuing shortening of the spins. In this sense, Fig. 3.3b shows the creation of
a quasi-steady state. For t > 0.05/Γ, the time evolution is given by Eq. (3.19), that is,
the time evolution is solely determined by particle loss-related dynamics.
In this section, emphasis is put on the general, implementation independent limitations
of the proposed scheme imposed by radiative transitions. These undesired processes
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are characteristic for a given level scheme and intimately linked to the tradeoff between
enhanced entangling dynamics due to increased probe, - or pump power and added noise.
Depending on the concrete experimental realization, other undesired processes impairing
the performance of the proposed scheme can occur like for example spin flips due to
collisions. Atomic transitions and additional dephasing due to collisions with the walls
can be taken into account by including terms of the type

dtρ(t) =
Γcol

2

N∑
i=1

(
σI,iρ(t)σ†I,i+σII,iρ(t)σ†II,i

)

+
Γcol

2

N∑
i=1

(
σ†I,iρ(t)σI,i+σ†II,iρ(t)σII,i

)

+
Γcol

2

N∑
i=1

(σ↓↓,I,iρ(t)σ↓↓,I,i + σ↓↓,II,iρ(t)σ↓↓,II,i)

+ ...

to the master equation. Since the thermal energy of atoms is typically much larger than
the atomic level splittings, the same collisional rate Γcol can be assumed for all atomic
transitions. The value of Γcol has to be determined phenomenologically for the specific
experimental setup under consideration (compare [III]).

3.1.5 Experimental realization

In this section, we describe the experimental realization of the proposed scheme. In the
experiment [III], entanglement has been generated purely dissipatively between two Ce-
sium ensembles and has been maintained for 0.04s at room temperature. Moreover, a
hybrid approach has been implemented, which combines the dissipative entangling mech-
anism with continuous measurements of the light field, which allowed for the realization
of an entangled steady state. Below, we briefly describe the experimental setting, sum-
marize the results and explain the theoretical fits to the measured data. In the last part
of this section, we show how measurements on the light field can improve the dissipative
generation of entanglement in the presence of noise sources.

Experimental setting

The experiment is performed using two dilute 133Cs gas samples in 2.2cm cubic cells
containing about 1012 atoms each, separated by 0.5m as described in [12]. The two-level
system |↑〉I/II and |↓〉I/II is encoded in the 6S1/2 ground state sublevels |F = 4,mF = ±4〉
and |F = 4,mF = ±3〉 in the first and second ensemble respectively. A bias magnetic
field of 0.9G leads to a Zeeman splitting of Ω = 322kHz. The anti-relaxation coating
of the cell walls and careful magnetic shielding [17] provide a non-radiative decoherence
time for populations and coherences of T1 ≈ 130ms and T2 ≈ 40ms. The two ensembles
are initialized in the states |4,±4〉 with orientation up to P = 0.998(3) by applying a
pump laser polarizing the F = 4 manifold and a laser repumping atoms from F = 3 to
F = 4 for 10 to 50ms as shown in Fig. 3.4a. The driving laser is ŷ polarized and blue
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Figure 3.4: Optical pumping scheme and experimental setup. a) Atomic spin states and applied
laser fields. The entangling driving field is represented by yellow arrows. Grey
dashed and green dash-dotted lines represent pump and repump fields respectively.
b) Geometry of the experiment. The (dc) polarization detectors on the left measure
the Faraday rotation angle, which is proportional to the macroscopic spin Jx. The
(ac) S2 detector signal processed by the lock-in amplifier (LA) is used to determine
the transverse atomic quantum spin components Jy,z as described in the text.

detuned by 850MHz from the F = 4 ↔ F = 5 transition of the D2 line corresponding to
(µ− ν)2 = 0.16.

The nonlocal atomic state variance ξ = ΣJexp/ (2|〈Jx,exp〉|) is inferred, and the entangle-
ment condition ξ < 1 is verified by a polarization measurement on the light transmitted
through the two ensembles (see Fig. 3.4b). In this setup, the same laser is used to create
and to verify the entanglement which significantly simplifies the experiment. In the pe-
riod t < T , up to a variable time T (see pulse sequence in Fig. 3.5b) the laser serves only
as driving field for the entangling dissipative process. The results of the measurements
on the transmitted light are not used, which is equivalent to tracing out the light field.
Beginning at t = T , the corresponding mode of the transmitted light field is used for the
determination of the atomic state at time T [12, 169–171]. The particular mapping em-
ployed in the experiment is described by the input-output relations for atomic and light
operators before and after the interaction as explained in Sec. 2.1.3 (a detailed derivation
of the input-output relations can be found in App. D.1) and has also been utilized in
several other contexts [VII], [17, 18]. As indicated in Fig. 3.4b and Fig. 3.5e, the Stokes
operator S2 = 1

2
(n+45 − n−45) is measured, where n+45 is the number of photons in ±45

polarization. More specifically, the sin(Ωt) and cos(Ωt) modulated components of S2 are
determined, where Ω is the Larmor frequency. This fast oscillating signal is evaluated
according to a slowly varying (exponential) envelope function h(t), which corresponds
to measuring the quantity xh,sin/cos introduced in Sec. 4.1.4 (see Eq. (2.6)). This way,
Eq. (2.10) allows one to infer the atomic variance from the measured signal in the ideal
case. Atomic decay can be included as described in App. D.1.2. The measurement of
the atomic EPR variance ΣJexp(T ) at time T as well as the specific atomic noise recon-
struction method is explained in detail in [III]. The calibration and verification of the
reconstruction of the atomic state (compare [III]) shows that the measurement of ξ is
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Figure 3.5: Experimental results a) Time evolution of ΣJ(t)/ (2|〈Jx(0)〉|) (blue) and
〈Jx(t)〉/〈Jx(0)〉 (grey). The theoretical fits (full and dashed black line) are based on
the parameters d = 55, Γcol = 0.002ms−1, Γ̃ = 0.193ms−1 and Γ = 0.002ms−1 (see
main text). b) Entanglement ξ(t) versus time in ms. Blue data points correspond
to the results shown in a). Orange data points are obtained for a lower optical
depth (d = 35). The other parameters in the fits take the same values as in a).
The pulse sequence is shown below. The data taken in the absence of the driving
field (black points) show no entanglement. c) Dissipative entanglement generation
in the presence of a pump field with pump rate Γpump = 0.168ms−1. d = 37, the
fitting parameters Γcol and Γ take the same values as in a) and Γ̃ = 0.233ms−1.
The inset shows the evolution of ξ(t) after the driving field is switched off. d)
Entanglement ξ(t) for different initial conditions. The upper curves show a purely
dissipative evolution. The lower curves show the measurement assisted entangle-
ment. Points on the right represent an average over measurements of one hour
where atoms were kept in a steady state. e) Entanglement generation and verifi-
cation. The signal from the detector D for times t > T is used for verification of
entanglement in (a-c). In d) the signal taken at t < T is sent to the verifier as
additional information (see main text).

reliable within the uncertainty of ±4% arising from uncertainty in the measurements of
the coupling strength, the detection efficiency and the shot noise of light.

Experimental results

In the first set of experiments, entanglement is generated purely dissipatively. In the first
series of this set, the pump- and repump fields are turned off at time t = 0 (Fig. 3.5a,b)
and the driving (entangling) laser is turned on. The single atom spontaneous emission
reduces T2 to 6ms and T1 to 34ms. This decoherence has been considered the fundamen-
tal limitation for the entanglement generated by measurements [12]. Here, the collective
entangling dissipative mechanism due to forward scattering14 dominates over the single
atom decoherence and leads to a rapid reduction of ΣJexp(t). Fig. 3.5a shows the time
evolution of ΣJexp(t) normalized to 2|〈Jx,exp(0)〉|. For a coherent spin state (CSS) ξ = 1.
ΣCSS = 2|〈Jx,exp〉| defines the projection noise (PN) level, below which lies the noise level

14Note that the generation of entanglement cannot be explained by the interaction of photons emitted
by the first ensemble with the second one, which is negligible in the accessible parameter regime.
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of entangled states. The dynamics of 2|〈Jx,exp(t)〉| due to single atom spontaneous emis-
sion and collisions on the slow time scale of T1 is also shown in Fig. 3.5a. Fig. 3.5b displays
the time evolution of entanglement for two different values of the optical depth d = 35 and
d = 55. Note that for d = 55, the entanglement generated by dissipation can be created
and maintained even though the initial atomic noise ΣJexp(0) is significantly above the
PN level. The life time of entanglement of 0.015s is several times longer than the best
previous results obtained for measurement induced entanglement [12,66] and much longer
than T2. For comparison, if the driving (entangling) laser is off during 0 < t < T and is
turned on only at t = T to measure the atomic state, ξ(T ) predictably stays above the PN
level (black points in Fig. 3.5b). In this series of experiments, entanglement is created in a
quasi-steady state rather than in a steady state, as would be the case for a true two-level
atomic ground state. On the time scale of T1, atoms are lost to other magnetic sublevels
of F = 4 and to the level F = 3, which leads to a decreasing population and modified
polarization in the relevant two-level subsystem as explained in Sec. 3.1.4. This causes
the eventual extinction of entanglement as described well by the theoretical fits shown in
Fig. 3.5a,b where a simplified model is used, which is described below.
In the next series of experiments, a resonant pumping field (see Fig. 3.4a) of optimal
strength is applied continuously during the entangling period t > 0 (Fig. 3.5c). Remark-
ably, this incoherent process does not suppress the generation of entanglement, but leads
to an improvement. The increase in entanglement lifetime to 0.04s is due to the pumping
of atoms which have decayed to sublevels with |mF | < 3 and thus lead to an increase in
the atomic noise contribution, back to |mF | = 4 which is a dark state for the pump beam.
The eventual loss of entanglement is in part due to atoms which are lost to the F = 3
ground state, which effectively reduces d. If the entangling mechanism is turned off, the
entangled state decays in 2ms (inset in Fig. 3.5c), as expected [12].
Finally, the generation of steady state entanglement is demonstrated. To this end, a re-
pumping field which induces transitions F = 3 → F = 4 (see Fig. 3.4a) is added during
the generation of entanglement. The atoms reach a steady state which is not entangled
since the collective processes are not sufficiently strong to overcome the noise added by
the incoherent repumping field. A calculation using the current experimental parameters
shows that steady state entanglement can be achieved for d = 100, but this is experi-
mentally not feasible. Therefore, we developed an alternative approach, which enables
the creation of steady state entanglement using a hybrid method which combines the dis-
sipative entangling mechanism with measurements on the light field. The measurement
results are used in order to purify and therefore enhance entanglement (this is possible
because the photons scattered in forward direction are not completely uncorrelated with
the atoms due to single atom decoherence). In the series of experiments described above,
measurements of light variables have only been used to verify the presence of entangle-
ment. More specifically, the verification of entanglement in the atomic system at time
T involves the evaluation of photonic variables corresponding to times t > T . Using the
results of the continuous measurement on the open atomic quantum system during the
interval t < T , the generated entanglement can be enhanced and maintained in a steady
state, as is explained in more detail below. These central results are displayed in Fig. 3.5d,
which shows the evolution of the variances of the purely dissipatively generated atomic
state (upper curves) and the entanglement produced using the hybrid method including
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dissipation and continuous measurements (lower curves). Each pair of curves corresponds
to two different initial conditions. These results demonstrate that the generated steady
state is independent of the initial state, and that entanglement is maintained for up to an
hour, if dissipative processes are combined with measurements.

Comparison of experimental data and theoretical predictions

In the following, details regarding the theoretical fits presented in Fig. 3.5 are provided.
The generated amount of entanglement ξ(t) can be calculated as described in detail in
Sec. 3.1.4. As explained there, the produced entanglement is given by

ξexp(t) =
8ΣJ2 + 14N↓(t)
N2(t) (P2(t) + 7)

. (3.19)

The time evolution of the EPR variance ΣJ2 can be calculated using Eq. (3.16) if the
collective decay rate (dΓ) and the effective dephasing rate (Γ̃) as well as N2(t) and P2(t)
are known. In the following, we outline how these quantities can be inferred and explain
the theoretical fits to the measured data shown in Fig. 3.5.
The essential features of the experiment can be described by means of the simplified model
introduced in Sec. 3.1.4, which involves only the three atomic states15 |4,±4〉, |4,±3〉 and
|h〉I/II ≡ |3,±3〉. Since the model is primarily intended to predict the physical effects
observed in the experiment qualitatively with very few parameters, Γ|↑〉→|h〉 ≈ Γ|↓〉→|h〉 =
Γout and Γ|h〉→|↑〉 ≈ Γ|h〉→|↓〉 = Γin is used, such that

d

dt
N2(t) = − (Γout + 2Γin) N2(t) + 2NΓin,

d

dt
P̃2(t) = − (Γ↓↑ + Γ↑↓ + Γout) P̃2(t) + (Γ↓↑ − Γ↑↓) N2(t)/N,

where P̃2(t) = P2(t)N2(t)/N and the abbreviations Γ↑↓ = Γ|↑〉→|↓〉 and Γ↓↑ = Γ|↓→|↑〉
have been used. Atomic transitions can be either induced by the driving field or be
due to collisions. Since the thermal energy of atoms is much larger than the atomic level
splittings, the same collisional rate Γcol is assumed for all atomic transitions. Accordingly,

Γ↓↑ = µ2 Γ + Γcol, Γout = Γout
L + Γcol,

Γ↑↓ = ν2 Γ + Γcol, Γin = Γcol,

where µ2Γ and ν2Γ are the driving field induced cooling and heating rate respectively. Γout
L

is the rate at which atoms leave the two-level subsystem due to radiative transitions caused
by the driving field. The number of free parameters in these equations can be reduced
to two, using the experimentally determined time derivative of the atomic polarization
Pexp = 〈Jx,exp(t)〉/〈Jx,exp(0)〉 at time t = 0

d

dt
Pexp(t)

∣∣∣∣
t=0

=
− (Γ↑↓ + 4Γout) N↑(0)+(Γ↓↑−3Γout) N↓(0)

〈Jx,exp(0)〉 ,

15For the time scales considered here, the atomic population in other sublevels can be neglected.
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where it is taken into account that the initial spin state is not perfectly polarized, but
contains a small fraction of atoms in state |4,±3〉. The initial populations N↑(0) = 0.99,
N↓(0) = 0.01 and Nh(0) = 0 are estimated based on measurements of the orientation of
the initial spin state after optical pumping. Using this constraint, Pexp(t) can be fitted
using two free parameters. This way, fixed expressions for P2(t) and N2(t) are obtained.
As mentioned above, the values of the collective decay rate dΓ and the dephasing rate
due to noise effects, Γ̃, have to be known in order to calculate the generated amount of
entanglement as described in Sec. 3.1.4. These parameters are determined based on the
measured slope of the variance ΣJ,exp(t)/ (2|〈Jx,exp〉|) at time t = 0 and the decay of the
transverse spin. These two quantities are given by

d

dt

ΣJexp(t)

2|〈Jx,exp(0)〉|

∣∣∣∣
t=0

=−4NdΓP2(0)
(
1−P2(0)/(µ−ν)2)+7ΓinP2(0)−7 (Γout+Γ↓↑−Γ↑↓)N↓(0),

and 〈Jy,exp(t)〉 = e−
1
2(Γ̃+dΓP̃2(t))t〈Jy,exp(0)〉, where Eq. (3.16) and the identities relating

quantities defined with respect to a two-level system to quantities defined with respect to
a multi-level structure stated in Sec. 3.1.4 have been used.

Dissipative entanglement assisted by measurements

In the following, we show by means of a simple model how measurements on the light
field can improve the generation of entanglement under the dissipative dynamics described
above in the presence of noise sources. In order illustrate the relevant effects, we describe
the atomic system in terms of the quadratures

xA,I/II = Jy,I/II/
√
|〈Jx,I/II〉|, pA,I/II = Jz,I/II/

√
|〈Jx,I/II〉|,

within the Holstein-Primakoff approximation [89], as explained in Sec. 2.1.1. We include
noise in the form of decay of the transverse spin components Jy and Jz at a rate γextra. We
explain here the dissipative generation of entanglement assisted by measurements in terms
of input-output relations, since this approach is more illustrative than the master equation
formalism employed above. Both descriptions are equivalent and yield the same results.
As described in Sec. 2.1.1, the light field is characterized in terms of spatially localized
modes [87,88], xL(z), pL(z) with [xL(z), pL(z′)] = icδb(z−z′). The spatial argument refers
to the distance along the propagation direction of the light field ẑ. The spatial resolution
is determined by the width of the delta function, which is on the order of c/b, where b
is the frequency bandwidth of the applied classical laser field. Light and matter interact
via a Faraday interaction (see Sec. 2.1.2). The corresponding input-output relations for
atoms and light are given by16

(
xout

A,cos/sin

pout
A,cos/sin

)
= e−

κ2

2Z2

(
xin

A,cos/sin

pin
A,cos/sin

)
+

√
1− e−

κ2

Z2

(
0 Z

−1/Z 0

)(
xin

cos/sin,+

pin
cos/sin,+

)
,

(
xout

cos/sin,−
pout

cos/sin,−

)
= e−

κ2

2Z2

(
xin

cos/sin,−
pin

cos/sin,−

)
+

√
1− e−

κ2

Z2

(
0 Z

−1/Z 0

)(
xin

A,cos/sin

pin
A,cos/sin

)
,

16 We use here the notation employed in the experiment. This notation differs from the one used in the
previous part of this section by local rotations (according to the notation used in the in Sec. 3.1.1-
Sec. 3.1.4, H ∝ pApL + 1

Z2 xAxL, while here H ∝ xAxL + 1
Z2 pApL).
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Figure 3.6: Steady state entanglement assisted by measurements. a) Illustration of the in-
teraction of atoms and light in terms of spatially localized modes. b) Squeezed
atomic variance var (pA,cos/sin) in the steady state versus the ratio ηZ2/κ2 if the
x-quadrature of the scattered light field is measured (full line) and in the absence
of measurements (dashed line). The parameters κ2/Z2 and η quantify the rela-
tive strength of the rates of the desired entangling processes and the atomic decay
respectively.

where the notation and definitions introduced in Sec. 2.1.3 have been used. As next
step, continuous measurements on the light field are included and the corresponding time
evolution of the atomic state is considered in the Schrödinger picture. The continuous
interaction and measurement process shown in Fig. 3.5e (see also Fig. 3.4b) is illustrated
schematically in Fig. 3.6a in a discretized way, where spatially localized light modes cor-
respond to infinitesimally short pulses of duration τ ∼ 1/b, which interact successively
with the atomic system. Each of these spatially localized light modes is initially in the
vacuum state, such that the quantum state at time t = nτ is given by |Ψ(t)〉A|0〉L,n+1,
where |Ψ(t)〉A denotes the atomic state at time t. Then, atoms and light are subject to an
entangling interaction resulting in the quantum state e−iHτ |Ψ(t)〉A|0〉L,n+1. Finally, the
x-quadrature of the light field is measured yielding the measurement outcome xn, such
that |Ψ(t + τ)〉A = 1√

P (xn)
L,n+1〈xn|e−iHτ |0〉L,n+1|Ψ(t)〉A, where P (xn) is the probability to

obtain the result xn. The resulting expression can be expanded up to first order in the
parameter τ yielding a differential equation for the time evolution of the atomic system.
The atomic state obtained after a measurement depends on the measurement outcome xn.
However, since the states, interactions and measurements considered here are Gaussian,
the entanglement of the resulting state is completely determined by the atomic variance
var (pA,cos/sin), which does not depend on xn [172]. Therefore, the resulting entanglement
is independent of the measurement outcome. If the measurement results are traced out
(ρ(t + τ) =

∑
xn

Mnρ(t)M †
n, where Mn =L,n+1 〈xn|e−iHτ |0〉L,n+1), and the resulting ex-

pression is evaluated to first order in τ , the master equation used in the previous sections
is recovered.
The whole process can be conveniently described by means of the Gaussian formalism,
where atomic states are expressed in terms of their covariance matrix Γc, and displace-
ment vector D, which display the second moments (variances and covariances) and first
moments (mean values) of the system respectively, |Ψ(t)〉A = |Γc(t),D(t)〉. In particular,
this formalism allows one to calculate easily the variances of atomic quadratures after the
Gaussian measurement of the x-quadrature of the light field, var (pA,cos/sin)cond

at the end
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of each time step depending on the variance prior to the measurement

var (pA,cos/sin)cond
= var(pA,cos/sin)− 〈pA,cos/sinxL,cos/sin + xL,cos/sinpA,cos/sin〉2

4var(xL,cos/sin)
, (3.20)

where xL,cos/sin and pL,cos/sin refer to the localized light mode interacting with the ensemble
in the nth time step and κ2τ/(Z2T ) ¿ 1 is assumed. This way, a differential equation for
the squeezed atomic variances is derived. In the ideal case,

var(pA,cos/sin)cond(t+τ)=var(pA,cos/sin)cond(t)+var (pA,cos/sin)cond
(t)

(
1−var (pA,cos/sin) (t)Z2

) κ2τ

2Z2T
,

which yields

var (pA,cos/sin)cond(t) =
1

e−
κ2t

2Z2T (var (pA,cos/sin)(0))−1 + Z2
(
1− e−

κ2t
2Z2T

) ,

whereas in the absence of measurements,

var (pA,cos/sin) (t) = e−
κ2t

2Z2T var (pA,cos/sin)(0) +
1

Z2

(
1− e−

κ2t
2Z2T

)
.

Both time evolutions result in a steady state with var
(
pc/s

)
∞ = 1/Z2 = (µ − ν)2, since

atoms and light decouple for t →∞. Accordingly, the steady state entanglement can not
be improved by means of measurements on the light field in the ideal case. The situation is
different in the presence of noise sources, which prevent the decoupling of atoms and light.
In this case, residual correlations between atoms and light persist in the steady state and
measurements on the light field can be used to improve the entanglement. Here, this effect
is illustrated by including atomic transverse decay17 at a rate η/T . If the x-quadrature
of the scattered light field is measured, one obtains

ξcond,∞ =
1

2Z2


1− ηZ2

κ2
+

√(
1− ηZ2

κ2

)2

+ 4Z2
ηZ2

κ2


 .

Fig. 3.6b shows that for η > 0, the steady state entanglement described by this equation
is higher than the steady state if no measurements are performed, which is given by

ξ∞ =
κ2

Z4 + η
κ2

Z2 + η
.

Note that in principle, all measurement results x(t) obtained during the continuous mea-
surement procedure could be used to perform feedback operations which stabilize the

17 In this case, the Hamiltonian is given by H = Hcos + Hsin, where Hcos/sin = Hent
cos/sin + Hnoise

cos/sin.
Hent

cos/sin = κ√
T

(
1

Z2 xA,cos/sinxL,cos/sin + pA,cos/sinpL,cos/sin

)
corresponds to the desired entangling inter-

action, while Hnoise
cos/sin =

√
η
T (xA,cos/sinxN,cos/sin + pA,cos/sinpN,cos/sin) describes transverse dephasing at

a rate η/T . xN,cos/sin and pN,cos/sin refer to noise modes with 〈xN,cos/sin(t)〉 = 〈pN,cos/sin(t)〉 = 0,
〈xN,cos/sin(t)xN,cos/sin(t′)〉 = 〈pN,cos/sin(t)pN,cos/sin(t′)〉 = δ(t− t′) and [xN,cos/sin, pN,sin/cos] = 0.
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atomic state at a certain position in phase space. However, this is not necessary here,
since the atomic quantum state at time t depends only on the recent history of the mea-
surements, i.e. on x(t′) for tss ≤ t′ ≤ t, where tss is the time it takes to reach the steady
state. For the dissipative processes considered here, the atomic state ρ(t) is memoryless
regarding events which occurred in a time interval longer than tss. Thus, only measure-
ment results obtained during a fixed time interval tss, which is independent of t are needed
to localize the atomic state in phase space.
Experimentally, the conditional variance var (pA,cos/sin)cond

at time t = T is inferred by mea-
suring continuously the x-quadrature of the light field for t < T (see Fig. 3.5e). The mea-
sured value of the photonic x-quadrature, xL,cos/sin(t < T ) is fed back18 to the atomic vari-
able pA,cos/sin with feedback gain α yielding var (pA,cos/sin)cond

= var (pA,cos/sin − αxL,cos/sin).
The feedback gain and the exponential envelope function of the read-out mode are
optimized to yield the maximal noise reduction (see [III] for details). Using the for-
malism introduced above, it can be shown that for optimal feedback parameter α,
var (pA,cos/sin − αxL,cos/sin) is identical to Eq. (3.20).

3.1.6 Concluding remarks

In summary, a technique for entangling two mesoscopic atomic ensembles at room tem-
perature which are separated by a macroscopic distance is proposed. The core idea is
to engineer the coupling of the atomic system to its environment in such a way that the
steady state of the dissipative time evolution is the desired inseparable state. As entan-
glement is produced in the steady state of the system, it is long-lived and immune to
noise.
The reservoir consists of the common modes of the electromagnetic field and the coupling
of the bath to the system can be controlled by means of laser- and magnetic fields. A de-
tailed theoretical description including dipole-dipole interactions for two-level systems is
provided and it is shown that the imaginary parts of the master equation (collective Lamb
shifts) are negligible. Hence, light-induced collisions do not play an important role in the
setup considered here. The proposed scheme for generation of entanglement by dissipation
is analyzed for two-level systems and complemented by considering the implementation in
multi-level ground states. The scheme has been experimentally implemented leading to
an order of magnitude improvement in the entanglement life-time compared to standard
methods. Aside from the purely dissipative creation of entanglement, the generation of
an inseparable steady state could be observed for up to an hour by supplementing the
dissipative mechanism with measurements on the light field. Moreover, the independence
of the produced entangled state from the initial state has been experimentally demon-
strated.
Future directions include the transfer of the ideas presented here to other systems, where
a quadratic interaction involving two sideband modes can be realized. The system may
either be described by bosonic modes (compare Sec. 3.1.2 and App. B.2) or spin degrees
of freedom. If the Hamiltonian corresponding to the interaction between this system and
light can be decomposed into an active and a passive part such that each part involves

18 In principle, it is not necessary to carry out the feedback operation as long as the measurement result
is known.
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Figure 3.7: Creation of entanglement between two optomechanical resonators. a) A driving
field with frequency ω1 interacts with the first oscillator and causes scattering into
the upper/lower sideband centered around the frequency ω± = ω1 ± Ωm as shown
in b). Transmitted light passes through a filter which exchanges the driving fields,
such that the laser field at frequency ω1 is replaced by driving fields with fre-
quencies ω2 and ω3, while the quantum fields which are centered at ω±, remain
unchanged. Panels b) and c) illustrate the interaction of light with the first and
second nanomechanical mirrors as explained in the text. Here, mechanical modes
are described by bosonic annihilation operators bI and bII . Photonic modes corre-
sponding to narrow sidebands centered around the frequencies ω± = ω1 ± Ωm are
described by operators a+ and a−.

one sideband, as in Hamiltonian (3.6), dissipatively driven entanglement can be gener-
ated using the method described here. Optomechanical resonators [173–175] interacting
with light are promising candidates. A possible implementation of the proposed scheme
is illustrated in Fig. 3.7. In this setup, two movable nanomechanical mirros which each
constitute one end of an optical cavity are driven into an entangled state19. Both me-
chanical resonators are assumed to have the same resonance frequency Ωm and cavities
with a broad linewidth δc > Ωm, and very narrow sideband modes are considered (see
Fig. 3.7b,c). If such an optomechanical system is driven by a strong pump laser, the lin-
earized radiation-pressure Hamiltonian gives rise to a passive (beam-splitter) interaction
for positive detuning between cavity and pump-frequency Hpas [176, 177]. The resulting
effective interaction is active, corresponding to a squeezing Hamiltonian Hact for negative
detuning ∆ < 0. The corresponding effective optomechanical coupling rates gBS, gsqu can
be adjusted by tuning the intensities of the driving fields [178]. Hence, the quadratic in-
teraction in this system provides naturally the basic prerequisites for the implementation
of the proposed scheme.

3.2 Entanglement distillation by dissipation and con-

tinuous quantum repeaters

As shown in the previous section, entanglement can be created by purely dissipative pro-
cesses. Yet, the attainable degree of entanglement is profoundly limited in the presence
of noise sources. In this section, it is shown that distillation can also be realized dissipa-
tively, leading to a highly entangled steady state. Moreover, it is shown how dissipative

19 Equivalently, membranes coupled to Fabri-Perot cavity modes could be used.
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distillation can be employed in a continuous quantum repeater architecture, in which the
resources scale polynomially with the distance.
This section is organized as follows. The main results are summarized in Sec. 3.2.1. In
Sec. 3.2.2 and Sec. 3.2.3, two types of dissipative distillation protocols are introduced and
described. Their application in a quantum repeater scheme is explained in Sec. 3.2.4.

3.2.1 Overview and main results

As explained in the previous section, a major advantage of dissipative entanglement gen-
eration lies in the fact that entanglement is created in a steady state. This implies that in
contrast to standard methods, the desired state is reached independently of the initial one.
Moreover, by coupling two quantum systems to a common environment (e.g. the electro-
magnetic field, as described in Sec. 3.1) a robust entangled steady state can be quickly
generated and maintained for an arbitrary long time without the need for error correction
such that entanglement is available any time. However, as any other scheme, dissipative
protocols are exposed to noise sources, which degrade the quality of the produced state
and render it inapplicable for many important applications in quantum information, like
quantum communication where noise effects increase dramatically with the distance. By
means of distillation [179], entanglement can be improved at the expense of using several
copies. In combination with teleportation, this method allows for the construction of
quantum repeaters [155,180], which enable the distribution of high-quality entanglement
for long distance quantum communication with a favorable scaling of resources. Unfortu-
nately, existing schemes for distillation and teleportation are incompatible with protocols
generating entanglement in a steady state, since they require the decoupling of the system
from the environment, such that the advantages are lost. Hence, new procedures which
are suitable to accommodate dissipative methods such that all advantages can be retained
and used for quantum repeaters are highly desirable.
Here, dissipatively driven distillation protocols are introduced and analyzed, which allow
for the production of highly entangled steady states independently of the initial one and a
novel quantum repeater scheme featuring the same properties is presented. More specif-
ically, this protocol continuously produces high-quality long-range entanglement. The
required resources scale only polynomially in the distance. Once the system is operating
in steady state, the resulting entangled link can be used for applications. Remarkably, the
time required to drive a new pair into a highly entangled steady state is independent of
the length of the link20 such that this setup provides a continuous supply of long distance
entanglement [155,180]. Apart from that, the proposed distillation protocols exhibit sev-
eral intriguing features. For example, a method is presented which allows for distillation
in steady state where none of the individual source pairs is entangled, and another one is
described whose performance can be improved by deliberately adding noise to the system.

20Retardation effects due to classical communication over very long distances are not taken into account.
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Figure 3.8: Entanglement distillation by dissipation a) Distillation setup without communica-
tion. b) Distillation setup including classical communication.

3.2.2 Scheme I: Dissipative entanglement distillation for source
states close to pure states

In the following, two types of dissipative distillation protocols suitable for different sit-
uations are introduced. In this subsection, scheme I which is physically motivated is
explained and the situation shown in Fig. 3.8 is considered. Two parties, Alice and Bob,
share two source qubit pairs s1 and s2, which are each dissipatively driven into an entan-
gled steady state and used as resource for creating a single highly entangled pair in target
system T . Assuming Markov dynamics, the time evolution of the density matrix ρ can
be described by a master equation of Lindblad form ρ̇ = γ

(
AρA† − 1

2

(
ρA†A + A†Aρ

))
with rate γ and will be abbreviated by the short hand notation ρ̇ = γLA(ρ) in
the following. The entangling dissipative process acting on the source qubits consid-
ered here, is the single-particle version of the collective dynamics realized discussed in
Sec. 3.1 and corresponds to the master equation ρ̇ = Lent(ρ) = γ

(
LA(ρ) + LB(ρ)

)
with

A = cosh(r)σ−Alice + sinh(r)σ+
Bob and B = cosh(r)σ−Bob + sinh(r)σ+

Alice, where σ− = |0〉〈1|
and σ+ = |1〉〈0|. The unique steady state of this evolution is the pure entangled
state |ψ〉 = (|00〉 − λ|11〉) /

√
1 + λ2, where λ = tanh(r). It is subject to local cool-

ing, heating and dephasing noise described by Lnoise(ρ) = εc

(
Lσ−Alice(ρ)+Lσ−Bob(ρ)

)
+

εh

(
Lσ+

Alice(ρ)+Lσ+
Bob(ρ)

)
+ εd (L|1〉〈1|Alice(ρ)+ L|1〉〈1|Bob(ρ)).

Dissipative entanglement distillation without communication

It is assumed that the entangling dynamics acting on s1 and s2 is noisy, while the target
system is protected (this assumption will be lifted below). The source qubits are locally
coupled to T such that

ρ̇ = Lent

s1
(ρ) + Lent

s2
(ρ) + Lnoise

s1
(ρ) + Lnoise

s2
(ρ) + LAlice(ρ) + LBob(ρ),

where LAlice(LBob) acts only on Alice’s (Bob’s) side. Here, LAlice(ρ) = −LBob(ρ) =
iδF [F, ρ], corresponding to the unitary evolution with respect to the Hamiltonian F =∑

i,j |jtîs〉〈itĵs|, where |0̂s〉 = |0s11s2〉 and |1̂s〉 = |1s10s2〉 is chosen. Note that this distil-
lation protocol does not require any classical communication or pre-defined correlations.
As can be seen in Fig. 3.9a, the efficiency is mainly determined by the mixedness of the
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Figure 3.9: Dissipative distillation according to schemeI without communication (panel a) and
including classical communication (panels b-d). The full red lines show the steady
state entanglement of formation (EoF) of system T . The dashed blue lines depict
the steady state EoF of the source state s1 if no distillation is performed (a,c,d) and
during the protocol (b). For better visibility the blue dashed curve is multiplied
by a factor 30 in panels b and c. The dotted green lines show the entropy of s1
which is a measure of its mixedness. a) EoF attainable without communication
versus error rate εN ≡ εh = εc = εd. b) EoF versus the noise parameter εc. c) EoF
versus error rate εN. The black dotted curve represents the entanglement of the
total source system measured in log negativity. d) EoF versus the parameter r.

source states rather than their entanglement. In the absence of errors, the target system
reaches a maximally entangled state.

Classical communication in the master equation formalism

In order to allow also for noise acting on T , classical communication is included. The
continuous exchange of classical communication is added in the framework of dissipative
quantum information processing, by assuming that Alice and Bob have access to a system,
which is used for communication only and described by the master equation

ρ̇=Γ

(∑
i

〈icA |ρAlice|icA〉|0cAicB〉〈0cAicB |−ρ

)
≡ CA→B(ρ).

States referring to the communication system at Alice’s and Bob’s side are labelled by
subscripts cA and cB. Alice’s communication system is continuously measured in the
computational basis yielding the quantum state |icA〉 with probability 〈icA|ρAlice|icA〉 and
reset to the state |0cA〉, while the communication system on Bob’s side is set to the
measurement outcome. This way, classical information can be sent at a rate Γ, but no
entanglement can be created (see App. C.2.1). As proven in App. C.2, any operation that
can be realized by means of local operations and classical communication (LOCC) can
be constructed in a continuous fashion using communication processes CA→B and CB→A,
if the rate Γ is fast compared to all other relevant processes including the retardation
due to back and forth communication. Therefore, any Lindblad operator of the form
LTLOCC(ρ) = (TLOCC(ρ)− ρ) , where TLOCC is an arbitrary LOCC channel21, can be realized
using local dissipative processes in combination with classical communication22.

21LOCC channels are completely positive trace preserving maps that can be realized by means of Local
Operations and Classical Communication.



3.2: Entanglement distillation by dissipation and continuous quantum repeaters 59

Distillation using scheme I including classical communication

The continuous implementation of LOCC operations allows for the stabilization of the
distillation schemes discussed below against errors acting on the target system by running
them using m blocks of source pairs, which are all coupled to the same target state (see
App C.3) as illustrated in Fig. 3.10a. If sufficiently many source-blocks, m, are used,
the dynamics is dominated by the desired processes. For clarity, the following distillation
schemes are discussed in the absence of target errors, which corresponds exactly to the
limit m →∞. Thus, the master equation

ρ̇=Lent

s1
(ρ)+Lent

s2
(ρ)+Lnoise

s1
(ρ)+Lnoise

s2
(ρ)+δF (TF(ρ)−ρ)

is considered. The LOOC map TF(ρ) is defined by the four Kraus operators FA⊗FB, P⊥
A ⊗

PB, PA ⊗ P⊥
B , P⊥

A ⊗ P⊥
B , where P, P⊥ are the projection onto the one excitation subspace

and its orthogonal complement. Alice and Bob measure the number of excitations on
their side. After successful projection onto the subspace with one excitation PA ⊗ PB, a
flip operation F is performed, in the unsuccessful case no operation is carried out.
As shown in Fig. 3.9b, the scheme is robust against local noise of cooling-type (Lσ−(ρ)).
This kind of noise can even be used to enhance the performance of the distillation protocol
in the steady state at the cost of a lower convergence rate. Thus, counterintuitively it can
be beneficial to add noise in order to increase the distilled entanglement. Moreover, the
steady state entanglement of the source pairs is zero in the absence of cooling noise for the
parameters considered in Fig. 3.9b, if no distillation scheme is performed. For increasing
εc, the entanglement in s1 and s2 increases, reaches an optimal point an decreases again.
Yet, the entanglement that can be distilled from these pairs is monotonously increasing
and displays a boost effect. Panel c also hints at another counterintuitive effect,- entan-
glement can be distilled even though none of the source pairs is (individually) entangled
in the steady state. This can be explained by noticing that the two-copy entanglement
can be maintained for high noise rates when the single-copy entanglement is already van-
ishing. Fig. 3.9d shows that the distilled entanglement increases considerably for small
values of the parameter r despite the decrease in the entanglement of the source pairs.
This is due to the fact that the protocol is most efficient for source states close to pure
states, where it allows one to distill quickly highly entangled state.

3.2.3 Scheme II: dissipative entanglement distillation for
Werner states

In settings where the source states can be highly mixed, another distillation scheme
(scheme II hereafter) is a method of choice and will be explained in this subsection.
Here, a generic model, which can be solved exactly and allows one to reduce the discus-
sion to the essential features of dissipative entanglement distillation is analyzed. As
in standard distillation schemes, the general problem is studied in terms of Werner
states [181, 182], since many situations can be described this way and a wide range of

22 It is assumed, that the time scales for classical communication Γ−1 (see App. C.2) are sufficiently long
such that retardation effects can be ignored.
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Figure 3.10: Building blocks of a dissipative quantum repeater. a) Noise resistent distillation
setup. The process acting on the target system is boosted using several copies of
the source system. b) Continuous entanglement swapping procedure.

processes can be cast in this form by twirling [181, 182]. Werner states are of the simple
form ρW(f) = fΩ+(1−f)(I−Ω)/3, where Ω is a projector onto the maximally entangled
state |00〉 + |11〉, and I the identity operator. A process which drives each source pair
into the state Ω, ρ̇ = γ (tr(ρ)Ω− ρ) ≡ γE(ρ) is assumed. Local depolarizing noise is
added in the form of the Lindblad term N(ρ) ≡ (ρAlice⊗ I1−ρ)+(I1⊗ρBob−ρ) , where ρAlice

(ρBob) denotes the reduced density matrix of Alice’s (Bob’s) system and I1 the normalized
identity. This term describes the continuous replacement of the initial state by the com-
pletely mixed one. The source system reaches the steady state ρs ∝ γΩ + ε I1 of the total
master equation ρ̇ = γE(ρ) + ε

2
N(ρ) at least exponentially fast in γ (see App. C.4.1.).

A continuous distillation process based on a standard protocol [183] can be constructed
considering n source pairs which are independently driven into the steady state ρs and
a target system T . T is coupled to the source pairs by a dissipative dynamics of the
form ρ̇ = δD (tr(ρ)TD(ρ)− ρ), where the completely positive map TD(ρ) corresponds to a
process which acts on the n source pairs and distills a single potentially higher entangled
copy. The output state is written on T , while the n source pairs are re-initialized in the
state I1. The total master equation is given by

ρ̇ =
n∑

i=1

(
γEi(ρ) +

ε

2
Ni(ρ)

)
+ δD(TD(ρ)− ρ),

where Ei, Ni denote entangling and noise processes on the ith source qubit pair. The

steady state has a fidelity of f =
∫ 1

0
dxfD(fs − (fs − 0.25)x

γ+ε
δD ), where fs and fD(f) =

tr(ΩTD(ρW(f)⊗n)) are the fidelity of ρs and the output of the distillation protocol with n
input states of fidelity f . High fidelities require low values of δD. However, the solution
ρ(t) (see App. C.4) shows that fast convergence requires high values of this parameter. A
low convergence speed on the target system is extremely disadvantageous if noise is acting
on T . Therefore, a boost of the process as illustrated in Fig. 3.10a is required. This way,
the new convergence rate is given by mδD while the back action on each source system
remains unchanged (see App. C.3).
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3.2.4 Continuous quantum repeaters

The distribution of entanglement over large distances is one of the big challenges in quan-
tum information science. In quantum repeater schemes, entanglement is generated over
short distances with high accuracy and neighboring links are connected by entanglement
swapping. This procedure allows one to double the length of the links, but comes at the
cost of a decrease in entanglement for non-maximally entangled states. Therefore a distil-
lation scheme has to be applied before proceeding to the next stage, which consists again
of entanglement swapping and subsequent distillation. The basic setup for a continuous
entanglement swapping procedure is sketched in Fig. 3.10b. It consists of three nodes
operated by Alice, Bob and Charlie, where Alice and Bob as well as Bob and Charlie
share an entangled steady state. By performing a teleportation procedure, an entangled
link is established between Alice and Charlie and written onto the target system, while
the source systems are re-initialized in the state I1. This corresponds to LOCC operation
Tsw(ρ). The whole dynamics is described by the master equation

ρ̇ =
2∑

i=1

(
γEi(ρ) +

ε

2
Ni(ρ)

)
+ δsw(Tsw(ρ)− ρ).

The steady state has a target fidelity of f = 2γ2

(2γ+δsw)(γ+δsw)
(fsw(fs)− 1

4
)+ 1

4
, where fsw(fs)

is the output fidelity of the entanglement swapping protocol for two input states with
fidelity fs (see App. C.5.1). The basic idea of a nested steady state quantum repeater is
illustrated in Fig. 3.11. At the lowest level, entangled steady states are generated over
a distance L0. At each new level, two neighboring states are connected via a continuous
entanglement swapping procedure and subsequently written onto a target pair separated
by twice the distance. The distillation and boost processes, that are required in each
level to keep the fidelity constant are not shown in this picture. The resources required
for this repeater scheme can be estimated as follows. Entanglement swapping processes
acting on source pairs of length l with fidelity fl result in entangled target pairs of length
2l, with degraded fidelity f2l < fl. This reduction is due to the swapping procedure,
noise acting on the target system and the back-action from entanglement distillation.
Stabilization against noise acting on the target systems is achieved by coupling each of
them to m copies of the source system and requires therefore 2m source pairs of length
l. In order to obtain a fidelity f2l ≥ fl, n copies of these error stabilized links are used
as input for a n to 1 distillation process. The distilled state is mapped to another target
pair of length 2l, which also needs to be stabilized against errors using m copies of the
blocks described. Hence, in total 2m2n pairs of length l are required for a repeater stage
which doubles the distance over which entanglement is distributed. For creating a link
of length L = L02

k, (2m2n)k source pairs are needed, where k is the number of required
iterations of the repeater protocol. Therefore, the required resources scale polynomial with
(L/L0)

Log2(2m2n). In App. C.5.2, a specific example scaling with (L/L0)
16.4 is discussed.

The convergence time of the total system scales only logarithmically with the distance L.
Once the steady state is reached, the entanglement of the last target system can be used
e.g. for quantum communication or cryptography. The underlying source systems are
not effected by this process and remain in the steady state. Therefore, the target state is
restored in constant time.
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Figure 3.11: Nested steady state quantum repeater scheme. In contrast to common repeater
schemes, the levels of the nested protocol are physically present all the time and
connected via dissipative processes.

In conclusion, it has been shown how entanglement can be distilled in a steady state
and distributed over long distances by means of a dissipative quantum repeater scheme
serving as stepping stone for future work aiming at the optimization in view of efficiency
and experimental implementations. The development of concrete schemes for realistic
physical realizations will be an important topic for future work. Possible implementations
could for example be based on atoms in cavities by extending ideas put forward in [184].
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Chapter 4

Applications of light-matter interface
schemes

In this chapter, we study light-matter interface techniques in view of applications in several
different contexts including quantum information science and the study of condensed
matter systems. More specifically, we present three protocols which are based on the
interaction of light with ensembles of neutral atoms. In Sec. 4.1, we analyze a teleportation
scheme, which aims at the transfer of a quantum state between two macroscopic matter
systems. This section is complemented by App. D. In Sec. 4.2, we propose a scheme for
the study of correlated many-body systems using an atomic quantum memory as auxiliary
system. This new method has been published in [V] and allows for the measurement of
dynamical correlations by probing a quantum many-body system at different times while
storing information coherently. In Sec. 4.3, we devise a protocol for the implementation of
an entangling gate for photons, which relies on the mapping of photonic states to matter
systems (and vice versa) and renders efficient quantum information processing of photonic
states possible. The results have been published in [I, X]. We consider ultracold atoms in
optical lattices for the implementation of the proposals in Sec. 4.2 and 4.3, and analyze
the teleportation scheme in Sec. 4.1 for atomic ensembles at room temperature.

4.1 Deterministic quantum teleportation between

two macroscopic objects

The ability to teleport quantum states between matter systems over macroscopic distances
is required for many applications of quantum information science and plays an important
role in the realization of distributed quantum networks and long-distance communication.
Recent experimental progress towards this challenging goal includes the deterministic im-
plementation between ions in the same trap [185–187] and the probabilistic teleportation
between two single particles over a large distance [188]. Here, we study a protocol which
allows for the deterministic teleportation of a quantum state between two macroscopic
atomic ensembles at room temperature interacting with freely propagating coherent light.
We analyze the scheme assuming a quantum-nondemolition interaction between atoms
and light and show that very high fidelities can be obtained by means of pulse shaping.
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Moreover, we study the performance of the teleportation scheme for a general quadratic
interaction and in the presence of atomic decoherence and show that the protocol is fea-
sible under current experimental conditions.
This section is organized as follows. In Sec. 4.1.1, we briefly review related work and
experimental progress on the teleportation of atomic states. In Sec. 4.1.2, we summarize
the main results. In Sec. 4.1.3, we discuss the teleportation of atomic quantum states be-
tween two ensembles using a QND interaction between light and matter. This subsection
is supplemented by App. D.2. In Sec. 4.1.4, we analyze the proposed scheme in view of a
possible experimental implementation. To this end, we study a general quadratic interac-
tion, which allows us to take deviations from the ideal QND dynamics into account (see
also Sec. 2.1 and App. D.1).

4.1.1 Teleportation of atomic states

Teleportation [189] is an essential element in quantum information science [3] and is in-
timately linked to and enabled by the distribution of entanglement between two parties.
Once an entangled link is established, a quantum state can, in principle, be transferred
exactly across the link independent of the distance using only classical communication
in the process of transmission. This procedure provides a possibility to circumvent the
problems posed by the difficulty to transmit quantum states directly (physically) with
high fidelity and the limitations of strategies based on the measurement, sending and
re-preparation, imposed by the no-cloning theorem. Therefore, teleportation is a key in-
gredient in distributed quantum networks and lies at the heart of the practical realization
of long-distance quantum communication [5,155]. Moreover, it plays an important role in
quantum information science. Supplemented with local operations and suitable entangled
resource states, teleportation allows for universal quantum computing [190]. The telepor-
tation of quantum states between atomic systems is particularly relevant, since long-lived
degrees of freedom are required for the storage of quantum information and matter sys-
tems are needed for the efficient processing of quantum states and the extension to large
quantum networks which include multiple remote nodes. However, the reliable deter-
ministic teleportation of quantum states between distant matter qubits is a challenging
goal. In photonic systems [191–207], the teleportation of quantum states has been real-
ized covering macroscopic distances up to 16km [204]. The teleportation between matter
systems has been implemented deterministically using ions in close vicinity held in the
same trap [185–187] and over a macroscopic distance [188] by means of a probabilistic
protocol.
In the following, we present a scheme for the teleportation between two atomic samples
which allows for both, the deterministic transfer of a quantum state and the transmis-
sion over a macroscopic distance. The protocol involves freely propagating coherent light
interacting with two atomic ensembles consisting of a large number N of alkali atoms
at room temperature [12, 14–16, 83] as described in Sec. 2.1.1. Since the quantum state
to be teleported is shared by about N = 1012 particles in an ensemble with a spatial
extent of about 2cm, the scheme discussed here allows for quantum teleportation between
two macroscopic objects. Atomic ensembles have been successfully used for interspecies
teleportation, where the quantum state of light has been transferred to the collective spin
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Figure 4.1: Deterministic quantum teleportation between two macroscopic objects. The collec-
tive spin state of ensemble II is teleported to ensemble I by virtue of an off-resonant
scattering interaction between the atoms and coherent light, homodyne detection
of the scattered field and a conditional feedback operation as described in the text.

state of an atomic sample [15,63,97,162]. However, the teleportation between two ensem-
bles [208–210] has not been possible so far, due to the low achievable fidelities of the quan-
tum state transfer for the limited coupling strength that can be realized experimentally.
Here, we analyze a protocol for continuous variable teleportation [211–213] involving two
atomic ensembles as well as a light field acting as auxiliary system. We consider two differ-
ent types of interaction. First, we study the scheme assuming a quantum-nondemolition
(QND) interaction between atoms and light as used in [14–16] and optimize the telepor-
tation fidelity by tailoring the pulse shape of the light field. Then, we analyze the scheme
in general, assuming an arbitrary quadratic interaction, as explained in Sec. 2.1.2. This
allows for a more detailed description of the interaction encountered in experiments in-
volving ensembles of Cesium atoms [III, IV, VII, IX], [17,18]. Finally, we investigate the
performance in the presence of noise. More specifically, we consider atomic decay which
represents the dominant source of noise in a realistic setting and show that the scheme is
well feasible under current experimental conditions.

4.1.2 Overview and main results

We consider the setup shown in Fig. 4.1. It resembles the setup introduced in Sec. 2.1.1
apart from the fact that the ensembles are not oriented antiparallel1 (as used for mem-
ory schemes [14, 18] or entanglement generation [III], [16]), but in parallel. As shown
in [63], the interaction of light with atomic ensembles in a magnetic field involves a
infinite hierarchy of backaction modes which simplifies considerably if two antiparallel
oriented ensembles are used (as explained in Sec. 2.1.3, two counter-oriented ensembles
in a magnetic field B correspond formally to a single cell with B = 0). For high-fidelity
teleportation between two ensembles, the richer multi-mode structure encountered in the
parallel configuration is required.
A standard teleportation scheme involving the three parties Alice, Bob and Victor consists
of the following three steps, which allow Alice to teleport a quantum state provided by

1This setting is formally equivalent to using parallel polarized ensembles in oppositely oriented magnetic
fields.



66 CHAPTER 4. Applications of light-matter interface schemes

Figure 4.2: Average teleportation fidelity F̄ (n) versus width of the distribution of input states
n. The lowest curve in each panel (shown in red) represents the classical limit. a)
QND teleportation. The upmost (blue) and middle (black) curve depict the opti-
mized average fidelity with and without pulse shaping respectively (see Sec. 4.1.3).
b) Non-QND teleportation fidelity for realistic experimental parameters as re-
ported in [III]. Light and atoms interact as shown in Fig. 4.1 according to
Hint = κ√

T

(
pApL − 1

Z2 xAxL

)
with Z=2.5 (which corresponds to a predominantly

active interaction, as explained in Sec. 2.1.2). The upmost curve (blue) shows the
maximal fidelity for arbitrary exponential readout modes in the absence of deco-
herence. The next three curves show in descending order the attainable fidelity if
transverse atomic decay at a rate η/T is included for η = 0.5κ (black), η = 0.75κ
(violet) and η = 1.01κ (grey).

Victor to Bob. (i) Alice and Bob establish an entangled link, which is shared between the
two remote parties. (ii) Alice performs a Bell measurement on her part of the entangled
state shared with Bob and an unknown quantum state prepared by Victor. (iii) Alice
uses a classical channel to communicate the measurement outcome to Bob, who performs
a local operation on his quantum state conditioned on Alice’s result.

In the setup shown in Fig. 4.1, the quantum state prepared by Victor is stored in ensemble
II on the right side. This state is teleported to ensemble I, on the left, which represents
Bob, while the light field in x̂-polarization plays the role of Alice. Step (i) in the standard
protocol outlined above corresponds to the interaction between the light field and the first
atomic ensemble which results in an entangled state. The distribution of entanglement
between the two remote sites is realized by means of the free propagation of the photonic
state. Step (ii) corresponds to the interaction of the light field with the second ensemble
and the subsequent measurement of the x-quadrature of the transmitted light by means
of homodyne detection. Step (iii) is implemented in the form of a feedback operation
realizing a conditional displacement on ensemble I using radio-frequency magnetic fields.
In principle, it is not necessary to perform the displacement as long as the outcome of
the measurement in step (ii) is known. We start out by considering a QND interaction
between atoms and light (compare Sec. 2.1.2). The performance of the scheme is fun-
damentally limited (see Fig. 4.2a, middle curve) since this type of the interaction does
for example not allow for a perfect Bell measurement. The fidelity is also restricted by
the experimental limitations of the coupling strength2. Therefore, we investigate different

2 In the following, the value κ ≈ 1 reported in [15] is used for comparison.
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Figure 4.3: QND teleportation. a) Setup including different functions for the time dependent
coupling strengths κ1(t) = κf(t) and κ2(t) = κg(t) characterizing the first and sec-
ond interaction and arbitrary readout modes h(t) ( 1

T

∫ T
0 f(t)2dt = 1

T

∫ T
0 g(t)2dt =

1
T

∫ T
0 h(t)2dt = 1, see Sec. 4.1.3). b) QND teleportation fidelity F̄ (n) versus the

width n of the distribution of input states for f(t)=g(t)=h(t)=1. The fidelity is
optimized with respect to the feedback parameters gsin, gcos and coupling strengths
κ1, κ2. The topmost (black) and lowermost (red) curves represent the maximum
attainable fidelity for arbitrary couplings and the classical limit. The intermediate
curves show in descending order the achievable fidelity if κ is limited to κmax = 1.3
(violet), κmax = 1.2 (blue), κmax = 1.1 (grey) and κmax = 1.0 (orange).

means to increase the performance of the scheme and shown that a judicious choice of
slowly varying functions used for the modulation of the intensity of the classical beam
and the temporal mode used for the readout (see Fig. 4.3a) allows for high-fidelity tele-
portation. To this end, the ŷ-polarized classical laser field, which copropagates with the
quantum field in x̂-direction has to be replaced between the first and the second inter-
action, which can for example be done using a polarizing beamsplitter3. The average
fidelities which can be attained using exponential functions f(t) and g(t) for the pulse
shape of the classical light in the first and second interaction and h(t) as readout mode
are shown in Fig. 4.2a (upmost curve).

In Sec. 4.1.4, we consider a general quadratic interaction between matter and light
according to the Hamiltonian given by Eq. (2.4). We derive the input-output relations
describing the teleportation in this general case and study the fidelity for different settings
and readout modes. More specifically, we asses the experimental feasibility of this scheme
in 133Cs vapor [III, VII], [14–18] by evaluating the performance for realistic parameters in
this system, - to this end, the consideration is restricted to basic settings which involve
only techniques which have already been used in previous experiments and include atomic
decay assuming decay rates as measured in [III]. Fig. 4.2b shows the achievable fidelity
including noise and in the ideal case. These results render the scheme analyzed here a
promising candidate for the teleportation of a collective spin state between two atomic
ensembles.

3The coupling strength is proportional to the number of photons in the laser pulse (in ŷ-polarization)
and can be modulated by means of a time varying intensity of the classical field. κ1(t) 6= κ2(t) can
for example be realized by means of a polarizing beamsplitter with high reflectivity for ŷ -polarized
photons and high transmissivity for the quantum field in x̂-polarization, which is placed between the
ensembles and allows for the exchange of the classical field between the two interactions.
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4.1.3 QND teleportation

In this section, we study the teleportation scheme shown in Fig. 4.1 assuming a QND
interaction between atoms and light. In the following two subsections, we explain the basic
protocol and evaluate its performance for general slowly varying functions modulating the
interaction strengths and the readout mode.

Basic QND protocol

Atoms and light interact according to the Hamiltonian H = HA + HL + HQND
int , where

HA = Ω
2

(x2
B + p2

B) + Ω
2

(x2
V + p2

V ) describes the Zeeman splitting of the atomic levels
in the homogeneous magnetic field. Ω denotes the Larmor frequency at which the
atoms precess in the magnetic field, xB, pB and xV , pV refer to Bob’s and Victor’s
ensemble respectively and HL accounts for the free propagation of the light field. The
interaction Hamiltonian is given by HQND

int = κ√
T

(pBpL(0) + pV pL(R)), where pointlike

atomic ensembles which are separated by a distance R are assumed4(compare Sec. 2.1
and App. D.1.1).

Input-output relations for the basic protocol

Step (i), the entangling interaction of the light field with ensemble I (Bob) with
constant coupling strength κ1, is described by the input-output relations

(
xout

B

pout
B

)
=

(
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)
,

as explained5 in Sec. 2.1.3 (note that the flat-top mode and the first order backaction
mode are independent [xsin/cos, psin/cos,1] = 0). The p-quadratures of the light field are
conserved. Step (ii) includes the interaction of the light field emitted from ensemble I
with ensemble II (Victor) with constant coupling strength κ2, which results in
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The operators referring to the light field after the second scattering interaction are labelled
by a tilde. Subsequently, a measurement of the sine and cosine modulated components
of the x-quadrature is performed. In step (iii), the obtained measurement results are fed

4 In the setting considered here, the atomic ensembles are separated by about half a meter such that the
distance R ¿ cT can be neglected in the derivation of the input-output relations.

5 Unlike in Sec. 2.1.3, we use here a simplified notation where the 0th and 1st order modes are denoted
by xsin/cos, psin/cos and xsin/cos,1, psin/cos,1.
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back onto Bob’s ensemble with gain factors gsin and gcos such that
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The first term on the right side represents the desired contribution. By choosing the
gainfactors gsin = −√2/κ2 and gcos =

√
2/κ2, the mean values can be transmitted per-

fectly6 〈xfin
B 〉 = 〈xin

V 〉, 〈pfin
B 〉 = 〈pin

V 〉. However due to the presence of the last four terms
on the right, the variance exceeds the variance of the input state var(xfin

B ) > var(xin
V ),

var(pfin
B ) > var(pin

V ).

Performance of the basic protocol

The performance of the protocol is assessed using the average fidelity with respect
to a Gaussian distribution of coherent input states as figure of merit. The fidelity
F = |〈Ψfin

B |Ψopt
B 〉|2 is given by the overlap of Bob’s final state |Ψfin

B 〉, which is described
by xfin

B and pfin
B and the optimal final state which is defined by Victor’s initial state xin

V ,
pin

V . For a given coherent input state with mean values 〈xV 〉 and 〈pV 〉 (and variances
var(xV ) = var(pV ) = 1/2 ), the single-shot fidelity is given by
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such that the average fidelity F̄ (n) with respect to a Gaussian distribution with width n,

F̄ (n) =
1

2πn
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can be directly evaluated. Using expressions (4.1) one obtains
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)) .

This result has to be compared to the classical limit Fclas = (2n + 1) / (4n + 1), which
cannot be surpassed by classical means [199, 214, 215]. The topmost curve in Fig. 4.3b

6Here, we used the fact that Bob’s ensemble as well as the light fields are initially prepared in the vacuum
state with 〈xin

B 〉 = 〈xin
sin/cos〉 = 〈pin

sin/cos〉 = 〈pin
sin/cos,1〉 = 0.
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shows the average fidelity for optimized coupling strengths κ1, κ2 and gainfactors gsin,
gcos (due to the symmetry of the protocol, gopt

sin = −gopt
cos ). The coupling strength required

to achieve this maximal average fidelity is higher than the values which have been realized
experimentally in this system so far. In the following, the value κ2 ≈ 1 reported in [15] is
used for comparison. Fig. 4.3b depicts also the achievable fidelity for restricted coupling
strengths and shows that for κmax = 1, the achievable fidelity decreases quickly with
the width of the distribution of input states such that the classical limit can not be sur-
passed for large n. The fidelity can for example be improved by measuring the first-order
backaction modes, using squeezed light or employing a double-pass scheme as discussed
in App. D.2. However, these strategies are experimentally challenging. In contrast, the
strategy studied in the next section is not only easier to realize experimentally, but also
very efficient, since it is specifically tailored to resolve the incompatibility problem asso-
ciated with the generation of a high degree of entanglement with a low amount of added
noise for the specific interaction under consideration.

Improved QND teleportation using suitable modulation functions

The performance of the scheme can be substantially improved by modulating the
coupling strengths κ1(t) and κ2(t) appropriately in time and choosing the corresponding
mode function for the readout. Below, we derive the input-output relations including
time dependent couplings and arbitrary readout modes. We optimize the fidelity using
exponential test functions and evaluate the performance of the protocol in the presence
of atomic decay.

Teleportation with time dependent couplings in the ideal case

In the following, we consider a time dependent coupling strength κ(t) = κf(t),
where the function f(t) describing the temporal profile is assumed to vary slowly com-

pared to the atomic Larmor precession and to be normalized such that 1
T

∫ T

0
f(t)2dt = 1.

The derivation of the input-output relations for a single cell in a homogeneous magnetic
field using the time dependent interaction Hamiltonian

HQND
int =

κ(t)√
T

pApL

and arbitrary readout modes can be found in App. D.2.2. If the interaction between
the photonic mode and a single ensemble is considered in the ideal case, shaping the
incoming light field, i.e. modulation of the intensity of the beam, is equivalent to choosing
a nontrivial readout mode. Since κ2 is proportional to the number of photons, doubling
the intensity in a light pulse has the same effect as doubling its length. For example,
considering a linearly modulated pulse corresponds to redefining the time windows during
the readout process, which amounts to choosing a linear readout mode. However, this
equivalence is not valid in the presence of atomic decoherence, which will be included
below. According to Fig. 4.3a, step (i) of the teleportation protocol is described by the
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input-output relations

(
xout

B

pout
B

)
=

(
xin

B

pin
B

)
+

κ1√
2

(
pout

f,cos

pout
f,sin

)
,

(
xout

h,sin

xout
h,cos

)
=

(
xin

h,sin

xin
h,cos

)
+

κ1√
2T

∫ T

0

dtf(t)h(t)

( −xin
B

pin
B

)

+
κ1√
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3
2

∫ T

0

dtf(t)h(t)

∫ T

t
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sin(Ωτ)p̄L(cτ, 0)

)
,

and step (ii) results in

(
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h,sin
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)
=
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)
+

κ1√
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dtf(t)h(t)

(−xin
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B

)
+

κ2√
2T

∫ T

0

dtg(t)h(t)

(−xin
V

pin
V

)

+
1√
2T

3
2

∫ T

0

dτ

∫ T

τ

dt h(t)
(
κ2

1f(t)f(τ)+κ2
2g(t)g(τ)

)(−cos(Ωτ)p̄L(cτ,0)
sin(Ωτ)p̄L(cτ,0)

)
.

After step (iii)

(
xfin

B

pfin
B

)
=

κ2√
2T

∫ T

0

dtg(t)h(t)

(−gsinx
in
V

gcosp
in
V

)
+

(
gsinx

in
h,sin

gcosx
in
h,cos

)
+

[
1+G−

κ1√
2T

∫ T

0

dth(t)f(t)

](
xin

B

pin
B

)

+

∫ T

0

dτ p̄L(cτ,0)

[
1

κ1f(τ)√
T

+ G−
1√
2T

3
2

∫ T

τ

dt h(t)
(
κ2

1f(t)f(τ)+κ2
2g(t)g(τ)

)]

(
cos(Ωτ)p̄L(cτ,0)
sin(Ωτ)p̄L(cτ,0)

)

is obtained, where is 1 is the 2× 2 unit matrix and

G± =

( ±gsin 0
0 gcos

)
. (4.3)

As shown in Fig. 4.2a, the teleportation fidelity can be improved considerably by choosing
appropriate modulation functions. Here, the mode functions f(t) ∝ ef1t, g(t) ∝ eg1t and
h(t) ∝ eh1t are used since the eigenmodes of the generalized problem are exponential.
The result shown in Fig. 4.2a is obtained by optimizing the average fidelity with respect
to the parameters κ1, κ2, gsin, gcos, f1, g1 and h1. In the ideal case, it is sufficient to
optimize over two out of the three parameters f1, g1 and h1. If, for example, a flat-top
readout mode is chosen (h(t) = 1), the optimal solution involves an exponentially falling
mode for κ1(t) (f1 < 0) and a rising function for κ2(t) (g1 > 0).

Teleportation with time dependent couplings including atomic decoherence

In the following, atomic decay at a constant rate η/T is considered. As explained
in App. D.1, atomic decoherence is modelled by including a beamsplitter operation which
attenuates the signal xA, pA and introduces vacuum noise to the atomic spin state. The
generalized input-output relations describing the final state of Bob’s ensemble for time
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Figure 4.4: QND teleportation fidelities for three variable exponential functions and constant
atomic decay at a rate η/T as explained in the main text. Panels a) and b)
depict the optimized average fidelity F̄ (n) versus width of the input distribution
n for arbitrary coupling strength and κ = 1.2 respectively. The four upper curves
correspond (in descending order) to η = 0 (blue), η = 0.1κ2 (violet), η = 0.2κ2

(grey) and η = 0.3κ2 (orange). The bottom red line shows the classical limit.

dependent coupling strength and an arbitrary readout mode in the presence of noise are
given by

(
xfin

B

pfin
B

)
=

κ√
2T

∫ T

0

dt h(t)g(t)e
−ηt
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+
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+
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κ√
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+

κ√
T

∫ T

0

dτ

∫ T

τ
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e
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2 f(τ)1+

κ√
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e
−ηt
2T h(t) (f(t)f(τ)+g(t)g(τ)) G−

]

( − cos(Ωτ)p̄L(cτ, 0)
sin(Ωτ)p̄L(cτ, 0)

)
+

κ
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η√
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3
2

∫ T

0

dτ

∫ T

τ

dte
−η(t−τ)

2T h(t)g(t)G−

(
fx,V (τ)
fp,V (τ)

)

+

√
η√
T

∫ T

0

dτe
ητ
2T

[
e
−η
2 1+

κ√
2T

∫ T

τ

dt h(t)f(t)e
−ηt
2T G−

(
fx,B(τ)
fp,B(τ)

)]
,

for κ1 = κ2 = κ. fx,B/V (τ), fp,B/V (τ) denote independent atomic noise modes for
Bob’s/Victor’s ensemble (see App. D.1.2) with [fx,B/V (τ), fp,B/V (τ ′)] = iδ(τ − τ ′). Using
these expressions, the attainable fidelity can be evaluated for different levels of noise (see
Fig. 4.3b and Fig. 4.4). The results show that QND teleportation may be feasible for nar-
row distributions (using n = 1, F̄ (n) = 0.76 for κ = 1.2 and η = 0.3κ2, while Fclas = 0.6).

4.1.4 Non-QND Teleportation

In this section, we consider the teleportation scheme depicted in Fig. 4.1 for a general
quadratic interaction between atoms and light. In the following, we derive the atomic
input-output relations describing this general scheme in the ideal case as well as including
noise. We compare different variants of the setup for realistic values characterizing the
interaction and atomic decoherence.
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General input-output relations for the interaction of light with an ensemble
in a magnetic field

Any quadratic Hamiltonian describing the interaction between two single mode contin-
uous variable systems which are described by the operators xA, pA and xL, pL can be
characterized in terms of two parameters s1 and s2 and expressed in the diagonal form
H = s1pApL + s2xAxL [91] by means of suitable local operations. As in Sec. 2.1.2, the
interaction between an atomic ensemble and light is here parametrized in the form

Hint =
κ√
T

(
pApL ± 1

Z2
xAxL

)
=

κ√
T

(
1

2

[
1± 1

Z2

]
Hpas− 1

2

[
1∓ 1

Z2

]
Hact

)
. (4.4)

The interaction is either predominantly active or passive depending on the sign of the
non-QND contribution. Recent experiments using 133Cs ensembles at room temperature
were based on a predominantly passive interaction with Z = 2.5 [III]. As explained in
Sec. 2.1.2, the active variant can be realized by interchanging the polarization of the
classical and quantum field [IV, VII, IX].

Interaction of a single ensemble with light in the ideal case

We consider here the Hamiltonian H = HA + HL + Hint, where HA = −Ω
2

(x2
A + p2

A) and
Hint is given by Eq. (4.4). In a rotating frame, this leads to the differential equations7

(
ẋA(t)
ṗA(t)

)
=

κ√
T

AP/A(Ω, t)

(
x̄L(ct, t)
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)
,

(
˙̄xL(ξ, t)
˙̄pL(ξ, t)

)
=

κ√
T

LP/A(Ω, t)

(
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pA(t)

)
δ(ξ − ct),
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AP/A(Ω, t) =

( ∓ 1
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∓ 1
Z2 cos(Ωt) − sin(Ωt)

)
,

LP/A(Ω, t) =

(
sin(Ωt) cos(Ωt)

∓ 1
Z2 cos(Ωt) ± 1

Z2 sin(Ωt)

)
,

have been used. The input-output relations for the atomic quadratures are given by

(
xout

A
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A

)
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2Z2

(
xin

A

pin
A

)
+ N∓

(
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r(P/A),±
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)
, (4.5)

with N+ =

√
e

κ2

Z2 − 1 and N− =

√
1− e−

κ2

Z2 . The passive (active) reading modes xr(P),±,
pr(P),± (xr(A),±, pr(A),±) are defined according to

(
xin

r(P/A),±
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)
=

κ√
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0

dt e
±κ2t
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(
x̄L(ct, 0)
p̄L(ct, 0)

)
.

7The derivation of the input-output relation is shown in detail in App. D.1.
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Regarding the light field, we are interested in the easily experimentally accessible sin(ωt)
and cos(Ωt) modulated modes. The input-output relations for sine and cosine modulated
light modes with arbitrary slowly varying envelope functions h(t) (see Eq. (2.6)) are given
by
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+
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(4.6)
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with
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± 1
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)
.

Due to the imbalanced squeezing (Z2 > 1), it is advantageous to measure the x-
quadrature of the light field (rather than the photonic p-quadrature) in order to obtain
information on the atomic variables.

Interaction of a single ensemble with light including atomic decoherence

In the following, we include atomic decay at a constant rate η/T (the derivation
can be found in App. D.1). Using γP = κ2

Z2 + η we obtain
(
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γP
2
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,

for the predominantly passive interaction, where
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with [fxA
(t), fpA

(t′)] = δ(t− t′), 〈fxA
(t)〉 = 〈fpA

(t)〉 = 0 and 〈f 2
xA

(t)〉 = 〈f 2
pA

(t)〉 = 1/2 as
above. The input-output relation for sin(Ωt) and cos(Ωt) modulated modes with arbitrary
slowly varying envelope including atomic decoherence are given by
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. (4.7)
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Analogous equations hold for the predominantly active type of the interaction with γA =
− κ2

Z2 + η.

Non-QND teleportation protocol

In this section, we study the experimental feasibility of the teleportation scheme by
considering its implementation in 133Cs vapor [III, VII], [14, 15] as concrete example.
In order to check whether atomic state teleportation between two ensembles at room
temperature can be realized directly using the current setup, we assume Z = 2.5,
as reported in [III]. To this end, we take only techniques that are already routinely
used into account. This includes the detection of sine and cosine modulated light
modes with arbitrary slowly varying readout modes. In the following, we show that us-
ing exponential mode functions, high fidelities can be reached even in the presence of noise.

Non-QND teleportation in the ideal case

The setup shown in Fig. 4.1 can be run in different variants, involving parallel or
antiparallel magnetic fields and different types of interactions (predominantly active
or mainly passive) in the first and second interaction. We compare all possible con-
figurations. As expected, we find that the parallel setting yields the best fidelities
irrespective of the type of interaction. In the following, we discuss the teleportation
scheme therefore in detail for parallel oriented magnetic fields (the derivations for the
antiparallel configuration can be found in App. D.3). To start with, it is assumed
that the interaction between light and the first and second ensemble is the same. If a
predominantly passive/active interaction is used, the corresponding Hamiltonian is given
by

H1/2 =
κ√
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2
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)
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where HL denotes the free Hamiltonian of the light field as above. Step (i) of the teleporta-
tion scheme is described by the input-output relations Eq. (4.5) and Eq. (4.6) introduced
above. Step (ii) results in
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has been used. After step (iii) the final state of Bob’s ensemble is given by
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where G+ is given by Eq. (4.3). The resulting average teleportation fidelities can be cal-
culated using Eq. (4.2) and are shown in Fig. 4.5. Rather than using the same interaction
in step (i) and step (ii), the protocol can also be run employing the predominantly ac-
tive/passive type for the interaction between the light field and Bob’s ensemble followed
by by a predominantly passive/active light-matter interaction involving Victor’s atomic
state. This setting corresponds to
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Step (i) can be described by the input-output relations used before, Eq. (4.5) and Eq. (4.6)
(with Z2 → −Z2 for the active case). In the second step, the backaction modes cancel
such that
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and step (ii) results accordingly in
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The feedback operation in step (iii) leads to
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Figure 4.5: Average Non-QND teleportation fidelity F̄ (n) versus width of the distribution of
input states n for Z = 2.5, constant couplings and optimized exponential readout
modes. The four topmost lines correspond (in descending order) to a active-active
(violet), active-passive (pink), passive-active (black) and passive-passive (blue) con-
figuration (see main text). The lowest line shown in red represents the classical
limit.

Fig. 4.5 displays the attainable average teleportation fidelity F̄ (n) for the four cases
described in this section and shows that the active-active variant yields the best
performance.

Non-QND teleportation including noise

As next step the teleportation scheme is analyzed in the presence of noise. The
dominant source of noise impairing ensemble experiments of this type is the decay of
the transverse spin components. Therefore, transverse decay is taken into account for
realistic experimental parameters. In the following, the final expressions describing the
quantum state of Bob’s ensemble are presented and the corresponding average fidelity is
evaluated. The derivation of the input-output relations can be found in App. D.3. If a
setup involving the same type of light-matter interaction for both ensembles is considered
and atomic decay at a constant rate η/T is assumed as in Sec. 4.1.4, Bob’s final state is
given by
(
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where the upper (lower) sign corresponds to a setting involving the active (passive) variant
of the interaction. Using different types of interactions in step (i) and step (ii) as discussed
above results in
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where the upper (lower) sign corresponds to an active-passive (passive-active) setting. The
resulting teleportation fidelities are displayed in Fig. 4.2b. The obtained results show that
the protocol studied here yields fidelities which well surpass the classical limit even if large
decay rates are taken into account. This renders the protocol a very promising candidate
for the immediate realization of atomic state teleportation between two ensembles at room
temperature.

4.2 Quantum memory assisted probing of dynamical

spin correlations

The high degree of controllability and versatility available in ultracold atoms in optical
lattices renders this system a promising platform for the simulation and investigation
of quantum many-body states and make it very attractive for studying new physics
such as non-equilibrium phenomena. However, the realization of important prerequisites
such as tools for the detection and manipulation of quantum many-body states is still
challenging. In this section, a method for probing dynamical spin correlations of strongly
interacting systems in optical lattices is proposed. As explained below, the scheme uses a
light-matter quantum nondemolition interaction to map a nontrivial magnetic observable
of a strongly correlated system to light. This probing procedure is performed at different
instances of time and a quantum memory is used to coherently store the information
between two subsequent applications of the mapping scheme for a time comparable
to the many-body dynamics. A final readout of the memory yields direct access to
dynamical correlations. This method introduces the use of quantum memories to the
field of quantum simulation of many-body systems.

Below, the state of the art and related work are briefly reviewed in Sec. 4.2.1 and
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the setup under consideration is introduced in Sec. 4.2.2. The new method proposed here
is compared to an alternative approach based on the evaluation of data obtained from
independent measurements, which is analyzed in Sec. 4.2.3. In Sec. 4.2.4, the protocol for
accessing dynamical correlation in strongly correlated systems using a quantum memory
is described and in Sec. 4.2.5, the application of the proposed scheme for probing the
dynamics of coupled double-well superlattices is considered as specific example.

4.2.1 State of the art and related work

The quantum simulation of condensed matter physics with ultracold atoms in optical
lattices requires the ability to prepare, manipulate, and probe many-body states [19–21].
Seminal experiments in this field range from the realization of a Bose-Einstein condensate
with alkali atoms in the weak-coupling regime [133,134], to the Mott insulator to superfluid
transition in the strongly interacting regime [23, 24]. The simulation of quantum mag-
netism with ultracold atoms has become one of the main goals in the field [106,216–218].
Bosons or fermions in a Mott insulating state are particularly promising candidate sys-
tems. Through strongly suppressed on-site number fluctuations, spins can be simulated by
considering the internal degrees of freedom of the atoms. Such spin states can be encoded
in the hyperfine structure in alkali atoms [19–21] or using the nuclear spins of alkaline-
earth fermions [219–221]. At sufficiently low temperatures and entropies, the spin-spin
interactions arising perturbatively from super-exchange processes are predicted to give
rise to important phenomena as Neél ordering, SU(N) magnetism, spin Hall effects, and
Stoner magnetism (see for example [222]). Quantum simulation with cold gases does not
only aim at mimicking the phenomena encountered in condensed matter physics, but also
at exploring new frontiers in physics. In particular, ultracold atoms allow for the investi-
gation of non-equilibrium phenomena of closed many-body systems, which is a very active
research area [223,224]. Especially interesting aspects include for example the study how
certain observables reach equilibrium after changing abruptly (“quenching”) some of the
parameters of the system, the influence of metastable states during the dynamics, the ef-
fect of the initial conditions if they are close to a critical point, and the relation of steady
states with statistical mechanics. To address these questions experimentally, methods
to probe and manipulate quantum many-body dynamics are of utmost interest. Among
the experimental methods to probe ultracold gases, Bragg spectroscopy [225–229] can be
used to extract static and dynamical structure factors. In this section, a method to probe
dynamical correlations in strongly interacting systems using a light-matter quantum non-
demolition (QND) interaction and a quantum memory is proposed. The QND interface is
used to coherently map a relevant magnetic operator J at different times (t, t+τ , . . . ) to
the light without performing a measurement. The quantum memory allows for the storage
of J between two consecutive matter-light interactions for a time τ , which is comparable
to the time scale of the internal many-body dynamics. A final readout of the memory
yields information on the dynamical spin correlations 〈ψ|J (t)J (t + τ)J (t + 2τ) . . . |ψ〉
for a given state |ψ〉. This quantum memory-assisted probing (QMAP) scheme is mini-
mally destructive, does not depend on the linear response of the system to an external
perturbation [230], and is also suitable for systems out of equilibrium, i.e. if |ψ〉 is not
an eigenstate of the many-body Hamiltonian. Moreover, it is shown that the correlations
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obtained using QMAP are fundamentally different from those obtained by repeating a
QND measurement of J (t) at different instances of time and performing a correlation
analysis. As explained in more detail below, the QMAP scheme stores the observable of
interest at different times without performing consecutive measurements. A final single
measurement retrieves quantum correlations of the system with itself at different instances
of time.

4.2.2 Setup

QND measurements have been employed to generate spin squeezed states in cold atomic
ensembles [169, 170], and have also been proposed to be used in probing schemes [64, 65,
231,232]. In the following, the focus will be on QND probing schemes, which are based on a
Faraday interaction. As shown theoretically in [233,234], this type of protocol can be used
to detect nontrivial magnetic ordering. A Faraday rotation [12] occurs if strongly polarized
light interacts off-resonantly with the internal spin degrees of freedom of an atomic system,
as described in Sec. 4.1.3. Here, strongly x̂-polarized light propagating along the ẑ-axis
is considered and described by time-integrated canonical operators xL = S2/

√
Nph and

pL = S3/
√

Nph, where S2 (S3) is the Stokes operator corresponding to the difference in
the number of photons in ±45 (in the two circular) polarizations, and Nph is the total
number of photons in the beam8. After the Faraday interaction,

xout
L = xin

L − κJ (0), (4.10)

where xin
L (xout

L ) is the light quadrature before (after) the interaction [12, 65]. This map-
ping, Eq. (4.10), is called F for later convenience. The coupling strength can be expressed
as κ =

√
dηA, where d is the optical depth of the atomic sample, and ηA is the single

atom spontaneous emission probability induced by the probing. For cold samples, d can
be larger than 100 [22] and hence κ2 ≈ 10 should be within reach. The observable

J =
1√
N

∑
n

cnjz
n, (4.11)

corresponds to the total modulated magnetization of the atoms illuminated by the light
beam. N denotes the total number of atoms confined in an optical lattice, and jz

n the
z-component of the atomic spin at site n. The modulation given by the coefficients cn

reflects the spatial dependence of the light beam; in a standing wave configuration [65],
cn = 2 cos (kna− α)2, where k is the wave number of the probing laser, a is the lattice
spacing, and α describes the shift between the probing standing wave and the optical
lattice (note that both cn and J depend on the tunable physical parameters k and α).
The many-body operator J is a QND observable [235] since it commutes with the Faraday
Hamiltonian used for the measurement. As required to measure nontrivial dynamical
correlations, J does not commute with the many-body Hamiltonian. The light-matter
interaction time can be chosen in the µsec range [169, 170], i.e., much shorter than the
relevant timescale of the many-body system and be considered instantaneous, such that

8 The variables xL and pL correspond to the flat-top mode (h(t) = 1) defined in Eq. (2.6) in the absence
of a magnetic field, i.e. without a sin(Ωt) or cos(Ωt) modulation (see Se. 2.1.3).
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Figure 4.6: Quantum memory-assisted probing (QMAP). Panels a) and b) illustrate the prob-
ing of dynamical correlations, where S (M) denotes the many-body system (quan-
tum memory), and Li is the i-th light beam used in the respective protocols as
described in the text. a) Scheme for measuring J at two different instances of time,
yielding FS(t) after sufficiently many repetitions. b) Scheme for measuring FM (t)
using a quantum memory. c) Signal obtained by probing the dynamics of coupled
double-well superlattices. The results are obtained by exact diagonalization for a
chain of 12 spins, considering a standing wave configuration with k = π/(2a) and
α = 0. CM (filled red circles and dashed line) and CS (empty blue squares and
solid line) are plotted as a function of ω. Vertical dashed green lines show the
spectrum of the Hamiltonian Eq. (4.16). The inset shows FM (t) (see Eq. (4.15))
and FS(t) (see Eq. (4.12)) as a function of time t in red and blue color respectively.

the QND character of the interaction is preserved. As shown in [234], J corresponds to a
nontrivial observable of magnetic systems. The proposal put forward here aims at using
the QND probing scheme to access to correlations functions such as 〈ψ|J (t)J (0)|ψ〉
for any initial state ψ. Here, the measurement of two-time correlations is explained,
extensions of this method to n-time correlations are straightforward.

4.2.3 Statistics based on independent measurements

In the following, the role of the quantum memory is explained by comparing the QMAP
protocol to a scheme which relies on statistics based on independent measurements. More
specifically, the information gained by a statistical analysis of independently performed
QND measurements of J at different times, as schematically illustrated in Fig. 4.6a is
analyzed. The many-body system (S) is initially prepared in state |ψ〉. At t = 0, a
measurement of J =

∑
i aipi is performed, where pi projects onto the eigenspace with

eigenvalue ai. The measurement is realized by a QND Faraday interaction (F ) between
the system (S) and the light field (L), followed by a measurement of the relevant light
quadrature. Depending on the outcome ai, the state collapses to pi|ψ〉. After the measure-
ment, the state evolves (U(t)) under the many-body Hamiltonian during a time window
of length t until a consecutive measurement of J is performed which yields the outcome
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aj. Accordingly, the statistical mean of the product of the two outcomes is given by

FS(t, k, α) =
∑

i

ai〈ψ|piJ (t)pi|ψ〉, (4.12)

and depends on the standing wave configuration parameters k and α. Note that FS(t, k, α)
is related but not identical to 〈ψ|J (t)J (0)|ψ〉. If the system is initially prepared in the
ground state, i.e. |ψ〉 = |E0〉, the Fourier transform of FS is given by CS(ω, k, α) =∫

dteiωtFS(t, k, α) =
∑

i,j ξijδ(ω − (Ei − Ej)), where {Ei} is the energy spectrum and ξij

can be trivially obtained. This quantity is peaked at frequencies corresponding to energy
differences between the eigenenergies, which provides partial information regarding the
energy spectrum. In Fig. 4.6c, FS(t, k, α) and CS(ω, k, α) are plotted for a specific example
which is discussed below. In the following, this result is compared to the information which
can be obtained using quantum memory assisted probing.

4.2.4 Protocol for quantum memory assisted probing

In the following, the quantum memory assisted probing of spin dynamics is discussed with
a focus on ensemble based memories [236]. As particular example, quantum memories
which rely on an off-resonant Faraday interaction are considered, as described in [12] (see
also Sec. 4.1.3). Faraday rotations have been experimentally realized using atomic samples
at room temperature in [14], where a storage time of the order of 4 ms was reported.
Longer storage times - up to 240 ms - have been achieved by means of electromagnetically
induced transparency based memories using ultracold atoms in optical lattices [22]. The
atomic ensembles are assumed to be strongly polarized along one direction, such that the
transverse components of the collective spin, xM and pM , commute canonically within the
Holstein-Primakoff approximation (compare Sec. 4.1). The Faraday interaction between
the light field and the atomic ensemble (the quantum memory) yields the input-output
relation9

xout
M = xin

M + κW pin
L , (4.13)

with xin
M = xM(t = 0) and xout

M = xM(t = τ), where τ is the total (short) interaction time.
This mapping will be referred to as writing operation W. The p - quadrature of the light
field is conserved pout

L = pin
L . Both, light and matter quadratures, can be rotated according

to x → cos(φ)x + sin(φ)p and p → cos(φ)p − sin(φ)x using linear optical elements. The
quadrature stored in the quantum memory can be retrieved using a second light beam.
The corresponding input-output relations for the light field are given by xout

L = xin
L +κRpin

M ,
pout

L = pin
L and will be referred to as reading operation R. The QMAP protocol for

measuring dynamical spin correlations using Faraday probing and a quantum memory is
sketched in Fig. 4.6b and involves the following sequence of operations. (F): At t = 0, a
Faraday interaction between the many-body system S and the first light pulse L1 maps
J to the light field, xout

L1
= xin

L1
− κ1J (0), pout

L1
= pin

L1
. A rotation of φ = π/2 is applied to

the output light quadrature. The rotated quadratures are labelled x̃out
L1

= pout
L1

and p̃out
L1

=

9 The QND input-output relations considered here differ from the ones used in Sec. 4.1, since the latter
correspond to a setting involving a magnetic field, while the former do not.
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−xout
L1

. (W): The p quadrature of the first light beam is mapped to the quantum memory
M, which results in xout

M = xin
M +κW p̃out

L1
= xin

M −κW (xin
L1
−κ1J (0)). (U): The many-body

system evolves freely during a time interval t such that J (t) = U †(t)JU(t). Due to the
QND character of the Faraday interaction, J (t) is unaffected by the first interaction used
to map its value to the memory. (F+R): After rotating the quadratures of the atomic
memory, x̃out

M = pout
M and p̃out

M = −xout
M , the second light beam L2 is sent through both the

system and the memory such that xout
L2

= xin
L2
−κ2J (t)+κRp̃out

M . (D): Finally, a balanced
homodyne detection of xout

L2
is performed. The quantity of interest is the variance of this

observable since var(xout
L2

) yields the desired information on the dynamical correlations
under investigation. More specifically, the variance of the x-quadrature of the light field
is given by

var(xout
L2

) = η(t) + κT FM(t, k, α), (4.14)

where η(t) = N + κ2
2 var (J (t)) + κ2

T /κ2
2 var (J (0)) is the noise impairing the signal and

κT = κ1κ2κRκW , with N = (1 + κ2
R + κ2

Rκ2
W )/2. Here, coherent input light fields and a

coherent spin state for the memory with 〈xin〉 = 〈pin〉 = 0 and var
(
xin

)
= var

(
pin

)
= 1/2

are assumed. The noise contribution N can be neglected for κ1, κ2 À κR, κW > 1. By
performing the two parts of the protocol independently, κ2

2var (J (t)) and κ2
T /κ2

2var (J (0))
can be determined and thus subtracted. The remaining signal provides direct access to
the symmetrized two-time dynamical correlation function of J , that is,

FM(t, k, α) = 〈[J (t),J (0)]+〉 − 2〈J (t)〉〈J (0)〉. (4.15)

By inserting Eq. (4.11) into Eq. (4.15), FM(t, k, α)=
∑

n,m cncm [Gmn(t, 0)+Gnm(0, t)] /N
is obtained, where the two point spin time correlation function Gmn(t, t′) is given by
Gmn(t, t′) = 〈jz

m(t)jz
n(t′)〉 − 〈jz

m(t)〉〈jz
n(t′)〉. If S is prepared in an eigenstate of the many-

body Hamiltonian, the Fourier transform of FM yields CM(ω, k, α) ∝ ∑
n ξn[δ(ω − (En −

E0)) + δ(ω + (En − E0))], which provides direct information on the energy spectrum.
CM(ω, κ, α) can be related to the symmetric spin dynamical structure factor [237], which
is well known to give access to the energy spectrum and the dispersion relation of the
system. In this case, η(t) is constant and the noise corresponds to a peak at zero frequency
and can be thus easily distinguished from the signal with features at finite frequencies.

4.2.5 Probing of the dynamics of coupled double-well superlat-
tices

As specific example, the dynamics of coupled double-well superlattices is considered and
FM (see Eq. (4.15)) is compared to the signal obtained by a statistical analysis FS (see
Eq. (4.12)) for this particular case. This system has been addressed both theoretically and
experimentally in [106,238]. In the following, the one dimensional many-body Hamiltonian
of 2N spins

H =
N−1∑
n=0

[g1j2n · j2n+1 + g2j2n+1 · j2n+2] (4.16)
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is considered, where j = (jx, jy, jz), jx,y,z denote spin-1/2 operators, and g1(2) is the
coupling between even-odd (odd-even) spins. This Hamiltonian can be implemented
employing optical superlattices (see [106] and references therein) in the super-exchange
regime obtained in deep lattices. In this case g1(2) = 4t21(2)/U , where t1(2) is the inter

(intra) double well hopping rate, and U the on-site interaction energy. In this regime
g−1 ∼ 10 ms, which is of the same order of reported storing times (T ) in quantum
memories, cited before. The condition gT À 1 is required to resolve the dynamics of
the many-body system, which demands either longer storage times or faster dynamics.
Remarkably, a recent experiment [218] simulating antiferromagnetism using tilted
optical lattices provides a faster dynamical timescale given by the tunneling rate, which
relaxes the requirements on the quantum memory. Here, the equilibrium case with
g1 = g2 = g is addressed assuming that the system is initialized in the many-body
ground state |E0〉. In Fig. 4.6c, the discrete Fourier transforms of FS and FM (which
are obtained using exact diagonalization) are plotted for the parameters stated in
the figure caption (the inset shows FS and FM). The signal obtained by means of a
statistical analysis FS, is very weak and contains many frequencies. Therefore, the
Fourier transform CS is almost flat. If a quantum memory is used as explained above,
much less frequencies are present in the signal and CM shows large peaks at some of the
energy levels, including the energy gap to the first excited state. It is also possible to
study the non-equilibrium case by assuming that the system is initially prepared in the
ground state of the Hamiltonian Eq. (4.16) with g1 = g and g2 = 0, that is, a product
of singlets between spins at even and odd lattice sites. At t = 0, the Hamiltonian
is quenched to g1 = g2 = g, and the state evolves accordingly. The method put
forward here allows one to explore thermalization effects characterized by dynamical cor-
relations [239,240], which is an interesting study which is beyond the scope of this section.

In conclusion, it has been shown that a signal which exploits and benefits from
quantum interference can be obtained by combining a QND light-matter interaction
with a quantum memory. This method provides direct access to dynamical spin-spin
correlations. It is remarkable that in the presence of a many-body Hamiltonian, which
does not commute with the QND interaction, even the storage of a single quadrature
in the quantum memory yields results, which are different from those obtained using
a classical memory. The integration of quantum memories in coherent spectroscopy
techniques offers many new possibilities. Particularly appealing are prospects for
detection of multi-time correlations or the manipulation of many-body dynamics by
performing conditional feedback operations on the quantum memory [12,171]. This could
lead to novel studies of non-equilibrium physics and provide new tools for the engineering
of quantum dynamics.

4.3 Quantum processing photonic states in optical

lattices

In this section, a proposal for the realization of an entangling gate for photons is put
forward. This scheme relies on light-matter interface techniques, which enable the map-
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ping of the photonic input state to an ensemble of ultracold atoms in a Mott insulating
state. The proposed protocol is deterministic and experimentally feasible under realistic
conditions. In Sec. 4.3.1, the prospects and problems related to quantum information pro-
cessing with photons are outlined and the current status in this field is briefly reviewed.
The proposed scheme and its main features are outlined in Sec. 4.3.2. In Sec. 4.3.3, the
key procedures are explained and in Sec. 4.3.4, the protocol is described in detail. Its
performance in the presence of imperfections is discussed in Sec. 4.3.5.

4.3.1 Quantum information processing with light

Photons play a key role in applications of quantum information science since they are
ideally suited to transmit quantum states between distant sites. This feature makes them
indispensable for the realization of quantum communication protocols and the construc-
tion of quantum networks. While being a good flying carrier of information, photons
are naturally less adequate for storage than atomic degrees of freedom. For this reason,
long-lived matter systems are employed as quantum memories. In order to combine both
elements in a quantum network (i.e. photons as flying qubits and atoms as memory de-
vices), light-matter interface schemes have been developed to transfer quantum states of
light to an atomic system. Some of these schemes are based on quantum-nondemolition
interactions [14,241], electromagnetically induced transparency [157,159] and Raman pro-
cesses [158]. Moreover, Raman processes have been used to entangle two distant atomic
ensembles [158], which represents an important step towards the realization of quantum
repeaters [67,180] and thus towards the solution of the problem of losses and decoherence
existing in photonic channels. Apart from storing and transmitting information, the pro-
cessing of quantum states is another important task in quantum networks. However, the
manipulation of quantum states of light is still challenging, since this requires the ability
to create entanglement between photons. This task is difficult because photons are nonin-
teracting particles, in principle. One possibility to entangle photons is to employ materials
possessing optical nonlinearities, but so far, there are no materials available whose non-
linearities are strong enough to allow for short gate times. An alternative approach has
been put forward by Knill et al. [77], which requires only linear optical operations and
measurements. However, this scheme is probabilistic and not very efficient in practice.
The scheme presented in this section allows for the realization of a deterministic entangling
gate for photons using ultracold atoms in optical lattices. As explained in App. 2.2.1, this
system consists of an ensemble of neutral atoms trapped by the periodic optical potential
created by a standing wave. The resulting atom lattice is assumed to be prepared in a
Mott insulating phase, in which the number of atoms in each site of the potential (i.e.,
in each of its minima) is approximately constant, and set to one [23, 24]. In the scheme
described here, the photonic input state is mapped to a collective atomic state following
light-matter interface schemes [14,157–159,241]. Once the input state is transferred to a
collective state of the atomic system, the desired gate operation is performed by means
of controlled atomic interactions. These controlled interactions due to collisions between
atoms have been already used experimentally to create and manipulate highly entangled
states, such as, for instance, cluster states [19,68,69,242,243]. As explained in App. 2.2.3,
the controlled realization of collisions between atoms requires the ability to displace the



86 CHAPTER 4. Applications of light-matter interface schemes

particles within the lattice depending on their internal state. The resulting entangled
atomic state is then converted back to the photonic channel, and the protocol results in a
deterministic two-qubit gate for photons. This way, the scheme combines the advantages
of two successful experimental techniques that have been recently demonstrated, the tech-
niques of quantum memories and repeater schemes on the one hand, and the ability to
manipulate neutral atoms in a very clean and controllable environment on the other hand.
It shows that atoms in optical lattices are not only suited to store quantum information,
but also to process it at the same time.

4.3.2 Overview and main results

The gate operation realized by the scheme presented here transforms the photonic input
state |Ψin〉L = α|0〉L + β|1〉L + γ|2〉L, consisting of a a superposition of zero-, one-, or
two-photon Fock states with corresponding coefficients α, β, and γ, into the output state
|Ψout〉L = α|0〉L+iβ|1〉L+γ|2〉L. A phase i is applied if the parity of the photon number n
is odd (n = 1), while no phase is applied in case of even parity (n = 0 or n = 2). Together
with one-qubit rotations, this entangling operation is sufficient for universal quantum
computation [244].

As outlined above, the quantum gate operation is implemented by mapping the input
light state to an atomic ensemble, manipulating the resulting atomic state, and converting
it back to a light state. More specifically, an atomic ensemble of N identical atoms
possessing two internal states |a〉 and |b〉 is considered. The states |a〉 and |b〉 can for
example be encoded in two different hyperfine ground states. All atoms are assumed to
be initially prepared in state |a〉. The mapping of the light state to the ensemble can
be realized by employing a quantum memory protocol that maps each incoming photon
to a collective atomic excitation. This way, the one-photon Fock state |1〉L results in
the collective atomic state |1〉A =

∑N
j=1 fj|a〉1...|b〉j...|a〉N with

∑N
j |fj|2 = 1. This

state is a superposition of all possible N particle product states containing one atom in
|b〉 and N − 1 atoms in |a〉 and represents one atomic excitation which is delocalized
over the whole ensemble. The state containing two atomic excitations is defined in an
analogous fashion. More generally, photonic Fock states |n〉L are mapped to collective
atomic states with n excitations |n〉A. The initial atomic state is therefore given by
|Ψin〉A = α|0〉A + β|1〉A + γ|2〉A.
In the next step, the quantum gate operation has to be applied to this state. As outlined
below, a CNOT operation between two particles can be implemented by inducing a
controlled collision between them. However, employing this tool includes the challenge
to efficiently implement a nonlinear operation between collective states, using local
interactions only. The following line of thoughts illustrates this difficulty. Using a naive
approach, every atom has to interact with all other atoms in the ensemble, which would
require O(N2) operations. In a more sophisticated approach, a messenger atom could
be chosen which interacts with all the other atoms in the sample. This procedure would
still require O(N) controlled collisions, which is not experimentally feasible either. In
contrast, the scheme put forward here requires only O(N1/3) interactions. This striking
reduction is achieved by projecting the input state, which is shared by all N atoms in
the ensemble, to a single qubit, which can be accessed and manipulated directly.
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In order to perform the entangling gate, four kinds of basic operations are required,
which are all within the experimental state of the art and do not require addressability
of individual atoms. (1) State dependent transport. Atoms are displaced depending on
their internal state using optical lattices with different polarizations [68, 69, 243] (see
App. 2.2.2 for details). (2) Population transfer between atomic states. Coherent coupling
of the two atomic levels can be achieved by driving Rabi oscillations. A π/2 pulse
creates the coherent superposition |a〉 7→ (|b〉 − |a〉)/√2, |b〉 7→ (|b〉 + |a〉)/√2, while
a π pulse inverts the atomic population. (3) Collisional phase shift. As described in
App. 2.2.3, controlled collisions between particles in different states can be induced by
spin dependent transport. If two particles occupy the same lattice site, a collisional
phase φcol = ∆E tint is accumulated [68, 69], where ∆E is the on–site interaction. By
controlling the interaction time tint, φcol can be tuned. (4) State-dependent phase shift.
A state-dependent single particle rotation can be obtained, for example, by applying a
magnetic field. A detailed description of operational steps which have to be performed
for realizing the desired gate is given in Sec. 4.3.3 and Sec. 4.3.4.

4.3.3 Processing of atomic states

As described in App. 2.2.3, controlled collisions can be utilized to manipulate a two-qubit
state such that a phase π is introduced. This operation can be employed to implement a
CNOT gate between two qubits. The key element used here is the displacement of control
atoms in state |b〉 with respect to a set of target atoms which are prepared in state |a〉,
such that collisions with the target qubits are induced10 and the atoms located along its
path are transferred to state |b〉. This tool is employed in two related methods, which lie
at the heart of the proposed scheme.

Method (I): Creation of a d dimensional structure from a (d− 1)- dimensional
one

Starting from a control atom in |b〉 and an ensemble of target atoms in |a〉, a line of
atoms in |b〉 can be produced. To this end, many CNOT operations are run in series, such
that the control qubit in |b〉 acts successively on several target atoms in a row, which are
accordingly transferred to state |b〉. The operational sequence, which has to be carried out
is shown in Fig. 4.7. In Fig. 4.7a, the atomic ensemble, which is initially prepared in state
|a〉, is shown as grey sphere, since the atomic sample occupies a spherical volume under
typical experimental conditions. The black dot outside the sphere represents an isolated
atom in state |b〉. Below, it is explained how such a configuration can be obtained. The
atoms in the ensemble are the target qubits, while the isolated particle is the control qubit.
First, a π/2 pulse is applied to the atomic ensemble transferring all target atoms to the

10 For the realization of a CNOT gate, a control and a target atom are considered, which are for example
placed along the ẑ–axis at zc and zt (with zt > zc), respectively. First, a π/2 pulse is applied to the
target atom |a〉t → (|b〉t − |a〉t)/

√
2. Then the |b〉 lattice is displaced along ẑ, such that the control

atom collides with the target atom and induces a π phase on |a〉t. Finally, the initial positions of the
atoms are restored and a second π/2 pulse is applied to the target atom (|b〉t + |a〉t)/

√
2 → |b〉t.
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Figure 4.7: Creation of a line of atoms in |b〉. (a) A control atom in |b〉 is located outside an
ensemble of atoms in |a〉. (b) A π/2 pulse is applied to the target atoms. (c) |a〉
and |b〉 components of the target qubits are separated spatially by a |b〉 lattice shift
along −ẑ. (d) The |b〉 lattice is further displaced along −ẑ, such that the control
atom in |b〉 interacts successively with the the |a〉 part of the target atoms along
its path, each time leading to a collisional phase π/2. (e) Both lattice shifts are
reversed such that all atoms are taken back to in their original positions. Then a
second π/2 pulse is applied to the target qubits. Atoms that have interacted with
the control atom are transferred to |b〉, while all other atoms in the ensemble are
transferred back to |a〉.

superposition state (|b〉− |a〉)/√2 as shown in Fig. 4.7b. Then, the |b〉 lattice is displaced
along −ẑ, such that |a〉 and |b〉 components of the target qubits are separated spatially.
This separation step is shown in Fig. 4.7c and has to be performed such that no collisional
phases are accumulated. This can be done11 by displacing the lattices first by half a lattice
spacing along x̂ (or ŷ) and then by a distance exceeding the length of the ensemble along
−ẑ. By displacing the |b〉 lattice further along −ẑ in the next step (compare Fig. 4.7d),
collisions between the control atom and target atoms encountered on its path through the
ensemble are induced. This way, the control atom interacts successively with all atoms
along the indicated line, each time leading to a collisional phase φcol = π/2. Both lattice
shifts are reversed leaving all atoms in their original position. The affected target atoms
are left in the state (|b〉 + |a〉)/√2. In the last step shown in Fig. 4.7e, a π/2 pulse is
applied to the target atoms. Since atoms, which are located on the path of the control
qubit, have acquired a change of sign in the wave function, these atoms are transferred
to state |b〉, while all other atoms in the ensemble are transferred back to state |a〉.
In an analogous fashion, a plane of atoms in state |b〉 can be produced using a line of
control atoms instead of a single qubit. To this end, a line of control atoms in state |b〉
has to be swept through an ensemble of target atoms in |a〉. Following the steps described
above, each control qubit in the line interacts with a line of atoms along its path, such
that finally all target atoms located in this plane are transferred to |b〉.

11Alternatively, the lattice can be moved fast along −ẑ. This way, the interaction time is very short and
only a negligible collisional phase is accumulated. The displacement has to be done such that the atoms
start and end up in their motional ground state [242,245].
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Figure 4.8: Mapping of excitations in the bulk to the plane. (a) A π/2 pulse is applied to the
plane transferring all these qubits to the state (|b〉 − |a〉)/√2 . (b) The |b〉 lattice
is shifted along x̂ such that atoms in |b〉 in the bulk interact with the |a〉 part of
the plane. The time spent after each single site displacement is chosen such that
a phase π/2 is accumulated if a collision occurs. Then this lattice movement is
reversed such that the initial atomic positions are restored and each target atom
which is located on the path of a control particle is in state (|b〉+|a〉)/√2. All other
target atoms are still in state (|b〉 − |a〉)/√2. (c) Finally the plane is subjected to
another π/2 pulse, which transfers most of the atoms back to |a〉. Only atoms,
taking part in a collision are transferred to |b〉.

Method (II): Mapping of collective excitations from an atomic ensemble of
dimensionality d to a sample of dimensionality d− 1

Fig. 4.8 illustrates how excitations in a three-dimensional ensemble can be mapped to a
plane of particles. Fig. 4.8a shows an ensemble of atoms, where two atoms are in state
|b〉, indicated by black dots. Note that collective excitations are delocalized. The state
|2〉A corresponds to a superposition of all N -particle states with two atoms (at specific
locations) in state |b〉. In this sense, Fig. 4.8 shows only one term of the superposition.
Located next to the ensemble, a plane of particles in state |a〉 is shown. Both structures are
separated in space but confined by the same optical lattice. Excitations in the ensemble
can be mapped to excitations in the plane by using the atoms in the ensemble as control
qubits acting on the target qubits in the plane, as described in the figure caption. Most
atoms in the ensemble are in state |a〉 and do not induce any changes. However, in this
example, two atoms in the ensemble are in state |b〉. Thus, collisions are induced if the
|b〉 lattice is shifted along x̂ and the target atoms colliding with these control atoms along
their paths through the plane are transferred to |b〉. This way, atoms in |b〉 are projected
from the bulk to the plane. More precisely, this procedure leads to a mapping of a state
with n atoms in |b〉 in the bulk to a state with n atoms in |b〉 in the plane, except if two
atoms in |b〉 in the bulk are located in a line along x̂, leaving the corresponding target
atom in |a〉 (CNOT2 = 1). In any case, an even (odd) number of excitations is mapped
to an even (odd) number of excitations in the target object. This method allows for the
stepwise reduction of the dimensionality of the problem. Collective excitations can be
mapped from a plane to a line in an analogous fashion. Finally, excitations are mapped
from a line to a single site (d = 1) and an odd number of excitations in the line transfers
the target atom to state |b〉, while in case of an even number of excitations, this atom is
left in state |a〉. Thus, the parity information is encoded in the state of a single atom.
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Figure 4.9: Initialization of the lattice. (a) A control atom in |b〉 is placed outside the ensemble.
(b) The control qubit interacts successively with a row of target atoms in the
ensemble, thus transferring them to state |b〉, as explained in Fig. 4.7. This way, a
line of atoms in |b〉 is obtained, which is aligned along ẑ. (c) The line is separated
from the ensemble along −ŷ . (d) The line of control qubits is now used to create
a plane of atoms in |b〉. For this purpose, a π/2 pulse is applied to the ensemble,
collisions are induced by a |b〉 lattice shift along ŷ and a −π/2 pulse is applied to
the bulk. Since each control atom in the line leads to a line of atoms in |b〉, that is
aligned along ŷ, a plane in the ŷ− ẑ plane is obtained. (e) The plane is separated
from the ensemble by a |b〉 lattice shift along x̂, and a π pulse is applied, which
leaves the atoms in the plane, the line, and the dot in state |a〉.

4.3.4 Quantum gate protocol

In this subsection, we introduce the main idea and describe the steps which have to be
carried out in order to perform the desired quantum gate. We conclude this subsection
by explaining the gate operation realized by this scheme based on its truth table.

Operation sequence

As explained above, the photonic input state is transferred to an atomic ensemble. Then,
the gate operation is performed on the collective atomic input state, which is thereafter
converted back to light. The main idea behind the processing of the delocalized atomic
state is the stepwise mapping of collective excitations to structures of lower dimension.
More specifically, collective excitations are first mapped from the three-dimensional Mott
insulator to a plane of particles, then to a line, and finally, to a single atom. The whole
scheme comprises two stages. During an initialization phase, the atoms are divided into
four sets - the bulk, a plane, a line, and a dot - which are confined by the same optical
lattice but spatially separated. Once this setup has been prepared, it can be used many
times to perform gates. In the second phase, the gate protocol itself is performed. Below,
the preparation of the setup is explained followed by a description of the processing stage.

Preparation of the lattice
The initialization protocol is summed up in Fig. 4.9. First, a single collective excitation is
created in the ensemble, for example, by mapping a one-photon Fock state to the atomic
sample by means of a light-atom interface scheme [14, 157–159, 241]12. More specifically,
after the absorption of the single photon, the atomic ensemble is in a superposition of all

12This can, for instance, be done employing heralded single photons from an EPR source. An atomic
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Figure 4.10: Quantum gate protocol transforming the input state |Ψin〉A = α|0〉A + β|1〉A +
γ|2〉A into |Ψout〉A = α|0〉A + iβ|1〉A + γ|2〉A. (a) to (c) Excitations in the Mott
insulator are successively mapped to structures of lower dimensionality resulting
in a single atom in state |a〉/|b〉 in case of an even/odd number of excitations in
the Mott insulator. (d) A state dependent phase is applied to the isolated particle
such that |1〉A 7→ i|1〉A. Subsequently steps (a) to (c) have to be reversed.

possible N particle product states with one atom in |b〉 and all other atoms in |a〉. Now,
a |b〉 lattice shift is applied such that the (single) atom in state |b〉 is separated from the
bulk of atoms in |a〉. This is a global operation acting on all atoms at the same time that
affects only one atom (which is in state |b〉). In the next step, method (I) is applied to
create a line of atoms in |b〉, using the isolated atom as control qubit13. Subsequently, this
line is separated from the bulk and utilized to produce a plane of atoms in |b〉 employing
the same method. Finally, the isolated atom, the line, and the plane are displaced by
another global |b〉 lattice shift such that the constellation shown in Fig. 4.9e is obtained.
Finally, a π pulse is applied to the plane, the line, and the dot transferring these atoms
to state |a〉.

Quantum gate protocol.
The quantum gate protocol is summarized in Fig. 4.10. Once the light state is transferred
to the bulk, the resulting collective atomic excitations are mapped to the plane of atoms
by means of method (II). These excitations are mapped from the plane to the line in the
next step in an analogous fashion. The projection sequence is completed by applying
method (II) a third time and finally, mapping the excitations from the line to the single
separated particle. This way, the parity of the number of excitations contained in the bulk
is mapped to the dot, transferring the isolated atom to state |b〉 in case of one excitation,
while it remains in state |a〉 otherwise. Now a state dependent phase shift is applied to
the dot such that a phase π/2 is introduced if the atom is in state |b〉. This way, the
phase i is only applied if an odd number of collective excitations has been initially present
in the bulk and atomic states are transformed according to |0〉A 7→ |0〉A, |1〉A 7→ i|1〉A,

excitation can also be created by means of a weak coherent field together with a postselecting photon
detection [157–159].

13 If the path of the control atom is located at the edge of the cloud, short lines are produced. This can
be avoided by focusing the light field, which is used in the first step of the preparation, to the center
of the Mott insulator along x̂ and ŷ. This way, the light field acts on a cylindrical volume centered at
the center of the Mott insulator, restricting the deviation in length. Note that this procedure does not
require individual addressing.
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|2〉A 7→ |2〉A. The described mapping sequence results in an entangled state of the bulk,
the plane, the line, and the dot. In order to apply a light-matter interface protocol, which
transfers the atomic state back to a photonic channel, the initial atomic state (up to the
introduced phase) has to be restored. To this end, the previous steps have to be reversed.
After converting the final atomic state to light, the setup is left in the original state and
can be used again to perform a quantum gate operation.

Truth table

Now the truth table corresponding to the protocol is considered. After the mapping of
the photonic state to the atomic ensemble, the bulk is in a state containing zero, one, or
two collective excitations. Since a collective atomic state |n〉A is a superposition of atomic
states with n atoms in |b〉 and N −n atoms in |a〉, all possible configurations are included
in this superposition. These possible initial atomic states of the bulk with n atoms in |b〉
located at certain lattice sites, corresponding to a configuration k are denoted by |Bn

k 〉b.
|P 〉p and |L〉l refer to the initial state of the plane and the line, respectively, where all
atoms are in state |a〉. The three-step projection sequence of the protocol described above
produces the map |Bn

k 〉b|P 〉p|L〉l|a〉d 7→ |Bn
k 〉b|P n′

k 〉p|Ln′′
k 〉l|an〉d. |P n′

k 〉p and |Ln′′
k 〉l denote

the states of the plane and line after the excitations have been mapped and |an〉d describes
the state of the dot with a0 = a2 = a and a1 = b. After applying the state dependent
phase i and reversing all the previous steps, the protocol results in

|Bn
k 〉b|P 〉p|L〉l|a〉d 7→ inmod2|Bn

k 〉b|P 〉p|L〉l|a〉d. (4.17)

The initial atomic state under consideration features not only a superposition of atoms
in |b〉 at different positions in the ensemble, but also a superposition of different positions
of the plane, the line, and the dot. This is due to the fact that the excitation created at
the beginning of the initialization is delocalized and these positions depend on the initial
position of the control atom in |b〉. However, for any term in the superposition, the final
state differs only in a phase from the initial state. By adding the terms in Eq. (4.17) with
respect to the positions of the excitations, k, and the positions of the plane, the line, and
the dot, the desired quantum gate transformation is obtained. Note that the protocol
does not rely on a coherent superposition of the different positions of the dot, the line,
and the plane. It can also be run using a mixed state.

4.3.5 Performance of the quantum gate in the presence of noise

In this subsection, the main sources of errors of the scheme are analyzed. The specific
design of the protocol minimizes decoherence and is optimized such that imperfections
have only a small effect on the performance of the quantum gate despite the large number
of particles involved. It has been carefully designed in order to minimize decoherence,
first of all, by avoiding the presence of cat states in the internal atomic states, which
would give rise to errors if few particles are lost. Apart from that, runtimes are very
short such that decoherence has not much time to act. In particular, the time required
to perform the scheme is essentially given by the time needed to run the collisional steps,
since population transfers and separations can be done much faster. Each collisonal step
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has to be performed along a whole ensemble length and requires therefore a time tintN
1/3,

where tint is the time spent in a single collision. Remarkably, the three dimensional
problem scales like a one dimensional one in time, since the task of scanning N parti-
cles in a three dimensional lattice is accomplished by a one dimensional projection scheme.

In the following, transitions from |a〉 to |b〉 or to another trapped state affected
by |b〉 lattice shifts are addressed and it is exemplified how a judicious choice of atomic
levels allows one to sidestep this source of errors, while still being able to perform the
operations that are necessary for the quantum gate. For example, by employing alkali
atoms with nuclear spin 1/2, the atomic qubit can be encoded in hyperfine states of the
S1/2 shell by identifying |a〉 ≡ |F = 1,mF = −1〉, and |b〉 ≡ |F = 1,mF = 1〉. A state
dependent transport mechanism can be implemented by trapping |F = 1,mF = −1〉
and |F = 1,mF = 1〉 by σ− and σ+ polarized light respectively, if the detuning of two
off–resonant standing waves with different polarizations [68, 69] is chosen appropriately,
Transitions |a〉 7→ |b〉 cannot be induced by means of the off–resonant laser fields, since
the state |a〉 corresponds to the nuclear magnetic quantum number mI = −1/2, while the
state |b〉 corresponds to mI = 1/2. π/2 or π pulses can be applied by means of resonant
two-photon Raman or microwave transitions. Finally, the standing waves do induce
transitions to the other trapped states |F = 1, mF = 0〉 and |F = 0,mF = 0〉. However,
the optical potential experienced by these levels is given by the equally weighted sum
of contributions from both polarizations. While shifting one lattice with respect to the
other, the optical potential vanishes at some point, and these two levels are emptied,
which ensures that they do not affect the protocol.
Among the other noise mechanisms, the most important ones are imperfect population
transfer and dephasing of quantum states14 between two π/2 pulses. The corresponding
probability of error is proportional to the number of target atoms in the mapping steps
N2/3. This failure probability can be reduced by using an elongated atomic ensemble
having a spatial extend L along the direction of the first lattice shift in the quantum
gate protocol and a length l < L along the other directions. In this case the probability
of obtaining a wrong result is proportional to l2.
The probability of error due to the remaining noise mechanism scales at worst like N1/3,
i.e. proportional to the runtime of the protocol. First, imperfections in the π pulse,
which is performed at the end of the initialization of the lattice are considered. Since an
imperfect population transfer leaves atoms in a superposition state, the |b〉 lattice should
be emptied as an additional step of the initialization after the π pulse.
Another source of errors are occupation number defects. Only empty lattice sites have
to be considered here, since double occupied sites can be avoided by choosing low filling
factors. Holes in the plane and the line lead to a wrong result, if they are located at
specific sites which interact with an atom in |b〉 in the course of the processing protocol.

14 Inhomogeneous background fields are an important source of dephasing since they lead to uncontrolled
relative phases β in superposition states (|a〉+ eiβ |b〉)/√2 during the state dependent transport. Since
all lattice shifts are reversed in the protocol, this effect can be suppressed by applying a single π pulse
that swaps the levels |a〉 and |b〉 after each shift, before the atoms are transported back. This way, both
components acquire the same phase. A π pulse has to be applied once each time the motion of the
atoms is reversed, that is, only 6 times during the whole quantum gate protocol.
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The failure probability due to defects which are initially present in the Mott insulator
are given by the probability for a single site to be unoccupied, and does not depend on
the size of the system. Holes can also be created as consequence of atomic transitions
into untrapped states. This dynamical particle loss induces an error which scales like
the duration of the gate, N1/3. Another limiting factor are imperfect collisions. The
phase acquired in each lattice shift during the collisional steps may differ from φcol = π.
However, as in the case of unoccupied lattice sites, the probability of obtaining a wrong
result due to such an event is given by the probability on the single-site level. The fidelity
of the scheme is also decreased by undesired collisional phases. The corresponding failure
probability is proportional to N1/3, since these phases are accumulated in one dimensional
operations each covering one ensemble length. Finally, kinetic phases acquired by the
atoms during lattice shifts do not play a role in the proposed scheme. Employing the
common technique for state dependent transport, the nodes of two optical potentials
forming standing waves are moved in opposite directions V±(x) = cos2(kx ± φ) for some
wave vector k, spatial variable x and angle φ. Lattice shifts affect therefore both atomic
species in the same way and lead only to global phases of the resulting quantum states.
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Chapter 5

Number correlated states in
Bose-Einstein condensates and
optical cavities

This chapter is concerned with single atoms in high-finesse optical cavities (Sec. 5.1)
and Bose-Einstein condensates interacting with freely propagating light (Sec. 5.2). Both
sections focus on the creation and detection of correlations in the number basis. In Sec. 5.1,
a multi-purpose cavity quantum electrodynamics setup is proposed and analyzed, which
allows for the generation and purification of highly entangled photon number correlated
states as well as for number-resolved nondestructive photon counting. In Sec. 5.2, the
superradiant scattering of coherent light from an elongated BEC is studied. This process
involves the creation of Einstein-Podolsky-Rosen (EPR) entanglement between atoms
and light. Below, it is shown how this type of entanglement can be detected by means
of particle number measurements and how this process can be used to create and distill
inter-atomic entanglement by photon counting. The results presented in Sec. 5.1 and
Sec. 5.2 have been published in [VI] and [VIII] respectively.

5.1 Quantum state engineering, purification, and

photon counting in high finesse cavities

In this section, a multi-functional setup consisting of high finesse optical cavities, beam
splitters and phase shifters is put forward and analyzed. The basic scheme projects
arbitrary photonic two-mode input states onto the subspace spanned by the product of
Fock states |n〉|n〉 with n = 0, 1, 2, . . .. The proposed protocol does not allow for the
conditional generation of highly entangled photon number states as resource for quantum
information protocols, but provides also a possibility to test and hence purify this type of
quantum states in a communication scenario, which is of great practical importance. This
scheme is especially attractive as a generalization to many modes allows for distribution
and purification of entanglement in networks. In an alternative working mode, the setup
allows of quantum-nondemolition number resolved photodetection in the optical domain.
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In Sec. 5.1.1, the proposal is introduced and related work and the state of the art
are briefly reviewed. In Sec. 5.1.2, the central idea is explained and the main results
are summarized. The nondestructive conditional projection of photonic states onto
photon number correlated states is described in Sec. 5.1.3, in Sec. 5.1.4, it is shown that
a modified version of the setup can act as a nondestructive photon number resolving
detector, and in Sec. 5.1.5, the possibility to use the setup to detect, and thereby filter
out losses is investigated.

5.1.1 State of the art and related work

Photons are attractive carriers of quantum information since the interactions of light with
the surroundings are typically weak. However, for the same reason it is generally difficult
to prepare, manipulate, and measure quantum states of light in a nondestructive way.
As explained in Sec. 2.3, repeated interactions provide a method to increase the effective
coupling strength between light and matter, and the backreflection of light in a cavity thus
constitutes an interesting tool, in particular, because experiments are currently moving
into the strong coupling regime [112–115].
Here, a versatile setup consisting of an array of cavities and passive optical elements
(beam splitters and phase shifters) is proposed, which allows for quantum state engineer-
ing, quantum state purification, and nondestructive number resolving photon detection.
The setup relies on two basic ingredients, the Hong-Ou-Mandel interference effect [246]
generalized to input pulses containing an arbitrary number of photons and the possibility
to project onto the subspace of even or the subspace of odd photon number states using
cavity quantum electrodynamics in the strong coupling regime.
Regarding quantum state engineering, the basic setup provides a possibility to condition-
ally generate photon number correlated states. More specifically, the setup allows for the
projection of an arbitrary photonic two mode input state onto the subspace S spanned
by the state vectors |n〉|n〉 with n = 0, 1, 2, . . .. The scheme is probabilistic and involves
conditioning on a specific measurement outcome. The success probability equals the norm
of the projection of the input state onto S and equals unity if the input state already lies
in S. Therefore, the setup can be understood as a filter [247], which removes all undesired
components of the quantum state and leaves the desired components unchanged. This
way, it is for example possible to use two independent coherent states as input and obtain
a photon number correlated state as output.
Photon number correlated states, for example Einstein-Podolsky-Rosen (EPR) entangled
states [248], are an important resource for quantum teleportation [189,199,203,211,249],
entanglement swapping [212, 250, 251], quantum key distribution [4, 213], and Bell
tests [252, 253]. In practice, however, the applicability of these states is hampered by
noise effects such as photon losses. Real-world applications require therefore entangle-
ment purification. The proposed setup is very attractive for detection of losses and can in
particular be used to purify photon number entangled states on site. If a photon number
correlated state, for example an EPR state, is used as input, the desired state passes the
setup with a certificate, while states which suffered from photon losses are detected and
can be rejected.
Photon losses are a particlularly serious problem in quantum communication over long
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distances. It is not only a very common source of decoherence which is hard to avoid, but
also typically hard to overcome. The on-site purification protocol mentioned above can
easily be adopted to a communication scenario such that it allows for the purification of
a photon number correlated state after transmission to two distant parties.
Purification of two mode entangled states has been shown experimentally for qubits [254,
255] and in the continuous variable (CV) regime [256,257] (CV-entanglement purification
is especially challenging [258–260]. Nevertheless, several proposals have been put forward
to accomplish this task [261–266], and very recently Takahashi et al. succeeded in an
experimental demonstration [267]). A special advantage of the scheme described here lies
in the fact that it does not only allow for detection of arbitrary photon losses, but is also
applicable to many modes such that entanglement can be distributed and purified in a
network.
With a small modification, the basic setup can be used for number resolved photon
detection. The ability to detect photons in a number resolved fashion is highly desir-
able in the fields of quantum computing and quantum communication. For example,
linear optics quantum computation relies crucially on photon number resolving detec-
tors [77,268,269]. Moreover, the possibility to distinguish different photon number states
allows for conditional state preparation of nonclassical quantum states [270–272], and
plays an important role in Bell experiments [251] and the security in quantum cryp-
tographic schemes [273, 274]. Other applications include interferometry [275] and the
characterization of quantum light sources [276,277].
Existing technologies for photon counting [278–291] such as avalanche photodiodes, cryo-
genic devices, and quantum dots typically have scalability problems and cannot reliably
distinguish high photon numbers, destroy the quantum state of light in the detection pro-
cess, or can not be applied in the optical domain. Here, a nondestructive number resolving
photo detection scheme in the optical regime is presented. This quantum-nondemolition
(QND) measurement of the photon number allows for subsequent use of the measured
quantum state of light. An advantage of the counting device put forward here compared
to other theoretical proposals for QND measurements of photon numbers [292–297] is the
ability to detect arbitrarily high photon numbers with arbitrary resolution. The scheme
is based on testing successively all possible prime factors and powers of primes and the
resources needed therefore scale moderately with the (width and mean of the) photon
number distribution. In particular, a very precise photon number measurement can be
made even for high photon numbers by testing only few factors if the approximate photon
number is known.

5.1.2 Overview and main results

The key-element of the proposed setup is the phase-flip gate introduced in Sec. 2.3.2. It
allows one to use the internal state of a single atom in an optical cavity to control whether
the phase of a light field is changed by π or not [121]. This gate is illustrated in Fig. 2.6
and can be used to prepare superpositions of coherent states [124]. To this end, the atom
is initially prepared in the state (|↑〉 + |↓〉)/√2, and the input field is chosen to be a
coherent state |α〉. After the interaction, the combined state of the atom and the light
field is proportional to |α〉|↑〉+ |−α〉|↓〉 ∝ (|α〉+ |−α〉)(|↑〉+ |↓〉)+(|α〉−|−α〉)(|↑〉−|↓〉),
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and a measurement of the atomic state in the basis |±〉 = (|↑〉 ± |↓〉)/√2 projects the
state of the light field onto the even |α〉 + | − α〉 or the odd |α〉 − | − α〉 superposition
state. More generally, the input state

∑
n cn|n〉, where |n〉 is an n-photon Fock state, is

transformed into the output state
∑

n(1/2± (−1)n/2)cn|n〉, i.e., the input state is either
conditionally projected onto the subspace spanned by all even photon number states or
the subspace spanned by all odd photon number states without destroying the state.

With this tool at hand, an arbitrary two-mode input state can be projected onto the
subspace S = span(|n〉|n〉), n = 0, 1, 2, . . .. If two modes interfere at a 50:50 beam
splitter, a state of form |n〉|n〉 is transformed into a superposition of products of even
photon number states. If a 50:50 beam splitter operation is applied to the input state,
both of the resulting modes are conditionally projected onto the subspace of even photon
number states. If a second 50:50 beam splitter operation is applied, the input state is
thus unchanged if it already lies in S, but most other states do not pass the measurement
test. To remove the final unwanted components, opposite phase shifts are applied to the
two modes (which also leaves |n〉|n〉 unchanged) and the procedure is repeated (as shown
in Fig. 5.1). For an appropriate choice of phase shifts, the desired state is obtained after
infinitely many repetitions. In practice, however, a small number of iterations is typically
sufficient. If, for instance, the input state is a product of two coherent states |α〉|α〉 with
|α|2 = 4, the fidelity of the projection is 0.573 for one unit, 0.962 for two units, and
0.999998 for three units. The scheme is easily generalized to an M mode input state. In
this case, first modes 1 and 2 are projected onto S, as well as modes 3 and 4, etc. Then
modes 2 and 3 are projected on S, as well as modes 4 and 5 etc.

The setup can also be used as a device for photon number resolving measurements if the
phases applied between the light-cavity interactions are chosen according to the new task.
Each photon number state |n〉 sent through the array leads to a characteristic pattern of
atomic states. As explained in Sec. 5.1.4, the photon number of an unknown state can
be determined by testing the prime factors and powers of primes in the range of interest
in subsequent parts of the array. The scheme scales thereby moderately in the resources.
Three cavity pairs suffice for example for detecting any state which is not a multiple
of three with a probability of 93.75%. However, in this basic version of the counting
scheme, the tested photon state may leave each port of the last beam splitter with equal
probability. Deterministic emission of the unchanged quantum state of light into a single
spatial mode is rendered possible if one allows for entanglement of the atoms in different
cavities before the interaction with the field (see Sec. 5.1.4). More generally, the proposed
scheme allows for the determination of the difference in photon numbers of two input
beams without changing the photonic state.

The correlations in photon number between two modes of states in S facilitate an inter-
esting possibility to detect photon losses. To this end, the state is projected onto S a
second time. If a photon loss has occurred, the state is most likely orthogonal to S, in
which case a measurement outcome is obtained, which is not the one required for accept-
ing the projection as successful. On the other hand, if no photon loss has occurred, the
desired measurement outcome is obtained with certainty. Note that the loss of a single
photon can always be detected by this method, and the state can thus be conditionally
recovered with almost perfect fidelity if the probability for losses is sufficiently small. The
robustness of the scheme can be improved even further, if a M -mode state is used. It
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is then possible to detect all losses of up to M − 1 photons, and even though it is M
times more likely to lose one photon, the probability to lose one photon from each mode
is approximately (Mp)M , where p is the probability to lose one photon from one mode
and Mp ¿ 1 is assumed. In a situation where many photon losses are to be expected,
photon number correlated states can be obtained with small probability but high fidelity.
The different modes of a photon number correlated state can also be distributed to distant
parties, while losses can be still checked for, provided that at least two modes are sent to
each party. Since the proposed scheme can be used as a filter prior to the actual protocol,
it has an important advantage compared to postselective schemes. If the tested entangled
state is for example intended to be used for teleportation, the state to be teleported is
not destroyed in the course of testing the photon number correlated resource state.
The dynamics in Fig. 2.6 requires strong coupling, a sufficiently slowly varying mode
function of the input field, and a sufficiently low flux of photons. In order to quantify
these requirements, a full multi-mode description of the interaction of the light with the
cavity is provided in [VI] for the case of a coherent state input field. There, it is shown
that the single atom cooperativity parameter should be much larger than unity, the mode
function of the input field should be long compared to the inverse of the decay rate of the
cavity, and the flux of photons in the input beam should not significantly exceed the rate
of spontaneous emission events from an atom having an average probability of one half
to be in the excited state. Moreover, the optimal shape of the mode function of the input
field is derived in [VI] for the case when the mode function is only allowed to be nonzero
in a finite time interval.

5.1.3 Nondestructive projection onto photon number correlated
states

The proposed setup for the projection of an arbitrary two-mode input state onto S is
sketched in Fig. 5.1. The field annihilation operators of the two input modes are denoted
by a and b, respectively. The total transformation corresponding to one of the units
(consisting of a beam splitter, a set of cavities, and a second beam splitter), conditioned
on the detection of both atoms in state |+〉 after the interaction, is given by the operator
U †PU , where

U = exp
[π

4

(
a†b− ab†

)]
, P =

∞∑
n=0

∞∑
m=0

|2n〉〈2n| ⊗ |2m〉〈2m|. (5.1)

As explained above, the Hong-Ou-Mandel effect ensures that U †PU |n〉|n〉 = |n〉|n〉, while
most other possible components of the input state are removed by means of the condi-
tioning, for instance all components |n〉|m〉 with n + m odd. There are, however, a few
exceptions, since all states of the form U †|2n〉|2m〉, n = 0, 1, 2, . . ., m = 0, 1, 2, . . ., are
accepted. The phase shifts between the U †PU units are represented by the operator

Uφ = exp
[
iφ

(
a†a− b†b

)]
, (5.2)

which leaves states of the form |n〉|n〉 unchanged, while states of the form |n〉|m〉 with
n 6= m acquire a phase shift. For a setup containing N +1 units, the complete conditional
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Figure 5.1: The first three units of the proposed setup for the conditional projection of an
arbitrary two-mode input state onto the subspace spanned by the state vectors
|n〉|n〉, n = 0, 1, 2, . . .. All atoms are initially prepared in state |+〉. The desired
projection occurs in the limit of infinitely many units conditioned on the detection
of all atoms in state |+〉 after the interaction. As explained in the text, a small
number of units will typically suffice in practice. For later reference, the beam
splitters are labelled by BSi and the cavities by Ci.

transformation is therefore represented by the operator

ON =U †PUUφN
U †PU · · ·Uφ2U

†PUUφ1U
†PU =U †PU

N∏
i=1

cos[φi(a
†a−b†b)], (5.3)

where U †PU in the last term commutes with the product of cosines. For N → ∞, the
product of cosines vanishes for all components of the input state with different numbers
of photons in the two modes if, for instance, all the angles φi are chosen as an irrational
number times π. The operators are here applied one after the other to the input state,
which corresponds to the successive interactions of the light with the different components
of the setup. Even though, the input pulses can be longer than the distance between the
components such that different parts of the pulses interact with different components at
the same time, if the state of the atoms is not measured before the interaction with the
light field is completed. The setup using an array of cavities as in Fig. 5.1 can therefore
be very compact even though the pulses are required to be long.1

In the following, the optimal choice of angles φi for achieving the projection onto S to a
good approximation with a small number of units is addressed. To this end, the fidelity
of the projection

FN =
|〈ψN |ψ∞〉|2

〈ψN |ψN〉〈ψ∞|ψ∞〉 =
〈ψ∞|ψ∞〉
〈ψN |ψN〉 (5.4)

1 Note that it would also be possible to use a single pair of cavities and atoms repeatedly in a fold-on
type of experiment. However in this case the compactness would be lost due to the need for long delay
lines necessary to measure and re-prepare the atoms before they are reused.
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is defined as the overlap between the unnormalized output state |ψN〉 = ON |ψin〉 after
N +1 units and the projection |ψ∞〉 of the input state |ψin〉 onto the subspace S. The last
equality follows from the fact that |ψN〉 = |ψ∞〉+ |ψ⊥〉, where |ψ⊥〉 lies in the orthogonal
complement of S. Maximizing FN for a given |ψin〉 =

∑
n

∑
m cnm|n〉|m〉 thus corresponds

to minimizing

〈ψN |ψN〉 =
∞∑

n=0

∞∑
m=0

cnm

N∏
i=1

cos2[φi(n−m)]× 〈ψin|U †PU |n〉|m〉,

i.e., the optimal solution of the equation

∂〈ψN |ψN〉
∂φj

=−
∞∑

n=0

∞∑
m=0

cnmsin[2φj(n−m)](n−m)×
N∏

i=1
i6=j

cos2[φi(n−m)]〈ψin|U †PU |n〉|m〉=0.

A set of solutions valid for any input state can be obtained by requiring sin[2φj(n −
m)]

∏
i6=j cos2[φi(n − m)] = 0 for all even values of n − m (note that U †PU |n〉|m〉 = 0

for n + m odd). Within this set, the optimal solution is given by φj = 2−j × π/2.2 Even
though this is not necessarily optimal with respect to maximizing F for a particular choice
of input state, the angles φj = 2−j × π/2 are used in the following, except if the input
state satisfies the symmetry relations cnm = cmn. In this case, the operator U †PU by
itself removes all terms with n −m = ±2,±6,±10, . . ., i.e., the angles can be chosen as
φj = 2−j × π/4, and |ψN〉 only contains terms with n −m = q2(N+2), q = 0,±1,±2, . . ..
For instance, for N = 2, only terms with n−m = 0,±16,±32, . . . contribute.
In Fig. 5.2, the fidelity (5.4) for a product of two coherent states with amplitude α as
input state is shown as a function of |α|2 for different numbers of units of the setup.
Even for |α|2 as large as 10, the fidelity is still as high as 0.9961 for N = 2, and the
required number of units is thus quite small in practice. The figure also shows the success
probability PN = 〈ψN |ψN〉 for N → ∞. For instance, for |α|2 = 10 the experiment has
to be repeated about 11 times on average before the desired measurement outcome is
observed.

5.1.4 Photon number resolving measurement

In this section, it is shown how a photon number measurement can be implemented using
a modified version of the setup introduced in the previous section. First, he key idea
is explained and the basic photo-counting scheme is described. Then, this protocol is
extended to allow for a QND measurement of photon numbers.

Number resolving detection scheme

In the following, the setup shown in Fig. 5.1 is analyzed considering a product of an n-
photon Fock state in the lower port and a vacuum state in the upper port as input state.

2 If one of the angles equals 2−j×π/2, j ∈ {1, 2, . . . , N}, all terms with n−m = 2j× (±1,±3,±5, . . .) are
removed from the input state according to (5.3). If all angles are chosen according to φj = 2−j×π/2, it
follows that |ψN 〉 contains only terms with n−m = q2(N+1), q = 0,±1,±2, . . ., which may be a useful
property in practical applications of the scheme.
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Figure 5.2: Projection fidelity (Eq. (5.4)) as a function of the expectation value of the number
of photons in one of the input modes for |ψin〉 = |α〉|α〉 and setups with one, two,
three, and infinitely many units. The chosen angles are given by φj = 2−j ×
π/4. The dotted line labelled P∞ represents the probability to obtain the required
measurement outcome, (i.e., all atoms in |+〉) after the interaction with the field
in the limit of infinitely many units.

Since the setup contains a series of beam splitters, the definitions A = (a† − b†)/
√

2 and
B = (a† + b†)/

√
2 are used in the following, such that a†|0〉 → A|0〉 and b†|0〉 → B|0〉 at

beam splitters BS1, BS3, BS5, . . ., and A|0〉 → a†|0〉 and B|0〉 → b†|0〉 at beam splitters
BS2, BS4, BS6, . . .. As before, all atoms are assumed to be initially prepared in state |+〉
and measurements in the |±〉 basis after the interaction with the field are considered. If
an n photon state is used as input, only two possible outcomes of the measurement of the
atoms in the cavities labelled C1 and C2 in Fig. 5.1 can occur, depending on the parity of
n. If n is even, the two atoms can only be in state |+ +〉 or | − −〉. If n is odd, the atomic
state after the interaction is | −+〉 or |+−〉. To describe the odd and even case at the
same time, |+ +〉, | −+〉 is denoted by |B+〉 and | − −〉, |+−〉 by |B−〉. A measurement
of |B+〉 indicates an even number of photons in the b-beam, while |B−〉 indicates an odd
number of photons.

To start with, the input state |n〉|0〉 = 1√
n!

(a†)n|0〉|0〉 is considered. After the beam split-

ter BS1, the state has changed into 1√
n!

(
a†−b†√

2

)n

|0〉|0〉 and interacts with the two atoms

in the cavities C1 and C2. By measuring the atoms in the |±〉 basis, the state is projected
onto the subspace of an even or odd number of photons in the b path. The photon state

after the measurement can be written as |b±〉 := 1√
2 n!

[(
a†−b†√

2

)n

±
(

a†+b†√
2

)n]
|0〉|0〉 =

1√
2 n!

(An ± Bn)|0〉|0〉, where |b+〉(|b−〉) is the state with an even (odd) number of

b photons and corresponds to the measurement result |B+〉 (|B−〉). Note that this
first measurement result is completely random. After BS2 the state simplifies to

1√
2 n!

[(a†)n ± (b†)n]|0〉|0〉. Due to the phase shifters, the two modes pick up a rela-

tive phase of 2φ1n such that the state is given by 1√
2 n!

[eiφ1n(a†)n ± e−iφ1n(b†)n]|0〉|0〉.
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Figure 5.3: Number resolving photon detection. (a) Probabilities p(n) (Eq. (5.5)) for n0 = 20
and N + 1 = 5 resulting in q = 94.49% (Eq. (5.6)). For N + 1 = 7, q = 99.66%.
(b) Probabilities p(n) for n0 = 100 and N + 1 = 8 resulting in q = 96.33%. For
N + 1 = 10, q = 99.95%.

Finally, after BS3, the state 1√
2 n!

(eiφ1nAn ± e−iφ1nBn)|0〉|0〉 is obtained, which equals
1

2
√

2 n!
(eiφ1n±e−iφ1n)(An +Bn)|0〉|0〉+ 1

2
√

2 n!
(eiφ1n∓e−iφ1n)(An−Bn)|0〉|0〉. This state can

be reexpressed as (eiφ1n± e−iφ1n)/2|b+〉+(eiφ1n∓ e−iφ1n)/2|b−〉. Hence, the result of mea-
suring the atomic state in cavities C3 and C4 will be |B±〉 with probability p+ = cos(φ1n)2

and |B∓〉 with probability p− = sin(φ1n)2. Since the state is again projected onto one of
the two states |b±〉, the same calculations can be repeated for all following steps.
While the first measurement result is completely random, all following measurement re-
sults depend on n and the previous measurement outcome. The probability that the
(i + 1)-th measurement result is the same as the i-th result is given by pi = cos(φin)2,
and the probability that the measurement result changes (and the state changes from
|b±〉 to |b∓〉) is given by sin(φin)2. If the number of units is infinitely large (or sufficiently
large) and all phases are chosen to equal φ, it is possible to infer the number of photons
based on the relative frequency with which the measurement results switch between |B+〉
and |B−〉. This can be done with arbitrary precision for all photon numbers n < π

φ
.

n ≈ arccos(
√

f)/φ, where f = Nsame/(Nsame + Ndifferent) and Nsame (Ndifferent) is the num-
ber of cases, where the measurement outcome is the same (not the same) as the previous
measurement outcome.
Measuring this relative frequency with a fixed small phase is not the optimal way to
infer the photon number. Instead, the following procedure is proposed. In this improved
protocol, a setup with a total of N + 1 units is used and the phases φi = 2i−1π/n0,
i = 1, 2, . . . , N are chosen for an arbitrary value of n0 ∈ N. Below, the probability p(n)
that all measurement results are the same,

p(n) =
N∏

i=1

pi =
N−1∏
i=0

cos

(
2iπ

n0

n

)2

. (5.5)

is calculated. This probability is equal to one for all photon numbers that are a multiple
of n0. Otherwise, it tends to zero in the limit of infinitely many units. This way, it can
be measured whether the photon number is a multiple of n0. For example, for n0 = 3 and



104 CHAPTER 5. Number correlated states in Bose-Einstein condensates and optical cavities

N + 1 = 3, any state which is not a multiple of three can be detected with a probability
of at least q = 93.75% (q = 99.61% for N + 1 = 5), where

q := 1− max
n 6=0,n0,2n0,...

p(n). (5.6)

For n0 = 4, already N +1 = 3 is sufficient to achieve q = 100%. For n0 = 5 and N +1 = 3,
q = 93.75% is obtained, which increases to q = 99.61% for N + 1 = 5. In Fig. 5.3, p(n)
is shown for n0 = 20 and n0 = 100. The number N required to obtain a good result
scales typically logarithmical with n0, e.g. for n0 = 1000 already N + 1 = 11 is sufficient
to reach q = 99.95%. Given an unknown state, all possible prime factors and powers of
primes can be tested to identify the exact photon number. If, e.g., a state consisting of 0
to 10 photons is considered, the factors n0 = 2, 3, 4, 5, 7, 8, 9 have to be tested (where the
factor 2 does not need to be checked separately). 24 measurement results are sufficient
to test all factors with a probability over 99%. If reliable photon number counting is
required for n ranging from 0 to nmax, for large nmax, all primes and power of primes
that are smaller than nmax need to be tested. This number can be bounded from above
by nmax. All nmax tests are required to work with high probability. To this end, each
individual test needs to succeed with a probability better than q ≥ 1− 1/nmax. It can be
checked numerically that this is the case if N = 2 log(nmax), leading to a photon counting
device with reliable photon detection up to nmax using an array consisting of less than
2nmax log(nmax) basic units. Note that this setup does not destroy the photonic input
state but transforms |n〉|0〉 randomly into 1√

2
[|n〉|0〉 ± |0〉|n〉], i.e., the photons leave the

setup in a superposition of all photons taking either the a-path or the b-path. This state
can not be transformed back into |n〉|0〉 by means of passive optical elements. The output
state - a so-called N00N state - is, however, a very valuable resource for applications in
quantum information protocols and quantum metrology [298].

Nondestructive number resolving detection scheme

For a nondemolition version of the photon number measurement, the basic building block
depicted in Fig. 5.4 is used. The atoms in the two upper cavities are initially prepared in
an entangled state |φ+〉 = (|↑↑〉 + |↓↓〉)/√2, and the atoms in the lower cavities are also
prepared in state |φ+〉. This can, for instance, be achieved via the parity measurement
scheme put forward in [125]. During the interaction, the upper and the lower atoms stay
in the subspace spanned by |φ±〉 = (|↑↑〉 ± |↓↓〉)/√2. The state changes between |φ+〉
and |φ−〉 each time one of the two entangled cavities interacts with an odd number of
photons. As in the previous subsection, |B±〉 is defined to describe the even and the odd
case at the same time. For n even, |B+〉 = |φ+〉|φ+〉 and |B−〉 = |φ−〉|φ−〉, while in the
odd case, |B+〉 = |φ−〉|φ+〉 and |B−〉 = |φ+〉|φ−〉.
Using the same notation as before, the state is transformed as follows, when passing
through the setup from left to right. The initial state is given by

|ψ1〉 =
1√
n!

(a†)n|0〉|0〉|φ+〉|φ+〉.

After the first beam splitter,

|ψ2〉 =
1√
n!

An|0〉|0〉|φ+〉|φ+〉 =
1√
2
(|b+〉+ |b−〉)|φ+〉|φ+〉.
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Figure 5.4: Basic building block of a nondemolition photon number resolving detection scheme.
The dashed circles and the wavy lines indicate the entanglement between the atoms
in cavities C1 and C3 and between the atoms in cavities C2 and C4. The gray box
is either a cavity or a mirror. (In the latter case, the light may be sent as well
directly from the cavities C3 and C4 to the first two cavities of the next block.)

The interaction with the first two cavities leads to

|ψ3〉= 1√
2
|b+〉|B+〉+ 1√

2
|b−〉|B−〉= 1

2
√

n!
(An+Bn)|0〉|0〉|B+〉+ 1

2
√

n!
(An−Bn)|0〉|0〉|B−〉.

The second beam splitter transforms this state into

|ψ4〉 =
1

2
√

n!

{
[(a†)n + (b†)n]|0〉|0〉|B+〉+ [(a†)n − (b†)n]|0〉|0〉|B−〉

}
.

The two modes pick up a relative phase shift of 2φin at the phase shifters such that

|ψ5〉 =
1

2
√

n!

{
[eiφin(a†)n + e−iφin(b†)n]|0〉|0〉|B+〉+ [eiφin(a†)n− e−iφin(b†)n]|0〉|0〉|B−〉

}
.

After the third beam splitter,

|ψ6〉 =
1

2
√

n!

[
(eiφinAn + e−iφinBn)|0〉|0〉|B+〉+(eiφinAn − e−iφinBn)|0〉|0〉|B−〉

]

=
1√
2

(cos(φin)|b+〉|B+〉+i sin(φin)|b−〉|B+〉+i sin(φin)|b+〉|B−〉+cos(φin)|b−〉|B−〉) .

The interaction with the last two cavities transforms the states |b±〉|B±〉 into |b±〉|φ+〉|φ+〉
and the states |b±〉|B∓〉 into |b±〉|φ−〉|φ−〉 independent on the parity of n. |ψ7〉 is therefore
transformed into

|ψ7〉 =
1√
2

cos(φin) (|b+〉+ |b−〉) |φ+〉|φ+〉+
i√
2

sin(φin) (|b+〉+ |b−〉) |φ−〉|φ−〉

=
1√
n!

An|0〉|0〉 [cos(φin)|φ+〉|φ+〉+ i sin(φin)|φ−〉|φ−〉] ,
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and after the last beam splitter,

|ψ8〉 =
1√
n

(a†)n|0〉|0〉 ⊗ [cos(φin)|φ+〉|φ+〉+ i sin(φin)|φ−〉|φ−〉] .

The photonic modes are now decoupled from the atomic state. The photons remain in
state |n〉|0〉 after the final beam splitter, and the atoms carry information about the pho-
ton number. Note that |φ+〉 = (|+ +〉 + | − −〉)/√2 and |φ−〉 = (|+−〉 + | −+〉)/√2.
By measuring all atoms in the |±〉 basis one can easily distinguish between |φ+〉 and |φ−〉
based on the parity of the measurements. The probability to obtain |φ+〉|φ+〉 or |φ−〉|φ−〉
is given by cos(φn)2 and sin(φn)2 respectively. After the measurement, all photons leave
the setup in beam a for both outcomes. The probability for measuring |φ+〉|φ+〉 equals
the probability to observe a change in the measurement outcomes in the previous setup.
Hence, the same procedure can be applied to a chain consisting of the demolition free
blocks. If the parity information is to be inferred in each step, an additional cavity can
be added at the end of each block as shown in Fig. 5.4.
More generally, the demolition free element leaves photonic input states |ψ〉 =

1√
n!q!

(a†)n(b†)q|0〉|0〉, where n photons enter through the lower and q photons enter through
the upper port, unchanged. A calculation analogous to the previous one shows that the
atomic states |φ+〉|φ+〉 and |φ−〉|φ−〉 are obtained with probabilities cos(φi(n − q))2 and
sin(φi(n − q))2 respectively. This way, one can test for photon number differences n − q
in two input states in the same fashion as for photon numbers in a single input beam
described above. Similarly, two coherent input states |α〉|α〉 cab be projected onto gen-
eralized photon number correlated states

∑
n cn|n〉|n− d〉 with fixed photon number dif-

ference d = 0, 1, 2....
In a realistic scenario one may be faced with photon losses. Both setups have a built-
in possibility to detect the loss of one photon. In the first case, the parity of the total
number of photons is obtained in every single measurement of a pair of atoms. If this
parity changes in an element in the chain, it can be inferred that at least one photon has
been lost. In the demolition free setup, the valid measurement results are restricted to
|φ+〉|φ+〉 and |φ−〉|φ−〉. If |φ−〉|φ+〉 or |φ+〉|φ−〉 are measured, it can be inferred that a
photon has been lost between the two pairs of cavities. In addition, the optional cavity
at the end of each block provides an extra check.

5.1.5 Filtering out losses

Next, the possibility to use a comparison of the number of photons in the two modes
to detect losses is investigated. As in Sec. 5.1.3, first the input state |ψin〉 = |α〉|α〉 is
considered and the proposed setup is used to project it onto the subspace S. Then two
beam splitters with reflectivity R are used to model a fractional loss in both modes. After
tracing out the reflected field, the proposed setup is used once more to project the state
onto S. Fig. 5.5a displays the fidelity between the state obtained after the first projection
onto S and the state obtained after the second projection onto S, the success probability
for the second projection given that the first one is successful, and the purity of the
state after the second projection. The second projection can be seen to recover the state
obtained after the first projection with a fidelity close to unity even for losses of a few
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Figure 5.5: Filtering out losses. In panel a), the projection of the input state |ψin〉 = |α〉|α〉
onto the subspace S followed by a fractional loss R in both modes and a second
projection onto S is considered. In panel b), refers to the projection of the input
state |ψin〉 = |α〉|α〉|α〉|α〉 onto the subspace spanned by the vectors |n〉|n〉|n〉|n〉,
n = 0, 1, 2, . . ., followed by a fractional loss R in all four modes and a projection
of modes 1 and 2 onto S and of modes 3 and 4 onto S. Both panels show the
fidelity between the states obtained after the first and the second projection onto
S, the probability of success for the second projection, given that the first one is
successful, and the purity of the state after the second projection for two different
values of |α|2.

percent. This is due to the fact that a loss of only one photon always leads to a failure
of the second conditional projection. The main contribution to the fidelity decrease for
small R is thus a simultaneous loss of one photon from both modes. It is also interesting
to note that the final state is actually pure for all values of R, which is a consequence of
the particular choice of input state. Finally, note that a single unit is sufficient to detect
the loss of a single photon, and for small R only one unit is therefore required for the
second projection in practice.
Now, a four mode input state |ψin〉 = |α〉|α〉|α〉|α〉 is considered. As before, the setup
is used to project this state onto the subspace spanned by the state vectors |n〉|n〉|n〉|n〉,
n = 0, 1, 2, . . .. Then a fractional loss of R is considered to occur in all modes. If two
of the modes are sent to Alice and the two other modes are sent to Bob, the original
projection can be recovered by projecting the former and the latter two modes onto S.
The results are shown in Fig. 5.5b, and again the curves showing the fidelity and the
purity are seen to be very flat and close to unity for small losses. This scheme allows one
to distribute entanglement with high fidelity, but reduced success probability.

In conclusion, the setup put forward and studied in this section acts in many respects like
a photon number filter and has several attractive applications for quantum technologies.
Based on the ability to distinguish even and odd photon numbers using the interaction
of the light field with a high finesse optical cavity, photonic two mode input states can
be projected onto photon number correlated states. Naturally, this protocol is very well
suited to detect losses and can in particular be adapted to purify photon number entangled
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states in quantum communication. Deviations from ideal behavior such as finite length
of the input pulses and limited coupling have been studied in [VI] to estimate for which
parameters the idealized description is valid. The setup can be modified such that it
is capable to perform a quantum-nondemolition measurement of photon numbers in the
optical regime. The nondestructive photon counting device completes the versatile toolbox
provided by the proposed scheme.

5.2 Detecting entanglement in two mode squeezed

states by particle counting

In this section, an entanglement criterion for two mode squeezed states which relies on
particle counting only is considered. The inequality analyzed here is optimal for the state
under consideration and robust against particle losses. As it does not involve measure-
ments of quadratures - which is typically very challenging for atomic modes - it renders
the detection of atomic many-particle entanglement feasible in many different settings.
Moreover, it bridges the gap between entanglement verification for qubits and criteria
for continuous variables measured by homodyne detection. After publication of these
results as e-print [VIII], Dr. C. Simon informed us that the entanglement criterion (5.9)
presented in this work coincides with an inequality derived in a different context in [299]
(see (Eq. (4)). In this article, the criterion has been derived in a different way and was
used to quantify entanglement in photonic states which are generated by parametric down
conversion in a cavity. Apart from the presentation and the analysis of the robustness
of the inseparability criterion, our work includes additional material which is genuinely
new (see Sec. 5.2.3). As outlined above, the application of the criterion is studied in the
context of superradiant light scattering from Bose-Einstein condensates by considering
the creation of entanglement between atoms and light as well as the possibility to create
inter-atomic entanglement. In particular, a scheme for the creation of entanglement
between two condensates in different momentum states is put forward, which takes ad-
vantage of leaving the Gaussian realm and features probabilistic entanglement distillation.

Below, we discuss the generation and detection of entanglement in two mode squeezed
states in Sec. 5.2.1. In Sec. 5.2.2, we prove the inseparability criterion and study the
influence of particle losses. In Sec. 5.2.3, we consider the creation of entanglement
between atoms and light in superradiant Raman scattering and devise a scheme in which
entanglement between a moving condensate and a condensate at rest is created and
purified.

5.2.1 Generation and detection of entanglement in two mode
squeezed states

Entanglement is a true quantum feature. Since the study of this peculiarity of physics
holds not only the promise to acquire a deeper understanding of Nature, but paves also
the way towards auspicious applications of quantum information science, the quest for
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entanglement or inseparability criteria is a vigorous field of research3. In the most basic
case, entanglement is shared between two parties, Alice and Bob, holding each a single
particle. Bipartite entanglement of single pairs is well understood. Then again, entan-
glement between parties holding a a very large number of particles has been studied for
Gaussian states with great success [252, 303]. Here, the natural question arises, how en-
tanglement can be verified in the intermediate regime and how the two well studied cases
of single pairs and Gaussian modes can be linked by an inseparability criterion for an ar-
bitrary number of particles, which is not restricted to Gaussian states. Starting from this
motivation, this section is concerned with the study of an inequality, which bridges the
gap between inseparability criteria for a qubit and continuous variables. Moreover, from
a practical point of view, this entanglement condition provides experimental feasibility
and applicability in numerous settings.
More specifically, entanglement in two mode squeezed states (TMSS) can, in principle,
be detected by means of a Gaussian inseparability criterion [304–309], which requires the
measurement of variances in canonical quadratures. This can be conveniently performed
for light modes, as was first demonstrated in [310, 311], as well as for multi-atom col-
lective spin modes, as shown in [16]. However, in many cases involving multi-particle
entanglement, homodyne measurement of atomic canonical variables which require an
atomic ”local oscillator” is not feasible.
This problem can be overcome by means of the practical entanglement condition studied
in this section. Entanglement verification by means of this inequality requires particle
number measurements only, rather than measurement of quadratures and can be used to
detect N -particle entangled states of the form |TMSS〉 ⊗ |TMSS〉, which is attractive
in view of many recent experiments, that offer the potential to generate this type of
entanglement.
For example, superradiant scattering [136, 137] of laser light from a Bose-Einstein con-
densate has been observed recently [138, 141, 142, 147]. Superradiant scattering leads to
highly directional emission of light from the atomic sample. This striking effect attracted
considerable interest and it was shown theoretically that two mode squeezed states can
be generated in this context [144, 312–316]. The entangled states created in this context
are particularly interesting, since they represents the interspecies atom-light analogue of
photonic twin beams generated in optical parametric down conversion, which play an
essential role in many applications of quantum optics and quantum information theory.
Despite the fact that the dynamics of the process and the resulting nonseparable state are
well understood and the system is known to be a very promising candidate for entangle-
ment generation [144,312–317], entanglement could not be verified in this system4. Other
examples can be found in many different setups, for example in entanglement produc-
tion in spin exchange collisions in Bose-Einstein condensates [318, 319], the free electron
laser [320], the creation of two mode squeezed states by dissociation [321–323] and entan-
glement production in colliding Bose-Einstein condensates [324–326] or four-wave mixing
in matter waves in an optical lattice [327, 328]. While correlations could be observed,

3See [300] for a survey. For studies of separability of bipartite systems in arbitrary dimensions see for
example [301] and [302].

4Nonclassical correlations have been studied, but since the quantum states produced in an experiment
cannot be assumed to be pure, correlations do not imply the presence of entanglement.
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multi-particle entanglement has not yet been detected in this context. This gap can be
closed by means of the entanglement criterion studied in this section. As the Gaussian
criterion [304–309], it can be understood as a local uncertainty relation [329, 330], with
the difference that it involves a bound, which is given by expectation values of operators,
rather than uncertainty limits represented by fixed numbers. The inequality is optimal
for the state under consideration. Moreover it is robust against the sources of noise to be
expected in a realistic setup and allows for successful detection of entanglement even for
highly mixed states.

5.2.2 Inseparability criterion based on particle number mea-
surements

As outlined above, the studied entanglement criterion is optimal for the state |Ψ1〉 =
|TMSS〉 ⊗ |TMSS〉. In the Fock basis, this quantum state is given by

|Ψ1〉 = (1− Λ2)
∞∑

n=0

Λn|n〉|n〉 ⊗
∞∑

m=0

Λm|m〉|m〉, (5.7)

where Λ = tanh(r) and r ∈ C is the squeezing parameter. The second and fourth ket refer
to Alice’s system, which is described by two modes with creation operators a†+ and a†−.
Likewise, the first and third ket refer to Bob’s system, which is described by two modes
with creation operators b†+ and b†−. Using this notation, the state can be described in the
Schwinger representation by introducing the Stokes operators Sx, Sy and Sz for Alice’s
system and Jx, Jy and Jz for Bob’s. S is given by

Sx = (nA,x − nA,y)/2,

Sy = (nA,+45 − nA,−45)/2, (5.8)

Sz = (nA,+ − nA,−)/2,

and J is defined by analogous expressions. The number operators n carry subscripts for
Alice’s/Bob’s system(A/B) and for the three different bases (x/y, +45/−45, +/−), where
nA,± = a†±a± and nB,± = b†±b±.

Entanglement criterion

The main characteristic feature of the two mode squeezed state |Ψ1〉 is the correlation of
particle numbers in Alice’s and Bob’s system. In contrast, any separable state satisfies a
lower bound for the difference in particle numbers in different mutually independent bases.
More precisely, any 2 × 2 - mode bipartite separable state, ρ =

∑
i piρi, ρi = ρA

i ⊗ ρB
i

(where pi > 0 and
∑

i pi = 1), satisfies the inequality

〈(Jx − Sx)
2〉ρ + 〈(Jy + Sy)

2〉ρ + 〈(Jz − Sz)
2〉ρ ≥ (〈nA〉ρ + 〈nB〉ρ) /2. (5.9)

In the following, this entanglement criterion is proven. For any ρi, the left side of inequality
(5.9) equals

〈J2
x + J2

y + J2
z 〉ρi

+ 〈S2
x + S2

y + S2
z 〉ρi

− 2〈JxSx − JySy + JzSz〉ρi
. (5.10)
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〈J2
x + J2

y + J2
z 〉ρi

= 〈(nB/2) ((nB/2) + 1)〉ρi
, where nB = nB,+ + nB,−, and an analogous

equality holds for the second term, as can be inferred from definition (5.8). Since ρi is
assumed to be separable, the third term in expression (5.10) can be expressed as a product
of two expectation values

−2〈J S̃〉ρi
= −2〈J〉ρi

〈S̃〉ρi

where S̃ =
(

Sx −Sy Sz

)T
. Using 〈J〉ρi

≤ 〈nB/2〉ρi
and 〈S̃〉ρi

≤ 〈nA/2〉ρi
, it can be

concluded that expression (5.10) is greater than or equal to

〈nB

2

(nB

2
+ 1

)〉
ρi

+
〈nA

2

(nA

2
+ 1

)〉
ρi

− 2
〈nB

2

〉
ρi

〈nA

2

〉
ρi

.

Since 〈nA/2〉ρi
〈nB/2〉ρi

= 〈nAnB/4〉ρi
for product states, this equation can be reexpressed

as
〈(nB

2
− nA

2

)2
〉

ρi

+
〈nB

2
+

nA

2

〉
ρi

≥
〈nB

2
+

nA

2

〉
ρi

.

As this is true for every ρi, the average 〈(nA + nB) /2〉ρ is a lower bound for the mix-
ture ρ =

∑
i piρi. This limitation imposed on convex mixtures of product states can be

overcome if entanglement is involved. In particular,

〈(Jx − Sx)
2〉|Ψ1〉〈Ψ1| + 〈(Jy + Sy)

2〉|Ψ1〉〈Ψ1| + 〈(Jz − Sz)
2〉|Ψ1〉〈Ψ1| = 0,

as the two mode squeezed state |Ψ1〉 is a simultaneous eigenstate of (Jx − Sx), (Jy + Sy)
and (Jz − Sz) with common eigenvalue 0.

Implications of particle losses

In this subsection, the effect of particle losses on the performance of the entanglement
criterion is analyzed. The influence of particle losses is modelled by a beam splitter
transformation. Creation operators for atoms and light transform according to

a†± 7→ √
1− rAa†± − i

√
rA v†A±, b†± 7→

√
1− rBb†± − i

√
rB v†B±,

corresponding to a beamsplitter with reflectivity rA for Alice’s system and rB for Bob’s
system. The quantum noise operators v†A±, and v†B± obey canonical commutation relations
for each mode and are mutually independent. For the target state |Ψ1〉, the left side of
condition (5.9) is transformed into

3

2

(
(rA − rB)2var(n) + (rA(1− rA) + rB(1− rB)) 〈n〉), (5.11)

where 〈n〉 = sinh2(r) and var(n) = 2 sinh4(r) is the variance of the particle number5. By
applying the same beamsplitter transformation to the right side of inequality (5.9) one

5 〈n〉 denotes here the average number of particles in any of the considered modes 〈n〉 = 〈nA,+〉|Ψ1〉〈Ψ1| =
〈nA,−〉|Ψ1〉〈Ψ1| = 〈nB,+〉|Ψ1〉〈Ψ1| = 〈nB,−〉|Ψ1〉〈Ψ1|.
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obtains (1 − rA)〈n〉 + (1 − rB)〈n〉. In case of symmetric losses rA = rB = r, successful
entanglement verification requires therefore r < 2/3. Limitations imposed by particle
losses which are different for Alice’s and Bob’s system are more restrictive, as they impair
directly the symmetry-property to which the criterion is tailored to. For large particle
numbers, the first term in expression (5.11) is likely to hinder the detection of entangle-
ment. This problem can be resolved by introducing gain factors gA and gB for Alice and
Bob, which characterize the amplification of measured signals

a†± 7→
√

gA(1− rA)a†± − i
√

rA v†A±, b†± 7→
√

gB(1− rB)b†± − i
√

rB v†B±.

In this situation, one obtains the result

3

2
(gB(1− rB)− gA(1− rA))2 var(n) +

3

2
(gBrB(1− rB) + gArA(1− rA)) 〈n〉,

which has to be compared to gB(1−rB)〈n〉+gA(1−rA)〈n〉. gB and gA have to be optimized
according to the experimental parameters. For large particle numbers, the quadratic
term dominates such that the choice gA/gB = (1 − rB)/(1 − rA) solves the problem
of asymmetric losses and one obtains the condition (rA + rB)/2 < 2/3 for successful
entanglement detection. Remarkably, this threshold does not depend on the degree of
squeezing. If the probabilities for particle losses are known, atomic and photonic signals
need not to be amplified, as it is sufficient to adjust the inequality accordingly.

5.2.3 Entanglement in superradiant scattering from Bose-
Einstein condensates

As explained above, the entanglement criterion (5.9) can be applied in many different set-
tings. Here, the verification of entanglement produced in superradiant scattering of laser
light from a Bose-Einstein condensate is described. More specifically, a Bose-Einstein con-
densate, which is elongated along ẑ and excited by a laser field propagating along the same
direction is considered. The scattering interaction is assumed to be well within the super-
radiant regime, such that light is predominantly emitted along two endfire modes [312],
along ẑ and −ẑ , as shown in Fig. 5.6a. Atoms scattering photons along −ẑ acquire a
momentum kick of 2k, where k is the wave vector of the incoming light field. These atoms
are spatially separated from the BEC and form a new moving condensate. To begin with,
only the endfiremode consisting of photons scattered along −ẑ and atoms travelling along
the ẑ direction are considered.

Entanglement between atoms and light

Atoms are assumed to possess an internal level structure as shown in Fig. 5.6b. As was
shown in [144], the dynamics of the superradiant process can be described by a two mode
squeezing Hamiltonian H1 ∝ a†+b†+ + a†−b†− + H.C., where the creation operators a†+ and

a†− denote the scattered light fields in plus and minus polarization, while b†+ and b†− are
the creation operators for the respective atomic states. This leads to the generation of
the two mode squeezed state |Ψ1〉. The atom and photon numbers are correlated for
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Figure 5.6: Setup and atomic levels considered for the creation of N -particle entanglement
between atoms and light. a) Light propagating along ẑ is scattered from an elon-
gated condensate. Photons are scattered superradiantly into two endfiremodes,
which correspond to scattering angles of 0 and π, as indicated by arrows. b) Off-
resonant laser light couples to the transition |c〉 → |e〉, such that atoms, which are
initially prepared in |c〉 are transferred to state or |b+〉 or |b−〉 via a Raman process
and emit a photon in + or − polarization respectively.

each polarization and the inseparability of the produced quantum state can be verified
according to criterion (5.9) by identifying Alice with the light field and Bob with the
atomic system. In the considered physical setting, various sources of noise may impair the
verification of entanglement. Apart from particle losses, which have been discussed in the
previous section, undesired atomic transitions can degrade the reliability of the proposed
criterion, for instance if atoms are scattered into states other than |b−〉 and |b+〉, while
emitting photons in + or − polarization. These processes can be avoided by a suitable
choice of atomic levels. As an example, typical alkali atoms used in BEC experiments,
87Rb and 23Na, with nuclear spin 3/2 are considered. By preparing the atomic sample
in the F = 1, mF = 0 ground state and inducing transitions to a manifold with F ′ =
0, mF ′ = 0, atoms can only be scattered back to the F = 1 groundstate manifold,
occupying the states |F = 1,mF = −1〉 ≡ |b−〉 and |F = 1,mF = +1〉 ≡ |b+〉, while
transitions to other states are forbidden due to the selection rule ∆(F ) = 1. However,
undesired atomic transitions can still be mediated by interatomic collisions. The effect
of transitions from |b+〉 or |b−〉 to other states is already included in the consideration
of particle losses above, but the creation of a pair of atoms in these two states without
the production of the corresponding photon pair should be avoided. This can be done by
applying electromagnetic fields imposing Stark shifts on the internal levels such that such
a transition is prohibited by energy conservation.

The measurement of Stokes operators of light required for the verification of entanglement
can be performed in a standard fashion [172, 241, 260]. The measurement of the atomic
collective spin component Jz can be done by counting atoms in the final states |b+〉, |b−〉
using resonant absorptive imaging. The measurement of the spin components Jx,y can
be performed by applying suitable radio-frequency π/2 pulses to the final atomic states
before imaging.
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Entanglement between two condensates

The correlations between atoms and light, that are generated in the process described
above, can be used to create entanglement between two condensates. To this end, both
endfire modes are considered. The full Hamiltonian is given by

H2 ∝ a†+Ib
†
+I + a†−Ib

†
−I + a†+IIb

†
+II + a†−IIb

†
−II + H.C. ,

where the subscript I refers to the backward scattered light and and the moving conden-
sate, while the subscript II refers to forward scattered light and the condensate at rest.
After the interaction, the backward scattered light field and the moving condensate are
in a two mode squeezed state as well as the light field scattered in forward direction and
the part of the condensate at rest, which is transferred to state |b+〉 or |b−〉,

|Ψ2〉 = (1− Λ)4

∞∑
n=0

Λn|n〉|n〉 ⊗
∞∑

j=0

Λj|j〉|j〉 ⊗
∞∑

m=0

Λm|m〉|m〉 ⊗
∞∑

l=0

Λl|l〉|l〉,

where the first and second term refer to atom-photons pairs in plus and minus polarization
which are described by creation operators labelled with the subscript I while the third
and fourth term refer to atom-photons pairs in plus and minus polarization which are
described by creation operators labelled with the subscript II.
The part of the resting condensate which has been transferred to the state |b+〉 or |b−〉
can be entangled with the moving condensate by means of entanglement swapping, i.e. by
measuring EPR operators for each polarization of light modes using homodyne detection.
However, this procedure leads to degradation of entanglement if non-maximally entangled
states are involved, and a distillation step has to be performed afterwards to obtain a
more useful resource state. It has been shown that continuous variable entanglement
cannot be distilled using Gaussian operations only [172, 259, 260]6. In the following, a
scheme which relies on photon counting rather than Gaussian measurements and exhibits
probabilistic entanglement distillation is put forward. More specifically, the moving and
resting condensates are entangled by combining the forward and backward scattered light
modes at a beamsplitter and measuring the photon numbers at both output ports. This
has to be done for each polarization separately. The scheme is explained for the +
polarized part of the light field. Analogous expressions hold for the − polarized part.
The application of a balanced beamsplitter transformation ain

+I → (aout
+I + aout

+II)/
√

2,

ain
+II → (aout

+I − aout
+II)/

√
2 , where ain

+I/a
in
+II and aout

+I /aout
+II denote annihilation operators

of the light fields at the input and output ports of the beamsplitter respectively, to state
(5.7) results in

|ΨBS
1 〉 = (1− Λ2)

∞∑
n,m=0

Λn+m 1√
n!m!

2
−(n+m)

2

n∑
i=0

m∑
j=0

(
n
i

)(
m
j

)
(−1)j

√
(i + j)!(n + m− i− j)!|n, i + j〉|m, n + m− i− j〉.

6 Distillation of entanglement in two mode squeezed states requires at least one non-Gaussian element as
for example employed in [67,264–266,331].



5.2: Detecting entanglement in two mode squeezed states by particle counting 115

Figure 5.7: Success probability versus entanglement which can be produced by means of the
proposed scheme for different values of Λ. Diamonds: Λ = 0.7, stars: Λ = 0.8,
squares: Λ = 0.9. The inset shows the probability of obtaining at least as much
entanglement as was present in the input state |Ψ1〉.

The probability of detecting NI photons at the first and NII photons at the second output
port of the beamsplitter is given by PNI ,NII

= (1− Λ2)ΛNI+NII . Such an event results in
the quantum state

|ΨNI ,NII
〉 =

N∑
n=0

kNI ,NII
(n) |n,N − n〉,

where N = NI + NII denotes the total number of detected photons. The coefficients
kNI ,NII

(n) are given by

kNI ,NII
(n)=2

−N
2 (−1)NI

√
NII !

NI !

√
(N − n)!

n!

1

(NII − n)!
2F1(−n,−NI , NII − n + 1;−1),

where 2F1(a, b, c; z)/(c − 1)! is the regularized hypergeometric function. This state de-
scribes pairs of atoms in |b+〉 in the moving condensate and at rest, which are re-
ferred to in the first and second ket respectively. For certain measurement outcomes
this state is more entangled than |Ψ1〉, such that the state can be purified by postselec-
tion. Fig. 5.7 shows the success probability versus the produced entanglement given by
the von Neumann entropy of the reduced density matrix of the resulting atomic state
E(NI , NII) =

∑∞
n=0 k2

NI ,NII
(n) ln

(
k2

NI ,NII
(n)

)
for different values of Λ. Note that the ini-

tial state, which contains infinitely many terms, is truncated by the measurement process.
This way, states with entanglement close to the maximal degree of entanglement in the
corresponding subspace can be produced. For example, for NI = 1 and NII = 0, the max-
imally entangled state |Ψ〉 = (|1, 0〉+ |1, 0〉)/√2 is created. By considering the light field
in + as well as in − polarization, the resulting atomic state can be detected by criterion
(5.9) after performing the local transformations n+II 7→ N −n+II and n−II 7→ N ′−n−II .
In this case, J refers to atomic operators at rest and S describes the moving condensate.
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Chapter 6

Conclusions and outlook

In this Thesis, we proposed several novel protocols for applications in quantum infor-
mation science and explored new directions based on the use of light-matter interface
techniques and engineered dissipation.

We investigated two different platforms for the implementation of quantum inter-
faces, atomic vapor at room temperature and ultracold atoms in optical lattices. We
considered ensembles of ultracold atoms for the implementation of an entangling gate for
photons (Sec. 4.3) and for the realization of a novel spectroscopy method which allows
one to probe dynamical correlations in strongly interacting systems (Sec. 4.2). The latter
protocol introduces the use of quantum memories to the field of quantum simulations of
many-body systems and opens up new possibilities for the investigation and engineering
of complex dynamics. This type of scheme could also be used to monitor a system
non-destructively and act back on it conditioned on the result of the measurement. Due
to the use of a quantum memory, the correlations in the system are preserved during
the time delay which is necessary to read out the quantum state and perform certain
unitary operations for feedback. This way, interesting dynamics could be steered and
non-equilibrium phenomena could be studied. Applying concepts developed in quantum
information science, such as quantum memory techniques, for the study of correlated
quantum many-body systems is a very promising route. Both fields have a natural
overlap which allows for interdisciplinary work and cross-fertilization.
The former protocol uses the interactions and control available in atomic systems to
manipulate photonic states by means of light-matter interface schemes. Such an approach
can find many more useful applications for the engineering of photonic states [168].
Recently developed techniques for the single-site resolved manipulation of ultracold
atoms in optical lattices [107–109], will allow for the precise control of the spin waves, to
which photonic states are mapped and released from. In turn, the mapping of suitable
photonic states to matter can be a very valuable tool for the manipulation of atomic
systems.

We also discussed an application of light-matter interface schemes for the second
platform mentioned above, atomic vapor at room temperature. In Sec. 4.1, we analyzed a
protocol for the faithful teleportation of a quantum state between two atomic ensembles.
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The performance of this and related protocols could be improved by realizing samples
with a higher optical depth. Possible routes towards this goal include the use of
micro-fabricated cells and low-finesse optical cavities, which would render many more
applications of ensemble-based interface schemes in quantum information science possible.
In particular, the development of a robust, integrated and scalable room temperature
atom-light interface and its incorporation into a hybrid multi-facet quantum network
with other relevant quantum systems, such as nano-mechanical oscillators and electronic
circuits is a promising future direction. Micro-size room temperature atomic quantum
memories in spin-protecting micro-cells appear to be excellent candidates for this task.
The light-matter interface schemes discussed here for atomic ensembles are based on
quadratic interactions and measurements, which preserve the Gaussian character of
quantum states. However, important tasks such as the distillation of entanglement and
hence its distribution over large distances by means of quantum repeater schemes require
non-Gaussian elements. It would be therefore very interesting and important to devise
experiments involving atomic ensembles at room temperature which leave the Gaussian
realm, for example by including single photon detections.

Regarding the second aspect of the research line followed here, engineered dissipa-
tion, we introduced two different types of protocols. We proposed a new method for the
dissipative generation of robust steady state entanglement (Sec. 3.1) and novel schemes
for the distillation and distribution of steady state entanglement over long distances
(Sec. 3.2). The first scheme is very concrete and a specific physical implementation has
been worked out in detail. The ideas put forward here have been implemented using
gas samples at room temperature, such that theory and experiment could go hand in
hand. In contrast, the protocols for dissipative entanglement distillation and distribution
are very abstract and specific implementations of the ideas and concepts developed
in this proof-of-principle study are yet to be explored. Using dissipation for quantum
state engineering and other tasks related to quantum information science represents a
paradigm shift. Exploring and exploiting all advantages of dissipative approaches will
require both, devising new protocols which are capable of generating and processing
steady states as well as finding realistic and practical ways of implementing the required
coupling of physical systems to a bath. The results presented here provide starting points
for future research in this new and promising direction.

The overall guiding theme of this Thesis is the endeavor to understand and to use
quantum correlations in the context of light-matter interactions. The study of the behav-
ior of quantum systems can lead to both, interesting applications and new technologies
as well as a deeper understanding of nature. Quantum mechanics gives rise to many
phenomena which we are only beginning to understand.
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Appendix A

Quantum Information Theory

The quantum world is governed by laws which are in many ways very different from those
of classical mechanics. Since some effects are unlike anything encountered in daily live,
they can appear counterintuitive and are difficult to comprehend by applying common
sense and everyday experience. Interestingly, the behavior of quantum particles includes
aspects which can be understood as new possibilities and as restrictions at the same time.
The superposition principle allows for example for a plethora of quantum interference
effects and imposes at the same time fundamental restrictions on the distinguishability
of quantum states and on the creation of identical copies as stated by the no-cloning
theorem [10]. Moreover, quantum systems can exhibit correlations which are stronger
than any correlations allowed in a classical world. The correlations present in entangled
states are fundamentally distinct from classical ones and can yield markedly different
results. Entangled states can violate Bell inequalities1 [253,341] and lead to observations
that can not be described by standard classical models.

The laws and peculiarities of quantum mechanics have a profound impact on the
way information can be processed. In the field of quantum information science, this
interesting topic is studied with the twofold aim to understand and harness quantum
systems. As outlined below, quantum states can for instance be used for fast factoring
algorithms [1, 2] or for unconditionally secure communication [4, 5]. Apart from that,
quantum effects will become important for information technologies in the future, if
the miniaturization of devices reaches molecular or even atomic length scales. These
considerations show that the recognition that ”information is physical” [342, 343] has
important implications. However, also the reverse insight that ”physics is information”
has been proven to yield relevant advances in physics. The quantum information
perspective on quantum physics, the notion of entanglement and similar concepts as well
as methods and tools developed in this context (see e.g. App. A.3) can add important
contributions to other fields, such as the study of strongly correlated systems and
condensed matter physics.

1Bell inequalities provide a possibility to test quantum mechanics experimentally against theories which
are based on local (hidden) variables and have first been first introduced by John Bell in 1964 [253].
Since then, the study of Bell inequalities has evolved into a vigorous field of research and many different
experiments have been performed [332–337,337–340].
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In this appendix, we give a brief introduction to quantum information science. Since this
is a rapidly developing research area with many different aspects and various cross links to
other fields, we address only few major directions. In the following we consider the fields
of quantum computing (App. A.1), quantum communications (App. A.2) and quantum
simulations (App. A.3). Apart from these three areas, several other subfields exist, which
are concerned with fundamental tests of quantum mechanics, high-precision measurements
and sensing, random number generators, entanglement theory, new numerical methods to
describe quantum systems and other interesting aspects of QIS.

A.1 Quantum computing

As outlined above, the implications of the laws of quantum mechanics for information
processing render quantum computers capable of performing tasks beyond the possibili-
ties accessible by classical means.
A quantum computer could evaluate a function for several input values in a coherent
superposition. The possibility to access a whole range of values at the same time ”in par-
allel”, allows one to quickly infer global properties of functions (such as their periodicity).
This principle is exploited by the quantum Fourier transform, the quantum analogue of
the classical discrete Fourier transform. It lies at the heart of many quantum computation
schemes such as Deutsch’s algorithm [344], the Deutsch-Jozsa algorithm [345,346], Shor’s
algorithms for facturing and computing the discrete logarithm [1,2], the estimation of the
eigenvalues of a unitary operator [347] and phase estimation [3]. Deutsch’s algorithm and
the Deutsch-Jozsa algorithm are early examples, demonstrating that quantum computers
can be more powerful than classical ones2. Together with Simon’s algorithm [348] they
were the basis for Shor’s algorithms for factoring and the computation of the discrete
logarithm. These algorithms provide quantum solutions to problems which are believed
not to be efficiently solvable classically3 and are also of high practical relevance. A
quantum device able to factor efficiently large numbers would allow one to break RSA
cryptosystems [349], which are the most widely used public-key cryptosystems to date.
Similarly, other cryptosystems are based on the assumption that the discrete logarithm
is hard to compute4. Later, a unified view to these and related algorithms has been
found by noting that Simon’s and Shor’s algorithms mentioned above as well as many
other related algorithms which provide an exponential speedup are special instances of
the hidden subgroup problem [347,350].

2 The Deutsch-Jozsa algorithm provides an efficient deterministic solution to Deutsch’s problem: a binary
function f(x), takes the numbers 0 to 2n − 1 as input and is known to be either balanced (i.e. yielding
the result 1 for precisely half of the possible input values and else 0) or constant (i.e. yielding the
same results for all inputs). By means of the Deutsch-Jozsa algorithm, the problem to decide whether
f(x) is balanced or constant can be solved using only one evaluation of the function, while a classical
deterministic strategy would require in the worst case 2n/2− 1 queries.

3 Using Shor’s algorithm, the time required to find the prime factors of an N -digit integer scales poly-
nomial in N , which is exponentially faster than any known classical algorithm. However, the question
whether efficient classical algorithms for factoring exist is still an open problem.

4 As explained in Sec. A.2, quantum information science does not only pose a potential threat to secure
communication, -it also opens up a new route towards cryptography, where privacy is guaranteed by
the laws of nature.
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A different class of quantum algorithms was discovered in 1995 by Lov Grover [351,352],
who invented a general search algorithm which requires only O(

√
N) queries to find a

marked element in an unsorted list with N items (a classical search would require O(N)
queries). The problem of unstructured data base search is very common and has a very
wide range of applicability including the speedup of solutions to NP-complete problems.
By combining Grover’s search algorithm with a quantum Fourier transform, it is possible
to determine whether a search problem has a solution or not. Using this method, -
quantum counting - the number of solutions of a search problem can be estimated much
more quickly than possible classically [353].
Recent progress5 includes for example algorithms for solving sets of linear equations [354]
and quantum metropolis sampling [355]. Using the former algorithm, features of solu-
tions of linear equations can be estimated much faster than could be done on a classical
computer. The latter algorithm allows for the computation of properties of equilibrated
quantum systems by preparing ground and Gibbs states on a quantum computer.
Another interesting direction of current research is based on quantum walks [356].
Using this approach, efficient algorithms for the quantum simulation of Hamiltonian
dynamics [357], the evaluation of NAND formulas [358–361] and specific oracle problems,
which cannot be solved classically with high probability in subexponential time [362]
have been found recently.

Small scale implementations of quantum algorithms have already been experimen-
tally realized. Shor’s algorithm has already been implemented using nuclear magnetic
resonance (NMR) [363]. In this experiment, the factorization of the integer 15 has
been demonstrated using a seven-qubit quantum computer. A related algorithm for
order finding has been implemented in a similar experiment using five qubits [364].
The Deutsch-Jozsa algorithm has been implemented (involving two qubits), using
trapped ions [365] and superconducting devices [366]. Experimental implementations of
Grover’s database-search algorithm include two-qubit realizations using NMR [367, 368],
photons [369], ions [370] and solid state systems [366] as well as three qubit NMR
realizations [371]. A related (quantum fetching) algorithm has been implemented using
seven qubits [372]. Scaling quantum computing schemes up represents an enormous
challenge, due to the difficulty to control large quantum systems. It has been shown
that quantum computing is possible in the presence of noise and imperfections: the
quantum fault-tolerance theorem states that errors can be suppressed efficiently at the
cost of a polynomial overhead in computation, if the level of noise in a quantum system
can be reduced below a constant threshold value [3]. However, even though controlling
the errors in large scale quantum computation is possible in principle, it is extremely
difficult. From a theoretical perspective, quantum algorithms are extremely interesting,
in particular in view of fundamental questions. The question which problems can be
solved efficiently on a quantum computer and how quantum information processing
relates to classical computing is actively investigated. Practically, other applications of
quantum information science such as quantum communication (Sec. A.2) or quantum
simulations (Sec. A.3) are much closer in reach.

5See http://math.nist.gov/quantum/zoo.
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A.2 Quantum communication

Playing on the peculiar properties of quantum systems opens up a plethora of intriguing
possibilities for the realization of communication tasks. The field of quantum commu-
nication is concerned with protocols which yield a quantum advantage compared with
their classical counterparts or enable tasks that are impossible classically. Such schemes
include protocols for superdense coding [373], quantum secret sharing [374,375], quantum
digital signatures [376], quantum fingerprinting [377], unclonable encryption [378],
conference key agreements [379], quantum coin tossing [4] and quantum money [380].

Quantum cryptography [381], the art of expanding a secret key, is a particularly active
area and first (prototype) quantum cryptosystems are already commercially available
and distributed by the companies id Quantique, MagiQ Technologies, SmartQuantum
and Quintessence Labs. Most classical cryptosystems used today, such as the widely used
RSA [349] public-key cryptosystem, rely on the unproven computational assumption that
certain functions are hard to compute (moreover, important systems such as RSA could
be broken by a quantum computer as discussed in Sec. A.1). Quantum cryptography,
in contrast, offers unconditional security. Any message can be safely encrypted using
one-time pads [382], i.e. by adding an element of a random key to each bit (or symbol)
of the text. This method is unbreakable but requires a secret random key of the length
N , where N is the number of bits used in the text. Quantum mechanics offers several
possibilities to expand a small key (which is used for authentication6).
The first quantum key distribution (QKD) schemes have been devised by Stephen
Wiesner [380] and Charles Bennett and Gilles Brassard who introduced the paradigmatic
BB84 protocol [4] in 1984. These protocols rely on the fact that any attempt of an
eavesdropper to copy, measure or manipulate quantum states that are transmitted
between two parties can be detected. Due to the impossibility to clone unknown
quantum states [10], cryptographic protocols can be designed such that a third party
is unable to attain information on the key without leaving a trace which reveals that
secrecy is compromised. QKD schemes can also be formulated in terms of entangled
states [385, 386]. In this case, a secret key is established by distributing an entangled
state between two parties - Alice and Bob. The correlations in the resulting shared
quantum state, which serves as resource for the key can be tested, e.g. by means of Bell
inequalities. This type of scheme relies on a fundamental trade-off known as ”monogamy
of entanglement” [387,388]. The amount of entanglement shared between Alice and Bob
translates directly into an upper bound on the amount of information a third party can
have on the shared quantum state. If two qubits are in a maximally entangled state,
none of them can be correlated with a third one. In general, QKD schemes rely on the
principle, that an upper bound on the information of a potential eavesdropper can be
given for each sufficiently small error rate associated with the transmission of quantum
states [389]. If the knowledge on the key of a potential eavesdropper is sufficiently
small, classical protocols for privacy amplification can be applied in order to achieve an
arbitrary high level of secrecy.

6 The keys required for authentication can be much shorter than the message to be authenticated. Efficient
secure authentication can be done using the Wigman-Carter scheme [383,384].
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Today, there exists a large variety of advanced protocols for QKD, which can be
formulated using discrete or continuous variables. QKD protocols can be realized by
means of very different techniques which may, for example, use any two nonorthogonal
states [390], employ a 6-state coding-scheme [391, 392], or utilize even orthogonal states.
Recent progress in the development of new QKD systems includes the invention of
decoy state protocols [393], phase shift keying protocols [381] and Gaussian-modulated
coherent-state systems [394], which resort to continuous variables.

The first experimental implementation of a key distribution system has been real-
ized in 1992, when the BB84 protocol has been used to generate a secret key over 30cm
at rate of 10 bits per second [395]. Shortly after, a key could be established over 19 km
using an optical fiber [396]. In a first demonstration out of the lab, a QKD protocol has
been performed over 23km [397] (and later 76km [398]) under the Lake Geneva. In 2004,
a secret key has even be generated over 150km using commercial telecom fibers.
In spite of these impressive advances, the realization of quantum communication schemes
(in general) using present technology is fundamentally limited by the absorption length
of silica fibers, which is on the order of hundred kilometers. Due to the uncertainty
principle, classical strategies for signal amplification cannot be used, since they would
destroy the quantum properties of the transmitted light states. Therefore, quantum
repeater schemes7 [155] have been devised which allow for the distribution of highly
entangled states over large distances. These entangled states can in turn be used to
teleport quantum states [189] with high fidelity rather than transmitting quantum states
directly. The realization of quantum repeaters is a very important challenge of current
research and relies crucially on reliable light-matter interfaces and quantum memories.
Free space links to satellites could provide an alternative route towards global quantum
communication in future. Entanglement has been distributed over an optical free
space link between two Canary Islands and a quantum cryptographic key has been
generated bridging 144km [401, 402]. Due to the decreasing density of the atmosphere
with increasing height, the efficiency demonstrated in this experiment corresponds to
the one required for ground-to-satellite communication. Global satellite-based quantum
communication is a visionary long-term goal of current research. Other future directions
and challenges include for example the investigation of quantum networks. The European
project SECOQC8 aims at providing a basis for long-range secure communication in
a network by combining QKD with classical network design and cryptography. The
first demonstration of a working quantum network took place in 2008 in Vienna. The
realization of QKD systems in a network setting has also been demonstrated in 2010
in Tokyo9. Apart from this experimentally driven line of research, the investigation
of quantum networks represents also a very interesting field of research from a more

7 In quantum repeater schemes, a large distance is divided into short segments, over which entangle-
ment can be distributed directly. The entangled links can be pair wise connected by entanglement
swapping [251, 399], which doubles the length of the entangled links. The inevitable degradation of
entanglement during this procedure is compensated by the subsequent application of an entanglement
distillation protocol [179, 400]. By iterating this routine, a single long-range entangled link of high
quality is obtained.

8See http://www.secoqc.net
9See http://www.uqcc2010.org/highlights/index.html
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theoretical perspective. It has for instance been discovered recently that quantum
networks exhibit properties which differ in a surprising way from the effects encountered
in classical complex networks [403].

A.3 Quantum simulations

A quantum simulator is a well controlled quantum system which can be used for the
simulation of other quantum systems. As explained below, this idea encompasses
universal as well as special purpose simulators. The latter concept aims at the emulation
of a specific quantum system of interest by another one. This way, models which are
believed to give rise to certain phenomena can be tested in a controlled way and with
much less resources than by known classical simulation techniques. There are two types
of generic applications. The first one is the investigation of phenomena which cannot be
observed directly in experiments. Quantum simulators can for example be used to study
phenomena originating in the interplay of gravitational and quantum effects such as the
generation of Hawking radiation in the vicinity of black holes [404–408]. The second
application concerns the exploration of systems where no simple theoretical description
is available and the quantities of interest cannot be calculated classically. In this regard,
quantum simulators provide a promising route towards the understanding of quantum
many-body systems. Due to the exponential growth of the underlying Hilbert space, the
classical simulation of quantum systems quickly becomes intractable for large particle
numbers. If no simplifying model exists (for example in strongly correlated systems), a
general quantum system can only be simulated if it is very small (the description of a
system consisting of 40 qubits is already beyond current capabilities [409]).
In terms of technological applications, the simulation of quantum many-body systems
can pave the way for discovering and devising new materials. Moreover, the simulation of
molecular structures and chemical reactions can play an important role in the design of
new chemicals and drugs. In terms of fundamental research, quantum simulations (QS)
are expected to provide new results and insights into very relevant problems in condensed
matter physics and are a promising tool for exploring dynamics and non-equilibrium
physics.

Historically, the idea of QS has been introduced in 1982 by Richard Feynman [7].
Later, Seth Lloyd and others developed this concept further and formulated the condi-
tions under which QS can be performed efficiently on a universal quantum computer [8].
The key concept put forward in this context is the simulation of time evolutions by
means of Trotterization. This method is based on the fact that any system consistent
with special and general relativity evolves according to local interactions. Any physically
relevant Hamiltonian can therefore be written as a sum of local terms. The time
evolution according to such a Hamiltonian can be approximated by the Trotter-Suzuki
decomposition [410, 411], i.e., by dividing the time interval to be simulated into small
discrete time steps. For each small time step, the evolution can be approximated using
unitary gates which involve few particles. This simulation scales efficiently with the
number of operations and the overall error can be made as small as required by using
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sufficiently small time steps. This method is sometimes referred to as ”digitial” quantum
simulation as opposed to the ”analogue” quantum simulation mentioned above, where
the Hamiltonian of the system is controlled such that it acts in correspondence to the
Hamiltonian to be simulated.

By now, QS has become a vigorous and fast developing research field [409, 412]
and several proof-of-concept experiments have been performed using different ap-
proaches. The furthest developed systems in this respect are trapped ions and ultracold
atoms in optical lattices. Quantum simulations using trapped ions [413] profit from
the very high degree of control available in this system. Scaling ion-based simulation
schemes up is difficult, but possible in principle [414]. It has been shown that trapped
ions can be used to simulate spin systems [415, 416] and important models in solid state
physics such as the Bose-Hubbard model [417]. Experimental realizations of quantum
simulations in this system include the simulation of quantum phase transitions [418,419],
the Klein paradox [420], the Dirac equation [421] and the Ising system [422]. Neutral
atoms in optical lattices [20, 21, 242] constitute a very clean system which has the
advantage that a large number of particles are involved and can be manipulated
in parallel. Moreover, techniques for single-site resolved imaging and manipulation
have recently been developed. This system is therefore a very promising platform for
realizing a special-purpose device for the simulation of a large quantum system. There
exists a plethora of proposals for simulation schemes which are based on ultracold
atoms in optical lattices. Important experimental advances include the observation
of the quantum phase transition from a superfluid to a Mott-insulator [23, 24] and
the simulation of a 1D Tonks-Girardeau gas [423]. Other systems have also already
acted as testbed for quantum simulations. Nuclear magnetic resonance systems [424]
have been used to simulate three-body (Heisenberg-)interaction Hamiltonians [425],
pairing Hamiltonians [426] and many-body Fermi systems [427] and photons served as
simulators for molecules [428] and Heisenberg Hamiltonians [429]. Moreover, atoms in
coupled cavity arrays [430], polar molecules [431] or solid state systems such as quantum
dots [432] and nitrogen vacancy centers in diamond [433] are promising candidates for QS.

On the theoretical side, recent interesting results related to lattice gauge theories,
open quantum systems, quantum chemistry and interacting fermions in general have
been reported, as will be briefly explained in the following. The study of interacting
fermions is of central interest in many fields such as quantum chemistry and solid state
physics. However, interacting fermions are extremely difficult to simulate classically,
since the symmetry of fermionic wave function leads to the so called ”sign problem”,
which limits classical methods such as Monte Carlo algorithms to systems of small size.
In contrast, fermionic systems can be simulated efficiently using quantum algorithms,
which are not impaired by the sign problem [434]. The QS of interacting electrons
can lead to a better understanding of important phenomena such as high-temperature
superconductivity and the fractional quantum Hall effect. As mentioned above, quantum
effects are also very important for molecular reactions, but unfortunately the correspond-
ing calculations based on the full Schrödinger equation are infeasible if many electrons
are involved [409]. The study of dynamics and properties of molecular reactions can
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therefore profit greatly from quantum simulations. In [435], it has been shown for a
concrete example, that quantum simulations are a valuable tool to calculate molecular
energies. These results demonstrate that a quantum simulation algorithm using 30
to 100 qubits can already exceed the limitations of classical computing for practically
relevant applications. Another interesting line of recent research is the investigation and
simulation of open quantum systems. The simulation of systems interacting with an
environment is important for the study of quantum noise and dissipative phenomena
and plays a central role in the modelling of quantum processes under realistic conditions.
In [59], a universal open system simulator has been demonstrated in a system of trapped
ions.
Lattice gauge theories are another important field of application for quantum simula-
tions [436–439]. Lattice gauge theories are used in many areas of physics. In particular
the field of quantum chromodynamics, which relies on extensive lattice quantum field the-
ory calculations, could be advanced through efficient simulation techniques. Cold atoms
in optical lattices are a promising candidate system for the implementation of this type of
simulation. Several schemes for the emulation of quantum field theories using cold atoms
have already been put forward [440–442] including a protocol for the simulation of Dirac
fermions interacting with dynamical fields [443].
Quantum simulations represent one of the most important areas of QIS. Even modest-
size quantum simulators have a wide range of relevant applications in many fields of
science and are much closer in reach than the realization of a universal quantum com-
puter. Proof-of-principle demonstrations have already been experimentally realized and
the next important step will be the demonstration of a quantum simulation which outper-
forms classical devices. Special purpose quantum simulators are at the forefront of this
endeavor.
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Appendix B

Dissipatively driven entanglement:
supplementary material

This appendix provides additional material supplementing Sec. 3.1. In App. B.1, we
emphasize characteristic differences between the entangling scheme which is proposed
and analyzed here and standard protocols for the creation of entanglement. Moreover,
we explain and highlight special features of the dissipative method . In App. B.2, we
show that the steady state of the dissipative evolution considered in Sec. 3.1 is unique.
App. B.3 and App. B.4 complement Sec. 3.1.3. More specifically, App. B.3 and App. B.4
contain details of the derivation of the complete master equation describing the entangling
dynamics and the detailed calculation of the corresponding amount of entanglement which
can be generated respectively. App. B.5 concerns the extension of the scheme to multi-level
systems discussed in Sec. 3.1.4. In the last part of this appendix (App. B.6), we consider
the realization of the proposed scheme in 133Cs ensembles and calculate (implementation-
independent) limits on the amount of produced entanglement, which arise due to undesired
radiative transitions.

B.1 Comparison of dissipative entanglement genera-

tion with other methods

There exists a large variety of methods for creating entanglement between two quantum
systems. In particular, several methods have been devised and demonstrated for
entangling atomic ensembles. Even though some schemes share similarities with the
new method presented here, they are fundamentally different. In the following this is
explained in detail and the features of dissipative entanglement generation are highlighted
by comparing the scheme put forward here with previous approaches.

In standard approaches [12, 16, 66, 67, 157–161, 444–446], two atomic ensembles A
and B are prepared in specific pure states |a〉A, and |b〉B. An additional system, E, which
typically corresponds to certain modes of the electromagnetic field, is also initialized
in a specific state, for example the vacuum |0〉E. For appropriately chosen external
parameters such as the frequency and polarization of applied laser fields, the interaction
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of system E with A and B gives rise to an entangled state |Ψ〉 = U |a, b〉A,B|0〉E. If system
E is measured, e.g. using a beam splitter and single-photon detectors, or by means of
homodyne detection, the state of systems A and B is projected onto an entangled state,
|Φ(e)〉A,B. This state depends on the outcome of the measurement e. If no measurement
is performed (which corresponds to averaging with respect to the possible measurement
outcomes1) the resulting state is not entangled. For instance, the DLCZ protocol [67]
yields a separable state if the photons emitted by the ensembles are not detected.

Dissipative methods can be described as follows. |a〉A, |b〉B, and |0〉E denote again
the initial states of systems A, B and E respectively. Due to the interaction of system E
with A and B, the state |Ψ(t)〉 = U(t)|a, b〉A,B|0〉E is created, where the dependence of the
resulting quantum state on the time t is explicitly indicated. Under ideal conditions, i.e.
if systems A and B do not couple to other environments, the interaction of A and B with
E can be engineered such that the atomic system evolves towards an entangled state. In
contrast to the schemes described above, the implementation of this entangling dynamics
does not require measurements on system E. This type of behavior can occur if system
E possesses an infinite number of degrees of freedom, such that a non-unitary dynamics
drives the system towards a fixed state. Due to this property, E is typically referred to
as environment and the corresponding interaction with systems A and B is referred to as
dissipative process. Dissipative phenomena of this kind are best described by means of
master equations. To this end, the environment is traced out and an equation for the
reduced density operator of systems A and B, ρ, is derived as described in Sec. 3.1. In
the presence of other environments, the dissipation induced by the coupling of A and B
to system E can still create entanglement with a life time, which exceeds the decoherence
times due to these extra noise sources significantly, if the corresponding (uncontrolled)
coupling is sufficiently weak. Note further, that typically, noise processes can be included
in the master equation description as it is done here (see Sec. 3.1).

In the experiment described in Sec. 3.1.5, entanglement induced by dissipation has
been observed. In particular, in contrast to previous approaches entanglement is
obtained without using measurements on the quantum state of the environment2.
Furthermore, systems A and B remain entangled for 40ms. This entanglement life-time is
at least by a factor 16 longer than the decoherence time induced by other noise sources.
It has been experimentally verified that in the absence of the dissipative process, the
measured entanglement life time is limited to 2.5ms due to the remaining noise sources
such as collisions or inhomogeneities of the applied magnetic fields.

Dissipative methods exhibit another distinctive feature, which is present in the

1 A measurement yielding the result e, produces the quantum state ρe. The situation where no measure-
ment is performed corresponds to the situation where the measurement result is unknown. The resulting
mixed state is given by ρ̃ =

∑
e P (e)ρe, where P (e) is the probability to obtain the measurement result

e and the sum
∑

e runs over all possible measurement results.
2 In the experiment, the light field is measured continuously due to technical reasons. However, the
measurement results are not used in the set of experiments leading to the results shown in Fig. 3.5d in
the main text. As explained above, this corresponds to a situation where the measurement outcomes
are not known or, equivalently, no measurement is performed.
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two–level model discussed in Sec. 3.1.3, but not in the multilevel description correspond-
ing to the actual experiment. For long times t →∞, systems A and B decouple from the
environment E, |Ψ(t)〉 → |Φ〉A,B|E(a, b, t)〉E under ideal conditions, i.e. in the absence of
additional noise sources. Remarkably, the desired state |Φ〉A,B is reached irrespective of
the initial state of systems A and B which can be highly mixed. Moreover, except for
an initial waiting time, no special timing is required. This behavior is again due to the
fact that E possesses an infinite number of degrees of freedom, which guarantees that
revival effects are not present. This way, entropy is transferred from the system to the
environment, which drives A and B into a particular steady state, which depends only
on the engineered coupling.

In contrast, the state of systems A and B depends not only crucially on the measurement
outcome but also on the initial states states |a〉 and |b〉 if standard approaches as described
above are used. For example, if the DLCZ protocol is applied starting from the initial
state ρin = (|1〉〈1|+ |0〉〈0|) /2, corresponding to an equal mixture of states which contain
one or zero excitations of the atomic collective modes, the resulting state is not entangled.

Using dissipative methods, a mixed but still entangled steady state can be reached
even in the presence of additional noise sources, as long as the coupling of A and B to
other environments is sufficiently weak compared to the engineered dissipative processes.
This opens up the possibility to keep systems A and B entangled for arbitrarily long times.

The main reason, why the atomic system in the experiment described in Sec. 3.1.5 does
not display dissipatively generated entanglement in a steady state is depopulation of the
relevant two-level subsystem due to spontaneous emission which transfers the atoms into
other Zeeman levels. The depopulation of the relevant levels can be avoided by applying
strong repump fields, which transfer atoms back. However, these additional fields
introduce additional decoherence processes which inhibit the creation of entanglement
in a steady state. This problem can be circumvented by increasing the optical depth
of the atomic ensembles such that the entangling dissipation process prevails over the
noise processes induced by the repump fields and dominates the dynamics. In the
experiment described here, an alternative approach has been devised and implemented,
which enables the continuous creation of event-ready entanglement which persists for
arbitrarily long times and allows one to realize entanglement life times for more than an
hour, which exceeds the entanglement live times ever achieved in any system by several
orders of magnitude.
The presence of noise and, in particular, noise effects due to repump fields prevent the
decoupling of systems A and B from the environment E in the steady state ρss. In
contrast to the ideal case described above, atoms and light are entangled for long times
t →∞. This implies that, if the environment can be accessed and measured, information
on the atomic state ρss can be obtained which results in an increase in its pureness and
accordingly an improvement in the generated entanglement. By performing continuous
measurements on E yielding the results e(t), the atomic state ρ[e] is produced, which may
be entangled even though ρss was not. The experimental realization of this approach is
described in Sec. 3.1.5. The orresponding results are shown in Fig. 3.5d.
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B.2 Steady state entanglement for bosonic modes

In the following, it is shown that the two mode squeezed state ρTMS = |ΨTMS〉〈ΨTMS|,
with Ã|ΨTMS〉 = B̃|ΨTMS〉 = 0, is the unique steady state of the time evolution described
by the Master equation

dtρ(t) = κA

(
Ãρ(t)Ã† − Ã†Ãρ(t)/2− ρ(t)Ã†Ã/2

)

+ κB

(
B̃ρ(t)B̃† − B̃†B̃ρ(t)/2− ρ(t)B̃†B̃/2

)
.

As stated in Sec. 3.1.2, the bosonic mode operators a and b ([a, a†] = [b, b†] = 1) can be
transformed into the non-local operators Ã and B̃ by the unitary operation

Ã = UaU † = µ a + ν b†,

B̃ = UbU † = µ b + ν a†.

Since unitary transformations preserve commutation relations, [Ã, Ã†] = [B̃, B̃†] = 1 with
µ2−ν2 = 1. By inserting these expressions in the equation above and defining ρU = U †ρU
one finds

dtρU(t) = κA

(
aρU(t)a†−a†aρU(t)/2−ρU(t)a†a/2

)

+ κB

(
bρU(t)b†−b†bρU(t)/2−ρU(t)b†b/2

)
. (B.1)

This is a master equation for two modes coupled to a bath with temperature T = 0. The
steady state is the vacuum3 |0, 0〉〈0, 0|, with a|0, 0〉 = b|0, 0〉 = 0. Hence, inverting the
unitary transformation yields the unique steady state U |0, 0〉 = |ΨTMS〉.

For bosonic modes, the amount of entanglement can be quantified by means of
the violation of a local uncertainty relation in terms of quadratures [304, 305]. For
entangled states

var(x+) + var(p−) < 1,

where x+ = (xa + xb)/
√

2, p− = (pa − pb)/
√

2 and xa =
(
a + a†

)
/
√

2 and

pa = −i
(
a− a†

)
/
√

2 (analogous expressions hold for xb and pb). In particular,

var(x+) + var(p−) = (µ− ν)−2 = e−2r, for two mode squeezed states with squeezing
parameter r.

For large, strongly polarized atomic ensembles, collective spins can be described
by bosonic modes 1√

NI

∑NI

i=1 σI,i ≈ a, 1√
NII

∑NII

i=1 σII,i ≈ b using the Holstein-Primakoff-

approximation [89]. In this case, ξ < 1 (see Sec. 3.1.2) is equivalent to the criterion
var(x+) + var(p−) < 1.

3 Eq. (B.1) yields dt〈a†a〉 = −κA〈a†a〉 and dt〈b†b〉 = −κB〈b†b〉. Hence, 〈a†a〉∞ = 〈b†b〉∞ = 0 in the
steady state.
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B.3 Derivation of the master equation

In this appendix, the master equation for creating entanglement between two atomic
ensembles at room temperature discussed in Sec. 3.1.3 is derived in detail. The master
equation for atomic ground states, Eq. (B.6) is derived. In the latter, thermal motion of
atoms is included and the effective decay rates are calculated. It is shown that in the
setup under consideration, the resulting master equation can be assumed to be real, since
imaginary parts play only a minor role.

B.3.1 Master equation for atomic ground state levels |↑〉 and |↓〉
Light and matter are assumed to interact as described in Sec. 3.1.3. The full Hamil-
tonian is considered including undesired transitions4 and without applying the rotat-
ing wave approximation for quantum fields. It is given by H = HL + HA + Hint,
where HL =

∫
dk (ωk − ωL) a†kak is the Hamiltonian of the free light field and HA ac-

counts for atomic energies in the rotating frame. HA = HA,I + HA,II with HA,I =∑
i (∆↑,I |e↑〉I,i〈e↑|+ ∆↓,I |e↓〉I,i〈e↓|) and HA,II =

∑
i (∆↑,II |e↑〉II,i〈e↑|+ ∆↓,II |e↓〉II,i〈e↓|).

Here, the detunings ∆↑,I/II and ∆↓,I/II have been introduced, which correspond to di-
agonal transitions |↓〉 → |e↑〉 and |↑〉 → |e↓〉 respectively in the first/second ensemble. In
the setup illustrated in Fig. 3.1, ∆↑,I = −∆↑,II = ∆−Ω and ∆↓,I = −∆↓,II = ∆+Ω. The
interaction Hamiltonian Hint = Hcl + Hqu consists of a classical part Hcl, which accounts
for transitions induced by the driving field and a quantum part Hqu, which involves quan-
tized field operators. The Hamiltonian describing the interaction of light with the first
atomic ensemble is governed by the Hamiltonian

Hint,I = Hcl,I + Hqu,I, σe↑↑,I,i (B.2)

Hcl,I = Ωprobe

N∑
i=1

eikLri (|e↑〉I,i〈↓|+ |e↓〉I,i〈↑|) + H.C.,

Hqu,I =
N∑

i=1

∑

k

2∑

λ̂k=1

gke
ikriak(|e↓〉I,i〈↓|eiΩt+|e↑〉I,i〈↑|e−iΩt

+ |↓〉I,i〈e↓|e−iΩte−2iωLt+|↑〉I,i〈e↑|eiΩte−2iωLt)+H.C.,

+
N∑

i=1

∑

k

2∑

λ̂k=1

ǧke
ikriak(|e↑〉I,i〈↓|+ |e↓〉I,i〈↑|

+ |↓〉I,i〈e↑|e−2iωLt+|↑〉I,i〈e↓|e−2iωLt)+H.C.,

where λ̂k specifies the two orthogonal polarizations of the light mode with wave

vector k. gk = êk · p
√

ωk

2ε0V
is the coupling strength of desired transitions involv-

ing the quantum field, while ǧk is the coupling strength corresponding to undesired
transitions. êk is the unit polarization vector, V is the quantization volume of the
electromagnetic field, ε0 the vacuum permittivity and p is the transition matrix element

4Undesired radiative transitions |↑〉 → |↑〉 and |↓〉 → |↓〉 involve the emission of a photon but no change
of the internal atomic state. These processes are not explicitly shown in Fig. 3.1.
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of transitions |e↑〉 → | ↓〉 and |e↓〉 → | ↑〉. Hint = Hint,I + Hint,II. Hint,II is given by
an expression analogous to Eq. (B.2), where subscripts are changed accordingly (I → II).

Based on this Hamiltonian, a master equation for the reduced atomic density ma-
trix ρ(t) is derived using the approximation of independent rates of variation and
assuming Born-Markov dynamics as explained in Sec. 3.1.3. For quantumoptical systems,
assuming Markov dynamics is an excellent approximation, since the typical (optical)
frequencies ωopt are much larger than the decay rates and correlations in the light field
disappear on a time scale τc ∝ ω−1

opt which is much faster than the atomic dynamics. One
obtains

dtρ(t) = −i[Hcl, ρ(t)] + Lquρ(t),

where L is a Lindblad operator corresponding to the quantum part of the interaction Hqu.
This master equation consists of three parts

dtρ(t)=L(ρ(t))ens.I+L(ρ(t))ens.II+L(ρ(t))inter-ens. . (B.3)

The first and second term L(ρ(t))ens.I and L(ρ(t))ens.II include only terms referring to the
first and second ensemble respectively, while the third term L(ρ(t))inter-ens. summarizes all
terms combining operators acting on both samples. The first term is given by

L(ρ(t))ens.I = −i[Hcl,I , ρ(t)] (B.4)

+
1

2

∑
i,j

J I,I
ij |↑〉I,i〈e↑|ρ(t)|e↑〉I,j〈↑|

+
1

2

∑
i,j

J̌ I,I
ij |↓〉I,i〈e↑|ρ(t)|e↑〉I,j〈↓|

+ ... ,

where the approximation ωL À Ω has been used, which is very well justified for
optical frequencies, and neglected fast oscillating terms which appear in the standard
derivation [165], if photonic modes in the upper and lower sideband are not treated
as independent baths5. J I,I

ij = J I,I
ji is a complex decay rate associated with desired

transitions, while J̌ I,I
ij = J̌ I,I

ji is the rate of undesired transitions. For the simple

model discussed in Sec.3.1.3 we have J̌ I,I
ij = 2J I,I

ij . Imaginary single particle terms

Im
(
J I,I

ii

)
(Lamb shifts) are absorbed in the detunings as explained in Sec. 3.1.3. The sec-

ond term L(ρ(t))ens.II is given by an analogous expression with changed subscripts I 7→ II.

The last term in Eq. (B.3) can be written as sum L(ρ(t))inter-ens. = L(ρ(t))I,II
inter-ens. +

5 If the upper and lower sideband are not treated as independent baths, cross terms appear, which rotate
fast (with frequency ±2Ω) compared to the single-bath terms, (which do not rotate in this picture).
These cross terms can be neglected in a rotating wave approximation if Ω À Γatomic.
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L(ρ(t))II,I
inter-ens.. The first part is given by

L(ρ(t))I,II
inter-ens. =

1

2

∑
i,j

J I,II
ij | ↑〉I,i〈e↑|ρ(t)|e↓〉II,j〈↓|

+
1

2

∑
i,j

J I,II
ij | ↓〉I,i〈e↓|ρ(t)|e↑〉II,j〈↑|

+
1

2

∑
i,j

J̌ I,II
ij | ↑〉I,i〈e↓|ρ(t)|e↑〉II,j〈↓|

+
1

2

∑
i,j

J̌ I,II
ij | ↓〉I,i〈e↑|ρ(t)|e↓〉II,j〈↑|

+ ... (B.5)

and L(ρ(t))II,I
inter-ens. is given by an analogous expression with changed subscripts (I → II).

Decay rates appearing in inter-ensemble terms differ from single-ensemble rates J I,I
ij =

J II,II
ij

J I,II
ij = e−ikRJ I,I

ij , J II,I
ij = e+ikRJ I,I

ij

where R is the distance between the two ensembles. In order to obtain compact
expressions, the simplified notation Jij is used for single ensemble or inter-ensemble
rates depending to which samples the indices i and j refer. Moreover, the convention
rij = ri − rj − R is used if the atom with index j is located in the second ensemble.
(However, in App. B.3.2, it is shown that the distance between the ensembles does not
play a role in the setting considered here.) Using this notation, Jij is given by

Jij =

∫
dk

2∑

λ̂k=1

g2(k)eik(ri−rj)

∫ ∞

0

dτ(e−i(ωk−ωL)τ+e−i(ωk+ωL)τ),

where the sum over light modes was changed into an integral
∑

k → V
(2π)3

∫
dk. The

prefactor is absorbed in the coupling constant g(k) =
√

V/(2π)3 gk whenever an integral
over light modes is used. The second term in the expression in brackets (e−i(ωk+ωL)τ ) stems
from counter-rotating terms in the Hamiltonian and would not appear if the rotating wave
approximation had been applied. Using the identity

∫∞
0

eiωτ = πδ(ω) + iP(1/ω), where
P is the principal value, one obtains

Re(Jij) = π

∫
dk

2∑

λ̂k=1

g2(k)eik(ri−rj)δ(ωk − ωL),

Im(Jij) = iP



∫
dk

2∑

λ̂k=1

g2(k)eik(ri−rj)

(
1

ωL − ωk

+
1

ωL + ωk

)
,

These rates can be calculated as shown in [166] (compare Eqs. (3.8) and (3.9)).
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Now, a master equation for the reduced density matrix of atomic ground states Pgρ(t)Pg is

derived by applying the projector Pg =
⊗N

i,j=1 (|↑〉I,i〈↑|+ |↓〉I,i〈↓|)⊗ (|↑〉II,j〈↑|+ |↓〉II,j〈↓|)
to the differential equation dtρ(t) = L(ρ(t))ens.I + L(ρ(t))ens.II + L(ρ(t))inter-ens. us-
ing Eqs. (B.4) and (B.5). Excited states are eliminated under the condition
∆↑,I/II , ∆↓,I/II >> Γatomic, using dtPeρ(t)Pg = dtPgρ(t)Pe = dtPeρ(t)Pe = 0, where
Pe = 1I − Pg. Moreover, it is assumed that terms corresponding to states with

two or more excitations, for example terms of the type P(2)
e ρ(t)Pg, are negligible

compared to terms corresponding to states where at most one atom is in an ex-
cited state like P(1)

e ρ(t)Pg. P(1)
e =

∑N
i=1 Pe,I,i ⊗ Pg,II +

∑N
j=1 Pg,I ⊗ Pe,II,j with

Pe,i,I/II =
⊗N

i=1

(|e↑〉I/II,i〈e↑|+ |e↓〉I/II,i〈e↓|
)
. P(2)

e is defined analogously. In the following
the resulting reduced density matrix of atomic ground states Pgρ(t)Pg is denoted by ρ(t).
One obtains

dtρ(t) =
Ωprobe

2

∑
i,j

e−ikL(rj−ri)(

Jij

(
σI,i

∆↑,I
+

σ†II,j

∆↓,II

)
ρ(t)

(
σ†I,i

∆↑,I
+

σII,j

∆↓,II

)

+ Jij

(
σII,i

∆↑,II

+
σ†I,j

∆↓,I

)
ρ(t)

(
σ†II,i

∆↑,II

+
σI,j

∆↓,I

)

+ J̌ij

(
σ↓↓,I,i

∆↑,I
+

σ†↑↑,II,j

∆↓,II

)
ρ(t)

(
σ↓↓,I,i

∆↑,I
+

σ†↑↑,II,j

∆↓,II

)

+ J̌ij

(
σ↓↓,II,i

∆↑,II

+
σ†↑↑,I,j

∆↓,I

)
ρ(t)

(
σ↓↓,II,i

∆↑,II

+
σ†↑↑,I,j

∆↓,I

)
)

+ ... ,

where the abbreviations σ↑↑,I/II,i = | ↑〉I/II,i〈↑ | and σ↓↓,I/II,i = | ↓〉I/II,i〈↓ | were used.
Terms with prefactors 1/∆3 have been neglected since it is assumed that detunings are
large. AC-Stark shifts

dtρ(t)|AC Stark =−iΩprobe

N∑
i=1

[
σ↑↑,I,i

∆↓,I
+

σ↓↓,I,i

∆↑,I
, ρ(t)

]
+iΩprobe

N∑
i=1

[
σ↑↑,II,i

∆↓,I
+

σ↓↓,II,i

∆↑,I
, ρ(t)

]

are absorbed in the detunings. Using the definitions µI/II = ± ∆+Ω
2
√

∆Ω
, νI/II = ± ∆−Ω

2
√

∆Ω
and

Jij = Jij 2Ωprobe

√
∆Ω/ (∆2 − Ω2), one obtains

dtρ(t) =
1

2

N∑
i,j=1

e−ikL(rj−ri)Jij

(
Aiρ(t)A†

j + Biρ(t)B†
j

)

+
1

2

N∑
i,j=1

e−ikL(rj−ri)J̌ij

(
Ciρ(t)C†

j + Diρ(t)D†
j

)

+ ... (B.6)



B.3: Derivation of the master equation 135

with

Ai = µI σI,i + νII σ†II,i,

Bi = µII σII,i + νI σ†I,i,

Ci = µI σ↓↓,I,i + νII σ↑↑,II,i,

Di = µII σ↓↓,II,i + νI σ↑↑,I,i.

The expressions in the main text are obtained by introducing a unified notation (compare
Eq. (3.8)), which absorbs the relative sign µI/µII in atomic operators referring to the
second ensemble σII → sgn(µIµII)σII .

B.3.2 Master equation including atomic motion

In the following, thermal motion of particles is included by treating atomic positions
as classical random variables. The master equation for atomic ground states (B.6) is
considered. As outlined in Sec. 3.1.3, random atomic positions can be taken into account
by introducing averaged coefficients in the master equation. Averaged rates 〈Jij〉 are
calculated assuming Gaussian distributions with width L for atomic positions in the two
ensembles. First, the rate corresponding to moving particles in a single ensemble is
calculated. Below it is shown that for inter-ensemble rates the same result is obtained for
the setup and range of parameters considered here.

〈Jij〉 =
1

π3L6

∫
dr

∫
dŕeikL(r−ŕ)− r2+ŕ2

L2 (γ(r− ŕ)+ig(r− ŕ)),

=
1

(2π)3/2 L3

∫
dr−eikLr−− r−2

2L2 (γ(r−)+ig(r−)), (B.7)

where the variable transformation r+ = r + ŕ, r− = r − ŕ was made in the second step.
The single particle rate is given by Jii = Γ (Lamb shifts are absorbed in the detunings).
Now, averaged rates 〈Jij〉 with i 6= j need to be determined. Firstly, the real part and
then the imaginary part of the averaged decay rate 〈Jij〉 is considered.

The real part Γij = Re (〈Jij〉) is calculated by inserting Eq. (3.8) into Eq. (B.7)

and fixing p̂ = x̂ and k̂L = ẑ. Γij = Γij,A + Γij,B is a sum of two contributions
corresponding to the first and the second line in Eq. (3.8). The first term is given by

Γij,A =
3Γ√
2πL3

∫ ∞

0

dr−r2
−e−

r2−
2L2

sin(kLr−)

kLr−

(
sin(kLr−)

kLr−
+

cos(kLr−)

(kLr−)2 − sin(kLr−)

(kLr−)3

)
. (B.8)

The integrand of this expression tends to zero in the limit r− → 0. This
can for example be seen by expanding the integrand for small values r− ¿ 1,

r2
−e−

r2−
2L2 sin(kLr−)

kLr−

(
sin(kLr−)

kLr−
+ cos(kLr−)

(kLr−)2
− sin(kLr−)

(kLr−)3

)
= 2

3
r2
− + O(r4

−). Hence the dominant

contribution in the limit kLL À 1 stems from the first term in brackets sin(kLr−)/(kLr−).
The other two terms in brackets decay faster in the interatomic distance r− and lead only
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to corrections on the order of 1/(kLL)4. For kLL À 1,

Γij,A =
3Γ√
2πL3

∫ ∞

0

dr−r2
−e−

r2−
2L2

sin(kLr−)2

(kLr−)2 =
3

4
Γ

1

(kLL)2

(
1− e−2kLL

)
,

which can be approximated by Γij,A = 3
4
Γ 1

(kLL)2
. The second part

Γij,B =
3Γ√
2πL3

∫ ∞

0

dr−r2
−e−

r2−
2L2

(
cos(kLr−)

(kLr−)
2 − sin (klr−)

(kLr−)
3

)(
sin(kLr−)

kLr−
+

3 cos(kLr−)

(kLr−)2 − 3 sin(kLr−)

(kLr−)3

)
,

is negligible compared to the first part Γij,A in the asymptotic limit kLL → ∞. Its
integrand tends to zero for r− → 0 (expansion for r− ¿ 1 yields k2

Lr4
−/45 + O(r5

−)) and
contains only terms proportional to cos(kLr−) sin(kLr−)/(kLr−)x, cos(kLr−)2/(kLr−)x and
sin(kLr−)2/(kLr−)x with x ≥ 1. These types of terms have been neglected in Eq. (B.8) or
decay even faster in r−. Since Γij,B is negligible compared to Γij,A, Γij = Γ 3

4(kLL)2
is used.

Next, the imaginary part Gij = Im (〈Jij〉) is calculated by inserting Eq. (3.9) into
Eq. (B.7). As before, the two contributions Gij = Gij,A + Gij,B corresponding to the first
and the second line in Eq. (3.9) are considered separately. The integrand of the first part

Gij,A = − 3Γ√
2πL3

∫ ∞

0

dr−r2
−e−

r2−
2L2

cos(kLr−)

kLr−

(
sin(kLr−)

kLr−
+

cos(kLr−)

(kLr−)2 − sin(kLr−)

(kLr−)3

)
,

tends to zero for r− → 0 (expansion for r− ¿ 1 yields 2r−/(3kL) + O(r3
−)) and fea-

tures a rapidly oscillating term proportional to sin (kLr−) cos (kLr−) in the integral, which
leads to a contribution which scales with 1/(kLL)3. The other terms proportional to
cos2(kLL)/(kLL)3 and cos(kLL) sin(kLL)/(kLL)3 are again of the type discussed and ne-
glected before. Hence it is well justified to assume that Gij,I ¿ Γij,I . The integrand of
the second part

Gij,B =
3Γ√
2πL3

∫ ∞

0

dr−r2
−e−

r2−
2L2

(
sin kLr−)

(kLr−)
2 +

cos (kLr−)

(kLr−)
3

)(
sin(kLr−)

kLr−
+

3 cos(kLr−)

(kLr−)2 − 3 sin(kLr−)

(kLr−)3

)
,

also tends to zero for r− → 0 (expansion for r− ¿ 1 yields −r−/(15kL) + O(r3
−))

and contains only one term which has not been considered so far. The term in the
integrand proportional sin(kLr−)2/(kLr−) leads to to a contribution which decays with
log(kLL)/(kLL)3 in the asymptotic limit kLL →∞. The imaginary part of the averaged
decay rate 〈Jij〉 is therefore negligible compared to the real part.

The distance between the two atomic samples does not play a role in the setting
under consideration. In the limit kL À R/L2, averaged single ensemble rates equal
averaged inter-ensemble rates 〈Jij〉 = 〈Jij〉I,I = 〈Jij〉I,II . In the following, the calculation

of the inter-ensemble value ΓI,II
ij,A is outlined. Analogous arguments can be used compute

ΓI,II
ij,B, GI,II

ij,A, and GI,II
ij,B.
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Inter-ensemble rates are obtained by averaging atomic positions with respect to
Gaussian distributions centered at the origin and a distance R apart respectively

ΓI,II
ij =

1

π3L6

∫
dr

∫
dŕeikL(r−ŕ)e

−r2

L2 e
−(ŕ−R)2

L2 γ(r− ŕ),

=
1

(2π)3L6

∫
dr+

∫
dr−eikLr−e

−(r−+R)2

2L2 e
−(r+−R)2

2L2 γ(r−),

=
1

(2π)3/2 L3

∫
dr−eikLr−e

−(r−+R)2

2L2 γ(r−),

where the variable transformation r+ = r+ŕ, r− = r−ŕ was made, as before. By inserting
Eq. (3.8) and neglecting the dipole factor (x̂ · (r− ŕ)/|r− ŕ|)2, which does not play a role
for the distance under consideration6, one obtains

ΓI,II
ij =

3Γ

2 (2π)3/2 L3

∫
dr− eikLr−e

−(r−+R)2

2L2
sin (kLr−)

kLr−
,

=
3Γ

2
√

2πL3

∫ ∞

0

dr−r2
−

sin (kLr−)

kLr−

∫ π

0

dθ sin(θ)eikLr− cos(θ)e
−1
2L2 (r2

−+R2+2r−R cos(θ)),

=
3Γ

2
√

2πL3kL

∫ ∞

0

dr− sin (kLr−) e
−(r2−+R2)

2L2

∫ r−

−r−
dxe−ikLxe

Rx
L2 .

In the last step, the integral over θ was transformed using the variable transformation
x = − cos(θ)r−. The integral over x can be directly evaluated yielding

ΓI,II
ij =

3Γ

2
√

2πL3kL (ikL −R/L2)

∫ ∞

0

dr− sin (kLr−) e
−(r2−+R2)

2L2

(
eikLr−−Rr−

L2 − e−ikLr−+
Rr−
L2

)
,

=
3Γ

2
√

2πL3kL (ikL −R/L2)

∫ ∞

−∞
dr− sin (kLr−) e

−(r−+R)2

2L2 eikLr− .

As next step, the variable transformation r̃ = r− + R is made such that

ΓI,II
ij =

3Γ

2
√

2πL3kL (ikL −R/L2)

∫ ∞

−∞
dr̃ sin (kL(r̃ −R)) ,

e
−r̃2

2L2 eikL(r̃−R)

=
3Γ

4
√

2πL3kL (−kL − iR/L2)

∫ ∞

−∞
dr̃e

−r̃2

2L2 ,

(e2ikL(r̃−R) − 1),

=
3Γ

4 (L2k2
L + ikLR)

(
1− e−2k2

LL2−2ikLR
)

which yields ΓI,II
ij = Γ 3

4(kLL)2
for kL À R/L2 and kLL À 1.

6The dipole term (p̂ · r̂ij)
2) leads to contributions which decay quickly in the interatomic distance. The

corresponding terms in Eq. (B.8) (the second and third term in brackets) are also negligible in the
calculation of the single-ensemble rate Γij,A.
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B.4 Time evolution of entanglement in a two-level

model

In this appendix, the amount of entanglement produced ξ(t) (compare Eq. (3.3)) is cal-
culated for the model described in Sec. 3.1.3. The first part of this appendix B.4.1 covers
the derivation of ξ(t) based on the full master equation (3.11). The second part B.4.2
contains explanations concerning Eq. (3.11).

B.4.1 Time evolution of entanglement

In the following, the time evolution of entanglement ξ(t) is calculated. To this end,
the single-ensemble variance of transverse spin components var(Jz) = 〈J2

z 〉 − 〈Jz〉2, the
inter-ensemble product of transverse spins 〈Jz,IJz,II〉 and finally the mean value of the
longitudinal spin 〈Jx〉 is calculated.

First, dt〈J2
z 〉t is calculated. The dissipative evolution described by Eq. (3.11) leads

to

dt〈J2
z 〉 = −Γ̃〈J2

z 〉 −
2d

N
Γ〈J2

z Jx〉+
N

4
Γ̃ +

dΓ

N
〈J2

x〉
(
µ2 + ν2

)
.

Applying the decorrelation approximation 〈JzJx〉 ≈ 〈Jz〉〈Jx〉 7 for mean values of products
of transverse and longitudinal spin yields

dt〈J2
z 〉 = −

(
Γ̃+dΓP2(t)

)
〈J2

z 〉+
N

4

(
Γ̃ + dΓP2(t)

2
(
µ2 + ν2

))

and similarly

dt〈J2
y 〉 = −

(
Γ̃+dΓP2(t)

)
〈J2

y 〉+
N

4

(
Γ̃ + dΓP2(t)

2
(
µ2 + ν2

))

where 〈Jx〉 = N
2
P2(t) and 〈J2

x〉 ≈ 〈Jx〉2 = N2

4
P2(t)

2 were used. The latter approximation
leads only to an error of the order8 O (

1
N

)
. Next, the mean values of the transverse spin

components are computed using the same approximations.

dt〈Jy/z〉t = −1

2

(
Γ̃ + dΓP2(t)

)
〈Jy/z〉t,

with 〈Jy/z〉t=0 = 0. The mean values can therefore be ignored when calculating single
ensemble variances var(Jy/z).

7 For perfectly polarized ensembles 〈JzJx〉 = 〈Jz〉〈Jx〉. The decorrelation approximation is justified as
long as only a small number of collective (coherent) excitations is created in the atomic sample. In
practice, the degree of squeezing, which can be produced in atomic samples is small, such that the
decorrelation approximation is a reasonable assumption for the settings considered here.

8 Initially, 〈J2
x〉|t=0 = 〈Jx〉2|t=0. The time evolution of 〈J2

x〉 is given by dt〈J2
x〉 = −2 (Γcool + Γheat) 〈J2

x〉+
N
2 (Γcool + Γheat) + N (Γcool − Γheat) 〈Jx〉. Hence, 〈J2

x〉∞−〈Jx〉2∞ = N
4 + 〈Jx〉∞ (compare Eq. (3.12)) in

the steady state and the error is by a factor N smaller than 〈J2
x〉 for all times.
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The time derivatives of inter-ensemble products of transverse spins are given by

dt〈Jz,IJz,II〉=−
(
Γ̃ + dΓP2(t)

)
〈Jz,IJz,II〉+N

2
µνdΓP2(t)

2,

dt〈Jy,IJy,II〉=−
(
Γ̃ + dΓP2(t)

)
〈Jy,IJy,II〉−N

2
µνdΓP2(t)

2,

where 〈Jx,IJx,II〉 ≈ 〈Jx,I〉〈Jx,II〉 has been used. For N À 1, this is a very good approxima-
tion, since collective effects on populations are suppressed by a factor d/N . Therefore, the
time evolution of longitudinal spins is only determined by single-particle terms, which do
not lead to correlations between the two ensembles. Hence, the variances of the non-local
operators Jy,± = (Jy,I ± Jy,II) /

√
2 and Jz,± = (Jz,I ± Jz,II) /

√
2 evolve according to

dtvar (Jy,±) = −
(
Γ̃ + dΓP2(t)

)
var (Jy,±) +

N

4

(
Γ̃ + dΓP2(t)

2 (µ∓ ν)2
)

,

dtvar (Jz,±) = −
(
Γ̃ + dΓP2(t)

)
var (Jz,±) +

N

4

(
Γ̃ + dΓP2(t)

2 (µ± ν)2
)

,

such that

var (Jy,±)∞ = var (Jz,∓)∞ =
N

4

Γ̃ + dΓP 2
2,∞ (µ∓ ν)2

Γ̃ + dΓP2,∞

in the steady state. The variances var (Jy,+) and var (Jz,−) are squeezed, while var (Jy,−)
and var (Jz,+) are anti-squeezed. Now, the time evolution of the longitudinal spin

dt|〈Jx〉| = −N

2
(Γheat − Γcool)− (Γheat + Γcool) |〈Jx〉|,

is considered, which yields directly

|〈Jx〉|∞ =
N

2

Γcool − Γheat

Γcool + Γheat

=
N

2
P2,∞

for t →∞.

Collective effects have an negligible effect on the time evolution of the polariza-
tion. P2(t) evolves due to single-particle effects only and hence much slower than
var (Jy,±) and var (Jz,±) for samples with high optical depth. In this case, the solution
for ξ(t) = var (Jz,+) /P2(t) can be cast in a simple analytical form

ξ(t)=
1

P2(t)
e−(Γ̃+dΓP2(t))t+

1

P2(t)

Γ̃+dΓP2(t)
2(|µ| − |ν|)2

Γ̃+dΓP2(t)

(
1− e−(Γ̃+dΓP2(t))t

)
.

B.4.2 Full master equation

In the following, the form of Eq. (3.11) is discussed and explained, in particular on the
absence of collective noise terms.



140 APPENDIX B. Dissipatively driven entanglement: supplementary material

The probe fields considered in Sec. 3.1.3 are off-resonant and it has been shown
in the main text that collective contributions feature an enhancement factor which
renders them the dominant decay mechanism for samples with high optical depth.
As is shown in Sec. 3.1.3, it can be advantageous to apply also resonant laser light
(pump fields). In contrast to off-resonant fields, collective contributions are negligible
compared to single-particle terms for resonant light in the situation considered here.
Unlike off-resonant collective rates, resonant collective rates are much slower than the
corresponding single-particle rates for samples with high optical depth, which is an
effect well known and harnessed in electromagnetically induced transparency [447–450].
The single particle decay rate after adiabatic elimination of excited states is given by

Γres =
Ω2

pump

γLW
, where Ωpump is the Rabi frequency of the applied laser field and γLW is the

natural line width of excited levels. Coherent effective effects lead to an enhancement
factor d in the denominator. Intuitively, this effect can be understood by noting that
emitted resonant photons are reabsorbed in an optically thick medium.

Due to atomic motion in ensembles at room temperature, spectral lines are Doppler
broadened. Therefore off-resonant contributions of pump fields to the master equation
with a detuning on the order of the Doppler width δDoppler are taken into account.
A calculation along the lines of the derivation shown in Sec. B.4.1 shows that these
terms are negligible compared to their single-atom counterparts. More specifically,
collective terms corresponding to a detuning δDoppler lead to decay rates proportional to
Ω2

pump

δDoppler
γLWd =

Ω2
pump

γLWd

(
γLWd

δDoppler

)2

with |δDoppler| >> γLWd, while single particle resonant

terms lead to decay rates proportional to
Ω2

pump

γLW
.

Finally, Eq. (3.11) does not include collective terms, corresponding to radiative
processes which do not change the internal atomic state, since they do not have an effect
on the amount of entanglement generated. A master equation corresponding to the terms
omitted in Eq. (3.10)

dtρ(t) = d
Γ̌

2
Cρ(t)C† + d

Γ̌

2
Dρ(t)D† + ... ,

with operators C =
∑

i (µ σ↓↓,I,i + ν σ↑↑,II,i) and D = C =
∑

i (µ σ↓↓,II,i + ν σ↑↑,I,i) leads

to dtξ(t) = 0. Since dt〈Jy〉 = − dΓ̌
2N
〈Jy〉, dt〈Jz〉 = − dΓ̌

2N
〈Jz〉, and dt〈Jx〉 = 0, 〈Jy〉 = 〈Jz〉 = 0

and 〈Jz〉 = N/2 for all times. The time derivatives of single-ensemble variances for
transverse spin components is given by

dt〈J2
y 〉 = Γ̌

d

N

(
µ2 + ν2

) (−〈J2
y 〉+ 〈J2

z 〉
)
,

dt〈J2
z 〉 = Γ̌

d

N

(
µ2 + ν2

) (〈J2
y 〉 − 〈J2

z 〉
)
,

such that 〈J2
y 〉 = 〈J2

z 〉 = N/4, for all times. Accordingly, 〈Jy,IJy,II〉 = 〈Jz,IJz,II〉 = 0 for
all times since

dt〈Jy,IJy,II〉 = −2
d

N
Γ̂µν〈Jz,IJz,II〉,
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dt〈Jz,IJz,II〉 = 2
d

N
Γ̂µν〈Jy,IJy,II〉.

The processes under consideration do not create entanglement unlike the terms in
Eq. (3.10) with jump operators A and B. As shown above, they do not degrade entan-
glement either. Collective terms corresponding to far off-resonant radiative transitions
| ↑〉 → |e↓〉 → | ↑〉, | ↓〉 → |e↑〉 → | ↓〉 do not introduce random phases and preserve
coherence. The emitted photon does not reveal information about the internal atomic
state, since it is emitted into the laser mode. Terms with jump operators C and D lead
only to very small correction terms proportional to 1/N and can be ignored.

B.5 Generation of steady state entanglement in alkali

atoms

In this appendix, the generation of dissipatively driven entanglement in multi-level
systems is considered based on the model described in Sec. 3.1.4.

Taking three ground state levels | ↑〉, | ↓〉 and |h〉 into account, the evolution of the
reduced atomic density matrix can be described by the master equation

dtρ(t) = dΓAρ(t)A† + dΓBρ(t)B† (B.9)

+ Γ↓↑
N∑

i=1

(
σI,iρ(t)σ†I,i + σII,iρ(t)σ†II,i

)

+ Γ↑↓
N∑

i=1

(
σ†I,iρ(t)σI,i + σ†II,iρ(t)σII,i

)

+ Γ↑h
N∑

i=1

(|h〉I,i〈↑|ρ(t)|↑〉I,i〈h|+|h〉II,i〈↑|ρ(t)|↑〉II,i〈h|)

+ Γh↑
N∑

i=1

(|↑〉I,i〈h|ρ(t)|h〉I,i〈↑|+ |↑〉II,i〈h|ρ(t)|h〉II,i〈↑|)

+ Γ↓h
N∑

i=1

(|h〉I,i〈↓|ρ(t)|↓〉I,i〈h|+ |h〉II,i〈↓|ρ(t)|↓〉II,i〈h|)

+ Γh↓
N∑

i=1

(|↓〉I,i〈h|ρ(t)|h〉I,i〈↓|+ |↓〉II,i〈h|ρ(t)|h〉II,i〈↓|)

+ Γ↑↑
N∑

i=1

(|↑〉I,i〈↑|ρ(t)|↑〉I,i〈↑|+ |↑〉II,i〈↑|ρ(t)|↑〉II,i〈↑|)

+ Γ↓↓
N∑

i=1

(|↓〉I,i〈↓|ρ(t)|↓〉I,i〈↓|+ |↓〉II,i〈↓|ρ(t)|↓〉II,i〈↓|) ,

where Γab is the single-particle rate for the transition |a〉 → |b〉. As in Sec. 3.1.3, collective
terms due to resonant pump fields, as well as collective dephasing terms are omitted (see
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App. B.4.2). Collective terms involving the level |h〉 are also insignificant for N >> 1, as
long as the number of coherent collective excitations is small.

In order to compute the amount of entanglement produced, the variance of the
nonlocal operator Jy,+,2 = (Jy,I + Jy,II)2 /

√
2 is considered. (The subscript ”2” em-

phasizes that these quantities are defined with respect to the two-level subsystem
{|↑〉, |↓〉}.) A calculation analogous to the two-level derivation in App. B.4.1 shows that
〈Jy,I〉2 = 〈Jy,II〉2 = 0 for all times. Therefore var (Jy)2 = 〈J2

y 〉2. For simplicity, it is
assumed that both ensembles are identical 〈J2

y,I〉2 = 〈J2
y,II〉2 = 〈J2

y 〉2.
According to Eq. (B.9), the time derivative of the single-ensemble variance 〈J2

y 〉2 is given
by

dt〈J2
y 〉2 = −

(
Γ̄ + dΓ

N2(t)

N
P2(t)

)
〈J2

y 〉2 + Γ
N2(t)

4
+ dΓ

1

4

N2(t)

N
P2(t)

2
(
µ2 + ν2

)
,

where the decay rate Γ̄, the number of atoms in the relevant two-level subsystem
{| ↑〉, | ↓〉}, N2(t) and the corresponding polarization P2(t) are defined in Sec. 3.1.4.
N =

∑
i (|↑〉i〈↑ |+ |↓〉i〈↓ |+ |h〉i〈h|) is the total number of atoms in one ensemble and

N2(0) = N . Note that repump fields, which transfer atoms from |h〉 to | ↑〉 or | ↓〉
(corresponding to terms with prefactors Γhg and Γhs in Eq. (B.9)), do not contribute to
Γ̄.

Inter-ensemble correlations 〈Jy,IJy,II〉2 evolve according to

dt〈Jy,IJy,II〉2 = −
(

Γ̄ + dΓ
N2(t)

N
P2(t)

)
〈Jy,IJy,II〉2 − dΓ

1

2

N2(t)

N
P2(t)

2µν.

Hence, the time evolution of var (Jy,+)2 = 〈J2
y 〉2 + 〈Jy,IJy,II〉2 is given by

dt〈J2
y,+〉2 = −

(
Γ̄ + dΓ

N2(t)

N
P2(t)

)
〈J2

y,+〉2 + Γ̄
N2(t)

4
+ dΓ

1

4

N2(t)

N
P2(t)

2 (µ− ν)2 .(B.10)

Analogously,

dt〈J2
z,−〉2=−

(
Γ̄+dΓ

N2(t)

N
P2(t)

)
〈J2

z,−〉2+Γ̄
N2(t)

4
+dΓ

1

4

N2(t)

N
P2(t)

2 (µ−ν)2 . (B.11)

Since the evolution of N2(t) and P2(t) is known from equations (3.15), ΣJ,2 = 〈J2
y,+〉2 +

〈J2
z,−〉2 can be directly calculated yielding a complicated expression. However, as explained

in Sec. 3.1.3 and Sec. 3.1.4, N2(t) and P2(t) can be considered to change slowly compared
to the fast entangling dynamics. In this case, (B.11) leads to the simple and convenient
expression (3.16) used in Sec. 3.1.4.

B.6 Implementation in room temperature 133Cs va-

pors

In this appendix, the results derived in Sec. 3.1.4 are applied to a specific example
and the generation of entanglement between two 133Cs ensembles at room temperature
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is considered. The parameters used in the following take values consistent with the
experiments reported in [VII], [16]. The approximate calculation outlined below provides
a rough estimate of the entanglement that can be produced.
In the following ŷ-polarized probe light which propagates along ẑ and interacts in
succession with two ensembles in a magnetic field which is oriented along x̂ is considered.
The laser field is assumed to be blue detuned by ∆ = 700MHz with respect to the
6S1/2(F = 4) → 6P3/2(F = 5) transition (D2 line). Fig. 2.2 depicts the relevant parts
of the atomic level schemes in both samples and illustrates the atomic transitions due
to the light-matter interaction induced by the applied laser field. Initially, all atoms are
pumped to state |↑〉. The restriction of the analysis to the three levels |↑〉, |↓〉 and |h〉
in the presence of strong pump fields, as described in Sec. 3.1.4 for x̂-polarized probe
light is also valid for this configuration, as the rates of transitions from level | ↑〉 to
states with mF = ±2 occur at rates which are two orders of magnitude smaller than
transitions within the sub-system under consideration. (Γ|4,4〉→|4,2〉 = 0.03 Γ|4,4〉→|4,3〉 and
Γ|4,4〉→|3,2〉 = 0.02 Γ|4,4〉→|4,3〉).

In order to calculate the experimentally measurable steady state entanglement us-
ing Eq. (3.19) for a given optical depth d and parameters µ and ν, N2(t), P2(t) and
Γ̄ need to be computed. N2(t) = N↑(t) + N↓(t) and P2(t) = (N↑(t)−N↓(t)) /N2(t)
are readily obtained from Eq. (3.15), if the rates for all transitions are known. As
the probe field is assumed to be off-resonant, probe induced rates Γab for transitions

|a〉 → |b〉 are calculated using the formula Γprobe
ab = Ω2

probe|
∑

l
cabl

∆ab
l
|2γLW, where the

sum runs over all exited levels |el〉 contributing to a particular transitions (for example
the states |5, 3〉, |4, 3〉 and |3, 3〉 in 62P3/2, if Γ↑↓ = Γν2 is computed). ∆ab

l is the
detuning for each contributing level, γLW the natural line width of excited levels and
cab
l = 〈jb,mb; jL2 ,mL2|jel

,mel
〉〈jel

,mel
|ja,ma; jL1 , mL1〉 is the product of the correspond-

ing Clebsch-Gordan coefficients. jx and mx refer to the total angular momentum and
magnetic quantum number of the atomic state |x〉 and jL1/2

and jL1/2
refer to the absorbed

and emitted photons involved in the process. Pump, or repump induced transitions are
resonant and involve to a good approximation only one level. Hence the corresponding

rates9 are given by Γpump
ab =

Ω2
pump

γLW
c2
pump k and Γrepump

ab =
Ω2

repump

γLW
c2
repump k respectively,

where k = Γ
δDoppler

= 5MHz
380MHz

. Here, pumping resonant with respect to the level |4, 4〉 in

6P1/2 (D1 line) and pump fields resonant with respect to the level |4, 4〉 in 6P3/2 (D2

line) are considered. (The decay rates are approximately the same γD1 ≈ γD2 = γLW.)
Having expressions for N2(t), P2(t) as well as Γ̄ = Γ↑↓ + Γ↓↑ + Γ↑h + Γ↓h + Γ↑↑ + Γ↓↓ + r
at hand, the amount of entanglement which can be produced in this particular setting
can be calculated. Results are shown in Fig. 3.3 and are discussed in Sec. 3.1.4. As
the three-level description becomes inaccurate if too many atoms are transferred from
state |↑〉 to state |↓〉, both plots show results for the optimal (that is minimal) pump
power which guarantees a fraction of at least 95% of all atoms in the relevant two-level

9The correction factor k takes into account that due to the Doppler broadening of atoms moving at room
temperature only a fraction k = γLW

δDoppler
of all atoms in the cell is on resonance with the applied field.

The Doppler width is given by δDoppler = ν
c

(
2kBT
m ln 2

)1/2
, where c/ν = λ is the wavelength of the applied

light field, kB is the Boltzmann constant, T is the temperature and m is the atomic mass.
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subsystem in state |↑〉 for all times. Besides the need for sufficient pump fields, repumping
of atoms from F = 3 to F = 4 is required. If strong pump but no repump fields are
applied, no entangled state can be reached, as for t → ∞, all atoms are transferred to
level |h〉.
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Appendix C

Dissipative quantum repeaters:
supplementary material

In this appendix, the results presented in Sec. 3.2 are explained in more detail. In the
following, two dissipative distillation schemes are discussed. Scheme I (see Sec. C.1) is
suited for settings where a dissipative processes is available which produces entangled
steady states, that are close to pure states. If only very mixed steady states are available
as input, scheme II is preferable, (which is explain in detail in Sec. C.4). In Sec. C.2, the
notion of continuous exchange of classical information between two parties is introduced
in the master equation formalism and it is shown that arbitrary LOCC channels can be re-
alized using local dissipation and classical communication. In Sec. C.3, it is explained how
the continuous protocols used here can be made robust against noise. Finally, in Sec. C.5,
the dissipative quantum repeater scheme put forward in the main text is analyzed.

C.1 Scheme I: Dissipative entanglement distillation

for source states close to pure states

In this section, two variants of scheme I are explained1. In Sec. C.1.1, a protocol,
which allows for dissipative entanglement distillation without communication is discussed.
Sec. C.1.2 is concerned with a related protocol, which includes classical communica-
tion. Both protocols produce Bell-diagonal steady states which can further distilled using
scheme II presented in Sec. C.4.

C.1.1 Dissipative entanglement distillation without communi-
cation

In this subsection, the setup illustrated in Fig. 3.8a is considered. The dissipative dynam-
ics driving the two systems s1 and s2 is physically motivated and can be implemented by
coupling the systems located at Alice’s and Bob’s side to a common bath, for example

1The variant of scheme I without communication is fundamentally different from scheme II, which is
presented in Sec. C.4 and cannot not be formulated in terms of master equations of the form ρ̇ ∝
(T (ρ)− ρ), where T (ρ) is a LOCC channel.
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the vacuum modes of the electromagnetic field [163, 451, 452]. The entanglement which
can be attained per single copy is limited for a given dissipative process. Moreover these
systems are subject to noise. Still, it is possible to use these two copies as resource for
creating a single highly entangled pair in target system T . In the absence of undesired
processes, the dynamics described by the master equation ρ̇ = γ

(
LA(ρ) + LB(ρ)

)
(see

main text) drives systems s1 and s2 into the state

|ψ〉⊗2 ∝ |00〉s1|00〉s2−λ
[|00〉s1|11〉s2+|11〉s1|00〉s2

]
+λ2|11〉s1|11〉s2 .

Alice and Bob share a maximally entangled state |Ψ0〉=
(|00〉s1|11〉s2+|11〉s1|00〉s2

)
/
√

2 in a
subspace with one excitation on each side. Scheme I is based on the extraction of entan-
glement from this subspace and its subsequent transfer to the target system by means of
the flip operation F =

∑
i,j |jT îs〉〈iT ĵs|, where |0̂s〉 = |0s11s2〉 and |1̂s〉 = |1s10s2〉. Systems

s1 and s2 are permanently driven back to an entangled state. In contrast to standard
distillation protocols for pure states [400], the presence of this strong process leads to a
substantial decrease in the entanglement if the flip operations on Alice’s and Bob’s side
are not applied simultaneously. Hence, the coordination of their actions, e.g., using fast
classical communication, seems to be essential. Surprisingly, the desired dynamics can be
realized in the absence of communication or predefined correlations using local unitary
evolutions.
This is possible by exploiting the symmetry of the maximally entangled state |Ψ0〉. More
specifically, |Ψ0〉 is invariant under any unitary operation of the form U ⊗ Ū , while less
entangled pure states are not. Ū denotes the complex conjugate of U . Such an operation
can be implemented without communication as the time evolution of a sum of local
Hamiltonians H = HA ⊗ I − I ⊗ H̄B. Here, the flip operation is used such that the
corresponding master equation is given by

ρ̇ = γ
(
LAs1 (ρ)+LBs1 (ρ) + LAs2 (ρ)+LBs2 (ρ)

)

+ iδF [F⊗ I− I⊗ F, ρ]

+ εc

(
Las1 (ρ)+Lbs1 (ρ)+Las2 (ρ)+Lbs2 (ρ)

)

+ εh

(
La†s1 (ρ)+Lb†s1 (ρ)+La†s2 (ρ)+Lb†s2 (ρ)

)

+ εd

(
La†s1as1 (ρ) + Lb†s2bs2 (ρ)

)
,

where a = σ−Alice and b = σ−Bob. The first line corresponds to the entangling dissipative
process (described by nonlocal jump operators A and B) acting on the two source
systems as explained in the main text. The second line describes the unitary coupling of
the target system to the entangled subspace of the two source systems and the last three
lines represent undesired processes. More specifically, dephasing at a rate εd as well as
noise terms, which create (annihilate) excitations locally at the heating (cooling) rate εh

(εc) are included. Note that the noise types considered here also include depolarizing
noise. The target system itself is assumed to be protected (below, a variant of this
scheme is described, which includes classical communication and can be made robust
against noise acting on the target system).
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A disadvantage of the unitary evolution employed here lies in the fact that the
source system is subject to a back-action of the target state, which depends on the
quantum state of T . Accordingly, the evolution of the source systems is highly dependent
on the state of the target pair. It remains an open question, whether schemes, similar to
the one described in Sec. C.3 can be used to render this protocol robust against errors
on the target system, or whether this is a special feature of protocols including classical
communication.

C.1.2 Distillation using scheme I including classical communi-
cation

In this subsection, the setup illustrated in Fig. 3.8b is considered. As explained in
Sec. C.1.1, the dissipative entangling process acting on the source systems s1 and s2

has the property that Alice and Bob share a maximally entangled state if the resulting
steady state is projected onto the subspace with one excitation on each side. Ideally, this
quantum state is then transferred to the target system T by means of the flip operation
defined above. Below, a classical communication channel is introduced, which allows Alice
and Bob to coordinate their actions such that flip operations on both sides can be per-
formed in a synchronized fashion if both sides have successfully accomplished a projection
onto the relevant subspace with one excitation. As explained in Sec. C.2, Lindblad terms
of the form LTLOCC(ρ) = (TLOCC(ρ)− ρ), where TLOCC is an arbitrary LOCC channel2, can
be realized by means of local dissipative processes and classical communication.
As explained in Sec. C.3, this protocol is resistent against target errors if it is coupled
to sufficiently many blocks of source pairs. For simplicity, the basic protocol is explained
here in the absence of target errors, which corresponds to the limit of using infinitely
many source blocks (entanglement distillation for a finite number of source blocks and
finite error rates is analyzed in Sec. C.3 and Sec. C.5). Classical communication allows
for the implementation of the scheme outlined above. The LOCC distillation operation
corresponding to this process, TF, is given by

TF(ρ) = FA ⊗ FBρFA ⊗ FB + PA ⊗ P⊥
B ρPA ⊗ P⊥

B

+ P⊥
A ⊗ PBρP⊥

A ⊗ PB + P⊥
A ⊗ P⊥

B ρP⊥
A ⊗ P⊥

B ,

where P = |0s11s2〉〈0s11s2| + |1s10s2〉〈1s10s2| is the projector onto the subspace with one
excitation, and P⊥ = I1− P the projector onto the subspace with zero or two excitations.
Note that only the first term has an effect on the target system. The flip operation leads
to a back-action on the source system, which depends on the state of T .
In order to simplify the discussion in Sec. C.3, a slightly modified version of this protocol
is introduced here, T ′

F(ρ), which does not exhibit a state-dependent back-action. This can

2LOCC channels are completely positive trace preserving maps that can be realized by means of Local
Operations and Classical Communication.
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be achieved by applying a twirl [181,182] on the target system prior to the flip operation

T ′
F(ρ) =

3∑
ij=0

1

16
FA ⊗ FBUijρU †

ijFA ⊗ FB + PA ⊗ P⊥
B ρPA ⊗ P⊥

B

+ P⊥
A ⊗ PBρP⊥

A ⊗ PB + P⊥
A ⊗ P⊥

B ρP⊥
A ⊗ P⊥

B .

Uij = σA
i ⊗ σB

j is a unitary operation acting on the target system only, where σi denote
the four Pauli matrices and σ0 is the identity. Due to the twirl, this protocol features an
enhanced back-action on the source, which is independent from the target. It turns out
that the performance of this protocol is qualitatively the same as shown in Fig. 3.9 in the
main text. The total master equation is then given by

ρ̇ = γ
(
LAs1 (ρ)+LBs1 (ρ) + LAs2 (ρ)+LBs2 (ρ)

)

+ δF (T ′
F(ρ)− ρ)

+ εc

(
Las1 (ρ)+Lbs1 (ρ)+Las2 (ρ)+Lbs2 (ρ)

)

+ εh

(
La†s1 (ρ)+Lb†s1 (ρ)+La†s2 (ρ)+Lb†s2 (ρ)

)

+ εd

(
La†s1as1 (ρ) + Lb†s2bs2 (ρ)

)
,

where a = σ−Alice and b = σ−Bob.

C.2 Classical dissipative channels and dissipative

LOCC

Classical channels are easier to realize experimentally than their quantum counterparts
and can for example be implemented using optical fibers. Since classical channels are
insufficient for the generation of quantum correlations, long-range links can be established
over large distances using the toolkit of classical error-correction. The class of LOCC
operations, i.e. quantum operations that can be performed using local operations and
classical communication, is of essential importance in quantum information theory,
especially in the context of entanglement distillation protocols.

In this section, the notion of classical channels is introduced in the framework of
dissipative quantum information processing. This allows for the formulation of general-
ized LOCC operations in a continuous dissipative setting, which includes a wide range of
continuous distillation protocols.

C.2.1 Classical dissipative channels

To start with, a dissipative classical communication channel is introduced.
Both parties, Alice and Bob, each have access to a d-dimensional system which is used
exclusively for classical communication (see. Fig. C.1). The master equation

ρ̇=Γ

(∑
i

〈icA|ρAlice|icA〉|0cAicB〉〈0cAicB|−ρ

)
≡ΓCA→B(ρ)
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Figure C.1: Realization of a classical dissipative channel.

describes a one-way classical communication channel. States referring to the communi-
cation system at Alice’s and Bob’s side are labelled by subscripts cA and cB respectively.
Alice’s communication system is continuously measured in the computational basis yield-
ing the quantum state |icA〉 with probability 〈icA|ρAlice|icA〉 and reset to the state |0cA〉,
while the communication system on Bob’s side is set to the measurement outcome. This
process can be written in the form

ρ̇ = ΓCA→B(ρ) ≡ Γ(T (ρ)− ρ),

where the completely positive map T (ρ) is an entanglement breaking operation [453],
which maps any state to a separable one. The solution of this master equation ρ(t) is
given by

ρ(t) = ρ(0)e−Γt +

∫ t

0

dτT (ρ(τ))eΓ(τ−t)

︸ ︷︷ ︸
separable

.

The second term is separable, since T (ρ) is entanglement breaking. Accordingly, the
classical channel introduced above does not produce entanglement. Moreover any entan-
glement present in the state ρ(0) is exponentially suppressed.

C.2.2 Generation of Lindblad operators of the form T (ρ)− ρ

In the following, it is proven that any dissipative time evolution which satisfies a master
equation of the form ρ̇ = γ(T (ρ) − ρ) can be designed by means of local dissipative
processes in combination with the classical communication channels introduced above in
the limit of high rates Γ. The basic setup is sketched in Fig. C.2. Alice and Bob hold a
bipartite system, which is referred to as the main system. In addition both parties have
access to several classical communication channels and can apply dissipative dynamics
acting on the classical channels and their part of the main system. This setting allows
for a wider class of dissipative evolutions on the main system which includes dissipative
LOCC processes. In particular the following is stated.
Let T (ρ) be any LOCC map. Let L(ρ) be any bounded Lindblad operator, i.e.,
maxρ ‖L(ρ)‖ = 1, acting on the main system at a rate γ. Let Alice and Bob have access
to classical communication channels as described above. If both parties can apply any
dissipative process of Lindblad form on their side, an effective dissipative time evolution
on the main system satisfying the master equation

ρ̇ = γL(ρ) + δ (T ′(ρ)− ρ) (C.1)
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Figure C.2: Using local dissipative processes and fast classical communication, arbitrary LOCC
channels can be implemented in a continuous fashion.

after an initial waiting time of the order 1
δ

can be realized. The completely positive
operator T ′(ρ)=T (ρ)+O(

√
α) is an imperfect realization of T (ρ) up to an error O(

√
α),

which vanishes for small α = γ′
Γ
, where γ′ = γ+δ. O(f(α)) denotes any hermitian (time

and state dependent) operator with a trace norm scaling with f(α) in the limit α→0.
Since maxρ ‖L(ρ)‖=1, the strength of the process is completely encoded in γ. L(ρ) can
include a dissipative LOOC map itself, as discussed at the end of this section. The error
O(
√

α) of the LOCC map is small for α¿ 1. A time evolution satisfying Eq. (C.1) can
be either obtained by starting from certain initial conditions, or after an initial waiting
time on the order of 1

δ
, during which no external control is required. If ΓÀγ+δ (α¿1),

the system evolves approximately according to ρ̇=γL(ρ)+δ (T (ρ)−ρ).
Note, that LOOC operations are extremely hard to parameterize. It is known, that they

can be written as a separable superoperator T (ρ) =
∑

i Ai ⊗ BiρA†
i ⊗ B†

i , but not every
separable superoperator is a LOCC map. Practically, a general LOCC map can only be
characterized by fixing the number of communication rounds between Alice and Bob and
to specifying the exact operations that Alice and Bob perform in each round. The most
general operation Alice and Bob can apply is a positive operator valued measurement
(POVM). This covers any completely positive map as well as measurements, unitary
evolutions, etc. A POVM is specified by a number of Kraus operators Ai, corresponding
to the possible measurement outcomes i, where the normalization condition

∑
i A

†
iAi = I

guaranties that the probabilities for the different possible outcomes add up to 1.
The following situation is considered. Alice performs a first POVM Ai and sends her
result i to Bob. Bob chooses a POVM Bi

j depending on Alice’s result i. Subsequently,

he sends the result j to Alice, who chooses her next POVM Aij
k which may depend on

all previous measurement results. This procedure can be repeated many times. This
corresponds to the application of the operation

T (ρ)=
∑

i0,j0,i1,j1,...,ir,jr

Xi0,j0,i1,j1,...,ir,jrρX†
i0,j0,i1,j1,...,ir,jr

,

where each Kraus operator is of the form

Xi0,j0,i1,j1,...,ir,jr = Bi0,j0,i1...in
jn

. . . Bi0,j0,i1
j1

Ai0,j0
i1

Bi0
j0

Ai0
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and represent one possible set of measurements outcomes i0, j0, i1, j1, . . . , ir, jr for all r
POVM measurements. Due to this lack of a concise notation for a general LOCC map,
a complete proof of this statement would be lost in notation and it would be hard for
the reader to understand the main idea of the proof. The setting is therefore restricted
to LOCC maps with one communication round, i.e., Alice sends one message to Bob and
Bob can send an answer back to Alice once. A generalization of the following proof to
a LOCC map with a finite number of communication rounds m is straight forward and
will be discussed below.

Let T (ρ) denote a LOCC map with one round of communication. This map can
be realized in the following way:

• Alice applies a POVM measurement with Kraus operators Ai, obtains the measure-
ment result i and sends it to Bob.

• Bob performs a POVM measurement Bi
j, which can depend on i, and sends the

result j to Alice. Since it is assumed that Alice is memoryless, Bob also sends the
measurement outcome of Alice’s measurement i.

• In the last step, Alice can apply any completely positive map Tij on her side. This
map can depend on both, i and j.

Note, that Tij(ρ) =
∑

k Cij
k ρ(Cij

k )† is also a POVM map with Kraus operators Cij
k , where

the measurement results k are not used. Let Alice and Bob have n different measurement
results for each POVM, where n can be upper bounded by the square of the dimension
of the system. For typical distillation protocols on qubits, n = 2. Note that all indices
for Kraus operators run from 1 to n, and do not start with 0. This choice allows for a
shorter notation later on (the index 0 is reserved for indicating that the classical channel
is operable). The basic setup is illustrated in Fig. C.2. Alice and Bob have access
to classical one-way communication channels labelled C1 and C2. C1 and C2 can be
used to send information from Alice to Bob and vice versa respectively. Apart from
these classical channels, Alice and Bob hold a system subject to a dissipative evolution
described by the Lindblad operator L(ρ). In the following, this system is referred to
as the main system. The first classical channel needs to store all possible measurement
outcomes obtained by Alice, whereas the second one needs to store the measurement
results obtained by both, Alice and Bob. It is therefore assumed that C1 and C2 are
n+1 and n′+1 = n2 +1 dimensional systems respectively. Note, that the state |0〉 will be
used to indicate that the channel input or output is ”empty”, while the states |1〉, . . . , |n〉
represent n possible measurement results of Alice and the states |1〉, . . . , |n′〉 encode the
n2 different measurement results obtained by Alice and Bob. The corresponding master
equation is given by

ρ̇ = γL(ρ) + ΓCA→B(ρ) + ΓCA←B(ρ),

where γL(ρ) is a process acting on the main system only. The time scales for classical
communication Γ−1 are assumed to be sufficiently long such that retardation effects can be
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ignored. The four systems used for classical communication are denoted by Ia, Ib, Oa, Ob

as shown in Fig. C.2. I and O stand for ”Input” and ”Output”.
As a next step, local Lindblad operators are added, which correspond to the application
of a LOCC map depending on the registers of the classical channels. The following three
terms are added, one for each step of the protocol outlined above. The first term is given
by

δ
∑

i=1,k=0

L
Ai⊗|i〉〈k|Ia (ρ),

where Ai acts on Alice’s part of the main system and |i〉〈0|Ia
on Alice’s side of the first

classical system, i.e., the input system of the first classical channel. Note, that the short
hand notation LA(ρ) = γ

(
AρA† − 1

2

(
ρA†A + A†Aρ

))
which was already introduced in

the main text is used here. This corresponds to the first step of the realization of the
LOCC map. Alice performs a POVM and writes the measurement result onto the input
system of the classical channel. As second term, the Lindblad operator

Γ
∑

ji=1,xy=0

L
Bi

j⊗|0〉〈i|Ob
⊗|j, i〉〈x, y|

Ib (ρ)

is added, where Bi
j acts on Bob’s part of the main system, |0〉〈i|Ob

on the output of the
first classical channel and |j, i〉〈x, y|Ib

on the input of the second channel. Note, that
the second channel can store both values i and j at the same time. |j, i〉 stands for any
encoding of i, j in the n2 + 1 dimensional state space, where the label zero is reserved
for indicating the status of the channel. The summation over x, y starts from zero, i.e.,
includes the reserved zeros term as well as the n2 possible measurement results. Bob
only carries out a POVM measurement, if he receives the message i via C1. Afterwards
he writes i, j onto the classical channel. Note that the sum over xy implies that Bob
overwrites any previous state of the classical communication system. The last term to be
added is given by

Γ
∑

jik=1

L
Cij

k ⊗|0〉〈i, j|Oa (ρ),

where Cij
k acts on Alice’s quantum system with Tij(ρ) =

∑
k Cij

k ρCij
k

†
and |0〉〈i, j|Oa

act
on the output of the second classical channel. Alice receives the message ij and reacts
by applying Tij to complete the LOCC map. The sum starts from ij = 1, i.e., Alice acts
only if a message has arrived. She does not act if the register is empty (|0〉). Hence, the
total master equation is given by

ρ̇ = γL(ρ) + ΓCA→B + ΓCA←B + δ
∑

i=1,k=0

L
Ai⊗|i〉〈k|Ia (ρ) (C.2)

+ Γ
∑

ji=1,xy=0

L
Bi

j⊗|0〉〈i|Ob
⊗|j, i〉〈xy|

Ia (ρ) + Γ
∑

jik=1

L
Cij

k ⊗|0〉〈i, j|Oa (ρ).

The basic idea can be described as follows. The term in the second line starts the process of
realizing T (ρ) at a rate δ (Alice performs the first step). The following steps are performed
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with a high rate Γ, such that the state of the quantum system stays approximately
constant during the time needed to complete the whole operation. So, practically, the
whole LOCC map T (ρ) is applied at once at a rate δ.
In the following, this will be proven rigorously by considering the effective evolution of
the main systems after tracing out the classical channels. The reduced state of the main
system can be written as

ρM =
∑

ijkl

ρijkl,

with ρijkl = 〈iIajOb
kIb

lOa|ρ|iIajOb
kIb

lOa〉, where i, j (k, l) denote the computational bases
for C1 (C2). The indices are arranged such that their order corresponds to the order
in the communication cycle. i refers to the input of Alice’s side, j to the output on
Bob’s side, k to the input on Bob’s side and l to the output on Alice’s side. A system of
differential equations for all ρijkl can be derived using ρ̇ijkl = 〈iIajOb

kIb
lOa|ρ̇|iIajOb

kIb
lOa〉

and Eq. (C.2). The desired terms ρ0000, ρi000, ρ0i00, ρ00(ij)0, ρ000(ij) evolve according to

ρ̇0000 = γL(ρ0000)− δρ0000 + Γ
∑
xy=1

Tij(ρ000(xy)), (C.3)

ρ̇i000 = γL(ρi000)− (Γ + δ)ρi000 + δ
∑

k=0

Aiρk000A
†
i + Γ

∑
xy=1

Txy(ρi00(xy)), (C.4)

ρ̇0i00 = γL(ρ0i00)− (Γ + δ)ρ0i00 + Γ
∑

k=0

ρik00 + Γ
∑
xy=1

Txy(ρ0i0(xy)), (C.5)

ρ̇00(ij)0 = γL(ρ00(ij)0)−(Γ+δ)ρ00(ij)0+Γ
∑
xy=0

Bi
jρ0i(xy)0B

i
j
†+Γ

∑
xy=0

Txy(ρ00(ij)(xy)), (C.6)

ρ̇000(ij) = γL(ρ000(ij))− (Γ + δ)ρ000(ij) + Γ
∑
xy=0

ρ00(ij)(xy). (C.7)

All other terms correspond to small errors. In the first step of the proof it is shown that
after an initial waiting time, only the states ρ0000, ρi000, ρ0i00, ρ00(ij)0, ρ000(ij) are signifi-
cantly populated, while the population of all other states is small. In the next step it is
shown that ρM ≈ ρ0000. In the following the short-hand notation ρ0 := ρ0000 is used.

Bounds for occupation probabilities

Below, the probabilities pijkl = tr(ρijkl) are used. A system of differential equations
ṗijkl = tr(ρ̇ijkl) for these probabilities can be derived by from the differential equations
for ρijkl. Traceless terms such as γL(ρ) and Tij do no longer appear.
Moreover, p000X , . . . , pXXX0, pXXXX are defined as the sum of pijkl, where all indices
marked with X are summed from 1 to n, n′, in order to remove the dependence on the
Kraus operators by virtue of their normalization condition (

∑n
i=1 A†

iAi =I). A successful
application of the LOCC map corresponds to the series pX000, p0X00, p00X0, p000X , p0000

(similarly to a X-excitation which created on the first index, travels to the right and
disappears in the end). p0000 takes high values, while the other probabilities are on the
order of δ

Γ
, which indicates that this process is fast. However, the situation considered here
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does not correspond to this ideal case because Alice can start a new round before the last
one is finished, which gives rise to probabilities which are denoted by indices with more
than one X, e.g. pXX00, pX0X0, . . . which results in an incorrect realization of the LOCC
map. Since the complete solution is not of interest here, but only upper and lower bounds,
the system is further simplified by defining the probabilities p0000, pXΞΞΞ, p0XΞΞ, p00XΞ and
p000X , which cover all possible events. X indicates that the corresponding index is different
from zero. Therefore, the summation runs from 1 to n, n′. Ξ stands for an arbitrary value,
i.e., the summation starts from zero. These five quantities include also non-ideal processes,
with two or more X entries which correspond an errors and evolve according to

ṗ0000 = −δp0000 + Γp000X ,

ṗ000X = −(δ + Γ)p000X + Γp00XΞ,

ṗ00XΞ = −(δ + Γ)p00XΞ + Γp0XΞΞ,

ṗ0XΞΞ = −(δ + Γ)p0XΞΞ + ΓpXΞΞΞ,

ṗXΞΞΞ = −ΓpXΞΞΞ+δ(p0000+p000X +p00XΞ+p0XΞΞ).

The solution shows that the steady state (ss) with

pss
0000=

Γ4

(Γ+δ)4
, pss

000X=
δΓ3

(Γ+δ)4
, pss

00XΞ=
δΓ2

(Γ + δ)3
, pss

0XΞΞ=
δΓ

(Γ+δ)2
, pss

XΞΞΞ=
δ

(Γ+δ)
(C.8)

is reached3 up to an error smaller than O(α2) after a time of the order of 1
δ
. In the

steady state, pss
0000 =1−4 δ

Γ
+O( δ2

Γ2 ). Next, bounds for pX000, p0X00, p00X0, p000X are derived.
According to Eq. (C.4), ṗX000 = −ΓpX000 + δp0000 + ΓpX00X . Assuming that pss

0000 is
reached after a time t′,

pX000(t) = e−Γ(t−t′)pX000(t
′) +

∫ t

t′
dτeΓ(τ−t)

(
δΓ4

(Γ+δ)4
+ ΓpX00X

)
,

= e−Γ(t−t′)pX000(t
′) + (1− e−Γ(t−t′))

δΓ3

(Γ + δ)4
+ h(t, t′),

where h(t, t′) ≥ 0 is a positive function since pX00X ≥ 0. Hence, doubling the initial
waiting time guarantees pX000 ≥ δΓ3

(Γ+δ)4
. According to Eq. (C.5), ṗ0X00 =−(Γ+δ)p0X00+

ΓpX000+ΓpXX00+Γp0X0X . By integration, using the bound for pX000 and assuming that
the contributions from p0X0X and pXX00 sum up to a positive function it can be concluded
that δΓ4

(Γ+δ)5
≤p0X00 is fulfilled after waiting for another period on the order of 1

δ
. Similarly,

one obtains δΓ5

(Γ+δ)6
≤p00X0 and δΓ6

(Γ+δ)7
≤p000X . Since p0000+pX000+p0X00+p00X0+p000X≥1−12δ2

Γ2 ,

any probability with more than two X entries is smaller than 12δ2

Γ2 . In summary,

δ

Γ
− 7

δ2

Γ2
≤ pX000, p0X00, p00X0, p000X ≤ δ

Γ
,

after a time of the order 1
δ
, where the upper bounds are found using Eq. (C.8). Hence,

a steady state is reached where states labelled with one (more than one) X are occupied
with probability O(α) (O(α2)).

3 The slowest term converges as O
(

t3δΓ3

(Γ+δ)e
−t(Γ+δ)

)
. After an initial waiting time of the order of 1

δ the

steady state is reached up to an error of the order O
(
α−2e−α−1

)
.
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Differential equation for ρ0

The evolution of ρ0 ≡ ρ0000 is governed by Eq. (C.3). After a period of the order 1
δ
,

ρ̇0 = γ′O(1+α), since ‖ρ000X‖ = δ
Γ

+O(α2). Hence, for α ¿ 1, ρ0 is approximately
constant on time scales that are short compared to γ′ . In order to obtain an equation
which depends only on ρ0, the differential equations for ρi000, ρ0i00, ρ00(ij)0 and ρ000(ij) are
successively solved. According to Eq. (C.4),

ρ̇i000 = −Γρi000+δAiρ0A
†
i +N,

where N=γL(ρi000)−δρi000+δ
∑

k Aiρk000A
†
i +Γ

∑
xy=1 Txy(ρi00(xy)), which is bounded by

γ′O(α). For the first three terms pX000 = O(α) is used. The last term can be bounded
by pX00X = O(α2), such that

ρi000(t)=ρi000(0)e−Γt +

∫ t

0

dτeΓ(τ−t)
(
δAiρ0A

†
i + N

)
.

The integral
∫ t

0
dτeΓ(τ−t)N can be bounded by O(α2). The initial term is suppressed by

e−Γt and therefore smaller than O(α2) after the initial waiting time. Hence,

ρi000(t) = O(α2) + δ

∫ t

0

dτeΓ(τ−t)Aiρ0A
†
i . (C.9)

Since the integral is mainly determined by terms close to τ = t and ρ0 varies little on small
time intervals, ρ0 can be assumed to be constant. To prove this, the integral

∫ t

0

X(τ, t)dτ =

∫ t′

0

X(τ, t)dτ +

∫ t

t′
X(τ, t)dτ (C.10)

is considered, where X(τ, t) = eΓ(τ−t)Aiρ0A
†
i and t′ = t− 1√

Γγ′ = t− 1
γ′
√

α. Since 1
γ′ is the

typical time during which ρ0 changes, it is nearly constant during the interval (t, t′). Since
ρ̇0 = O(γ′(1 + α)),

ρ0(t
′′) = ρ0(t) +

∫ t′′

t

dτ ρ̇0(τ) = ρ0(t) +O(
√

α) (C.11)

for any t′′ ∈ [t′, t]. The integral from 0 to t′ in Eq. (C.10) is suppressed at least by a factor

e−
√

1
α < α (Aiρ0A

†
i is on the order of one). Inserting Eq. (C.11) in Eq. (C.9) and using

δ
∫ t

t′ dτeΓ(τ−t) = δ
Γ
(1− e−

√
α−1

) with e−
√

α−1
< α yields

ρi000(t) =
δ

Γ
Aiρ0(t)A

†
i +

δ

Γ
O(
√

α), (C.12)

which shows that for small α, Alice applies her first POVM with high accuracy.
Next, the evolution of ρ0i00 is considered (see Eq. (C.5)),

ρ̇0i00 = −Γρ0i00 + Γρi000 + N, (C.13)
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where N can be bounded by γ′O(α) using p0X00 = O(α), pXX00 = O(α2)
and p0X0X = O(α2). Inserting Eq. (C.12) yields ρ0i00(t) = ρ0i00(0)e−Γt +∫ t

0
dτeΓ(τ−t)

(
δAiρ0(τ)A†

i + δO(
√

α) + N
)
. As before, the integral over N and the first

term can be bounded by O(α2) after a waiting time. If the remaining integral is split as
in Eq. (C.10), one obtains one part, where ρ0 is nearly constant and one vanishing part.
The main error is again due to expression (C.11), leading to

ρ0i00(t) =
δ

Γ
Aiρ0(t)A

†
i +

δ

Γ
O(
√

α). (C.14)

Hence, for small α, sending classical information to Bob causes only marginal errors on
the main system.
Next, the evolution of ρ00(ij)00 is considered (Eq. (C.6)),

ρ̇00(ij)0 = −Γρ00(ij)0 + ΓBi
jρ0i00B

i
j

†
+ N,

where N can be bounded by γ′O(α) such that

ρ00(ij)0(t) =
δ

Γ
Bi

jAiρ0(t)A
†
iB

i
j

†
+

δ

Γ
O(
√

α),

which corresponds to a process, where Bob applies his part of the POVM and writes i, j
onto his classical input register. Similarly, Eq. (C.7) leads to

ρ000(ij)(t) =
δ

Γ
Bi

jAiρ0(t)A
†
iB

i
j

†
+

δ

Γ
O(
√

α),

which corresponds to a transfer of the classical measurement results i, j back onto Alice’s
side. Finally, these results can be applied for calculating ρ0,

ρ̇0 = γL(ρ0)− δρ0 + Γ
∑
ij

Tij(ρ000(ij)) = γL(ρ0)− δ (T ′(ρ0)− ρ0) .

The operation T ′(ρ) ≡ T (ρ0) + O(
√

α) represents a noisy version of the desired LOCC
map T (ρ). The undesired contribution can be suppressed by choosing the parameter α
small, that is, by choosing Γ large enough. The rate Γ is only limited by the speed of
light. If the time evolution resulting from the local error rates and the dissipative process
is fast compared to time it takes to transfer classical communication from Alice to Bob,
additional errors have to be taken into account. In this case the parameter γ′ = γ + δ
could be choosen to be small in order to obtain a small value of α, but this would require
more sophisticated methods for protection against noise.
In principle, the time evolution of ρM =

∑
ρijkl would be of interest. But since this state

is (up to an error of O(α)) close to ρ0, it’s evolution is dominated by this contribution
and other terms can be ignored. More formally, one could calculate ρ̇M =

∑
ρ̇ijkl by

calculating the remaining terms ρ̇ijkl, but all remaining terms are on the order of O(α)
and therefore negligible.
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The generalization to more than one round of communication is straight forward. By
summing over the indices of the corresponding Kraus-operators, one obtains equations
for the probabilities, which are independent of the POVMs applied in the protocol. From
these equations it can be concluded that only the relevant state responsible for the ap-
plication of the LOCC is populated, while all others are suppressed by a factor of order
α2 after an initial waiting time. By successive integration as shown above, the desired
approximation for ρ̇ is obtained.
For an increasing number of communication rounds, the errors add up, such that the
requirements on the parameter α become more severe. At some point, the speed of light
becomes a limiting factor and restricts this method to a regime with small noise terms
and retardation effects have to be included. However, many distillation protocols only
require a small amount of rounds to reach high fidelities and sometimes even one-way
communication (half a round) is sufficient [179,183].
After the initial waiting time, the term δ(T ′(ρ) − ρ) is bounded by δO(1), such that
another term of the same form can be added. This way several terms of this type can be
included which gives rise to the master equation

∑
k δ(T ′

k(ρ)− ρ).

C.3 Stabilization of dissipative distillation schemes

against errors acting on the target system

In this section, it is shown how the distillation schemes presented in Sec. C.1.2 and
Sec. C.4 can be made robust against noise acting on the target system. The same method
for stabilization against errors is applicable for both protocols and a wide range of other
dissipative schemes, which include classical communication. The basic idea is illustrated
in Fig. 3.10a. A dissipative protocol is run using m blocks of source systems in parallel,
which are all coupled individually to the same target system. This way, a boost effect
on the desired dynamics of the target system can be achieved, while the back-action on
the source pairs remains unchanged. If sufficiently many source systems are provided, the
dynamics on the target system is dominated completely by the desired dynamics. First,
the application of this method is explained for schemes of the type described in Sec. C.4
and Sec. C.5. Then the stabilization of scheme I is discussed.
To start with, a target system T and a source block consisting of n pairs are considered.
An entangling dissipative process described by the Lindblad operator δL(ρ) acts on each
source pair separately such that each of them is individually driven into an entangled
steady state ρs. The effective master equation for the target system, which is obtained
by tracing out the source system, is given by

ρ̇T = δLS(ρT ),

where the Lindblad operator LS(ρT ) may be time dependent. It does not depend on the
state of T but only on the state of the source system as indicated by the subscript S.
Accordingly, the convergence speed at which LS(ρT ) converges to a constant operator is
given by the rate at which the source system reaches a steady state. The convergence
rate of the source system is limited by the rate δ at which the flip operation mapping the
quantum states of the source system to T is performed (see Sec. C.1 and Sec. C.4).
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It is assumed that m identical source systems S1, . . . , Sm are individually coupled to a
single source system T through the Lindblad operator δ

∑m
i=1 L(ρT ,Si

), where L(ρT,Si
) is

a Lindblad operator acting on T and the ith source system (see Fig. 3.10a for a schematic
overview). These operators are assumed to be identical LSi

= LS, such that the dynamics
of the target system is governed by the reduced master equation

ρ̇T = δ
∑

i

LSi
(ρT ) = mδLS(ρT ).

This is not generally the case, since the m source systems are coupled to each other
through the target system. Due to this indirect coupling, the source systems may evolve
differently in time and can reach different steady states, which can be disadvantageous for
the evolution of the target system. This is for example the case for the scheme described
in Sec. C.1.1 which does not include classical communication.
It can be shown that LSi

(ρT ) = LS(ρT ), if there is no state dependent back-action of T
on the source systems. In this case, the evolution of the reduced density matrix of each
source block is independent from the time evolution of the other blocks. This property
can be guaranteed by re-initializing the source systems after each swap operation in a
standard state, for example the identity (strict equality requires in principle also that all
source systems start from the same initial state. However, different initial states have
only an effect on the time evolution in the beginning. The following discussions are
only concerned with the steady state of the system, which is independent of the initial
conditions). Scheme I including classical communication (see Sec. C.1.2) exhibits a weak
state dependent back-action. As explained in the end of Sec. C.1.2, this can be avoided
by applying a twirl [181, 182] on the target system prior to each flip operation. Hence,
the stabilization method outlined above is directly applicable to this modified version of
the scheme4.
By boosting the desired dynamics on the target system, arbitrary high error rates ε can
be tolerated. For mδ À ε, the dynamics governed by the master equation

ρ̇T = mδLs(ρT ) + εLnoise(ρT )

is dominated by the first term and the steady state is arbitrarily close to the original steady
state. In the specific case, where the process Ls(ρT ) = tr(ρT )ρT,s − ρ driving the target
system into the steady state ρT,s is counteracted by depolarizing noise (tr(ρT )I1− ρT ), the
time evolution described by

ρ̇T = mδ(tr(ρT )ρT,s − ρ) + ε(tr(ρT )I1− ρT )

leads to the steady state ρ′T ,s =
mδρT,s+εI1

mδ+ε
, which can be easily verified by solving the

equation ρ̇T = 0. This state is reached exponentially fast with a rate mδ + ε. The same
result holds for local depolarizing noise acting on Alice’s and Bob’s system (see Sec. C.4.1)
if the steady state ρT,s is a Werner state. A master equation of this type is solved exactly
in the next section.
4 It can be shown that this back-action has only a small effect on the steady state of the source system,
and that this effect does not accumulate if many source systems are coupled to T . The strict avoidance
of a state depended back-action is enforced only for the sake of clarity.
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C.4 Scheme II: dissipative entanglement distillation

for Werner states

In this section, a second dissipative distillation scheme is introduced, which does not
rely on entangling processes producing steady states, which are close to pure states, as
scheme I presented in Sec. C.1. Here, a very general model for Werner states [181, 182]
is analyzed, which can be solved exactly. Werner states are of the simple form ρW(f) =
fΩ+(1−f)(I−Ω)/3, and are characterized in terms of their fidelity f , which is given by the
overlap with the maximally entangled state Ω. Any quantum state can be transformed
into a Werner state by twirling [181, 182] without a loss of fidelity. Since a Werner-
twirl is a LOCC map, a dissipative protocol can be constructed, which corresponds to
the continuous application of a twirl operation on a given system and mapping of the
resulting state to a new pair acting as target system T by means of a continuous flip
procedure (compare Sec. C.4.2).
This way, any dissipative process can be modified such that it can be described in terms
of a Werner Lindblad operator Ef (ρT ) as used in above and Sec. C.5, where f is the
steady state fidelity of the underlying process. In this sense, the Werner model used here
is very general and can be applied in many situations.

C.4.1 Dissipative entangling model process for a single source
pair

A dissipative model process, which produces an arbitrary Werner state as steady state
can be modelled by considering two processes, which generate the steady states Ω and I1
respectively, where I1 = I/4 denotes the normalized identity. Let |ψi〉 denote the four Bell-
states, where |ψ0〉 = (|00〉+ |11〉) /

√
2, and σi the Pauli matrices, where σ0 is the identity.

A master equation which leads to the steady state Ω = |Ψ0〉〈Ψ0| can be constructed using
the four jump operators Qi = |ψ0〉〈ψi|, which give rise to the Lindlbad term

Q(ρ) =
∑

i

LQi(ρ) = tr(ρ)Ω− ρ.

Similarly, a master equation which leads to the steady state I1 is obtained using the jump
operators Wij = σi ⊗ σj, which give rise to the Lindblad term

W (ρ) =
∑
ij

LWij(ρ) = tr(ρ)I1− ρ.

Hence, the Werner state ρW (f) with fidelity f is the steady state of the time evolution
governed by the master equation

Ef (ρ) = fQ(ρ) +
1− f

3
(3W (ρ)−Q(ρ)) = tr(ρ)ρW − ρ.

The Lindblad term Ef (ρ) will be used in the following to model the basic entangling
process acting on the source systems.
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Local depolarizing noise acting on Alice’s (Bob’s) side is included using the jump
operators Si = IA ⊗ σi (Si = σi ⊗ IB), such that the corresponding Lindblad terms are
given by

NAlice(ρ) =
∑

i

LSi
Alice = ρA ⊗ I1B − ρ,

NBob(ρ) =
∑

i

LSi
Bob = I1A ⊗ ρB − ρ,

where ρA (ρB) is the reduced density matrix corresponding to Alice’s (Bob’s) system and
I1A (I1B) the normalized identity I/2 on Alice’s (Bob’s) system. This process describes the
continuous replacement of the state on Alice’s (Bob’s) side by the completely mixed state.
The total master equation

ρ̇ = γEf (ρ) +
ε

2
N(ρ), (C.15)

where N(ρ) = NAlice(ρ) + NBob(ρ), describes the basic entangling process including local
noise. This type of equation will be used frequently in the following sections, as it also
describes also the evolution of the target systems once the corresponding source systems
have reached the steady state.

The steady state of the time evolution described by Eq. (C.15) is a Werner state

ρs =
γρW(f) + εI1

γ + ε
(C.16)

with reduced fidelity fs =
γf+ε 1

4

γ+ε
. The general time dependent solution of the master

equation (C.15) is of the form

ρ(t) = ρ0g0(t) + ρ1g1(t) + ρ2g2(t) + ρ3g3(t), (C.17)

where ρ0 is any initial state, ρ1 = 1
2
(ρ0,A⊗ I1B +I1A⊗ρ0,B), ρ2 = ρW(f) and ρ3 = I1 = I1A⊗ I1B.

ρ0,A and ρ0,B are the reduced density matrices of the initial state ρ0 at Alices and Bobs
side. The functions gi are given by

g0(t) = e−γ′t,

g1(t) = 2
(
e−γ′′t − e−γ′t

)
, (C.18)

g2(t) =
γ

γ′
(1− e−γ′t),

g3(t) =
2γ

γ′

(
e−γ′t − eγ′′t

)
+

ε

γ′
(eγ′t − 2eγ′′t + 1),

where γ′ = γ + ε and γ′′ = γ + ε/2. Note, that the terms which depend on the
initial state of the system, i.e. ρ0 and ρ1, are suppressed exponentially fast. The system
reaches the steady state given by Eq. (C.16) exponentially fast with a rate of at least γ+ ε

2
.
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In order to verify that Eqs. (C.17) and (C.18) are a solution of Eq. (C.15), Eq. (C.17) can
be used as ansatz. The master equation gives rise to a set of differential equations for the
functions gi with initial conditions g0 = 1 and gi = 0,

ġ0 = −(γ + ε)g0, (C.19)

ġ1 = −(γ +
ε

2
)g1 + εg0,

ġ2 = −εf2 + γ(g0 + g1 + g2 + g3),

ġ3 = −γg3 +
ε

2
g1 + εg2.

Below, the initial condition ρ0 = I1 will be considered frequently. In this case the solution
simplifies to

ρ(t) = ρs + (I1− ρs)e
−(γ+ε)t. (C.20)

C.4.2 Steady state entanglement distillation acting on n source
systems

In the following, n systems which are subject to the basic entangling process
γEf (ρ) + ε

2
N(ρ) and are driven into the steady state ρs as described in Sec. C.4.1

are considered. These qubit pairs act as source systems for a LOCC distillation operation
TD, which distills one potentially higher entangled state from these copies. The resulting
quantum state is mapped to a target pair T and each source system is re-initialized in
the state I1. TD is not specified at this point - the solution derived in this section holds
for any n to 1 distillation protocol. To start with, deterministic protocols are considered.
These results are generalized at the end of this section such that probabilistic schemes
are also covered. Note that the complete re-initialization of the source systems represents
the worst-case situation regarding the back-action of the target system onto the source
pairs. This choice allows one to solve the model exactly and to provide a lower bound for
dissipative distillation schemes of this type.

The continuous distillation procedure explained above is described by the master
equation

ρ̇ =
n∑

i=1

(
γEf (ρ) +

ε

2
N(ρ)

)
i
+ δD(TD(ρ)− ρ), (C.21)

where (X(ρ))i stands for the dissipative process X(ρ) acting on the ith source system.
In the following, the time evolution and the steady state of the target system are deter-
mined. The reduced master equation for T depends on the steady state of the reduced
source system. Therefore, the dynamics on the source system is solved first. Since the
back-action of T on the source system does not depend on the quantum state of T , the
time evolution of the source pairs can be considered independently from the target system.
For clarity, the reduced states of source and target system are denoted by σ and ρT re-
spectively in this section. The reduced master equation for the n source systems is given
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by

σ̇ =
n∑

i=1

(
γEf (σ) +

ε

2
N(σ)

)
i
+ δD(tr(σ) I1⊗n − σ). (C.22)

The solution of the homogeneous master equation which describes the entangling dynam-
ics for n independent source systems

σ̇∗ (σ0, t) =
n∑

i=1

(γEf (σ∗(σ0, t)) + εN(σ∗(σ0, t)))i ,

is already known (see Sec. C.4.1) if the initial state is a product state. σ∗(σ0, t) denotes
the solution of the homogeneous master equation with initial condition σ∗(σ0, t = 0) = σ0.
The solution of the inhomogeneous master equation Eq. (C.22) is given by

σ(t) = σ∗(σ0, t)e
−δDt + δD

∫ t

0

dτσ∗(I1
⊗n, t− τ)e−δD(t−τ),

= σ∗(σ0, t)e
−δDt + δD

∫ t

0

dτσ∗(I1
⊗n, τ)e−τδD ,

with arbitrary initial condition σ(0) = σ0. This solution can be easily verified by consid-
ering the time derivative

σ̇(t) = −δDσ(t) + e−δDtσ̇∗(σ0, t) + e−δDt∂t

[
δD

∫ t

0

dτσ∗(I1
⊗n, t− τ)eτδD

]
.

Using ∂t

∫ t

0
g(τ)f(t− τ) = f(0)g(t) +

∫ t

0
g(τ)ḟ(t− τ) and σ∗(I1

⊗n, 0) = I1⊗n, one obtains

σ̇(t) = −δDσ(t) + e−δDtσ̇∗(σ0, t) + δDI1⊗n + e−δDt∂t

[
δD

∫ t

0

dτσ̇∗(I1
⊗n, t− τ)eτδD

]
,

which yields Eq. (C.22). The steady state

σs = δD

∫ ∞

0

dτσ∗(I1
⊗n, τ)e−δDτ (C.23)

is reached exponentially fast with a rate of at least δD. The homogeneous solution
σ∗(I1

⊗n, τ) is given by the tensor product of the solution for a single source pair (C.20),

σ∗(I1
⊗n, t) = (ρs + (I1− ρs)e

−(γ+ε)t)⊗n,

such that Eq. (C.23) can be further simplified

σs =

∫ 1

0

dx(ρs + (I1− ρs)x
γ+ε
δD )⊗n. (C.24)

Next, the dynamics of the target system T is considered. It is described by the time
dependent master equation

ρ̇T = δD (TD(σ(t))− ρT ) ,
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which is solved by

ρT (t) = ρT (0)e−δDt +

∫ t

0

dτδDTD(σ(t))e−δD(t−τ)

with steady state TD(σs). The corresponding steady state fidelity can be inferred by
integrating over the fidelities that are obtained if a standard distillation protocol is applied
such that

fout(fs)≡fout(f, ε)=

∫ 1

0

dxfD(fs+(
1

4
−fs)x

γ+ε
δD )⊗n,

where Eq. (C.24) was used.
So far, it has been assumed, that the underlying distillation protocol TD is deterministic,
such that a distilled state is available whenever it is applied. However, many distillation
protocols of interest are probabilistic, i.e., they only succeed some probability P (ρ). If a
probabilistic distillation protocol is used, the corresponding map TD is defined in such a
way, that a flip operation is only performed when the distillation was successful, which
leads to a state dependent rate in the master equation

ρ̇T = δDP (σ(t)) (TD(σ(t))− ρT ) .

Accordingly, the target system is driven into the same steady state as discussed above
with a reduced rate. Once the time evolution of the source system has reached a steady
state, the dynamics of the target system is determined by the master equation

ρ̇T = δDP (σs) (tr(ρT )ρ′s − ρT ) = δDpEfout(ρT ),

where ρ′s is the distilled steady state of the source system. Since ρ′s is a Werner state, the
target system can act as one of n new source systems which drive a new target system
into an even more entangled state. This way, the distillation protocol can be iterated in
a nested form.

C.5 Continuous quantum repeaters

The ability to distribute entangled states of high quality over long distances is of vital
importance for quantum communication and quantum network related applications in
general. As opposed to classical information, quantum information cannot be cloned.
Therefore, classical repeater schemes are not applicable in this context and quantum re-
peater schemes which respect the coherence of quantum states are required [66,67,155]. In
quantum repeater protocols, entanglement is first distributed over short distances L0 with
high accuracy. Then neighboring pairs are connected by a teleportation procedure [189]
(entanglement swapping [251, 399]) such that entangled links which span a distance 2L0

are obtained. In the next step, two neighboring links of length 2L0 are connected by en-
tanglement swapping, resulting in entangled pairs which span a distance 4L0. This way,
an entangled link of length L = L02

k can be established in k iteration steps (compare
Fig. 3.11 in the main text). However, for non-maximally entangled states, entanglement
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swapping leads to a considerable degradation in the fidelity of the resulting quantum
state. Since the distributed entanglement decreases dramatically every time the length
of the entangling links is doubled, it can not be distributed over large distances this way.
Therefore an entanglement distillation protocol has to be applied after every entangle-
ment swapping procedure before proceeding to the next stage.
In the following, a continuous dissipative quantum repeater scheme is described, which
combines continuous swap and distillation processes in order to generate long-range en-
tangled steady states, while entangling dissipative processes are only required over short
distances. To this end, a continuous swap operation is introduced in Sec. C.5.1. In
Sec. C.5.2 it is explained how this method can be combined with the distillation scheme
presented above (Sec. C.4) such that a high-quality entangled link can be established over
a large distance as steady state of a continuous dissipative evolution. A specific example
concludes this proof-of-principle study.

C.5.1 Continuous entanglement swapping

The basic setup for entanglement swapping consists of three nodes aligned on a line,
operated by Alice, Bob and Charlie, where Alice and Bob as well as Bob and Charlie
share an entangled pair, while the distance between Alice and Charlie is too large for
generating an entangled state of high quality (see Fig. 3b in the main text). By performing
a teleportation procedure, which requires the measurement of the two qubits at Bob’s node
and classical communication to Alice and Charlie, as well as local operations on their sides,
an entangled link can be established between Alice and Charlie [251].
In the setting considered here, Alice and Bob as well as Bob and Charlie each hold a
source pair which is subject to the basic dissipative entangling mechanism considered in
Sec. C.4, such both pairs are individually driven into the steady state ρs. This dynamics is
described by the Lindblad term γsw

∑2
i=1 (Ef (ρ))i = γsw

∑2
i=1(tr(ρ)ρW−ρ)i. As illustrated

in Fig. 3.10b in the main text, the source pairs are coupled to a pair of target qubits
shared between Alice and Charlie through the term δsw (Tsw(ρ)− ρ), where the completely
positive map Tsw corresponds to a flip operation which maps the state resulting from the
entanglement swapping procedure to a target system and re-initializes the source systems
in the state5 I1⊗ I1. Hence, the total master equation is given by

ρ̇ = γsw

2∑
i=1

(
Ef (ρ) +

ε

2
N(ρ)

)
i
+ δsw (Tsw(ρ)− ρ)

and the reduction to the source systems σ yields

σ̇ = γsw

2∑
i=1

(
Ef (ρ) +

ε

2
N(ρ)

)
i
+ δsw (tr(σ)I1⊗ I1− σ) .

5 The channel Tsw(ρ) corresponds to a three-partite LOCC map. The results in Sec. C.4 hold for bi-
partite LOCC terms of the form T (ρ)− ρ and can easily be extended to multi-partite operations. The
continuous realization of the swap scheme is already covered by the derivation for bi-partite LOCC
operations presented above, since this protocol can be considered as an effective bi-partite scheme in
which Alice and Charlie are treated as one party. Here, a classical one-way channel is used to send two
copies of a message at the same time. One copy is sent to Alice and the other one is sent to Charlie.
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The solution of this differential equation (compare Sec. C.4.2)

σ(t)=σ∗(σ0,t)e
−δswt+δsw

∫ t

0

dτσ∗(I1
⊗2,t−τ)e−δsw(t−τ),

where σ∗(σ0,t) is the homogeneous solution with initial condition σ(t = 0) = σ0, shows
that the steady state

σs =

∫ 1

0

dx(ρs + (I1− ρs)x
γsw+ε

δsw )⊗2, (C.25)

where ρs = γswρW (f)+εI1
γsw+ε

, is reached exponentially fast with a rate of at least δsw.
The time dependent master equation governing the dynamics of the target system is given
by

ρ̇ = δsw(Tsw(σ(t))− ρT ), (C.26)

where Tsw(σs) is the steady state of this evolution. According to Eq. (C.25), the steady
state fidelity is given by

fsw(f, ε) ≡ fsw(fs) =

∫ 1

0

dxF

(
fs + (

1

4
− fs)x

γsw+ε
δsw

)
.

fs is the fidelity of the state ρs and F (f) = (1− 2f + 4f 2) /3 is the output fidelity of the
swap protocol for two input states with fidelity f . A short calculation shows that

fsw(f, ε)≡fsw(fs)=2γ2
sw

(
1
3
(1−2fs+4f 2

s )− 1
4

)
+ 1

4

(2γsw + δsw)(γsw + δsw)
, (C.27)

where f is the fidelity of the state ρW and fs =
γswf+ε 1

4

γsw+ε
. As discussed in Sec. C.3, the

scheme can be made robust against noise processes acting on the target system by using
m copies of the source systems and coupling them all to the same target state.

C.5.2 Creation of long-range, high-quality steady state entan-
glement

The continuous swap operation introduced above (Sec. C.5.1), the dissipative distillation
protocol explained in Sec. C.4 and the method for stabilization against errors acting on
target systems (Sec. C.3) are the basic building blocks for the dissipative quantum repeater
scheme illustrated in Fig. C.3. To begin with, the distance L over which an entangled
link has to be established is divided into 2k segments of length L0, as in standard repeater
schemes. At each intermediate node, many qubits are supplied which are subject to local
depolarizing noise acting at a rate ε. Each source pair constituting an elementary link of
length L0 is assumed to be individually driven into a steady state ρs of high fidelity by
means of an entangling dissipative process of the type discussed in Sec. C.4.1, γEfI

(ρ),
with high initial steady state fidelity fI and a rate γ, which is large compared to the noise
rate ε. Note that this assumption can also be satisfied starting from dissipative processes
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Figure C.3: Dissipative quantum repeater architecture. a) Concatenation of elementary steps,
in which the distance over which entanglement is distributed is doubled. b) Illus-
tration of a single iteration step including entanglement swapping and -distillation.

leading to a steady state with low fidelity and low γ, if distillation and boost processes
are applied as discussed above. In the following, an iteration step of the repeater protocol
which acts on 2r entangled source systems, which each span a distance l with fidelity
fl, and produces entangled links of the length 2l with fidelity f2l, such that f2l ≥ fl is
considered. This is illustrated in Fig. C.3, where the entangled source pairs of length l
are shown in blue and the yellow target pairs of length 2l are depicted in yellow. Each
iteration step consist of the following subroutines, which are illustrated in Fig. C.3b:

• Neighboring source pairs of length l (blue) are connected via a continuous swap
operation. The resulting quantum states are written onto target pairs Tsw,i (red).
In order to achieve a boost-effect on the targets, this protocol is run on m source
systems in parallel.

• A block of n such pairs Tsw,i,j , j = 1, . . . , n, acts as source system (green) for an
distillation process, which maps the resulting quantum state to new target system
TD,i (yellow).

• m of these blocks (green) are needed to achieve a high fidelity of the quantum state
of the target systems (yellow).

This iteration step results in entangled links (yellow) which span twice the initial distance
and feature a high fidelity as well as a high convergence rate once all source systems have
reached the steady state.

In the following, δD = δsw = γ
m

is considered for simplicity (these parameters can
be optimized for a given distillation protocol). The individual levels of the repeater
scheme converge seriatim from bottom to top to a steady state. For example, once the
source systems of length l (blue) are in a steady state, the reduced master equation for
the target system of length 2l (yellow) becomes time independent and this system reaches
a steady state too. It is assumed, that all source pairs of length l (blue) are driven by a
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time independent master equation of the type discussed in Sec. C.4.2, ρ̇ = γEf (ρ) once
all underlying systems have reached the steady state. The reduced master equation for
the target system Tsw,i (red)

ρ̇Tsw,i =δmEfsw(fI ,ε)(ρTsw,i)+
ε

2
N(ρTsw,i)+δ

(
I1⊗n−ρTsw,i

)

includes local polarizing noise as introduced in Sec. C.4.1 and the back-action of the
distillation scheme. Note, that the rate of the entangling process, δm = γ is again high,
due to the boost on the target system. The entangling process acting on the target systems
of the distillation procedure TD, i (yellow), EfTsw (ρTD

) is determined by the steady state
fidelity fTsw := fsw(fI , ε).
A wide range distillation protocols for Werner states [454] can be used in a continuous form
as demonstrated in Sec. C.4 (below a specific example is discussed). As explained there,
a distillation protocol corresponds to a completely positive map TD which is described by
a Linblad term δD (TD(ρ)− ρ). The distillation process is applied continuously for each
entangled link and the resulting highly entangled qubit state is flipped to new target pairs
TD,i spanning the same length l.
Here, a distillation procedure is considered which acts on n entangled source systems
and distills one potentially higher entangled pair. Hence, for each of the 2r−1 links, n
copies Tsw,ij, i ∈ {1, 2r−1}, j ∈ {1, n} have to be supplied. This situation is sketched in
Fig. C.3b, where the target systems Tsw,ij (red), driven by the source pairs (blue), are used
as resource for creating a highly entangled steady state of the new target pair (yellow).
One source block (shown in green) is sufficient for entanglement distillation, but several of
them running in parallel are needed to boost the desired dynamics on the target system.
This way, each target pair TD,i is driven at a rate mδD = γ and the total effective master
equation for the target systems of the distillation protocol is given by

ρ̇TD
= mδDEfTD

(ρ) +
ε

2
N(ρ).

Hence, the resulting steady state fidelity is

fTD
= (fD(fTsw)) = (fD(fsw(fI , ε))) ,

where fD(fTsw) is the entanglement distilled from source systems with steady state
fidelity fTsw . In order to iterate this process, fTD

≥ fI , is required which can always be
achieved using a strong entanglement distillation (large n) and high entangling rates6 γ.
The next iteration step begins with another continuous entangling swapping procedure.
Here, the target systems of the distillation scheme act as source systems for the
entanglement swapping operation.
Since the total distance L has been divided into 2k segments ( L = L02

k), the protocol
has to be iterated k times. As explained above, each iteration stage requires 2m2n qubit

6The error rate ε does not play an important role in this consideration, since the effect of noise on the
target systems can be rendered negligible for large rates γ, without changing the scaling of the protocol.
This implies that more resource are needed to achieve this rate γ for the initial stage of the repeater
protocol, i.e., the number of resources may be multiplied by a large factor, but the scaling with the
length remains unchanged.
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pairs such that in total (2m2n)
k

source systems are needed. Hence the resources scale
with (L/L0)

log2(2m2n) in the distance. The estimate of the required resources is restricted
to the number of used qubit pairs, since the other resources scale polynomial in this
quantity. As specific example, the distribution of an entangled state such that each
repeater stage starts with and results in links with fidelity f = 0.96 is considered. The
considered setting involves noise acing at a rate ε = 0.05, distillation based on n = 16
source systems (the distillation protocol is described below) and stabilization of the
target pairs by means of m = 50 copies of the underlying source blocks and γ ≈ 70. In
this example, the required resources scale with (L/L0)

16.4.

The entanglement distillation scheme used here is a four-to-one distillation proto-
col for Werner states [454] which is applied two times in a nested fashion. Starting from
four source states s1, s2, s3, s4 with fidelity fin, the following operations are performed.
First, a bilateral CNOTs1→s2 operation is applied to the first two pairs (where s1 is the
control and s2 the target qubit ) and s2 is measured in the computational basis. Then,
a Hadamard transformation is performed on both qubits of s1. Subsequently, a bilateral
CNOTs1→s3 operation is applied to the first and third pair (where s1 is the control and
s3 the target qubit) and s3 is measured in the computational basis. The measurement
obtained on Alice’s and Bob’s side are compared. If their measurement results coincide,
the resulting state s1 is the desired higher entangled state. If not, the ”safety-copy” s4 is
used instead. In this event, distillation was not successful and the fidelity has not been
increased, but in any case an entangled pair is available. The fidelity of the resulting
state is given by

fout (fin) =
(1 + g) (1 + 7g2)

16Psucc

,

where g = (4fin − 1) /3 and Psucc = (1 + g2 + 2g3) /4 is the success probability of this
protocol. In the example above, this protocol is applied twice in a concatenated fashion.
The second application of the scheme is run using the output states of the first one as
input such that fD(fin) = fout (fout (fin)).

An estimate of the convergence speed of the presented repeater scheme concludes
this section. To start with, the elementary pairs constituting the entangled links on the
lowest level of the scheme are considered. These systems reach the steady state up to a
certain high accuracy after a time t0. After this time, the dynamics of all systems on the
next level is governed to a good approximation by a time independent master equation
and converge with high accuracy to the steady state after another time period of length
t0 has elapsed. Convergence of all k levels of the repeater scheme requires therefore a
waiting time kt0. Since the number of levels used in the scheme scale only logarithmical
with the distance, a very moderate scaling of the convergence time with the distance is
obtained. Note, that once the whole system is in a steady state, removal of the final
long-range entangled pair does not have an effect on the underlying systems which remain
in steady state. The repeater protocol put forward here is based on continuous LOCC
maps, which represent a particular subset of possible dissipative schemes. A distillation
protocol, which does not fall into this class (and does not require communication) has



C.5: Continuous quantum repeaters 169

also been presented. However, also the set of dissipative processes assisted by classical
communication includes other types of schemes not covered here, which are yet to be
explored.
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Appendix D

Quantum teleportation:
supplementary material

In the following, we provide details and derivations of the results presented in Sec. 4.1 as
well as additional figures. In App. D.1, we derive the input-output relations, which relate
the photonic and atomic variables before and after the scattering interaction. App. D.2
regards the special case, where a QND interaction is used for teleportation and contains
a discussion of different strategies for increasing the fidelity of the basic protocol intro-
duced in Sec. 4.1.3. App. D.3 is concerned with the non-QND case and provides details
complementing the analysis of the experimental feasibility of the teleportation scheme in
Sec. 4.1.4.

D.1 Input-output relations

In this appendix, we derive the input-output relations used in Sec. 4.1, assuming a general
quadratic interaction between atoms and light. The QND case is obtained as special case
in the limit where the parameter Z which characterizes the imbalance between the active
and the passive component of the light-matter interaction tends to infinity Z2 → ∞
(compare Sec. 4.1). In App. D.1.1, we derive the input-output relations for the ideal case.
In App. D.1.2, we include transverse atomic decay.

D.1.1 Input-output relations in the ideal case

In the following, we derive the input-output relations used in Sec. 4.1.4 in a one-
dimensional model assuming a pointlike atomic ensemble located at z = 0. As explained
in Sec. 2.1.1, the light field is described in terms of spatially localized modes xL(z), pL(z)
(see Eq. (2.1)). Due to the finite bandwith of the classical field b, the corresponding
canonical commutation relation involves a Dirac delta function with a finite width of
the order of c/b, [xL(z), pL(ź)] = icδb(z − ź). Light and atoms interact according to the
Hamiltonian H = HA + HL + Hint, where

HA =
Ω

2

(
x2

A + p2
A

)
, Hint =

κ√
T

(
pApL(0) +

1

Z2
xAxL(0)

)
. (D.1)
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Hint corresponds to a predominatly passive interaction (compare Sec. 2.1.2). For simplic-
ity, we discuss this case in the following. The corresponding active variant is obtained by
considering Z2 → −Z2. HL represents the free propagation of the light field. The action
of this Hamiltonian on the quadratures of the light field results in d

dt
xL(z) = −c d

dz
xL(z).

We obtain the Heisenberg equations

d

dt
xA(t) = ΩpA +

κ√
T

pL(0, t),

d

dt
pA(t) = −ΩxA − 1

Z2

κ√
T

xL(0, t),

(
d

dt
+ c

d

dz

)
xL(r, t) =

κ√
T

pA(t)δb(z),

(
d

dt
+ c

d

dz

)
pL(r, t) = − κ√

TZ2
xA(t)δb(z).

and perform the variable transformation ξ = ct − z. The new light field variables are
denoted by a bar, x̄L(ξ, t) = xL(ct− ξ, t). As explained in Sec. 2.1.3, the variable ξ labels
the localized light modes of the pulse and represents a coordinate system which is fixed
to the light pulse, starting with ξ = 0 at the front and ending with ξ = cT , as illustrated
in Fig. 2.3. In a rotating frame with

(
x̃A(t)
p̃A(t)

)
=

(
cos(Ωt) − sin(Ωt)
sin(Ωt) cos(Ωt)

)(
xA(t)
pA(t)

)
,

the new Maxwell-Bloch equations read

d

dt
x̃A(t) =

κ√
T

(
cos(Ωt)p̄L(ct, t) +

1

Z2
sin(Ωt)x̄L(ct, t))

)
, (D.2)

d

dt
p̃A(t) =

κ√
T

(
sin(Ωt)p̄L(ct, t)− 1

Z2
cos(Ωt)x̄L(ct, t)

)
,

d

dt
x̄L(r, t) =

κ√
T

(− sin(Ωt)x̃A(t) + cos(Ωt)p̃A(t)) δb(ct− ξ), (D.3)

d

dt
p̄L(r, t) = − κ√

TZ2
(cos(Ωt)x̃A(t) + sin(Ωt)p̃A(t)) δb(ct− ξ).

In order to solve this set of differential equations, the equations for the light field (D.2)
are integrated, which yields

(
x̄L(ξ, t)
p̄L(ξ, t)

)
=

(
x̄L(ξ, 0)
p̄L(ξ, 0)

)
+ Θb(ξ − ct)

κ√
T

LP(−Ω, t)

(
x̃A(t)
p̃A(t)

)
, (D.4)

where

LP(−Ω, t) =

( − sin(Ωt) cos(Ωt)
− 1

Z2 cos(Ωt) − 1
Z2 sin(Ωt)

)
.

Note that the Heaviside function Θb(ct − ξ) is a smooth step function, since the Dirac
delta function which appears in the Heisenberg equations δb(ct − ξ), has a width of the
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Figure D.1: a) Dirac delta function δ(x) b) Heaviside function Θ(y) c) Approximate delta
function fa(x) = 1

2π

∫ +a
−a eiωxdω, (a = 10). d) Smooth step function

∫ y
−∞ fa(x)dx,

(a = 10).

order b/c. In the following, the tilde on atomic operators is omitted in order to simplify
the notation. By inserting the expressions for x̄L(ξ, t) and p̄L(ξ, t) given by Eq. (D.4) into
the differential equation for the atomic variables (D.3),

d

dt

(
xA(t)
pA(t)

)
=

κ√
T

AP(−Ω, t)

(
x̄L(ct, t)
p̄L(ct, t)

)
,

=
κ√
T

AP(−Ω, t)

(
x̄L(ct, 0)
p̄L(ct, 0)

)
+ Θb(0)

κ2

T
AP(−Ω, t)LP(−Ω, t)

(
xA(t)
pA(t)

)
,

is obtained, where

AP(−Ω, t) =

(
1

Z2 sin(Ωt) cos(Ωt)
− 1

Z2 cos(Ωt) sin(Ωt)

)
.

Using AP(−Ω, t)LP(−Ω, t) = − 1
Z21 (where 1 is the unit matrix) yields

d

dt

(
xA(t)
pA(t)

)
=

κ√
T

AP(−Ω, t)

(
x̄L(ct, 0)
p̄L(ct, 0)

)
− κ2

2Z2T

(
xA(t)
pA(t)

)
,

such that
(

xA(t)
pA(t)

)
= e

−κ2

2Z2

(
xin

A

pin
A

)
+

κ√
T

∫ t

0

dτe
−κ2(t−τ)

2Z2T AP(−Ω, τ)

(
x̄L(cτ, 0)
p̄L(cτ, 0)

)
, (D.5)

and accordingly

(
xout

A

pout
A

)
= e−

κ2

2Z2

(
xin

A

pin
A

)
+

√
1− e−

κ2

Z2

(
xin

r(P),+

pin
r(P),+

)
,
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where

(
xin

r(P),±
pin

r(P),±

)
=

1

2

((
Z +

1

Z

)(
xin

us,±
pin

us,±

)
+

(
Z − 1

Z

)(
pin

ls,±
xin

ls,±

))
,

and

(
xin

us,±
pin

us,±

)
=

κ

Z
√

T

1

N±

∫ T

0

dτe±
κ2τ

2Z2T R(τ)

(
p̄L(cτ, 0)
−x̄L(cτ, 0)

)
,

(
pin

ls,±
xin

ls,±

)
=

κ

Z
√

T

1

N±

∫ T

0

dτe±
κ2τ

2Z2T R(τ)

(
p̄L(cτ, 0)
x̄L(cτ, 0)

)

with

N+ =

√
e

κ2

Z2 − 1, N− =

√
1− e−

κ2

Z2 , R(τ) =

(
cos(Ωτ) − sin(Ωτ)
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The input-output relations for the light field are derived in an analogous fashion.
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where Eq. (D.5) has been used in the last step. Accordingly,
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Input-output relations for the upper and lower sideband modes are given by
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If two atomic ensembles in antiparallel oriented magnetic fields are used, as in the setup
for dissipative entanglement generation, the situation is simplified, since backaction modes
cancel. In this case, the atomic input output relations are given by
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The input-output relations for arbitrarily modulated sine and cosine modes of the light
field (see Eq. (2.6)) are given by
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In the special case of exponentially falling read out modes
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is obtained.
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D.1.2 Input-output relations including transverse atomic decay

In the following, transverse atomic decay at a constant rate η/T is included. More specif-
ically, atomic decay is modelled in the form of beamsplitter losses with vacuum input.
Including this type of noise, the differential equations for the atomic variables read1
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atomic variables results in
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is obtained, where
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1 As before, the passive variant of the interaction given by Eq. (D.1) is discussed. The input-output
relations for the active case can be derived analogously with Z2 → −Z2.
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and exponentially modulated noise modes FxA,+,η, FpA,+,η (with [FxA,+,η, FpA,+,η] = i) as
defined in Sec. 4.1.4. The input-output relations for the light field (Eq. (4.7) in the main
text) are derived in an analogous fashion.

D.2 Improved QND teleportation schemes

This appendix is concerned with strategies aiming at the improvement of the performance
of the basic QND teleportation protocol introduced in Sec. 4.1.3. In App. D.2.1 the use
of squeezed light, the measurement of higher order backaction modes and the application
of a double pass scheme [98–100] are discussed. App. D.2.2 is concerned with the use of
time dependent coupling strength and suitable readout modes and provides the basis for
the analysis in Sec. 4.1.3.

D.2.1 Use of squeezed light, measurement of backaction modes
and application of a double pass scheme

As shown in Sec. 4.1.3, the optimal fidelity of the QND teleportation scheme cannot be
attained for couplings restricted to realistic values. However, obtaining high fidelities for
limited couplings can be rendered possible, for example, by using squeezed light. Below,
three different strategies are discussed.

QND teleportation using squeezed light

If the variance of the x-quadrature of the light field can be reduced to ∆(xsqu)
2 =

1
4
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2, the optimal teleportation fidelity can be attained even for κ = 1.0. For more
moderate degrees of squeezing, the optimal average fidelity cannot be achieved for the
values of κ considered here, but the use of squeezed light still leads to an improvement.
Figure D.2a shows the average teleportation fidelity for −3dB of squeezing and limited
couplings. Fig. D.2b shows the fidelity for −3dB of squeezing and 6dB antisqueezing.
The shown fidelities are calculated as follows. Considering squeezed variances of the light
field ∆(xsin)2 = ∆(xcos)
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where r is the squeezing parameter, the atomic variances corresponding to Bob’s ensemble
after the feedback operation are given by
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Figure D.2: Average teleportation fidelity F̄ (n) versus width of the distribution of input states
n, using squeezed light. The lowest (red) line in each panel represents the classical
limit. The other lines show the optimized average fidelity for restricted couplings
and correspond to κ2

max = 1.69 (green stars), κ2
max = 1.44 (orange squares),

κ2
max = 1.21 (blue triangles) and κ2

max = 1.0 (black dots). In panel a) squeezing up
to−3dB is considered. In panel b) noisy squeezing of−3dB with 6dB antisqueezing
is considered.

while the averages remain unchanged. The resulting average fidelity is maximized with
respect to r, gsin, gcos, κ1 and κ2 (κ1/2 denote the coupling strength corresponding the
first/second light-matter interaction and gsin/cos are the gainfactors characterizing the
feedback of xsin/cos onto xB/pB as explained in Sec. 4.1.3). The values for κ1 and κ2 are
restricted as specified in the figure caption. In order to obtain plot D.2a, the constraint
r < 3 ln(10)

10
was added in the optimization. For plot D.2b, the variances
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with ŕ = 6 ln(10)
10

were used. The results indicate that the use of squeezed light allows one
to circumvent the problem posed by the dramatic decrease of the teleportation fidelities
if the coupling strength is limited to realistic values. However since this strategy requires
a squeezed light source, it involves a substantial experimental overhead.

QND teleportation involving the measurement of higher order backaction
modes

The fidelity can also be increased, if the p-quadratures of the 1st order backaction mode of
the light field, psin,1 and pcos,1, can be measured in addition to xsin and xcos (note that the
0st and 1st order backaction modes are independent [xsin, psin,1] = 0). More specifically,
the final input-output relations for Bob’s variables after feedback of the measurement
results for xsin, xcos, psin,1 and pcos,1 with respective gain factors gsin, gcos, Gsin and Gcos
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Figure D.3: Improved QND teleportation schemes a) Average teleportation fidelity F̄ (n) versus
width of the distribution of input states n for limited couplings if psin,1, pcos,1, xsin

and xcos can be measured. The lowest (red) line represents the classical limit. The
other curves show the fidelities for κ2

max = 1.69 (green stars), κ2
max = 1.44 (orange

squares), κ2
max = 1.21 (blue triangles) and κ2

max = 1.0 (black dots). b) Setup for
the double pass teleportation scheme described in the text.
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Optimally, Gsin and Gcos are chosen such that the last term in the equation is zero and
the average fidelities shown in Fig. D.3a are obtained. This strategy yields a significant
improvement, however the simultaneous measurement of xsin, and psin,1 is technically
very demanding. In current experiments [14–16, 18, 95, 452] either the x-quadrature of
the light field or the p-quadrature is measured by homodyne detection. Different mod-
ulation functions can be analyzed in a second (postprocessing) step of the data. The
simultaneous measurement of of xsin, and psin,1 would require the measurement of both,
the x-quadrature of the light field as well as the p-quadrature. Due to the different modu-
lation functions, xsin, and psin,1 are independent observables in principle, but they cannot
be measured at the same time using the detection methods which are currently used.

QND teleportation using a double pass scheme

Alternatively, the attainable teleportation fidelity can be increased by employing a double
pass scheme [98–100] as shown in Fig. D.3b. More specifically, a situation is considered in
which the laser pulse passes the right ensemble completely before it reenters the sample
again, such that it does not encounter itself inside the atomic ensemble. The input-output
relations for Bob’s ensemble after the interaction with the light field are the same as in
the basic protocol discussed in Sec. 4.1.3. The input-output relations for the quadratures
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of the light field after the third (final) pass x́out
cos, x́sin are given by
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As in the basic protocol, x́sin and x́cos are measured after the last pass, and fed back onto
Bob’s ensemble. In this case,
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is obtained. Note that this scheme does not correspond to the basic protocol with
κ2 → 2κ2. This is due to the fact that atomic contributions corresponding to the right
ensemble (xV , pV ) are enhanced by a factor 2 (κ2 → 2κ2), while contributions from
the higher order backaction modes of the light fields are only enhanced by a factor

√
2

(κ2
2 → 2κ2

2). Moreover, contributions proportional to psin, pcos, which have been stored in
the atoms during the first round are mapped to the light field, when it enters the right
ensemble the second time. The resulting optimized average fidelity is shown in Fig. D.4.
As shown in Fig. D.4b, the double pass scheme performs better than the single pass
scheme for restricted couplings. In this comparison, the total coupling strength is fixed,
that is, in the double pass scheme, only κ2

2,max/2 is available for each of the two rounds.

Rather than applying a double pass scheme as outlined above, two individual pulses
of light can be sent consecutively through the two atomic ensembles which is easier to
realize experimentally. Using this simpler procedure, a higher fidelity can by achieved by
means of the two pass scheme compared to a strategy, where only one long single pass
(corresponding to twice the coupling strength used in each previous pass) is sent through
the ensembles. This is due to the fact that two different parameter sets (couplings
and feedback gains) can be chosen in the first case. In the following section this is
investigated in more general terms by allowing for arbitrarily shaped light pulses and
arbitrary feedback-functions.

D.2.2 Input-output relations for a single cell in a magnetic field
for a time dependent coupling strength and an arbitrary
readout mode

This appendix complements Sec. 4.1.3, where it is shown that a judicious choice of slowly
varying functions modulating the coupling strengths and the readout modes can lead to
a substantial improvement of the performance of the QND teleportation protocol (see
Sec. 4.1.2). In the following, the input-output relations for a single cell in a magnetic field
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Figure D.4: Average teleportation fidelity F̄ (n) versus width of the distribution of input states
n for the double-pass scheme shown in Fig. D.3b. The lowest (red) curve in each
panel reperesents the classical limit. a) The upper curve depicts the optimized
average fidelity in the ideal case. b) Optimized average fidelity for restricted
couplings. The four topmost curves correspond to κ2

1,max = 1.69, κ2
2,max = 1.69/2

(green stars), κ2
1,max = 1.44, κ2

2,max = 1.44/2 (orange squares), κ2
1,max = 1.21,

κ2
2,max = 1.21/2 (blue triangles) and κ2

1,max = 1.0, κ2
2,max = 0.5 (black dots).

are derived for a time dependent coupling strength and light modes with arbitrary envelope
functions. To this end, a time depending coupling strength κ(t) = κf(t) is considered,
where the function f(t) describing the temporal profile is assumed to be normalized such
that

1

T

∫ T

0

f(t)2dt = 1.

T is the duration of the light pulse. The corresponding Maxwell Bloch equations are
obtained by evaluating the Heisenberg equations using H = HA + HL + Hint, where
HA = Ω

2
(x2

A + p2
A), HL is the free Hamiltonian of the light field and the time-dependent

interaction Hamiltonian Hint is given by

Hint =
κ(t)√

T
pApL.

In the rotating frame (using the variable transformation ξ = ct − r, as explained in
Sec. D.1.1) the solution to this set of equations is given by

xA(t) = xA(0) +
κ̄√
T

∫ T

0

dτf(τ) cos(Ωτ)pL(cτ, 0),

pA(t) = pA(0) +
κ̄√
T

∫ T

0

dτf(τ) sin(Ωτ)pL(cτ, 0),

xL(ξ, t) = xL(ξ, 0) +
κ̄√
T

f(ξ/c)[− sin(Ωξ/c)xA(ξ/c)

+ cos(Ωξ/c)pA(ξ/c)]

pL(ξ, t) = pL(ξ, 0),

It is assumed that the function f(t) varies on a time scale much slower than the Larmor
frequency Ω. The duration of the pulse measured in Larmor periods ΩT is considered to
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be large (ΩT )−1 ¿ 1. For a pulse length of the order of ms and Larmor frequencies of
the order of MHz (as in the experimental setup reported in [14–16, 18, 95, 452]) this is
very well justified. In particular, the approximations

∫ T

0

dτf(τ)sin2(Ωτ)=

∫ T

0

dτf(τ)cos2(Ωτ) ' 1

2

∫ T

0

dτf(τ),

∫ T

0

dτf(τ)sin(Ωτ) cos(Ωτ) ' 0

are used in the following. This yields directly
(

xout
B

pout
B

)
=

(
xin

B

pin
B

)
+

κ√
2

(
pout

f,cos

pout
f,sin

)
, (D.8)

where the time dependence of the coupling strength has been absorbed in the definition
of the light modes

pin
f,cos =

√
2

T

∫ T

0

dτf(τ) cos(Ωτ)pL(cτ, 0),

pin
f,sin =

√
2

T

∫ T

0

dτf(τ) sin(Ωτ)pL(cτ, 0).

Analogous expressions hold for xf,sin and xf,cos. After the scattering interaction, the light
field is read out according to some profile h(t). More specifically,
(
xout

h,sin

xout
h,cos

)
=

√
2

T

∫ T

0

dτh(τ)

(
sin(Ωτ)
cos(Ωτ)

)
xL(cτ, T ),

=

(
xin

h,sin

xin
h,cos

)
+

κ√
2T

∫ T

0

dτf(τ)h(τ)

(−xin
A

pin
A

)
+

κ2

√
2T 3/2

∫ T

0

dτ

∫ τ

0

dτ́f(τ)h(τ)f (́τ)

(−cos(Ωτ́)pL(cτ́, 0)
sin(Ωτ́)pL(cτ́, 0)

)
,

=

(
xin

h,sin

xin
h,cos

)
+

κ√
2T

∫ T

0

dτf(τ)h(τ)

(−xin
A

pin
A

)
+

κ2

√
2T 3/2

∫ T

0

dτ́

∫ T

τ́

dτf(τ)h(τ)f (́τ)

(−cos(Ωτ́)pL(cτ́, 0)
sin(Ωτ́)pL(cτ́, 0)

)
.

The last term can be decomposed into a part proportional to (pin
f,cos, p

in
f,sin)T and an or-

thogonal mode

κ2

√
2T 3/2

∫ T

0

dτ́f(τ́)

(− cos(Ωτ́)
sin(Ωτ́)

)
pL(cτ́, 0)

∫ T

τ́

dτf(τ)f́(τ) = α

( −pin
f,cos

pin
f,cos

)
+ β

( −pin
f,cos,1

pin
f,cos,1

)
.

The coefficients α and β can be calculated using the conditions [xf,cos, αpin
f,cos +βpin

f,cos,1] =
iα and [xin

f,cos,1, p
in
f,cos,1] = i, yielding

(
xout

h,sin

xout
h,cos

)
=

(
xin

h,sin

xin
h,cos

)
+

κ√
2T

∫ T

0

dτf(τ)h(τ)

(−xin
A

pin
A

)
+α

(−pin
f,cos

pin
f,sin

)
+ β

( −pin
f,cos,1

pin
f,sin,1

)
,

where the coefficients α and β are given by the expressions

α =
κ2

2T

∫ T

0

dτ́f(τ́)2 1

T

∫ T

τ́

dτf(τ)h(τ),

β2 =
κ4

4T

∫ T

0

dτ́f(τ́)2

(
1

T

∫ T

τ́

dτf(τ)h(τ)

)2

− α2.
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The quality of the state transfer depends therefore on the overlap of the function f(t),
which is used to modulate the input field and the function h(t) which is used for the
readout of the light field after the interaction. For 1

T

∫
dτf(τ)h(τ) = 0, no mapping of

atomic quadratures onto the light field and vice vera can be observed.

D.3 Non-QND teleportation

This appendix complements Sec. 4.1.4. In App. D.3.1, we derive the input-output relations
for the setup involving parallel oriented magnetic fields in the ideal case. In App. D.3.2,
we deirive the equations which lead to the final input-output relations for the non-QND
teleportation in the antiparallel setup including noise.

D.3.1 Non-QND teleportation in the ideal case for antiparallel
oriented magnetic fields

For antiparallel oriented magnetic fields, the input-output relations can be derived as
follows. If the light-matter interactions involving the first and second ensemble are the
same,

H1/2 =
κ√
T

(
pB/V pL(0)± 1

Z2
xB/V xL(0)

)
∓ Ω

2

(
x2

B/V + p2
B/V

)
+ HL, (D.9)

where the upper (lower) sign corresponds to a predominantly passive (active) interaction.
Step (i) of the teleportation protocol explained in Sec. 4.1.2 results in

(
xB(t)
pB(t)

)
= e

∓κ2t
2Z2T

(
xin

B

pin
B

)
+

κ√
T

∫ t

0

dτe
∓κ2(t−τ)

2Z2T AP/A(Ω, τ)

(
x̄L(cτ, 0)
p̄L(cτ, 0)

)
,

(
xout

h,sin

xout
h,cos

)
=

(
xin

h,sin

xin
h,cos

)
+

κ√
2T

∫ T

0

dth(t)e
∓κ2t
2Z2T

(
xin

B

pin
B

)

+
κ2

√
2T

3
2

∫ T

0

dt

∫ t

0

dτh(t)e
∓κ2(t−τ)

2Z2T AP/A(Ω, τ)

(
x̄L(cτ, 0)
p̄L(cτ, 0)

)
, (D.10)

step (ii) leads to

(
xV (t)
pV (t)

)
= e

∓κ2t
2Z2T

(
xin

V

pin
V

)
+

κ√
T

∫ t

0

dτe
∓κ2(t−τ)

2Z2T AP/A(−Ω, τ)

(
x̄L(cτ, 0)
p̄L(cτ, 0)

)
,

(
x̃out

h,sin

x̃out
h,cos

)
=

(
xin

h,sin

xin
h,cos

)
+

κ√
2T

∫ T

0

dth(t)e
∓κ2t
2Z2T

(
xin

B − xin
V

pin
B + pin

V

)

∓ κ2
√

2

T
3
2 Z2

∫ T

0

dt

∫ t

0

dτh(t)e
∓κ2(t−τ)

2Z2T

(
sin(Ωτ)x̄L(cτ, 0)
cos(Ωτ)x̄L(cτ, 0)

)
,
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and the final atomic state after the feedback operation is given by
(
xfin

B

pfin
B

)
=

κ√
2T

∫ T

0

dth(t)e
∓κ2t
2Z2T G−

(
xin

V

pin
V

)
+

(
e
∓κ2

2Z2 1+
κ√
2T

∫ T

0

dth(t)e
∓κ2t
2Z2TG+

)(
xin

B

pin
B

)

+ G+

(
xin

g,sin

xin
g,cos

)
+

κ√
T

∫ T

0

dte
∓κ2(T−t)

2Z2T

(
cos(Ωt)p̄L(ct, 0)
− sin(Ωt)p̄L(ct, 0)

)

∓ κ√
TZ2

∫ T

0

dτ

(
e
∓κ2(T−τ)

2Z2T 1+
κ
√

2

T

∫ T

τ

dth(t)e
∓κ(t−τ)

2Z2T G+

)(
sin(Ωτ)x̄L(cτ, 0)
cos(Ωτ)x̄L(cτ, 0)

)
.

If the light-matter interactions involving the first and second ensemble are of different
type

H1 =
κ√
T

(
pBpL(0)∓ 1

Z2
xB xL(0)

)
− Ω

2

(
x2

B + p2
B

)
+ HL, (D.11)

H2 =
κ√
T

(
pV pL(0)± 1

Z2
xV xL(0)

)
+

Ω

2

(
x2

V + p2
V

)
+ HL,

where the upper (lower) sign corresponds to an active-passive (passive-active) configura-
tion. Step (i) of the teleportation scheme discussed in 4.1 is described by Eq. (D.10), with
Z2 → −Z2. Step (ii) results in

(
xV (t)
pC(t)

)
= e

∓κ2t
2Z2T

(
xin

V

pin
V

)
± 2 sinh(

κ2t

2Z2T
)

(
xin

B

−pin
B

)
+

κ√
T

∫ t

0

dτe
±κ2(t−τ)

2Z2T AP/A(−Ω, τ)

(
x̄L(cτ, 0)
p̄L(cτ, 0)

)
,

(
x̃out

h,sin

x̃out
h,cos

)
=

(
xin

h,sin

xin
h,cos

)
+

κ

T
√

2

∫ T

0

dth(t)e
∓κ2t

2Z2T

(
xin

B − xin
V

pin
B + pin

V

)
,

and after the feedback operation (step (iii))

(
xfin

B

pfin
B

)
=

κ√
2T

∫ T

0

dth(t)e
∓κ2t
2Z2T G−

(
xfin

V

pfin
V

)
+

(
e
±κ2

2Z2 1+
κ√
2T

∫ T

0

dth(t)e
∓κ2t
2Z2T G+

)(
xfin

B

pfin
B

)

+

∫ T

0

dt

(
± κ√

TZ2
e
±κ2(T−t)

2Z2T 1+

√
2

T
h(t)G+

)(
sin(Ωt)x̄L(cτ, 0)
cos(Ωt)x̄L(cτ, 0)

)

+
κ√
T

∫ T

0

dte
±κ2(T−t)

2Z2T

(
cos(Ωt)p̄L(ct0)
− sin(Ωt)p̄L(ct0)

)

is obtained. For antiparallel magnetic fields, the classical limit can be surpassed for all
possible combinations (passive-passive, active-active, passive-active and active-passive)
for Z = 2.5 in the ideal case, but the teleportation fidelities are well below the fidelities
that can be reached using the parallel setup discussed in the main text.

D.3.2 Non-QND teleportation for parallel magnetic fields in-
cluding transverse atomic decay

In this appendix, Eq. (4.8) and Eq. (4.9) in Sec. 4.1.4 are derived. If a predominantly
passive interaction is employed and a constant decay of the transverse atomic spin state
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at a rate η/T is assumed as discussed in App. D.1.2, the input-output relations for Bob’s
ensemble and the light field corresponding to step (i) of the teleportation protocol cor-
respond to Eq. (D.7) and Eq. (4.7) respectively. The active variant is obtained by con-
sidering Z2 → −Z2. If the same interaction is used twice in succession, step (ii) of the
teleportation protocol results in

(
xout

V

pout
V

)
= e−

γA/Pt

2T

(
xin

V

pin
V

)
+

√
η

T

∫ t

0

dτe−
γA/P(t−τ)

2T

(
fxV

(τ)
fpV

(τ)

)
± κ2t

Z2T
e−

γA/Pt

2T

(
xin

B

pin
B

)

+
κ√
T

∫ t

0

dτe−
γA/P(t−τ)

2T

(
1± κ2

Z2T
(t− τ)

)
AA/P(Ω, τ)

(
x̄L(cτ, 0)
p̄L(cτ, 0)

)

± κ2√η

Z2T
3
2

∫ t

0

dτ(t− τ)e−
γA/P(t−τ)

2T

(
fxB

(τ)
fpB

(τ)

)
,

(
x̃out

h,sin

x̃out
h,cos

)
=

(
xin

h,sin

xin
h,cos

)
+

κ√
2T

∫ T

0

dth(t)e−
γA/Pt

2T

(
xin

V

pin
V

)

+
κ
√

η√
2T

3
2

∫ T

0

dt

∫ t

0

dτh(t)e−
γA/P(t−τ)

2T

(
fxV

(τ)
fpV

(τ)

)

+
κ√
2T

∫ T

0

dth(t)e−
γA/Pt

2T

(
1∓ κ2t

Z2T

)(
xin

B

pin
B

)

+
κ
√

η√
2T

3
2

∫ T

0

dt

∫ t

0

dτh(t)e−
γA/P(t−τ)

2T

(
1± κ2(t− τ)

Z2T

)(
fxB

(τ)
fpB

(τ)

)

+
κ2

√
2T

3
2

∫ T

0

dt

∫ t

0

dτh(t)e−
γA/P(t−τ)

2T

(
2± κ2(t− τ)

Z2T

)
AA/P(Ω, τ)

(
x̄L(cτ, 0)
p̄L(cτ, 0)

)
,

where the upper (lower) sign corresponds to a setting where the active (passive) variant
is employed (in both interactions). These expressions give rise to Eq. (4.8). Finally, we
consider the case, where different types of interactions are used in step (i) and step (ii). If
first a predominantly active/passive and then a mainly passive/active interaction is used,

(
xout

V

pout
V

)
= e−

γP/At

2T

(
xin

V

pin
V

)
+

κ√
T

∫ t

0

dτe−
γP/A(t−τ)

2T AP/A(Ω, τ)

(
x̄L(cτ, 0)
p̄L(cτ, 0)

)

+

√
η

T

∫ t

0

dτe−
γP/A(t−τ)

2T

(
fxV

(τ)
fpV

(τ)

)
,

(
x̃out

h,sin

x̃out
h,cos

)
=

(
xin

h,sin

xin
h,cos

)
+

κ√
2T

∫ T

0

dth(t)

(
e−

γA/Pt

2T

(
xin

B

pin
B

)
+e−

γP/At

2T

(
xin

V

pin
V

))

+

√
ηκ√

2T
3
2

∫ T

0

dτ

∫ T

τ

dth(t)

(
e−

γA/P(t−τ)

2T

(
fxB

(τ)
fpB

(τ)

)
+e−

γP/A(t−τ)

2T

(
fxV

(τ)
fpV

(τ)

))

+
κ2

√
2T

3
2

∫ T

0

dτ

∫ T

τ

dth(t)

(
e
−γA/P(t−τ)

2T AA/P(Ω, τ)+e
−γP/A(t−τ)

2T AP/A(Ω, τ)

)(
x̄L(cτ, 0)
p̄L(cτ, 0)

)

is obtained, which gives rise to Eq. (4.9).
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[175] M. Aspelmeyer, S. Gröblacher, K. Hammerer, and N. Kiesel. Quantum optome-
chanics – throwing a glance, JOSA B 27, A189 (2010).

[176] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg. Theory of Ground
State Cooling of a Mechanical Oscillator Using Dynamical Backaction, Phys. Rev.
Lett. 99, 093901 (2007).

[177] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin. Quantum Theory
of Cavity–Assisted Sideband Cooling of Mechanical Motion, Phys. Rev. Lett. 99,
093902 (2007).



200 BIBLIOGRAPHY

[178] C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer. Ground–state cool-
ing of a micromechanical oscillator: Comparing cold damping and cavity–assisted
cooling schemes, Phys. Rev. A 77, 033804 (2008).

[179] C. H. Bennett, et al.. Purification of Noisy Entanglement and Faithful Teleportation
via Noisy Channels, Phys. Rev. Lett. 76, 722 (1996).

[180] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller. Quantum repeaters based on
entanglement purification, Phys. Rev. A 59, 169 (1999).

[181] R. F. Werner. Quantum states with Einstein–Podolsky–Rosen correlations admitting
a hidden–variable model, Phys. Rev. A 40, 4277 (1989).

[182] M. Horodecki and P. Horodecki. Reduction criterion of separability and limits for a
class of distillation protocols, Phys. Rev. A 59, 4206 (1999).

[183] C. H. Benett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters. Mixed–state
entanglement and quantum error correction, Phys. Rev. A 54, 3824 (1996).

[184] S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller. Quantum communication
with dark photons, Phys. Rev. A 59, 2659 (1999).

[185] M. Riebe, et al.. Deterministic quantum teleportation with atoms, Nature 429, 724
(2004).

[186] M. Barrett, et al.. Deterministic quantum teleportation of atomic qubits, Nature
429, 737 (2004).

[187] M. Riebe, et al.. Quantum teleportation with atoms: quantum process tomography,
New J. Phys. 9, 211 (2007).

[188] S. Olmschenk, et al.. Quantum Teleportation Between Distant Matter Qubits, Sci-
ence 323, 486 (2009).

[189] C. Bennett, et al.. Teleporting an unknown quantum state via dual classical and
Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70, 1895 (1993).

[190] D. Gottesman and I. L. Chuang. Demonstrating the viability of universal quantum
computation using teleportation and single-qubit operations, Nature 402, 390 (1999).

[191] D. Bouwmeester, et al.. Experimental quantum teleportation, Nature 390, 575
(1997).

[192] D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto. Quantum Teleportation with
a Quantum Dot Single Photon Source, Phys. Rev. Lett. 92, 037904 (2004).

[193] H. de Riedmatten, et al.. Long Distance Quantum Teleportation in a Quantum
Relay Configuration, Phys. Rev. Lett. 92, 047904 (2004).

[194] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin. Long–distance
teleportation of qubits at telecommunication wavelengths, Nature 421, 509 (2003).



BIBLIOGRAPHY 201

[195] Y.-H. Kim, S. Kulik, and Y. Shih. Quantum Teleportation of a Polarization State
with a Complete Bell State Measurement, Phys. Rev. Lett. 86, 1370 (2001).

[196] D. Boschi, S. Branca, F. D. Martini, L. Hardy, and S. Popescu. Experimental
Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and
Einstein–Podolsky–Rosen Channels, Phys. Rev. Lett. 80, 1121 (1998).

[197] R. Ursin, et al.. Quantum teleportation across the Danube, Nature 430, 849 (2004).

[198] J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger. Experimen-
tal Demonstration of Four–Photon Entanglement and High–Fidelity Teleportation,
Phys. Rev. Lett. 86, 4435 (2001).

[199] A. Furusawa, et al.. Unconditional quantum teleportation, Science 282, 706 (1998).

[200] T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble. Quantum
teleportation of light beams, Phys. Rev. A 67, 033802 (2003).

[201] W. P. Bowen, et al.. Experimental investigation of continuous–variable quantum
teleportation, Phys. Rev. A 67, 032302 (2003).

[202] H. Yonezawa, T. Aoki, and A. Furusawa. Demonstration of a quantum teleportation
network for continuous variables, Nature 431, 430 (2004).

[203] N. Takei, H. Yonezawa, T. Aoki, and A. Furusawa. High–Fidelity Teleportation be-
yond the No–Cloning Limit and Entanglement Swapping for Continuous Variables,
Phys. Rev. Lett. 94, 220502 (2005).

[204] X.-M. Jin, et al.. Experimental free–space quantum teleportation, Nature Photonics
4, 376 (2010).

[205] Z. Zhao, et al.. Experimental demonstration of five–photon entanglement and open–
destination teleportation, Nature 430, 54 (2004).

[206] Q. Zhang, et al.. Experimental quantum teleportation of a two–qubit composite
system, Nature Physics 2, 678 (2006).

[207] C. Schmid, et al.. Quantum teleportation and entanglement swapping with linear
optics logic gates, New J. Phys. 11, 033008 (2009).

[208] A. Kuzmich and E. S. Polzik. Atomic Quantum State Teleportation and Swapping,
Phys. Rev. Lett. 85, 5639 (2000).

[209] A. Dantan, N. Treps, A. Bramati, and M. Pinard. Teleportation of an Atomic
Ensemble Quantum State, Phys. Rev. Lett. 94, 050502 (2005).

[210] J. Sherson. Quantum memory and teleportation using macroscopic gas samples.
Ph.D. thesis, Niels Bohr Institute Copenhagen (2006).

[211] L. Vaidman. Teleportation of quantum states, Phys. Rev. A 49, 1473 (1994).



202 BIBLIOGRAPHY

[212] P. van Loock and S. L. Braunstein. Unconditional teleportation of continuous–
variable entanglement, Phys. Rev. A 61, 010302 (1999).

[213] S. L. Braunstein and P. van Loock. Quantum information with continuous variables,
Rev. Mod. Phys. 77, 513 (2005).

[214] S. L. Braunstein, H. J. Kimble, and C. A. Fuchs. Criteria for continuous–variable
quantum teleportation, J. Mod. Opt. 47, 267 (2000).

[215] K. Hammerer, M. M. Wolf, E. S. Polzik, and J. I. Cirac. Quantum Benchmark for
Storage and Transmission of Coherent States, Phys. Rev. Lett. 94, 150503 (2005).

[216] P. Medley, D. M. Weld, H. Miyake, D. E. Pritchard, and W. Ketterle. Spin Gradient
Demagnetization Cooling of Ultracold Atoms, Phys. Rev. Lett. 106, 195301 (2011).

[217] D. M. Weld and W. Ketterle. Towards quantum magnetism with ultracold atoms, J.
Phys.: Conf. Ser. 264, 012017 (2001).

[218] J. Simon, et al.. Quantum simulation of antiferromagnetic spin chains in an optical
lattice, Nature 472, 307 (2011).

[219] A. V. Gorshkov, et al.. Two–orbital SU(N) magnetism with ultracold alkaline–earth
atoms, Nature Phys. 6, 289 (2010).

[220] M. Hermele, V. Gurarie, and A. M. Rey. Mott Insulators of Ultracold Fermionic
Alkaline Earth Atoms: Underconstrained Magnetism and Chiral Spin Liquid, Phys.
Rev. Lett. 103, 135301 (2009).

[221] A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller. Quantum Computing with Alkaline–
Earth–Metal Atoms, Phys. Rev. Lett. 101, 170504 (2008).

[222] S. Sachdev. Quantum magnetism and criticality, Nature Phys. 4, 173 (2008).

[223] M. Rigol, V. Dunjko, and M. Olshanii. Thermalization and its mechanism for
generic isolated quantum systems, Nature 452, 854 (2008).

[224] M. A. Cazalilla and M. Rigol. Focus on Dynamics and Thermalization in Isolated
Quantum Many–Body Systems, New J. Phys. 12, 055006 (2010).

[225] G. Birkl, M. Gatzke, I. H. Deutsch, S. L. Rolston, and W. D. Phillips. Bragg
Scattering from Atoms in Optical Lattices, Phys. Rev. Lett. 75, 2823 (1995).

[226] M. Weidemüller, A. Hemmerich, A. Görlitz, T. Esslinger, and T. W. Hänsch. Bragg
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[403] S. Perseguers, M. Lewenstein, A. Aćın, and J. I. Cirac. Quantum random networks,
Nature Phys. 6, 539 (2010).

[404] B. Horstmann, B. Reznik, S. Fagnocchi, and J. I. Cirac. Hawking Radiation from
an Acoustic Black Hole on an Ion Ring, Phys. Rev. Lett. 104, 250403 (2010).

[405] C. Barcelo, S. Liberati, and M. Visser. Analogue Gravity, Living Rev. Rel. 8, 12
(2005).



214 BIBLIOGRAPHY

[406] T. G. Philbin, et al.. Fiber–Optical Analog of the Event Horizon, Science 319, 1367
(2008).

[407] R. Balbinot, A. Fabbri, S. Fagnocchi, A. Recati, and I. Carusotto. Nonlocal density
correlations as a signature of Hawking radiation from acoustic black holes, Phys.
Rev. A 78, 021603 (2008).

[408] O. Lahav, et al.. Realization of a Sonic Black Hole Analog in a Bose–Einstein
Condensate, Phys. Rev. Lett. 105, 240401 (2010).

[409] K. L. Brown, W. J. Munro, and V. M. Kendon. Using Quantum Computers for
Quantum Simulation, 12, 2268 (2010).

[410] H. F. Trotter. On the product of semi–groups of operators, Proc. Am. Math. Phys.
10, 545 (1959).

[411] M. Suzuki. Improved Trotter–like formula, Phys. Lett. A 180, 232 (1993).

[412] I. Buluta and F. Nori. Quantum simulators, Science 326, 108 (2009).

[413] D. J. Wineland. Quantum information processing and quantum control with trapped
atomic ions, Physica Scripta T137, 014007 (2009).

[414] T. Schätz, A. Friedenauer, H. Schmitz, L. Petersen, and S. Kahra. Towards (scal-
able) quantum simulations in ion traps, J. Mod. Optic. 54, 2317 (2007).

[415] X.-L. Deng, D. Porras, and J. I. Cirac. Effective spin quantum phases in systems of
trapped ions, Phys. Rev. A 72, 063407 (2005).

[416] D. Porras and J. I. Cirac. Effective Quantum Spin Systems with Trapped Ions, Phys.
Rev. Lett. 92, 207901 (2004).

[417] D. Porras and J. I. Cirac. Bose–Einstein Condensation and Strong–Correlation
Behavior of Phonons in Ion Traps, Phys. Rev. Lett. 93, 263602 (2004).

[418] A. Friedenauer, H. Schmitz, J. Z. Glueckert, D. Porras, and T. Schätz. Simulating
a quantum magnet with trapped ions, Nature Phys. 4, 757 (2008).

[419] R. Islam, et al.. Onset of a quantum phase transition with a trapped ion quantum
simulator, Nat. Commun. 2, 377 (2011).

[420] R. Gerritsma, et al.. Quantum Simulation of the Klein Paradox with Trapped Ions,
Phys. Rev. Lett. 106, 060503 (2011).

[421] R. Gerritsma, et al.. Quantum Simulation of the Dirac equation, Nature 463, 68
(2010).

[422] E. E. Edwards, et al.. Quantum simulation and phase diagram of the transverse–field
Ising model with three atomic spins, Phys. Rev. B 82, 060412 (2010).



BIBLIOGRAPHY 215

[423] T. Kinoshita, T. Wenger, and D. Weiss. Observation of a one–dimensional Tonks–
Girardeau gas, Science 305, 1125 (2004).

[424] J. A. Jones. NMR quantum computation: A critical evaluation, Fortschr. Phys. 48,
909 (2000).

[425] C. H. Tseng, et al.. Quantum simulation of a three–body–interaction Hamiltonian
on an NMR quantum computer, Phys. Rev. A 61, 012302 (1999).

[426] K. R. Brown, R. J. Clark, and I. L. Chuang. Limitations of Quantum Simulation
Examined by Simulating a Pairing Hamiltonian Using Nuclear Magnetic Resonance,
Phys. Rev. Lett. 97, 050504 (2006).

[427] C. Negrevergne, R. Somma, G. Ortiz, E. Knill, and R. Laflamme. Liquid–state NMR
simulations of quantum many–body problems, Phys. Rev. A 71, 032344 (2005).

[428] B. P. Lanyon, et al.. Towards Quantum Chemistry on a Quantum Computer, Nature
Chem. 2, 106 (2009).

[429] X. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther. Quantum simulation
of the wavefunction to probe frustrated Heisenberg spin systems, Nature Phys. 7,
399405 (2011).

[430] J. Cho, D. G. Angelakis, and S. Bose. Simulation of high–spin Heisenberg models
in coupled cavities, Phys. Rev. A 78, 062338 (2008).

[431] A. Micheli, G. K. Brennen, and P. Zoller. A toolbox for lattice–spin models with
polar molecules, Nature Phys. 2, 341 (2006).

[432] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen.
Spins in few–electron quantum dots, Rev. Mod. Phys. 79, 1217 (2007).

[433] J. Wrachtrup and F. Jelezko. Processing quantum information in diamond, J. Phys.:
Condens. Matter 18, 807 (2006).

[434] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme. Quantum algorithms for
fermionic simulations, Phys. Rev. A 64, 022319 (2001).

[435] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon. Simulated Quan-
tum Computation of Molecular Energies, Science 309, 1704.

[436] B. M. Boghosian and W. Taylor. Quantum lattice–gas model for the many–particle
Schrödinger equation in d dimensions, Phys. Rev. E 57, 54 (1998).
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